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Abstract

Defining the aggressiveness and growth rate of a malignant cell population is a key step in the clinical approach to treating
tumor disease. The correct grading of breast cancer (BC) is a fundamental part in determining the appropriate treatment.
Biological variables can make it difficult to elucidate the mechanisms underlying BC development. To identify potential
markers that can be used for BC classification, we analyzed mRNAs expression profiles, gene copy numbers, microRNAs
expression and their association with tumor grade in BC microarray-derived datasets. From mRNA expression results, we
found that grade 2 BC is most likely a mixture of grade 1 and grade 3 that have been misclassified, being described by the
gene signature of either grade 1 or grade 3. We assessed the potential of the new approach of integrating mRNA expression
profile, copy number alterations, and microRNA expression levels to select a limited number of genomic BC biomarkers. The
combination of mRNA profile analysis and copy number data with microRNA expression levels led to the identification of
two gene signatures of 42 and 4 altered genes (FOXM1, KPNA4, H2AFV and DDX19A) respectively, the latter obtained
through a meta-analytical procedure. The 42-based gene signature identifies 4 classes of up- or down-regulated microRNAs
(17 microRNAs) and of their 17 target mRNA, and the 4-based genes signature identified 4 microRNAs (Hsa-miR-320d, Hsa-
miR-139-5p, Hsa-miR-567 and Hsa-let-7c). These results are discussed from a biological point of view with respect to
pathological features of BC. Our identified mRNAs and microRNAs were validated as prognostic factors of BC disease
progression, and could potentially facilitate the implementation of assays for laboratory validation, due to their reduced
number.
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Introduction

Breast cancer (BC) is a heterogeneous disease with varied

morphological presentation, molecular features, behaviors, and

response to therapy [1–2]. Clinical decisions on BC treatment are

based on the availability of strong prognostic and predictive factors

to guide the patient decision-making and the choice of treatment

options [3–5]. One of the most well-established prognostic factors

for BC is histological grade, which involves morphological

assessment of tumor biological characteristics and quantifies tumor

aggressiveness [6–7]. The histological definition of the tumor

grade in BC is mainly based on the degree of differentiation of the

tumor tissue [6]: grade 1 (G1) is a well-differentiated, slow-growing

tumor; grade 3 (G3) is a poorly differentiated, highly proliferative

tumor; grade 2 (G2) is a moderately differentiated, slightly faster-

growing tumor than normal cells.

The prognostic value of histological grade has been documented

for most tumor types [4]. The histological grade of BC has been

correlated with life expectancy of patients [8]. For example,

untreated patients with G1 disease have been shown to have a

95% 5-year survival rate, patients with G3 malignancies show

75% 5-year survival rates, whereas those with G2 malignancies

show 50% 5-year survival rates [8]. For its excellent outcome G1

does not require adjuvant chemotherapy, on the contrary, G3

requires systemic treatment, while G2 is not useful for the

treatment decision.

Mis-assignments of G1 to G3 grade or vice versa are rarely

reported, while difficulties in discriminating G2 from the other

grades are often presented [6]. In fact, a high percentage of tumors

(30–60%) are classified as histologic G2 with poor degree of

concordance between two different pathologists. Sometimes, a

central pathologist consensus is used to improve pathology

classification [9–10].

In recent years, molecular techniques, in particular gene

expression profiling, have been used increasingly, in order to

improve BC classification and to assess patient prognosis and

response to therapy.

Most molecular studies of BC have focused on the analysis of

only one or the combination of two genome-wide microarray-
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based expression profiling approaches, such as mRNA expression

profiling, DNA copy number, and/or epigenetic analysis (e.g.

microRNAs).

When only genome-wide microarray-based expression profiling

was used, two different strategies were adopted to provide

prognostic information by means of gene expression signatures

[11]: following a ‘‘top-down’’ strategy, mRNA expression profiling

from patients with known clinical outcome were statistically

compared to identify signatures associated with different progno-

sis, without any biological assumption [12]; following a ‘‘bottom-

up’’ strategy, mRNA expression profiling from patients with

different tumor biological characteristics were selected and

reduced in number following analysis through multivariate models

[13–15], with a potential cost reduction of genomic biomarker

analysis.

However, a different strategy, fully based on biological

assumptions, implies the combination of two or more genome-

wide microarray-based expression profiling resulting in the

identification of molecular profiles able to predict cancer

progression [16–19] and treatment response [16] but at the same

time allowing the selection of only a limited number of target genes

(e.g. from thousands to fifty) [20–21].

Most studies concerning DNA copy number alterations (CNAs)

investigated the use of genetic aberrations as biomarkers for cancer

prognosis [22–23], but few studies have been reported regarding

the relationship between CNAs and disease progression [24–27].

Moreover, most of these studies did not consider that identifying

CNAs in genes is important for defining key genetic events leading

to malignant transformation and disease progression. The

association between CNAs and gene expression levels has been

demonstrated, and 12% of gene expression variation can be

explained by differences in CNAs [28]. Genes responsible for

regulating molecular processes may be targeted by these

alterations, with expression changes resulting from CNAs. By

combining gene expression and copy number data, genes involved

in tumor processes can be better characterized and numerically

reduced.

Only a limited number of studies have used this approach in

cancer prognosis [29–44]. Several studies have used high-

resolution oligonucleotide comparative genomic hybridization

arrays, and, by matching gene expression array data, they

demonstrated a correlation between DNA copy number alteration

and mRNA levels [29–31]. Chin et al. [37] showed that the

accuracy of risk stratification, according to the outcome of BC,

could be improved through a combined analysis of gene

expression and DNA copy number. Other studies [36–41] have

correlated DNA copy number changes with gene expression

signatures.

MicroRNAs (miRNAs) are small, noncoding RNA molecules

approximately 22 nucleotides in length that interact with their

target mRNAs to inhibit translation or target mRNA for

degradation or deadenylation [45–46]. This interaction is guided

by sequence complementarity and results in the reduction of

mRNA, causing decreasing of protein levels.

Each miRNA is potentially able to regulate approximately 100

or more mRNA targets, and 30% of all human genes are thought

to be regulated by miRNAs [47–49]. miRNAs are involved in key

biological processes, such as development, differentiation, apop-

tosis, and proliferation [50–51]; therefore, identification and

validation of miRNA–mRNA target interactions is essential.

miRNA expression is highly specific for tissues and developmental

stages [51–52], and has recently been used for the molecular

classification of tumors [53–54]. Zhang et al. [55] showed that

CNAs of miRNAs and their regulatory genes is highly prevalent in

cancer.

In addition to deregulated expression of miRNAs associated

with a variety of cancers [56–57], in 2008 it was discovered that

miRNAs are also present in blood of cancer patients [58–60].

Over the last few years, these results were confirmed in other

cancer studies and in different diseases, (for a review see [61–64]),

and circulating miRNAs have emerged as promising novel and

minimally invasive markers [65]. Circulating, cell-free miRNAs

hold great promise as a new class of biomarkers [66–69] due to

their surprisingly high stability in plasma, association with disease

states, small amounts of starting materials needed and ease of

sensitive measurement. MicroRNA blood profiles may be useful to

classify different types of cancer, and also may be considered as

potential targets to be obtained in blood in an early stage of disease

or hopefully when the disease is not expressed yet [70–71], and

also to discriminate between benign and malignant disease [71].

In a limited number of studies involving integration analysis of

mRNA expression in BC, genomic changes and miRNA

expression were adopted [72–75]. Eo et al. [72] classified BC

subtypes to incorporate pathways information with various genetic

analyses and achieved better performance than classifiers based on

the expression levels of individual genes of BluePrint. Kristensen et

al. [74] used an integrated approach to identify and classify BC

according to the most deregulated pathways that provide the best

predictive value with respect to prognosis, as well as identified key

molecular and stromal signatures.

By combining the analysis of mRNA expression data, array-

comparative genomic hybridization (aCGH), and miRNAs,

Blenkiron et al. [75] identified a number of miRNAs that are

differentially expressed among molecular tumor subtypes.

The aim of this study was to develop a method able to efficiently

combine CNA, miRNAs and mRNAs in order to reclassify

histological G2 BC tumor into G1- and G3-like BC tumor, thus

improving BC grade definition. Our fully biological-based

approach is novel with respect to previously published approaches

proposed for similar purposes based on only mRNA expression

profiling [14–15], and considers the combined effect of epigenetic

and genetic changes resulting in deregulated gene expression and

function.

We also assessed if the proposed combined approach allows

incremental results in BC classification with respect to those

previously obtained in published papers [14–15], in terms of both

grade classification performance and number and type of genomic

features identified as candidate biomarkers of BC progression and

potentially suitable for an easy and less expensive implementation

of clinical assays.

The identified CNA-altered mRNA-targets and miRNA could

be further investigated in laboratory by clinical experiments on

tissue or blood samples from BC patients, as potential prognostic

biomarkers responsible of BC disease development and progres-

sion, thus resulting very useful for treatment decision.

Materials and Methods

Gene expression analysis: mRNAs
We used 3 public BC microarray datasets from the Gene

Expression Omnibus (GEO) database: the dataset used by Foekens

et al. (FK) [76], GSE11121, and GSE2990 containing 180, 200,

and 125 samples, respectively, for a total of 505 BC microarray

data sets. Datasets were all from the same Affymetrix GeneChip

Human Genome U133A platform. These data sets were subjected

to two phases:
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N Normalization. Gene expression values were computed from

microarray data using a robust multi-array average (RMA)

method.

N Data merging. To harmonize gene expression data from the

three different datasets, it was necessary to detect and remove

the batch effects (experimental variations of datasets generated

by different laboratories). An empirical Bayes method,

combining batches of gene expression microarray data

(ComBat), was used. The systematic difference for differently

normalized data generated by the three laboratories was

adjusted [77–78].

From the 505 BC microarray data sets, properly normalized

and harmonized, we randomly selected three groups: microarray

data sets from 78 patients with G1 BC, microarray data sets from

78 patients with G2 BC and microarray datasets from 78 patients

with G3 BC. This selection was performed in order to use equal

sample sizes from the three groups of microarray datasets.

To identify associations between gene expression and disease

progression with regard to grade, a significance analysis of

microarray (SAM) was used [79]. SAM was applied to select

statistically significant genes based on differential expression

between 2 classes of samples. SAM identifies statistically significant

genes by carrying out a gene-specific t-test with respect to the

separation of the 2 classes of interest, and then computes a statistic

measure for each gene which represents the strength of the

relationship between gene expression and a response variable (e.g.

false discovery rate, FDR). More specifically, as a first step, SAM

analysis was used to detect DNA probes to discriminate between

the 2 following classes of interest: G1 vs G3, G1 vs G2 and G2 vs

G3.

The genes were considered up- or down-regulated if their mean

expression in one class were significantly higher/lower respectively

(FDR, q-value ,0.01) than in the other class. In a second step, the

up- or down- regulated genes were identified by submitting the

corresponding Ids probes from the HGU133 Array to Affymetrix

through the Netaffx tool [80].

