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Abstrat

Starting from the last entury, the analysis and the graphial represen-

tation of the inequality play a very important role in eonomis. In the

literature, several urves have been proposed and developed to simplify the

desription of the inequality. The aim of this paper is a review and a om-

parison of the most known inequality urves, evaluating the features of eah,

with a partiular fous on the interpretation.

Key words: Lorenz urve, Bonferroni urve, Zenga inequality urve, in-

equality index, inome distribution.

1. Introdution

Inequality is an important harateristi of non-negative distributions. It is

mainly analysed in soio-eonomis sienes and in partiular in relation to in-

ome distributions. Inequality urves are graphial methods used to analyse this

harateristi and usually they are related to inequality indexes. The graphs of

inequality funtions usually an be drawn in the unitary square.

In this paper three urves are presented. The Lorenz urve (Lorenz 1905) is the

oldest one and also the most used nowadays even if it has a fored behaviour. The

Bonferroni urve (Bonferroni 1930) is another lassial urve. It is stritly related

to the Lorenz urve and it has a fored behaviour, too. Finally the I(p) urve
(Zenga 2007) is the most reent and even if it is related to the other two urves,

it an assume di�erent shapes whih allow to distinguish di�erent situations in

terms of inequality.

These three urves have the ommon harateristi that they an be de�ned

using only the mean of the whole population and the means of partiular sub-

groups. In the literature, other inequality urves have been introdued, studied

and applied in di�erent �elds. One of the �rst proposals is the δ(p) of Gini whih
has the important feature that it is uniform for the Pareto distribution, but it

does not lie in the unitary square. Another one whih an be mentioned is the

Z(p) urve, proposed by Zenga (1984). Suh urve is uniform for the Log-normal

distribution. It originates from a di�erent approah beause it is based on a ratio

of two quantiles, and therefore it is not inluded in this omparison.
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In this paper the urves are de�ned for ontinuous models, but they an be

also applied to disrete distributions and to empirial distributions.

An important appliation of the inequality urves is that they an be used to

de�ne some orderings. Suh orderings allow the omparison of distributions in

terms of inequality. This kind of omparison within the same model allows to

understand how the distribution parameters in�uene the inequality.

The artile is strutured as follows. First of all the main de�nitions are in-

trodued in Setion 2. In suh setion are also desribed the distribution models

used to exemplify the inequality urves. Setions 3, 4, and 5 are devoted to the

desription of the Lorenz urve, the Bonferroni urve and the I(p) urve, respe-
tively. In Setion 6 the orderings based on the onsidered urves are introdued

and their relationship investigated. Setion 7 provides a method to simplify the

omparison of the urves: an appliation of suh omparison is performed by using

data from 2012 Bank of Italy sample survey. Finally Setion 8 is devoted to some

�nal remarks.

2. Preliminary de�nitions

In this setion some de�nitions that will be useful in the remaining of the paper,

are introdued. The �rst one is the following.

De�nition 1 (Generalized inverse funtion). Let F be a non-dereasing funtion

de�ned from R to the interval [0, 1]. The generalized inverse funtion of F is the

funtion, denoted by F−1
, de�ned as:

F−1(p) =

{

inf{y : F (y) ≥ p} if p ∈ (0, 1]

inf{y : F (y) > 0} if p = 0.
(1)

In the remaining of the paper, given a distribution funtion F , F−1
will denote

the inverse funtion of F or, if needed, the generalized inverse funtion of F .

In the literature it is well-reognized that the inequality does not hange in

ase of sale-transformations, then the inequality urves must be not dependent

on the sale parameters of the distribution. The de�nition of sale parameter is

the next one.

De�nition 2 (Sale parameter). Let {Fα, α > 0} be a family of distribution

funtions. Then α is a sale parameter of suh family if

Fα(x) = F1

(x

α

)

, ∀x ∈ R.

In order to simplify the explanation, the ideas of lower and upper groups are

useful. Given a population and a statisti variable X evaluated on it, for eah

p ∈ (0, 1), the population an be splitted into two groups: the �rst one, alled

lower group that onsists of the proportion p of people with the lowest values of

X , and the seond one alled upper group omposed by all the others. One the

population is splitted into the lower and the upper group, the means of X in these
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two groups an be omputed, obtaining the lower and the upper mean. The two

following de�nitions refer to these two means.

