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The study of the kinetic bottlenecks that hinder the rare transitions between long-lived metastable states is
a major challenge in atomistic simulations. We propose a method to explore the transition state ensemble,
which is the distribution of configurations that the system passes as it translocates from one metastable
basin to another. We base our method on the committor function and the variational principle to which
it obeys. We find its minimum through a self-consistent procedure that starts from information limited to
the initial and final states. Right from the start, our procedure allows sampling very many transition state
configurations. With the help of the variational principle, we perform a detailed analysis of the transition
state ensemble, ranking quantitatively the degrees of freedom mostly involved in the transition and opening
the way for a systematic approach for the interpretation of simulation results and the construction of efficient
physics-informed collective variables.

I. INTRODUCTION

Many important physicochemical transformations like
crystallization, chemical reactions, and protein folding
take place on a time scale that is not directly accessi-
ble to microscopic simulations. These processes are re-
ferred to as rare events and are hindered by kinetic bottle-
necks that slow the rate of transition between metastable
states. Such kinetic bottlenecks are present whenever
the metastable states are separated by a high free-energy
set of configurations that we refer to as the transition
state ensemble (TSE). Finding and analyzing this region
is of the utmost theoretical and practical importance. For
example, identifying the transition state is considered
the holy grail when it comes to chemical reactions1, as
it provides precious information about reaction mecha-
nisms and rates2, or when dealing with proteins, as it can
provide insight into their dynamics3–5.

In the vast rare event literature6–11, the determination
of the TSE is usually the culmination of the simulation.
Here, instead, we make the determination of the transition
state ensemble the first and key aspect of our investiga-
tion. The theoretical tool that allows this change of
perspective is the committor function q(x), introduced
by Kolmogorov12. Given two metastable states, A and B,
q(x) gives the probability that starting from configura-
tion x, the system ends in B without having first passed
by A and, as a consequence, it is conventionally used to
identify the TSE as the set of configurations for which
q(x) ≃ 1

2
.13–24 Once q(x) is known, properties like the

transition rate between A and B, the density of reactive
trajectories, or the reactive fluxes can be computed.17,19,20
Unfortunately, the determination of q(x) is challenging,
and, in the transition path sampling literature,18,22,25 it
has been mostly estimated for curated sets of points via
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the committor analysis. However, such an approach can
be computationally expensive and often dependent on the
choice of the criteria used to determine whether a given
trajectory is committed to either basin A or B26.

An alternative to such an approach is based on the
theory of Kolmogorov.20,27–29. who has shown that q(x)
can be determined as the solution of a partial differential
equation20 that obeys the boundary conditions q(xA) = 0
and q(xB) = 1 where xA and xB denote two configurations
belonging to basin A and B, respectively. Unfortunately,
solving such a multidimensional equation for real sys-
tems poses insurmountable problems. However, under
the hypothesis of overdamped dynamics, the solution of
the Kolmogorov equation can also be obtained follow-
ing a variational approach that amounts to minimizing
a functional of the committor K[q(x)] which, neglecting
immaterial multiplicative constants, can be written as:

K[q(x)] =
〈∣∣∇q(x)∣∣2〉

U(x)
(1)

where in the differential operator, the derivatives pertinent
to the ith atom of mass mi are performed with respect
to its mass-weighted Cartesian coordinates

√
mixi, the

average is over the Boltzmann ensemble driven by the in-
teraction potential U(x) at the inverse temperature β, and
the boundary conditions q(xA) = 0 and q(xB) = 1 are
implied. Moreover, the reaction rate νR is proportional
to the minimum of the functional Km. For further discus-
sion on Eq. 1 and its extension to the general Langevin
dynamics, we refer the Reader to the SI, Sec. S1, and the
excellent review by Weinan E and Eric Vanden-Eijnden.20

Unfortunately, even when using the variational ap-
proach, evaluating q(x) remains challenging. In order
to understand this sampling difficulty, we notice that
when dealing with rare events, trajectories started in A
have a very small probability of ending in B, thus q(x) ≈ 0
for x ∈ A, and similarly, when a trajectory is started in
B it will most likely remain in B, thus q(x) ≈ 1 for x ∈ B.
As a consequence, |∇q(x)|2 is significantly different from
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zero only in those regions in which q(x) goes from 0 to 1
as it passes through the transition state region, where is at
its largest. This is hardly surprising since the probability
of going from A to B, which q(x) reflects, is crucially
determined by the TSE, the very set of configurations
that are difficult to sample in a rare event scenario.

This difficulty has been recognized, and different reme-
dies have been proposed. In Ref.27, it is shown that a
uniform sampling can be done in small systems, but it is
not, in general, a viable strategy. For this reason, a vari-
ety of enhanced sampling methods have been suggested
to collect configurations that pertain to the TSE so as
to estimate accurately K[q(x)] and eventually minimize
it. The methods used range from metadynamics28 to a
combination of umbrella sampling and parallel temper-
ing.23 If the objective is to compute q(x), this approach is
wasteful since the TSE is a small portion of configuration
space, and even if one uses enhanced sampling methods,
it is rarely visited. Furthermore, the calculation of the
committor comes at the end of what amounts to having
solved the rare event problem, and since these methods
are dependent on the choice of the collective variable, the
accuracy of the result is, at times, difficult to assess.

Methods that are similar in spirit to ours are described
in Ref.30, where short nonequilibrium trajectories are
harvested iteratively closer to the TS, and in Refs.22,24,26,
which are based on path sampling and thus, like ours, are
focused from the start on sampling the region close to
the TSE. However, these methods are somewhat complex
and can only be applied if the path sampling approach is
at least in part successful. Thus, similarly to the other
approaches described above, all these methods require
that the rare event problem is at least partially already
solved, a limitation also shared by the method presented
in Ref.31, which allows computing the q(x) from long
equilibrium trajectories.

Instead, our approach relies only on the knowledge
of the initial and final state and can be initiated just
by performing unbiased simulations in the initial and
final metastable basins. To sample the TSE, we use to
our advantage what appears to be a handicap. To this
effect, we introduce the following committor-dependent
bias potential

VK(x) = −
1

β
log(|∇q(x)|2) (2)

It follows from the general behavior of q(x) that such
a bias is repulsive in A and B, where ∇q(x) ≈ 0, and
becomes highly attractive close to the TSE, where q(x)
raises very rapidly from 0 to 1. In particular, the max-
imum value is reached for q(x) ≃ 1

2
(see Fig. 1 b and

Fig. S2), and, as a consequence, such a bias has the appeal-
ing property of driving the sampling towards the region
which is conventionally associated with the TSE. In addi-
tion, we notice that the standard TSE definition can be
enriched by explicitly taking into account also the proba-
bility that the configuration x is actually visited, which
is only implicitly considered in the standard approach.

Indeed, in that case, the points selected for computing the
committor are generated in a transition path sampling
run or even along actual reactive trajectories.

Such considerations motivate us to define the TSE
ensemble by what we call the Kolmogorov distribution:

pK(x) =
e−βUK(x)

ZK
with UK(x) = U(x) + VK(x) (3)

where UK is the biased potential and ZK =
∫
dxe−βUK(x)

the corresponding partition function. Somehow reassur-
ingly, pK(x) is also closely related to the Kolmogorov
functional since K[q(x)] = ZK

ZB
, thus allowing rewriting it

as:

K[q(x)] =
〈 1

|∇q(x)|2
〉−1

UK
(4)

While equivalent to Eq. 1, this expression suggests that
it would be more profitable to use UK to generate the
points needed to estimate statistically K[q(x)], since this
approach automatically enhances a physically meaningful
TSE sampling (see Fig. 1 c).

