A model-based Evaluation of Data Quality Activities in KDD*

Mario Mezzanzanica®?, Roberto Boselli*?, Mirko Cesarini®*?*, Fabio Mercorio®

“Department of Statistics and Quantitative Methods - University of Milano Bicocca, Milan, Italy
bCRISP Research Centre - University of Milano Bicocca, Milan, Italy

Abstract

We live in the Information Age, where most of the personal, business, and administrative data are collected and
managed electronically. However, poor data quality may affect the effectiveness of knowledge discovery processes,
thus making the development of the data improvement steps a significant concern.

In this paper we propose the Multidimensional Robust Data Quality Analysis, a domain-independent technique
aimed to improve data quality by evaluating the effectiveness of a black-box cleansing function. Here, the proposed
approach has been realised through model checking techniques and then applied on a weakly structured dataset de-
scribing the working careers of millions of people. Our experimental outcomes show the effectiveness of our model-
based approach for data quality as they provide a fine-grained analysis of both the source dataset and the cleansing
procedures, enabling domain experts to identify the most relevant quality issues as well as the action points for im-
proving the cleansing activities.

Finally, an anonymized version of the dataset and the analysis results have been made publicly available to the
community.

Keywords: Data Quality; Data Cleansing; Model Checking; Real-life Application

1. Introduction

Nowadays, huge masses of people’s data are available, thanks to the wide use of Information Systems, which rep-
resent the back-end of an increasing number of services and applications. Actually, public and private organizations
recognise the value of data as a key asset to deeply understand social, economic, and business phenomena and to im-
prove competitiveness in a dynamic business environment, as pointed out in several works (Fox et al., 1994; Madnick
et al., 2009; Batini et al., 2009). Indeed, as Fayyad et al. (1996) remarks while introducing the KDD process, “the
value of storing volumes of data depends on our ability to extract useful reports, events and trends, support decisions
and policy based on statistical analysis and inference.” In the last years, the data quality improvement and analysis
techniques have become an essential part of the KDD process as they contribute to guarantee the believability of the
overall knowledge process!, making the reasoning over data a very significant concern (Sadiq, 2013; Fisher et al.,
2012; Holzinger et al., 2013b; Pasi et al., 2013a; Herrera-Viedma & Peis, 2003). In this paper we aim to draw the
attention to data quality in the context of KDD.

Indeed, most researchers agree that quality of data is frequently poor, and this represents a problem in practical
applications of KDD since according to the “garbage in, garbage out” principle, dirty data can have unpredictable

*This work is partially supported within a Research Project granted by the CRISP Research Centre (Interuniversity Research Centre on Public
Services - http://www.crisp-org.it) and Arifl (Regional Agency for Education and Labour - http://www.arifl.regione.lombardia.
it).

*Corresponding Author. Mirko Cesarini, Ph.D. Assistant Professor at University of Milano-Bicocca, Department of Statistics and Quanti-
tative Methods. Via Bicocca degli Arcimboldi 8, II floor. 1-20126 Milano, Italy. Tel (+39)02-6448-5849. Fax (+39)02-6448-5878. email:
mirko.cesarini @unimib.it

"Here the term believability is intended as “the extent to which data are accepted or regarded as true, real and credible”(Wang & Strong, 1996)

Preprint submitted to Information Processing & Management May 5, 2022

effects on the information derived from them, as noted by Fox et al. (1994); Levitin & Redman (1995); Ballou & Tayi
(1999); Hipp et al. (2001); Haug et al. (2011); Dasu (2013).

In recent years industrial and academic communities have spent a great effort to address data quality issues (e.g.,
by performing quality analysis and improvement, data visualisation and management, data cleansing, etc.) both from
a practical and a theoretical point of view, as studied by Barateiro & Galhardas (2005); Pipino et al. (2002); Wang &
Strong (1996). In this regard, Batini & Scannapieco (2006) reported that a gap between practice-oriented approaches
and formal research contributions still exists in this field. Indeed, from an industry perspective, a lot of off-the-shelf
tools are available, but often they lack of formality in addressing domain independent problems, as the case of the
ETL tools?. In such tools a quite relevant amount of the data quality analysis and cleansing design has still to be
done manually or by ad-hoc developed routines, that may be difficult to write and maintain (Rahm & Do, 2000).
On the other side, theoretical formalisms are sound and rigorous, but they often require a strong background from
practitioners, reason that prevents their large-scale diffusion.

Within this work we support the idea that model-based verification approaches (model checking for instance) can
support the Data Quality task of the KDD process in real-life situations by

(i) modelling data evolution over time in a natural way (e.g, as path on a graph). This allows domain experts to
concentrate on what quality constraints need to be modelled rather than how to verify them, thus supporting the
definition and formalisation of domain related quality requirements;

(i) evaluating the effectiveness of cleansing activities performed through a practice-oriented approach (like the
Extraction, Transformation, and Loading used in data warehousing).

