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Abstract 

Network analysis represents a novel theoretical approach to personality. Network approaches 

motivate alternative ways of analyzing data, and suggest new ways of modeling and simulating 

personality processes. In the present paper, we provide an overview of network analysis strategies 

as they apply to personality data. We discuss different ways to construct networks from typical 

personality data, show how to compute and interpret important measures of centrality and clustering, 

and illustrate how one can simulate on networks to mimic personality processes. All analyses are 

illustrated using a data set on the commonly used HEXACO questionnaire using elementary R-code 

that readers may easily adapt to apply to their own data. 

 

Highlights 

 Network analysis can foster novel insights in personality psychology. 

 We provide an overview of network analysis. 

 We show how R can be used to analyze personality networks. 

 We show how to simulate personality networks in R. 

 

Keywords: Network analysis, psychometrics, latent variables, centrality, clustering, personality 

traits, HEXACO 
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State of the aRt personality research: a tutorial on network analysis of personality data in R 

A network is an abstract model composed of a set of nodes or vertices (V), a set of edges, 

links or ties (E) that connect the nodes, together with information concerning the nature of the 

nodes and edges (e.g., de Nooy, Mrvar, & Batagelj, 2011). Figure 1 reports the example of a simple 

network, with six nodes and seven edges. The nodes usually represent entities and the edges 

represent their relations. This simple model can be used to describe many kinds of phenomena, such 

as social relations, technological and biological structures, and information networks (e.g., Newman, 

2010, Chapters 2–5). Recently networks of relations among thoughts, feelings and behaviors have 

been proposed as models of personality and of psychopathology: in this framework, traits have been 

conceived of as emerging phenomena that arise from such networks (Borsboom & Cramer, 2013; 

Cramer et al., 2012; Schmittmann et al., 2013). An R package, qgraph, has been developed for the 

specific purpose of analyzing personality and psychopathology data (Epskamp, Cramer, Waldorp, 

Schmittman, & Borsboom, 2012). 

The aim of this contribution is to provide the reader with the necessary theoretical and 

methodological tools to analyze personality data using network analysis, by presenting key network 

concepts, instructions for applying them in R (R Core Team, 2013), and examples based on 

simulated and on real data. First, we show how a network can be defined from personality data. 

Second, we present a brief overview of important network concepts. Then, we discuss how network 

concepts can be applied to personality data using R. In the last part of the paper, we outline how 

network-based simulations can be performed that are specifically relevant for personality 

psychology. Both the data and the R code are available for the reader to replicate our analyses and 

to perform similar analyses on his/her own data. 
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Figure 1. A network with six nodes and seven edges. Positive edges are green and negative 

edges are red. The letters identify the nodes, the numbers represent weights associated to the edges. 

 

Constructing personality networks 

A typical personality data set consists of cross-sectional measures of multiple subjects on a set 

of items designed to measure several facets of personality. In standard approaches in personality, 

such data are used in factor analysis to search for an underlying set of latent variables that can 

explain the structure of the correlations in the data. In a causal interpretation of latent variables 

(Borsboom, Mellenbergh, and van Heerden, 2003) that appears widespread in the personality 

literature, responses to items such as “I like to go to parties” and “I have many friends” are viewed 

as being causally dependent on a latent variable (i.e., extraversion). This approach has culminated in 

currently influential models such as the Five Factor Model of personality (McCrae & Costa, 2008), 

in which five dominant latent variables are ultimately held responsible for most of the structural 

covariation between responses to personality items (additional latent factors such as facets may 

cause some of the covariation). 
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Recently, however, this perspective has been challenged in the literature (Cramer et al., 2012). 

In particular, it has been put forward that the default reliance on latent variable models in 

personality may be inappropriate, because it may well be that the bulk of the structural covariation 

in personality scales may result from direct interactions between the variables measured through 

personality items. For instance, one may suppose that people who like to go to parties gain more 

friends because they meet more people, and people who have more friends get invited to good 

parties more often. In this way, one can achieve an explanation of the relevant pattern of covariation 

without having to posit latent variables.  

Thus, in this scheme of thinking, one may suppose that, instead of reflecting the pervasive 

influence of personality factors, the structural covariance in personality is actually due to local 

interactions between the variables measured. In this way of thinking, personality resembles an 

ecosystem in which some characteristics and behaviors stimulate each other, while others have 

inhibitory relations. Under this assumption, the proper way to analyze personality data is not 

through the a priori imposition of a latent variable structure, but through the construction of a 

network that represents the most important relations between variables: this way, one may get a 

hold of the structure of the ecosystem of personality.  

The current section explains how such a network structure can be estimated and visualized in 

R based on typical personality research data. We discuss the most important kinds of networks, 

explain how networks are encoded in adjacency matrices, and show how to extract important 

networks from data.  

Directed and undirected networks 

First, it is important to note that there are different types of networks, which yield different 

kinds of information and are useful in different situations. In a directed network, relationships 

between nodes are asymmetrical. Research on directed networks has seen extensive developments 

in recent years since the work of Pearl (2000) and others on causal systems. Methodology based on 

directed networks is most useful if one is willing to accept that the network under consideration is 
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acyclic, which means that there are no feedback loops in the system (if A influences B, then B 

cannot influence A). A directed network without feedback loops is called a Directed Acyclic Graph 

(DAG). In contrast, in an undirected network, all relationships are symmetrical. These networks are 

most useful in situations where (a) one cannot make the strong assumption that the data generating 

model is a DAG, (b) one suspects that some of the relations between elements in the network are 

reciprocal, (c) one’s research is of an exploratory character and is mainly oriented to visualizing the 

salient relations between nodes, and (d) one wants to study a weighted network, in which 

connections can have different strengths. Since the latter situation appears more realistic for 

personality research, the current paper focuses primarily on undirected networks. 

Encoding a network in a weight matrix 

The structure of a network depends on the relations between its elements; these are encoded in 

a weight matrix, which is a square matrix in which each row and column indicates a node in the 

graph and the elements of the matrix indicate the strength of connection of the edge between two 

nodes. A zero in row i and column j indicates that there is no edge between node i and node j. For 

example, the graph of Figure 1 can be represented with the following weight matrix: 

 

 A B C D E F 

A 0 0.3 0 -0.3 0.2 0.3 

B 0.3 0 -0.9 0 0 0 

C 0 -0.9 0 0.8 0 0 

D -0.3 0 0.8 0 0.3 0 

E 0.2 0 0 0.3 0 0 

F 0.3 0 0 0 0 0 

 

In this graph there are positive connections, for instance between nodes A and B, and negative 

connections, for instance between nodes A and D. The zeros in the matrix indicate that there is no 
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connection between two nodes, such as between nodes A and C. Furthermore, we may note that the 

matrix is symmetric and that the diagonal values are not used in the graph. 