However, at first sight, this may still appear to be a
chicken and egg problem since to get the committor, one
needs good sampling, and in turn, to get good sampling,
one needs the committor. We show here that this dilemma
can be resolved by setting up the self-consistent iterative
procedure, described in the method section. This pro-
cedure starts from an initial estimate of the committor.
Such an estimate needs to have the property of being ≈ 0
for x ∈ A and ≈ 1 for x ∈ B and of interpolating smoothly
between the two basins. One simple way of obtaining an
initial guess is to express it as a classifier trained using
data obtained by performing unbiased simulations in the
two basins.

After convergence is reached, a large number of TSE
configurations can be harvested, and the property of the
TSE analyzed in great and illuminating detail. This
analysis is facilitated by the fact that we express q(x)
as a neural network27–29,32 (NN) qθ(d(x)) whose weights
are denoted by θ and whose input features d(x) are a
set of physical descriptors that simplify the imposition
of the problem symmetries, decrease the noise, and help
understanding the physics of the problem. In particular,
we shall use the approach from Ref.33 to rank the relevance
of the descriptors.

The variational principle also provides a powerful way
of choosing the descriptors. In fact, the inclusion of phys-
ically relevant descriptors lowers the variational bound,
while adding physically irrelevant descriptors has very
little effect. Moreover, in complex systems and at fi-
nite temperatures the TSE is not associated with only
one structure and its quasi-harmonic excited vibrational
states. Rather, it is populated by different competing
structures. To sort them out, we use the k-medoids clus-
tering method34, which also associates to each cluster
a medoid configuration that best represents the cluster
structure. The combination of these tools greatly facili-
tates the physical interpretation of the results and guides
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FIG. 1. We illustrate how our iterative procedure proceeds when applied to the computation of the committor function of the
Müller-Brown potential. In a, b and c we report the contour plots of the potential U(x), the bias VK(x) and the effective biased
potential UK(x) = VK(x) +U(x), respectively. Here, the committor is computed from numerical integration. The scatter plots in
panels d,e,f report the results of the sampling cycles through the iterations needed to converge. Points sampled starting from
basin A are depicted in blue, whereas those from B are in red. For each iteration, the ≃0.5 value of the learned committor
function (green line) is compared with the reference value from numerical integration (grey line) for the physically relevant part
of the transition state region. In the lower panels, the original potential energy surface is represented by isolines.

the researcher’s attention to the degrees of freedom that
matter the most. It is to reflect the ability of our method
to analyze the TSE in excruciating detail that we have
chosen the manuscript title.

We first test our method on the numerically solvable
example of the Müller potential, and proceed then to dis-
cuss the classical example of alanine dipeptide in vacuum,
a complex chemical reaction, and the folding of a small
protein. In all the last three examples, our analysis leads
to novel insight, even on a much-studied problem like
that of alanine dipeptide. The details of the numerical
implementation are discussed in the method section.

II. RESULTS

A. Müller-Brown Potential

The first application of our methods is to the two-
dimensional Müller-Brown potential, which is often used

to test new methods since, in this case, the committor
can be numerically evaluated (see SI, Sec. S5B).

In the bottom panels of Fig. 1, we show the evolution
of the segment of the isocommittor line q(x) = 1

2
that

overlaps the TSE and compare it to the result coming from
numerical integration. In the first iteration, in which the
only data available are those coming from the metastable
states, the first guess for q(x) is nothing but a classifier.
Thus, at this first stage, the isocommittor line is just
a straight line that divides the two metastable basins.
However, as more and more TSE data are collected under
the action of the bias VK(x), the isocommittor converges
to its correct value after only a few iterations, and an
accurate description of the whole pK(x) is obtained after
only a few more iterations (see SI, Fig. S8). Moreover, it
can be seen that as the iterative process progresses, the
TSE is better and better sampled.
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FIG. 2. a) Snapshots of alanine dipeptide conformations in metastable and transition states. The relevant torsional angles
of the peptide are depicted for state A, whereas the most relevant distances and the plane defined by the N,Cβ,C atoms are
illustrated for state B. For the transition state, we report in transparency a superimposition of 20 configurations from the TSE
and, in solid color, the medoid of such an ensemble. b) Projection of alanine FES (white isolines) and of the learned committor
value q(φ, θ) (colormap) in the φ, θ plane. c) Contour plot the Kolmogorov distribution pK on the transition region, highlighted
in b by a dotted white box, according to committor-based bias potentials trained on different descriptors sets φ,ψ angles, φ, θ
angles and a set of distances, as indicated by the top-right labels. The white isolines depict the underlying FES, and the white
dashed line reports the linear relation between φ, θ for the TSE configurations proposed in Ref.35.

B. Alanine Dipeptide

As a second and more physically relevant example, we
study the transition in vacuum of alanine dipeptide be-
tween the C7eq (A) and C7ax (B) conformers, which is
one of the most studied rare event models. Its conforma-
tional landscape is spanned by the four dihedral angles
φ, θ, ψ, and ω that measure the orientation of the two
peptides relative to the more rigid tetrahedron formed
by the N, C, Cα, and Cβ atoms (see panel a of Fig. 2).
The dihedral angles φ and ψ have been found to be good
collective variables when used in enhanced sampling meth-
ods.33 It has also been found in transition path sampling
studies35 that in the configurations that belong to the
TSE, the angles φ and θ are, modulus a constant, ap-
proximately linearly anti-correlated (i.e., θ ≃ −φ). In
order to demonstrate the ability of our method to recover
these results, we first use φ, θ,ψ, and ω as descriptors.
But rather than using all of them at once, we start with
one, and then we systematically add all the others.

The rationale for this procedure is that, given the vari-
ational property of the functional K[q(x)], an indication
of the relevance of an added dihedral angle will be its
ability to lower the minimum value Km.

The number of calculations to be performed is reduced

if we first note that, in order to satisfy the boundary
conditions, φ has to be part of the descriptor set. Thus,
we compute Km first using only φ and then study all
possible combinations of φ with the remaining torsional
angles. The results of these calculations are illustrated in
Table S2 in the SI, where it can be seen that including
θ in the descriptors set is by far the most effective in
lowering Km, confirming that θ is a crucial part of the
reaction coordinate35.

Furthermore, the approximate linear relation between
θ and φ in the TSE reported in Ref.35 is observed if and
only if θ is included in the descriptors set. This point is
illustrated in two top plots in panel c of Fig. 2, where
the marginal of the pK TSE distribution relative to φ
and θ is drawn on the φ and θ free energy surface (see
also SI, Fig. S12). In all cases, in this representation,
the marginal has an elongated ellipsoidal structure whose
main axis is misaligned relative to the expected behavior
if θ is not part, explicitly or implicitly, of the descriptor
set. This shows that the combination φ,ψ, although
efficient when used in an enhanced sampling context, does
not fully capture the nature of the TSE. As a corollary
to this analysis, we agree with Ref.35 that the alanine
dipeptide free energy surface should be more expressively
represented if drawn as a function of φ and θ as in Fig. 2
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FIG. 3. Snapshots of reactant, product and transition species involved in DASA reaction. On the reactant configuration, the
labels highlight the atoms used to compute the distance-based descriptors set used for the training of the committor model,
whereas the purple shadow on the product highlights the 1,3-dioxane ring used to compute the puckering coordinates. For the
transition state (TS), we report two configurations that are representative of the TSE according to clustering and puckering
analysis. In solid color, we report the medoids of each cluster, and in transparency, the corresponding reference configuration
obtained via dimer method36. The atoms that characterize the TSdown configuration are highlighted in orange, whereas the
TSup ones are in purple. For such configurations, the bonds that change through the reaction are shown as dashed green lines.

rather than using the standard φ,ψ projection since it
brings out clearly the role of θ.

This instructive example also allows us to compare in
the practice our definition of the TSE based on pK with
the conventional one based on the q(x) ≃ 1

2
. Indeed, the

latter also includes unlikely configurations with extremely
high energy, whereas our criterion only focuses on the
physically relevant region (see also SI, Fig. S13).