De�nition 3 (Lower mean). Let X be a ontinuous random variable, with distri-

bution funtion F , and support [a, b], where 0 ≤ a < b ≤ +∞. For any p ∈ [0, 1],

the lower mean

−

M (p) is de�ned as

−

M (p)=

{

1
p

∫ p

0 F−1(t)dt if p ∈ (0, 1]

a if p = 0.

De�nition 4 (Upper mean). Let X be a ontinuous random variable, with distri-

bution funtion F , and support [a, b], where 0 ≤ a < b ≤ +∞. For any p ∈ [0, 1],

the upper mean

+

M (p) is de�ned as

+

M (p)=

{

1
1−p

∫ 1

p
F−1(t)dt if p ∈ [0, 1)

b if p = 1.

Remark 1. In the De�nitions 3 and 4 the lower mean and the upper mean have

been extended by ontinuity in p = 0 and in p = 1, respetively. It is easy to verify
that for a random variabile X with expeted value µ, the following formula holds

true:

µ = p
−

M (p) +(1− p)
+

M (p), ∀p ∈ [0, 1],

with the onvention that whether the support of X is not �nite:

(1 − p)
+

M (p)= 0 if p = 1.

In the next setions, in order to alulate the inequality urves for some distri-

bution models, the following ones are onsidered:

• the (non-negative) uniform model with distribution funtion

F (x) =











0 if x < α(1− θ)
x−(1−θ)α

2θα if α(1− θ) ≤ x < α(1 + θ)

1 if x ≥ α(1 + θ),

where 0 ≤ θ ≤ 1 is an diret inequality indiator and α > 0 is a sale

parameter;

• the exponential model with distribution funtion

F (x) =

{

1− e−x/α
if x ≥ 0

0 otherwise,

where α > 0 is a sale parameter;
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• the Pareto model with distribution funtion

F (x) =

{

1−
(

x0

x

)θ
if x ≥ x0

0 otherwise,

where θ > 1 (to guarantee a �nite expetation) is an inverse inequality

indiator and x0 > 0 is the lower bound of the support and a sale parameter;

• the Log-normal model with distribution funtion

F (x) =

{

Φ
(

ln(x)−γ
δ

)

if x > 0

0 otherwise,

where δ > 0 is a diret inequality indiator, eγ is sale parameter and Φ(x)
is the distribution funtion of the standard normal distribution;

• the Dagum model (see Dagum 1977) with distribution funtion

F (x) =







[

1 +
(

x
α

)

−θ
]

−β

if x > 0

0 otherwise,

where β > 0 and θ > 1 (to guarantee a �nite expetation) are inverse

inequality indiators whenever the other one is �xed, and α > 0 is a sale

parameter.

3. The Lorenz urve

The Lorenz urve has been introdued in the very well-known paper by Lorenz

(1905). It is the most famous inequality urve used in the literature. There

are many equivalent de�nitions of it. The following one is due to Pietra (see

Pietra 1915) and it has been used also by Gastwirth (1972).

De�nition 5. Let X be a non-negative ontinuous random variable, with positive

and �nite expeted value µ, and distribution funtion F . The Lorenz urve of X
is de�ned as

L(p) =
1

µ

∫ p

0

F−1(t)dt

=
p

−

M (p)

µ
, p ∈ [0, 1].

An inequality index that an be evaluated using the Lorenz urve is the Gini

index G (Gini 1914). It is worth highlighting that the de�ntion of suh index does

not require the Lorenz urve: the relationship with this urve has been emphasized

only later. From the graphial point of view, the Gini index an be interpreted as

the ratio of the onentration area and its theoretial maximum. The onentration

area is the area between the bisetor of the �rst quadrant and the Lorenz urve;

its theoretial maximum orresponds to the area below suh bisetor.
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De�nition 6. Let X be a ontinuous random variable with Lorenz urve L(p). The
Gini index G is de�ned as

G = 1− 2

∫ 1

0

L(p)dp,

or equivalently as

G =

∫ 1

0

p− L(p)

p
· 2p dp =

∫ 1

0

µ−
−

M(p)

µ
· 2p dp. (2)

The meaning of the Lorenz urve is not very immediate, sine it ompares the

lower mean and the total mean, using the �weight� p, whih makes less lear the

interpretation of suh omparison. However, if the random variable X represents

the inome, and L(p) is the orresponding Lorenz urve, L(p0) = L0 means that

the "bottom" proportion p0 of the population has the proportion L0 of the total

inome.