The qgraph package (Epskamp et al, 2012) can be used to visualize such a weight matrix as a 

network: 

 

mat <- matrix(c( 

   0,  0.3,    0, -0.3,  0.2, 0.3, 

 0.3,    0, -0.9,    0,    0,   0, 

   0, -0.9,    0,  0.8,    0,   0, 

-0.3,    0,  0.8,    0,  0.3,   0, 

 0.2,    0,    0,  0.3,    0,   0, 

 0.3,    0,    0,    0,    0,   0), ncol = 6, nrow = 6, byrow = TRUE) 

library("qgraph") 

qgraph(mat, layout = "spring", edge.labels = TRUE, labels = LETTERS[1:6], 

fade = FALSE) 

 

Here, the first argument in the qgraph function — the (mat) argument — calls the weight 

matrix to plot. The other arguments specify graphical layout. 

 

Correlation networks, partial correlation networks, and LASSO networks 

To illustrate network analysis on personality data we made public a dataset in which nine-hundred-

sixty-four participants (704 female and 256 male, M age=21.1, SD=4.9, plus four participants who 

did not indicate gender and age) were administered the HEXACO-60 (Ashton & Lee, 2009). The 

HEXACO-60 is a short 60-items inventory that assesses six major dimensions of personality: 

honesty-humility, emotionality, extraversion, agreeableness vs. anger, conscientiousness and 

openness to experience (Ashton & Lee, 2007). Each of the major dimensions subsumes four facets, 

which can be computed as the average of two or three items. Participants indicated their agreement 

with each statement on a scale from 1 (strongly disagree) to 5 (strongly agree). An example of an 
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item (of trait emotionality) is “When I suffer from a painful experience, I need someone to make me 

feel comfortable”. 

We can load the HEXACO dataset into R as follows: 

 

Data <- read.csv("HEXACOfacet.csv") 

 

The reader may use str(Data) to get a good idea of what the data look like. 

Correlation networks. A correlation matrix describes pairwise associations between the 

facets the HEXACO data and therefore can be used as a good starting point for estimating a graph 

structure. Therefore, we first compute Pearson correlations on this dataset using the cor function: 

 

cor(Data) 

 

Notice that a correlation matrix is symmetric and that a value of zero indicates no connection. 

Thus, a correlation matrix, by default, has properties that allow it to be used as a weights matrix to 

encode a network. Using this connection opens up the possibility to investigate correlation matrices 

visually as networks. To do so, we can use the qgraph package and ask it to plot the correlation 

matrix as a network; in the remainder, we will indicate this network as a correlation network. To 

facilitate interpretation, we color nodes according to the assignment of facets to traits as specified in 

the HEXACO manual: 

 

groups <- factor(c( 

rep("Honesty Humility", 4), 

rep("Emotionality", 4), 

rep("Extraversion", 4), 

rep("Agreeableness vs. Anger", 4), rep("Conscientiousness", 4), 

rep("Openness to experience", 4))) 
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qgraph(cor(Data), layout = "spring", labels = colnames(Data), 

groups = groups) 

 

Figure 2A represents the correlation structure of the facets of the HEXACO dataset. Green 

lines represent positive correlations, while red lines negative correlations. The wider and more 

saturated an edge is drawn, the stronger the correlation. As the reader may expect, the Figure shows 

that the correlations of facets within traits are generally higher than the correlations of facets 

between traits, which is likely to reflect the fact that in psychometric practice items are typically 

grouped and selected on the basis of convergent and discriminant validity (Campbell & Fiske, 

1959).  

Partial correlation networks. Correlation networks are highly useful to visualize interesting 

patterns in the data that might otherwise be very hard to spot. However, they are not necessarily 

optimal for the application of network analysis if the goal is to extract the structure of a data 

generating network. The reason is that correlations between nodes in the graph may be spurious, 

rather than being due to a genuine interaction between two nodes. For instance, spurious 

correlations may arise as the consequence of shared connections with a third, possibly latent, node 

(in this sense, factor analysis assumes all the correlations between personality items to be spurious). 

Often, therefore, instead of the correlation matrix, the inverse of the correlation matrix is used to 

construct a graph. This matrix is also called a precision matrix. Standardizing the precision matrix 

results in a matrix that contains partial correlations between variables, in which each entry 

represents the partial correlation between the respective row and column variables, with the 

remainder of the variables in the data partialled out. Networks constructed on this basis are called 

“partial correlation networks” or “concentration graphs” (Cox & Wermuth, 1993), and the statistical 

data generating structures that they encode are known as Markov random fields (Kindermann & 

Snell, 1980).  
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The partial correlation network can be obtained in qgraph by using the argument graph = 

"concentration": 

 

qgraph(cor(Data), layout = "spring", labels = colnames(Data), 

groups = groups, graph = "concentration") 

 

The partial correlation network is shown in Figure 2B. In a partial correlation network, two 

nodes have an edge if and only if the partial correlation is nonzero; if a partial correlation is zero, 

there is no connection (Lauritzen, 1996). Partial correlation networks can be related to correlation 

networks in the following way. A correlation between two nodes means that there must be a path 

between these two nodes, direct or through other nodes. This means that we can estimate the 

structure of the graph by checking which connections are zero. Default significance tests can be 

used for this purpose (Drton & Perlman, 2004). However, significance tests require an arbitrary 

choice of significance level; different choices yield different results, with more stringent 

significance levels resulting in sparser graphs. If one ignores this issue, one has a multiple testing 

problem, whereas if one deals with it in standard ways (e.g., through a Bonferroni correction), one 

faces a loss of power.  
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Figure 2. Networks of the HEXACO-60. Nodes represent personality facets (a description 

of each facet is provided in the Appendix), green lines represent positive connections and red lines 

represent negative connections. Thicker lines represent stronger connections and thinner lines 

represent weaker connections.  
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Adaptive LASSO networks. A practical way to deal with the issue of arbitrary choices is to 

construct networks based on different choices and to see how stable the main results are; however, a 

more principled alternative is to use a LASSO penalty (Friedman, Hastie, & Tibshirani, 2008) in 

estimating the partial correlation graph. This causes small connections to automatically shrink to be 

exactly zero and results in a parsimonious network. If the data indeed arise from a sparse network 

with pairwise interactions only, such a procedure will in fact converge on the generating network 

(Foygel & Drton, 2011). The adaptive LASSO is a generalization of the LASSO that assigns 

different penalty weights for different coefficients (Zou, 2006) and outperforms the LASSO in the 

estimation of partial correlation networks, especially if the underlying network is sparse (Fan, Feng, 

& Wu, 2009; Krämer, Schäfer & Boulesteix, 2009). The penalty weights can be chosen in a data-

dependent manner, relying on the lasso regression coefficients (Krämer, et al., 2009). The adaptive 

LASSO is also convenient practically, as it is implemented in the R-package parcor (Krämer et al., 

2009). Since the adaptive LASSO, as implemented in package parcor, relies on k-fold validation, 

set.seed can be used to ensure the exact replicability of the results, which might be slightly 

different otherwise. To estimate the graph structure of the HEXACO dataset according to the 

adaptive LASSO, the following code can be used: 

 

library("parcor") 

library("Matrix") 

set.seed(100) 

adls <- adalasso.net(Data) 

network <- as.matrix(forceSymmetric(adls$pcor.adalasso)) 

qgraph(network, layout = "spring", labels = colnames(Data), 

groups = groups) 

 

The adaptive LASSO network is shown in Figure 2C. One can see that, compared to the 

partial correlation network, the adaptive LASSO yields a more parsimonious graph (fewer 
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connections) that encodes the most important relations in the data. In our experience, the likelihood 

of false positives using this method is extremely small, so if an edge is present in the LASSO 

network one can trust that there is a structural relation between the variables in question (of course, 

the network does not specify the exact nature of the relation, which may for instance be due to a 

direct causal effect, a logical relation pertaining to item content, a reciprocal effect, or the common 

effect of an unmodeled latent variable).  

