
Università degli Studi di Milano-Bicocca

Dipartimento di Fisica

Ph.D. Thesis

SUPERSYMMETRY ON CURVED SPACES AND HOLOGRAPHY

Claudius Klare

Supervisor:

Alberto Zaffaroni

Corso di Dottorato in Fisica e Astronomia Ciclo XXVI

Settore Scientifico Disciplinare FIS/02

Anno Accademico 2013-2014





Ph.D. Thesis

SUPERSYMMETRY ON CURVED SPACES AND HOLOGRAPHY

Claudius Klare

3



Discussion with the supervisor. Or: It’s a long way to the top. c© P.J. Dawson

4



Abstract

This thesis deals with superconformal and supersymmetric field theories on curved

spaces with a view toward applications to holography and localisation. It contains two

fairly different parts.

In the first (and main) part we classify Euclidean and Lorentzian four-manifolds with

some preserved N = 1, 2 supersymmetry, and Euclidean three-manifolds with some pre-

served N = 2 supersymmetry. We take a holographic approach, starting with manifolds

that preserve superconformal symmetries. Preserved supersymmetry for asymptotically

locally AdS solutions implies the existence of a certain (generalised) “conformal Killing

spinor” on the boundary. In the non-conformal case a closely related spinor exists, which

also will be discussed. In this thesis we classify the manifolds in three and four dimensions

that admit such spinors. In particular we find for the case with four supercharges that

supersymmetry can be preserved in four dimensions on every Euclidean complex manifold

and on any Lorentzian space-time with a null conformal Killing vector. In three Euclidean

dimensions we find a condition very similar to complexity in four dimensions. When the

field theory has eight supercharges, supersymmetry can generically be preserved on man-

ifolds with time-like conformal Killing vectors; there are singular cases depending on the

signature, in the Lorentzian there is a degenerate case reducing to the N = 1 analysis,

in the Euclidean there is a degenerate case corresponding to the topological twist. The

supersymmetric curvature couplings are systematically understood in the rigid limit of

supergravity. We give explicit formulae for the background fields that one needs to turn

on in order to preserve some supersymmetry. This first part of the thesis is based on the

papers [1–3].

Putting supersymmetric field theories on curved manifolds has led to interesting results

over the past years. In the second part of the thesis we analyse a matrix model for

the partition function of three dimensional field theories on S3, which was obtained by

supersymmetric localisation. In the large N limit one can evaluate the matrix model,

allowing us to perform a non-classical and non-perturbative check of the AdS4/CFT3

correspondence and Seiberg duality. In particular, we compute the large-N free energy of

various three dimensional quiver gauge theories with arbitrary R-charges, which are dual

to M-theory on Sasaki-Einstein seven-manifolds. In particular, we check that the free

energy functional depending on the R-charges is minimised for the exact R-symmetry, an

extremisation that is dual to the volume-minimisation of the Sasaki-Einstein manifold in

the gravity sector. The second part of the thesis is based on [4].
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Introduction and Motivations

The curvature of space-time is usually either treated as a dynamical object in the context

of gravity, or it is simply neglected in the context of common (rigid) field theories. The

past years have seen a change away from this snobbish attitude, at least in the case of

supersymmetric field theories. In fact, there has been quite a boom of activity involving

rigid supersymmetric field theories on various curved manifolds. Before we get to discuss

the issues and difficulties of the very definition of supersymmetry on curved space, we

want to dedicate this section of introduction & motivations to review some of this recent

activity, providing a physics context for the rather formal questions we will pursue in the

rest of this thesis.

