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Abstract

Credit Valuation Adjustment is a balance sheet item which is nowa-

days subject to active risk management by specialized traders. How-

ever, the most important risk factors, which are the default intensities

of the counterparties, affect in a non-differentiable way the most gen-

eral Monte Carlo estimator of the adjustment, through simulation of

default times. Thus the computation of first and second order (pure

and mixed) sensitivities with respect to inputs affecting these risk fac-

tors cannot rely on direct path-wise differentiation, while any approach

involving finite differences is slow and shows very high statistical noise.

We present ad hoc estimators which have empirically a much smaller

variance while offering very low runtime overheads over the baseline

computation of the price adjustment, regardless of the number of sen-

sitivities of interest, by leveraging adjoint (i.e. backward) algorithmic

differentiation in their implementation. These estimators allow for a

generic copula-based dependence structure among the default events,

and can be applied beyond our main application, to payoffs depending
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on more than two of them. We also discuss the conversion of the so-

obtained sensitivities to model parameters (e.g. default intensities) into

sensitivities to the market quotes used in calibration (e.g. Credit De-

fault Swap spreads) by generalizations of an existing implicit-function

based first order algorithm.

Keywords: Algorithmic differentiation, Greeks, sensitivities, Hessian, copula.

1 Introduction

When a counterparty defaults on an in-the-money portfolio, the surviving party

experiences a loss. Modern risk management and accounting standards dictate to

adjust the portfolio value by the risk-neutral expected value of such loss, called

Credit Valuation Adjustment (CVA; see e.g. Brigo et al., 2013).1 Daily changes in

CVA contribute to the the Profit and Loss, and are therefore managed by dedicated

trading desks.

The universally accepted model for the loss is a fraction of the positive value

of the portfolio at default time. The positive part in such model introduces a

non-linearity that makes CVA a portfolio-wise metric, which in general can only

be computed by a costly Monte Carlo simulation with tens or hundreds of inputs.

Therefore, even the simplest representation of risks by first order sensitivities is

a major computational challenge, while a second order representation is usually

considered out of reach.

As for the efficient computation of first order derivatives, a partial solution has

been found in the adjoint algorithmic differentiation (AAD) technique, which gives

the full gradient of any smooth deterministic function with at most a 4x overhead

over the original computational time, regardless of the number of inputs (Griewank

and Walther, 2008). This can be leveraged to estimate expected values of payoffs

computed by Monte Carlo, by path-wise computation of the derivatives (Glasser-

1The full paper would also apply to the completely analogous Debt Valuation Ad-
justment (DVA), since it is defined as the CVA seen by the counterparty on the same
position.
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man, 2004), but only when the payoff is expressed as a differentiable function of the

inputs. In particular, if CVA is implemented directly by simulation of defaults, then

path-wise AAD often covers the sensitivities to model parameters entering only the

portfolio value, but it does not apply to sensitivities to credit model parameters,

because of the discontinuous dependence on default time. To our knowledge, this

issue has been explicitly addressed only in Capriotti et al. (2011) by a discrete-time

approximation of the CVA payoff. On the other hand, out of the CVA setting,

several ways to apply AAD to discontinuous payoffs have been proposed in the

literature (Giles, 2007; Chan and Joshi, 2015; Daluiso and Facchinetti, 2018), but

mostly in diffusive settings which do not cover default simulation.

Second order derivatives have been studied only for simpler problems than CVA

(Capriotti, 2015; Pagès et al., 2016; Joshi and Zhu, 2016; Daluiso, 2020). We refer

interested readers to the latter, which includes a detailed comparison with all the

others in a diffusive setting. For our purposes, the key takeaways are that on the

one hand, in most cases the best trade-off between per-path runtime and statistical

noise is a method whose cost is linear in the number of variables; but on the other

hand, constant-overhead estimators exist, and for some forms of the payoff they

display spectacular efficiency.

Finally, the above algorithms produce sensitivities to model parameters; how-

ever, to hedge the measured risk, the trader needs a rule to translate this informa-

tion into sensitivities to market instruments entering the calibration of models. It

is known that first order derivatives can be converted into hedge ratios by very fast

implicit-function based algorithms (Henrard, 2011, 2013; Daluiso, 2016); while as

far as we know, the conversion of model Hessians to second order Greeks has never

been discussed.

Given the state of the art described above, the contribution of this paper is

threefold.

Firstly, we show how the main approaches to first-order discontinuous AAD can

adapted to payoffs depending on (possibly co-dependent) default times, like that

appearing in the CVA definition. We motivate our choice of one of them and test

it numerically, getting excellent results in terms of both speed and accuracy.
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Secondly, we tackle second order differentiation concentrating on cases in which

the set of differentiation variables can be split in two parts: the first one ψ includes

market inputs not affecting the default time, while the complementary θ affects

only the default model. This applies to the CVA of portfolios which do not include

credit derivatives. For such common setup, we introduce an estimator of ∂2/∂θ∂ψ

not slower than a constant multiple of the pricing-only run time; and an analogous

estimator for ∂2/∂θ2 for which such overhead is also constant up to a practically

negligible add-on. We present numerical tests of both, in which we observe empirical

gains in uncertainties and performance which are even more impressive than for the

first order.

Thirdly, we derive formulas to convert second order sensitivities to model pa-

rameters into second order sensitivities to market quotes. In such respect, we

provide both a fully analytical approach generalizing the first order literature men-

tioned above, and a practical alternative, partly based on finite differences.

The rest of the paper is organized as follows. Section 2 formalizes the problem

of interest and introduces the main notation. Sections 3 and 4 derive our estimators

respectively for first and second order model sensitivities. Section 5 presents the

conversion into sensitivities to market quotes. Section 6 tests numerically the pro-

posals of Sections 3 and 4. A summary of the main findings is eventually provided

in Section 7.

2 Setting

We consider an expected value depending on a vector of parameters α

p(α) = E[f(τ ,X,α)],

where:

• X is a generic stochastic driver (e.g. a multi-dimensional standard Brownian

motion).

