SOME REMARKS ON SYSTEMS OF ELLIPTIC EQUATIONS DOUBLY
CRITICAL IN THE WHOLE RY

BOUMEDIENE ABDELLAOUILVERONICA FELLI AND IRENEO PERAL

ABSTRACT. We study the existence of different types of positive solutions to problem

7Auf)\1% — [u|?" 24 = v h(z)a |u|*~2|v[fu, in RN,
z

v zeRY, N >3,
—Av — )\QW — 02" =20 = v h(z)B |u|*|v|*~2v, in RV,
x

_ (N=2)2 «_ 2N . o
where A1, A2 € (0,AN), Ay = > and 2 = 275 is the critical Sobolev exponent.

A careful analysis of the behavior of Palais-Smale sequences is performed to recover compact-
ness for some ranges of energy levels and to prove the existence of ground state solutions and
mountain pass critical points of the associated functional on the Nehari manifold. A variational
perturbative method is also used to study the existence of a non trivial manifold of positive
solutions which bifurcates from the manifold of solutions to the uncoupled system corresponding
to the unperturbed problem obtained for v = 0.

1. Introduction

In this work we deal with the following class of systems of nonlinear elliptic equations in R,
N > 3, involving critical power nonlinearities as well as Hardy-type singular potentials, and coupled
by a nonlinear term

—Au — )\1% — u* ~?2u = vh(z)a ju|*?|v|%u, in RV,

(1)

=2y = v h(x)B |u|*v|?~2v, in RN,

where A1, A2 € (0,AN), Ay = (NZQ)Q, 2% = % is the critical Sobolev exponent, v is a positive
parameter, and « and (§ are positive constants such that «, 3 > 1. The mathematical interest
in the Schrodinger equations appearing in the above system relies in their double criticality, due
to the fact that both the exponent of the nonlinearities (which is critical in the sense of the
Sobolev embeddings) and the singularities share the same order of homogeneity as the laplacian. In
particular, inverse square potentials, which arise in several physical contexts (e.g. in nonrelativistic
quantum mechanics, molecular physics, quantum cosmology, linearization of combustion models),
do not belong to the Kato’s class, hence they cannot be regarded as a lower order perturbation

term. Moreover the double criticality in the potentials and in the nonlinearities produces a lack of

2000 Mathematics Subject Classification. 35D10, 35J45, 35J50, 35J60, 46E30, 46E35.

Key words and phrases. Systems elliptic equations, Compactness principles, Critical Sobolev exponent, Hardy
potential, Doubly critical problems, Variational methods, Perturbation methods.

First and third authors supported by projects MTM2007-65018, MEC and CCG06-UAM/ESP-0340, Spain. Sec-
ond author supported by Italy MIUR, national project Variational Methods and Nonlinear Differential Equations.

1
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compactness which creates some difficulty in the variational approach to the problem, i.e. in the
search for solutions to system (1) as critical points of the associated functional

1 2 2 A1 u? () A2 v¥(z)
v\U, -5 de =~ T T2
Ju(u,v) =3 /RN (IVa(@)? + V(@) ) do - = v 22 T2 Jow JaP?
1

- — w@)? + (@) ? )dz — v z)|u(z)|®v(z)|Pdz
5 [, (@ + @ )de = [ b)) o)

defined in the product energy space DV2(RY) x DV2(RY), denoting by DV2(RY) the completion
of C§°(RY) with respect to the norm

1/2
lullprages) == </RN |Vu(m)|2dx) .

The case of a single equation has been deeply investigated in the literature. In particular, a
complete classification of positive D*2(R™)-solutions to

dzx

“Au— A

BE u* 2u=0, inRY,

is given in [28], see (4-5). We also mention that existence and multiplicity of positive solutions for
related perturbative equations with a Hardy-type potential and a critical nonlinearity are obtained
by variational methods in [1, 12, 13, 15, 26].

The interest in systems of nonlinear Schrodinger equations is motivated by applications to
nonlinear optics. More precisely, coupled nonlinear Schrédinger systems arise in the description
of several physical phenomena such as the propagation of pulses in birefringent optical fibers and
Kerr-like photorefractive media, see [2, 16, 21, 22]. We mention that some interesting results for
linearly coupled systems in the form

—Au+u—ud=vv, inRY,
3 _ N
—Av+v—v’=rvu, inR"Y,

have been recently obtained in [7], where a variational perturbation method is used to prove the
existence of multi-bump solutions, while for the case of nonlinearly coupled systems we refer to
[6, 19, 20, 25] and the references therein. We also mention that concentration phenomena for
singularly perturbed coupled nonlinear Schrédinger systems with potentials are studied in [23, 24].

Concerning nonlinear systems with singular potentials, we mention that in [11] existence results
are obtained for the hamiltonian system

p
—Au = ﬁ}?, in Q,
x
ud )
—Av = W7 in Q,

in a bounded domain ¢ RY, under some condition on the parameters p, ¢, o, 3. Some estimates
on the singularity of the solutions near 0 were obtained previously in [10] for some hamiltonian
system with absorptions terms.

By variational arguments, in this work we mean to investigate how the presence of a singular
potential influences the existence of nontrivial solutions to the nonlinearly coupled system (1), i.e.
of solutions of the type (¢,v) with ¢ #Z 0 and ¢ £ 0. In the case where a + 3 > 2*, a classical
Pohozaev type argument shows that if h is a differentiable function such that (Vh(x),z) > 0,
system (1) has no finite energy solutions for v > 0. Hence in the whole of this paper we assume
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that o + 8 < 2*. Using the Concentration Compactness Principle by P.L.Lions [17, 18] and the
Mountain Pass Theorem by Ambrosetti and Rabinowitz [5], we obtain both ground state solutions
to (1) (see Definition 2.1) by minimizing the functional J, on the associated Nehari manifold and
mountain pass solutions. The use of such variational tools requires some compactness condition,
the validity of which is a nontrivial issue for system (1) due to the presence of critical nonlinearities
and inverse square potentials. To overcome such a difficulty, we will perform a careful analysis of
the behavior of Palais-Smale sequences to study the possible reason of lack of compactness and
to pick out the ranges of energy levels where the Palais-Smale condition holds and compactness
can be recovered. We will also use a perturbative approach to study the existence of a non trivial
manifold of positive solutions which bifurcates from the manifold of solutions to the uncoupled
system corresponding to the unperturbed problem obtained for v = 0.

The paper is organized as follow. In section 2 we analyze the behavior of the energy functional
restricted to the Nehari manifold N, associated to problem (1) and classify the nature of semi-
trivial solutions (we call semi-trivial solution any solution of the form (¢, 0) or (0,%)), establishing
for which range of the parameters @ and [ they are minimum or saddle points for JV| N, See
Theorem 2.2.

In section 3 we deal with the subcritical case, namely we assume that o + 8 < 2* and h
satisfies some proper integrability condition. The analysis of the behavior of Palais-Smale sequences
performed in subsection 3.1 provides enough compactness to prove Theorem 3.7, which ensures the
existence of a ground state solution to (1) provided either v is large or o, 8 € (1,2). It is worth
noticing that in the case where o, > 2, the largeness condition on v required in Theorem 3.7
is almost optimal because, if v is small, then the minimum of .J,, on the Nehari can be achieved
only by semi-trivial pairs, as proved in Theorem 3.4. For a,3 > 2 and v sufficiently small, the
functional J,, restricted to the Nehari manifold exhibits a mountain pass geometry, hence, thanks to
the improvement of the Palais-Smale condition obtained in Lemma 3.5, we deduce in subsection 3.3
the existence of a mountain pass critical point of J, on the Nehari manifold, see Theorem 3.8.

If a < 2 < B and Ay = Ay, the energy functional still exhibits a mountain pass geometry
and a concentration-compactness argument provides a local Palais-Smale condition. However, the
existence of a suitable path in the corresponding Nehari manifold, with energy strictly below the
Palais-Smale level, seems to be an open problem, see remark 3.10.

The case a+ (3 = 2* treated in section 4 presents an additional difficulty due to a critical growth
also in the coupling term and the consequent further lack of compactness. The coefficient A of the
coupling term will be assumed to be a bounded function vanishing at 0 and oo, in order to exclude
concentration phenomena at 0 and at co. If h is radial, an improved local Palais-Smale condition
implies the existence of a ground state solution if either o, 8 < 2 or v is sufficiently large, as stated
in Theorem 4.2. If h is a non-radial function vanishing at 0 and co, a local Palais-Smale condition
turns out to hold for v sufficiently small, thus yielding the existence of a ground state in the case
where «, 3 < 2, see Theorem 4.5. In remark 4.6 at the end of the section, we observe how a direct
calculation yields solutions to (1) of the form (¢, cg), for ¢ > 0 and ¢ solving a suitable problem.

In the final section, we treat problem (1) in the case a4/ < 2* using the variational perturbative
method developed [3, 4], which allows to find critical points of a perturbed functional by reducing
the problem to a finite dimensional one. Under the assumption that h is a bounded function
with a fixed sign, compact support, and some behavior at 0, we describe the asymptotics of any
solution to (1) at the singularity and prove that (1) admits a solution for |v| sufficiently small, see
Theorem 5.6.
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2. Preliminaries

We assume that h satisfies the hypothesis

(H) h(z) >0, h#0, heL'RY)nL®RY),
and
(2) a>1, B>1, ao+pB<2%

The natural functional space to frame the analysis of (1) by variational techniques is the space
DL2(RYN) defined in the introduction. For v = 0, system (1) is reduced to two uncoupled equations

—Au— N — [ Pu =0, =12,

||
the positive D2(RY)-solutions of which are completely classified in [28]. More precisely, in [28],
it is proved that if A € (0, (N — 2)?/4) then problem

A .
—Au——zu:uz -1 gz eRV,
(3) ||

u>0in RV \ {0}, and u € DV2(RV),
has exactly an one-dimensional C? manifold of positive solutions given by

(1) 7, = {zmx) =i PR (L) > o},

where we denote

A(N,\)

) 2 ) = T
|z|ar (1 ¥z m) ?
ay =82 (%)2 — A, and A(N,\) = [N(N;Vzi:;a*f] Moreover, all solutions to (3) minimize
the associated Rayleigh quotient and the minimum can be computed as:
SN= _ inf QA;*“) 7 = Qi(;) 5 = (1 - = 2)2> S,
uEPEEINOY ([ [u]** dr) (S 12217 d2)

where S is the best constant in the Sobolev inequality and @ (u) denotes the quadratic form

2
Qx(u) :/ |Vu|2dac—)\/ 2 dr, weDW2(RY),
RN Ry |7[?

see [28]. Hence, for all p > 0, the pairs (z)*,0) and (0, z,2) solve system (1). In the sequel we will
refer to this kind of solutions (i.e. solutions with one trivial component) as semi-trivial solutions.
The goal of this work is to provide solutions which are neither trivial nor semi-trivial, namely
solutions with both components nontrivial. Since A\; < Ay, from Hardy’s inequality it follows that
(Q,\i(-))l/2 is an equivalent norm to || - || p1.2g~y, which will be denoted as

2

w
lwl2. = Qa, (w) = / IVl — A / Ay
RN RN |$|
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while the associated scalar product will be denoted as

uw

(u,w)y, = Vu-Vw — )\i/ dx.