Much of the progress seen in the last years in the subject of supersymmetric field

theory on curved spaces is tightly connected to the beautiful concept of supersymmetric

localisation. Introduced by Witten in the context of topological field theory [5], it turns

out a powerful tool applicable in many other scenarios, too. Localisation relies on the

existence of a nilpotent symmetry Q, for us this will be supersymmetry. One can argue

that, when the Lagrangian is deformed by any Q-exact term, the path integral does not

depend on the size of the coupling of such a deformation. We can thus evaluate the path

integral at any coupling of the deformation we want, the answers should be equivalent. If

we take the coupling to infinity only the zero locus of the deformation term contributes to

a meaningful path integral and that can lead to drastic simplifications. Often, the path

integral reduces to a matrix model, which is an integral over a finite number of variables.

Crucially, in order to have a finite and well defined matrix model, one typically needs to

consider a compact space-time manifold.

The most prominent example of such a matrix model obtained by supersymmetric

localisation on a curved space was found by Pestun [6], who considered N = 2 and N = 4

supersymmetric field theories on the four-sphere. Let us report on one specific discovery

that has emerged from Pestun’s work (yet there are many others). Quite remarkably, the

authors of [7] (AGT) observed that a particular S4 matrix model can be identified with
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four-point correlators in two-dimensional Liouville theory on the sphere. Roughly speak-

ing, the formula for the four-point correlators is composed of three-point correlators, which

can be identified with the perturbative piece of the matrix model, and of conformal blocks

which are identical to the non-perturbative part of the matrix model, being Nekrasov’s

instanton sum [8]. In [7] the comparison is generalised to n-point correlators and an entire

class of Gaiotto theories [9]. Note also that one way of refining the correspondence, which

is tightly related with the subject of supersymmetry on curved manifolds, is obtained

by considering the partition function on a four dimensional ellipsoid [10]. The squashing

parameter of the ellipsoid corresponds to varying the central charge in Liouville theory.

In fact in section 7 we will come back to this example. Over the years, the whole business

has now established a much unexpected collection of dualities between field theories in

different dimensions.

Much work has been done also in three dimensions. The authors of [11] have gener-

alised Pestun’s work to N ≥ 3 ABJM-like theories on the three-sphere, again yielding

a matrix model for the path integral. This matrix model has been evaluated at large

N and the puzzling N3/2 scaling of the free energy, which had been predicted long time

ago [12] for theories with a gravity dual, has indeed successfully been observed [13]. The

analogous matrix model for field theories with N = 2 supersymmetry has been found in

[14, 15]. In that case the matrix model depends explicitly on the R-charges of the fields

as supersymmetry does not fix them to canonical values.

Jafferis [14] conjectured that in three dimensions the ‘free energy’ F = − lnZ, where Z

is the partition function on S3, is extremised for the values of the R-charge that correspond

to the exact R-symmetry at the superconformal fixed point. This solved a longstanding

problem in conformal field theory, as it had been predicted from gravity [16] that, at least

for SCFTs with a gravity dual, some analogue principle to the a-maximisation in 4d [17]

should exist also in 3d. Since there is no anomaly in three dimensions, it had not been

clear what other object could play the role of a, though. In a sense, now F came to a

rescue there. Moreover, it was also suggested [18] that F obeys a c-theorem [19] in three

dimensions, decreasing monotonically along the RG flow.

This thesis contains holography in the title and that is for two reasons. In part I,

chapter 1 we will learn about one way how holography enters the story of supersymmetry

on curved space, which in fact will be the main focus. Here we want to review another

one. As mentioned, a/F -maximisation for superconformal field theories has a beautiful

counterpart on the gravity side [16, 20, 21]. The field theoretical ‘c-function’ corresponds

to a ‘Z-function’ for the dual geometry, which is a functional depending on the choice
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of a certain vector field. Being able to identify these two functions amounts to a very

non-trivial check of the AdS/CFT correspondence.

The whole three dimensional story has been a very active field of research, in part

II of this thesis we will in fact report on our small contribution to it, much of it in the

context of AdS4/CFT3. This will also include a more complete list of references and a

more detailed review of the recent activity.