• τ is a vector of default times τ (i) for i = 1, . . . , ı̄ driven by default intensities
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λ(i)(·,X,α) > 0, possibly dependent on the stochastic driver X:

P(τ (i) > t |X) = e−Λ(i)(t,X,α), Λ(i)(t,X,α) :=

∫ t

0

λ(i)(s,X,α) ds.

When τ is unidimensional, we drop the superscripts of τ , λ and Λ.

• f is a deterministic map representing the payoff, typically inclusive of the

simulation of market drivers as a smooth function of the parameters α and

random draw X (e.g. by Euler discretization of a Stochastic Differential

Equation).

Our first aim is to compute first and second order derivatives of p with respect

to α by Monte Carlo. We suppose for simplicity that the direct dependence of f

on α is differentiable. On the other hand, we do not assume differentiability with

respect to τ . Indeed, in the main application we have in mind, which is CVA, we

have

p = −lgd · E
[
D(0, τ)(NPVτ )

+I{τ≤T}
]

(2.1)

for unilateral computations neglecting own default, or

p = −lgd · E
[
D(0, τ (1))(NPVτ(1))+I{τ(1)≤min(T,τ(2))}

]
(2.2)

for bilateral computations: in such expressions, the function NPVs has a jump at

all times s in which a payment occurs, lgd and T are constants, and D(0, ·) is a

deterministic discounting function.

Conversion formulas will be also provided for the case in which α is in fact only

a convenient intermediate deterministic function of the real inputs of interest: see

Section 5 for the specific framework.

3 First order model sensitivities

In this section we focus on the estimation of ∂p/∂α.
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3.1 By distributional differentiation

In this subsection we suppose for simplicity that ı̄ = 1, i.e. only one default time

enters the payoff; estimators allowing for multiple defaults will be covered in Sec-

tion 3.3.

The most natural idea is probably to consider f(X,α, τ) as a function

ϕ(ε,X,α) := f(Λ(·,X,α)−1(ε),X,α)

of α inclusive of the well-known simulation scheme of τ from an exponential draw ε

independent ofX. Under this point of view, one can just adapt one of the methods

for AAD with discontinuous payoffs.

In a diffusive context, Daluiso and Facchinetti (2018) show that one with excel-

lent efficiency can be obtained by differentiating indicator functions in distributional

sense:

∂

∂α
If(α,z)>0 =

∂

∂f
If>0 ·

∂f

∂α
(α, z) =

[
δ(f)

∂f

∂α

]
(α, z),

where δ is the Dirac delta distribution. Therefore, we adapt their heuristic argument

to the dependence on the non-Gaussian ε. To this purpose, we suppose that the

dependence of f on τ is differentiable everywhere except at a finite set of times Ti

where it has jumps ∆i(X,α), as in virtually every financial application. Then we

get

∂p

∂α
= E

{
∂ϕ

∂α
+
∑
i

∆iδ(τ − Ti)
∂τ

∂α

}
= E

{
∂ϕ

∂α
−
∑
i

∆i

[
λe−Λ

] [ 1
λ

∂Λ

∂α

]}

= E

{
∂ϕ

∂α
−
∑
i

∆ie
−Λ ∂Λ

∂α

}
,

where the first quantity in square brackets is the known density of τ , and the second

one is the derivative of the inverse function Λ(·,X,α)−1.

A more formal derivation of the same result is as follows, where we define

conventionally T0 = 0 and Tı̄+1 = ∞ and use the notation ϕ(u+,X,α) and

6



ϕ(u−,X,α) to denote left and right limits of ϕ:

∂

∂α
E [ϕ(ε,X,α)] =

∂

∂α
E

[
ı̄∑

i=0

∫ Λ(Ti+1,X,α)

Λ(Ti,X,α)

ϕ(u,X,α)e−u du

]

= E

[
ı̄∑

i=0

(
ϕ(Λ(Ti+1,X,α)−,X,α)e−Λ(Ti+1,X,α) ∂Λ(Ti+1,X,α)

∂α
+

−ϕ(Λ(Ti,X,α)+,X,α)e−Λ(Ti,X,α) ∂Λ(Ti,X,α)

∂α

)
+

∫ ∞

0

∂ϕ

∂α
(u,X,α)e−u du

]
= E

[
∂ϕ

∂α
(ε,X,α)−

ı̄∑
i=1

(f(Ti+,X,α)− f(Ti−,X,α)) e−Λ(Ti,X,α) ∂Λ(Ti,X,α)

∂α

]
.

The validity of the above needs only that all the derivatives which appear in the

formulas exist, and that we can exchange integrals with differentiation.

Remark 3.1 (Algorithmic complexity). The correction term ∆i exp (−Λ)∂Λ/∂α ap-

pears ı̄ times, one for each discontinuity Ti: in the CVA case, at each cash-flow date.

Therefore, the raw computational cost per Monte Carlo path is unacceptably high

for large portfolios. A more scalable algorithm is presented in the next subsection.

3.2 By conditional differentiation

This subsection keeps the assumption that ı̄ = 1, again deferring multi-default

generalizations to Section 3.3.

Here instead of considering τ as a deterministic function of α and of random

draws not depending on α, we consider τ as a random variable and consider the

dependence of its X-conditional law from α.

The result is a correction to the path-wise estimator reminiscent of the likeli-

hood ratio method (Glasserman, 2004), but applied to a conditional distribution.

We can therefore hope that it has lower Monte Carlo uncertainties than plain like-

lihood ratios, analogously to what Giles (2007) finds in purely diffusive settings by

conditioning on the full discretized path with only one point excluded.
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The derivation is again based on differentiation under expectation and integral:

∂p

∂α
=

∂

∂α
E
{
E [f(τ,X,α) |X]

}
=

∂

∂α
E
{∫ ∞

0

[
fe−Λλ

]
(t,X,α) dt

}
= E

{∫ ∞

0

[(
∂f

∂α
+ f

(∂/∂α)(e−Λλ)

e−Λλ

)
e−Λλ

]
(t,X,α) dt

}
,

where we factored out the conditional density e−Λλ so that the result can be ex-

pressed again as an expected value:

∂p

∂α
= E

{[
∂f

∂α
+ f

∂

∂α
log

(
e−Λλ

)]
(τ,X,α)

}
= E

{[
∂f

∂α
+ f

∂w

∂α

]
(τ,X,α)

}
(3.1)

with the definition

w(τ,X,α) := −Λ(τ,X,α) + log λ(τ,X,α).