In this regard, here we present the Multidimensional Robust Data Quality Analysis, a novel technique we defined
to formalise and automatically verify both the quality of the data and the robustness of an industrial cleansing process.
The technique has been realised by using a model-checking based tool. Furthermore, we report our experience in the
application of such technique to a public administration dataset composed by more than 21 million items framed in
the context of the Italian Labour Market Domain, then providing a (smaller) database and the experimental results to
the community.

2. Motivation and Contribution

Huge amounts of data describing people behaviours are collected by the Information Systems of enterprises and
organizations. Such data often have an unexpressed informative power, indeed the study of relations and correlations
among them allows domain experts to understand the evolution of subtended behaviours or phenomena over time, as
recently outlined by Holzinger (2012, 2011); Wong et al. (2011); Lovaglio & Mezzanzanica (2013). Among the time-
related data, the longitudinal data (i.e., repeated observations of a given subject, object or phenomena at distinct time
points, see, e.g.,Bartolucci et al. (2012)) have received much attention from several academic research communities as
they are well-suited to model many real-world instances, including labour and healthcare domains, see, e.g. (Hansen &
Jarvelin, 2005; Holzinger, 2012; Holzinger & Zupan, 2013; Prinzie & Van den Poel, 2011; Lovaglio & Mezzanzanica,
2013; Devaraj & Kohli, 2000).

In such a context graphs or tree formalisms, which are exploited to model weakly-structured data, are deemed
also appropriate to model the expected data behaviour, that formalise how the data should evolve over time. In this
regard, Holzinger (2012) has recently clarified that a relationship exists between weakly-structured data and time-
related data. Namely, let Y(¢) be an ordered sequence of observed data, e.g., subject data sampled at different time
t € T, the observed data Y(¢) are weakly structured if and only if the trajectory of Y () resembles a random walk (on a
graph). The following example should help in clarifying the matter.

2The ETL (Extract, Transform and Load) is an approach supporting the data preprocessing and transformation tasks in the KDD process (Fayyad
et al., 1996). The data extracted from a source system undergo a set of transformations that analyse, manipulate and then cleanse the data before
loading them into a Datawarehouse.

Table 1: An example of a Mobile Phone Tracking Dataset

Event-ID || Event Type | Cell-ID Timestamp
01 Cell-IN 3902 12/01/2011:08::35:00
02 Traffic 3902 12/01/2011:11::00:05
03 Traffic 3902 12/01/2011:13::10:15
04 Traffic 3902 12/01/2011:18::45:55
05 Cell-IN 40122 | 12/01/2011:22::00:00

Motivating Example. Let us introduce the Mobile Phone Tracking Example. The dataset in Tab. 1 shows the events
recorded by a mobile telephone operator for lawful interception purposes.® The data describe mobile phones con-
necting to cells of a cellular network, performing calls, exchanging messages, and data packets. Such data represent
a log of the activities that a law enforcement agency can request for investigation. Each record reports information
about: the MS-ID (Mobile Station ID, i.e. an ID identifying the mobile phone involved); the BTS-ID (the ID of the
base transceiver station to which the Mobile Phone is connected); and the Event-Type. For the sake of simplicity, we
reduce the several existing event types to cell-in, cell-out, and traffic. The cell-in event happens when a mobile phone
starts being served by a BTS (Base Transceiver Station), e.g. the mobile phone is switched on or it enters into the BTS
coverage area. The cell-out event takes place when the mobile phone is no longer served by the BTS where it has
previously performed a cell-in (this can be due to the mobile phone being switched-off, or to the exit from the BTS
coverage area). The traffic event is recorded when a call is initiated, or a message is sent or received, or some data are
exchanged by the phone. The Timestamp value reports the call start time or the message/data packet send time.

Intuitively, one could model the longitudinal data evolution on a graph, then it could apply any graph-search to
verify if the longitudinal data sequence (i.e., the trajectory) is “correct” or not (i.e., if it satisfies or not a set of quality
requirements). To this aim, a mobile phone event sequence should evolve according to the automaton described in
Fig. 1(a). Unfortunately, the real data do not fully comply with these criteria: several cell-in can be found in the same
cell (with no cell-out in between), several traffic events have no previous cell-in on the BTS, etc. This is mainly due
to signal drop issues affecting the radio connections. Let us suppose that the elapsed intervals should be computed for
analysis purposes i.e., the intervals when a mobile phone is served by (and thus being into) a BTS. Unfortunately the
data quality issue may prevent or affect such intervals computation. Note that, as we discuss in Sec. 3, modelling such
quality requirements through functional dependencies (FDs) may be a hard task since they mainly work on attributes
rather than tuples, even though their expressivity has been recently revisited and improved, see Bravo et al. (2008).