In the alanine dipeptide case, we had enough prior
knowledge of the system that we could solve the problem
using a reduced set of descriptors. However, when one
approaches a new system, this is rarely the case. For
this reason, as a demonstration of the possibilities of our
method, we also take a blind approach and assume that
we only know the initial and final conformations. For
this physics-agnostic calculation, we use as descriptors
the 45 distances between the alanine heavy atoms. At
convergence, we find that this descriptor set does much
better than the ones based on dihedrals only, reaching the
value of Km = 1.1 a.u., where a.u. stands for arbitrary
units, and the TS linear θ-φ correlation is respected, as
shown in the bottom of panel c of Fig. 2, since the θ
degree of freedom is taken into account, albeit implicitly.
This is not surprising, given the much higher variational
flexibility of the trial committor function.

However, in so doing, we lose physical transparency,
and the price for this unbiased generality is that further
analysis is needed37. To this effect, we use a tool exploited
in Ref.33 that allows ranking the descriptors according
to their weight in the optimized qθ(x) model (see SI,
Sec. S3). From this ranking (see SI, Fig. S10), it emerges
that the two distances dα and dβ (see panel a of Fig. 2)

stand out as the most relevant. This might seem at first
surprising, but we note these two distances reflect the
position of O relative to the plane that passes through
N, C, and Cβ. In turn, the position of O depends on θ
and φ, thus the prominence of dα and dβ is a way in
which the NN expresses the TSE conformation using only
interatomic distances. Of course, the dihedrals are the
natural language in which to describe a conformational
change, while the description in terms of interatomic
distances is less immediately evident, but it is reassuring
that the physical conclusions are the same even if cast in
a different language.

But there is more, and in fact, the results of this anal-
ysis guided us to take a fresh look at this much-studied
problem. In fact, we noticed that a different way of ex-
pressing the alanine conformation can be obtained using
as a descriptor the projection of the O coordinate on
the direction perpendicular to the NCCβ plane (see SI,
Sec. S6 B). It turns out that this single descriptor approx-
imates the reaction coordinate extremely well, reaching a
very low variational minimum at Km = 1.2 a.u., which is
comparable, within the statistical uncertainty, with the
one obtained using the full interatomic distance set as
descriptors. This exercise illustrates clearly one of the
advantages of our approach, namely the ability of the
method to focus the researcher’s attention on where the
real action is and to help design new efficient collective
variables.
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FIG. 4. Snapshots of representative configurations from the folded (F), unfolded (U), and transition (TS) states (bottom row) of
chignolin protein and the corresponding hydrogen bonds (top row). In the bottom row, the main chain of the protein is depicted
as a cartoon colored from blue to red according to the residue number, whereas the side chains are reported in transparency in
licorice. For the F and U metastable states, we report as orange dashed lines the distances C2

αC6
α and C3

αC8
α, which were found

to be most important in our model. For the TS, we report in transparency the superimposition of 20 configurations from the
TSE. In the top row, we highlight the crucial hydrogen bonds between the Asp3, Thr6 and Thr8 residues, and for the TS, we
report the structures related to the medoids of the two clusters.

C. DASA reaction

Our third test is the 4π-electrocyclization of the donor-
acceptor Stenhouse adduct (DASA), which is depicted in
Fig. 3, that is part of a complex photo-switching path-
way38–40. This reaction involves a major conformational
change, the formation of a cyclopentenone ring, and a
proton transfer from O1 to O2

41. The energy barrier
associated with such transition is much larger than kBT
(≈ 1 eV40), thus, we expect the committor to have a
very sharp step-like behavior. Although, in this case, it
would probably have been more efficient to use standard
methods based on the search for the stationary points of
the potential energy surface, we found both instructive
and challenging to solve the problem using our approach.
Indeed, the iterative process needed to be adapted to
the sharp features of the committor, as described in the
method section.

As we are dealing with a chemical reaction involving
the formation and breaking of bonds, it is natural to
take the distances between atoms involved in such bond
modifications as descriptors. In particular, we select as
input features the distances between atoms labeled in
Fig. 3) for a total of 45 input descriptors.

After having obtained the committor, we find that
four distances are ranked higher than the others (see

SI, Fig. S15), which are, in the order, the C1C5, C1O1,
C1C6, and C2O2 distances. There are clear chemical
reasons for this result. The formation of the C1C5 bond
reflects the closure of the cyclopentenone ring, the three
distances C1O1, C1C6, and C2O2 describe the confor-
mational change that the molecule undergoes during the
reaction and are operative in reducing the O1O2 distance,
thus allowing the proton to be transferred from O1 to O2

(see SI, Fig. S18). Finally, the role of the C1C6 in the
reaction reflects the change in bonding length due to the
C5 hybridization change from sp2 to sp3 that takes place
when the pentagonal ring closes.

Contrary to the case of the Müller potential and of
alanine dipeptide, already from a visual inspection, it
is clear that the TSE exhibits some complexity (see SI,
Fig. S17). Thus, we apply the k-medoids analysis34 and
find that the TSE can be described as composed of two
classes, which can be distinguished by the different puck-
ering42 of the 1,3-dioxane hexagonal ring, as shown in
Fig. 3. If optimized, the two structures differ in energy
by only ≈ 1kBT thus, they both are likely to be part of
the TSE. This example, and more so the one that follows,
demonstrates the need to introduce the TSE concept,
thus extending the more traditional view of associating a
single configuration to the transition state.
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D. Chignolin

The final test of our method is the study of the chignolin
protein in solution, which is able to fold in a stable hairpin
structure. Luckily, the unbiased 106-µs-long trajectory
performed by the D.E. Shaw group using a special purpose
machine43 is available and provides a precious benchmark
for our calculations.

In this case, we use as descriptors all the 45 distances
that connect the 10 α-carbons as done in Ref.44. After
reaching convergence of our procedure, by analyzing the
40-ns-long simulations of final iteration, we collected a
large number of TSE configurations that, at a visual in-
spection, appear to be very close to those obtained in the
much longer unbiased dynamics of Ref.43. In fact, we find
that in all TSE configurations, the hairpin bend (4 - 7) is
formed, and the two prongs of the hairpin are roughly
aligned. However, the two protein segments (1 - 4) and
(7 - 10) exhibit a variety of conformational arrangements,
as depicted in Fig. 4. Luckily, the large number of TSE
configurations we were able to collect allowed a statisti-
cally meaningful analysis of the TSE to be carried out
and the apparent disorder to be understood.

As in the previous cases, we perform a relevance analysis
of the descriptors in the optimized qθ(x) as in Ref.33.
We find two surprising results: none of the descriptors
that can be associated with the formation of the hairpin
bend play a significant role. Instead, the two apparently
improbable distances C2C6 and C3C8 emerge as rather
significant (see SI, Fig. S19). In a first instance, this result
can be understood if we notice that the hairpin bend is
easily formed, and many unfolded structures share this
feature (see SI, Fig. S20). Furthermore, the role of the
two distances can be attributed to the need to align the
two prongs before folding, this being a significant and
entropy-costly step on the way to folding. But there is
more to it, as we discovered by clustering the TSE data
using again the k-medoids method34. In fact, we find
that the TSE configurations can be classified into two
groups. In one, a bidentate H-bond is established between
Asp3 and Thr6 (TSEup). In the other, a monodentate
H-bond links Asp3 and Thr8 (TSEdown) (see also SI,
Fig S21). We note that in the folded state, both H-bonds
are simultaneously formed, while in the unfolded state,
the probability of finding either of these two bonds formed
is very low (see SI, Fig. S21).

Since the formation of these H-bonds was not explicitly
included in the descriptors, the two distances C2C6 and
C3C8 also act as proxies for the formation on the way
to the folded state of either one of these two crucial H-
bonds45.