Remark 3.2 (Algorithmic complexity). Equation (3.1) can be implemented by com-

puting a single gradient on each Monte Carlo path: by AAD, this has a very low

overhead over the computation of f as explained in the introduction.

3.3 With multiple defaults

In this subsection we drop the hypothesis that f depends only on a single default

time τ .

We first present the case in which the default triggers

ε(i) := Λ(i)
(
τ (i),X,α

)

are independent. Note that this does not mean that single name default times are

independent, as default intensities may be correlated, and/or some of them may

represent joint defaults à la Marshall-Olkin (see e.g. Morini, 2011).

With this assumption,

P
(
τ (i) > ti ∀i = 1, . . . , ı̄ |X

)
=

ı̄∏
i=1

exp
(
−Λ(i) (ti,X,α)

)
,
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so by the same ideas as in Section 3.2

∂p

∂α
=

∂

∂α
E
{
E [f (τ ,X,α) |X]

}
=

∂

∂α
E
{∫

Rı̄
+

f (t,X,α)

ı̄∏
i=1

[
exp

(
−Λ(i)

)
λ(i)

]
(ti,X,α) dx

}

= E
{
∂f

∂α
(τ ,X,α) + f (τ ,X,α)

∂

∂α
log

ı̄∏
i=1

[
exp

(
−Λ(i)

)
λ(i)

]
(τ (i),X,α)

}

which takes the same form of the unidimensional estimator

∂p

∂α
= E

{[
∂f

∂α
+ f

∂w

∂α

]
(τ ,X,α)

}
(3.2)

with the generalized definition

w(τ ,X,α) :=

ı̄∑
i=1

[
−Λ(i) + log λ(i)

]
(τ (i),X,α). (3.3)

In general, the X-conditional dependence among the exponentially distributed

default triggers can be expressed by a copula CX,α. Conditional on X, τ (i) is

a monotone transformation of ε(i), so CX,α is also the X-conditional copula of

default times.

Let us suppose that the copula CX,α has a density ρX,α with respect to the

Lebesgue measure. In such case, it is well known that τ also has a density, given

by the product of ρX,α with the density of the marginals: specifically, defining the

X-conditional grades

u(t,X,α) :=
(
1− e−Λ(1)(t(1),X,α), . . . , 1− e−Λ(ı̄)(t(ı̄),X,α)

)

one has

P (τ ∈ dt |X) = ρX,α (u(t,X,α))

ı̄∏
i=1

[
exp

(
−Λ(i)

)
λ(i)

]
(ti,X,α) dt.

This means that the derivation leading to (3.2) is still valid with an additive
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correction to the log-density (3.3):

w(τ ,X,α) := log ρX,α (u(τ ,X,α)) +

ı̄∑
i=1

[
−Λ(i) + log λ(i)

]
(τ (i),X,α). (3.4)

One can also note that

∂

∂α

[
log ρX,α (u(τ ,X,α))

]
=

∂log ρX,α

∂α
+

ı̄∑
i=1

∂log ρX,α

∂ui
(1− ui)

∂Λ(i)

∂α
(τ ,X,α)

and therefore a different definition of w(τ ,X,α) yielding the same (3.2) is

log ρX,α(u) +

ı̄∑
i=1

[
(di − 1)Λ(i) + log λ(i)

]
(τ (i),X,α) (3.5)

where the definition of the constants di

di :=
∂log ρX,α

∂ui
(u)(1− ui) (3.6)

should not be differentiated, nor the argument u of ρX,α.

Remark 3.3 (Algorithmic complexity). As in Remark 3.2, the computational cost

of estimator (3.2) is a small multiple over that of the Monte Carlo estimation of p

thanks to AAD.

3.4 With censored default times

In practical implementations, default happening after a finite time T may be ne-

glected as irrelevant, and therefore default intensities may be simulated only up to

time T ; this is the case for CVA, where T is the maturity of the portfolio. This

means that if the set of defaulted names is I ⊆ {1, . . . , ı̄} and Ic is its complemen-

tary, we only know τ (I) := (τ (i))i∈I , while for j /∈ I we only know that τ j > T . So

(3.3)-(3.4) cannot be computed as they are; this subsection describes techniques to

solve this issue.
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3.4.1 Keeping samples from the full copula

A first way to derive an estimator in this setting is to notice that by hypothesis,

the following modified intensity model gives the same payoff as the original model:

λ̃(i)(t,X,α) = λ(i)(t,X,α)It≤T + λ̃(i)
∞ It>T , (3.7)

where λ̃
(i)
∞ > 0 is an arbitrary constant which will drop out of the final result. Under

this model we have

∂Λ̃(i)

∂α
(τ̃ (i),X,α) =

∂Λ(i)

∂α
(τ (i) ∧ T,X,α),

∂λ̃(i)

∂α
(τ̃ (i),X,α) = I{τ(i)≤T}

∂λ(i)

∂α
(τ (i),X,α),

so we can modify (3.5) as follows without affecting the gradient ∂w/∂α in (3.2):

log ρX,α(u) +

ı̄∑
i=1

[
(di − 1)Λ(i)(τ (i) ∧ T,X,α) + I{τ(i)≤T} log λ

(i)(τ (i),X,α)
]
.