Actually, evaluating and improving the quality of a data source archive and, in turn, the effectiveness of a cleansing
process is a challenging task while the comparison between archive contents against real data is often either unfeasible
or very expensive (e.g. lack of alternative data sources, cost for collecting the real data, etc.). In such a case, cleansing
procedures based on business rules still represent the most adopted solution by industry, as proved by the diffusion
of several open source and commercial tools, see (Thomsen & Pedersen, 2005; Barateiro & Galhardas, 2005) for a
survey. A reliable answer to questions like “How good are the adopted data cleansing processes?” becomes quite
relevant, especially when formalising and measuring such “goodness” can strengthen the believability of the overall
knowledge discovery process.

Here we support the idea that a model-driven verification of data cleansing activities can strengthen the effective-
ness of the KDD process, by providing to data mining algorithms a more reliable cleansed dataset. The contribution
of this paper, which extends preliminary results from (Boselli et al., 2013), goes into three directions.

e First, we present and formalise the Multidimensional Robust Data Quality Analysis (MRDQA for short), a
domain-independent iterative technique aimed to evaluate the effectiveness of a black-box cleansing function
over a dirty dataset. Then, a visualization technique is used to facilitate the understanding and assessment of
the MRDQA results, namely the parallel-coordinates;

3Lawful Interception is a security process where a service provider or a network operator collects individuals intercepted data or communications
on behalf of law enforcement officials, see (European Telecommunications Standards Institute ES 201 671, 2009) for more details.

3

e Second, we express the task of evaluating weakly structured data quality as a model checking problem, then we
implemented the MRDQA using the UPMurphi tool (Della Penna et al., 2009);

e Third, we apply the MRDQA on a real-life government application in the field of Labour Market (The Italian
Ministry of Labour and Welfare, 2012). Finally, a smaller version of the dataset we analysed and a demo are
made available on line to the community.

The outline of this paper is as follows. In the next section we provide an overview of the related work while in
Sec. 4 we introduce some background notions about data quality, model checking and the interaction between them.
Then, in Sec. 5 we present the Multidimensional Robust Data Quality Analysis while in Sec. 6 we introduce the labour
market domain. Sec. 7 extensively draws the experimental results as well as the characteristics of the online database.
Finally, in Sec. 8 we sketch some concluding remarks providing in the appendix the code used to model the labour
market domain.

3. Related Work

The data quality analysis and improvement tasks have been the focus of a large body of research in different
domains, that involve statisticians, mathematicians and computer scientists, working in close cooperation with appli-
cation domain experts, each one focusing on its own perspective (Abello et al., 2002; Fisher et al., 2012).

To give a few examples, statisticians always fought for better data quality by applying: data mining and machine
learning techniques for data edits (Mayfield et al., 2010; Winkler, 1997; Fellegi & Holt, 1976), probabilistic record
linkage (Winkler, 2000; Fellegi & Sunter, 1969; Newcombe & Kennedy, 1962), and error detection (Elmagarmid
et al., 2007; Winkler, 2004). On the other side, computer scientists developed algorithms and tools to ensure data
correctness by paying attention to the whole Knowledge Discovery process, from the collection or entry stage to data
visualisation (Holzinger et al., 2013a; Ferreira de Oliveira & Levkowitz, 2003; Clemente et al., 2012; Fox et al., 1994),
exploiting both hard and soft computing techniques, see e.g. (Bertossi, 2006; Chomicki & Marcinkowski, 2005b; Hipp
et al., 2001; Yu et al., 20006).

Usually, the quality evaluation task in the literature is related to the data cleansing (or cleaning) problem, which
basically consists in the identification of a set of activities to cleanse a dirty dataset. In this regard, a common technique
is record linkage (also known as object identification, record matching, merge-purge problem) which aims to bring
together corresponding records from two or more data sources. The purpose is to link the data to a corresponding
higher quality version and to compare them (Elmagarmid et al., 2007). An alternative approach uses Business Rules
identified by domain experts to cleanse the dirty data. The cleansing procedures can be implemented in SQL or in
other tool specific languages.

This paper handles the problem of data quality verification in terms of consistency (as specified in Sec. 4.1) by
mapping both the data dynamics and the consistency constraints over a finite state system, then using model checking
to verify them.

Finite State Systems in the context of data (and Formal Methods in general) have been investigated in the areas
of databases and artificial intelligence. Chomicki (1995) basically encodes bounded database history over Biichi au-
tomata to check temporal constraints. The purpose of Chomicki is to build an efficient framework to perform temporal
queries on databases while no attention is paid to the data quality issues. Indeed, the author declares that the work
focuses on transaction time databases and it is assumed that the stored data exactly correspond to the real world ones.
Formal verification techniques were applied to databases with the aim to prove the termination of triggers by exploit-
ing both explicit model checking (Choi et al., 2006) and symbolic techniques (Ray & Ray, 2001). The use of CTL
model checking has been investigated for semistructured data retrieval, whether XML based (Neven, 2002) or web
based (Dovier & Quintarelli, 2002) as well as to solve queries on semistructured data (Dovier & Quintarelli, 2009;
Afanasiev et al., 2004; Dovier & Quintarelli, 2002).