III. DISCUSSION

In this paper, we have developed a new strategy for
tackling the rare event problem. This strategy is guided by
Kolmogorov’s variational principle for the determination

of the committor function and has led us to define what
we call the Kolmogorov ensemble, in which a committor-
dependent bias is added to the interatomic potential. This
natural extension of the notion of transition state is in-
dispensable to describe complex systems, like chignolin,
DASA, and many other46, where it is not possible to iden-
tify a single state as the one through which the reaction
has to pass. We have also shown that the variational
principle provides a powerful tool for analyzing the TSE,
identifying the most relevant degrees of freedom involved
in the reaction, and ranking them in a quantitative way.

This and the availability of a large number of TSE
configurations can help construct efficient collective vari-
ables44 both for enhancing sampling and summarizing
the physics of the process under study. Knowledge of the
TSE will also be extremely useful when building reactive
machine learning potentials, where collecting data on the
transition state has proven to be essential for obtaining
reliable results.47

However, the most exciting perspective is that from the
sampling of the TSE, and with the help of the analysis
tools that we have developed, we can gain new and deep
insight into reactive processes so as to be able to unveil
enzymatic reaction mechanisms, steer a chemical reaction
towards a desired product, design new drugs and even
guide crystallization processes.

IV. METHODS

A. Self-consistent iterative procedure

As anticipated in the introduction, we represent the
committor function q(x) as the output of a neural network
(NN) qθ(d(x)), with θ trainable parameters, which takes
as input a set of (physical) descriptors d(x) that are
functions of the atomic coordinates x. We optimize our
model using the variational principle of Eq. 1. To do so, we
use statistical sampling to evaluate the integral in K[q(x)]
and rely on a self-consistent iterative procedure in which
we alternate cycles of training to cycles of sampling. This
section briefly presents only a schematic overview of the
steps involved in such a procedure, discussing the details
of the different components in the following sections.

• Step 1: The committor qnθ (x) at iteration n is con-
structed using the dataset of configurations xn and
weights wn

i updated from the previous iterations
(see Sec. IV B). For the first iteration n = 0, we shall
use a dataset consisting of configurations collected
with unbiased simulations in the two metastable
basins and labeled accordingly.

• Step 2: We perform biased simulations to sample
the Kolmogorov ensemble defined in Eq. 3. These
simulations can be started from the two basins or
even from the TSE. We do this by applying the
bias Vn

K(x) = − 1
β

log(|∇qnθ (x)|2) (see Sec. IVC).
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We check whether convergence has been reached. If
not, we proceed to step 3.

• Step 3: We update our training set with the new
sampled configurations, reweighing them by the
applied bias wn

i = eβVn
K(xi)

⟨eβVn
K(x)⟩Un

K

(see Sec. IV C) and

repeat from step 1.

B. Optimization strategy

To optimize the committor model, we translate the Kol-
mogorov variational functional and the related boundary
conditions into a loss function composed of two terms.

A key variational loss term Lv, that is used to evaluate
the functional in Eq. 1, as

Lv =
1

Nn

Nn∑
i

wi|∇uq(xi)|
2 (5)

where we use as training set all the Nn configurations xi

collected until iteration n together with their associated
statistical weights wi and ∇u denotes the gradient with
respect to the mass-weighted coordinates uj

i =
√
mjxji, in

which mj is the mass of atoms of type j.
This term is complemented by the boundary loss term

Lb, which imposes the correct boundary conditions, i.e.,
q(xA) = 0 and q(xB) = 1, and is expressed as

Lb =
1

NA

NA∑
i∈A

(q(xi))
2 +

1

NB

NB∑
i∈B

(q(xi) − 1)
2 (6)

This term is computed only on the labeled dataset in-
troduced in the first iteration n = 0 that consists of NA

unbiased configurations from state A and NB configura-
tions from state B.

The total loss function is thus obtained as a linear
combination of these components

L = Lv + αLb (7)

in which we introduce the α hyperparameter to scale the
relative contributions of the two terms during the opti-
mization procedure. It is worth noting that, in the first
iteration, the Lv contribution to the total loss will be mini-
mal, as the dataset is limited to close-to-equilibrium config-
urations from the bottom of metastable states. Nonethe-
less, the Lb term still allows obtaining a reasonable first
guess q0θ(x), which can be seen as a classifier trained to
distinguish between states A and B. This is not surprising
considering that a very similar approach has often been
used to design machine learning collective variables for
enhanced sampling.33,48

C. Sampling the Kolmogorov ensemble

As discussed in the introduction, the variational ap-
proach of Eq. 1 and the corresponding loss term of Eq. 5

are of little use if the TSE, where |∇q(x)|2 is significantly
different from zero, is poorly represented in the training
dataset.

In previous applications of the Kolmogorov variational
principle, enhanced sampling methods were used to collect
data in the TS region.23,28 However, they relied on the
use of collective variables (CVs), and even assuming that
the CV is able to capture the TSE main features, they
had to spend time sampling over and over uninteresting
regions of the configuration space, such as those belonging
to the metastable states.

In contrast, we apply to the system a bias that is
attractive in the TS region and repulsive in the basin
regions. Even using a simplified model for qθ(x) the
addition of the potential

VK(x) = −
1

β
log(|∇qθ(x)|2 + ϵ) (8)

where ϵ is a positive regularization term, biases the sam-
pling towards the TS and away from basin A and B. Thus,
already after the first iterations, TSE configurations are
being harvested and attention is taken away from the
metastable basins. It should be noted that in practice,
the bias in Eq. 8 can be computed by the gradient with
respect to the input features of qθ for a simpler and faster
interface with PLUMED49 (see Sec. IVE). At conver-
gence, the results will not depend on this choice since,
when computing K[q(x)], the configurations thus gener-
ated are reweighed to give them the correct Boltzmann
weight. This is done by associating each configuration i
that was added to the training set at iteration n with a
weight

wn
i =

eβVn
K(xi)

⟨eβVn
K(x)⟩Un

K

(9)

which does not explode exponentially given the logarith-
mic nature of the bias Eq. 8.

D. Tips and tricks for optimization

In our experience, the straightforward version of the
iterative method presented above leads to convergence
after an affordable number of iterations. However, to
accelerate convergence, it is expedient to introduce some
modification to the self-consistent cycle guided, if possible,
by previous qualitative knowledge of the system.

For example, as the configurations from the first it-
eration labeled dataset are unbiased, they are assigned
unitary weights w0

i∈A = w0
i∈B = exp(βV0

K(xi)) = 1. This
implicitly implies that in the Boltzmann ensemble, the
two metastable states have the same energy and can be
sampled with the same probability. In spite of this un-
physical assumption, after a few iterations, the correct
relative statistical weight between the points in the two
basins is re-established. However, the number of itera-
tions needed to reach convergence can be reduced if we
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have an even approximate estimate of the free energy
difference ∆FAB between the initial and final basin. In
such a case, we can use a less approximate dataset on
which we modify the weights of the initial points in B as

w0
i∈B = 1 → w̃i∈B = exp(−β∆FAB) (10)

to make the underlying distribution resemble more closely
the Boltzmann one (see SI, Fig. S9).

Of course, if we have other information on the TSE
coming, for instance, from enhanced sampling simulations
or successful molecular dynamics runs in which reactive
trajectories have been obtained, we can use them from
the initial iteration to obtain a better starting guess and
a speedier convergence.