We compared deregulated genes obtained from G1 vs G2 SAM

analysis and from G2 vs G3 SAM analysis with deregulated genes

obtained from G1 vs G3 SAM analysis.

Copy number alteration analysis: CNA-associated mRNAs
We used one public BC SNP array dataset from the GEO

database: GSE16619. We selected 9 patients with G1 and 66

patients with G3 BC. All samples were characterized using the

Affymetrix SNP 5.0 array. We used the copy number analyzer for

GeneChip (CNAG) [81] to identify the chromosomal regions with

Figure 1. Schematic procedure for the identification of up and
down regulated miRNAs. Identification of up and down regulated
miRNAs.
doi:10.1371/journal.pone.0097681.g001

Figure 2. Schematic procedure Gene Expression and Genome CNA. Identification of up regulated genes with copy number gains and down
regulated genes with copy number losses is showed.
doi:10.1371/journal.pone.0097681.g002
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gains and losses of DNA and we used the UCSC table browser

[82] to identify genes within the identified chromosomal regions.

In both G1 and G3 groups, we selected the first 6000 more

frequently observed genes with CNA.

miRNA analysis: miRNA-regulated mRNAs
We used one public BC miRNAs expression data set from the

GEO database: GSE22216. We selected 42 patients with G1 and

42 patients with G3 BC.

SAM was applied to select significant miRNAs based on

differential expression between these two classes of samples (Fig. 1).

miRNA were considered up- or down-regulated if their mean

expression in G3 BC were significantly higher or lower,

respectively (FDR, q-value ,0.01) than in class G1 BC.

Each miRNA can regulate approximately 100 or more mRNA

targets [48]. miRDB [83–84] was used to identify mRNA targets

of each miRNA obtained in the differential expression analysis.

Combination of gene expression and genome copy
number alteration

In this phase, identification of differentially expressed genes with

CNAs (gains/losses) was obtained (Fig. 2). In particular, by

considering the results of gene expression analysis (i.e. up- and

down-regulated genes) and of copy number analysis (i.e. amplified

and deleted genes), we selected the following genes:

– Up-regulated genes with copy number gains in G1 BC patients

(by selecting genes common to the set of up-regulated and the

set of amplified genes);

– Down-regulated genes with copy number losses in G1 BC

patients (by selecting genes common to the set of down-

regulated and the set of deleted genes);

– Up-regulated genes with copy number gains in G3 BC patients

(by selecting genes common to the set of up-regulated and the

set of amplified genes);

– Down-regulated genes with copy number losses in G3 BC

patients (by selecting genes common to the set of down-

regulated and the set of deleted genes);

Combination of gene expression, genome copy number
alteration and miRNA-analysis

We hypothesized that if a miRNA is up-regulated in cancer, it

down-regulates a gene that can act as a tumor suppressor or

transcriptional repressor of an oncogene. In contrast, if a miRNA

is down-regulated in cancer, its target gene is up-regulated, which

can be an oncogene or a transcriptional repressor of an

oncosuppressor. Even if CNA revealed mRNA deregulation, the

combination of miRNAs and CNA on the genes may reveal other

mRNA deregulation. We analyzed the target genes of up- and

down-regulated miRNAs from G1 and G3 BC patients. These

target genes were compared with up-regulated and amplified (up-

amplified) genes and down-regulated and deleted (down-deleted)

genes, respectively. We then selected common genes to the set of i)

down-regulated and deleted genes, with their up-regulated

miRNAs-mRNA and ii) up-regulated and amplified genes, with

their down-regulated miRNAs-mRNA (Fig. 3).

In particular, we identified:

– Up-regulated genes with copy number gains that are targets of

down-regulated miRNAs in patients with G1 BC;

– Down-regulated genes with copy number losses that are targets

of up-regulated miRNAs in patients with G1 BC;

– Up-regulated genes with copy number gains that are targets of

down-regulated miRNAs in patients with G3 BC;

Figure 3. Schematic procedure miRNAs analysis. Combination of gene expression, genome CNA, and miRNA-regulated mRNAs.
doi:10.1371/journal.pone.0097681.g003
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– Down-regulated genes with copy number losses that are targets

of up-regulated miRNAs in patients with G3 BC.

The classifier
We designed a machine learning algorithm, a rapid miner

workflow (RMA-WF) [43–44] [85–87] based on support vector

machines (SVM).

RMA-WF was used for the validation of the classifier following

two different processes.

– Cross-validation operator. We used a k-fold cross validation

process in which a two-step process was performed. In the first

step, the classifier was trained over a predetermined set of G1 and

G3 BC data. In the second step, the trained classifier was used to

test new classification exemplars. Specifically, the G1 and G3 BC

datasets were partitioned into k subsets of equal size. Of the k

subsets, a single subset was retained as the testing data set and the

remaining k21 subsets were used as the training data set. The

cross-validation process was then repeated k times, with each of the

k subsets used exactly once as the testing data. The k results from

the k iterations were averaged to produce a single estimation.

Mean accuracy, sensitivity, and specificity of the classifier were

determined. It is worth noting that, in this work, specificity relates

to the ability of the classifier to identify G1 samples (as it measures

the percentage of G1 samples which are correctly identified as

belonging to G1 class), and sensitivity relates to the ability of the

classifier to identify G3 samples (as it measures the percentage of

G3 samples which are correctly identified as belonging to G3

class).

Area under the receiver operating characteristic curve (AUC)

was also computed as a measure of classifier performance.

-Training and testing validation operator. In the first step, the

classifier was trained over a predetermined set of G1 and G3 BC

data. In the second step, the trained classifier was used to test new

classification examples of G2 data, which were re-classified as G1

or G3 (G1*, G3*) after testing. In a third step, these classes G1*

and G3* were used to train again RMA-WF and to test G1 and

G3 datasets.

Mean accuracy, sensitivity, specificity, AUC and computational

time of the classifier were determined.

We optimized inference accuracy over a space of given SVM

feasible learning parameters: kernel.c, kernel.C M{ 0…5} step 30;

Figure 4. Example of CNA detected by Genome Wide 5.0
Picture generated with CNAG. The red plots (top panel) show
individual SNP probe signals. In the second panel the blue line
represents total gene dosage. The diploid state is indicated by 2. The
chromosome 1 shows one big amplification in 1q.
doi:10.1371/journal.pone.0097681.g004

Figure 5. Combination of Gene Expression - Genome CNA and miRNA analysis. Each table represents: down-regulated genes with putative
up-regulated miRNAs in G3 (Class 1), up-regulated genes with putative down miRNAs in G1 (Class 2), up-regulated genes with putative down-
regulated miRNAs in G3 (Class 3), and down-regulated genes with putative up miRNAs in G1 (Class 4), respectively.
doi:10.1371/journal.pone.0097681.g005
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kernel.type = RADIAL, DOT, ANOVA (see Rapid Miner

documentation at [85]). This approach allowed to find, the best

SVM learning parameters for each data type over the same space

of values.

All data have been deposited in our research centre repository

(inlab.ibfm.cnr.it/research_data.php).

Evaluation of combination approaches
The performances of BC grade classification was evaluated

using the genomic biomarkers selected by the different combina-

tion approaches:

– I: The expression levels of the up- or down-regulated mRNAs

as obtained from gene expression analysis;

– II: The expression levels of the up-regulated genes with

amplification and down-regulated genes with deletion and the

expression levels as obtained from the combined analysis of

gene expression and genome CNA;

– III: The expression levels of i) up-regulated and copy number-

amplified genes (up-amplified) that are target of down-miRNAs

and ii) down-regulated and copy number-deleted genes (down-

deleted) that are target of up-miRNAs, as obtained from the

combined analysis of gene expression, genome CNA, and

miRNA.

– IV: The expression levels of miRNAs, as obtained from the

combined analysis of gene expression and genome CAN

Evaluation of G1 vs. G3 classification
The classifier was tested to distinguish between histological G1

and G3 BC patients using the different combination approaches

(I–IV).

Cross validation of the classifier was performed for 5 different

BC datasets: 17 G1 BC patients and 17 G3 BC patients from the

FK dataset, 29 G1 BC patients and 29 G3 BC patients from the

GSE11121 dataset, 28 G1 BC patients and 28 G3 BC patients

from the GSE2990 dataset, 30 G1 BC patients and 30 G3 BC

patients from the GSE7390 dataset, and 42 G1 BC patients and 42

G3 BC patients from the GSE22216 (miRNA- dataset). The value

k was adjusted with k = 10 as in references [88–90]. Confidence

intervals were stated at the 95% confidence level.

Evaluation of G2 classification
The classifier was tested to re-classify G2 using the different

combination approaches (I–IV).

For this purpose, the machine learning algorithm based on

SVM (RMA-WF) was used to classify G2 BC patients in G1 or G3

class. Specifically, 5 different BC datasets were used: from the FK

dataset, 17 G1 BC patients and 17 G3 BC patients were used for

training and 34 G2 patients were used for testing; from the

GSE11121 dataset, 29 G1 BC patients and 29 G3 BC patients

were used for training and 50 G2 patients were used for testing;

from the GSE2990 dataset, 28 G1 BC patients and 28 G3 BC

patients dataset were used for training and 44 G2 patients were

used for testing; from the GSE7390 dataset 30 G1 BC patients and

30 G3 BC patients were used for training and 34 G2 patients were

used for testing. From the miRNA dataset GSE22216, 42 G1 BC

Table 1. G1 vs. G3 classification performances (mRNA and miRNA): accuracy, cross-validation.

ACCURACY

I 1390 genes II 532 genes III 42 genes IV 17 miRNA

FK 17G1vs17G3 82.50% [CI 95%] 77.57–87.42 80.00% [CI 95%] 75.44–84.55 84.17% [CI 95%] 76.81–91.52

Gse11121 29G1vs29G3 90.00% [CI 95%] 87.15–92.84 91.67% [CI 95%] 88.21–95.12 93.00% [CI 95%] 90.78–95.21

GSE2990 28G1vs28G3 93.33% [CI 95%] 90.43–96.22 93.33% [CI 95%] 90.43–96.22 95.00% [CI 95%] 92.99–97

GSE7390 30G1vs30G3 90.00% [CI 95%] 86.62–93.37 90.00% [CI 95%] 87.20–92.79 90.00% [CI 95%] 87.2–92.79

GSE22216 42G1vs42G3 85.69% [CI 95%] 84.12–
87.25

Mean (over datasets) 88.95%+/24.581 88.75%+/25.981 90.54%+/24.711 85.69%

1standard deviation.
doi:10.1371/journal.pone.0097681.t001

Table 2. G1 vs. G3 classification performances (mRNA and miRNA): sensitivity, cross-validation.