In the database area, a lot of works have been focusing on constraint-based data repair for identifying errors by
exploiting FDs (Functional Dependencies), multivalued dependencies, join dependencies, and inclusion dependen-
cies. However, as introduced in Sec. 4.1, they are not suited for specifying constraints on longitudinal or historical

4

data (Vardi, 1987; Chomicki, 1995; Fan, 2008). Specifically, Vardi (1987) motivated the usefulness of formal systems
in databases by observing that FDs are only a fragment of the first-order logic used in formal methods while Fan et al.
(2010) observed that, even though FDs allow one to detect the presence of errors, they have a limited usefulness since
they fall short of guiding one in correcting the errors.

Two very effective approaches based on FDs are database repair (Chomicki & Marcinkowski, 2005a; Greco et al.,
2001) and consistent query answering (Arenas et al., 1999; Bertossi, 2006). The former aims to find a repair, namely
a database instance that satisfies integrity constraints and minimally differs from the original (maybe inconsistent)
one. The latter approach tries to compute consistent query answers in response to a query, namely answers that
are true in every repair of the given database, but the source data is not fixed. Unfortunately, finding consistent
answers to aggregate queries is a NP-complete problem already using two (or more) FDs (Bertossi, 2006; Chomicki
& Marcinkowski, 2005b). To mitigate this problem, recently a number of works have exploited heuristics to find
a database repair, as (Yakout et al., 2013; Cong et al., 2007; Kolahi & Lakshmanan, 2009). They seem to be very
promising approaches, even though their effectiveness have not been evaluated on real-world domains.

More recently, the NADEEF (Dallachiesa et al., 2013) tool has been developed for creating a unified framework
able to merge the most used cleansing solutions by both academy and industry. It provides a programming interface
that would facilitate the user in expressing quality constraints - and thus in cleansing the data - through business rules,
conditional functional dependencies, matching dependencies, and denial constraints. In our opinion NADEEF gives
an important contribution in the field of data cleansing also providing an exhaustive overview about the most recent
(and efficient) solutions for cleansing the data. Indeed, as the authors remark, consistency requirements are usually
defined on either a single tuple, two tuples or a set of tuples. The first two classes are enough for covering a wide
spectrum of basic data quality requirements for which FD-based approaches are well-suited. However, the latter class
of quality constraints (that NADEEF does not take into account according to its authors) requires reasoning with a
finite (but not bounded) set of data items over time as the case of longitudinal data, and this makes the exploration-
based technique a good candidate for that task. More specifically, Al planning can enable domain experts to express
complex quality requirements and to effortlessly identify best suited cleansing actions for a particular data quality
context.

Finally, from an industry point of view, a lot of off-the-shelf tools are available and well-supported, but they often
lack of formality in addressing domain independent problems, as the case of several ETL tools*. In such tools a quite
relevant amount of the data analysis and cleaning work has still to be done manually or by ad-hoc routines, that may
be difficult to write and maintain, as discussed by Rahm & Do (2000).

4. Background

In this section we first briefly discuss about data quality, then we introduce some background notions about the
model checking technique and the UPMurphi tool, which will be used in the remainder of the paper. Finally, we
connect all these concepts by introducing the finite state event databases and datasets, then describing how to perform
data consistency verification through model checking.

4.1. Data Quality at a Glance

Data quality is a broad concept and it has been widely addressed in the literature of several research communities.
In this regard, the most common and concise definition of data quality is given by Wang & Strong (1996), which define
data quality as “fitness for use”. This implies that data quality is a domain and goal dependent concept, thus a dataset
can be considered appropriate for one use while may not be suitable for a different one. In such direction, Kahn et al.
(2002) considers the quality of data as “the extent to which data are conform to a given specification* while, in a more
extensive way, Redman (2001) states that "data are of high quality if they are fit for their intended uses in operations,
decision making, and planning. Data are fit for use if they are free of defects and possess desired features*.

In this paper we focus on consistency, a quality dimension which Batini & Scannapieco (2006) refer to “the
violation of semantic rules defined over (a set of) data items where e.g., items can be tuples of relational tables or
records in a file”.

“In the ETL approach (Extract, Transform and Load) data extracted from a source system pass through a sequence of transformations, that
analyse, manipulate and then cleanse the data before loading them into a Datawarehouse

5

4.2. Explicit Model Checking

Model checking (see e.g., Clarke et al. (1999); Baier et al. (2008)) is a hardware/software verification technique to
determine whether a model system obeys a specification of its intended behaviour. The model is described in terms of
state variables, whose evaluation determines a state, and transition relations between states, which specify how the
system can move from a state to the next one as a consequence of a given input action.

Generally speaking, given a model of a dynamic system (i.e., a transition system) and a formal property to be
verified on it, a model checking tool verifies whether this property holds for each state of that model or not. In the
latter case, the model checker returns the error-trace, describing how the system reached the error.