Since the bias is used here to speed up the calculation,
we are at liberty to change its magnitude, provided that
the data collected are properly reweighed. In this respect,
the simplest and most controllable device is to multiply
the bias in Eq. 8 by a positive multiplicative factor λ

VK(x) → ṼK(x) = λVK(x) (11)

In the first iteration, we run several parallel simulations
with different values λ ∼ 1, choose among the λ values
tested the smallest that is capable of attracting the system
to the TSE, and in the following iterations, we keep λ fixed
to this value. In the case of DASA, that is representative
of systems in which the committor changes very quickly
in a small region of configuration space such that |∇q(x)|2
can assume large values, the bias can become too large
and trap the system in the TSE. To remedy this problem,
from the second iteration, we explore the effect of a range
of λ ∼ 1 values and this time, we choose the largest value
of λ that allows escaping the TSE and we maintain this
value in the following iteration. In hard cases, one can
further optimize the value of λ at each iteration, varying λ
in a small range of values and picking again the one that is
most effective. It must be added that the computer time
invested in the simulations needed to improve the choice
of λ is not wasted, as the configurations and statistical
weights thus collected can be added to the training set
and thus used to improve our estimation of the integral
in K[q(x)].

To avoid an artificial bias, the data needed to pass at
successive iterations are collected by combining data from
simulations that start from both A and B. However, if,
as in the case of the DASA, |∇q(x)|2 is strongly peaked,
once the TSE has been visited, it is helpful to start the
successive iterations also from TSE configurations. This is
because when the committor has a sharp step-like behav-
ior, the action of the bias will be confined to a very narrow
region, eventually making it difficult for simulations that
start from either A or B to reach the TSE region.

Based on the variational nature of the optimization
criterion, the Km value, as estimated in practice in Eq. 5,
typically suffices as a figure of merit for monitoring the
convergence of the procedure and the accuracy of the
obtained model. However, if desired, further evaluation

could be performed by training a committee of models
to obtain a statistical measure of the model uncertainty,
similarly to what is commonly done when dealing with
machine learning potentials.47

E. Codes and software

The reported NN-based committor models are based
on the Python machine learning library PyTorch50. The
specific code for the definition and the training of
the model is developed in the framework of the open-
source mlcolvar51 library. The committor-based en-
hanced sampling simulations have been performed us-
ing the open-source plugin PLUMED52 2.9, modify-
ing the PYTORCH_MODEL interface available in the op-
tional pytorch51 module of the code. This has been
patched with different MD engines to simulate the re-
ported systems. The Müller-Brown potential’s simula-
tions have been performed using the MD engine in the
ves_md_linearexpansion53 module of PLUMED. The
vacuum alanine dipeptide simulations have been carried
out using the GROMACS v2021.554 MD engine and the
Amber99-SB55 force field. The DASA reaction simula-
tions have been carried out using the CP2K-8.156 software
package at PM6 semi-empirical level57. For the study of
folding and unfolding of chignolin in explicit solvent, we
performed our simulations using GROMACS v2021.554

the CHARMM22∗58 force field and TIP3P59 water force
field. All the reported molecular snapshots have been
produced using the open-source PyMOL60 code, whereas
the clustering analyses have been performed using the
k-medoids method as implemented in the kmedoids34

Python library.
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committor model will be released through the mlcolvar
library51 upon publication. Similarly, the PLUMED in-
puts and bias interface will be made available on the
PLUMED-NEST49 repository.
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Supporting Information

S1. SHORT NOTE ON EQ. 1

The committor function q(x) from A to B over a domain Ω, under the hypothesis of overdamped dynamics, can be
obtained as the solution of a set of partial differential equation 20

∇U · ∇q− β−1∆q = 0 x ∈ Ω \ (A ∪ B)
q(x) = 0 x ∈ A
q(x) = 1 x ∈ B

(S1)

which, unfortunately, can only be solved for extremely simple toy models, such as the toy double well potential reported
in Fig. S2. However, an equivalent solution can also be obtained by minimization of the variational functional K20

min
q

K[q(x)] : K[q(x)] =
1

Z

∫
|∇q(x)|2e−βU(x)dx x ∈ Ω \ (A ∪ B)

q(x) = 0 x ∈ A
q(x) = 1 x ∈ B

(S2)

where U(x) is the interatomic potential and Z =
∫
e−βU(x)dx is the corresponding partition function.

We then observe that the variational functional of Eq. S2 can also be written as the ensemble average of the |∇q(x)|2
quantity over the Boltzmann ensemble driven by the potential U(x), as reported in Eq. 1 in the main text.

K[q(x)] =
1

Z

∫
|∇q(x)|2e−βU(x)dx =

〈∣∣∇q(x)∣∣2〉
U(x)

(S3)

Despite being derived under the overdamped dynamics hypothesis, this whole formalism can also be extended to the
general case of Langevin equation by introducing a few reasonable approximations, as discussed in detail in Sec. 3.5 of
Ref.20

FIG. S1. Normalized contribution to the integral of the variational function reported in Eq. S3 in the case of a toy double-well
potential (reported in black) for different β values [5, 10, 20, 40]. Colder colors correspond to lower temperatures, and warmer
colors to higher temperatures.

S2. VISUALIZATION OF COMMITTOR-BASED BIAS POTENTIAL

In order to apply the variational principle of Eq. 1 (see also Sec. S1), extensive sampling of the TS region is needed,
as the relevant contributions to the K[q(x)] functional come from that region. To collect such data, it would be ideal
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to have a bias potential for an enhanced sampling simulation that can focus sampling toward the TS region. However,
the determination of such a bias appears to be a chicken-and-egg problem. Indeed, in order to build such bias, one
would need to be able to know the TS in advance, and in order to know the TS, one would need to have such a bias.
It is known20 that the committor function q(x) provides a way to mathematically formalize the concept of TS.
Conventionally, this is localized to the region where q(x) ≃ 1

2
, as schematically depicted in the case of a toy double-well

potential in panel b of Fig. S2. It is interesting to note that, as a consequence, the gradients ∇q(x) of the committor
are localized on the TSE region (see panel c and also Fig. S1).
This peculiar property of q(x) motivated us to formulate our TS-oriented bias potential (see Eq. 8 and panel d) as a
function of |∇q(x)|2, guaranteeing its focus on the TS region by design and thus providing a rather simple solution
out of the aforementioned chicken-and-egg problem. We note that, in Eq. 8, we introduce the logarithm to have a
smoother behavior of the bias and easier reweighing. Indeed, when applied to the system, such bias can transform the
TS into a minimum that can be effortlessly and extensively sampled (see panel e).

FIG. S2. Schematic visualization of committor-based bias potential for TSE sampling on a toy double-well potential. a) Potential
energy U(x) (repeated in all other panels in black) b) Committor function q(x) c) Gradient of committor function ∇q(x) d)
Committor-based bias potential V(x) e) Biased energy landscape UK = U(x) + V(x) for extensive TSE sampling.

It is also instructive to visualize the effect of the bias potential on the Müller potential along the minimum free
energy path (MFEP) connecting basins A and B passing through the TS, which we report in Fig. S3. Along the MFEP,
the A and B basins can be clearly distinguished, as well as the state we label as B’, which can be seen as a model
example of a shallow intermediate state. It can be seen how the committor-based bias potential reflects the features of
the underlying potential energy landscape, focusing its action on the region associated with the barriers.

In the main text, we also link the sampling under the action of our bias potential to the conventional q ≃ 1
2

criterion
based. In Fig. S4, we report the sampling under the action of VK only in the case of the Müller system. Such a result
is compared with the 0.5 isoline of the numerical reference of the committor function. The correspondence of the two
criteria can also be appreciated in Fig. S3.



14

FIG. S3. Projection along the minimum free energy path (MFEP) of the Muller potential energy (U), committor function (q),
committor-based bias (V), and biased energy landscape (U+V).

FIG. S4. Scatter plot of the sampling using only VK as an effective potential on Müller potential energy surface compared with
the isocommittor line q = 0.5, reported as a white dotted line.