RN my [of?
Let us introduce the product space D := DV2(RY) x DM2(RY), endowed with the norm
1, )IB = llell, + Nl0l3,.-

As set in the introduction, solutions to (1) can be found as critical points of the functional
BB R J(u) = Iy @) + B~ [ bl
RN

where

1 1
©) Iuw) = 3 @) - 5 [
]RN
We observe that J, € C'(D,R). Let A, be the Nehari manifold associated to .J,,, namely N, is
defined by

Y, i=1,2.

N, = {(u,v) € D\{(0,0)} : (J,(u,v), (u,v)) =0},
where J/,(u, v) denotes the Fréchet derivative of J, at (u,v), and (-, -) is the duality product between
D and its dual space D*. A direct computation shows that for all (u,v) € D\ {(0,0)} there exists
Lu,(u,0)] > 0 such that i}, (4,0 (u,v) € N,. More precisely Ly, (u,0)] 18 the unique positive solution
to the following algebraic equation in ¢:

(7) ||(u,v)||%t2*2(/ |u|2*da:+/ u|2*dx) +u(a+ﬂ)ta+ﬁ*2/ h(z)|u|“|v|® d.
RN RN RN

Then, for (u,v) € D\ {(0,0)},

1, ) -
(8) Ju (t[V:(va)](uﬂv)) :N t[u,(u,v)] </]RN |u| dx + /]RN |U| d:l?)

-2
+V%to‘+ﬁ h(x)|u|®|v|?dz > 0.
2 v (w0)] o
Notice that, by the homogeneity of J,,, there exists a positive constant r, such that
(9) |(u,v)||p > 7, forall (u,v) €N,

and

10 aw0) = (5= oy Mot (s - 5) ([ 1o [ 0P o)

1 1
> (= — 2
(2 )TV for all (u,v) € N,

ie. J,,|N is bounded from below away from zero. By ground state solutions to (1) we mean

solutions with minimal energy in the Nehari manifold, as we define below.

Definition 2.1. A ground state solution to (1) is a critical point (ug,vo) of J, in D which solves
the following minimization problem

c*(v) = “ gleff\f Ju(u,v) = J,(ug, vo)-
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The following theorem clarifies how the nature of semi-trivial solutions depends on the dimension
and the values of the parameters. This kind of analysis will permit us to recognize how the geometry
of the energy functional looks like depending on the values of the parameters o and 8. We notice
that a direct calculation yields the energy levels of semi-trivial solutions which turn out to be

1 1
(11) Tz, 0) = LSOO 1(0,257) = £S()NY2, - forall >0,
Theorem 2.2. Let us assume that (H) and (2) are satisfied.
i) I
) 1If g2,

either 3 > 2 or ) )
v is sufficiently small,

then, for all > 0, (zﬁl,O) is a local minimum point of J, in N,,.

i) If
cither a >2 or 4 2
v is sufficiently small,

then, for all u >0, (0, 232) is a local minimum point of J, in N,,.

iii) If
. 5 =2,
either B <2 or ) )
v is sufficiently large,

then, for all > 0, (zﬁl,O) is a saddle point for J, in N,.
iv) If

a=2,

either « <2 or . )
v is sufficiently large,
then, for all u > 0, (0, 232) is a saddle point for J, in N,.

PROOF. To prove i), assume that p > 0, 8 > 2 and (zﬁ1 + ¢,9) eN,, ie.

(12) 2+ 0l +1013, = [ 4o dos [ WP detvlasd) [ @l +ollvl? da,
RN RN RN

Let t = t(¢,1) > 0 be such that t(z/;\1 + ¢) € N,,, where N, denotes the Nehari manifold
associated to Iy,, namely Ny, is defined by

(13) Ny, = {u € DP2RYVN0} : [Jull3, = [lu

A direct calculation yields

H+¢>H]:ll_ 113, 16125 vl + B) fn A2 + ¢|a|¢,|ﬁdwr*l2'

Y

t=t(¢,9)= : *
2t + 6117 lzi* + 7>

In particular, since 8 > 2, we have that
2 ¥l +o(1))

2 =1— —
(14) t ((ba 77[}) =1 2% _ 9 HZ;)L\I + ¢ 2;2* ’ as ||(¢71/))||D Oa
X * 2 (1 1
(15) 2 (g =1 - 2 LA oy s — 0.

2 =2 |z + ¢
Since z," achieves the minimum of Iy, = J,(-,0) on Ny,, there holds

(16) Ttz + 6),0) = Ju(2p",0) > 0.

L2~
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On the other hand, from (12-15) we deduce that

Tzt + 6,1) = Ttz + 6),0) = %(1 — (¥l + 4lI3,

1

—o (L=t (@) |l +4lI3, + 113, — IIv

2 y(a+8) / W) + 9l da

RN

1, ., 1
+§||¢H,\2 - 27||¢

as |[(¢,¥)||p — 0. Hence
(17) (2 + 6,0) = Ju(t(z)" + ¢),0) > 0

provided (zi‘l + ¢, 1) is sufficiently closed to (zﬁ‘l ,0) in . We notice that the inequality in (17) is
strict if ¢» #Z 0. From (16) and (17), we conclude that

Ju(z)" + ¢,1) — Ju(2,",0) > 0

for any (z;}l + ¢,v) € N, sufficiently closed to (z,’)l ,0) (with strict inequality holding outside the
manifold Zy, x {0}), i.e. (z,',0) is a local minimum point of .J, in A,. In the case § = 2, we
obtain that

T+ 0.0) = ez +0).0) = (G101, —v [ @l + ool d ) (1-+o(1)

. 1
Lo @N) ~ V/ h(@)|z," + ¢|* (Y| do = §||¢||2§2 (1+0(1))
RN

which still is nonnegative provided ||(¢,v)||p and v are sufficiently small. The proof of ii) works

in the same way as i), hence we omit it.
Let us now prove iii). Assume 3 < 2. Let us fix v > 0, u > 0, and v € DV2(RY) \ {0}. For any
t € R, let s(¢) be the unique positive number such that
(s(t)zpr, s(t) tu) € N,
From (7), the function s : R — (0, +00) is implicitly defined by the identity

1213, + 2, = [s<t>12*2( [ e [ dx)
RN RN
+rv(a+ ﬂ)[s(t)]o‘+ﬁ_2|t|ﬁ/ h(x)|zﬁ‘1 |a|u\5 dr, teR.
]RN

We notice that s(0) = 1. Moreover, from the Implicit Function Theorem it follows that s € C*(R)
and

s'(t)
2t fJull3, —2*[s(t))* |t
(25 =2)[s(0)]> =3 (|l |22 + 1t
for all ¢t € R. Hence, since § < 2,

Z 2 |ul T = Brla+ B)s@]* P2 fon bl [ul?
2 a3 ) + viatB)(a+B-2)[s()]F03HP fon hlznt|ul®

A1, |B
(=~ [P O ST s 1 o) as i
@ =)l 2

and, consequently,
s(t)y=1- {

v(a+B) fon hlzpt|*|ul?

2 = 2) Iz’ I3

} t]° (1+0(1)) ast—0.
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In particular, there holds that
* Nv(a+ h Z>\1 am 38
(18) [s(t)] =1— [ ( B) Jgx Bzt [*|ul

2|2 1%
From (8) and (18), we deduce that
J,,(s(t)z’\1 s(t)tu) — J,,(z;}l,O)

I )
. s o * a+p5-2
ng* +&|t‘2 Hu||2L2* +V¢|t\ﬁ [S(t)]aﬂi/ h|z31|a|u|ﬁ
N 2 RN

} [t]° (1+0(1)) ast—0.

B,
N 12

via+ 0 o a+pB—2 e
_ _Yath) )|t|f3/ h(z) |z |u|ﬁdax+1/7\t|ﬁ/ hzpt|*ul® + o([t]?)
2 RN 2 RN

— o /RN B2l + o(t)%) as t— 0.

Hence
(19) Jy (s(t)z’\1 s(t)tu) — Jl,(zfl‘l,O) <0 for t # 0 small,

J7
ie. (zﬁ‘l,O) is a local strict maximum point for J, along a path living in the Nehari manifold A,,.
On the other hand, for all w € Ny, (see (13)), we have that (w,0) € N,. Furthermore, the pairs
{(2)1,0) : ¢ > 0} are the only minimizers of .J,(-,0) on Ny,. Then

(20) Jy(w,0) — J,,(z;}HO) >0 forallwe Ny, \{(22%,0): ¢ >0},

i.e. (z,1,0) is a local minimum point for J, restricted to Ny, x {0} C N,. From (19) and (20) we
deduce that (zﬁl,O) is a saddle point for .J, in N,. The above argument can be adapted to the
case § = 2 just by requiring that v is sufficiently large. Indeed, in this case

v(ia+2 Bz ) = [jul|?
8'(75):—2[ ( ) Jur P ”J\ | - ” Aﬂt(l—i—o(l)) ast — 0,
(2 —2)| 2

and hence
1
Jy(s(t)zl’>17s(t)tu) — Jl,(z;)l,O) = <2||u||§\2 — 1// h |zﬁl|0‘|u|2) [t 4+ o(|t]*) ast— 0.
RN

Therefore (19) holds provided v is sufficiently large. The proof of iv) works in the same way as
iii), hence we omit it. W

Remark 2.3. We notice that, from the proof of Theorem 2.2, there results that, under the as-
sumption of statement i), J,(u,v) > J,(23",0) for all (u,v) € N, \ (Zx, x {0}) sufficiently

closed to (zz‘l,O), while, under the assumption of statement i), J,(u,v) > JV(O,sz) for all
(u,v) € Ny \ ({0} x Zy,) sufficiently closed to (0, z)?).

3. Subcritical coupling term

In this section we assume that h satisfies (H) and deal with system (1) with a subcritical
coupling term, i.e. in the case

(21) a>1, B>1, ao+p8<2%

The minimization of J, on the Nehari manifold is a non trivial issue, as the lack of compactness of
the embedding D¥2(RY) — L2" (RY) could lead to non-convergence of Palais-Smale sequences. To
overcome this difficulty, a Concentration-Compactness argument can be employed to understand
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at which levels of energy compactness can be lost and at which ones Palais-Smale condition can
be recovered.

3.1. Analysis of Palais-Smale sequences. In this subsection, we perform a careful analysis
of the behavior of minimizing sequences with the aid of P. L. Lions Concentration-Compactness
principle [17, 18], which allows to recover compactness below some critical threshold. Let us first
notice that any Palais-Smale sequence for J, constrained on the Nehari manifold is actually a
Palais-Smale sequence for the unconstrained functional.

Lemma 3.1. Let us assume that (H) and (21) are satisfied and that {(un,vs)}neny C N, is a

Palais-Smale sequence for the constrained functional J"’N at level c € R, i.e.

(22) Jo(Un,vn) = ¢ inR  and (J,,|NU)/(umvn) — 0 in the dual space D*.

Then {(tn, Vn) }nen is a bounded Palais-Smale sequence for the unconstrained functional, i.e.
J! (U, vp) — 0 in D*.