(3.8)

This formula can be computed without knowing the exact default time τ (j) for

j /∈ I, although in general it does need uj ; this should not be problematic, as one

should have sampled the full vector u anyway, to know both the exact τ (i) for

i ∈ I and that uj > 1 − exp(−Λ(j)(T )) for j /∈ I. However, if default triggers are

independent, all terms involving u vanish and we get

ı̄∑
i=1

{
I{τ(i)≤T}

[
−Λ(i) + log λ(i)

]
(τ (i),X,α)− I{τ(i)>T}Λ

(i)(T,X,α)
}
. (3.9)

3.4.2 Integrating out or subtracting survived names

Without independence, an estimator in which default triggers of surviving names

do not appear can also be derived, but its implementation needs more tractability

of the copula. To obtain it, we define the partition of Rı̄
+

EI := {t : (ti ≤ T ∀i ∈ I) ∧ (tj > T ∀j ∈ Ic)} , I ⊆ {1, . . . , ı̄},
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and the conditional probabilities

πI (tI ,x,α) := P
(
τ ∈ Ei |X = x, τ (I) = tI

)
.

The latter are simple and explicit for independent triggers:

πI (tI ,x,α) = I{τ(i)≤T ∀i∈I}
∏
j /∈I

exp
{
−Λ(j)(T,X,α)

}
, (3.10)

while in general one needs all conditional tail functions of the copula:

πI (tI ,x,α) = I{τ(i)≤T ∀i∈I}C̄
I
X,α (uIc(T,x,α) | uI(tI ,x,α)) ,

with

C̄I
X,α (uIc | uI) := PU∼CX,α

[
Uj > uj ∀j /∈ I | Ui = ui ∀i ∈ I

]
.

In this section we are assuming that f depends on the exact value of ti only for

those i which are within maturity. In formulas, this means that functions fI exists

such that

f(t,x,α) = fI(tI ,x,α) ∀t ∈ EI .

Then

p = E

 ∑
I⊆{1,...,̄ı}

fI

(
τ (I),X,α

)
Iτ∈EI

 = E

 ∑
I⊆{1,...,̄ı}

[fIπI ]
(
τ (I),x,α

) ,

and differentiation by conditioning gives (3.2) with w(τ ,X,α) defined on {τ ∈ EI}

as

log ρ
(I)
X,α

(
u(τ (I),X,α)

)
+
∑
i∈I

[
−Λ(i) + log λ(i)

]
(τ (i),X,α)+ log πI

(
τ (I),x,α

)
,

(3.11)

where ρ
(I)
X,α is the density of the restriction of the copula to the components in I.

Remark 3.4 (Independent triggers). Inserting (3.10) into (3.11) one gets back (3.9)

without relying on the artificial model (3.7).
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Remark 3.5 (Zeroing terms). In estimator (3.2), w appears multiplied by f . This

implies that one does not need to compute (3.11) for sets I such that fI ≡ 0.

Such zero-valued subsets can also be created artificially by a suitable splitting

of the payoff. For instance, one can always write

p = E[f∅ (X,α)] + E[f (τ ,X,α)− f∅ (X,α)] =: E[f∅ (X,α)] + E[f (0) (τ ,X,α)],

where the first integrand does not depend on default times, while the second one is

null on {τ ∈ E∅} by construction.

More generally, if one has a payoff f (k−1) such that f
(k−1)
I ≡ 0 for all |I| < k,

the split

f (k−1) (τ ,X,α) =
∑
|I|=k

f
(k−1)
I

(
τ (I),X,α

)
I{τ (i)≤T ∀i∈I} + f (k) (τ ,X,α)

defines a remainder f (k) such that

f (k) (τ ,X,α) = f
(k−1)
J

(
τ (J ),X,α

)
−

∑
|I|=k,I⊆J

f
(k−1)
I

(
τ (I),X,α

)
on {τ ∈ EJ },

hence trivially f
(k)
J remains zero for |J | < k but is also zero for |J | = k. This

gives a recursive procedure to zero out as many terms as one wishes; which can be

beneficial e.g. if the conditional probabilities πI are less tractable when Ic has high

cardinality, as in Example 3.7 below.

In fact, the resulting additive decomposition of the original payoff

f =
∑
|I|≤k

f
(|I|−1)
I

(
τ (I),X,α

)
I{τ (i)≤T ∀i∈I} + f (k) (τ ,X,α) (3.12)

can be written down explicitly in terms of the fI . Indeed, we can prove that the

generic addend is

f
(|I|−1)
I

(
τ (I),X,α

)
=

∑
J⊆I

(−1)|I\J |fJ

(
τ (J ),X,α

)
(3.13)
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for all I with |I| = k by induction on k as follows. In the base case k = 0, the

result is trivial because f (−1) = f . For |I| = k + 1 one uses (3.12) to get

f
(k)
I

(
τ (I),X,α

)
= fI

(
τ (I),X,α

)
−

∑
J⊂I

f
(|J |−1)
J

(
τ (J ),X,α

)
,

which by the induction hypothesis (3.13) equals

fI

(
τ (I),X,α

)
−

∑
J⊂I

∑
K⊆J

(−1)|J \K|fK

(
τ (K),X,α

)
= fI

(
τ (I),X,α

)
−

∑
K⊂I

fK

(
τ (K),X,α

) ∑
K⊆J⊂I

(−1)|J \K| :

this gives the conclusion by the elementary equality2

∑
K⊆J⊂I

(−1)|J \K| =
∑

H⊂I\K

(−1)|H| =
∑

H⊆I\K

(−1)|H| − (−1)|I\K| = −(−1)|I\K|.

Example 3.6 (Bilateral CVA). In application (2.2), one already has f∅ = f{2} = 0.

Most used copulas have an analytical expression for C̄
{1}
X,α (u2 | u1) (see e.g. Exam-

ple 3.7), so no manipulations are required. Anyway, zeroing also f{1} via Remark 3.5

would lead to a financially meaningful split

−lgd·E
[
D(0, τ (1))(NPVτ(1))+I{τ(1)≤T}

]
+lgd·E

[
D(0, τ (1))(NPVτ(1))+I{τ(2)<τ(1)≤T}

]

of p as the sum of unilateral CVA (2.1) and a “DVA of CVA” correction.