S3. RANKING OF DESCRIPTORS WITH FEATURE RELEVANCE ANALYSIS

To identify the most relevant inputs in our learned committor models, we rank the input descriptors by performing
a feature relevance analysis. This is based on the derivatives of the committor model qθ(d(x)) with respect to the
descriptors d(x) and the rank rk of descriptor k is defined as

rk =
∑

xi∈TSE

∣∣∣∣∣ ∂q∂dkj
∣∣∣∣∣σ(dk) (S4)

where the sum is performed over a set of TSE configurations defined by q value (0.4<q<0.6), and σ(dk) is the standard
deviation of descriptor dk over this set. We must note, however, that different approaches to feature relevance analysis
in neural networks are available in specific machine learning literature37,61.

S4. CHOICE OF NEURAL NETWORK ACTIVATION FUNCTIONS

Considering that in our approach, the derivatives of the output of the neural network model are as important as the
output itself, we used as an activation function for the hidden layers the hyperbolic tangent function (tanh). This
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indeed provides a good trade-off between non-linear contribution to the model and guaranteeing stable and smooth
derivatives27.

Moreover, to facilitate the learning of a qθ(x) with the correct shape, we used a sharp sigmoid-like activation s(y)
for the last layer

s(y) =
1

1+ e−3y
(S5)

S5. MÜLLER-BROWN POTENTIAL - ADDITIONAL INFORMATION

A. Computational details

Simulations details

The Müller-Brown potential energy surface, U(x, y), is defined as a function of the Cartesian coordinates x and y

U(x, y) = −k

4∑
i=1

die
ai(x−xi)+bi(x−xi)(y−yi)+ci(y−yi) (S6)

where the constants take the following values, k = 0.15, [d1, d2, d3, d4 ]= [-200, -100, -170, 15], [a1, a2, a3, a4] = [-1,
-1, -6.5, 0.7], [b1, b2, b3, b4] = [0, 0, 11, 0.6], [c1, c2, c3, c4] = [-10, -10, -6.5, 0.7], [x1, x2, x3, x4] = [1, 0, -0.5, -1] and
[y1, y2, y3, y4] = [0, 0.5, 1.5, 1].

The simulations of the diffusion of an ideal particle of mass 1 have been performed using Langevin dynamics based
on the Bussi-Parrinello algorithm62 as implemented in the ves_md_linearexpansion53 module of PLUMED. The
damping constant in the Langevin equation was set to 10/time-unit. The time unit was defined arbitrarily and
corresponds to 200 timesteps and natural units (kBT = 1) were used in all the calculations.

Committor model training details

To model the committor function qθ(x) at each iteration, we used the x and y Cartesian coordinates of the diffusing
particle as inputs of a neural network (NN) with architecture [2, 20, 20, 1] nodes/layer. For the optimization, we used
the ADAM optimizer with an initial learning rate of 10−3 modulated by an exponential decay with multiplicative
factor γ = 0.99999. The training was performed for ∼20000 epochs. The α hyperparameter in Eq. 7 was set to 10.
The number of iterations, the corresponding dataset size, and the λ used in the biased simulations are summarized in
Table S1 alongside the lowest value obtained for functional Km (e.q. the variational loss term Lv ), which provides a
quality and convergence measure, the simulation time ts and the output sampling time to. To have a direct comparison
with the reference numerical result Km = 4.18, the reported Km values are computed on the ideal dataset described in
Sec. S5 B.

TABLE S1. Summary of iterative procedure for Müller-Brown potential.

Iteration Dataset size Km λ ts [a.u.] to [a.u.]
0 4000 77.8 - 2*400000 200
1 24000 4.71 1 2*500000 50
2 44000 4.52 1 2*500000 50
3 64000 4.48 1 2*500000 50

In Fig. S5, we report the results of a standard committor analysis for a set of 500 configurations with 0.45 < q < 0.55
sampled with our approach. For each configuration, 100 independent trajectories were run to estimate the corresponding
committor value.
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FIG. S5. Normalized distribution of the results of the committor analysis for a set of 500 Müller-Brown configurations with
0.45 < q < 0.55 sampled with our approach.

B. Numerical evaluation of the committor function

One of the advantages of a model system such as the Müller-Brown potential is the possibility of solving it numerically
to obtain precise reference data. In our case, we compute an NN-based committor qθ as a function of the Cartesian
coordinates (qθ = qθ(x, y)) by applying our method to the ideal dataset obtained from a homogeneous grid (i.e.,
200*200 evenly distributed points) in the relevant part of the Cartesian space (i.e., -1.4<x<1.1 and -0.25<y<2.0 ).
At variance with our iterative procedure, in the case of this didactic and ideal scenario, as we know the analytical
expression of U(x, y) (see Eq. S6), the weights wi associated with configuration i in the Lv term of Eq. 5, can be
directly computed as the true Boltzmann statistical weight wi = e−βU(xi,yi). Labeling the data belonging to the
metastable states A and B according to the correct basin, we apply the boundary conditions by minimizing the Lb
term of Eq. 6 in the same way reported in the main text. This way, we can easily optimize the committor qθ by
minimizing the total loss function of Eq. 7. For the training, the x and y Cartesian coordinates were used as the input
of an NN with architecture [2, 20, 20, 1] that was optimized using the ADAM optimizer. As the result from such a
uniformly distributed database is the best result one can get with the same NN architecture, we set the numerical
result qN, for which we obtained Km = 4.18, as a reference to test our method (see reference line in Fig. 1 in the main
text).

FIG. S6. Contour plot of the reference committor function obtained from numerical integration on Müller-Brown potential
energy surface. The full 0.5 isocommittor line is reported as a dotted line, whereas its physically relevant part is highlighted in
magenta.
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C. Additional information on iterative optimization

Effect of λ parameter on the bias potential

As discussed in the main text, the most useful parameter concerning the sampling under the action of the bias
VK(x) of Eq. 8 is the λ multiplicative factor that modulates its strength (see Sec. IVC). An appropriate choice of λ
allows for balancing U(x) and VK(x) and improving the sampling efficiency.

FIG. S7. Comparison of the effect of the same VK bias potential on the Müller-Brown potential energy surface as a function of
the value of the multiplicative factor λ, whose value is given in by the top-right black label for each plot.

In Fig. S7, we report a didactic comparison of the resulting biased energetic landscape under the action of three
VK(x) with λa = 0.5, λb = 1.0, which is the same reported in Fig. 1 in the main text, and λc = 1.5. Even if such a
large range of values is not so likely to be used in practice, we report here such values to make the point we want to
show more evident.

As the lambda increases, the TS minimum becomes more stable with respect to the real metastable states, which
are progressively destabilized. This allows for easier sampling of the TS region with shorter escape times from the
metastable basins. On the other hand, with a weaker bias, the system may need a long time to escape.

Using a stronger bias can thus be a resource, especially in the earliest iteration of the procedure in which the learned
committor model is still to be refined and, as a consequence, the corresponding bias is still rough. However, a stronger
bias makes the TS minimum deeper and narrower, somehow limiting the sampling of that region, whereas a milder
bias creates a shallower TS minimum, allowing for a broader sampling of configurations from the TS surroundings.

Even if the choice of λ is not so sensitive, as we state in the main text, finding the best trade-off can help speed up
sampling. In practice, it is good practice to monitor the sampling quality that can be achieved under the action of the
VK and, based on this feedback, to eventually adjust the value of λ to improve the performances.

In addition, it should also be noted that, as for other enhanced sampling methods based on the addition of an
external bias, it is generally better to prefer milder biases to stronger ones when possible, as they can result in unstable
simulations or artifacts in the most extreme cases.