Analyzing the structure of personality networks 

Once a network is estimated, several indices can be computed that convey information about 

network structure
2
. Two types of structure are important. First, one is typically interested in the 

global structure of the network: how large is it? Does it feature strong clusters? Does it reveal a 

specific type of structure, like a small-world (Watts & Strogatz, 1998)? Second, one may be 

interested in local patterns, i.e., one may want to know how nodes differ in various characteristics: 

which nodes are most central? Which nodes are specifically strongly connected? What is the 

shortest path from node A to node B? Here we discuss a limited selection of indices that we regard 

as relevant to personality research, focusing especially on centrality and clustering coefficients. 

More extensive reviews of network indices may be found in Boccaletti, Latora, Moreno, Chavez, 

and Hwang (2006); Butts, (2008a); de Nooy and colleagues (2011); Kolaczyk (2009); and Newman 

(2010). 

Descriptive statistics  

Before the computation of centrality measures, a number of preparatory computations on the 

data are in order. First, the function upper.tri can be used to extract the unique edge weights in 

an adjacency matrix and save them in a vector: 

                                                        
2 The adaptive LASSO networks, the correlation and the partial correlation networks are characterized by the 
presence of both positive and negative edges. The importance of signed networks is apparent not only in the 
study of social phenomena, in which it is important to make a distinction between liking and disliking 
relationships (e.g., Leskovec, Huttenlocher, & Kleinberg, 2010), but also in the study of personality psychology 
(e.g., Costantini & Perugini, in press). Some network indices have been generalized to the signed case (e.g., 
Costantini & Perugini, in press; Kunegis, Lommatzsch, & Bauckhage, 2009), however most indices are designed 
to unsigned networks. For the computation of the latter kind of indices, we will consider the edge weights in 
absolute value. 
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ew <- network[upper.tri(network)] 

 

To compute the number of edges in the network, it is sufficient to define a logical vector that 

has value TRUE ( = 1) if the edge is different from zero and FALSE ( = 0) if the edge is exactly zero 

(i.e., absent). The sum of this vector gives the number of nonzero edges. With a similar procedure, 

it is possible to count the positive and the negative edges: it is sufficient to replace “!=” with “>” or 

“<”. 

 

sum(ew != 0) # the number of edges 

sum(ew > 0) # the number of positive edges 

sum(ew < 0) # the number of negative edges 

 

The network has 138 edges, of which 98 are positive and 40 are negative. The function 

t.test can be used to compare the absolute weights of the positive versus the negative edges: 

 

t.test(abs (ew [ew > 0]), abs(ew [ew < 0]) , var.equal = TRUE) 

 

In our network, positive edges are generally associated to larger weights (M = .11, SD = .09) 

than the negative edges (M = .07, SD = .03), and the t-test indicates that this difference is 

significant, t(136) = 2.98, p = .0035. 

Centrality measures 

Not all nodes in a network are equally important in determining the network’s structure and, if 

processes run on the network, in determining its dynamic characteristics (Kolaczyk, 2009). 

Centrality indices can be conceived of as operationalizations of a node’s importance, which are 

based on the pattern of the connections in which the node of interest plays a role. In network 

analysis, centrality indices are used to model or predict several network processes, such as the 
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amount of flow that traverses a node or the tolerance of the network to the removal of selected 

nodes (Borgatti, 2005; Crucitti, Latora, Marchiori, & Rapisarda, 2004; Jeong, Mason, Barabási, & 

Oltvai, 2001) and can constitute a guide for network interventions (Valente, 2012). Several indices 

of centrality have been proposed, based on different models of the processes that characterize the 

network and on a different conception of what makes a node important (Borgatti & Everett, 2006; 

Borgatti, 2005). The following gives a succinct overview of the most often used centrality 

measures3.  

Degree and strength. First, degree centrality is arguably the most common centrality index 

and it is defined as the number of connections incident to the node of interest4 (Freeman, 1978). The 

degree centrality of node C in Figure 1 is 2 because it has two connections, with nodes B and D. 

Degree can be straightforwardly generalized to weighted networks by considering the sum of the 

weights of the connections (in absolute value), instead of their number. This generalization is called 

strength (Barrat, Barthélemy, Pastor-Satorras, & Vespignani, 2004; Newman, 2004). For instance, 

strength of node C in Figure 1 is 1.7, which is the highest in the network. Degree and strength focus 

only on the paths of unitary length (Borgatti, 2005). In networks that represent causal relations, they 

can be interpreted as the number of nodes that are causally connected to the focal one (degree), the 

strength taking into account also the magnitude of each causal influence. 

Closeness and betweenness. Several other measures exist that, differently from degree 

centrality and the related indices, consider edges beyond those incident to the focal node. An 

important class of these indices rely on the concepts of distance and of geodesics (Brandes, 2001; 

Dijkstra, 1959). The distance between two nodes is defined as the length of the shortest path 

between them. Since, in typical applications in personality psychology, weights represent the 

importance of an edge, weights are first converted to lengths, usually by replacing them with the 

                                                        
3
 The functions to implement centrality indices, clustering coefficients and small-worldness are implemented in the R 

package qgraph (Epskamp et al., 2012). Some of the functions rely on procedures originally implemented in packages 

igraph (Csárdi & Nepusz, 2006), sna (Butts, 2008b), and WGCNA (Langfelder & Horvath, 2008, 2012). These 

packages are in our experience among the most useful for network analysis. 
4
 Degree centrality can be also easily extended to directed networks, by considering separately the number of incoming 

ties (indegree) and the number of outgoing ties (outdegree). 
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inverse value (Brandes, 2008; Opsahl, Agneessens, & Skvoretz, 2010). The geodesics between two 

nodes are the paths that connect them that have the shortest distance. Closeness centrality (Freeman, 

1978; Sabidussi, 1966) is defined as the inverse of the sum of the distances of the focal node from 

all the other nodes in the network5 . In terms of network flow, closeness can be interpreted as the 

expected time until arrival of something flowing through the network (Borgatti, 2005). In the 

network in Figure 1, node D has the highest closeness. To compute the exact value of closeness, one 

should first compute the distances between D and all the other nodes: A (1/0.3), B (1/0.8+1/0.9), 

C(1/0.8), E (1/.3) and F (1/.3+1/.3). The sum of all the distances is 16.94 and the inverse, 0.59, is 

the closeness centrality of D. 