Focusing on explicit model checking, it performs an exhaustive search on the transition system and it progressively
collects the complete set of the system states (also called the system state space). Thus, such technique can work on
Finite State System (FSS for short) only. To clarify this concept, let us consider a system model with a finite set
of state variables xi, xo,...,x,. If each variable x; ranges over a (nonempty) set D; of values, the state space is
S = Dy x---xD,, which enumerates all the possible system behaviours. If a particular system state cannot be actually
reached (e.g., a variable can never be set to a specific value, even if it is in its domain), it will be never generated or
analysed. This kind of state space exploration (limitation) is also called reachability analysis.

Model checking algorithms are subject to the state explosion problem, since managing a large state space may
require a very big storage space (usually RAM): however, the ability to generate only the system reachable states, and
several space saving techniques helps mitigating the problem, see e.g. (Edelkamp & Jabbar, 2006; Della Penna et al.,
2004).

For the sake of clarity, we formalise an FSS as follows.

Definition 1 (Finite State System). A Finite State System (FSS) S is a 4-tuple (S,1,A,F), where: S is a finite set of
states, I C S is a finite set of initial states, A is a finite set of actions and F : S X A — S is the transition function, i.e.
F(s,a) = s iff the system from state s can reach state s’ via action a. Hence, we define:

e q trajectory as a sequence m = SodgS1a1520s . .. Ay—15, where, Vj=0,...,n, s; €S isastate, Vi =0,...,n—1,
a; € A is an action and F(s;,a;) = siv1. If mis a trajectory, we denote with |n| the length of m given by the
number of actions; Finally, we write nt,(k) (resp. m,(k)) to denote the state sy (resp. the action ay);

e Reach(S) as the set of all states reachable from the initial ones.

Let S be an FSS according to Def. 1 and let ¢ be a formula specifying a property to be satisfied on the system. Let
a state sg € E be an error state if the invariant formula ¢ is not satisfied. Then, we can define the set of error states
E C § as the union of the states violating ¢. Moreover, we limit the error exploration to at most 7" actions (the finite
horizon), i.e. only sequences reaching an error sg € E within the finite horizon are detected. Note that this restriction
has a limited practical impact in our contexts although being theoretically quite relevant, see Kroening et al. (2003);
Biere et al. (2003).

Model checking is traditionally used to explore and verify all the feasible execution paths of a system. Then,
informally speaking a model checking problem is composed by a description of the FSS to be explored, a property to
verify and a finite horizon. A feasible solution, i.e. the error trace (if any), is a trajectory leading the system from an
initial state to an error one. More formally we can define the following.

Definition 2 (Model Checking Problem and Solution). Let S = (S,1,A, F) be an FSS. Then, a model checking
problem (MCP in the following) is a triple P = (S, ¢, T) where ¢ is the the invariant condition and T is the finite
horizon.

Then a feasible solution for P is a reachable trajectory m in Reach(S) s.t.: As; € I, |n| = k,k < T,n,(1) = s; and
ng(k) € E.

4.2.1. The UPMurphi tool

The high formalisation and computational power of model checking has been applied to several contexts away
from the HW/SW verification, from Fault-Tolerance to Control and Al Planning domains, see e.g. (Atlee & Gannon,
1993; Giunchiglia & Traverso, 2000). As a consequence, a number of model checking tools have been adapted
and enhanced properly, see Bérard et al. (2010) for a survey. Here we use the UPMurphi tool (Della Penna et al.,

6

2012, 2009), a model-checking-based universal planner containing algorithms directly derived from the explicit model
checker Murphi (Dill, 1996). A detailed description of Murphi is out of the scope of this paper, however it is important
to highlight that Murphi naturally supports first-order logic quantifiers in the model specification, which are unravelled
through state enumeration.

Note that, even though UPMurphi is a planner, it exploits the well-known planning-via-model-checking paradigm
(Giunchiglia & Traverso, 2000), that allows one to use a model checker for searching the planning state space, stopping
the search when a goal state is found.

Moreover, UPMurphi has proved its effectiveness in dealing with several Al planning problems in both determin-
istic and non-deterministic domains (Fox et al., 2012, 2011; Della Penna et al., 2009, 2010a, 2011, 2010b, 2012).
Finally, UPMurphi presents three features useful for our purposes:

e it allows the use of C/C++ language constructs to model complex dynamics and to exploit external libraries to
connect with other services (e.g., databases through ODBC drivers). This feature helps us to directly access to
external data sources, since restrictions on accessing and duplicating archives are frequently enforced due to
non-disclosure and secrecy agreements;

e it was enhanced with a disk-based algorithm (Mercorio, 2013) for exploring the system dynamics, thus enabling
the visit of huge graphs.

e it is also a Universal Planner. A Universal Plan, first introduced by Schoppers (1987) is a set of policies,
computed off-line, able to bring the system to the goal from any state reachable from the initial ones, the reader
can see the contributions of Cimatti et al. (1998); Della Penna et al. (2012) for details. The universal planner
output is a table (also known as controller) of <state,action> pairs describing which actions can be performed
from each state to reach the goal. In this work we modify the UPMurphi universal plan algorithm to synthesise
a Universal Checker, i.e., a taxonomy of all the inconsistencies affecting the data, as described in detail in
Sec. 7.3.