Example 3.7 (Gaussian copula). For illustration and practical convenience, we

write down explicitly (3.11) for the most popular copula in credit modelling, which

is the unique copula of a standard normal vector N (0,R) with full rank correlation

matrix R.

It is trivial that the copula of a sub-vector uI is Gaussian with correlation

2Recall that for any setA one has
∑

B⊆A(−1)|B| = 0, e.g. by expansion of (1−1)|A| = 0.
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matrix RII for all I. The density of the Gaussian copula is well known:

log ρ
(I)
X,α(uI) = −1

2

[
Φ−1(uI)

⊺ (
R−1

II − Id
)
Φ−1(uI) + log det (RII)

]

where the standard normal quantile function Φ−1 is applied componentwise.

The required conditional probabilities are as follow:

C̄I
X,α (uIc | uI) = PX∼N (0,R)

[
Xj > Φ−1(uj) ∀j /∈ I | Xi = Φ−1(ui) ∀i ∈ I

]
= PXIc∼N(RIcIR

−1
IIΦ

−1(uI),RIcIc−RIcIR
−1
IIRIIc)

[
XIc > Φ−1 (uIc)

]
= PYIc∼N(0,RIcIc−RIcIR

−1
IIRIIc)

[
YIc ≤ RIcIR

−1
IIΦ

−1(uI)− Φ−1 (uIc)

]
.

These normal cumulative distribution functions are not available in closed form for

|Ic| > 1, but all of them are numerically tractable at least for |Ic| ≤ 3 (Genz,

2004). So one is safe if ı̄ ≤ 3, while with four or more underlying names one may

consider the procedure in Remark 3.5 to zero out fI for |I| < ı̄− 3.

4 Second order model sensitivities

In this section we focus on the estimation of ∂2p/∂α2. To derive efficient estimators,

we add the following hypothesis which is very often satisfied in practice:

Hypothesis 4.1. The set of parameters α is the union of two vectors θ and ψ

such that:

1. ∂f/∂θ ≡ 0: the payoff has no direct dependence on θ;

2. ∂λ(i)/∂ψ ≡ 0 for all i: default intensities do not depend on ψ.

The main motivating example is the CVA of a portfolio which does not include

credit-linked products.

Specializing the results in Sections 3.3 and 3.4, we note that the first derivative

with respect to ψ will have only the functional dependence term, while the one
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with respect to θ will have only the conditional log-likelihood term:

∂p

∂ψ
= E

{
∂f

∂ψ
(τ ,X,α)

}
,

∂p

∂θ
= E

{
f(τ ,X,α)

∂w

∂θ
(τ ,X,α)

}
.

These are again expected values of functions of (τ ,X,α), so we can apply our

conditional differentiation results once more and get3

∂2p

∂θ∂ψ
= E

[(
∂f

∂ψ
(τ ,X,α)

)⊺
∂w

∂θ
(τ ,X,α)

]
, (4.1)

∂2p

∂θ2
= E

{
f(τ ,X,α)

[
∂2w

∂θ2
+

(
∂w

∂θ

)⊺
∂w

∂θ

]
(τ ,X,α)

}
. (4.2)

The purely functional second order differentiation with respect to ψ is covered by

the general analysis of Monte Carlo Hessians in Daluiso (2020), and is therefore not

studied in this paper.

Remark 4.2 (Algorithmic complexity). In the above formulas, the payoff f is differ-

entiated only once, which can be done efficiently by AAD. For the same reason, the

gradients of w in (4.1)-(4.2) are of no concern. The only problematic term could

be the second derivative ∂2w/∂θ2 in (4.2); fortunately, the cost of w is very often

negligible when compared to the computational time of f : e.g. in CVA, the latter

includes the simulation of risk drivers and the evaluation of the portfolio. Moreover,

Cross Gammas (4.1) are empirically more relevant than pure Credit Gammas (4.2)

for typical CVA desks; see Section 6.4 for an empirical confirmation.

5 Market sensitivities

In practice, pricing inputs α are a function α(m) of quotesm; the above algorithms

give the derivatives of p with respect to α, while the quantities of interest would

be the derivatives of the pricing function inclusive of calibration:

P (m) := p(α(m)).

3We adopt a maybe counter-intuitive convention which is common to ease algorithmic
differentiation, according to which entry (i, j) of ∂2f/∂x∂y is ∂2f/∂xj∂yi.
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Of course, if the map m → α is a plain sequence of elementary differentiable

operations, one has AAD to convert sensitivities of p into sensitivities of P . But

this is seldom the case: almost always, that map involves iterative procedures to

fit the price of a set of market instruments. Therefore, in this section we discuss

other ways to compute the gradient and Hessian of P from those of p.

5.1 First order

In this subsection we present two algorithms for first order sensitivities.

The most well known conversion rule covers parameters which are chosen to

reprice perfectly a set of market instruments: for instance, yield curves boot-

strapped from a set of swap rates, or deterministic intensity models bootstrapped

from a term structure of Credit Default Swaps. Indeed in such case α(m) is charac-

terized by a set of equations b(α,m) = 0, and one can apply the implicit function

theorem (Henrard, 2011):

∂P

∂m
=

∂p

∂α
· ∂α

∂m
= − ∂p

∂α

(
∂b

∂α

)−1
∂b

∂m
. (5.1)

Note that b has usually a fast analytical implementation, as it must have been

called several times in the numerical search of the root α: this means that the

Jacobian of b appearing in the above formula can be computed efficiently.

Less standard generalizations to best fit calibration exist (Henrard, 2013; Daluiso,

2016), but we will not attempt a second order generalization of them in the present

paper. This is because for our main application, a pragmatic finite difference con-

version is enough: namely, for each direction µ of interest in the space of quotes

m, one can take h ∈ R small and compute:

∂P

∂m
=

∂p

∂α
· ∂α

∂m
· µ ≈ ∂p

∂α
· α(m+ hµ)−α(m)

h
, (5.2)

where equality holds in the limit h → 0.