PROOF. From (22) and (10) it follows that

e+ 0(1) = J (tn, v) = (% - aiﬂ)H(un,vn)H% + (Flﬂ - 2i) (/RN a7 d /RN |vn|2*dm)

(5~ 23) lwm w3,

and hence {(un,vn)}nen is bounded in D. Setting
GV(uv U) = <J;(’LL, ’U), (’LL, U)>7

a direct calculation yields, for any (u,v) € N,
(G u0), (0, 0)) = 2= a = Dl o+ @+ - 2)( [ ot [ o do)
RN RN
and then, in view of (9),
(23) (G}, (u,v), (u,v)) < —(a+ B —2)r; for all (u,v) €N,.
Let {pn }nen C R be a sequence of multipliers satisfying
/
Jlll(uny Un) = (JV|NU) (un7 Un) + MnG:/(un7 Un)~

Testing the above identity with (u,,v,) and using (22), (23), the definition of Nehari manifold,
and boundedness of {(u,,v,)}, we obtain that lim, . p, = 0. Being G, (uy,v,) bounded, we
conclude that J/, (uy,,v,) = o(1) as n — +00. B

Y

We now establish in Lemma 3.2 a Palais-Smale condition which holds below some critical thresh-
old independently of the value of v.

Lemma 3.2. Let us assume that (H) and (21) are satisfied and that {(un,vn)}neny C D is a
Palais-Smale sequence for J, al level c € R, i.e.
(24) Jy(Un,vn) — ¢ inR and J,(up,v,) — 0 in the dual space D*.
Then
i) there exists C > 0 such that, for all n, ||(un,v,)|p < C;

N

i) if c < & (min{S(A1),S(A2)})?, then, up to a subsequence, (un,vy) — (u,v) strongly in D.
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PROOF. From (24), we obtain that

1
(25) Jy (U, vp) — m<Jl',(un,vn), (Un,vp)) = c+0(1) + o(||(un,vn)|lp) as n — oco.
Hence

(5 - 735wl < (5= Mm o+ (5550 ([ Jual o+ [ o)

:c+0(1)+0(||(un,vn)\|]@) as n — 0o,

and therefore we conclude that {(uy, vp)nen is bounded in D. Then, there exist (ug,v9) € D and
a subsequence, still denoted as {(un, vy ) }nen, such that

(tn, vp) — (ug,vo) weakly in D,  (up,v,) — (ug,vp) a.e. in RY,
and  (uy,v,) — (ug,vo) strongly in L (RY), for all a € [1,2%).

In view of the Concentration Compactness Principle by P. L. Lions, (see [17] and [18]), there exist
a subsequence, still denoted as {(un, vpn)tnen, two at most countable sets J and K, set of points
{z; e RN\ {0}, j € J} and {yx € RN\ {0}, k € K}, real numbers p;, p;, j € T, fik, pr, k € K,
o, Po, Yo, Mo, Po, and 7p, such that the following convergences hold in the sense of measures

Vun> = dp > [Vuol + > 0, + podo,
Jj€ET
[Von? = djp > [Vool* + ) firdy, + fiodo,
ke
lun* = dp=1uol* + > pjbs, + podo,
jeT
26 . . . . )
2 ol = dp =l 3 Al + oo
kex
U?L u2
|l“2 - dfy | |2 +7060,
v2 B v}
ECE A PR

From above and Sobolev’s and Hardy’s inequalities it follows easily that

2
(27) Sp:” <p; foralljeJU{0}, Anvo < po,
(28) SpE < pi forall ke KU{0}, An7o < fio-
Concentration at infinity of the sequence {u, }nen is described by the following quantities:
(29) Poo i= hm hmsup/ lun|? dz,  froo = hm hmsup/ |Vu,|?dr,
R—00 n—oo Jig|>R =00 n—oo Jiz|>R
and
w2

(30) Yoo = hm hmsup/ Tigdr

R—oo n—oo Jiz|>R 2|

Similarly, the concentration at infinity of the sequence {v, } nen is described by quantities poo, fico,
and 7., defined in an analogous way. We claim that

(31) J is finite and, for j € J, either p; =0 or p; > SN/2.
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For e > 0, let ¢5 be a smooth cut-off function centered at x;, 0 < b5 (z) <1, such that

1, if|lz—x; <e/2 4
Sr)=4" =51 and S(z)) < = forallz e RY,
o5 () {O, iz — 2y > e, and  |V@5(z)| < ; forallze
Testing J,, (un, vy) with (u,¢5,0) we obtain
0= lim (J,(up,vn), (un¢§,0)>
u2 ¢S .
= lim_ /RN [|vun|2¢§ + UV, - VoS — A IwIQJ — ¢S [unl* — avh(z) |un|a|vn|5¢§}d:c .

From (H) and since 0 ¢ supp(¢5) provided ¢ is small enough, letting ¢ — 0 we obtain that

i —p; < 0. Since Spi/g* < pj, we conclude that, for all j € J, either p; = 0 or p; > SN/2_ which
implies that J is finite. The claim is thereby proved. Notice that, by an analogous argument, the
same conclusion holds for p and IC, i.e.

(32) K is finite, and, for k € K, either p, = 0 or g > SN/2.

To analyze the concentration at 0, we follow closely the argument used in [1]. By choosing suitable
cut-off functions centered at the origin, we can easily prove that g —A170 < po and fig— A2 < po-
On the other hand, using the definition of S(A;) and S(Az), we obtain that

(33) po — Ao = S()py/* and  fig — AeFo > S(A2)py

It follows that

(34) either pg = 0 or pg > S%()\l)
and
(35) either py = 0 or g > S (Ag).

By choosing a suitable cut-off function supported in a neighborhood of co, we can analogously
prove that

(36) Hoo — )\lfYoo Z S()‘l)pgég* and laoo - )\2’700 Z S()\Z)/SgoéQ*a
(37) cither poo = 0 or poo > 57 (M),

and

(38) cither fos = 0 OF oo > S (A2).

From (25) we have that

- (% - aiﬂ>||(un,vn)||]%>+ (Flﬁ - %)(/RN |un|2*dx+/RN 0ul? dr) +0(1)
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as n — +oo. Letting n — +o0, from (26), (27), (28), (33), and (36), we obtain

1 1
(39) 02 (3= ) |0 + 3 45+ (10 = Mro) + (s = A1)
JjET
+Zﬂk+(ﬂ0)\2’_)’0)+(ﬁoo)\2'7m)}
ke
+( : —1)[/ \uol2*+/ lvoT+ij+2ﬁk+po+ﬁo+poo+ﬁ4
O[+6 2% RN RN jed ek
1 1 * * * * * *
> (- )[S(Zp?” +Zpi/2>+S(A1)(p§/2 +22) 4 SO) (95 + 2L )}
a+ 3 ;
JET ke
+ al —2% Pi+ D Ph+ Po+ Po+ Poo + P |-
+ 3

j€eT ke
If p; # 0, from above and (31), we obtain
1 1 N 2 1 1 N 1
> (= - git+E & ( _ 7>57 — — gN/2
€= (2 o+ 6) T a+pB3 2% N ’
thus giving rise to a contradiction with the hypothesis on c. Hence p; = p; =0 for all j € J. In

the same way, using (32), we can prove that fx = pr = 0 for all k € K. If pg # 0, from (39) and
(34), we obtain

I on
> —gN/2
CcC =~ NS (/\1)7

thus contradicting the hypothesis on ¢. Hence py = 0. In the same way, using (35), we can prove
that pp = 0. Analogously, from (37-38) it follows that poe = poo = 0. Hence {(un,vpn)}tnen
converges strongly to (ug,vp) in L2 (RY) x L?"(RY). To conclude, it is now enough to observe
that
| (s v) — (2o, v0)||3 = <J,£(un,vn), (U, — g, Uy — vo)> +0(1) = o(1) as n — 4o0.

Hence {(un,vn)}nen converges strongly to (ug,vg) in D. m

Notice that the energy level below which the Palais-Smale condition holds provided by Lemma 3.2
is independent of the parameter v. If v is sufficiently small, the above Palais-Smale condition can
be extended to higher energy levels. To obtain such an improvement, we first observe that, for

a, > 2 and v small enough, any ground state solution to (1) must be necessarily semi-trivial. To
prove this, we need the following algebraic lemma.

Lemma 3.3. Let A, B> 0, and 6 > 2 be fixed. For any v > 0, let
S, = {(T 6]1:§'~'|A(7¥ < U+Byog¥}.

Then, for all € > 0, there exists v1 > 0 depending only on e, A, B, 0, and N, such that
inf S, > (1 —5)A% forall 0<v <.

PROOF. We notice that S, = {o > 0| f(¢) < Bv}, where f(c) := Ao~ % ~2% —g1=2% . Moreover,

f(AN/2) = 0. If § < 2*, then f is a strictly decreasing function. If § > 2*, then f has a global
A(672))N/2

0—2-

strictly decreasing in (0, AV/?], has only one zero at AN/2, lim,_+ f(o) = 400, and f(o) < 0 in

(AN/2 +00). Hence inf S, = f~1(Br) — AN/? as v — 01 and the conclusion follows. W

> AN/2 and tends to 0 as 0 — +oo0. In any case, f is

negative minimum at o = (
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The following theorem ensures that, when v is sufficiently small and «, G > 2, all ground states
solutions are semi-trivial.

Theorem 3.4. Assume that o, 3 > 2, then there exists v1 > 0 such that for all 0 < v < 11

L85 (M),  if M < Ao,

* :.le/, - N
c*(v) ind (u,v) {]1VS2()\1), i) > A,

Moreover c¢*(v) is achieved by and only by

(0,£2)2), 1>0, if \ < A,
(:l:Z,i\l,O), >0, Zf/\2 < A1,
(0, iz;)f)a (izﬁlaO% >0, if Ay = Ag.

PROOF. Let us prove the theorem in the case A\; < Ay. Since (0,272) € N,, then, for all
v >0, ¢*(v) < J,(0,27?) = %S%()\g). Assume by contradiction that ¢*(v,) < %S%()\g) for
some sequence v, — 0. Since \; < \g, there results that ¢*(v,) < %(min{S(Al),S(Ag)})N/z.
By Lemmas 3.1 and 3.2, the Palais-Smale condition holds at level ¢*(v,,) on the Nehari manifold,
hence ¢*(vy,) is achieved by some (¢, ¢,) € N,. Since also (||, |¥n]) € Ny and J,(dn, ¥n) =
Ju(|nl, [1n|), we have that also (|¢y], [1,]) is a ground state for J,. Hence we can assume that
¢n > 0 and 9, > 0. Moreover, by classical regularity results, ¢,, and v, are smooth in R \ {0}.
Moreover, ¢,, # 0 and ,, # 0 for all n € N. Indeed, assume by contradiction that 1,, = 0 for some
n, then ¢,, Z 0 solves

—Ady — )\1& =¢n
|z[?

Hence, by [28], ¢,, = ZZ‘; for some p,, > 0. Therefore, (11) yields that
* 1 N
c (Z’n) = JV(¢mO) = I/\1(¢n) = NS 2 ()‘1)7

thus giving rise to a contradiction with the fact that ¢*(v,,) < + (min{S(\;), S(/\Q)}) . In the
same way, we can prove that ¢,, # 0 for all n € N. The maximum principle in R \ {0} implies
that ¢, > 0 and 1, > 0 in RY \ {0} for all n € N. Notice that

) = Tes(ntn) =5 ([ e [ zz)i*dx)w(aw)(%—ﬁ) ()5,

then, by setting o := [px ¢ dz and 0§ = [, 12", we obtain that o7 >0, o3 > 0,

(40) max{ol,05} < 57()\2), and of +0y < 57()\2).
Since (dn, n) are solutions to system (1) with v = v,,, we obtain that

2
5%

SONEDF <ot +va [ @eivlds

and

SOu) (0D F < 07 + v / (2)¢e el da.