Supersymmetric partition functions have also proved useful for checking Seiberg dual-

ity. As the resulting formulae often are exact, non-classical and non-perturbative, compar-

ing them for two different phases represents some of the most profound accessible checks

of these dualities. The partition function defined on S1 × S3 computes what is known

as the supersymmetric index [22, 23] of the theory. For the physicist after the mid-90ies

an almost trivial thing, identifying the index for two Seiberg dual phases of the same

theory turns out to be at the edge of knowledge for the mathematicians [24, 25]. In fact,

it involves recently discovered identities on elliptic hypergeometric integrals [26, 27]. A

similar story holds in 3d. The S3 partition function for N = 2 theories involves hyperbolic

gamma functions and the most simple Seiberg duality for the field theory translates to

highly complicated and only recently studied [28] integral identities amongst them [29].

A remarkable exact result extracted from a rigid field theory on a curved manifold has

also been obtained in two dimensions. In [30, 31] the partition function for N = (2, 2) the-

ories on the two-spere has been calculated by supersymmetric localisation. Subsequently

it was conjectured in [32] that, when the CFT2 is related to a GLSM with Calabi-Yau

target space X3, the localised path integral computes exactly the quantum Kähler moduli

space of X3, see [33] for a proof that this indeed is true. It is worth pointing out that this

computation does not involve any usage of mirror symmetry. In fact, in [32] the authors

have computed new Gromov-Witten invariants for Calabi-Yau manifolds without known

mirror.

Finally we want to briefly report about the progress in higher dimensions. Most

mysterious is the infamous (2, 0) theory in six dimensions, whose Lagrangian – if existent

at all – is not known. Every ever so tiny grain towards its understanding is celebrated

like a treasure by the community. There exist intriguing conjectures, that maximally

supersymmetric Yang-Mills in 5d, naively power-counting non-renormalisable as it is,

might already itself be UV complete, if one includes the non-perturbative sector in the

spectrum [34, 35]. It is hence of double interest to look at the partition function of five

dimensional field theories on S5, this has been done in [36, 37]. These results are not yet

entirely complete, as there is also an instantonic contribution to the matrix model, which
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so far no one has been able to compute. The subject is very active field of research and

various related results have been obtained in the recent past, we will briefly mention only

a few. Neglecting the contribution from instantons, the matrix model shows nevertheless

a N3 scaling behaviour for the free energy [38], which is the sought-after 6d prediction

from gravity [12]. Another interesting idea is to extend the S5 partition function to

the six-dimensional index, which is discussed in [39], also here a N3 behaviour could be

observed. Less immediately related to the (2, 0) theory, there are even localisation results

directly in 6 dimensions [40].

It is a good motivation to our work to keep these manifold applications in the back of

our minds. Let us now give an overview about the contents of this thesis.

In part I we will take one step back from the applications and address a more basic

question. We have seen that a compact manifold seems fundamental for the recent devel-

opments and in part I of this work will address the question when and how it is possible to

put a supersymmetric field theory on a general curved space-time, preserving some of the

fermionic symmetries. We take a holographic point of view starting with superconformal

theories in chapter 2, where we show that superconformality on curved spaces is governed

by (sometimes generalised) conformal Killing spinors. In chapters 3 - 7 we then explicitly

classify the geometry of N = 1 and N = 2 supersymmetry in various dimensions. We

will also show how our results extend to the non-conformal case. In chapter 1 we have

outlined the general strategy pursued in part I, including a summary of the classification

results. Here the reader not interested in technical details can find an overview over the

information contained in the first part of the thesis.

Part II considers the aforementioned matrix model for N = 2 superconformal field

theories on the three-sphere. In chapter 8 we give an introduction to the whole subject

and summarise our general findings. We present some necessary material about the field

theories in question and the AdS4/CFT3 correspondence in chapter 9. In chapter 10 we

review a large N saddle point ansatz for the matrix model of the theory on S3. We

then solve this ansatz for various examples and match the result with the gravity duals.