This is acceptable when the implementation of the map m→ α is much faster

than p, which is for sure the case if p is CVA pricing. Moreover, the typical mo-
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tivation for best fit calibration is parsimony: hence the number of parameters to

which (5.1) cannot be applied should not be very large in real applications.

5.2 Second order

From α = α(m), applying twice the chain rule:4

∂2P

∂m2
=

∂p

∂α
· ∂2α

∂m2
+

(
∂α

∂m

)⊺
∂2p

∂α2

(
∂α

∂m

)
. (5.3)

We first cover the simpler finite difference implementation. For each direction

µ of interest in the space of quotes m, one can take h ∈ R small and compute:

∂2P

∂m2
hµ =

∂p

∂α
· ∂2α

∂m2
hµ+

(
∂α

∂m

)⊺
∂2p

∂α2

(
∂α

∂m

)
hµ

≈ ∂p

∂α
·
[
∂α

∂m
(m+ hµ)− ∂α

∂m
(m)

]
+

(
∂α

∂m

)⊺
∂2p

∂α2
[α(m+ hµ)−α(m)] ,

(5.4)

where equality holds to first order in h. Now note that the propagation of first

order sensitivities is the map

ᾱ(pα,m) := pα · ∂α

∂m
(m);

hence if one has an implementation of ᾱ, say (5.1), then (5.4) is readily available

as

ᾱ

(
∂2p

∂α2
[α(m+ hµ)−α(m)]− ∂p

∂α
,m

)
+ ᾱ

(
∂p

∂α
,m+ hµ

)
. (5.5)

Alternatively, analytical formulas can be derived if all calibration steps are

perfect fits. For concreteness, we suppose that m is partitioned as (c, q), where

c represents credit quotes, analogously to the partitioning α = (θ,ψ) of model

parameters; in particular, we assume that ψ does not depend on c. As in the rest

4We choose to keep a synthetic index-less notation, at the cost of a slight ambiguity on
the contraction coordinate in some products of tensors or rank 3. The meaning should be
clear from the contest; anyway, we try to ease the reading by reserving the dot notation
for multiplications contracting the “numerator” of the second derivative of a vector valued
function.
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of the paper we concentrate on second order sensitivities involving c at least once,

i.e. ∂2P/∂c2 and ∂2P/∂q∂c. Specializing (5.3) we obtain:

∂2P

∂c2
=

∂p

∂θ
· ∂

2θ

∂c2
+

(
∂θ

∂c

)⊺
∂2p

∂θ2

(
∂θ

∂c

)
, (5.6)

∂2P

∂q∂c
=

∂p

∂θ
· ∂2θ

∂q∂c
+

(
∂θ

∂c

)⊺
∂2p

∂θ2

(
∂θ

∂q

)
+

(
∂θ

∂c

)⊺
∂2p

∂ψ∂θ

(
∂ψ

∂q

)
. (5.7)

The problematic addend in both equations is the first one, as it involves the Hessian

of the calibration of θ, while the other addends are readily available given the

model Hessians computed in the previous sections. Indeed, these Hessians appear

multiplied by sub-matrices of ∂α/∂m, and as above these multiplications can be

obtained by calling repeatedly the first order propagation routines.

The addends depending on calibration Hessians can be expressed as

∂Pc

∂c

(
c, q,

∂p

∂θ

)
and

∂Pc

∂q

(
c, q,

∂p

∂θ

)

where in the below definition pθ is interpreted as a further argument not depending

on c, q:

Pc (c, q, pθ) :=

(
pθ

∂θ

∂c

)⊺

.

Let us suppose that θ is obtained from c by a perfect fit:

b(c, q,θ(c, q)) = 0.

Then one can remember the expression for the differential of the function s(A,M) :=

M−1A applied to the generic pair [δA, δM]:

ds [δA, δM] = M−1δA−M−1(δM)s,

to differentiate the relation

P ⊺
c = −pθ

(
∂b

∂θ

)−1
∂b

∂c
= −pθ s

(
∂b

∂c
,
∂b

∂θ

)
.
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In particular, for every δc

dcP
⊺
c [δc] =− pθ

(
∂b

∂θ

)−1

·
[

∂2b

∂θ∂c

∂θ

∂c
+

∂2b

∂c2

]
δc

+ pθ

(
∂b

∂θ

)−1

·
[
∂2b

∂θ2
∂θ

∂c
+

∂2b

∂c∂θ

]
δc

(
−∂θ

∂c

)
.

The j-th column of ∂Pc/∂c is now obtained by using the above relation for δc

equal to the j-th element of the canonical basis (and transposing the resulting row

vector):

∂P ⊺
c

∂cj
= −pθ

(
∂b

∂θ

)−1

·
{[

∂2b

∂θ∂c

∂θ

∂cj
+

∂2b

∂cj∂c

]
+

[
∂2b

∂θ2
∂θ

∂cj
+

∂2b

∂cj∂θ

](
∂θ

∂c

)}
,

(5.8)

which therefore is the contribution of the first addend of (5.6) to the Hessian of

P with respect to c, once evaluated in pθ = ∂p/∂θ. A completely analogous

computation gives

dqP
⊺
c [δq] =− pθ

(
∂b

∂θ

)−1

·
[

∂2b

∂θ∂c

∂θ

∂q
+

∂2b

∂q∂c

]
δq

+ pθ

(
∂b

∂θ

)−1

·
[
∂2b

∂θ2
∂θ

∂q
+

∂2b

∂q∂θ

]
δq

(
−∂θ

∂c

)
,

and hence the j-th column of the first addend of (5.7), again to be evaluated in

pθ = ∂p/∂θ and then transposed:

−pθ

(
∂b

∂θ

)−1

·
{[

∂2b

∂θ∂c

∂θ

∂qj
+

∂2b

∂qj∂c

]
+

[
∂2b

∂θ2
∂θ

∂qj
+

∂2b

∂qj∂θ

](
∂θ

∂c

)}
. (5.9)

Remark 5.1 (Composition of calibration steps). In the above formula, no second

order differentiation with respect to q appears. This means that in practice if

b(c, q,θ) is implemented as b(c,ψ(q),θ), one can readily substitute everywhere

∂

∂q
→ ∂

∂ψ

∂ψ

∂q

and the result still holds. Once more, the multiplication by ∂ψ/∂q of any matrix

is just a matter of applying first order sensitivity propagation to each of its rows.
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6 Numerical tests

In this section we present numerical evidence on the efficiency of estimators from

Sections 3 and 4. Indeed, as they are based on Monte Carlo, one must check that

their promising low cost-per-path is not offset by the need of a large number of

paths to get a given accuracy, due to high statistical noise.