SENSITIVITY

I 1390 genes II 532 genes III 42 genes IV 17 miRNA

FK 17G1vs17G3 90.00% [CI 95%] 83.27–96.72 85.00% [CI 95%] 74.23–95.76 75.00% [CI 95%] 61.45–88.54

Gse11121 29G1vs29G3 90.83% [CI 95%] 87.18–94.47 90.00% [CI 95%] 84.5–95.49 90.00% [CI 95%] 86.06–93.93

GSE2990 28G1vs28G3 97.50% [CI 95%] 95.53–99.46 96.67% [CI 95%] 94.05–99.28 96.67% [CI 95%] 94.05–99.28

GSE7390 30G1vs30G3 93.33% [CI 95%] 89.95–96.7 96.67% [CI 95%] 94.13–99.2 100.00% [CI 95%] 100–100

GSE22216 42G1vs42G3 86.83% [CI 95%] 82.07–
91.58

Mean (over datasets) 92.91%+/23.361 92.08%+/25.61 90.41%+/211.081 86.83%

1standard deviation.
doi:10.1371/journal.pone.0097681.t002
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patients and 63 G3 BC patients were used for training and 74 G2

patients were used for testing.

As results of testing, G2 samples were classified as G1 or G3

(G1*, G3*). These classes G1* and G3* were used to train again

RMA-WF and to test to the 5 different G1 and G3 BC datasets.

Evaluation of our gene signature in comparison with
other gene signatures

Our gene signature (III) was compared with Sotiriou et al. 97-

gene signature [14], Ivshina et al. 18-gene signature [15] and

Ivshina et al. 6-gene signature [15], obtained by previous studies

on datesets of mRNA expression profiling of BC patients with the

same purpose of improving grade definition.

From above comparisons, we obtained a downsized gene

signature consisting of genes, which were shared with the above-

mentioned signatures. This downsized gene signature was

considered as a new gene signature (V).

Our final gene signatures (III and V) were tested together with

Sotiriou et al. 97-gene signature, Ivshina et al. 18-gene signature,

and Ivshina et al. 6-gene signature, in terms of both grade

classification performance and prognostic value. In order to avoid

cohort-specific biases, we used BC datasets not employed in any of

the above-referenced studies in the process of gene signature

identification.

Evaluation of G1 vs. G3 classification
The classifier was tested to distinguish between histological G1

and G3 BC patients using the five above mentioned gene

signatures. The ability of the classifier to distinguish between G1

and G3 BC patients was evaluated with a cross-correlation

approach: 30 G1 and 30 G3 BC patients from the GSE7390

dataset were used, and 28 G1 BC patients and 28 G3 BC patients

from the Stockholm dataset [91].

Evaluation of G2 classification
The classifier was tested to re-classify G2 using the five gene

signatures. For this purpose, the classifier was trained to the 2

different BC datasets used previously: from the GSE7390 dataset,

30 G1 BC patients and 30 G3 BC patients were used for training

and 34 G2 patients were used for testing; from the Stockholm

dataset (GSE1456), 28 G1 BC patients and 28 G3 BC patients

were used for training and 38 G2 patients were used for testing.

A survival analysis was also performed, using the survival

package included in the R statistical analysis software [92–93].

To determine if the re-classification of G2 in G1* and

G3*correlates with patient survival endpoints, we examined

relapse-free survival of patients. The Kaplan-Meier estimate was

used to compute survival curves. Log-Rank tests and hazard ratios

[C.I. 95%] were computed to assess the statistical significance of

the differences between G1*and G3*, G1 and G1*, G3 and G3*.

Results

Differential gene expression analysis
The gene expression analysis of G1 vs G3 BC samples allowed

identification of 1190 de-regulated genes (1392 probes). Among

these, 578 (687 probes) were found to be up-regulated in G3 and

612 (705 probes) were found to be down-regulated in G3. The

functions of the 578 up-regulated genes have been previously

Table 3. G1 vs. G3 classification performances (mRNA and miRNA): specificity, cross-validation.

SPECIFICITY

I 1390 genes II 532 genes III 42 genes IV 17 miRNA

FK 17G1vs17G3 76.67% [CI 95%] 65.69–87.64 65.00% [CI 95%] 51.87–78.12 96.67% [CI 95%] 93.3–100

Gse11121 29G1vs29G3 90.00% [CI 95%] 86.06–93.93 93.33% [CI 95%] 89.89–96.76 96.67% [CI 95%] 94.09–99.24

GSE2990 28G1vs28G3 88.33% [CI 95%] 83.52–93.13 90.00% [CI 95%] 84.41–95.58 91.67% [CI 95%] 87.19–96.14

GSE7390 30G1vs30G3 86.67% [CI 95%] 81.07–92.26 83.33% [CI 95%] 77.67–88.98 80.00% [CI 95%] 74.4–85.59

GSE22216 42G1vs42G3 83% [CI 95%] 79.61–
86.38

Mean (over datasets) 85.41%+/25.981 82.91%+/212.641 91.25%+/27.861 83%

1standard deviation.
doi:10.1371/journal.pone.0097681.t003

Table 4. G1 vs G3 classification performance (mRNA and miRNA): AUC, cross-validation.

AUC

I 1390 genes II 532 genes III 42 genes IV 17 miRNA

FK 17G1vs17G3 0.767 [CI 95%] 0.65–0.87 0.733 [CI 95%] 0.62–0.84 0.850 [CI 95%] 0.74–0.95

Gse11121 29G1vs29G3 0.967 [CI 95%] 0.94–0.99 0.956 [CI 95%] 0.93–0.97 0.967 [CI 95%] 0.95–0.98

GSE2990 28G1vs28G3 0.964 [CI 95%] 0.94–0.98 0.978 [CI 95%] 0.96–0.99 0.940 [CI 95%] 0.91–0.96

GSE7390 30G1vs30G3 0.956 [CI 95%] 0.93–0.97 0.933 [CI 95%] 0.90–0.96 0.900 [CI 95%] 0.86–0.93

GSE22216 42G1vs42G3 0.87 [CI 95%] 0.84–0.89

Mean (over datasets) 0.91+/20.091 0.9+/20.111 0.91+/20.051 0.87

1standard deviation.
doi:10.1371/journal.pone.0097681.t004
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associated with cell cycle control, mitosis and mitotic spindle

regulation or DNA repair. 66/578 genes overlap with the 66/80

G3-upregulated genes described by Sotiriou et al. [14] (i.e. BIRC5,

CCNA2, FOXM1, KPNA2, MYBL2, TPX2, UBE2N/2S);

moreover, 10/578 genes overlap with the 10/16 G3-upregulated

genes reported in Ivshina A. et al [15]. About the remaining 502

up-regulated genes, their main functions are linked to cell cycle

regulation (i.e. PLK1, PLK4, …); protein folding (i.e. DNAJA2,

HSPD1,…); DNA (i.e. CDT1) and RNAs (i.e. DKC1, EIF2C2…)

maturation; DNA repair (i.e. EXO1, EXOSC2,…) and replication

control (i.e. GINS1, MCM2, MCM10, NCAPD2, NCAPG,…);

genome stability (spindle control, i.e. KIF family; nucleosome

control, i.e. HMG family). About the 612 G3-downregulated

genes, the main pathways affected are apoptosis (i.e. BCL2,

CASP9), cell cycle control (i.e. CDKN1C, CREBL2, DUSP1,…),

transcription regulation (i.e. CTDSP1, CTDSPL, DDX17,…), cell

adhesion (i.e.ADAM12, ATP7A, CD134, CD302), but also

remodeling of cytoskeleton (i.e.KIF13B, LIMA1, LAMA2,

LAMB2, LAMC1…) and external matrix (i.e. collagen compo-

nents as COL14A1, COL16A1,…).

The gene expression analysis of G1 vs G2 BC samples allowed

identification of 40 de-regulated genes (40 probes). Among these,

36 (36 probes) were found to be up-regulated in G2 BC and 4 (4

probes) were found to be down-regulated in G2 BC.

The gene expression analysis of G2 vs G3 BC samples allowed

identification of 160 de-regulated genes (171 probes). Among

these, 127 (138 probes) were found to be up-regulated in G3 BC

and 33 (33 probes) were found to be down-regulated in G3 BC.

From the comparison of de-regulated genes obtained from G1

vs G2 SAM analysis and from G2 vs G3 SAM analysis with de-

regulated genes obtained from G1 vs G3 SAM analysis, we found:

– between G1 vs G2 and G1 vs G3 no gene specifically

associated with G2 BC. All 4 down-regulated genes in G2 (G1

vs G2) were found common to 4/612 up-regulated genes in G1

patients (G1 vs G3). Similarly, all 36 up-regulated genes in G2

(G1 vs G2) were found common to 36/578 down-regulated

genes in G1 BC patients (G1 vs G3).

– between G2 vs G3 and G1 vs G3 few genes associated with G2

BC. 124/127 (98%) down-regulated genes in G2 (G2 vs G3)

are common to 124/578 down-regulated genes in G1 BC

patients (G1 vs G3). 32/33 (97%) up-regulated genes in G2 (G2

vs G3) are common to 32/612 up-regulated genes in G1 BC

patients (G1 vs G3).

Our results show that G2 BC is most likely a mixture of G1 and

G3 BC that have been somehow misclassified, as previously

reported [14–15].

Copy number alteration analysis
Copy number gains were frequently observed within chromo-

somes 1q, 8q, 17q, and 20; copy number losses were frequently

observed within chromosomes 13q, 1p, and 3. Our findings were

consistent with results of previous cytogenetic studies [28][94].

Fig. 4 shows an example of CNA detected in a Genome Wide

5.0 picture generated with CNAG, where chromosome 1 shows

one large amplification in 1q.

The average number of deleted regions was 29 in G1 patients

and 39 in G3 patients. The average number of amplified regions

was 97 in G1 patients and 179 in G3 patients.

The average number of deleted genes was 645 in G1 patients

and 266 in G3 patients. The average number of amplified genes

was 573 in G1 patients and 331 in G3.

Table 5. Classification performances (mRNA and miRNA): computational time (sec, execution time/number of samples), cross-
validation on G1–G3.

EXECUTION TIME (sec)

I 1390 genes II 532 genes III 42 genes IV 17 miRNA

FK 17G1vs17G3 43.32 18.6 2.2

Gse11121 29G1vs29G3 53.48 23.9 2.6

GSE2990 28G1vs28G3 51.67 22.9 2.7

GSE7390 30G1vs30G3 57 25.8 3.2

GSE22216 42G1vs42G3 4.7

doi:10.1371/journal.pone.0097681.t005

Table 6. Classification performances (mRNA and miRNA): accuracy, TRAINING on G1*-G3*, TESTING on G1–G3.

ACCURACY

I 1390 genes II 532 genes III 42 genes IV 17 miRNA

FK 17G1*vs17G3* 79.41% 76.47% 76.47%

Gse11121 25G1*vs25G3* 89.65% 87.93% 84.48%

GSE2990 22G1*vs22G3* 87.5% 85.71% 91.07%

GSE7390 17G1*vs17G3* 85% 91.66% 85%

GSE22216 37G1*vs37G3* 82.85%

Mean (over datasets) 85.39%+/24.411 85.44%+/26.461 84.25%+/25.991 82.85%

1standard deviation.
doi:10.1371/journal.pone.0097681.t006
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miRNA analysis
miRNA analysis of G1 vs G3 BC samples allowed to identify 26

up-miRNAs and 53 down-miRNAs.

miRNA-regulated mRNAs
mRNA targets of each miRNA were identified in the differential

expression analysis:

– The average number of target genes (total target genes/

miRNAs) were 41 from up-regulated miRNAs and 44 from

down-regulated miRNAs;

Combination of gene expression and genome CNA
Up- and down-regulated genes with CNAs were selected.