It is easy to verify that the Lorenz urve is always zero if p = 0 and equals 1

if p = 1: suh restritions highlight that the behavior of L(p) is a priori �xed. For
this reason the explaining power of the Lorenz urve vanishes for values of p lose

to 0 or to 1. Moreover, it is well-known that the Lorenz urve is always onvex.

An interesting harateristi of the Lorenz urve is that the maximum length of

the vertial segment between it and the bisetor of the �rst quadrant is known as

the Pietra index P and it orresponds to the value p̃ = F (µ):

P =
E(|X − µ|)

2µ
= F (µ)− L[F (µ)].

Moreover the derivative of the Lorenz urve at p̃ = F (µ) is equal to 1.

Following the approah developed in Zenga (1984), using the Lorenz urve, it

is possible to de�ne a random variable whih tends to the situation of maximal

inequality as follows. Let X be a random variable depending on the parameter θ.
X is said to tend to the situation of maximal inequality as θ tends to θ0 if

lim
θ→θ0

LX(p; θ) = LM (p) =

{

0 if p ∈ [0, 1)

1 if p = 1.

In suh ase, G is equal to 1. Analogously, X is said to tend to the situation of

minimal inequality as θ tends to θ0 if

lim
θ→θ0

LX(p; θ) = Lm(p) = p, ∀p ∈ [0, 1],

whih means that the Lorenz urve tends to the bisetor of the �rst quadrant, and

therefore G tends to 0.

In Table 1 are reported the Lorenz urve and the Gini index for the distribution

models desribed in Setion 2, where

B(x; a, b) =

∫ x

0
ta−1(1 − t)b−1dt

∫ 1

0 ta−1(1− t)b−1dt
x ∈ [0, 1], a > 0, b > 0
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Model Lorenz urve Gini Index

Uniform L(p) = p(1− θ + θp) G = θ/3

Exponential L(p) = p+ (1 − p) ln(1− p) G = 0.5

Pareto L(p) = 1− (1− p)(θ−1)/θ G = 1/(2θ− 1)

Log-normal L(p) = Φ[Φ−1(p)− δ] G = 2Φ(δ/
√
2)− 1

Dagum L(p) = B
(

p1/β ;β + 1/θ; 1− 1/θ
)

G = Γ(β)Γ(2β+1/θ)
Γ(2β)Γ(β+1/θ) − 1

Table 1: Lorenz urves and Gini indies for the onsidered models

is the inomplete Beta funtion ratio, and

Γ(x) =

∫

∞

0

tx−1e−tdt

is the Gamma funtion. Figure 1 shows some examples of the Lorenz urves from

Table 1.

4. The Bonferroni urve

The urve has been introdued by Bonferroni (1930) and has been analysed

and studied by various authors up to nowadays: see for instane De Vergottini

(1940), Tarsitano (1990), Giorgi & Cresenzi (2001) and Zenga (2013).

The de�nition of the Bonferroni urve is the following one.

De�nition 7. Let X be a non-negative ontinuous random variable with positive

and �nite expeted value µ, and distribution funtion F . The Bonferroni urve of
X is de�ned as

B(p) =
1

pµ

∫ p

0

F−1(t)dt

=

−

M (p)

µ
p ∈ (0, 1].

The Bonferroni inequality index B represents the area above the Bonferroni

urve in the unitary square, in other words it is the omplement to 1 of the mean

value of the Bonferroni urve.

De�nition 8. LetX be a non-negative ontinuous random variable with Bonferroni

urve B(p). The Bonferroni index is de�ned as

B = 1−
∫ 1

0

B(p)dp.

The Bonferroni urve ompares the mean of the lower group with the total

mean. Di�erently from the Lorenz urve no �weight� is applied. In other words,

if the random variable X represents the inome, and B(p) is the orresponding
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Figure 1: Graphs of di�erent Lorenz urves for the onsidered models
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Bonferroni urve, B(p0) = B0 means that the average inome of the "bottom"

proportion p0 of the population is B0 times the average inome of the whole

population.

Using the De�nitions 3 and 4 it is easy to see that

lim
p→0+

B(p) =
a

µ
and B(1) = 1,

where a denotes the lower bound of the support of the random variable originating

the Bonferroni urve. Moreover, di�erently from the Lorenz one, the Bonferroni

urve is not neessary onvex.