Effect of including ∆F information on earlier iteration results

As we discussed in the main text, if an estimate of the free energy difference ∆FAB is available, the weights of the
unbiased data from the first iteration can be corrected to better resemble the true Boltzmann probability. Even if not
strictly necessary, this allows for speeding up the overall optimization procedure, as it is illustrated in Fig. S9, where
we compare the committor functions learned after the first iteration including and not including the ∆F information.
Without the additional information, it can be seen that the iscommittor line at q = 0.5 is far from the TS region and
the reference. On the other hand, if the ∆F information is included, the model is already closer to the reference value
even from the first iteration.

The effect of ∆F can also be seen in the final converged Kolmogorov distribution in Fig. S9. Although we can
already get a good isocommittor line at q = 0.5 in 3 iterations, as we reported in the main text, the whole Kolmogorov
distribution is not perfect yet if compared with the one obtained from numerical integration (see Sec. S5 B). To match
such an ideal result, the iterative procedure needs 14 cycles without ∆FAB and only 6 cycles with ∆FAB.
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However, as already stated in the main text, the effect of such additional information has relative importance in the
overall results in both cases, as it mostly affects minor details.

FIG. S8. Comparison of the number of iterations needed to converge to the reference Kolmogorov distribution pK including (6
iterations) and not including (14 iterations) information about the ∆F. It should be noted that the convergence of the overall
Kolmogorov distribution is slower than the iscommittor line q = 0.5 as it requires more information. The Km values obtained
with the models reported in panels a and b are 4.31 and 4.20, respectively.
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FIG. S9. Comparison of the effect of including information about the ∆F between the metastable states on the committor
learned at the first iteration for the Müller-Brown system. The results are compared with the reference numerical result both in
the x and y plane (panels a and b) and as projected along the minimum free energy path (MFEP) (panels c and d). In panels e
and f , we stress the difference between the two learned models by comparing the value of the term |∇q(x)|2 along the MFEP
section associated to the TS region.
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S6. ALANINE DIPEPTIDE - ADDITIONAL INFORMATION

A. Computational details

Simulations details

The alanine dipeptide (Ace-Ala-Nme) simulations in vacuum have been carried out using the GROMACS-2021.554

MD engine patched with PLUMED49,52 and the Amber99-SB55 force field with a 2 fs timestep. The Langevin dynamics
is sampled with damping coefficient γi = mi

τ−t
with τ− t = 0.05 ps and target temperature 300 K.

Committor model training details

For modeling the NN-based committor function qθ(d(x)) for alanine dipeptide, we tested a set of possible descriptors
d(x), which are reported in Table S2. In all the cases, we kept the NN architecture similar for consistency, just
changing the size of the input layer to match the number Nd of descriptors used and keeping the same hidden layers,
i.e., [Nd, 32, 32, 1] nodes/layer. For the optimization, we used the ADAM optimizer with an initial learning rate
of 10−3 modulated by an exponential decay with multiplicative factor γ = 0.99999. The training was performed for
∼30000 epochs. The α hyperparameter in Eq. 7 was set to 10.

In Table S2, we compare the performances of the different descriptors in terms of their capability of minimizing the
variational loss term. To standardize this result, we performed the optimization of Km on the same configurations
dataset for all the descriptors. The reported errors are computed as the standard deviations on three trained models
with different random initializations of the weights.

TABLE S2. Comparison of the performances of different descriptor sets for alanine dipeptide. The descriptor sets discussed in
the main text are marked with an asterisk.

Descriptors x Km

φ 8.8± 0.2
φ,ψ∗ 7.6± 0.1
φ,ω 8.2± 0.4
φ,ψ,ω 7.1± 0.2
φ, θ∗ 3.4± 0.1
φ,ψ, θ 2.7± 0.1
φ, θ,ω 3.0± 0.1
φ,ψ, θ,ω 2.6± 0.1

45 distances∗ 1.1± 0.1
Oproj 1.2± 0.1

The number of iterations, the corresponding dataset size, and the λ used in the biased simulations are summarized in
Table S3 alongside the lowest value obtained for the variational loss term Lv, which provides a quality and convergence
measure, the simulation time ts and the output sampling time to.

In Fig. S10, we report the ranking of the input for the committor model based on the 45 distances input descriptors
set computed as described in Sec. S3. This shows that the most relevant descriptors in our model are the d36 and d35,
which are the dβ and dα reported in the main text, respectively.

In Fig. S11, we report the results of a standard committor analysis for a set of 100 configurations with 0.45 < q < 0.55
sampled with our approach. For each configuration, 100 independent trajectories were run to estimate the corresponding
committor value.

B. Short note on the transition state ensemble

In the main text, in panel c of Fig. 2, we report the TSE on the basis of our novel Kolmogorov distribution pK(x)
according to different models with different inputs. Here in Fig. S12, for comparison, we follow the conventional
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TABLE S3. Summary of iterative procedure for Alanine (distance model)

Iteration Dataset size Km λ ts [ns] to [ps]
0 20000 43.7 - 2*4 0.4
1 40000 4.9 0.8 2*4 0.4
2 60000 1.3 0.8 2*4 0.4
3 80000 1.2 0.8 2*4 0.4
4 100000 1.1 0.8 2*4 0.4
5 120000 1.1 0.8 2*4 0.4

FIG. S10. Descriptors ranking (see Sec. S3) for the committor model of alanine dipeptide trained using the 45 distances between
heavy atoms as inputs. The descriptors are named based on the labels on the molecule provided in the inset.

FIG. S11. Normalized distribution of the results of the committor analysis for a set of 100 alanine configurations with
0.45 < q < 0.55 sampled with our approach.

approach of selecting TS-related configuration as belonging to the surroundings of the isosurface q = 0.5. We plot
the results on the same region of the φθ space as panel c of Fig. 2. Our definition of the TSE based on pK, however,
shouldn’t be seen as in contrast to the conventional definition based on the q ≃ 0.5 criterion, but rather as an extension
of such a concept. Indeed, as we show in Fig. S13, the maximum of pK is found in correspondence with the lowest
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energy point on the q ≃ 0.5 isoline.

FIG. S12. Scatter plot of the points for which 0.4<q<0.6 according to three committor models with different inputs φψ angles,
φθ angles, and the set of 45 distances. The underlying FES is depicted by the colormap, the white dashed lines report the
reference linear relation for the TS between φ and θ. The reported region of the φθ space is the same as panel c of Fig. 2 in the
main text to which this figure should be compared.

FIG. S13. Contour plot of pK according to three committor models with different inputs φψ angles, φθ angles, and the set
of 45 distances. The underlying FES is depicted by the white isolines, the white dashed lines report the ≃0.5 isoline of the
committor learned as a function of φ and θ. The reported region of the φθ space is the same as panel c of Fig. 2 in the main
text to which this figure should be compared.

C. O projection as a CV for enhanced sampling simulations of alanine conformational equilibrium

To quickly check how representative the projection of the position of the O atom on the NCCβ plane could be for
alanine conformational equilibrium, we performed a simple biased simulation along such a CV, using the On-the-fly
Probability Enhanced Sampling63 (OPES) method, which is a recent development of Metadynamics7. From the scatter
plot and the time series in Fig. S14, panels a and b, respectively, it is evident that it is an effective CV for the system,
thus promoting many transitions between the two basins. The OPES parameters in PLUMED49 for this simulation
were: BARRIER=25, PACE=500, SIGMA=0.002. The O_projection CV was implemented in PyTorch and deployed to
PLUMED using the PYTORCH_MODEL interface51 taking the positions of the involved atoms (ONCCβ) as inputs.
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FIG. S14. Results of OPES sampling of alanine using the O_projection CV described in the main text. a) Scatter plot of the
sampled points in the φ,ψ plane colored according to the value of the O_projection value b) Time series of the O_projection
variable c) Free energy surface (FES) computed along the reference φ torsional angle.
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S7. DASA REACTION - ADDITIONAL INFORMATION

A. Computational details

Simulations details

The DASA reaction simulations have been carried out using the CP2K-8.156 software package at PM6 semi-empirical
level57. The integration step was 0.5 fs, and we used the velocity rescaling thermostat64 set at 300K with a time
constant of 100 fs.