Specifically, the following genes were selected:

– 108 up-regulated genes with copy number gains were found in

G1 BC patients.

– 123 down-regulated genes with copy number losses were found

in G1 BC patients.

– 151 up-regulated genes with copy number gains were found in

G3 BC patients.

– 150 down-regulated genes with copy number losses in G3 BC

patients.

Combination of gene expression, genome CNA, and
miRNA-regulated mRNAs

We identified the following classes:

– 3 down-regulated miRNAs that target up-amplified genes

reported previously in G1 BC patients;

– 8 up-regulated miRNAs that target down-deleted genes

reported previously in G1 BC patients;

– 8 down-regulated miRNAs that target up-amplified genes

reported previously in G3 BC patients.

– 7 up-regulated miRNAs that target down-deleted genes

reported previously in G3 BC patients.

In particular, we found the following genes, as shown in Fig. 5:

– 13 down-regulated genes, with copy number losses, that are

targets of up-regulated miRNAs in patients with G3 BC (Class

1)

– 5 up-regulated genes, with copy number gains, that are targets

of down-regulated miRNAs in patients with G1 BC (Class 2)

– 21 up-regulated genes, with copy number gains, that are targets

of down-regulated miRNAs in patients with G3 BC (Class 3)

– 13 down-regulated genes, with copy number losses, that are

targets of up-regulated miRNAs in patients with G1 BC (Class

4)

Evaluation of G1 and G3 classification
For each combined approach (I: gene expression, II: combina-

tion of gene expression, and genome CNA, III: combination of

gene expression - genome CNA, and miRNA analysis, IV:

miRNAs), the results of G1 vs G3 BC classification are presented

in Tables 1–4 for accuracy, sensitivity, specificity and AUC,

respectively.

Table 7. Classification performances (mRNA and miRNA): sensitivity,TRAINING on G1*–G3*, TESTING on G1–G3.

SENSITIVITY

I 1390 genes II 532 genes III 42 genes IV 17 miRNA

FK 17G1*vs17G3* 76.74% 82.35% 70.58%

Gse11121 25G1*vs25G3* 89.65% 86.2% 82.75%

GSE2990 22G1*vs22G3* 85.71% 82.14% 89.28%

GSE7390 17G1*vs17G3* 90% 100% 93.33%

GSE22216 37G1*vs37G3* 88.88%

Mean (over datasets) 85.52%+/26.211 87.67%+/28.421 83.98%+/29.941 88.88%

1standard deviation.
doi:10.1371/journal.pone.0097681.t007

Table 8. Classification performances (mRNA and miRNA): specificity, TRAINING on G1*–G3*, TESTING on G1–G3.

SPECIFICITY

I 1390 genes II 532 genes III 42 genes IV 17 miRNA

FK 17G1*vs17G3* 82.35% 70.58% 82.35%

Gse11121 25G1*vs25G3* 89.65% 89.65% 86.20%

GSE2990 22G1*vs22G3* 89.28% 89.28% 92.85%

GSE7390 17G1*vs17G3* 80% 83.33% 76.66%

GSE22216 37G1*vs37G3* 73.80%

Mean (over datasets) 85.32%+/24.881 83.21%+/28.91 84.51%+/26.791 73.80%

1standard deviation.
doi:10.1371/journal.pone.0097681.t008
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Although the combination strategy allowed to reduce the

number of genes from 1390 to 42, all mRNA signatures derived by

the three approaches (I, II, III) achieved good and similar mean

performance. The combination of gene expression, genome CNA,

and miRNA-regulated mRNAs (III) slightly improved mean

accuracy and sensitivity with respect to I and II approaches,

achieving mean values .90% (mean accuracy: 90.54% vs 88.95%

and 88.75%, mean specificity: 91.25% vs 85.41% and 82.91%;).

Mean sensitivity was slightly worsen, however .90% (90.41% vs

92.91% and 92.08%).

AUC results (Table 4) showed the good and similar perfor-

mances of the classifier when all the proposed approach I, II, III

were applied.

The combination strategies allowed to identify 17 miRNA

representing an epigenetic signature able to achieve good

performance in G1 vs G3 classification (.80% for all indexes),

although lower than the mRNA-based approaches (I, II, III).

Table 5 shows the computational times required by the

classification algorithm for the different proposed approaches

(Computer processor: Intel Core i5-3330S CPU @ 2.70 GHz),

showing the improvement in the computation performances with

the biomarker number reduction.

Evaluation of G2 classification
For each combined approach (I: gene expression, II: combina-

tion of gene expression, and genome CNA, III: combination of

gene expression - genome CNA, and miRNA analysis, IV:

miRNA), the results of G1 vs G3 BC classification patients starting

from the re-classified G2 BC patients (in G1* and G3*), are

presented in Tables 6–9 for accuracy, sensitivity, specificity and

AUC, respectively.

All indexes showed good and similar mean performance of the

classifier when the proposed approach I, II, III were applied.

Consistently with our previous results (see Section ‘‘Evaluation of

combination approach’’), method IV (miRNA) achieved good

performance for all indexes, although lower than the three

mRNA-based approaches (I, II, III).

Table 10 shows computational time of classification algorithm

for the different proposed approaches (Computer processor: Intel

Core i5-3330S CPU @ 2.70GHz), confirming the improvement in

the computation performances with the biomarker number

reduction.

Figure 6 shows heat maps of classification performances for

each combined approach (I,II,III,IV) for cross- validation and

training on G1*–G3*, testing on G1–G3 (TT).

Figure 7 shows bar chart for the computational time required by

the classification algorithm for the different proposed approaches

(I,II,III,IV) with cross-validation. Figure 8 shows bar chart for the

computational time required by the classification algorithm for the

different proposed approaches (I,II,III,IV) with training on G1*–

G3*, testing on G1–G3 (TT).

The results on the evaluation of the combination approaches

confirm the high potential of our method based on the combined

effect of epigenetic and genetic changes resulting in deregulated

gene expression and function in selecting genetic and epigenetic

signatures suitable for BC grade classification, also for histological

G2 BC re-classification in G1-like and G3-like BC tumors.

Our genetic (42-genes from approach III) and epigenetic

signatures (17 miRNA from method IV) were able to correctly

re-classify misclassified G2 BC tumors with no drop in

performances with respect to signatures of genes identify by single

differential gene expression analysis.

Table 9. Classification performance (mRNA and miRNA): AUC, TRAINING on G1*–G3P, TESTING on G1–G3.

AUC

I 1390 genes II 532 genes III 42 genes IV 17 miRNA

FK 17G1*vs17G3* 0.88 0.87 0.88

Gse11121 25G1*vs25G3* 0.95 0.95 0.94

GSE2990 22G1*vs22G3* 0.95 0.95 0.95

GSE7390 17G1*vs17G3* 0.94 0.93 0.89

GSE22216 37G1*vs37G3* 0.87

Mean (over datasets) 0.93+/20.031 0.92+/20.031 0.91+/20.031 0.87

1standard deviation.
doi:10.1371/journal.pone.0097681.t009

Table 10. Classification performances: computational time (second) Mean per sample (execution time/number of samples).

EXECUTION TIME

I 1390 genes II 532 genes III 42 genes IV 17 miRNA

FK 17G1*vs17G3* 37.35 6.08 4.6

Gse11121 25G1*vs25G3* 47.42 9.08 6.97

GSE2990 22G1*vs22G3* 49.03 11.27 6.91

GSE7390 17G1*vs17G3* 50.08 12.10 7.3

GSE22216 37G1*vs37G3* 4.8

Intel Core i5-3330S CPU @ 2.70 GHz TRAINING-TEST.
doi:10.1371/journal.pone.0097681.t010
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Evaluation of our gene signatures in comparison with
other gene signatures

Based on the comparison with Sotiriou et al. 97-gene signature,

Ivshina et al. 18-gene signature and Ivshina et al. 6-gene signature,

a down-sized gene signature (V approach) was obtained from our

42-gene signature, including only genes in common with the above

considered gene signatures. A 4-based gene signature consisting of

FOXM1, KPNA4, H2AFV and DDX19A was found. All the four

Figure 6. Heat maps of classification performances for each combined approach. I: gene expression, II: combination of gene expression,
and genome CNA, III: combination of gene expression, genome CNA, and miRNA analysis, IV: miRNA (from miRNA-regultated mRNA). Classification
performances were showed for: cross-validation (CV), and training on G1*–G3* - testing on G1–G3 (TT).
doi:10.1371/journal.pone.0097681.g006

Figure 7. Bar chart for the time benchmark. The computational
times required by the classification algorithm for the different proposed
approaches with cross-validation (CV) were showed. (I: gene expression,
II: combination of gene expression, and genome CNA, III: combination
of gene expression - genome CNA, and miRNA analysis IV: miRNA
classification)
doi:10.1371/journal.pone.0097681.g007

Figure 8. Bar chart for the time benchmark. The computational
times required by the classification algorithm for the different proposed
approaches with training on G1*–G3*, testing on G1–G3 (TT) were
showed. (I: gene expression, II: combination of gene expression, and
genome CNA, III: combination of gene expression - genome CNA, and
miRNA analysis IV: miRNA classification)
doi:10.1371/journal.pone.0097681.g008
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genes were included in the Sotiriou et al. 97-gene signature, while

only FOXM1 was comprised within the Ivshina et al. 18-gene

signature. No genes were shared with the Ivshina et al. 6-gene

signature.

Evaluation of G1 and G3 classification
For each considered gene signature (our 42-gene signature, our

4-gene signature, Sotiriou et al. 97-gene signature, Ivshina et al.

18-gene signature and Ivshina et al. 6-gene signature, the results of

G1 vs G3 BC classification are presented in Tables 11–14 for

accuracy, sensitivity, specificity and AUC, respectively.

All signatures achieved good and similar mean performances.

Slightly worsen mean sensitivity (81.66%) was found for the

Ivshina et al. 6-gene signature but it outperformed in specificity.

Similarly, slightly worsen mean specificity (85.00%) was found for

our 42-gene signature but it outperformed in sensitivity.

Evaluation of G2 classification
Accuracy, sensitivity, specificity and AUC, relative to the

performance of the classifier for G1 vs G3 classification of BC

patients employing the re-classified G2 patients (in G1* and G3*),

for the above mentioned gene signatures are presented in

Tables 15–18.

All signatures achieved good and similar mean performances.

Slightly worsen mean performance was found for our 42-gene

signature. Best performance is achieved by the Ivshina et al. 18-

gene signature (3 over 4 indexes). The Ivshina et al. 6-gene

signature and our 4-gene signatures have very similar perfor-

mance.

Figure 9 shows heat maps for evaluation of our gene signatures

in comparison with other gene signatures (III, V,Sotiriou et al. 97-

gene signature, Ivshina et al. 18-gene signature and Ivshina et al.