4.3. Data Consistency Verification as Model Checking Problem

Finite State Systems have been widely applied in the literature, also dealing with event-driven systems by mapping
events onto actions e.g., see (Holzmann & Smith, 1999; Atlee & Gannon, 1993). Similarly, an Information System
recording longitudinal data in a database can be viewed as an event-driven system by considering a database record as
an event, i.e. arecord content or a subset thereof is interpreted as the description of an external world event modifying
the system state, while an ordered set of records represents an event sequence.

To this aim we introduce the following.

Definition 3. Let R = (Ry,...,Ry) be a schema of a database relation.
e Anevente = (ry,...,r,) is a record of the projection (Ry,...,R,;) over Q C R with m < n, such that r| €
Ri,....,rm € Ry
e An event sequence is a ~-ordered sequence of events € = ey,...,e,. Indeed, a total order relation ~ on events
can be defined such that e; ~ ey ~ ... ~ ey,

e A Finite State Event Dataset (FSED) S; is an event sequence derived from a longitudinal dataset, while a Finite
State Event Database (FSEDB) is a database S whose content is S =\ J*., S; where k > 1.

In the following we denote by €; a subsequence of € from the first event to the one in position i.

In several domains it is advisable to split a (large) dataset into different subsets (e.g., for improving scalability).
Then, each subset can be managed separately (e.g., parallel computation can be performed). From now on, the term
FSED will be used to refer to a subset while the overall dataset will be called FSEDB.

Intuitively, the application of model checking techniques to data quality problems (as introduced in (Mezzanzanica
et al., 2011)) is driven by the idea that a model describing the expected evolution of any event sequence can be used
to verify if a dataset (called actual data) retrieved from a data source (e.g., a database) is compliant with such model.

Egyﬁe[= “traﬂicl’l’/\ 0“5‘\5\6“‘
ell — ID; = ce - M

EType; = “cell-out” FSEDB = | S, extraction | Model-based
ACell — ID; = cell @ UL, s Resoner
offline
state=dis state=con
cell=L cell=cy ‘
EType; = “cell-in” Consistency
ACell — ID; = “cy Model

(2) (b)

Figure 1: (a) A Graphical representation of the consistency model for the Mobile Phone Tracking domain where the lower part of a node describes
how the system state evolves when an event happens. (b) A Graphical representation of a model-based data consistency verification on an FSEDB.
Each §; is extracted from the FSEDB and analyzed according to the Consistency Model provided, then each S; is inserted either into the set of
consistent ones (S) or into the set of inconsistent ones (S;’).

Then, the data consistency verification problem can be expressed as a model checking problem on FSSs: a solution
for the latter (if any) is an inconsistent set of records for the former.

Performing a model-based data consistency evaluation requires the following steps: (1) to define a model of the
data evolution, (2) to identify the consistency rules to be verified and (3) to verify the data source (e.g., the FSEDB
introduced before) against the data evolution model and the consistency rules. A schematic representation of how this
task can be accomplished by using a model checker is depicted in Fig. 1(b), which works as follows. From here on,
without loss of generality, we refer to the consistency model as a model which encapsulates both the model of the data
evolution and the consistency properties °.

Step 1 (Domain Modelling) A domain expert defines the consistency model describing the correct evolution of the
data through the model checking tool language.

Step 2 (Data Verification) An FSED §; is retrieved from the FSEDB source S§. The model checker looks for an
error trace. A solution (if any) represents an inconsistency affecting the dataset S;. Otherwise S; is considered
consistent.

Step 3 (Iteration) Repeat step 2 foreach S; € S.

Working Example. The following example should clarify the matter. Let us consider the dataset introduced in Tab. 1.
The information collected about a single mobile phone is an FSED §;, while the information of several of them is the
FSEDB S.

An event e; is composed of the attributes MS-ID, Event Type, Cell-ID, and Timestamp, namely e; = (MS — ID,,
EType;, Cell — ID;, Timestamp;). Moreover, the total-order operator ~ could be the binary operator < defined over
the event’s attribute Timestamp, hence Ve;, e; € E,e; < e; iff Timestamp,, < Timestamp,,. A simple consistency
property could be “A mobile phone connected to cell A, cannot connect to a different cell unless it disconnects from
A*“. Finally, the finite horizon can be set to the maximum dataset cardinality, namely 7" = maxg,cs |Sl.

We can model this consistency property using an FSS. The consistency model is graphically represented in
Fig. 1(a). The system state is composed of two variables, namely (1) the variable cell, which describes to which
cell the mobile phone is connected and (2) the variable state € {con, dis}, whereas con denotes a phone connected to
a cell, dis otherwise.