Betweenness centrality is defined as the number of the geodesics between any two nodes that 

pass through the focal one. The index is divided by the number of geodesics between any two nodes, 

independent of the fact that they traverse the focal node. The denominator is included to account for 

the possibility of several geodesics between two nodes: if two geodesics exist, each one is counted 

as a half path and similarly for three or more (Brandes, 2001; Freeman, 1978). Betweenness 

centrality assumes that shortest paths are particularly important (Borgatti, 2005): if a node high in 

betweenness centrality is removed, the distances among other nodes will generally increase. Both 

closeness and betweenness centrality can be applied to weighted and directed networks, as long as 

the weights and/or the directions of the edges are taken into account when computing the shortest 

paths (e.g., Opsahl et al., 2010). The betweenness centrality of node A in Figure 1 is 4 and is the 

highest in the network. The four shortest paths that pass through A are those between F and the 

nodes B, C, D, and E. Betweenness centrality can also be extended to evaluate the centrality of 

edges instead of nodes, by considering the geodesics that pass through an edge: this generalization 

is called edge betweenness centrality (Brandes, 2008; Newman & Girvan, 2004; Newman, 2004). 

For instance, the edge-betweenness centrality of the edge (D,E) is 3 and the three shortest paths that 

                                                        
5
 The computation of closeness assumes that the network is connected (i.e., a path exists between any two nodes), 

otherwise, being the distance of disconnected nodes infinite, the index will result to zero for all the nodes. Variations of 

closeness centrality that address this issue have been proposed (e.g., Kolaczyk, 2009, p. 89; Opsahl et al., 2010, n. 1). 

Alternatively it can be computed only for the largest component of the network (Opsahl et al., 2010). 
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pass through (D,E) are the one between D and E, the one between C and E (through D), and the 

between B and E (through C and D). 

Several other variants of the shortest-paths betweenness are discussed in Brandes (2008), 

some of which are implemented in package sna (Butts, 2008b). Generalizations of betweenness 

centrality that account for paths other than the shortest ones have been also proposed (Brandes & 

Fleischer, 2005; Freeman, Borgatti, & White, 1991; Newman, 2005). In addition, Opsahl and 

colleagues (2010) proposed generalizations of degree, closeness, and betweenness centralities by 

combining in the formula both the number and the weights of the edges. They introduced a tuning 

parameter that allows setting their relative importance: a higher value of the tuning parameter 

emphasizes the importance of the weights over the mere presence of the ties and vice versa. 

Another important family of centrality indices defines the centrality of a node as recursively 

dependent on the centralities of their neighbors. Among the most prominent of those indices are 

eigenvector centrality (Bonacich, 1972, 2007), Bonacich power (Bonacich, 1987) and alpha 

centrality (Bonacich & Lloyd, 2001). 

Clustering coefficients 

Besides centrality, other network properties have been investigated that are relevant also for 

personality networks. The local clustering coefficient is a node property defined as the number of 

connections among the neighbors of a focal node over the maximum possible number of such 

connections (Watts & Strogatz, 1998). If we define a triangle as a triple of nodes all connected to 

each other, the clustering coefficient can be equally defined as the number of triangles in the 

neighborhood of a focal node, normalized by the maximum possible number of such triangles. The 

clustering coefficient is high for a node i if most of i’s neighbors are also connected to each other 

and it is important to assess the small-world property (Humphries & Gurney, 2008; Watts & 

Strogatz, 1998). The clustering coefficient can be also interpreted as a measure of how much a node 

is redundant (Latora, Nicosia, & Panzarasa, 2013; Newman, 2010): if most of a node’s neighbors 

are also connected with each other, removing that node will not make it harder for its neighbors to 



Running Head: STATE OF THE ART PERSONALITY REASERCH 
 

reach or influence each other. Consider for instance the node D in Figure 1, which has three 

neighbors, A C, and E. Of the three possible connections among its neighbors, only one is present 

(the one between A and E), therefore its clustering coefficient is 1/3. 

While in its original formulation the clustering coefficient can be applied only to unweighted 

networks (or to weighted networks, disregarding the information about weights), it has been 

recently generalized to consider positive edge weights (Saramäki, Kivelä, Onnela, Kaski, & Kertész, 

2007). The first of such generalizations was proposed by Barrat and colleagues (2004) and has been 

already discussed in the context of personality psychology and psychopathology (Borsboom & 

Cramer, 2013). Onnela and colleagues (2005) proposed a generalization that is based on the 

geometric averages of edge weights of each triangle centered on the focal node. A different 

generalization has been proposed in the context of gene co-expression network analysis by Zhang 

and Horvath, which is particularly suited for networks based on correlations (Kalna & Higham, 

2007; Zhang & Horvath, 2005). All of these generalizations coincide with the unweighted 

clustering coefficient when edge weights become binary (Saramäki et al., 2007). Recently three 

formulations of clustering, the unweighted clustering coefficient (Watts & Strogatz, 1998), the 

index proposed by Onnela (2005) and the one proposed by Zhang and Horvath (2005) have been 

generalized to signed networks and the properties of such indices have been discussed in the context 

of personality networks (Costantini & Perugini, in press). 

Transitivity (or global clustering coefficient) is a concept closely connected to clustering 

coefficient that considers the tendency for two nodes that share a neighbor to be connected 

themselves for the entire network, instead than for the neighborhood of each node separately. It is 

defined as three times the number of triangles, over the number of connected triples in the network, 

where a connected triple is a node with two edges that connect it to an unordered pair of other nodes 

(Newman, 2003). Differently from the local clustering coefficient, transitivity is a property of the 

network and not of the single nodes. For instance, the network in Figure 1 has one triangle (A, D, E) 

and 12 connected triples, therefore its transitivity is (3*1)/12 = 1/4. Transitivity has been extended 
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by Opsahl and Panzarasa (2009) to take into account edge weights and directions, and by Kunegis 

and collaborators to signed networks (Kunegis et al., 2009). 

Small worlds 

The transitivity and clustering coefficient can be used to assess the network small-world 

property. The small-world property was initially observed in social networks as the tendency for 

any two people to be connected by a very short chain of acquaintances (Milgram, 1967). The small-

world property is formally defined as the tendency of a network to have both high clustering 

coefficient and short average path lengths (Watts & Strogatz, 1998). Small-world networks are 

therefore characterized by both the presence of dense local connections among the nodes and of 

links that connect portions of the network otherwise far away from each other. An index of small-

worldness for unweighted and undirected networks has been proposed as the ratio of transitivity to 

the average distance between two nodes. Both transitivity and path length are standardized before 

the computation of small-worldness, by comparing them to the corresponding values obtained in 

equivalent random networks (with the same N and the same degree distribution). Alternatively, the 

index can be computed using the average of local clustering coefficients instead of transitivity. A 

network with a small-worldness value higher than three can be considered as having the small-

world property, while a small-worldness between one and three is considered a borderline value 

(Humphries & Gurney, 2008). Because the assessment of small-worldness relies on shortest paths 

between all the pairs of nodes, it can be computed only for a connected network or the giant 

component of a disconnected network.  

Application to the HEXACO data 

Centrality analyses. The function centrality_auto allows to quickly compute several 

centrality indices. It requires the adjacency matrix or the weights matrix as input. The function 

automatically detects the type of network and can handle both unweighted and weighted networks, 

and both directed and undirected networks. For a weighted and undirected network, the function 
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gives as output the node strength, the weighted betweenness and the weighted closeness centralities. 

The edge betweenness centrality is also computed. 