6-gene signature).

Results of Log-Rank tests for the comparison between G1*and

G3*, G1 and G1*, G3 and G3* as classified by means of the

abovementioned gene signatures, are shown in Table 19, 20, 21,

respectively.

Results of HR [C.I. 95%] for the comparison between G1*and

G3*, G1 and G1*, G3 and G3* are shown in Table 22, 23, 24,

respectively.

Relapse-free survival curves of G1* vs. G3* patients, as re-

classified from histological G2 by the use of our 42-gene signatures

and 4-gene signatures, are shown as representative examples, in

figure 10 for GSE7390 (a–b) and Stockholm (c–d) datasets,

respectively.

GSE7390 patients re-classified as G1* showed significantly less

risk of recurrence than those re-classified in G3* using both our

42-gene and 4-gene signatures (42-gene signature: log-rank test

p = 0.033, HR = 2.801 [C.I 95%] 1.048–7.488 p = 0.040; 4-gene

signature: log-rank test p = 0.000321, HR = 6.208 [C.I 95%]

2.021–19.08 p = 0.00143).

No significant difference was observed between the G1* and G1

(42-gene signature: log-rank test p = 0.652, HR = 1.390 [C.I 95%]

0.330–5.855 p = 0.653; 4-gene signature: log-rank test p = 0.773,

HR = 1.245 [C.I 95%] 0.278–5.570 p = 0.774) and G3* and G3

(42-gene signature: log-rank test p = 0.308, HR = 0.654 [C.I 95%]

0.287–1.489 p = 0.312; 4-gene signature log-rank test: p = 0.963,

HR = 1.018 [C.I 95%] 0.472–2.1954 p = 0.963).

Similarly, Stockholm patients re-classified as G1* showed

significantly less risk of recurrence than those re-classified in G3*

using both our 42-gene and 4-gene signatures (42-gene signature:

log-rank test p = 0.0331, HR = 4.63 [C.I 95%] 0.982–21.84

p = 0.05; 4-gene signature: log-rank test p = 0.00316, 11.669 [C.I

95%] 1.475–92.31 p = 0.0199).

No significant difference was observed between the G1* and G1

(42-gene signature: log-rank test p = 0.538, HR = 1.833 [C.I 95%]

0.257–13.04 p = 0.538; 4-gene signature: log-rank test p = 0.784,

Table 11. G1 vs G3 classification performances (mRNA): accuracy, cross-validation.

ACCURACY

III 42 genes V 4 genes Sotiriou et al. 97 genes Ivshina et al. 18 genes Ivshina et al. 6 genes

GSE7390 30G1vs30G3 90.00% [CI 95%]
87.20–92.79

88.33% [CI 95%]
85.63–91.02

88.33% [CI 95%]
85.03–91.62

90.00% [CI 95%]
87.2–92.79

88.33% [CI 95%]
85.63–91.02

Stockholm 28G1vs28G3 90.00%[CI 95%]
86.50–93.49

90.00% [CI 95%]
86.50–93.49

90.00% [CI 95%]
87.10–92.89

91.33% [CI 95%]
88.32–94.33

88.00% [CI 95%]
84.03–91.96

Mean (over datasets) 90%+/201 89.16%+/21.181 89.16%+/21.181 90.66%+/20.941 88.16%+/20.231

1standard deviation.
doi:10.1371/journal.pone.0097681.t011

Table 12. G1 vs. G3 classification performances (mRNA): sensitivity, cross-validation.

SENSITIVITY

III 42 genes V 4 genes
Sotiriou et al.
97 genes

Ivshina et al.
18 genes

Ivshina et al.
6 genes

GSE7390 30G1vs30G3 100% [CI 95%]
100–100

90.00% [CI 95%]
86.13–93.86

93.33% [CI 95%]
89.95–96.7

93.33% [CI 95%]
89.95–96.7

83.33% [CI 95%]
79.11–87.54

Stockholm 28G1vs28G3 90.00% [CI 95%]
85.99–94.00

90.83% [CI 95%]
87.11–94.54

87.50% [CI 95%]
83.44–91.55

94.17% [CI 95%]
91.07–97.26

80.00% [CI 95%]
73.29–86.70

Mean (over datasets) 95%+/27-071 90.41%+/20.581 90.41+/24.121 93.75%+/20.591 81.66%+/22.351

1standard deviation.
doi:10.1371/journal.pone.0097681.t012
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HR = 1.397 [C.I 95%] 0.126–15.410 p = 0.785) and G3* and G3

(42-gene signature: log-rank test p = 0.414, HR = 1.483 [C.I 95%]

0.571–3.848 p = 0.418; 4-gene signature log-rank test: p = 0.373,

HR = 0.660 [C.I 95%] 0.261–1.667 p = 0.380).

Our 42-gene signature and 4-gene signature were found able to

perform G2 re-classification with similar, in some cases, better,

prognostic value than the other gene signatures. Specifically: 1) our

42-gene signature and 4-gene signature have better performance

than Ivshina et al. signatures (both 18-genes and 6-genes) in the

log-rank test and in the HR test when a statistical threshold of 0.05

is set (see results for Stockholm dataset); 2) our 4-gene signature

has better performance in log-rank test than both Sotiriou et al.

signature and Ivshina et al. signature (both 18-genes and 6-genes)

when a statistical threshold of 0.01 is set (see Stockholm results).

Discussion

In the management of BC, the identification of subgroups of

patients with different prognoses and responses to treatment [72]

[95] is relevant for therapeutic planning. Recently, classification of

BC based on gene expression profiling has been proposed [12]

[96–97]. Furthermore, some authors developed gene expression

signatures which are capable of discerning BC tumors of G1 and

G3 histology, providing a more objective measure of grade with

prognostic benefit for patients with G2 disease [14–15]. However,

these gene signatures have few genes in common notwithstanding

they are derived from similar approaches. Therefore, results

stemming from alternative, different approaches may help in

validating or enriching these signatures.

Few studies have examined classification methods based on a

combination of different genome-wide microarray-based expres-

sion profiling approaches. New models of oncogenomic progres-

sion should examine the combined consequence of epigenetic

(miRNAs) and genetic (CNA) changes as concomitant causation of

tumor heterogeneity. Previous studies have indicated how such

genetic and epigenetic changes can influence gene expression, and

thus tumor evolution [98]. It is less clear how these mechanisms

influence each other and how these cumulative changes co-evolve

and influence gene expression during tumorigenesis [98].

In this paper, we showed that a classification analysis relevant

for disease progression in BC as characterized by grade definition

can be based on different combination approaches under genetic

and epigenetic interaction assumptions (I: gene expression, II:

combination of gene expression and genome CNA, III: combina-

tion of gene expression, genome CNA and miRNA analysis, IV:

miRNAs, as obtained from the combined analysis of gene

expression and genome CNA). Our results showed that integration

of these various genetic data is effective for BC classification of G1

and G3 samples but also of G2 samples, this approach resulted to

ameliorate cancer classification.

Although the purpose of our study is similar to that of previous

investigations based on traditional differential gene expression

analysis [14–15], some novel and incremental aspects need to be

acknowledged:

– Our method to select the gene signatures (based on the

combination approach) has been implemented for the first

time, to our knowledge, for improving grade definition in BC,

in particular for the re-classification of histological G2 BC into

G1-like and G3-like tumors; this could allow new cross-

validation studies with different methods for the in silico

validation of biomarkers. Furthermore, our proposed method-

ology could be very useful for understanding the interactions

between mRNA, CNA, and miRNA, and further studies

should be conducted to these purposes.

Table 13. G1 vs G3 classification performances (mRNA): specificity, cross-validation.

SPECIFICITY

III 42 genes V 4 genes
Sotiriou et al.
97 genes

Ivshina et al.
18 genes

Ivshina et al.
6 genes

GSE7390 30G1vs30G3 80.00% [CI 95%]
74.4–85.59

86.67% [CI 95%]
82.53–90.80

83.33% [CI 95%]
77.67–88.98

86.67% [CI 95%]
82.53–90.80

93.33% [CI 95%]
89.95–96.70

Stockholm 28G1vs28G3 90.00% [CI 95%]
84.41–95.58

90.00% [CI 95%]
85.99–94.00

93.33% [CI 95%]
89.83–96.82

88.33% [CI 95%]
83.52–93.13

96.67% [CI 95%]
94.05–99.28

Mean (over datasets) 85%+/27.071 88.33%+/22.351 88.33%+/27.071 87.5%+/21.171 95%+/22.261

1standard deviation.
doi:10.1371/journal.pone.0097681.t013

Table 14. G1 vs G3 classification performance (mRNA): AUC, cross-validation.

AUC

III 42 genes V 4 genes
Sotiriou et al.
97 genes

Ivshina et al.
18 genes

Ivshina et al.
6 genes

GSE7390 30G1vs30G3 0.900 [CI 95%]
0.86–0.93

0.900 [CI 95%]
0.86–0.93

0.911 [CI 95%]
0.88–0.93

0.878 [CI 95%]
0.83–0.91

0.922 [CI 95%]
0.89–0.95

Stockholm 28G1vs28G3 0.922[CI 95%]
0.88–0.96

0.911 [CI 95%]
0.87–0.94

0.864 [CI 95%]
0.82–0.90

0.943 [CI 95%]
0.91–0.96

0.894 [CI 95%]
0.84–0.93

Mean (over datasets) 0.91+/20.011 0.90+/20.0071 0.88+/20.031 0.91+/20.041 0.90+/20.011

1standard deviation.
doi:10.1371/journal.pone.0097681.t014
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– Epigenetic signatures able to perform grade classification as

those obtained by method IV have been identified and

validated for the first time to our knowledge: this could open

new investigations on the role of miRNA e.g. circulating in

blood. For instance, recent evidence points to small non-coding

miRNAs as promising biomarkers for the detection of several

human tumors [96], given their strong stability against RNase

digestion. This evidence, added with the fact that miRNAs

detection by quantitative polymerase chain reaction (qPCR) is

sensitive and robust, make miRNAs potentially important tools

for cancer diagnosis. Moreover, plasma miRNAs are poten-

tially able to monitor asymptomatic high-risk individuals, in

order to detect early stage BC and discriminate between benign

and malignant disease (see [66] for a review). Moreover, the

translation of miRNAs signature into clinical assays seems to be

more feasible and less expensive: for instance, the application of

this miRNA profile screening on small specimens, as fine

needle aspiration, core biopsy material, or small aliquots of

blood, seems to be more suitable and a viable cost-effective

alternative to more expensive commercial products for the

immunohistochemichal profile techniques usually applied to a

standard pathology block.

– A 42-gene signature and a 4-gene signature have been

developed, the latter obtained through a meta-analytical

approach: these gene signatures resulted to perform grade

classification and G2 re-classification with performances similar

to other gene signatures previously published and with similar

or even better prognostic value in some cases.