If the random variableX tends to the situation of maximal inequality, the B(p)
urve tends to the funtion BM (p), de�ned as:

BM (p) =

{

0 if p ∈ (0, 1)

1 if p = 1,

and onsequently the inequality index is B = 1.

If the random variable X tends to the situation of minimal inequality, the

orresponding Bonferroni urve tends to

Bm(p) = 1 ∀p ∈ (0, 1],

and onsequently the orresponding inequality index is B = 0.

A partiular shape of the Bonferoni urve is obtained when the random variable

X has a uniform distribution, sine in suh ase, it is a linear funtion. More in

detail, if X has a uniform distribution with support [µ(1−θ), µ(1+θ)] (see Setion
2), then the orresponding Bonferroni urve is given by

B(p) = (1− θ) + θp,

and the inequality index is B = θ/2.

The Bonferroni urve is related with the Lorenz urve: if L(p) is the Lorenz

urve of X , then the Bonferroni urve an be obtained throught the simple trans-

formation

B(p) =
L(p)

p
, ∀p ∈ (0, 1]

In Table 2 are reported the Bonferroni urve and the Bonferroni index for the

distribution models presented in Setion 2, where

Ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)

denotes the Digamma funtion, that is the logarithmi derivative of the Gamma

funtion. Figure 2 shows some examples of the Bonferroni urves from Table 2.



The graphial representation of inequality 9

Figure 2: Graphs of di�erent Bonferroni urves for the onsidered models
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Model Bonferroni urve Bonferroni Index

Uniform B(p) = (1− θ) + θp B = θ/2

Exponential B(p) = 1 + (1−p)
p ln(1− p) B = 0.644934

Pareto B(p) = 1−(1−p)(θ−1)/θ

p B = 1− Ψ(2− 1/θ) + Ψ(1)

Log-normal B(p) =
Φ[Φ−1(p)−δ]

p B = 1−
∫ 1

0

Φ[Φ−1(p)−δ]
p dp

Dagum B(p) =
B(p1/β ;β+1/θ;1−1/θ)

p B = β
[

Ψ
(

β + 1
θ

)

− Ψ(β)
]

Table 2: Bonferroni urves and Bonferroni indies for the onsidered models

5. The I(p) urve

The I(p) urve has been introdued in Zenga (2007). It is the most reent

inequality urve among the three ones onsidered in this paper; nevertheless, the

number of papers about it and the related index I is inreasing, see for instane

Greselin & Pasquazzi (2009), Radaelli (2010), Langel & Tillé (2012) and Greselin,

Pasquazzi & Zitikis (2013). The de�nition this urve is the next one.

De�nition 9. Let X be a non-negative ontinuous random variable, with positive

and �nite expeted value µ, and distribution funtion F . The I(p) urve of X is

de�ned as

I(p) = 1− (1 − p)
∫ p

0
F−1(t)dt

p
∫ 1

p F−1(t)dt

= 1−
−

M (p)

+

M (p)

, p ∈ (0, 1).

Similarly to the Bonferroni index, the inequality index I an be obtained from

the mean value of the I(p) urve but it represents the area below the I(p) urve.

De�nition 10. Let X be a ontinuous random variable and let I(p) denotes its

inequality I(p) urve. The inequality index I is de�ned as

I =

∫ 1

0

I(p)dp.

The I(p) urve an be easily interpreted, and its information is immediate and

intuitive. If the random variable X models the inome distribution, it follows by

the defnition that if the I(p) urve is equal to I0 at p = p0, it means that the

average inome of the �bottom� proportion p0 of the population is (1 − I0)-times

the average inome of the remaining population.

In the previous setions it is mentioned that the Lorenz urve assumes pre�xed

values for p = 0 and p = 1, while the Bonferroni urve is always equal to 1 for

p = 1. The I(p) urve is more �exible, sine the values it assumes for the extreme

values of p depend on the distribution funtion whih originates the urve. In
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Polisihio (2008) it is proved that if X is a random variable with support [a, b],
where 0 ≤ a < b ≤ +∞ and with �nite and positive expeted value µ, then

lim
p→0+

I(p) = 1− a

µ
and lim

p→1−
I(p) = 1− µ

b
,

with the onvention that µ/b = 0 if b is not �nite. Moreover, also the I(p) urve
is not neessary onvex.

If the random variable X tends to the situation of maximal inequality, then

the I(p) urve tends to the funtion IM (p), de�ned as

IM (p) = 1, ∀p ∈ (0, 1),

while, whether the random variable X tends to the situation of minimal inequality,

the I(p) urve tends to zero for all p ∈ (0, 1), that is

Im(p) = 0, ∀p ∈ (0, 1).