6.1 Experimental setting

We consider a prototypical unilateral CVA pricing exercise specified as follows:

• The netting set consists of a single At-The-Money (ATM) Overnight Indexed

Swap with a notional of 100M EUR and a maturity of 10 years, receiving a

fixed rate of 0.947% and paying ESTR compounded annually.

• Interest rates are modelled by a one factor Hull&White short rate model

(Hull and White, 1990), with mean reversion speed (0.0744) and volatility

(0.0125) calibrated to few ATM swaptions. We assume that the zero rate

logD(0, ·) is a piecewise linear function with levels (r̄i)i at a set of pillar

dates (T r
i )i.

• Counterparty defaults obey piecewise constant deterministic hazard rates

calibrated to Credit Default Swap quotes of an industrial counterparty with

rating Ba and lgd = 60%. In analogy with rates, we parametrize the credit

curve by the values (λ̄j)j of the “zero intensity” logP(τ > ·) at a set of pillar

dates (Tλ
j )j .

For reproducibility we provide the values of T r
i , T

λ
j , r̄i and λ̄j in Table 1.

All Monte Carlo runs will consist of 100k scenarios, and uncertainties will be

expressed as half confidence intervals at 98% level, estimated via the central limit

theorem from sample standard deviations. The performances will be always ex-

pressed as the product of computational time and Monte Carlo variance, as this

is a measure which does not depend on the number of paths: one can interpret it

as the time needed to get unit uncertainty. All computational times are obtained

with a single-core Matlab prototype to make the measure more readable, although

21



of course production implementations can easily split Monte Carlo paths across

different threads or machines.

We compute sensitivities to both ESTR zero rates and counterparty “contin-

uous par CDS spreads”, defined as λ̄j lgd. We compare the following first order

estimators:

1. FD: lateral finite differences (i.e. for each differentiation variable, bump its

value up and reprice to compute an incremental ratio).

2. CD: central finite differences (i.e. for each differentiation variable, bump the

value both up and down and reprice, to compute an incremental ratio which

is more accurate even for larger bumps).

3. AD: algorithmic differentiation + conditioning weights, i.e. the algorithm

described in Section 3.2.

Note that we did not implement Section 3.1, which is of less practical interest

because of Remark 3.1. The benchmarks FD and CD may be considered naive, but

they represent the industry standard. As for second order estimators, we test the

following alternatives:

1. FDAD: lateral finite differences on AD results.

2. CDAD: central finite differences on AD results.

3. AD2: second order algorithmic differentiation + conditioning weights, i.e. the

algorithm described in Section 4.

Here the benchmarks FDAD and CDAD are already quite sophisticated, as they

rely on first order AAD (with conditioning for credit) to cut on computational

times.

6.2 Zero-th order result

The base CVA value equals -535,594.26 EUR ± 14,402.64 EUR.
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6.3 First order results

In this section we consider first order estimators; those based on finite differences

are tried both with a small displacement of 1 basis point (bp, i.e. 10−4), and with a

larger one of 10 bp (i.e. 10−3). This is because it is well known that for discontinuous

payoffs, the bias induced by a larger bump can be more than compensated by lower

Monte Carlo noise.

Figure 1 shows the results. Rate sensitivities and their uncertainties look es-

sentially undistinguishable among different methods: this is no surprise given the

differentiable dependence of the payoff on zero rates, as finite differences in such

case are close to the path-wise derivative, which is exactly what AD computes. On

the other hand, credit sensitivities show roughly the same shape across estimators

and are in fact compatible within Monte Carlo error, but their statistical uncer-

tainties vary significantly: in particular, 1 bp finite differences are very noisy, while

AD is by far more stable even than the biased 10 bp FD and CD.

These improvements in uncertainty look even more impressive when considering

that they are accompanied by a significant performance gain: Fig. 2 multiplies the

elapsed time to compute the full set of credit sensitivities by the Monte Carlo

variance of each of them. The resulting normalized times are plotted in logarithmic

units: as one can see, for fixed desired uncertainty, AD is more than ten times faster

than the best performing finite difference method.

6.4 Second order results

In this section we move to second order estimators; finite differences will be pre-

sented only for a displacement of 10 bp, as the results with 1 bp were already

suboptimal for the gradient, and are much worse for the Hessian.

Since the computed matrices have many entries, we had to choose what to

display. On the one hand, to give an indication of the overall results, some plots

will sum derivatives across rows and/or columns: financially, these sums represent

sensitivities where the movement of one or both the differentiation variables is

assumed equal on all pillars (“parallel” sensitivity). On the other hand, as a sample
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of the most disaggregated results, some plots will concentrate on a single row and/or

column; in this case we will chose the index of the “most important” credit or rate

pillar, i.e. that with largest absolute first order sensitivity.

Figure 3 plots mixed derivatives where one differentiation variable is an interest

rate and the other one is a credit spread. Results are qualitatively similar, but the

confidence bands of AD2 are much smaller than those of finite differences. The

corresponding semi-logarithmic efficiency plot in Fig. 4 shows improvements of at

least two orders of magnitude.