– The number of genes in the downsized gene signature (4 gene)

is significantly lower than published signatures facilitating the

implementation of a clinic assay (Sotiriou et al. 97-gene

signature, Mammaprint 70-gene signature [12], Oncotype 21-

gene signature [13], Ivshina et al. 18-gene signature, Ivshina et

al. 6-gene signature). The 42- gene signature has instead a

number of genes, which allow experimental validation in

laboratory with limited costs. Similar considerations are valid

for the 4 miRNA (derived from the 4-gene signature) and the

17 miRNA (derived from the 42-gene signature).

Our classification algorithm was build on 42 genes. These were

obtained by the above described combination approach. Other

classification methods have been proposed and used, based on a

limited number of genes, obtained by different approaches. In

Sotiriou et al. the standardized mean difference of Hedges and

Olkin [99] was used to rank genes by their differential expression.

They used the max T algorithm of Westfall and Young [100] to

correct for multiple testing with an extension proposed by Korn et

al. [101] to control the number of false discoveries, taking into

account the dependencies between genes. This strategies allowed

them to obtain 97 genes. Ivshina et al. ran the PAM algorithm

[102] with all probe sets as input, and acquired a minimal set of

probe sets which gave: 1) the lowest misclassification (error) rate,

and 2) a secondary minimum on the error curve. This strategy

allowed them to obtain 18 and 6 genes, respectively. As shown in

our results (table 11–18) all classification methods achieved very

good results. However, as reported in several studies [103–105],

SVM and predictive methods have some limitations, since they

could lead to too optimistic statement. Meyer et al. [103]

compared SVM to several other classification and regression

methods, by means of standard performance measures. This

comparison showed that all predictive methods have good

performances, and SVM did not demonstrate its overall superi-

ority. Parikesit et al. [104] and Smith et al. [105] assessed different

predictive methods applied to gene annotations, and reported that

predictions should be chosen carefully in order to avoid

introducing biases.

Although validation is necessary in independent wet lab

experiments, the new genomic features identified in our work

Table 15. Classification performances (mRNA): accuracy, TRAINING on G1*–G3*, TESTING on G1–G3.

ACCURACY

III 42 genes V 4 genes
Sotiriou et al.
97 genes

Ivshina et al.
18 genes

Ivshina et al.
6 genes

GSE7390 17G1*vs17G3* 85% 88.33% 83.33% 85% 85%

Stockholm 19G1*vs19G3* 76.78% 82.14% 85.71% 89.28% 87.50%

Mean (over datasets) 80.89%+/25.811 85.23%+/24.371 84.52%+/21.681 87.14%+/23.021 86.25%+/21.761

1standard deviation.
doi:10.1371/journal.pone.0097681.t015

Table 16. Classification performances (mRNA): sensitivity,TRAINING on G1*–G3*, TESTING on G1–G3.

SENSITIVITY

III 42 genes V 4 genes Sotiriou et al. 97 genes Ivshina et al. 18 genes Ivshina et al. 6 genes

GSE7390
17G1*vs17G3*

93.33% 96.66% 90% 93.33% 90%

Stockholm
19G1*vs19G3*

75% 75% 82.14% 89.28% 82.14%

Mean (over
datasets)

84.16%+/212.961 85.83%+/215.311 86.07%+/25.551 91.30%+/22.861 86.07%+/25.551

1standard deviation.
doi:10.1371/journal.pone.0097681.t016
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shed new light on the biology underlying histological grade in

breast cancer, as evidenced in the following section.

Phase I: Genome profile analysis of G1 vs G3 genetic
profile

In our study, we found that BC of histologic G1 and G3 exhibits

a distinct expression profile with altered expression of 1190 genes

(578 up and 612 down) involved in cell proliferation, in particular

in cell cycle control and mitosis, and in DNA repair and stability.

Many of our up-regulated G3 genes overlap with those found by

Sotiriou et al. [14], (75 over 80, 82.5%) and with those found by

Ivshina A. et al. [15], (10 over 16,62.5%). Among our down-

regulated G3 genes we found 11 over 19 indicated (57.9%) by

Sotirou et al. [14].

Namely, FOXM1, MYBL2 and TPX2 are genes found in our

lists of up-regulated G3 genes as well as in the lists of Sotiriou and

Ivshina, revealing that the increase of these genes, regulating the

DNA transcription and controlling the spindle formation during

mitosis, could be important for the development of G3 tumor.

Phase I: Genome profile analysis of G2
When we compared our G2 genetic profile with G1 and G3

mRNA expression, we found that all G2 altered genes belong to

either G3 up-regulated (G1 downregulated) or to G3 downregu-

lated (G1 upregulated) classes, confirming previous results

described in Sotirou et al. and by Ivshina A. et al. [14–15].

Phase II analysis: CNA Integration analysis
The Phase II analysis of CNA revealed that there are specific

areas affected by deletion or amplification in BC G1 and G3. The

affected regions comprise chromosome 3p13, 8q21-24 and 8q22.

The deletion of chromosome 3p13 has been observed frequently

in epithelial cancers of several organs [106] and in prostate cancer

[107]. The 3p13-21 region, in particular, encodes for the Rho-like

GTPase gene ARHGEF3, which, as a guanine nucleotide

exchange factor for Rho family members, could have a role in

oncogenic transformation [108].

The copy number gain of genes in chromosomal region 8q21-

24 has been demonstrated to be associated with genesis and

progression of prostate cancer (PCa) [109] with a significant

amplification of E2F5 and MYC genes, the former being included

among our G3 up/amplified genes.

Moreover, in BC, the amplification of 8q22 region leads to the

over-expression of YWHAZ gene (tyrosine 3-monooxygenase/

tryptophan 5-monooxygenase activation protein, zeta polypep-

tide), a typical feature of BC resistant to anthracycline treatment

[110–111].

Phase III and IV analysis: miRNA and mRNA target
analysis

The Phase III and IV analysis revealed that there are profiles of

target mRNA (42-genes) and of their miRNAs (17 miRNAs)

showing promising results regarding BC grade definition.

As the used dataset identified by phase III contains differentially

expressed miRNAs between G1 and G3, in order to obtain an

expression profile of the miRNAs that describe each grade, and

eventually identify prognostic genes and miRNAs expression

signatures, we compared the up- and down-regulated miRNAs

and their target mRNA in G1 vs G3. We obtained (phase IV) a set

of miRNAs that were up-regulated in G3 (class 1), and thus down-

regulated in G1 (class 2), as well as a set of miRNAs down-

regulated in G3 (class 3), and thus up-regulated in G1 (class 4).

Detailed analysis of the miRNAs in each class revealed common

miRNAs among classes 1 and 2. The same was observed for

miRNAs of classes 3 and 4. Fig. 5 shows a list of the miRNAs of

each grade identified in our study in relation to the most relevant

putative targets.

Table 17. Classification performances (mRNA): specificity, TRAINING on G1*–G3*, TESTING on G1–G3.

SPECIFICITY

III 42 genes V 4 genes
Sotiriou et al.
97 genes

Ivshina et al.
18 genes

Ivshina et al.
6 genes

GSE7390 17G1*vs17G3* 76.66% 80% 76.66% 76.66% 80%

Stockholm 19G1*vs19G3* 78.57% 89.28% 89.28% 89.28% 92.28%

Mean (over datasets) 77.61%+/21.351 84.64%+/26.561 82.97%+/28.921 82.97%+/28.921 86.14%+/28.681

1standard deviation.
doi:10.1371/journal.pone.0097681.t017

Table 18. Classification performance (mRNA): AUC, TRAINING on G1*-G3P, TESTING on G1–G3.

AUC

III 42 genes V 4 genes
Sotiriou et al.
97 genes Ivshina et al.18 genes

Ivshina et al. 6
genes

GSE7390 17G1*vs17G3* 0.89 0.92 0.90 0.92 0.93

Stockholm19G1*vs19G3* 0.88 0.86 0.89 0.93 0.89

Mean (over datasets) 0.88+/20.0071 0.89+/20.041 0.89+/20.0071 0.92+/20.0071 0.91+/20.021

1standard deviation.
doi:10.1371/journal.pone.0097681.t018
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miRNA analysis and target identification/description:
class 1 and class 2

Class 1 is characterized by the up-regulation of several miRNAs:

Hsa-miR-532-5p, Hsa-miR-188-5p, Hsa-miR-515-5p, Hsa-miR-362-

5p, Hsa-miR-142-3p, Hsa-miR-941, and Hsa-miR-455-5p (Fig. 5).

Although the role of Hsa-miR-532-5p expression in BC remains to

be clarified, it has been shown to be significantly up-regulated in

melanoma lines and metastatic melanoma tumours relative to

normal melanocytes and primary melanomas, respectively [112].

Among its possible targets, we identified EF3, which, being a Rho-

like GTPase, has an important role in many cellular processes

(cytoskeletal rearrangements, transcriptional activation, regulation

of cell morphology and cell aggregation, cytokinesis, endocytosis

and secretion), but also is possibly involved in oncogenic

transformation [113]. This gene is a possible target of Hsa-miR-

362-5p, a miRNA of the melanoma signature [114], and Hsa-

miR-515-5p, already involved in BC development [115]. Hsa-

miR-532-5p regulates also interleukin 6 signal transducer (IL6ST),

a signal transducer that could be important for interleukin 6

inflammatory role in BC [116–117]. This gene could be a target

also of Hsa-miR-188-5p, already described in rectal cancer [118].

Hsa-miR-532-5p regulates also stanniocalcin 2 (STC2): it is a

glycoprotein hormone that plays an important role in calcium and

phosphate homeostasis and is considered a tumor progression

predictor for gastric cancer [119] and breast carcinoma [120].

Concerning Hsa-miR-188-5p, it already results to be overex-

pressed in UVB irradiated mouse skin [121], suggesting a potential

role of this miR in response to oxidative stress linked to radiation.

As oxidative stress response is one of the active pathways of tumor

cells (see [122] for a review), thus this miRNA is expected to be up-

Figure 9. Heat maps for evaluation of our gene signatures in comparison with other gene signatures. III: combination of gene
expression - genome CNA, and miRNA analysis, V: a down-sized gene signature (4 genes), Sotiriou et al. 97-gene signature, Ivshina et al. 18-gene
signature and Ivshina et al. 6-gene signature. Classification performances were showed for: cross-validation (CV), and training on G1*–G3* - testing on
G1–G3 (TT).
doi:10.1371/journal.pone.0097681.g009

Table 19. Log-Rank Test G1*vs G3*.

LOG-RANK TEST (P-VALUE) G1*vs G3*

III 42 genes V 4 genes Sotiriou et al. 97 genes Ivshina et al. 18 genes Ivshina et al. 6 genes

GSE7390 17G1*vs17G3* 0.033 0.0003 0.0001 0.002 0.019

Stockholm19G1*vs19G3* 0.033 0.003 0.022 0.452 0.112

doi:10.1371/journal.pone.0097681.t019
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regulated in G3 tumor samples. Among its possible target genes,

clusterin (CLU) is a pro-proliferative gene and one of the genes

induced by exposure to ionizing radiation (IR) [123], which

usually causes oxidative damage, while neurobeachin (NBEA), a

lysosomal-trafficking regulator, is one of the genes of the common

fragile site regions [124]. Class 1 comprises also Hsa-miR-515-5p,

that is usually down-regulated by estrogen receptor in BC [125].