In Polisihio (2008) it is proved that if the I(p) urve of the random variable

X is uniform and equal to 1− k, then X has a trunated Pareto distribution with

parameters θ = 0.5, x0 = µk, and µ/k as trunation point. That means that the

distribution funtion of X is

F (x) =















0 if x ≤ µk

1
1−k

[

1−
√

µk
x

]

if µk < x < µ/k

1 if x ≥ µ/k.

Suh Pareto trunated has been analysed and from that model, a new distribution

model, whih seems to be very promising for modelling inome distributions has

been de�ned, for instane see Zenga (2010), Aragni & Porro (2013) and Aragni

& Zenga (2013).

As the Bonferroni urve, also the I(p) urve is related to the Lorenz urve, and

therefore to the Bonferroni urve itself. The relationships are (see Zenga 2007)

I(p) =
p− L(p)

p[1− L(p)]
∀p ∈ (0, 1)

I(p) =
1−B(p)

1− pB(p)
∀p ∈ (0, 1).

In Table 3 are reported the I(p) urve and the index I for the distribution

models desribed in Setion 2. Figure 3 shows some examples of them.

6. The partial orders

In the literature, an important appliation related to the inequality urves, is

the possibility to rank the distributions. Suh ranking is obtained by a partial

order whih an be de�ned from a inequality urve. The following one, is the

de�nition of the well-known ordering based on Lorenz urve.
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Figure 3: Graphs of di�erent I(p) urves for the onsidered models
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Model I(p) urve I index

Uniform I(p) = θ(1 + θp)−1 I = ln(θ + 1)

Exponential I(p) = ln(1−p)
p[ln(1−p)−1] I = 0.843302

Pareto I(p) = 1−(1−p)1/θ

p I = Ψ(1/θ + 1)− Ψ(1)

Log-normal I(p) = p−Φ[Φ−1(p)−δ]
p[1−Φ(Φ−1(p)−δ)] I =

∫ 1

0
p−Φ[Φ−1(p)−δ]

p[1−Φ(Φ−1(p)−δ)]dp

Dagum I(p) =
p−B(p1/β ;β+1/θ;1−1/θ)

p[1−B(p1/β ;β+1/θ;1−1/θ)]
I =

∫ 1

0

p−B(p1/β ;β+1/θ;1−1/θ)
p[1−B(p1/β ;β+1/θ;1−1/θ)]

dp

Table 3: I(p) urves and I indies for the onsidered models

De�nition 11 (Partial order based on the Lorenz urve). Let X and Y be two

ontinuous non-negative random variables, both with �nite and positive expeted

value. Let LX and LY denote their Lorenz urves. X is said to be larger (or more

unequal) than Y in the order based on the Lorenz urve (and it is denoted by

X ≥L Y ), if
LX(p) ≤ LY (p) ∀p ∈ (0, 1).

From the graphial point of view, the random variable X is larger than Y in

this order, if its Lorenz urve lies below the Lorenz urve of Y for all p ∈ (0, 1).
In analogy to the ordering based on the Lorenz urve, the following one an be

de�ned.

De�nition 12 (Partial order based on the Bonferroni urve). Let X and Y be two

ontinuous non-negative random variables, both with �nite and positive expeted

value. Let BX and BY denote their Bonferroni urves. X is said to be larger

(or more unequal) than Y in the order based on the Bonferroni urve (and it is

denoted by X ≥B Y ), if

BX(p) ≤ BY (p) ∀p ∈ (0, 1).

Even if it less used, suh ordering is well-known and studied in the literature,

see for example Tarsitano (1990), Giorgi & Cresenzi (2001), Pundir, Arora & Jain

(2005).

The third partial order onsidered has been introdued in Porro (2008).

De�nition 13 (Partial order based on the I(p) urve). Let X and Y be two ontin-

uous non-negative random variables, both with �nite and positive expeted value.

Let IX and IY denote their inequality I(p) urves. X is said to be larger (or

more unequal) than Y in the ordering based on I(p) urve (and it is denoted by

X ≥I Y ), if
IX(p) ≥ IY (p) ∀p ∈ (0, 1)

The relationship among these three orderings is summarized in the following

result (for a partial proof, see Polisihio & Porro 2011).