/R h@ysguids < o) /R Cora)®( / o ar)®

Since
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then, using (40) and the fact that S(\2) < S(\1), we conclude that
BN-2)

SO) (01 <o +aC(h)(S(N2))  * valof)F

and
—2) 8

a(N
S(2)(05) < ob +BC(R)(SO2)) T valo3)>
Let us fix € > 0 such that 2 — 2 > % Since «, 8 > 2, we can use Lemma 3.3 to conclude that, for

n sufficiently large,

N N
2 2

o > (1—¢)S2(A2) and of > (1—¢)S2(\a).
Then

ol +of >(2—2¢)S

a contradiction with (40). Therefore ¢*(v) = +S5% (\y) provided v is sufficiently small. Assume

now that (¢,1) is a minimizer attaining ¢*(v %S%(A ) for v small. Repeating the above
argument, we can easily prove that either ¢ = 0 or v» = 0. If A\; < Ay, then necessarily ¢ = 0. If
not, then ) = 0 and ¢ # 0 weakly solves

—A¢ — )\1| E = |¢|* %9

We notice that ¢ does not change sign. Indeed ¢, = max{¢,0}, ¢_ = max{—¢,0} € Ny, (see
(13)), hence (¢+,0), (¢—,0) € V,. If both ¢ # 0 and ¢_ # 0, then

* 2% 2
() = (6,0 N/ o do= [ dar g [ 67 de> 0060002 00,
a contradiction. Hence ¢ does not change sign and, by [28], ¢ = :l:,zﬁ‘1 for some p > 0. Then

() = T (6,0) = %S%()\l) > %5%@2),

which is a contradiction. Hence ¢ = 0 and any minimizer in this case has necessarily the form
(0,), where 1 # 0 weakly solves

L
) =

—Ay — )\2| E = [0 2y

Arguing as above, it is easy to verify that ¢ does not change sign, and then, by [28], ¢(z) = isz
for some p > 0 and the conclusion follows. In the case A\; = Ag, the couples (j:zft‘l ,0) and (0, :I:zf;?),
1 > 0, completely describe the family of minimizers. B

In order to find positive mountain pass solutions to (1), it is convenient to consider, under the
same hypotheses on h, A1, A2 and v, the following modified problem
—Au )\1| P—u+ Yfvh(@)aus™ 0, in RV,
(41)
—Av — Ng— - |2 =X uh(e)Buslt, i RN,

where u; = max{u,0}. Weak DV2(RY)-solutions to problem (41) are critical points of the func-
tional

J,:D—R, J,(u,v) =TIy (u)+I,v)— 1// h(x)uff_vidx,
RN
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where
1 1 2% .
(42) I, (w) = = Qx,(w) — — widr, i=1,2.
: 2 77 RN

If (u,v) is a critical point of J,, then, by testing with u_ = max{—u,0} and v_ = max{—v,0},
we easily obtain that v > 0 and v > 0. Hence critical points of J, provide positive solutions to
the original problem (1). We denote by N, the Nehari manifold associated to J,, i.e.

(43) N = {(u,v) € D\ {(0,0)} : { (7..) (u,v), (u,v) ) = 0}.

The following lemma provides, for v small and «, F > 2, an improved Palais-Smale condition for
J, above the critical threshold of Lemma 3.2.

Lemma 3.5. Let (H) hold and «, 8 > 2 satisfy (21). If 0 < Ay < Ag < (N —2)?/4 and
(44) SN2 (A1) + SN2 (Ng) < SN2,

then there exists 11 > 0 (depending only on N, A1, A2, @ B, and h) such that if v < vy and
{(tn,vn)}nen CD is a Palais-Smale sequence for J, at level ¢ € R with ¢ satisfying

(45) %SN”(M) <ec< %(SW(M) + SN2()\,))
and
(46) c# %SN/Q(AQ) for all ¢ € N\ {0},

then {(un, vn) }nen admits a subsequence strongly converging in D.

PROOF. Arguing as in the proof of Lemma 3.2, it is easy to verify that {(un, vn)}nen is bounded in
D and admits a subsequence, still denoted as {(un, vn) fnen, weakly converging to some (ug, vo) € D.
We claim that ((u,)—, (v,)-) — (0,0) strongly in D. Indeed (J,)' (un, vy) — 0 strongly in D implies

un)?
(T o (1)) = = [ 9P ars [ EEde o) asn— o

Thus (u,)- — 0 strongly in D"?(RY). The same holds for (v,)_. Hence ((un)+,(vn)4) is a
bounded Palais-Smale sequence of J,,, and, having positive components, of .J,,. Therefore, without
loss of generality, we can assume directly that

un >0, v, >0, and {(un,vn)}nen is Palais-Smale sequence for J,, at level c.

From the Concentration Compactness Principle [17, 18] and the same arguments as in the proof of
Lemma 3.2, we deduce the existence of a subsequence, still denoted as {(un, vn)}nen, two at most
countable sets 7 and K, sets of points {z; € RV \ {0}, j € J} and {yx, € RV \ {0}, k € K}, real
numbers (5, pj, § € T, fiks Prs k € K, 1o, po, Yo, o, Po, and 7o, such that (26-35) hold. Moreover,
defining peo, foo, and Yoo as in (29-30) (and analogously pPeo, fleo, and o for the concentration of
v, at 00), (37) and (38) are satisfied.

Claim 1. We claim that either u, — ug strongly in L?>"(RY) or v, — v strongly in L (RN).

Assume by contradiction that the L2 (RN )-convergence of neither u,, nor v, is strong. Hence there
exist jo € JU{0}U{oo} and ko € LU {0} U {oo} such that p;, > 0 and pg, > 0. From (39), (31),
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(32), (34), (35), (37), and (38), we obtain that

¢ = Jy(tn,vyn) +0(1) > (% - aiﬂ) (S(’\l)/)?f* + S(x\z)ﬁié?) + (

SN/2()\1) + SN/2(>\2))

57 (i 1)
a‘i_ﬁ 2* p](] pkf()

\%

3
which is in contradiction with (45).
Claim 2. We claim that either u,, — ug strongly in DY2(R”Y) or v, — vg strongly in D2(RY).
Indeed, assume that u, converges to ug strongly in L%’ (RM). Then

lun — uoll3, = (JL(tn,vp), (n — 10, 0)) + 0(1) = o(1) as n — ~+o0.
Hence u,, converges strongly to ug in DV2(RY). The same argument yields the claim when v,
converges to vg strongly in L* (RN ).
In view of the above claims, we distinguish two cases.
Case 1. v, converges strongly to vg in D2(RY). In this case it is easy to prove that JU{0}U{co}

is reduced to be at most a singleton set: indeed, if 7 U {0} U {co} contains more than one point,
(39), (31), (32), (34), (35), (37), and (38) yield that

2 1
c> NSN/Q(/\l) > N(SN/Q()\l) _"_51\7/2()\2))7

thus contradicting (45). Hence JU{0}U{oo} is at most a singleton set. In order to prove that also
u,, converges strongly in DV2(RY) (up to a subsequence), we argue by contradiction and assume
that w, converges weakly but none of its subsequences converges strongly to ug. We claim that
vg Z 0. Indeed, if, by contradiction, vg = 0 and ug # 0, we have that wug is a positive weak
DL2(RY)-solution to

Uo 2" —1
_AUO_)QW—UO =0.

Hence ug = z)* for some p > 0 and [, lug|?” = SN/2(\1). Hence from (39) and (31-38), taking
into account the definition of S(\;) and the fact that u, concentrates exactly at one point, we
deduce that

1 L 2
c> N(/RN w2 dx + Sg(Al)) > NS%(/\l),
in contradiction with (45) and the fact that S(A3) < S(A1). On the other hand, if vg = 0 and

ug = 0, then u,, solves

—Au, — )\1% —u2 "' =0(1), in the dual space (D“2(RM))".
T

Since the concentration of w,, occurs at exactly one point, there exists j € J U {0, 00} such that

1 « 1
¢ = Jy(un,vn) +0(1) = N /RN u? dz + o(1) o WP
If j # 0 and j # oo, then {u, }nen is a positive Palais-Smale sequence for the functional
1 1 .
Iy(u) = f/ |Vu|? dz — —/ u? dr, ueDYA(RY).
2 RN 2* RN

Hence, in view of the characterization of Palais-Smale sequences of I proved in [27], we obtain that
pj = (5% for some £ € N\ {0}, thus contradicting (44) and (45). In the case where j € {0,00},
Uy, is a nonnegative Palais-Smale sequence for the functional Iy, defined in (6) at level ¢, then an
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analogous argument as above and the noncompactness analysis performed in [26, Theorem 3.1]
imply that

¢ = Jy,(Un,vn) + o(1) = I, (un) + o(1) e %S%(Al)

for some ¢ € N. Consequently, a contradiction with assumptions (45) and (46) is reached. Hence
we conclude that vy #Z 0.

The above discussion allows us to exclude the case vg = 0. Thus we may assume that v,
converges strongly to vy in DV2(RY), vy # 0, and u,, converge weakly (and not strongly) to ug in
DL2(RN). If uy = 0, then vy weakly solves

Yo 2" 1 _
—A’UQ — )\QW — Y = 0,
hence vy = 222 for some p > 0 and [ [vo[*” = SM/2(X2). From (39) and concentration of u, at
exactly one point, we deduce that

N
2

6= T (s vn) + 0(1) > — (S5 (M) + 5% (02))

N

a contradiction with assumption (45). Hence both ug #Z 0 and vg # 0. Letting n — 400 in
1
(47) c=J,(Un,vpn) — §<Jl',(un,vn),(un,vn)>+o(1)

1 * .
_N(\/RNUEL dac—i—/RNvg dx) —V(l—a;ﬂ)/RNh(x)uf{vgdx—l—o(l),

we obtain that, for some j € J U {0, oo},

1 x . )
(48) c=— / ud dr + / vg dr+p; | +v atf-2 h(x)ug‘vg dx.
N RN RN 2 RN

On the other hand, letting n — +00 in (J},(un, vy), (U, v0)) = o(1), we obtain that

II(uo, Uo)H]%) = / u%*dm + / vg*dx +v(a+B) h(m)ugvgdx,
RN RN RN

i.e. (ug,vo) € N,. Moreover, from (8), (48), (31), (34), (37), and assumption (45), we deduce that

1 . - +B-2
Jy(ug,v9) = N</RN ul d:z:+/RN vE d:c) +I/%/RN h(:z:)ug‘vgdx

: 1 1 1
= o= B < S (SY2(0) + 5Y20)) — 5V/20n) = £V (0).
Hence we conclude that

. 1
I’.l/’\l/lyn Jl/ S JV(UO)UO) < NSN/z(AQ)a

giving rise to a contradiction with Theorem 3.4 if v < vy, for v; as in Theorem 3.4. Hence, if v,
converges strongly, also the convergence of u,, must be strong.