The data source S can be a database instance (e.g., an actual FSEDB) to be verified against the consistency model.
Note that for each different S; (i.e., for each different FSED) the model checker generates a different FSS modelling
the S; consistency. In other words, each different FSS is instantiated according to the actual data, therefore each FSS
will have its own state space.

To clarify this aspect, it is worth to describe a different domain where a similar approach is used.

SGenerally, researchers often use the term model referring to the result of a modelling phase (see, e.g. Baier et al. (2008)), despite two distinct
tasks are involved, namely to (1) represent the system evolution (i.e., the model) and (2) formalise the properties to be verified.

8

Let us consider a discrete-time hybrid system® modelling a continuous domain where a car needs to cover a
specified distance in the least possible time by incrementing or decrementing its current acceleration.

Clearly, due to the nonlinearity of the dynamics, discretising the time either every 10 seconds or every 5 seconds
may generate different values for distance, velocity and acceleration, then resulting in different state spaces. As a
consequence, the model evaluation through a model checker will generate different Finite State Systems according
the discretisation time step chosen, see the Discretise and Validate approach of (Fox et al., 2012). Similarly, in our
model, data (i.e., a §;) play the same role that the time has in the car model: the model checker will generate and
verify different FSSs according to the actual data. As a drawback, this behaviour prevents the identification of general
patterns of data inconsistency, which could be useful for the purpose of generalizability. The following example
should help in clarifying this concept.

Working Example. Let us consider again the Mobile Phone Tracking example of Tab. 1 and let us focus on the
inconsistent event sequences of two mobile phones: Mob, = (cell — in,03290), (cell — out,03291) and Mob, =
(cell —in,03120), (cell — out, 03288), whereas respectively the EType; and Cell — ID; attributes only are reported, and
very short sequences are showed for the sake of simplicity. The inconsistencies found share a common characteristic:
the “cell-out” has been made on a cell different from the one where the last “cell-in” took place. We introduce the
data abstraction to better manage such general inconsistencies. We replace the actual cell domain data D..; = {03120,
03288, 03290, 03291, ...} (whose cardinality can be very high although finite) with an abstract domain composed by
a set of symbols. We can make an abstraction of the domain D,.; by using only a reduced set of symbols, namely
Debsiract = {Cy, Cy} as described next.

The idea to produce an abstract model from a concrete one is not new (also known as abstract interpretation, see
(Cousot & Cousot, 1977)) and it has been applied also in the verification of transition systems (see the work of Clarke
et al. (1994) where abstraction has been formally and widely addressed). In our context, the key intuition is that a
relation between actual and abstract data can be based on an equivalence relation, thus an abstract state will represent
several actual ones. This approach, in turn, generates an abstract state space which can be explored by an abstract
consistency model, useful to generalise data inconsistency.

We formalise this concept as follows.

Definition 4 (Data Abstraction). Let s be an FSS state and e be an event with respectively s = xi, . .., x, state variables
and e = (ry,...,ry,) event attributes. Let D be a finite (although very large) attribute domain where {x,...,x,} C
{x1,....,xpyand {ri,....,ry} C{r,...,) are instances of D, i.e., {x1,...,xy} € Dand {ry,..., 1} € D.

An event e happening in the state s requires the evaluation of xi,...,Xy and ry,...,r, values, namely a con-
figuration of ' + m’ different values of D. Then, we define the Abstract Domain of D as a set of different symbols
di,...,dyw, called Abstract Data, required to represent the values of D in the consistency model, i.e. Debstract —
{dl, L) dn’+m’ }

Some conditions should be met to apply such data abstraction:
(p1) no total order relation is defined in the actual domain (or the total order relation is not considered for the scope
of the analysis);
(p2) No condition should compare a symbol to a non-abstract value (e.g., Cx = 03120 in our example).

5. The Multidimensional Robust Data Quality Analysis

In this section we first introduce the Robust Data Quality Analysis, then we describe its extension, namely the
Multidimensional Robust Data Quality Analysis, which identifies, extracts, and classifies data inconsistencies.

%A Discrete Time Hybrid System is a formal model for mixed discrete-continuous systems which allows the presence of both continuous and
discrete variables. As a characteristic, it operates on a discrete state and performs discontinuous state changes at discrete time points.

D P> ‘
S S \>

Dirty Cleansed /!

Cluster
Analysis
. Double Y
Consistency
Model Check
Matrix
Extend the RDQA framework .
N Multidim.
—] > Cluster
Multidim. | Fine-grained il
Multidim. Double | Cluster 4
; nalysis
Support Abstract Data RDQA Support Chec.:k
and Error Matrix |
Codes

Astract Domain

Figure 2: An overview of the RDQA and Multidimensional RDQA processes.

5.1. The RDQA

The Robust Data Quality Analysis (RDQA for short) is a model-based technique to verify the consistency of a
longitudinal database before and after the cleansing intervention, as we discuss in the application domain of Sec. 7.
Let us have and FSEDB § which can be decomposed in several FSED S; as outlined in Def. 3. Let us introduce
a function clr that can generate a cleansed (and consistent) version C; of a source dataset S;. In this respect, the
clr cleansing function is considered regardless of its implementation and can be deemed as a black-box working as
follows.