In our case this miRNA in unexpectedly up-regulated; this may

possibly due to the fact that our database contains both ER+ and

ER- BC samples. Hsa-miR-515-5p regulates a growth factor

signalling transducer, the ring finger protein-like 1 (ZFP36L1),

which has a role in growth control of BC cell line [126]. In class 1

we found also Hsa-miR-142-3p, that, with Hsa-miR-532-5p, is a

circulating miRNA already considered biomarker of colorectal

carcinoma [127]. Two possible targets of this miRNAs are

fibronectin type III domain containing 3A (FNDC3A), whose

expression controls cell adhesion, migration and proliferation

[128] and myotubularin related protein 9 (MTM9), whose

chromosomal gain is considered a prognostic event in oesophageal

adenocarcinoma [129]. The last gene is also a possible target of

Hsa-miR-941, that is a circulating biomarker of ulcerative colitis

[130]. Hsa-miR-455-5p has already been found to be up-regulated

in different types of tumors, as basal cell carcinoma of the skin

[131], endometrial adenocarcinomas [132], but it also has a

diagnostic value in laryngeal cancer [133] and in hepatocellular

adenoma [134]. Its target tight junction protein 1 (TJP1), being a

protein of the cytoplasmic membrane surface of intracellular tight

junction, could have a role in communication among two cells by

cell-cell junction. A role for TJP1 in controlling epithelial cell

integrity in BC cells has been pointed out [135].

It is not a coincidence to find in G3 BC several upregulated

miRNAs common to melanoma (Hsa-miR-532-5p, Hsa-miR-362-

5p and Hsa-miR-455-5p), as Axelsen JB et al. [136] reported that

the genes selectively altered in BC majorly overlap with the ones

altered in melanoma.

In contrast, in class 2 we observed the up-regulation of 3

microRNAs, as depicted in Fig. 5. These miRNAs regulate several

genes, two of which could be considered transcription modulators

(aminoadipic semialdehyde synthase, GON4L and zinc finger

protein, FOG family member 2, ZFPM2), and are able to control

the transformation process of BC cells [137]. The up-regulated

miRs are Hsa-miR-532-5p, already described in BC [138], Hsa-

miR-455-5p and Hsa-miR-515-5p. Hsa-miR-532-5p regulates

lipoma preferred partner (LPP), an indispensable regulator of

migration [139], and the aminoadipate-semialdehyde synthase

(AASS) gene, involved in lysine degradation pathway. No role in

cancer progression for the last gene has been published yet. Hsa-

miR-455-5p has been already correlated with vascular invasion of

endometrial serous adenocarcinomas [132]. The main target of

this miRNA is calcium-dependent secretion activator 2 (CADPS2),

a protein that facilitates the secretion and trafficking of dense-core

vesicles [140], a process necessary for tumoral cell communication.

The last miRNA is Hsa-miR-515-5p; the down-regulation of this

miRNA has been found in ER-positive BC associated with cell

proliferation [141] and controls possibly a zinc-finger proteins that

regulates the expression of GATA-target genes, thus modulating

mammary gland differentiation or involution [137].

microRNA analysis and target identification/description:
class 3 and class 4

Class 3 is characterized by the down-regulation of 8 miRNAs, as

shown in Fig. 5. Hsa-miR-372 is already a potential marker of lung

cancer [142], and regulates an ATPase family member ATAD2, a

translocase of inner mitochondrial membrane 17 (TIMM17A) and

the transcription factor E2F5. ATAD2 is within a commonly

amplified region (8q24) across multiple cancer types [95] and its

expression seems to be a predictor of poor prognosis in BC [143]

and in other tumors, as in prostate cancer [144–145]. TIMM17A

expression is associated with poor pathological and clinical

outcome of BC [146–147]. E2F5 is cell cycle-related transcription

factor overexpressed in ER-negative BC, [148] and is also

considered a biomarker of worse clinical outcome [149]. This

gene is also a possible target of Hsa-let-7c. Hsa-let-7c is a member

of a tumor-suppressor microRNA family, often inactivated in

human malignancies, in particular in BC [150–151] and in

prostate cancer [152].

Hsa-miR-320d, already found down-regulated in colon cancer

cells [153], and Hsa-miR-139-5p, regulate genes involved in

proliferation control (antizyme inhibitor 1, AZIN1; forkhead box

M1, FOXM1; RAD51 associated protein 1, RAD51AP1) [154–

Table 20. Log-Rank Test G1*vs G1.

LOG-RANK TEST (P-VALUE) G1*vs G1

III 42 genes V 4 genes
Sotiriou et al.
97 genes

Ivshina et al.
18 genes

Ivshina et al.
6 genes

GSE7390 17G1*vs17G1 0.652 0.773 0.680 0.609 0.393

Stockholm19G1*vs28G1 0.538 0.784 0.563 0.087 0.237

doi:10.1371/journal.pone.0097681.t020

Table 21. Log-Rank Test G3*vs G3.

LOG-RANK TEST (P-VALUE) G3*vs G3

III 42 genes V 4 genes
Sotiriou et al.
97 genes

Ivshina et al.
18 genes

Ivshina et al.
6 genes

GSE7390 17G3*vs17G3 0.308 0.963 0.679 0.854 0.651

Stockholm 19G3*vs28G3 0.414 0.373 0.322 0.876 0.890

doi:10.1371/journal.pone.0097681.t021
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156], and transcription regulation (DNA replication and sister

chromatid cohesion 1, DSCC1; RAD21 yeast homologue,

RAD21) key processes for G3 development. Loss of Hsa-miR-

139-5p have been reported in different tumor specimens of

esophageal squamous cells [157], clear renal cell carcinoma [158]

and BC samples [159], underscoring its potential role as

biomarker for screening and early detection of these tumors.

Among Hsa-miR-139-5p possible targets we found H2AFV, an

histone family member, and Lysosome Transmembrane Protein 4-

Beta (LAPTM4B), an oncoprotein originally identified in hepato-

cellular carcinomas [160–161], whose over-expression has been

already associated with BC susceptibility and prognosis [162–163].

Hsa-miR-125-5p has been described as a tumor suppressor. Its

down-regulation has been already associated with several types of

cancer, such as BC [164–166], ovarian cancer [167], lung cancer

[168], and medulloblastoma [169]. Moreover, its down-regulation

has been found in the blood of BC patients [170]. Its possible

target is a protein involved in the process of proper folding of

secretory proteins, Sec61 alpha 2 subunit (SEC61A2). The correct

assembly of newly synthesised secreted proteins is a key step for

tumors to invade the surrounding microenvironment.

The last three miRNAs in class 3 are Hsa-miR-567, Hsa-miR-647

and Hsa-miR-328. The first miRNA, already associated with

colorectal cancer [171], regulates polymerase (RNA) II polypep-

tide K (POLR2K), which is involved in the transcription of DNA

into RNA. This enzyme is also over-expressed in hepatocellular

carcinoma [172]. The other three targets are S-phase kinase

protein 2 (Skp2), a pro-proliferative, oncogenic protein overex-

pressed in human BC [173], transmembrane protein 70

(TMEM70), encoded by 8q21 region amplified in BC [174], and

importin alpha 3 (KPNA4), a p53 stability regulator that can

influence its transcription [175]. The second miRNA, Hsa-miR-

647, already described as a possible prostate cancer recurrence

predictor [176], could influence the level of transcription by

modulating the Transcription Elongation Factor B (TCEB1), a

target of Hsa-miR-320d. The last miRNA, Hsa-miR-328,

responsible for the development of drug resistance in BC cell

lines [177], is possibly able to regulate the already described

YWHAZ gene.

Class 4 is characterized by several up-regulated G3 miRNAs.

The possible relation among this microRNAs and cancer has been

already described in class 3, as all of them, except Hsa-miR-627 and

Hsa-miR-581, are down-regulated in G3. Several of these miRNAs

(Hsa-let-7c, Hsa-miR-372, Hsa-miR-139-p) controls transcription

regulators (ASF1B, already described; DEAD (Asp-Glu-Ala-As)

Box Polypeptide 19A, DDX19A; H2AFV, already described;

Hematological And Neurological Expressed 1 Protein, HN1). For

some of the target genes, as for ASF1B, a role as a predictor of

poor outcome in BC, when over-expressed, has already been

described [178]; thus this gene is expected to be found potentially

down-regulated in G1 BC. Some miRNAs regulate cell cycle and

proliferation (Hsa-miR-139-5p, and Hsa-miR-320d) by repressing G

protein-coupled receptor 56 (GPR56), whose over-expression plays

an inhibitory role in melanoma progression [179], by controlling

ribosome assembly (Nuclear Import 7 Homolog, NIP7) [180], and

by regulating proliferation, repressing SHC SH2-domain binding

protein 1 (SHCBP1), that is a proliferation controller downstream

of Shc [181]. Two miRNAs (Hsa-miR-372 and Hsa-miR-125a-5p)

regulate protein folding by repressing two chaperones (DNAJA2

and DNAJC9) and SEC61A2, already described as a fundamental

complex for the correct protein folding. Specifically concerning

Hsa-miR-627 and Hsa-miR-581, which are the only miRNAs not in

common between class 3 and 4, it has been proposed for both an

unexpected role of inhibitor of proliferation of colon cancer cells

[182], and hepatocellular carcinoma respectively [183]. Concern-

ing their target, we found an anti-apoptotic factor (tripartite motif

containing 39, TRIM39) [184] and NIP7, already described. For

Table 22. Hazard ratio G1*vs G3*.

HAZARD-RATIO G1*vs G3*

III 42 genes V 4 genes
Sotiriou et al.
97 genes

Ivshina et al.
18 genes

Ivshina et al.
6 genes

GSE7390
17G1*vs17G3*

2.801 [CI 95%]
1.048–7.488
p-value = 0.040

6.208 [CI 95%]
2.021–19.080
p-value = 0.001

8.920 [CI 95%]
2.423–32.840
p-value = 0.0009

3.872 [CI 95%]
1.520–9.860
p-value = 0.004

2.993 [CI 95%]
1.144–7.834
p-value = 0.025

Stockholm
19G1*vs19G3*

4.630 [CI 95%]
0.982–21.84
p-value = 0.052

11.669 [CI 95%]
1.475–92.310
p-value = 0.019

5.135 [CI 95%]
1.082–24.370
p-value = 0.03

1.549 [CI 95%]
0.491–4.885
p-value = 0.455

2.299 [CI 95%]
0.797–6.632
p-value = 0.123

doi:10.1371/journal.pone.0097681.t022

Table 23. Hazard ratio G1*vs G1.