Case 2. u, converges strongly to up in DY2(RY). In order to prove that v, — vy strongly in
DL2(RY), we again argue by contradiction. Assume that v,, converges weakly (and not strongly)
to vp in DV2(RY). First we claim that ug # 0. To prove the claim we argue by contradiction.
Assume that ug = 0, then is easy to check that {v,}n,en is a positive Palais-Smale sequence for
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the functional Ty, defined in (6), at the energy level ¢ = lim Iy,(v,). Since v, — vy weakly in

DL2(RY), then vy is a weak D2(RY)-solution to
Yo 2% -1 _
_AUO — AQW — Yy =0.
By [26] we obtain that, for some m, ¢ € N,

c= lim I)\g(vn) = I)\2(v0) + NSN/2 + ﬁSN/2()\2)

n—oo

From (44) and (45), we deduce that m = 0. If vo = 0, then ¢ = £SV/2();) for some ¢ € N,
a contradiction with (45-46). If vy # 0, then, from [28], vg = 2,2 for some p > 0. Then
I, (v0) = £ SN/2(Xs), hence ¢ = HASN/2()\,) with £ € N, still giving rise to a contradiction with
assumption (46). Hence the claim follows and we can assume ug # 0.

We now claim that vy #Z 0. Indeed, if vg = 0, then ug weakly solves

Uo 2" -1 _
_AUO—/\lw — Ug =0,
hence, by [28], ug = z;}l for some > 0 and [y |uo 2" = §N/2(\}). Therefore, from (39), (32),
(35), and (38), we deduce that ¢ > & (SN/2(A1) + SV/2(\2)), a contradiction with (45). Hence we
can assume that vy Z 0. It is clear that (ug,v) is a solution to problem (1) and

1 x x -9
(49) Ju(ug,vg) = —(/ ud dx —|—/ vg dm) + V% h(x)ug‘vgda:
N\ Jr~ RN 2 RN
1
< e < (8% () + 5% ().
Since A2 < Ay, then, for some ¢ sufficiently small,
l—¢, ~
2

(% () + 5% () > 5¥ ().

N

Fix such an e. From (47) and the fact that {v, },en converges weakly and not strongly in D2(RY),
it follows that at least one of the numbers pg, k € K, pg, poo is strictly positive and

1 . " a+ (3 —2
c:(/ u? da:+/ o2 dx+ZPk+Po+l)oo>+Vﬂ h(@)ugvgda,
N\ Jrw~ RN kek 2 RN

hence, by (49), (32), (35), (38), and (45),

1 B B _ S i N
(50) Jl,(uo,vo)zc—N(];Cpk—i—po—i—poo) < - = sF ().

Using the definition of S (\;) we obtain that

2
/ ug*dx—kow/ h(az)ug‘vgdx:/ |Vuol|? das—)\l/ ﬂdeS(Al) / ul da
RN RN RN Y |zf? RN

Setting a := f]RN ug* dz and using Holder’s inequality and (49), there results that

N
HY

a+ Crvaz > S(/\l)a%*
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where the constant C' > 0 depends only on N, A1, A2, B, «, h, and is independent of wug, vy, and
v. Since a > 2, then by Lemma 3.3 there exists v; = v1(g) > 0, depending only on the data and
independent of ug and vy such that, if v < vy, then

a>(1-¢2)S%(\).
In a similar way, setting b = [pv v3 dz, we find some vy = 15(c) > 0 independent of ug and vy
such that, if v < vy, then

b>(1-2)S7 (M)

From the two above estimates, (49), and the choice of €, we obtain that

SO0 + 5% 00) > 5 0u),

thus giving rise to a contradiction with (50). Hence v, — wvg strongly in DM#(RY) and the
statement is proved also in case 2. ®

Jy(uo,v9) >

Remark 3.6. If h is a radial function, we can perform the above concentration compactness anal-
ysis in the space D, := DF2(RY) x D}?(RY) = {(u,v) € D : w and v are radially symmetric}.
In this case, assumption (44) is no more needed, due to the Strauss Lemma which ensures com-
pactness of the inclusion DY2(RYN) into LP({x € RN : Ry < |z < Ry}) for allp > 1 and for all
Ry > Ry > 05 in particular no concentration at points different from 0 and oo can occur.

3.2. Existence of ground state solutions. As a direct consequence of the Palais-Smale con-
dition proved in Lemma 3.2, the following result about existence of ground state solutions holds
true. As stated in Theorem 3.4, there is no hope to find non semitrivial ground state solutions to
(1) for «, 8 > 2, unless v is sufficiently large.

Theorem 3.7. Let (H) and (21) hold.

i) There exists vy > 0 such that, for all v > vy, (1) admits a ground state solution (p, ) € D
(according to Definition 2.1) such that ¢ > 0 and ¢ > 0 in RN \ {0}.

i) If « < 2 and B < 2, then (1) admits a ground state solution (¢,v) € D such that ¢ > 0
and ¥ > 0 in RN \ {0}.

PROOF. Letting c¢*(v) := inf(y ven, Jv(u,v), a direct calculation shows that
1 N
0<c*(v) < N(min{S(Al),S(Ag)}) z.

In view of the compactness Lemma 3.2, to prove that ¢*(v) is attained is enough to prove that
c*(v) < %(min{S’()\l),S(Ag)})Nﬂ. To this aim, we fix (u,v) € D such [px h(z)[u|*|v|’dz > 0.
Let t, = t[,(uv) > 0 be such that t,(u,v) € N,, see (7). Notice that lim, 4 t, = 0 and

2
lim t2+8-2y = [[(u, v)[|5 .
v=roo (@ + ) Jan () u|*|v]dz

Therefore we have that
1 1
Julto(w,0) = 2@ 3 (5~ 255 -
Hence J,(t,(u,v)) = o(1) as v — oo and then there exists vy > 0 such that, if v > v, then

0(1)) as v — +o0.

() < Tt 0) < (min{SO0), SO Y.
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The existence of a ground state (¢,1) € N, for all v > 1y follows easily from Lemma 3.2. By
evenness of J, and of the Nehari manifold, we can assume that ¢ > 0, ¥» > 0, and, by classical
regularity results, ¢ and 1 are smooth in RY \ {0}. Moreover, ¢ # 0 and 1 # 0. Indeed, if, by
contradiction, ¥ = 0, then ¢ > 0, ¢ # 0, solves

—Ad— M\ o _ o> L.

[EE

Hence ¢ = zﬁl for some p > 0 and, consequently, ¢* = J,(¢,0) = I, (¢) = %S%()\l), thus giving

rise to a contradiction with the fact that ¢* < 4 (min{S(\1), S()\Q)})N/Q. In the same way, we can
prove that v # 0. The maximum principle in R \ {0} implies that ¢ > 0 and ¢ > 0 in R \ {0}.
Statement i) is thereby proved.

If @ < 2 and 8 < 2, then by Theorem 2.2, parts iii) and iv), we have that (z;*,0) and (0, z;?)
are saddle points for J, in NV,. More precisely, in view of (19), the assumption 3 < 2 yields that

c*(v) = i/\I}ny < J, (21,0,

and, analogously, from « < 2 we can deduce that
* . A
c(v) = IJ\I}EJV < J,(0,272).

Therefore, in view of (11), ¢*(v) < %(min{S(Al),S()\g)})N/z. Using Lemma 3.2 and arguing as
above, we conclude that there exists a ground state (¢,v) € N, such that ¢ > 0 and ¢ > 0 in
RN\ {0}. m

3.3. Existence of mountain pass solutions. For «,( > 2 (also for a, 8 > 2 if v is small), the
semi-trivial solutions turn out to be local minimum points for the functional J, restricted to the
Nehari manifold, which consequently exhibits a mountain pass geometry.

The improved Palais-Smale condition provided by Lemma 3.5 and the mountain pass geometry
exhibited by the functional J, for «, 3 > 2, allow us to prove the existence of mountain pass
critical points for v small. We notice that the conditions «, 5 > 2 and (21) can both hold only in
dimension N = 3.

Theorem 3.8. Let (H) and (21) hold. Assume N =3, a, 3 > 2, and A\ < Ay < 1/4 are such
that (44) and

1 As-—

1_As Az

2 A3 — )\1

are satisfied. Then there exists v1 > 0 (depending only on N, A1, A2, a, B, and h) such that, if

v < vy, the restriction of J, on N, has a mountain pass critical point {(ug,vo)} € N, such that
ug >0 and vo > 0 in RNV \ {0}, and, consequently, problem (1) admits a positive weak solution.

(51)

PROOF. Our goal is to construct a mountain pass level for the functional on the Nehari manifold
at which the Palais-Smale condition holds. Let us consider the set of paths in A/, joining (zf‘l,O)
with (0, 272), i.e.

5 { v = (71,72) : [0,1] — N, continuous such that }
Y1(0) = 22, 7(1) =0, 72(0) = 0, 72(1) = 272
and define the associated mountain pass level

Owrlv) = Jaf iy 700
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By (51) we obtain that

25% () > 15 (),
hence, by the monotonicity of A — S(A), there e > 0 sufficiently small (depending only on N, Aq,

and Ag2) such that

2 SO +S0)\E 2 14e1) x ,
(52) N(l —51)<(1)2(2)) NS 7 (X2) > ( N 1)52 (A1) i A < Ag,
and
N
2 S(A1) +S(A2)\? 1+ N .
(53) N(l—sl)( (M) 5 ( 2)> > | Ngl)Sz()\l) if A\p = Ag.
We now claim that there exists 14 = v1(g1) such that, for 0 < v < 1y
N
- 2 S() + SO \F
> 21— AV ,
(54) i ,0(0) 2 21— e (22 . forallyex,

Let (y1,72) € .. Notice that, since (y1(t),v2(t)) € N, then

2 2
[wm@par-x [ ars [ P - [ 2w
RN RN |z RN en |7

=/ (Wl(t))i*dx+/ (Wg(t))i*derV(aJrﬂ)/ h(@) (11(8)% (2 (1)} da

and
Tontrae) = ([ 0o+ [ a0ae) +0 022 [ e a0 a0

To deduce (54), we can assume that max;eo.1] [on (i (£))% “dr < QSN/Q()\l) for ¢ = 1,2 without
loss of generahty, otherwise there is nothing to prove. Consider fl fRN % ) “dx where
i=1,2, then f1(0) = [pn (2] M2z > f2(0) =0 and fi1(1) =0 < fo(1 f]RN 2" dz, hence, by
continuity, there ex1sts t € (0 1) such that fi(¢1) = f2(t1) > 0. From the deﬁnltlon of S(A1) and
S(A2), it follows that

sow( [, () o)+ S0 /. (et do)
s/ V(11 2 — A / o “ da +/ \vw(m)lz’dm—&/ﬂw fo(r;)dx

- / (i (t2)) e + / <w<t1>>+dx+u<a+m / h(a)(n ()2 (2 (1)) .
RN RN RN

We set s = [on (71(t1))% dz = [pn (12 (t1))% da, then, using Holder’s inequality, we obtain that
(S(A1) + S(\2))s%* < 25+ vBsT,

where B is a constant depending on h, «, and (3. Since a + § > 2, from Lemma 3.3 we deduce

N/2
that there exists v4 = v1(e1) such that s > (1 — 51)(%) for all 0 < v < v;. Hence

wx 7,00) 2 ([ et ot [ e ar) = 2a _)(SM%;SW>

te[0,1]
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thus proving claim (54).

From (52), (53), and (54), it follows that Cyp(,) > UEES
hence J, exhibits a mountain pass geometry.