 

centrality <- centrality_auto(network) 

nc <- centrality$node.centrality 

ebc <- centrality$edge.betweenness.centrality 

 

The centrality values are computed and stored in variable centrality. Node centralities are then 

saved in the variable nc while edge betweenness centralities are saved in the variable ebc. The 

values of centrality for each node are reported in the Appendix. Table 1 reports the correlations 

among the three indices of node centrality. 

 

Table 1. 

Correlation of node centralities. 

 1 2 3 

1. Betweenness 1 .66** .71** 

2. Closeness .63** 1 .76** 

3. Strength .71** .82** 1 

Note. **p<.01, ***p<.001. Pearson correlations are reported below the 

diagonal, Spearman correlations are reported above the diagonal. 

 

The three indices of centrality converge in indicating that node Cpr (prudence) is among the 

four most central nodes in this network. Cpr is also the more closeness central node and owes its 

high centrality to the very short paths that connect it to other traits. For instance, facets Apa 

(patience), Xso (sociability), and Xss (social self-esteem) are even closer to Cpr than other 

conscientiousness facets. This suggests that in the personality network it is very easy that a change 

in some portion of the network will eventually make a person either more reckless or more prudent. 
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On the other hand, if a person becomes more reckless or more prudent, we can expect important 

changes in the overall network. 

Hfa (fairness) is the most betweenness-central and strength-central node, but it is not 

particularly closeness-central (it is ranked 10th in closeness centrality). Figure 3 highlights the 

edges lying on the shortest paths that travel through node Hfa, in a convenient layout (the code for 

producing this figure is in the supplemental materials). The high betweenness centrality of Hfa is 

due the role that Hfa plays in transmitting the influence of other honesty-humility facets to different 

traits, and vice versa. One could speculate that if a person is greedy (Hga) immodest (Hmo) and 

insincere (Hsi), but nonetheless fair (Hfa), the influence of his/her lack of honesty-humility will not 

propagate so easily to the rest of his/her personality. The edge between nodes Hsi (sincerity) and 

Hfa is also the most betweenness-central in the whole network. 
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Figure 3. Shortest paths that pass through node Hfa (fairness). The edges belonging to the 

shortest-paths are full, while the other edges are dashed. 

 

Clustering coefficients. Many indices of clustering coefficient can be easily computed using 

function clustcoef_auto. The function requires the same input as centrality_auto and is 

similarly programmed to recognize the kind of data given as input and to choose an appropriate 

network representation for the data. By applying the function, we can immediately collect the 

results: 

 

clustcoef <- clustcoef_auto(network) 
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Table 2 reports the correlation among several clustering coefficients. The unsigned indices are 

computed using the absolute values of the weights. Considering the very strong correlation among 

the signed indices, we will use the signed version of the Onnela’s (2005) clustering coefficient for 

the following analyses6. 

 

Table 2. 

Correlation among indices of local clustering coefficient. 

 1 2 3 4 5 6 7 

1. Watts and Strogatz (1998) 1 0.11 0.69** 0.51* 0.89** 0.53** .92** 

2. Watts and Strogatz, signed 

(Costantini & Perugini, in press) 
0.16 1 0.27 0.51* 0.33 0.75** .14 

3. Zhang and Horvath (2005) .53** 0.71** 1 0.86** 0.70** 0.60** .77** 

4. Zhang and Horvath, signed 

(Costantini & Perugini, in press) 
.43* 0.8** 0.94** 1 0.57** 0.82** .54** 

5 .Onnela et al. (2005) .81** 0.41* 0.76** 0.66** 1 0.68** .89** 

6 Onnela et al., signed 

(Costantini & Perugini, in press) 
.41* 0.92** 0.87** 0.93** 0.70** 1 .52** 

7. Barrat et al. (2004) .95** .23 .65** .50* .89** .49* 1 

Note. *p<.05, **p<.01. Pearson correlations are reported below the diagonal, Spearman 

correlations are reported above the diagonal. 

 

Combining clustering coefficients and centrality. The signed clustering coefficient can be 

interpreted as an index of a node’s redundancy in a node’s neighborhood (Costantini & Perugini, in 

press): the importance of the unique causal role of highly clustered nodes is strongly reduced by the 

presence of strong connections among their neighbors. In general, it is interesting to inspect whether 

there is a relation between centrality indices and clustering coefficients: in our experience, we found 

that the centrality indices were often inflated by the high clustering in correlation networks. 

                                                        
6
 Using the signed version of Zhang and Horvath’s (2005) index would yield very similar results. 
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However this might be not true for networks defined with adaptive LASSO, which promotes 

sparsity (Krämer et al., 2009). 

The following plots can be used to visualize both the centrality and the clustering coefficient 

of each node. The code reported here is for betweenness centrality, but it is easy to extend it to other 

indices by just replacing “Betweenness” with the index of interest. First the plot is created and 

then the node labels are added in the right positions, using the command text. Command abline 

can be used to trace lines in the plot. A horizontal line is created to visually identify the median 

value of betweenness and a vertical line to identify the median value of the clustering coefficient. 

 

plot(clustcoef$signed_clustOnnela, nc$Betweenness, col = "white") 

text(clustcoef$signed_clustOnnela, nc$Betweenness, rownames(nc)) 

abline(h = median(nc$Betweenness), col = "grey") 

abline(v = median(clustcoef$signed_clustOnnela), col = "grey") 

 

The resulting plots are showed in Figure 4. It is apparent that the most central nodes do not 

have a particularly high clustering coefficient in this case and this is especially true for nodes Hfa 

and Cpr, which are among the most central in this network. The clustering coefficient correlates 

negatively with closeness centrality (r = -.60, p = .002), with strength (r = -.75, p < .001), and with 

betweenness centrality (r = -.37, p = .08). 

One node, Hmo (modesty), emerges as both particularly high in clustering coefficient and low 

in all the centrality measures. A closer exam of its connections reveals that Hmo has only four 

neighbors, the three other facets of honesty-humility (His, Hfa, and Hga) and facet anxiety of 

emotionality (Ean). All of its neighbors are connected to each other, with just two exceptions: a 

connection is missing among Ean and two nodes of honesty-humility, Hsi and Hga. Even if the 

edges incident in node Hmo were blocked, its neighbors would be nonetheless connected to each 

other directly or by a short path. Modesty therefore does not seem to play a very important unique 

role in the overall personality network.  
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Figure 4. Centrality and clustering coefficient. The horizontal and the vertical lines represent 

the median values of centrality and clustering coefficient respectively. The closeness values are 

multiplied by 1000.  
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Transitivity and small-world-ness. The function smallworldness computes the small-

worldness index (Humphries & Gurney, 2008). First the function converts the network to an 

unweighted one, which considers only the presence or the absence of an edge. Then the average 

path length and the global transitivity of the network are computed and the same indices are 

calculated on B=1000 random networks, with the same degree distribution of the focal network. 