Function 1 (clr). Let S; be an FSED, then clr : FSED — FS ED is a function able to generate the cleansed instance
C; of a dataset S ;.

Then, several questions arise about the believability of the cleansing process: what is the degree of consistency
achieved through clr? Can we improve the consistency of the cleansed output? Are we sure that clr does not introduce
any error in the cleansed dataset?

To answer these questions we need a function able to check the consistency of a dataset before and after the
cleansing intervention, providing knowledge to evaluate the entire cleansing process.

Function 2 (ccheck). Let K; be a FSED. Let ~ be a total order relation such that € € K; is an ~-ordered event
sequence, as defined in Def. 3.
Then ccheck : FSED — {0, 1} is a function that returns 1 if € is inconsistent, O otherwise.

Clearly, the ccheck can be realised by means of several programming paradigms. In this paper the ccheck has been
implemented through UPMurphi, thus expressing the data consistency verification as a model checking problem, as
described in Sec. 4.3.

Even though the ccheck is model-based, no guarantees are given about the correctness of ccheck (it is well-known
that any model-based reasoning is only as good as the model is).

Given a FSED S and its cleansed instance C;, since no details about the cleansing process are provided, we need
to know the extent to which the clr has modified or not the output. We can guess whether the c/r function has affected

)
or not a dataset by comparing the source and cleansed instances (i.e, S; = C;). To this end, we introduce the following.

10

S clr C

ccheck| |equals| |ccheck

— — —

Figure 3: A schematic view of a single RDQA iteration

Function 3 (equals). Let S and C be FSEDs, we define equals : FSED X FSED — {0, 1} which returns 0 if no
differences between S ; and C; are found, 1 otherwise.

The Fig. 2 describes the RDQA process which takes as input: a consistency model of the data, the source database
S, and its cleansed instance C. The cleansed version C was generated executing the cleansing function clr on each
S: € S. A graphical representation of such approach is depicted in Fig. 1(b). Finally, for a given set S; (C;) we define
a function returning the representative element of the set S ; (AN

Function 4 (rep). Let K be an FS EDB and let R be the set of all the representative elements of K. For all K; C K
rep : FSED — R is a function which returns the representative element r; € R.

The output of a RDQA iteration is the Double Check Matrix (DCM), as shown in Tab. 2(a) and 2(b), produced by
collecting the results of functions ccheck, equals, and clr and computing statistics on the resulting S; and C; clusters.
For the sake of clarity, we provide the pseudo-code of the RDQA in Procedures 1, 2, and 3. Furthermore, Fig. 3
provides a graphical overview of a single RDQA iteration.

To give a few example, the Row 1 (called also cluster 1) of Tab. 2(a) provides information about how many
sequences have been considered consistent by both clr and ccheck functions and no differences between the original
instance and the cleansed one has been found by equals. On the contrary, row 4 (called also cluster 4) represents
the number of sequences for which no error was found by ccheck on the source, whereas the equals certifies that
a cleansing intervention took place, and the sequence was considered inconsistent after cleansing. Finally, row 8
represents the number of sequences originally inconsistent that were modified during the cleansing with no success,
since after the intervention they are still marked as inconsistent by the ccheck. The other cases will be extensively
commented in Sec. 7 focusing on a specific application domain.

The DCM provides useful insights about the consistency of clr results and helps the identification of cleansing
issues. The DCM results also contribute to the identification of errors in the formalisation of the consistency model,
which in turn allows a better understanding of the domain rules. The RDQA procedure is applied iteratively by
refining at each step the functions c/r and ccheck. Clearly, this approach does not guarantee the correctness of the data
cleansing process, nevertheless it helps making the process more robust with respect to data consistency.

5.2. The Multidimensional RDQA

Basically, the RDQA exploits the ccheck function to analyse the effectiveness of a cleansing routine clr. However,
the ccheck function works according to an on/off approach: it can detect an inconsistency, but it does not provide any
further information about the inconsistency characteristics.

7Intuitively, in a database record the representative element could be the primary key value or a hash value computed on the selected attributes.

11

Table 2: (a) The Double Check Matrix. (b) The explanation of the sets identified by the ccheck and the equals functions
(@) (b)

Conditions Result Fg = U(rep(Slccheck(S:) = 1)
ccheck(S ;) [equals(S;, C;) [ccheck(C;) Cardinality F; = U(rep(S)|ccheck(S ;) = 0)
0 0 0 [Fs nD- nF,l | | _F¢ =Ulrep(Cilccheck(Ci) = 0)
0 0 1 [FgnD™ NF}] Fo = U(rep(Cilccheck(Ci) = 1)
0 1 0 [F; ND* N F] D™ = U(rep(S i)lequals(S i, Ci) = 0)
0 1 1 |[Fg n DY N F}] D" = (rep(S lequals(S;,C