Let us now set 71 (£) = (1—1)1/223" and v2(t) = t'/2272, t € [0, 1]. By the definition of the Nehari
Manifold, there exists a continuous positive function k(t) such that k(t)(v1(t),v2(t)) € N, NN,
for all ¢t € [0,1]. It is clear that k£(0) = k(1) = 1. For simplicity of notation, we set

N
2

()\1) = (1 +€1)jy(2’i\1,0), and

a2, = [ = SFOn) and b 200, = [ de = 5% 0u)

From (7), it follows that

- kQ*—Q(t)(u —HFa+ t%b) + (o + Bk ()(1 — 1) 3¢5 / h(@)]2 %] B dz.
]RN

Hence
(v (), v2 (D)1 _ (I-ta+td

Jow Mm@ + 12O ] 1-tHFa+tTb
Thus from (10) we have that
T, k() (1(1), (1)) < kjy) ((1 —t)a+ tb), for all t € (0,1),

(55) k272 (t) < forall 0 <t < 1.

and then

— - k(¢
ma T, (1) (1) 7(0)) = T (K1) (12),12(620)) < 12 (1~ 1)+ 121)
t€[0,1] N

for some 0 < t3 < 1. We notice that the fact that ¢ falls inside (0, 1) is due to Remark 2.3. From
(55), we obtain that

N-—2

(1 — t2)a +tab
(1—t)Fa+t2b

k‘(tg) < l

Therefore we conclude that

N—-2
2

tIél[g,}i] Ju (k) (1 (t),72(1))) 2¥

1 l (1 —ta)a+tab
<N i z
(I—t)Ta+t2b

((1 —ty)a+t b).

Setting

N-—2

((1 —t)a+tb),

1 1—t)a+tb
g(t) ==+ ( LB 2%
Nl(1-t)Ta+tzb

a direct computation shows that g(t) achieves its maximum at ¢ = 1/2 and g(1/2) = (a + b).

Hence
_ 1 ~
2

Cup(v) < tm[gb’)i] Ju (k(t)(71(t),72(t))) < N(S

Therefore, from above, (52), (53), and (54), we conclude that, for all 0 < v < vy,

(A1) + 8% (A2)).

M

1 w~ 2 N .
NS?(/\l) < CMP(I/) < NST()\l) if A1 = Ao
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and, due to (51),
L5¥ (M) < 25%F (M) < Curp(r) < =(8F )+ 5F () < 25%F(A) i Ay < A
¥ ) ~ 9 wvp(v N 1 2 N 2 1 1 2-

In particular Cysp(v) satisfies assumptions (45) and (46) of Lemma 3.5. B
By the classical Mountain Pass Theorem, there exists a sequence {(un,vy)}n C N, such that

_ — 1
Ju(tn,vn) = Cup(v), ()| (tn,vn) = 0, and J (up, v,) > %SN/Q(M)

Therefore, Lemma 3.5 and the analogous of Lemma 3.1 for J, impl;Lthat {(tn,vn) }nen admits a
subsequence which converges strongly to a critical point (ug,vg) of J ”’N which is also a critical
point of J, in D. Since ug > 0, ug #Z 0, and vy > 0, vy # 0, the strong maximum principle yields
that up > 0 and vg > 0 in RV \ {0}. m

Remark 3.9.

(1) If Ay = Ao, then condition (51) is trivially satisfied.

(2) Condition (51) is satisfied if the values A1 and Ao are quite closed one to each other and is
needed to ensure the existence of a submanifold in the Nehari manifold which separates the
two manifolds {(zﬁ‘l,()) w> O} and { 0, zl/}? o> O} of local minima and which stays at
a higher energy level with respect to them.

Remark 3.10. Let us now consider the case where « < 2 < 8 and \; = Xo. Arquing as in the
proof of Theorem 2.2, we can verify that (25‘1,0) is a local minimum of J, on N, and (0, 21\2) is
a saddle point lying at the same energy level %SN/Z()\l) = %SN/Q()\Q). Moreover, it is easy to
verify that a counterpart of Lemma 3.2 for J, holds. Hence the minimum of J, on N, is achieved
by some (¢,,1,) € D such that ¢, > 0, 1, > 0 in RN \ {0}. Since ¢, and 1, are positive, it is
easy to verify that the minimum of J, on N, is equal to the minimum of J, on N, hence, setting
A= )\1 - >\2;
(W) =J,(¢y,,) = min_ J,(u,v)
{(u,v)EN}

SNZ(N) =

= min J,(u,v) < = J,(27,0) = T, (0, 27).

{(u,v)EN,} N

It follows that the functional J, has a mountain pass geometry and then an other non trivial critical
point can exist at least for v small. In this direction, the following results can be proved:

(1) adapting the computation performed in the proof of Lemma 3.5, it turns out that J,, satisfies

the Palais-Smale condition at level ¢ € R with
L onye 1 o2 (Y.
NS N <e< NS N+ (v);
(2) setting
= {v=(71.72) € C°[0,1],N}) : 11(0) = 21, 71 (1) = by, 12(0) =0, 72(1) =1, }

and

Cyp1(v) = inf max J,(y(t)),
~NEXD, tE[O,l]

the separability condition holds, namely, for some €9 > 0 and for v sufficiently small,

(1+20) o2 S
Jé}%’i]‘] v(1(8) > = S (M), for ally € 5.
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On the other hand, to prove the existence of a mountain pass solution, one should show the existence
of a path (v1(t),12(t)) € X, such that

max J, (1 (t),72(t)) < =87 (\) + ¢* (v)

1
t€[0,1] N

and this seems to be an open problem.

4. Critical case: variational approach.

In this section we deal with a critical coupling term, i.e. we consider the case
(56) a>1, g>1, a+p=2"

The further criticality produces an additional difficulty in proving the Palais-Smale condition. Let
{(tn,vn) }nen be a Palais-Smale sequence of J,, i.e. {(un,vn)}nen satisfies (24). Arguing as in
section 3, it is easy to prove that {(un,vn)}nen is bounded in D. Repeating the arguments used
in the proof of Lemma 3.2 to prove strong convergence below the level 4 (min{S(\;), S()\Q)})N/2,
the only term which requires an extra care is [px h(2)|un|*|v,|’dz, due to its criticality. To deal
with such a term, we assume that h vanishes at 0 and at co. More precisely h is required to satisfy

h € L*(RN), h>0, h#0, his continuous in a neighborhood of 0 and oo,
h(0) = lim h(xz)=0.

|z]— o0

(Hy)

The above assumption is enough to exclude the possibility of concentration at 0 and at oco. Since,
if h is radial, we can work in the space D, = DL2(RY) x DL2(RYN) of pairs of radial D2(RY)-
functions where concentration at 0 and at oo are the unique possible reasons for lack of compact-
ness, we obtain that Palais-Smale condition holds true for h radial satisfying (H;) below level

+ (min{S(\y), S()\Q)})N/2. On the other hand, in the case of a nonradial h, also concentration
outside 0 and oo must be analyzed, and Palais-Smale condition can be proved under the additional
assumption of smallness of v. Hence we treat the two cases separately.

4.1. Radial case. If h is a radial function satisfying (H;), then the following Palais-Smale condi-
tion holds.

Lemma 4.1. Let us assume that h is radial, (Hy) and (56) hold.
1) If {(tn,vn) }n CD, is a Palais-Smale sequence for JV|]D>,. at level ¢ < + (min{S(\y), S(/\g)})%,
then {(un,vn)}n admits a subsequence strongly converging in D.
ii) If o, 3> 2, either N=3 or N=4,0< A <X < (N —2)2/4, and {(upn,vn)}n CD; is a
Palais-Smale sequence for jy|Dv al level ¢ € R satisfying (45) and (46), then there exists

v1 > 0 (depending only on N, A1, Ao, «, B, and h) such that if v < vy, then {(un,vn)}n
admits a subsequence strongly converging in D.

Proor. Following the lines of the proofs of Lemmas 3.2 and 3.5, it is enough to prove that

(57) lir% lim sup/ h(x) |un ()| v (2) [P 65 (x) dz = 0,
€=U nooo RN
where, for € > 0, ¢ is a smooth cut-off function centered at 0, 0 < ¢5(z) < 1, satisfying

R 1, if |z| <¢g/2, R 4
o5(z) = {0) it 2] > e, and |Vo5i(z)| < - forallze RV,
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and

(58) lim limsup/| o h(x) |un (2)|% v (@) [P pr(x) dz = 0

R—oo pooco

where, for R > 0, ¢ is a suitable cut-off function supported near oo, such that 0 < ¢r(z) <1,

for all z € RY.

=]

1, if|z| > R+1,
= d |V <
On(a) {07 il o | Von@) <

Let us prove (57). We have that

/ | | |vn [P @5 dz < </ h|un | 65 d:c> (/ h|v,|? ¢gdx)
RN RN RN

Using the same notation of the proof of Lemma 3.2, see (26), there holds

e

lim hun)? 65 da :/ R |uo|* ¢S da + poh(0) g/ hlug|* dx
RN

n—oo [pN lz|<e
and

lim h|un|2*¢gd:c:/ h|v0|2*¢gdx+ﬁoh(0)g/ hvo|? de,
RN

n—oo /pN \w|§6
hence there results that

lim lim sup /RN h(z) [ty ()| v ()P 6§ () dz = 0.

e—=0 nooo

In a similar way, since h vanishes at co, we can prove (58). Therefore, using (57) and (58), and
working in the space of radial D!'2(R”)-functions (thus excluding concentration outside 0 and co),
we can follow the proofs of Lemmas 3.2 and 3.5 and reach the conclusion. ®

Following closely the proofs of Theorems 3.7 and 3.8, the following existence result can be derived.

Theorem 4.2. Assume that h is a radial function satisfying (Hy) and that (56) holds.
(1) If v is large enough, then J, has a ground state (¢,v) such that ¢ > 0 and ¥ > 0 in

RN\ {0}.

(2) If N > 5, a < 2, and § < 2, then (z;}l,O), (0,222), u > 0, are saddle points of J, in
N, ND, and J, has a ground state (¢,1) such that ¢ >0 and 1 > 0 in RN \ {0}.

(3) If N=3,4,a>2,3>2, A\ <Ay <(N—-2)2/4, and

AN — Ao _ 2
SN T2 9wt
ANy — M\

there exists vy > 0 such that, if v < vy, then the restriction of J, on Ny ND, has a
mountain pass critical point (¢,1) € N\, ND,. such that ¢ > 0 and ¥ > 0 in RN \ {0}, and,
consequently, problem (1) admits a positive radial weak solution.

We notice that conditions (56), o < 2, and 8 < 2 can be all satisfied only in dimensions N > 5,
whereas conditions (56), o > 2, and 8 > 2 can be all verified only in dimensions N = 3 and N = 4.
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4.2. General case. The general case of a non radial function h exhibits the additional problem of
a possible concentration outside 0 and oo due to the criticality of the coupling term. This difficulty
can be overcome if v is sufficiently small.

Lemma 4.3. Let (Hy) and (56) hold, and assume that {(un,vn)}tnen € D is a Palais-Smale
sequence for J, at level c, with
1 N
c< N(min{S()\l),S()\g)})2 ,
then there exists vy > 0 such that, if v < vy, (un,vy,) converges strongly in D up to a subsequence.