The resulting values are entered in the computation of the small-worldness index. The output 

includes the small-worldness index, the transitivity of the network, and its average path length. It 

also returns summaries of the same indices computed on the random networks: the mean value and 

the .005 and .995 quantiles of the distribution. Function set.seed can be used to ensure the exact 

replicability of the results. The function requires the network as input and it is optionally possible to 

set the values of three parameters, B, up and lo, which are respectively the number of random 

networks and the upper and lower probabilities for the computation of the quantiles 

 

set.seed(100) 

smallworldness(network) 

 

The small-worldness value for our network is 1.02. An inspection of the values of transitivity 

and of average path length shows that they are not significantly different from those emerged from 

similar random networks. Therefore we may conclude that this personality network does not show a 

clear small-world topology. 

Emerging insights. In this section, we showed how it is possible to perform a network 

analysis on a real personality dataset. We identified the most central nodes and edges, discussed 

centrality in the light of clustering coefficient and investigated some basic topological properties of 

the network, such as the small-world property. Two nodes resulted particularly central in the 

network and were the facet prudence of conscientiousness (Cpr) and the facet fairness of honesty-

humility (Hfa).  
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Our network did not show the small-world property. We consider this result as particularly 

important. The absence of a strong transitivity means that the connection of two nodes with a 

common neighbor does not increase the probability of a connection between themselves. The 

absence of a particularly short path length implies that it is not generally possible for any node to 

influence any other node using a short path. This can be interpreted as a protective mechanism of 

personality: a dysfunction in one component does not hamper or modify the overall functionality of 

the person. This result is not in line with the small-worldness property that emerged in the DSM-IV 

network reported by Borsboom, Cramer, Schmittmann, Epskamp, and Waldorp (2011). This 

difference might be attributable to the strategies that were used for defining this network and the 

DSM-IV network. Moreover, it has been hypothesized that the small-world property might be at the 

basis of phenomena connected to the comorbidity that arise in psychopathology (Cramer et al., 

2010); this also may simply not be a property of normal personality. Future research may be 

directed towards the question of what network structure characterizes normal versus abnormal 

personality. 

Simulating personality networks 

In addition to the analysis of empirical data, network modeling offers extensive possibilities 

in the area of theory development. This is because, in contrast to purely data analytic models like 

factor analysis, networks are naturally coupled to dynamics (e.g., see Kolaczyk, 2009): they can 

evolve, grow, and change over time, with direct consequences for their dynamic behavior. This 

makes it possible to start thinking about questions like: How do personality networks form in 

development? Do they grow and, if so, how do they change in structure over time? Do different 

people have different network structures, and how would such differences relate to growth and 

dynamics? 

Because networks have been so extensively studied in other fields, one can use existing 

analytical insights on the relevant processes (e.g., Newman, 2008; Kolaczyk, 2009; Grimmett, 

2010). When applicable, existing analytical approaches can be very powerful. However, in order to 
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use such analytical approaches, one often has to consider assumptions that are unlikely to be met in 

personality (e.g., many theorems require one to assume that nodes are exchangeable save for their 

position in the network, or work only for unweighted networks). In such cases, a specifically 

tailored simulation methodology can be an extremely versatile tool to study the behavior of 

networks. This can both enlighten one's data analytic results (e.g., by checking how a given 

dynamical process would pan on a network extracted from data; e.g., see Borsboom et al., 2011) 

and help in theory development (e.g., by working out what a hypothesized network would imply 

theoretically). 

In particular, simulation work can be used to design some hypothetical data and see how these 

data “behave” in appropriate analyses. Here, designing data refers to simulating data according to 

some pre-specified rules. The obvious strength of testing analytical procedures or concepts with 

simulated data is that the mechanisms by which the data arose are known—a luxury researchers 

almost never have when working with real data. Therefore, it is possible to see if the focal 

theoretical concept can, in principle, result in the expected kind of observed data or co-exist with 

other concepts, or whether the analytical procedure of interest can yield accurate conclusions. 

Obviously, designed data can provide no empirical proof for a theoretical concept—but they can 

guide thinking and this is almost as good.  

One can attempt to simulate personality network data to exactly the same two ends. For 

example, some relevant questions can be the following. Is it possible to generate data that look 

similar to what personality psychologists commonly work with, starting from network principles? 

And if so, how do available network analyses tools behave when applied to these data? This section 

describes only one possible way of simulating personality data from the network perspective. In 

particular, we demonstrate how the coalescence of observable variables into traits can be simulated. 

One possible way to start. We can start off with creating observable variables that will 

constitute the nodes of the network. For the purpose at hand, we assume that the nodes can be 

uncorrelated at the outset and that their clustering results from direct causal connections among 
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them. Therefore, the initial value of each node is drawn separately from standard normal 

distribution. 

 

Figure 5. A network of 10 nodes. At the initial stage (left panel), no influences have been 

spread around and therefore nodes are uncorrelated. At a later stage (right panel), two central nodes 

(red) have sent direct influences (solid lines) to nodes close to them. Dashed lines represent indirect 

connections. 

 

The next step is to allow the nodes to influence each other. We do not expect that every node 

should be able to influence every other node: this could eventually result in a tightly intercorrelated 

lump of variables, which is hardly what characterizes real personality data. Instead, we assume that 

some nodes are more likely to influence each other and this is what leads to the structuredness of 

personality network (i.e., a multi-trait structure). Here, we rely on the concept of centrality and 

assume that some (central) nodes are likely to influence a number of other nodes (targets). 

Specifically, the central nodes may have the strongest influence on the nodes around them or their 

direct influence may be inversely proportional to the distance between them and their target nodes, 

or the two possibilities can be combined. 

Essentially, this may be all that is necessary for a structured personality-like network to 

appear: we assign some nodes the central role and let them send little influences to other nodes 



Running Head: STATE OF THE ART PERSONALITY REASERCH 
 

either around them or all over the network (see Figure 5), including other central nodes if these 

happen to be around or otherwise among the targets. This is exactly what the R function 

simulator (see supplemental materials for details) does. It takes in the following four 

arguments. First data, a matrix or a data.frame containing uncorrelated variables, where the 

number of columns is the desired number of nodes in the network and the number of rows is the 

desired 'sample' size. Second centrals, a vector indicating the positions of the central nodes. 

Third n.targets, a number specifying the number of target nodes that can be directly influenced 

by the respective central node, with the influence waning with distance. If this number equals or 

exceeds the total number of nodes in the network, then the central node can influence all variables 

in the network but, again, the strength of the influence decreases as the distance between the central 

and target nodes increases. Fourth, circular, a logical specifying if the target nodes are 

systematically selected from among nodes at shortest distance from them (if TRUE, default) or 

randomly from among all nodes. If TRUE, the network will look circular. Fifth, weights, a vector 

specifying the mean and standard deviation of the normal distribution from which the strengths of 

the influences are sampled. The function returns the input dataset of uncorrelated variables on 

which the specified network influences have been applied. 

It could be expected that, by being influenced by a common node, the levels of the respective 

target nodes become correlated and thereby a trait-like cluster appears; in factor analysis (FA) or 

principal component analysis (PCA), the central node would appear as having the highest factor 

loading. Note that in this case the central node essentially serves the role of the latent variable in 

factor analysis only that it is not really latent—it is one of the observed variables. If this idea works 

in the simulation—and it is really so trivial that it must work—then it suggest an interesting 

theoretical possibility: perhaps one of the indicators (e.g., item or facet) of a personality factor is the 

cause of other indicators rather than there being an underlying direct cause for all of them (that is, 

there may be an underlying cause but its effect on nodes other than the central one is indirect, 

mediated by the central node). Of course, if the central node does not happen to be observed 
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because, for example, the relevant items were not included in the questionnaire, a trait may still 

appear and then there is indeed an unobserved direct common cause for all of the measured 

variables. 