Lemma 1 (Lemma of equivalene). Let X and Y be two ontinuous non-negative

random variables X and Y , both with �nite and positive expeted value. Then:

X ≥L Y ⇔ X ≥B Y ⇔ X ≥I Y.



14 Alberto Aragni & Franeso Porro

This lemma makes it evident the oherene of the three urves, in fat two

distributions are ordered for one ordering if and only if they are ordered for the

other two. It is important to remark that all these orderings are only partial

orders, as there are some distributions with rossing L(p) urves and therefore

with rossing B(p) and I(p) urves, that an not be ordered for all p ∈ (0, 1).
But, if the distributions belong to the same parametri model, these partial orders

may allows to explain how the parameters in�uene them in terms of inequality.

This is the ase of the models de�ned in Setion 2. Their parameters are lassi�ed

in sale parameter or diret and indiret inequality indiators. As de�ned in the

same setion the sale parameters do not in�uene the inequality. How the other

parameters in�uene the inequality urves is shown in Figures 1, 2 and 3, and it

an be observed that the urves do not ross eah other.

7. A uni�ed point of view

All the urves presented in the previous setions are de�ned as they have been

introdued in the literature. As the partial orders de�ned in the previous setion

show, it does not always happen that, given two inequality urves, the one related

to the situation of more inequality lies above the latter one. From the graphial

point of view, the inequality urves an be more intuitive if they satisfy suh

restrition, meaning that for a �xed p ∈ (0, 1), the urve related to the situation

with more inequality takes on a greater value than the urve related to the situation

with less inequality.

Following the same approah used by Zenga (1984), suh �inreasing ranking�

an be ahieved by performing a suitable transformation on the inequality urves.

In Zenga (1984) through a simple transformation on the δ(p) of Gini, the new

λ(p) urve is obtained: suh new urve lies in the unitary square and satis�es the

aforementioned �inreasing ranking�.

Then, from the Lorenz urve, the urve G(p) an be obtained as:

G(p) = 2[p− L(p)] p ∈ (0, 1),

whih oinides with the funtion in the �rst integral in formula (2). Analogously

from the Bonferroni urve, the V (p) urve an be otained as:

V (p) = 1−B(p) p ∈ (0, 1).

From the de�nition of the Bonferroni urve and formula (2) it follows that

G(p) = V (p) · 2p p ∈ (0, 1).

The inequality I(p) urve needs no transformation, sine it already satis�es the

�inreasing ranking�.

Another interesting result of these transformations is that the new urves have

the following feature: the related inequality indexes are the areas below the urves.
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Figure 4: Uni�ed representation of the inequality urves
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As mentioned in the introdution, the urves presented for ontinuous models

an be applied to empirial distributions. It is enough to replae the distribution

funtion F of the model by the empirial umulative distribution funtion (ECDF).

The empirial quantile funtion is the generalized inverse funtion F−1
of the

ECDF as de�ned in formula (1). The result is a step-funtion with integral between

0 and 1 learly equal to the empirial mean.

For example the formulae presented in this setion an be applied to the data

provided by the Bank of Italy (2012). The 2012 sample survey has been analyzed

with the R software (R Core Team 2013). The onsidered dataset onsists of 8114

non-negative household inomes with mean equal to EUR 30481.01. In Figure 4

the empirial urves G(p), V (p) and I(p), that satisfy the �inreasing ranking�, are
drawn. The three urves are drawn together in the unitary square. In the legend

are reported the values of the related indexes that orrespond to the areas below

the urves.

By using this uni�ed representation it is easy to understand why the three

indexes assume so di�erent values. In fat, the index I is sensitive to the inequality
in both the tails, the index B is sensitive to the inequality due to the poorest units

but it does not ath the inequality due to the rihest ones, while the index G does

not apture the inequality of both the tails.

8. Final remarks

This paper is a review of the most known inequality urves. The onsidered

urves are the Lorenz urve, the Bonferroni urve and the I(p) urve. For eah of

them the main features are desribed with partiular fous to their interpretation.

Suh urves are graphial methods used to analyse and ompare inequality of

non-negative distributions. For instane, inequality urves are used to rank the
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distributions through partial orders. The aforementioned urves are exempli�ed

through �ve well-known non-negative distribution models, some of whih an be

used to desribe inome distributions. In the last setion, a transformation of the

Lorenz urve and a transformation of the Bonferroni urve allow an easier and

more intuitive representation of suh graphial tools.
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