PROOF. As in the proof of Lemma 4.1, it is clear that (57) and (58) hold and then we can exclude
any concentration at 0 and at oo arguing as in Lemma 3.2. Therefore we have to analyze the
concentration at points x; # 0,00. Without loss of generality we can assume that z; € JNK
otherwise it is easy to verify that

e—0 n— o0

lim sup limsup/ h(zx) |u7l\a|vn|ﬁ¢;dx =0,
RN
where, for € > 0, ¢% is a smooth cut-off function centered at x;, 0 < ¢5 (x) <1, satisfying

1, if|lz—x;] <e/2 4
¢j(x):{’ if |z — 2] < /2, and |V¢§($)|§g for all z € RY,

0, if |z —ux;|>e,
and then no concentration can occur. Testing J,, (uy,v,) With (u,$5,0) we obtain
0= lim <Jé(un,vn), (ungb;,())>
n—oo

u3 g5

= lim </RN [IVun 265 + un V- V65 = A o Ol —avh(a) |un|“|vn|6¢ﬂdx> .

n—oo
In the same way, testing with (0,v,5), there results that
0= lim (J}(un,vn), (0,0,05))

: un 5 .
= lim (/]RN |:|V’Un|2¢§ + vV, - v(b; - )‘2|T|2j - (b;'vn‘z - ﬁyh(.’lﬁ) |un|a|vn|5¢§]dm> :

n—oo
Since
B

3%

[ @ kP osdn < ([ no)un o5ae) ™ ([ nto) ol g5e) ™

then using the fact that h is bounded we obtain that, for some ¢ > 0,

a B
lim sup lim sup / h(z) |un|°‘\vn|5¢§dx <cecpipr
e—0 n— oo
Q
where we are using the same notation of the proof of Lemma 3.2, see (26). Hence letting e — 0 we
conclude that 5
2& =

a B B x B
pj — pj — covpl p; < 0and fi; —p; — CﬁVPJ p; <0.
Since Spi/ z < pj and Sﬁ?/ ¥ < jij, then by adding the above inequalities we obtain that

2/2* | _2/2* — e S _
Sy 47" < 0y 47, + 2 el 7]
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Thus

S(ps + ;) < (pj +p;)(1+2"),
hence we conclude that either (p; +p;) = 0 or (p; +p;) > (H_Q%)N/Q, Hence as in (39), if
concentration at x; occurs, we obtain that

¢z (% - fﬁ)(’” + ) + (%ﬂ - 2%)(03' +7;5)
> S(% - a%rﬁ)(pj +p,)7% + (a—iﬁ - %)(pj +7;)

N
Zzlv(msg*@)) :

w2

If v is sufficiently small, then ¢ > %(%)Nm > & (min{S(A1),S(A2)})?, then we reach a

T2 ev
contradiction with the hypothesis on c. B

Remark 4.4. We notice that, while in the subcritical case the Palais-Smale condition is obtained
independently of the value of v, see Lemma 3.2, to recover compactness in the case of a critical
coupling term we need smallness of the parameter v.

As a direct application of Lemma 4.3, we obtain the following existence results.

Theorem 4.5. Let (H1) and (56) hold.
i) If N > 5, a < 2,and B < 2, then there exists vy > 0 such that, for all v < vy, (1) admits
a ground state solution (¢,%) € D such that ¢ >0 and ¢ > 0 in RN \ {0}.

i) If Ay < A2 and o < 2, then there exists vy > 0 such that, for all v < vy, (1) admits a
ground state solution (¢,1) € D such that ¢ > 0 and 1 > 0 in RN \ {0}.

PROOF. The proof is an easy consequence of Lemma 4.3. In case i), since the semi-trivial solutions
(zp,0) and (0, z,2) are saddle points of J,,, the existence result follows by minimization on N,

In case ii), since .J,(z,",0) > J,(0,2)?) and (0,z)*) is a saddle point, then the minimum of
J,, on the Nehari manifold is strictly below + (min{S(\;), S(A2)})"/2, and then we conclude by
minimization and Lemma 4.3. ®

Remark 4.6. In the case where a + =2, h=1 and \y = Ay = A, then it is easy to construct,
by a direct computation, positive solutions to (1) of the form (¢,cd), ¢ > 0. More precisely:

i) If B > «, ¢ solves the problem

(59) —A¢p - A% =¥ L1+ vac®), ¢ >0, ¢ € DVHRN)\ {0},
and c is a positive solution to the algebraic equation
1=22"2+ vBzP? — vaa®,

then (¢, cd) is a solution to (1) with h =1 and Ay = Ao = X. We notice that solutions to
(59) are suitable rescaling of 23 (see (5)), while the above algebraic equation admits at least
a solution if 8 > «. Indeed, if f = « then x = 1 is a solution. If 8 > «, then 3 > 2% /2,
and hence, setting f(x) = 2> ~2 + vfx?~2 — vaxP, there results that f(1) > 1 and either
B>2o0r(3>2%=2 If 5 >2 then lim,_ g+ f(x) =0, and hence there must exist some T
such that f(z) = 1. If § > 2* — 2 then lim,_ o f(z) = —o00, and also in this case there
exists T such that f(Z) = 1.
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i) If B < «, ¢ solves the problem

. O 1B ), 620, g€ DR {0},

—A¢p— A
and ¢~ ' is a positive solution to the algebraic equation

2% —2

1=z +vax®? — v,

then (¢, co) is a solution to (1) with h =1 and Ay = A2 = X. As above, it is easy to check
that, if B < «, then the above algebraic equation admits a positive solution.

5. Critical case: perturbation argument

In this section, a finite dimensional reduction, based on the Ambrosetti-Badiale perturbation
method developed in [3, 4] (see also the monograph [8]), will be performed to construct solutions to
problem (1) for o+ 8 < 2* and v being a small perturbation parameter (not necessarily positive).
Positive D12(RY)-solutions to (1) can be found as critical points of the functional .J,, which can
be written as

Ju(u,v) = Jo(u,v) — v G(u,v), (u,v) €D,
where
JO(“? U) = I>\1 (u) + I>\2 (U)v
being the functionals I, i = 1,2, defined in (42), and
G: D—-R, Gu,v):= h()u+v+dx
RN

We observe that the unperturbed functional J, has a two-dimensional manifold of non trivial and
non semi-trivial critical points given by

Zxihe ._Z,\le,\Q—{( "y M2) p1 >0, po >0},

where zﬁl are defined in (4-5). Through a variational perturbation argument, we are going to
provide conditions on h ensuring, for small v, the existence of critical points of the perturbed
functional near the critical manifold Zy, »,. In such a variational approach, the nondegeneracy
properties of the unperturbed manifold Zy, », play a key role. We say that Z, , is nondegenerate
if

i A A A A
(60) ker(Jo)" (zui,zﬂg) = TZﬁ}-,Zﬁg)ZAl’)‘Z for all ( Mi,zﬂ’;‘) € Zxy e
where (Jo)" (2 l’)i,zﬁ‘g) € £(D,D*) denotes the second Fréchet derivative of Jo at (zm,zﬁ‘g) and
T(zﬁ},zﬁg)z’\h/b denotes the tangent space to Zy, x, at point (z ﬁ‘i,zﬁ‘g)

Lemma 5.1. If \; € (0,An), i = 1,2, then (60) holds.
PROOF. A direct computation shows that
ker(Jo)" (21, 232) = ker(I»,)" (23") x ker(I»,)" (2)2).

M1 T2 M1 2
From [13, Theorem 1.1], it follows that ker(b\l)”< = ) T AIZ)\I and ker(b\z)”< uz) T 222 Zgs

hence

ker(Jo)" ( 317 3;) T lexl X TAZZAZ = T( A A 2)ZA17A2,

thus giving the conclusion. B
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Throughout this section, we require h to be a bounded function with compact support, i.e.
(ha) he Le(RY),

(h2) supph C Bg := {z € RV : |z| < R} for some R > 0.

Furthermore, some control on the behavior of i at the singularity is required, i.e. we assume

(hs) h(z) = O(|z|?) as |z| — 0, for some o > 0 satisfying

o> maux{ﬂ(a)\2 —ay,) —2,/1— ﬁ7 afar, —ax,) —24/1— (1\?’\22)2}

It is worth noticing that (hg) is verified by any bounded function in the case Ay = Ag; hence if
A1 = A2, condition (hs) is actually contained in (h1). Let us also assume that exponents a, 3
satisfy (2) (in particular the critical case a + 8 = 2* is allowed). Since for some values of o and
B (i.e. for either 1 < a < 2or 1 < 8 < 2) G may fail to be of class C?(D), we follow here the
modified version of the Ambrosetti-Badiale method developed in [9] to overcome such a lack of
regularity. To this aim, let us introduce the Banach space

X = {(u,v) eD: (u()|e[™)], € L®(Bg) and (v(x)|z]™=)], € LOO(BR)},

endowed with the norm

[[(u, v)[x = lI(u,v)llp + ess sup [x[**t [u(x)] + esssup |z|*2 |v(z)].
rEBR z€BR

We now restrict our attention to a portion of the critical manifold X-closed to which the functional
J,, recovers C2-regularity. More precisely, we set

Z>\17/\2 = {(2217222) € Z>\17/\2 smy < puy < My and mo < o < Mg},

with mq, mo, M7, and M> to be chosen later on, and consider the X-neighborhood of Z\M\Z

~ a
U= {(z;‘i —|—w1,z2‘j —|—w2) : (z;‘i,zli‘i) € Zxi 2, (w1,w2) € X, |[(wi,we)]|x < 5},

where
N—2

a = inf {u; 2 zf‘(x/ul)|x\‘“ :x € Bgr, mi <p; <M;, i= 1,2} > 0.
Let us notice that, for all (u,v) = (zﬁi + wy, zﬁ‘; + wg) € U and = € Bpg, there holds
u(a) > fa = [a = [(wr,wa)|[x] > 5 27 > SR™ >0,
v(x) > |z|” % [a — ||(w1,w2)||X] > g |z|~ %2 > gR_a*2 > 0.
Therefore G|u € C2(U,R). Let A, : U — L%(RN) X L%(RN) be given by
T v SRyt

and R : L%(RN) X L%(RN) — D be the operator defined as follows: R(¢1, d2) = (v1,v2) if
and only if (vq,vy) is the unique D-weak solution to the linear problem

A
—Avy — |z\12 v = ¢1,

A
—A’Uz — ﬁ Vg = ¢2.
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Lemma 5.2. (RoA,)(U) C X.

PROOF. To prove the lemma, it is enough to show that if (¢,v) € U and (vy,vs) is the D-weak
solution to

A
—Av — o =,

A
—Avy — ﬁvg =g,

with

f=et T rvahe ) and g = T BRYTTe",
then
(61) |vi(x)] < const |z]7*t  and we(x) < const |x|”**2 a.e. in Bpg.

Indeed, if (p, 1) € U, assumption (hg) ensures that there exist s1,s2 > N/2 such that
/mﬂm%wmmm@wM<mam /mﬂM%”WWMMWM<w
Q Q

Hence, from Theorem A.1 in the appendix, it follows that, for any 0 < r < R,
|x|* 1oy (x) € L(B,) and |z|"2vy(z) € L*(B,).