A simplest possible simulation. To illustrate the principles by which networks can produce 

the appearance of statistical factors in the data, we run simulator by feeding in 10 uncorrelated 

variables of length 10000, specifying the 5
th

 node as central and allowing it to influence all other 

nodes (the influence generally wanes with increasing distance from the central variable, as said 

above) with strengths that are drawn from a normal distribution with a mean of .3 and standard 

deviation of .1. These weights are completely arbitrary. The relevant code is:  

 

items <- simulator( 

data = replicate(10, rnorm(10000)), 

centrals = 5, 

n.targets = 10, 

weights = c(.3, .1)) 

 

Subjecting the resulting data (i.e., items) to PCA (function principal from the package 

psych; Revelle, 2013) results in a one-component solution that accounts for about 15% to 20% of 

variance in the ten variables that had initially been uncorrelated. The fifth variable has the highest 

correlation with the component and the further away from it the smaller the loadings become. 

Centrality analysis based on qgraph shows that the fifth node has the highest betweenness and 

closeness centralities. Fitting an unidimensional reflective confirmatory analyses (CFA) model (one 

latent trait defined by the ten variables without residual correlations allowed) on the data tends to 

yield good model fit, but the residual covariance matrix may not always be positive definite because 

the latent trait is almost perfectly defined by the single central node. CFA models can be fitted with 

the cfa function from lavaan package (Rosseel, 2012). 
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Obviously, there may be more than one central node responsible for a trait-like cluster. If they 

can influence (i.e., are close to) each other, they become correlated, so become their target nodes 

and thereby a single trait-like cluster forms. For example, there may be, say, two interrelated central 

nodes among those that coalesce into neuroticism: anxiety and low mood (nodes 5 and 6 in the 

below code). 

 

items <- simulator( 

data = replicate(10, rnorm(10000)), 

centrals = c(5,6), 

n.targets = 10, 

weights = c(.3, .1)) 

 

Subjecting the resulting data (items) to PCA results in a one-component solution that accounts 

for about 20% to 25% of variance in the 10 variables. Variables 5 and 6 have the highest factor 

loadings and they also outperform others in centrality. Fitting a unidimensional CFA model on 

these data tends to yield somewhat poorer fit than can be observed for data with a single central 

node, but chances of ending up with a not positive definite residual covariance matrix are small. 

The slightly poorer model fit may be caused by the stronger associations around the central nodes 

than elsewhere, which lead to the violation of the local independence assumption of the latent trait 

model. Interestingly, the local independence assumption also tends to be violated in real personality 

data (e.g., Gignac, Bates, & Jang, 2007) and such simulations may hint at one possible reason for 

this relatively ubiquitous phenomenon. Causes of poor model fit can be easily detected using the 

modinidces function of package lavaan. 

This simulation was very minimalist in all possible ways because its idea was to provide the 

first feel for what could be done to simulate personality networks. For example, there was just one 

trait-like cluster, whereas we know that personality consists of many. Likewise, there were no 

individual differences in the network architecture but, eventually, we may want to model these too. 
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A slightly more complex simulation. Using the same simulator function, we can also 

simulate the coalescence of nodes into multiple trait-like clusters. For this purpose, we can place 

central nodes or groups of them further away from each other, meaning that some central nodes 

become more or less independent of each other and therefore form at least somewhat independent 

clusters. The exact degree of independence of the clusters depends on how much their targets 

overlap. 

Likewise, we can introduce individual differences in network architecture: what nodes are 

assigned the central role and which are their exact targets can vary across simulated individuals 

(agents). Also, connections strengths can systematically vary. However, although the exact nodes 

that become central may vary, there has to be at least some level of consistency across agents in this 

respect. If the network of every agent was completely different, then there would be no between-

agent consistency and therefore no trait-like clusters would be likely to appear across agents. This 

points to an interesting and possible substantive question: how much consistency in the centrality of 

nodes is needed for realistic-looking data to appear. One way to test this is to allow central nodes to 

be chosen separately for each agent in a quasi-random manner by specifying the probabilities for 

some nodes to be selected somewhat higher than the respective probabilities for other nodes. The 

interesting question then may be: how much imbalance in these centrality-probabilities is necessary 

for traits to appear? 

In this example, we simulate a network consisting of 21 nodes that are expected to coalesce 

into three traits despite every agent having somewhat different network architecture. We introduce 

some consistency in the locations of central nodes via a vector of probabilities for each of the 21 

nodes to be selected as central. In particular, nodes 3, 4, 5, 11, 17, 18, 19 have somewhat higher 

probability (p) of being selected among the central nodes (p = .06, .09, or .12) than other nodes (p 

= .03). The exact number of nodes selected as central varies from 0 to 14 with a median of about 7. 

The number of targets as well as average connection strengths also varies across agents.  

First, we assign the probabilities: 
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probs <- c(.03,.03,.06,.09,.06,.03,.03,.03,.03,.03, 

.12,.03,.03,.03,.03,.03,.06,.09,.06,.03,.03) 

 

Next, we replicate simulator 10000 times with each simulation having unique start values 

and producing scores for only one agent. This way we obtain data for 10000 uniquely simulated 

agents. 

 

people <- replicate(10000, 

simulator( 

data = t(replicate(21, rnorm(1))), 

centrals = sample(21, sample(0:14,1), prob = probs), 

n.targets = sample(21,1), 

weights = c(rnorm(1,.3,.1), rnorm(1,.3,.05)))) 

 

In this simulation there is a fair level of idiosyncrasy across agents in how their networks of 

21 nodes operated. It may now be interesting to ask whether the imbalanced probabilities for central 

node selection were sufficient for a consistent three-trait structure to appear in between-agent level 

analysis. Submitting these data (i.e., people) to PCA, about five components tend to be suggested 

by parallel analyses but a screeplot tends to point three dominant components and two smaller 

components slightly beating the chance (if the network is not specified as circular, then three 

components tend to be suggested). The three-component solution, typically accounting for more 

than 30% of variance in observables, tends to yield a relatively well-interpretable loading matrix. A 

corresponding three-factor CFA model can also be fit on these data but the fit indices are poor and 

modification indices tend to suggest several ways of improving the model. This, of course, is very 

similar to what happens with empirical personality data. 
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Another interesting question may be the correspondence between the probabilities for 

particular nodes to be central (probs) and the centrality estimates derived post hoc. Indeed, 

betweenness and closeness centralities of particular nodes derived from the simulated data tend to 

have moderate to high correlations with probabilities of these nodes being selected as central at the 

outset. That is, nodes that are designed to have a higher chance of being central appear as central 

indeed. 

Obviously, other methods of analyzing networks that have been described above can also be 

applied on the simulated data. To get a feel for these analytical tools, the reader is encouraged to 

fiddle with simulator arguments and see how the changes reflect in the results of the network 

analyses of interest. 