HAZARD-RATIO G1*vs G1

III 42 genes V 4 genes
Sotiriou et al.
97 genes

Ivshina et al.
18 genes

Ivshina et al.
6 genes

GSE7390
17G1*vs17G1

1.390 [CI 95%]
0.330–5.855
p-value = 0.653

1.245 [CI 95%]
0.278–5.570
p-value = 0.774

1.370 [CI 95%]
0.303–6.178
p-value = 0.682

0.689 [CI 95%]
0.164–2.891
p-value = 0.611

0.541 [CI 95%]
0.129–2.266
p-value = 0.400

Stockholm
19G1*vs28G1

1.833 [CI 95%]
0.257–13.04
p-value = 0.538

1.397 [CI 95%]
0.126–15.41
p-value = 0.785

0.565 [CI 95%]
0.079–4.023
p-value = 0.569

0.264 [CI 95%]
0.051–1.363
p-value = 0.112

0.393 [CI 95%]
0.079–1.952
p-value = 0.254

doi:10.1371/journal.pone.0097681.t023
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these two targets a direct role in BC development has not been

described yet.

The 4-gene signature
The down-sized 4-gene signature identified through our meta-

analysis, consisting of FOXM1, KPNA4, H2AFV and DDX19A,

represents a highly relevant finding for the biology underlying

histological grades in BC, in particular regarding the cell

proliferation, and DNA stability.

The forkhead box (Fox) M1 gene belongs to a superfamily of

evolutionarily conserved transcriptional regulators that are

involved in a wide range of biological processes, as the control

of mammary gland differentiation [185] and cell proliferation

[186], having a fundamental role in both G1/S phase progression

[186], but also stimulating the expression of several critical genes

of the G2/M phase (cyclin B, Aurora B, CDC25B, CENPA,

Survivin) [187]. Its deregulation has been implicated in cancer

growth, survival, and chemotherapy resistance [186]. For instance,

in normal breast mammary gland, FOXM1 expression is often

weak and only localized in proliferating cells [188–189], whilst it is

over-expressed in various human malignancies (breast, prostate,

lung, ovary, colon, pancreas, …) [190]. In BC the levels of

FOXM1 correlate positively with the tumor grade [191] and with

poor prognosis [189][192]. A recent publication [193] suggests

that FOXM1 promotes cancer invasion and metastasis via TGF-

beta/SMAD3 pathway activation, but it is also able to induce

EMT-like changes in hepatocellular carcinoma for a review see

[194], demonstrating a clear role of this gene in G3 hystologic

phenotype.

The other 3 genes of our 4-gene signature are different isoforms

of genes found also in Sotiriou signature [14]: KPNA4

(karyopherin alpha 4 or importin alpha 3), H2AFV (H2A histone

family, member V) and DDX19A (DEAD box polypeptide 19A).

KPNA4 belongs to the family of importins or karyopherins,

which are responsible for the translocation of the cargo protein

across the nuclear membrane. Several onco-proteins, such as

BRCA1 (BC susceptibility gene 1), need to translocate across the

nuclear membrane to reach the correct localization for their

oncogenic function. One of the possible KNPA4 target is STAT3

protein, whose aberrant activation and translocation into the

Table 24. Hazard ratio G3*vs G3.

HAZARD-RATIO G3*vs G3

III 42 genes V 4 genes
Sotiriou et al.
97 genes

Ivshina et al.
18 genes

Ivshina et al.
6 genes

GSE7390
17G3*vs17G3

0.654 [CI 95%]
0.287–1.489
p-value = 0.312

1.018 [CI 95%]
0.472–2.195
p-value = 0.963

1.181 [CI 95%]
0.533–2.617
p-value = 0.680

1.075 [CI 95%]
0.494–2.341
p-value = 0.855

1.204 [CI 95%]
0.537–2.698
p-value = 0.652

Stockholm
19G3*vs28G3

1.483 [CI 95%]
0.571–3.848
p-value = 0.418

0.660 [CI 95%]
0.261–1.667
p-value = 0.380

0.616 [CI 95%]
0.236–1.606
p-value = 0.322

0.924 [CI 95%]
0.344–2.486
p-value = 0.877

0.935 [CI 95%]
0.360–2.427
p-value = 0.890

doi:10.1371/journal.pone.0097681.t024

Figure 10. Relapse-free survival analysis for GSE7390 and Stockholm datasets. Kaplan-Meier survival curves for G3* (green) and G1* (red)
superimposed on survival curves of histologic G1 (black line) and histologic G3 (dotted line) A) GSE7390 42-gene signature; B) GSE7390 4-gene
signature; C) Stockholm 42-gene signature; D) Stockholm 4-gene signature.
doi:10.1371/journal.pone.0097681.g010
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nucleus promotes initiation and progression of human cancers by

either inhibiting apoptosis or inducing cell proliferation, angio-

genesis, invasion, and metastasis [195]. This is probably the reason

why G3 BC samples over-expressed KPNA4. Moreover, another

member of the importins family, KPNA2, is uniformly up-

regulated across cancer types and proposed as poor prognostic

cancer marker [196]. KPNA2 has been found also by Sotirou et al.

H2AFV is one variant of the histonic component of the

nucleosome. Its function is mainly to control the compactness of

the chromatin and to recruit the transcriptional machinery for

gene activation, thus regulating DNA transcription, replication

and chromosomal stability. One of the histone isotypes, H2Ac, is

already involved in estrogen receptor-positive clinical breast

cancer tissues, where it regulates ER-target genes [197]. Another

variant, H2A.Z, reported in several types of cancers, is causally

linked to genomic instability and tumorigenesis [198]; it has been

associated with lymph node metastasis and decreased BC survival

[199]. It is not unexpected to find H2AFV in the class of up/

amplified G3 genes.

The last 4-gene signature BC marker, DDX19A, is an ATP-

dependent RNA helicase involved in mRNA export from the

nucleus and in remodeling of ribonucleoprotein particles. In

eukaryotic cells, gene expression is intimately tied to nuclear

export of properly transcribed, processed, and assembled messen-

ger ribonucleoprotein complexes (mRNPs). Post-transcriptional

control of gene silencing by miRNAs is a ribonucleoprotein-driven

process, which involves specific RNA binding proteins, miRNAs

and their mRNA targets. This multi-component RNA-induced

silencing complex (miRNA-RISC) regulates the stability and

translation of mRNAs that are partially or fully complementary

to specific miRNAs. It is possible that DDX19A has a role in the

unwinding of microRNAs duplex during the miRNA maturation

process, as the DEAD-protein, ATP-dependent RNA helicase p68

has a role in let-7 microRNA pathway maturation [198], in cancer

cell proliferation and metastasis [200–201].

miRNAs associated with the 4-gene signature
The analysis of the miRNA profile associated to our 4-gene

signature allowed us to identify 4 miRNAs, that have the 4 genes

of the signature as potential targets.

The miRNA able to control FOXM1 is Hsa-miR-320d, that has

been already found down-regulated in colon cancer stem cells

[153]: for instance, cancer stem cells isolated from the hepatocel-

lular HT29 cell line showed down-regulation of Hsa-miR-320d,

and it has been suggested that the down-regulation of this miRNA

is important for carcinogenesis [153], while its expression is

associated with the probability of recurrence-free survival in stage

II colon cancer patients [202]. This miRNA is particularly

significant because it has been already found in serum as a

potential biomarker for detecting acute myeloid leukemia [203],

making it an ideal, potential, circulating BC marker.

We have introduced in this paper the potential role of Hsa-miR-

139-5p in the regulation of genes involved in proliferation control.

Loss of Hsa-miR-139-5p has been reported in different tumor

specimens of esophageal squamous cells [157], clear renal cell

carcinoma [158] and BC samples [159], highlighting its potential

role as a biomarker for screening and early detection of these

tumors. Among Hsa-miR-139-5p possible targets, we found

H2AFV, a histone family member, which is supposed to be

upregulated in G3 and downregulated in G1. The dicotomic role

of this miRNA has been already described in esophageal

squamous cell carcinoma (ESCC) [204] [157], where reduced

levels of this miRNA are associated with lymph node metastases,

while its expression is found in adjacent non-cancerous tissue from

ESCC patients, miming the G3 vs G1 situation. Moreover, Hsa-

miR-139-5p expression seems to induce cell cycle arrest in G0/G1

phase and to suppress the invasive capability of the cells, and in

MCF7 breast cancer cell line it has been proposed as a regulator of

metastatic process [205]. Hsa-miR-139-5p has been found in

circulating exosome of lung cancer patients plasma [68], making

this miRNA another new possible biomarker for BC diagnostic

application.

The gene importin alpha 3 (KPNA4), a p53 stability regulator

that can influence its transcription [175], is one of the target of

Hsa-miR-567. This miRNA is one of the colorectal cancer miRNA

encoded by regions subjected to microsatellite sequence instability

[171]. The role of this miRNA in BC development still needs to be

unravelled.

DEAD (Asp-Glu-Ala-As) Box Polypeptide 19A (DDX19A)

transcription factor is controlled by Hsa-let-7c. Hsa-let-7c is a

member of a tumor-suppressor 10-microRNAs family [206],

related often to human malignancies, in particular BC [150–151]

and prostate cancer [152]. The let-7 miRNAs have been shown to

regulate multiple oncogenes such as HMGA2, c-Myc, RAS, and

cyclinD1 [207–210]. Although in lung cancer [211–212] let-7c has

been found as a tumor suppressor, from our analysis it resulted to

be upregulated in G3 BC samples. This behaviour seems to

resemble the one identified for prostate cancer, where the over-

expression of Let-7c may be involved in the metastatic process,

given that it is significantly associated to high grade prostate

carcinoma [213].

Conclusion

A combination of genetic and epigenetic changes has been

shown to contribute to development of human cancer resulting in

deregulation of gene expression and function. Genetic changes

result in widespread deregulation of gene expression profiles and

the disruption of signaling networks that control normal cell

proliferation and functions. In addition to changes in DNA and

chromosomes, oncogenic processes can be profoundly influenced

by epigenetic mechanisms. While there has been considerable

progress in understanding the influence of genetic and epigenetic

mechanisms in tumorigenesis, few studies have examined the

consequences of the interplay between these two processes. Before

implementing integration methodologies, the interactions between

mRNA, CNA, and microRNA should be investigated.

In this study, we integrated for the first time the analysis of

mRNA expression, CNA, and miRNA expression for the

definition and selection of limited genomic and epigenomic

signatures useful for improving grade classification in human

BC. From mRNA expression results, we found, consistently with

previous published results, that grade 2 BC is most likely a mixture

of misclassified grade 1 and grade 3, given that it can be accounted

for by the gene signature of either grade 1 or grade 3. The

combination of mRNA profile analysis and copy number data

with microRNA expression levels led to identification of two gene

signatures of 42 and 4 altered genes (FOXM1, KPNA4, H2AFV

and DDX19A) respectively, the latter obtained as a result of a

meta-analysis including previous relevant studies. The 42-based

gene signature identifies 4 classes of up- or down-regulated

microRNAs (17 microRNAs) their 17 target mRNA, while the 4-

based genes signature identified 4 microRNAs (Hsa-miR-320d,

Hsa-miR-139-5p, Hsa-miR-567 and let-7c).

Our identified mRNAs and microRNAs were validated as a

classifier for BC grade and relatively to prognostic factors, and

their limited number could potentially facilitate the implementa-

tion of assays for laboratory validation.
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