Committor model training details

To model the committor function qθ(x) at each iteration, we used the 45 distances between the 9 heavy atoms
involved in the reaction plus the H involved in the proton transfer (see labeled atoms in Fig. 3 in the main text) as
inputs of a neural network (NN) with architecture [45, 32, 32, 1] nodes/layer. For the optimization, we used the
ADAM optimizer with an initial learning rate of 10−3 modulated by an exponential decay with multiplicative factor
γ = 0.99999. The training was performed for ∼20000 epochs. The α hyperparameter in Eq. 7 was set to 10.

The number of iterations, the corresponding dataset size, and the λ used in the biased simulations are summarized
in Table S4 alongside the lowest value obtained for the functional Km , which provides a quality and convergence
measure, the simulation time ts and the output sampling time to. The reported errors are computed as the standard
deviations on three trained models with different random initializations of the weights.

TABLE S4. Summary of the iterative procedure for DASA reaction.

Iteration Dataset size Km λ ts [ps] to [fs]
0 10000 166311 - 2*100 10
1 50000 267 2.4-3.2 2*100-2*100 10
2 52000 35295 1 2*10 10
3 54000 5.29 1 2*10 10
4 56000 6.08 1.2 2*10 10
5 58000 8.71 1.2 2*10 10
6 60000 2.28 1.2 2*10 10
7 62000 6.83 1.2 2*10 10
8 64000 2.26 1.2 2*10 10
9 66000 2.14 1.2 2*10 10
10 68000 1.49 1.2 2*10 10
11 76000 1.44 1.2 4*10 10

In Fig. S15, we report the ranking of the input for the committor model based on the 45 distances input set,
computed as described in Sec. S3. A discussion of such results can be found in the main text.

In Fig. S16, we report the results of a standard committor analysis for a set of 300 configurations with 0.45 < q < 0.55
sampled with our approach. For each configuration, 50 independent trajectories were run to estimate the corresponding
committor value.

In Fig. S17, we report a superimposition of the collected TSE configurations for the DASA reaction and the projection
of the two clusters identified via the k-medoid analysis on the puckering coordinates. A discussion of such results can
be found in the main text.

In Fig. S18, we report the distribution of O1O2 distance, which involves the O atoms that take part in the proton
transfer. In the TSE configurations, the O1O2 distance is reduced due to the conformational change that is needed to
facilitate the proton transfer.
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FIG. S15. Descriptors ranking (see Sec. S3) for the committor model of DASA reaction trained using the 45 distances between
heavy atoms plus the proton transfer H atom as inputs. The descriptors are named based on the labels on the molecule provided
in the inset.

FIG. S16. Normalized distribution of the results of the committor analysis for a set of 300 DASA reaction configurations with
0.45 < q < 0.55 sampled with our approach.

FIG. S17. Superimposition of TSE configurations for the DASA reaction and projection of two different TS clusters obtained
with k-medoids method on puckering coordinates42 as described in the main text.
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FIG. S18. Normalized distribution of the distance between the O atoms involved in the proton transfer (O1O2) in DASA
reaction sampled in the reactant state, product state, and the transition state (TS).



27

S8. CHIGNOLIN - ADDITIONAL INFORMATION

A. Computational details

Simulations details

For the study of folding and unfolding of chignolin (CLN025 peptide sequence Tyr-Tyr-Asp-Pro-Glu-Thr-Gly-Thr-
Trp-Tyr) in explicit solvent, we performed our simulations using GROMACS v2021.554 patched with PLUMED49,52,
the CHARMM22∗58 force field, and the solvent has been modeled by the CHARMM TIP3P59 force field, sharing the
same setup used for long unbiased simulations on this system43 to have a direct comparison with those results. For the
same reason, we kept the simulation condition consistent with that work. All simulations were performed with an
integration time step of 2 fs and sampling NVT ensemble at 340K. Asp, Glu residues, as well as the N- and C-terminal
amino acids are simulated in their charged states. The simulation box contains 1,907 water molecules, together with
two sodium ions that neutralize the system. The linear constraint solver algorithm is applied to every bond involving
H atoms, and electrostatic interactions are computed via the particle mesh Ewald scheme, with a cutoff of 1 nm for all
nonbonded interactions.

Committor model training details

To model the committor function qθ(x) at each iteration, we used the 45 distances between the distances between
the 10 α-carbons of the protein as inputs of a neural network (NN) with architecture [45, 32, 32, 1] nodes/layer. For
the optimization, we used the ADAM optimizer with an initial learning rate of 10−3 modulated by an exponential
decay with multiplicative factor γ = 0.9999. The training was performed for ∼30000 epochs. The α hyperparameter in
Eq. 7 was set to 10.

The number of iterations, the corresponding dataset size, and the λ used in the biased simulations are summarized in
Table S4 alongside the lowest value obtained for the functional Km, which provides a quality and convergence measure,
the simulation time ts and the output sampling time to. The reported errors are computed as the standard deviations
on three trained models with different random initializations of the weights.

TABLE S5. Summary of the iterative procedure for chignolin.

Iteration Dataset size Km λ ts [ns] to [ps]
0 16000 2.52 - 2*40 5
1 32000 1.09 0.5-0.72 2*40 5
2 48000 1.03 0.5-0.72 2*40 5
3 64000 0.73 0.5-0.72 2*40 5
4 80000 0.68 0.5-0.72 2*40 5
5 96000 0.70 0.5-0.72 2*40 5
6 112000 1.01 0.5-0.72 2*40 5
7 128000 0.72 0.5-0.72 2*40 5
8 144000 0.90 0.5-0.72 2*40 5
9 160000 0.78 0.5-0.72 2*40 5
10 176000 0.64 0.5-0.72 2*40 5

In Fig. S19, we report the ranking of the input for the committor model based on the 45 distances input set,
computed as described in Sec. S3. A discussion of such results can be found in the main text.

In Fig. S20, we report the distribution of the distance between Cα atoms 4 and 7, as a symbol of the hairpin bend
involving the 4-5-6-7 residues. As expected, both the folded and transition clearly peaked at 0.5 nm, indicating the
formation of the hairpin bend. Less obviously, the same peak, even if smaller, is also present in the unfolded state,
indicating that the bending in 4-5-6-7 is a necessary but not sufficient condition for the TS. It also follows that this
feature alone is not characteristic enough to identify the TSE despite being somehow intuitive.

In Fig. S21, we report the average values of the adjacency matrix between the atoms from the functional groups
involved in the monodentate H-bond between Asp3 and Thr8 and the bidentate H-bond between Asp3 and Thr6. The
results are reported for 4 different scenarios: folded state (a), unfolded state (b), TSup cluster (c), and TSdown cluster
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FIG. S19. Descriptors ranking (see Sec. S3) for the committor model of chignolin folding trained using the 45 distances between
the α-carbons of the protein as inputs. The descriptors are named based on the labels on the molecule provided in the inset.

FIG. S20. Normalized distribution of the distance between the Cα
4 and Cα

7 involved in the formation of chignolin hairpin bend
sampled in the folded state, unfolded state, and the transition state (TS).

(d). The results clearly show the role of the H-bonds discussed in the main text, with the formation of an H-bond
network in the folded state that is completely missing on average in the unfolded state. In the TSE configurations, the
network is partially formed, and two clusters can be identified based on which H-bonds are present.
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FIG. S21. Average values of the adjacency matrix of the functional groups involved in the H-bond that stabilize the hairpin
structure of chignolin. Values from the folded state (a), unfolded state (b), and the two TSE clusters (c and d) are reported
and compared.
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