Extensions to more complicated cases. This section demonstrated only one way of 

simulating personality network data; there are likely to be other approaches that start from very 

different conceptual mechanisms and may or may not end up with similar results. Likewise, the 

demonstrated simulations were conceptually very simple and only addressed the coalescence of 

nodes into trait-like clusters. To the extent that the network perspective correctly reflects human 

personality, however, such networks are likely to function as dynamic systems that grow, obtain 

relative stability and interact with environment. Such networks can also be simulated using R 

(Mõttus, Penke, Murray, Booth, & Allerhand, 2013) but this is beyond the scope of this section. 

Discussion 

Network approaches offer a rich trove of novel insights into the organization, emergence, and 

dynamics of personality. By integrating theoretical considerations (Cramer et al., 2010), simulation 

models (Mõttus et al., 2013; Van der Maas et al., 2006), and flexible yet user-friendly data-analytic 

techniques (Epskamp et al., 2012), network approaches have potential to achieve a tighter fit 

between theory and data analysis than has previously been achieved in personality research. At the 

present time, the basic machinery for generating, analyzing, and simulating networks is in place. 

Importantly, the R platform offers an impressive array of packages and techniques for the 
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researcher to combine, and most of the important analyses are currently implemented. We hope that, 

in the present paper, we have successfully communicated the most important concepts and 

strategies that characterize the approach, and have done so in such a way that personality 

researchers may benefit from using network modeling in the analysis of their own theories and 

datasets. 

In the present paper, we have applied network modeling to an illustrative dataset, with several 

intriguing results that may warrant further investigation. However, we do stress that many of our 

results are preliminary in nature. The primary reason for this is that current personality 

questionnaires are built according to psychometric methodology that is tightly coupled to factor 

analysis and classical test theory (Borsboom, 2005). This makes their behavior predictable from 

pure design specifications, which in turn limits their evidential value. That is, if one makes the a 

priori decision to have, say, 10 items per subscale, and selects items on the basis of their conformity 

to such a structure, many of the correlations found in subsequent research are simply built into the 

questionnaire. Therefore, it is hardly possible to tell to what extent results reflect a genuine structure, 

or are an artifact of the way personality tests are constructed. Trait perspectives are not immune to 

this problem, as in some cases the factors of personality may simply appear from questionnaire data 

because they have been carefully placed there. 

An interesting question is whether all individuals are scalable on all items, as current 

methodology presumes. It is entirely possible, if not overwhelmingly likely, that certain items 

assess variables that simply do not apply to a given individual. Current psychometric methods have 

never come to grip with the "n.a." answer category, and in practice researchers simply force all 

individuals to answer all items. In networks, it is easier to deal with the n.a.-phenomenon, as nodes 

deemed to be inapplicable to a given person could simply be omitted from that person's network. 

This would yield personality networks that may differ in both structure and in size across 

individuals, an idea that resonates well with the notion that different people's personalities might in 

fact be also understood in terms of distinct theoretical structures (Borsboom et al., 2003; Cervone, 
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2005; Lykken, 1991). The application of experience sampling methodology and of other ways to 

gather information on dynamical processes personality may also offer an inroad into this issue 

(Fleeson, 2001; Hamaker, Dolan & Molenaar, 2005; Bringmann et al., 2013). 

The notion that network structures may differ over individuals, and that these differences may 

in fact be the key for understanding both idiosyncrasies and communalities in behavior, was 

illustrated in the simulation work reported in the present paper. Future research might be profitably 

oriented to questions such as (a) what kind of structural differences in networks could be expected 

based on substantive theory, (b) how such differences relate to well-established findings in 

personality research (see also Mõttus et al., 2013), (c) which network growth processes are 

theoretically supported by developmental perspectives. Of course, ultimately, such theoretical 

models would have to be related back to empirical data of the kind discussed in the data-analysis 

part of this paper; therefore, a final highly important question is to derive testable implications from 

such perspectives. This includes the investigation of how we can experimentally or quasi-

experimentally distinguish between explanations based on latent variables, and explanations based 

on network theory.  

Ideally, these future developments are coupled with parallel developments in statistical and 

technical respects. Several important extensions of network models are called for. First, as noted in 

this paper, many network analytics were originally designed for unweighted networks. Although 

some of the relevant analyses have now been extended to the weighted case (see Boccaletti et al., 

2006; Opsahl et al., 2010; Constantini et al., in press), several other techniques still wait such 

generalization. One important such set of techniques, which were also illustrated in the present 

work, deals with the determination of network structure. Both the theoretical definition of global 

structures (e.g., in terms of small-worlds, scale-free networks, and random networks) and the 

practical determination of these structures (e.g., through coefficients such as small-worldness or 

through fitting functions on the degree distribution) are based on unweighted networks. It would be 
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highly useful if these notions, and the accompanying techniques, would be extended to the weighted 

network case. 

A second technical improvement that should be within reach is how to deal with data that 

likely reflect mixtures of distinct networks (as in the second simulation in the current paper). In the 

case of time series data, such approaches have already been formulated through the application of 

mixture modeling (Bringmann et al., 2013); however, statistical techniques suited to this problem 

may also be developed for the case of cross-sectional data. The issue is important in terms of 

modeling idiosyncrasies in behavior, but may also be key in terms of relating normal personality to 

psychopathology (Cramer et al., 2010). Naturally, this includes the question of how we should think 

about the relation between normal personality and personality disorders. 
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Appendix, Centrality Indices 

 

Node Dimension Facet Betweenness Closeness Strength 

Hsi Honesty-Humility Sincerity 1 2,64 0,70 

Hfa Honesty-Humility Fairness 32 3,03 1,47 

Hga Honesty-Humility Greed-avoidance 15 2,84 1,12 

Hmo Honesty-Humility Modesty 0 2,11 0,42 

Efe Emotionality Fearfulness 4 2,69 1,02 

Ean Emotionality Anxiety 2 3,01 1,09 

Ede Emotionality Dependence 4 3,01 1,05 

Ese Emotionality Sentimentality 18 3,16 1,41 

Xss Extraversion Social self-esteem 10 3,11 1,36 

Xsb Extraversion Social boldness 22 3,32 1,20 

Xso Extraversion Sociability 7 3,19 1,07 

Xli Extraversion Liveliness 14 3,14 1,31 

Afo Agreeableness vs. anger Forgiveness 5 2,70 1,00 

Age Agreeableness vs. anger Gentleness 5 2,65 0,79 

Afl Agreeableness vs. anger Flexibility 14 2,90 1,03 

Apa Agreeableness vs. anger Patience 5 2,85 0,85 

Cor Conscientiousness Organization 8 3,10 0,99 

Cdi Conscientiousness Diligence 26 3,34 1,30 

Cpe Conscientiousness Perfectionism 4 3,14 1,26 

Cpr Conscientiousness Prudence 20 3,52 1,44 

Oaa Openness to experience Aesthetic appreciation 11 2,95 1,23 

Oin Openness to experience Inquisitiveness 5 2,72 1,08 

Oun Openness to experience Creativity 4 2,68 1,02 

Ocr Openness to experience Unconventionality 9 2,99 1,25 

Note. The four most central nodes according to each index are reported in bold. 

 