On the other hand, standard elliptic estimates imply that vy, ve € L°°(Bg\ B;), thus proving (61).m

Lemma 5.3. Ro A, € CY (U, X) and

(62) d(R o A,)(u1,uz)v1, v2] = (C1,C2)

where ((1,(2) is the unique D-weak solution to the linear problem

—-AG — Iiﬁ G= (2F— 1)(u1)3_*_2111 +rvala—1)h u?_ngvl + Vaﬁhu(f_lug_lvg,
(63) A2 _ * 2% -2 B=2 o B—1, a—1
7ACQ*WC2— (2* = 1)(uz)y “v2a+vB(B—1)huy “ufva+vBahu, uf” v

PROOF. By a direct calculation, it is possible to verify that R o A, is differentiable and that its
Fréchet derivative is given by (62-63). Let us now show that d(Ro.A,) : U — L(X) is continuous.
Indeed, let (u1,u2) € U and (uf,ud) € U such that (u},ul) — (u1,u2) in X. We have that

(64) [d(R o Ay)(u1, ug) — d(R o Ay)(ut, ug) | £(x)
= sup  [[(d(RoA)(ur,uz) = d(R o Ay)(ul, ugy))[vr, va] || x-

[I(v1,v2) ]| x=1
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Direct calculations yield

(65) sup  [[(d(R o A,)(ur, uz) — d(R o Ay)(ut, uz))[vr, va[p

ll(v1,v2) [ x=1
< const [[(2* — 1) [(u )%:72 - (u’f)i*z} v1 +va(a—1)h [uf” 2uf — (u) 2 (ug)P vy

+raBhluftuy T = W) (ug) oo 2

L¥F2 (RN)
+ const ||(2* -1 [( )3_*72 — (ug)i 72]1)2
+vB(B—1)h[uf *uf —(u ")B_Q(U?)a]vz
+vBah [uy tui T = (uy) T up) o

< const [[[(wn)2 2 = @) pwragew) + Nw2) 72— (03)2 2 pwrsqen)

T S O L [ O

[~ fug 2l — (u?)”‘fz(ug)’g|||L,3—$2(BR)

+ H|x‘7a>\2| B— 2’[1,? - (ug‘)ﬁ72(u?)a|||L%(BR):|

for some const = const(N, A1, A2, @, B, v, ||h][ e (mry) > 0. Strong convergences uf — wu; and
uf — up in L?" (RY) immediately yield
(66) [[(u)¥ 2 = ()i ~llwrzgny + ||(uz)2 = ()i Pllove@n)
1 nyo— n\B—
+ A s = () (ug)? 1]||LN/2(BR) — 0 asn— +oo.

On the other hand, convergences u} — u; and uy — wug in X imply pointwise convergences in
Bg\ {0} and

el ug =20 — ()2 ()] < Clal M @ D[]8 ae. in By,
o] a2 = (ug)P2(u)*] < Clal = @fal B0 ae. in By,
for some C > 0 independent of n. Since
2N 2N [
N +2 N +2

it follows that |z|~@ (@D |g| =8 ¢ L%(BR) and ||~ |z~ (61 ¢ L (BRr), hence the
Dominated Convergence Theorem ensures that

(67) [l uf ~2uy — (uf)*? (ug)”||

[ax, (@ —1) +ax,B] <N and ax,(B—1) +ar,a] <N,

2N
L N+2 (BR)

+ [l m e fug g — ()2 (u) —0 asn— +oo.

44 5.
On the other hand, Theorem A.1l, assumption (hg), the above estimates, and the Dominated
Convergence Theorem allow us to prove that

(68)  sup  [[(d(RoA,)(ur,uz2) —d(RoA,)(ut, uz))[v1, vall oo (B 2 "1 ) x Loo (B )32 )= O(1)

ll(v1,v2) [ x=1
as n — oo. From (64-68) we conclude that
d(Ro A))(uf,uy) — d(Ro A)(ui,us) in L(X),
thus completing the proof. B
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Lemma 5.4. Suppose that h satisfies (k1 — hg) and that (2) holds. Then there exists vy > 0 and
a C! function

w = (wy,ws) : (my, M) x (ma, Ma) X (—vp,v9) — U
such that for all my < py < My, ma < o < Ms, and v € (—vg, 1)

(69) (w1 (1, pro, v), wa (1, p2,v)) is orthogonal to T(zf)} ,zﬁg)Z/\w\w
(70) (Z;\; +IU]_(/,L1,/1/2,Z/)7Z;\§ +’U)2(,U/1,,U/2,1/))
- (ROAV)(ZQi + wl(ulylAz,V),Z,’)ij + wa(p1, p2,v)) € T(Z% Cg)Z)\l,/\ga
(71) lw(pr, g2, v)||x =OW) asv — 0.
ProOF. Let

H : (my, My) x (mg, Ma) x U x (—vp,1p) x R? — X x R?
be defined as

Hy(p, po, (Wi, ws), v, a1, ) = (zﬁ‘i +w1,z2‘§ —|—w2) — RO.AV(Z;‘i +w1,z;‘§ —|—w2)

- (al q[i\i y 02 qﬁ§)7

Hz(:u‘lv,u‘Qy (w17w2)7 v,aq, 042) = ((w17 qﬁi))\l? (w27q//>§)>\2)7

;}%zﬁh 1 = 1,2, is the generator of sz" Zy,. From Lemma (5.3), it

follows that H is of class C' and its derivative with respect to variables (wy,ws, a1, as) at
(lu’la K2, (070)7 Oa 070) is given by

where ql’)i = H%z;}‘\

(In)" (zpt)vr = br gyt
oH (1x,)" (203 )v2 = b2 22

112, (0,0),0,0,0)[01, va, by, ba] =
8(wlaw27al7a2)(ul Hz ( ) )[ b 2} (Ul7qﬁi))‘1

(U27 qﬁz ))\2

We notice that m(uh 2, (0,0),0,0,0) € L(X x R?) is a Fredholm operator of index 0;
moreover it is injective due to the nondegeneracy property provided by Lemma 5.1, hence it is
invertible. The conclusion of the proof now relies on the Implicit Function Theorem and is quite
standard, see e.g. [8]. m

Let us introduce the perturbed manifold

v

Z5, g = {20t wi(pa, p2,v), 202 + wa(pa, o, v)), my < py < My, ma < pio < Ma}
and let (2,1, 2,,2) be a critical point of J, constrained on ZK17>\27 i.e.

(Ju) (20,1, 2v2)[v1,02) =0 for all (v1,v2) € Tons202) ZXy Ag-
On the other hand, from (70), we deduce that

_ = L
(1) (Zu,1, 202)[v1,02] =0 for all (v1,v2) € (T 5 ZAZ)Z)\I’)\Z) .

(Cn

Therefore, as in [9], we can conclude that critical points of .J, constrained on Z§ ,  give rise to
solutions. Moreover

(72) T (20! +wi(pn, p2, v), 252 +walpa, po,v)) = Jo(2pt, 2p2) —v G (21, 202) +o(v) as v — 0.
A1 Z)\Q

10 T2
small perturbations (e.g. a proper local minimum/maximum point or a non-degenerate critical

Consequently, if (z ) is a critical point of the restriction G ’ Zy s which is “stable” under
1,72
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point), then (z,;\} + wy (p1, 2, v), 2 s 2 + wo(py, po, )) turns out to be a critical point of J,, and
hence a solution to system (1). In view of the above analysis, the search for solutions to system (1)
is reduced to the search for “stable” critical points of the following function of two variables

D) = G(etals) = [ h@) 2 @ @) do

on the rectangle (m, My) X (mg, Ms). In order to find critical points of ' we will assume

(ha) h#0 and h has a fixed sign (i.e. either h > 0 or h <0 a.e. in RY),
(hs) ‘lilm h(z) exists and is equal to 0.
xTr|—

Theorem 5.5. If h satisfies (h1 — hsg), then there exist my,ma, My, Mo such that T' admits either
a proper local mazimum point or a proper local minimum point in (m1, M1) X (ma, Ms).

PROOF. Let us assume that A > 0 and prove that I' has a proper local maximum point in
(my, My) x (mg, M) provided mq,msy are sufficiently small and M;, My are sufficiently large.
Indeed, from (hy), it follows that

T = [ b@ @l @) de > o

On the other hand, from Hélder’s inequality we deduce that

|2

N
#

nmhm>gmmu>w1uwmm(/N|<mZ P(M> for all 13 > 0,

|2

N
¥

D(Mjy, j15) < const(h)]|z}? ||L2* (BN a:> for all po > 0,

&
(1, me) < const(h)] |211HL2* RN)( |z ()% dx) for all p1 > 0,

P
T(p1, Ma) < const(h)]|27" || Far ®RN) (z)|* dac) for all pq > 0,

for some positive constant const(h) dependlng on h. From (h3), (hs), and the Dominated Con-
vergence Theorem, we have that

[ @l @ de= [ pma)ll @ dy =0 asmi—0, =12
RN RN

/ lh(x)l|z%(a:>l2*dw=/ [h(Miy)||z2 ()] dy — 0 as M; — 400, i=1,2,
RN RN

hence it is possible to choose mq, mo sufficiently small and M7, My sufficiently large in order to
have that

I'(1,1) > maxT
oQ
where @ is the rectangle Q = (mq, M1) X (ma, Ms). Therefore I" must have a proper local maximum

point inside the rectangle Q). In the same way, we can prove that, if h < 0, my, mo are sufficiently
small, and My, Ms are sufficiently large, then I" admits a proper local minimum point in ). B

As a consequence of the above discussion, we can now present the main existence result of this
section.
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Theorem 5.6. Assume that \; € (0,An), i = 1,2, o, satisfy (2), and h verifies (h1 — hs).
Then there exists vy > 0 such that problem (1) admits a positive solution provided |v| < vy .

PrROOF. From Theorem 5.5, we deduce that I' admits either a proper local maximum point or a
proper local minimum point in (my, M;) X (me, Ms), which, in view of expansion (72), gives rise,
for v sufficiently small, to a critical points of J, constrained on Z3, \,- Since, as remarked above,
Z3, », 1s a natural constraint for J,, we obtain a critical point of J, in I and hence a positive
DL2(RY)-solution to problem (1). m

Remark 5.7. In dimension N = 3, the case a, 3 > 2 can occur. In this case, G is of class C?(D)
and we can perform the finite dimensional reduction directly in D with no need to introduce the
space X. Hence, when N = 3 and o, 3 > 2, we can prove Theorem 5.6 under weaker assumption on
h, e.g. for any h € LY(RN) N L= (RYN) with a fized sign and such that h % 0 and h(0) = h(c0) = 0.

APPENDIX A

The following elliptic estimate for problems with Hardy-type singularities is an easy consequence
of [14, Theorem 1.1].

Theorem A.l. Suppose Q C RY is a bounded domain, A < (N —2)2/4, and u € H' () weakly
solves

A
—Au— —u=1f.
u |x|2u f

Assume that
/ |72 ) | £() | d < o0
Q

for some s > N/2. Then for any Q' € Q there is a constant C = C(N, Q, dist (¥, Q), s) such that

1/s
S;)l/p”x|a’\u($)| < C{||7.L|L2(Q) + <A |x‘fax(2 -2 S+S)|f($)|8 d(ﬂ) }

PRrROOF. It follows from [14, Theorem 1.1] after making the change of variable v(z) = |z|* u(z). m
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