The same analysis was repeated for the second order derivatives where both dif-

ferentiation variables are credit spreads. As expected, this is not the main convexity

of CVA, with sensitivities of at most few Euros per basis point; as a consequence,

only the very accurate AD2 is able to give statistically significant estimates with

100k Monte Carlo paths. This can be seen from the confidence bands of FD and CD

in Fig. 5, which approach or cross the horizontal axis in most cases. The bottom-

right plot shows this phenomenon in the most extreme fashion: if one wants single

pillar granularity on Credit Gamma, finite differences seem to produce pure noise,

while AD2 is still remarkably accurate. Efficiency gains in Fig. 6 reach three and

more orders of magnitude at all levels of aggregation.

7 Conclusion

The present paper shows that the main approaches to AAD for discontinuous pay-

offs can be adapted to the computation of CVA model Greeks up to the second

order, and how to convert the results into sensitivities to market quotes.

In particular, a conditioning-based algorithm shows remarkable efficacy in two

respects:

1. It gives a very low cost-per-path estimator of all first and second order sen-

sitivities where at least one differentiation variable explicitly affects only the

credit model.

2. Numerical experiments show that its results are also by far less noisy than
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more naive alternatives (still AAD-based).

The two above points combined imply order-of-magnitudes uncertainty-adjusted

speed-ups, enough for almost real-time detailed first and second order CVA risk

reports.
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Table 1: Zero rate and zero intensity pillars.

Label Time (T r
i ) Zero Rate (r̄i)

O/N 0.002739726 -0.005870464
T/N 0.010958904 -0.005870534
S/N 0.01369863 -0.00587002
1W 0.030136986 -0.005864218
2W 0.052054795 -0.005862994
3W 0.068493151 -0.005854229
1M 0.093150685 -0.005844829
2M 0.183561644 -0.005825506
3M 0.260273973 -0.005718924
4M 0.345205479 -0.005551424
5M 0.432876712 -0.005283189
6M 0.512328767 -0.004963585
7M 0.597260274 -0.0046424
8M 0.682191781 -0.004270223
9M 0.764383562 -0.003877206
10M 0.854794521 -0.003362798
11M 0.931506849 -0.002928458
1Y 1.010958904 -0.002362944
13M 1.093150685 -0.001773069
14M 1.180821918 -0.001173644
15M 1.260273973 -0.000644343
16M 1.345205479 -8.34395E-05
17M 1.430136986 0.000467874
18M 1.512328767 0.000984719
19M 1.602739726 0.00152617
20M 1.679452055 0.001958696
21M 1.764383562 0.002404223
22M 1.852054795 0.002824009
23M 1.928767123 0.003159981
2Y 2.01369863 0.003501464
3Y 3.01369863 0.005886447
4Y 4.021917808 0.006929625
5Y 5.016438356 0.007493002
6Y 6.016438356 0.00788257
7Y 7.016438356 0.008263021
8Y 8.016438356 0.008686597
9Y 9.016438356 0.009122576
10Y 10.02191781 0.009624168

Label Time (Tλ
j ) Zero Intensity (λ̄j)

6M 0.723287671 0.018765727
1Y 1.221917808 0.023058211
2Y 2.224657534 0.027373591
3Y 3.224657534 0.029937961
5Y 5.22739726 0.033237543
7Y 7.22739726 0.035486495
10Y 10.23287671 0.037987808
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Figure 1: First order results. Graphs on the left refer to credit spread sen-
sitivities, while graphs on the right refer to zero rate sensitivities. Top plots
display average values, bottom plots display 98%-confidence uncertainties
over 100k paths.

29



6M 1Y 2Y 3Y 5Y 7Y 10Y
101

102

103

104

105

106
Time per unit MC variance (sec*(EUR/bp)2)

FD 1bp
CD 1bp
FD 10bp
CD 10bp
AD

Figure 2: Credit Delta efficiency, defined as the multiplication of the Monte
Carlo variance of a credit spread sensitivity by the total computational time
needed to compute the full credit gradient. Note the log scale on the y axis.
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Parallel credit, parallel rate (EUR/bp2)
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Figure 3: Second order mixed credit-rate sensitivities. Graphs on the left
aggregate derivatives along the rate direction, while graphs on the right
focus on the 10Y rate pillar. Top plots display values aggregated along the
credit direction, bottom plots display disaggregated results. Error bars are
98%-confidence bands over 100k paths.
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Parallel credit, parallel rate (sec*(EUR/bp2)2)

FDAD 10bp CDAD 10bp AD2
10-1

100

101

Parallel credit, 10Y rate (sec*(EUR/bp2)2)

FDAD 10bp CDAD 10bp AD2
10-1

100

101

102

6M1Y 2Y 3Y 5Y 7Y 10Y

10-1

100

101

Bucketed credit, parallel rate (sec*(EUR/bp2)2)

FDAD 10bp
CDAD 10bp
AD2

6M1Y 2Y 3Y 5Y 7Y 10Y
10-1

100

101

102
Bucketed credit, 10Y rate (sec*(EUR/bp2)2)

FDAD 10bp
CDAD 10bp
AD2

Figure 4: Cross Gamma efficiency, defined as the multiplication of the Monte
Carlo variance of each sensitivity by the total computational time needed
to compute the full credit-rates Hessian submatrix. Graphs on the left refer
to the aggregated derivatives along the rate direction, while graphs on the
right focus on the 10Y rate pillar. Top plots refer to sensitivities aggregated
along the credit direction, bottom plots to disaggregated results. Note the
log scale on the y axis.
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Figure 5: Second order credit sensitivities. Graphs on the left aggregate
derivatives along the first differentiation variable, while graphs on the right
focus on the 10Y credit pillar. Top plots display values aggregated along the
second differentiation variable, bottom plots display disaggregated results.
Error bars are 98%-confidence bands over 100k paths.
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Figure 6: Credit Gamma efficiency, defined as the multiplication of the
Monte Carlo variance of each sensitivity by the total computational time
needed to compute the full credit-credit Hessian matrix. Graphs on the left
refer to the aggregated derivatives along the first differentiation variable,
while graphs on the right focus on the 10Y credit pillar. Top plots refer
to sensitivities aggregated along the second differentiation variable, bottom
plots to disaggregated results. The bottom-right plot includes only non-zero
results. Note the log scale on the y axis.
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