In chapter 11 we show how, for theories with multiple gauge groups, the saddle point

equations are invariant under Seiberg duality. We conclude with a more speculative

chapter 12, about a curious observation of an alternative ‘geometric’ formula for the free

energy.
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Part I

Supersymmetry on curved spaces
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Chapter 1

Introduction, Outline and Summary

of the Results

Statement of the problem

Field theories that are supersymmetric in flat space generically loose all their fermionic

symmetries if we naively put them on a curved manifold without adding extra couplings.

This is most easily seen by considering the extra contribution within the covariant deriva-

tives stemming from the non-vanishing spin connection.

Nevertheless, supersymmetric theories on curved spaces have been constructed since

a long time, see e.g. [41, 42] for early accounts of AdS spaces. One has to add extra

terms to both the flat-space action and the flat-space supersymmetry variations, in order

to render the theory supersymmetric. This can be done, most straightforwardly, by a

perturbative construction in 1/r, where r is the scale of the curved space. A priori it is

not clear, however, for which manifolds such a construction can be performed successfully

and the problem needs to be studied case-by-case. Moreover, it is a cumbersome exercise

to determine the deformed Lagrangian and the supersymmetry variations in this way.

Anyhow, the problem can also be studied more systematically:

A clever solution

We can understand the field theory on curved space as arising in the rigid limit of super-

gravity [43]1. The bosonic fields of the gravity multiplet are frozen to a supersymmetric

configuration and treated as background fields for the matter sector. In this way, they

1 Similar but less systematic ideas have appeared earlier in the literature, see e.g. [44] and [45].
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naturally generate the additional curvature couplings that ensure preserved supersymme-

try. Thus one gets, in a sense, the Lagrangian and the supersymmetry variations “for

free”, as the supergravities are often well known. Note that the metric is part of the

supergravity multiplet, its background value can be considered as an external input. It is

worthwhile to point out that the gravity is treated non-dynamically, in the sense that we

do not impose the equations of motion for the background fields. In particular, we keep

the auxiliary fields and freeze the full off-shell multiplet to supersymmetric values. The

problem of determining the manifolds supporting a supersymmetric theory can now be

solved very systematically by determining the class of spaces on which one can find such

a supersymmetric configuration of the gravity multiplet. As we will show in this thesis,

in many cases this boils down to the existence of a (charged) conformal Killing spinor

(CKS)

PA
µ · ε =

(
∇A
µ −

1

d
γµD

A
)
ε = 0 (1.1)

where A denotes twisting with the R-symmetry gauge field, ∇A
µ = ∇µ− iAµ, and D is the

Dirac operator D = γµ∇µ. When the flat space theory has more then 4 supercharges, the

condition for unbroken supersymmetry amounts to a generalised version of this conformal

Killing spinor, including various extra background fields.

Hello, holography!

If the field theory is superconformal, there is yet a different approach to supersymmetry

on curved spaces. In that case we can study the problem using holography. Now, the

curved space-time arises as boundary information of the dual gravity in the bulk. Clearly,

the supergravity in the bulk has a proper physical interpretation as the holographic de-

scription of the field theory in one more dimension. Nevertheless, we argue that there

is a tight connection between this gravity and the “auxiliary” gravity in one dimension

less that we described in the last paragraph. Before we do that, we want to give a few

more details about the nature of these two theories. The natural auxiliary supergravity

that couples to a superconformal field theory is conformal supergravity2. Recall that in

conformal supergravity the entire superconformal group is gauged, as opposed to Poincaré

supergravity. In particular, there are gauge fields for the R-symmetry, for special con-

formal and for Weyl transformations. On the other hand, in the bulk, we will assume

minimal gauged supergravity. That basically contains the metric gµν , the gravitino ψµ

and a graviphoton Aµ, which are the appropriate gauge fields dual to the three symmetry

2 See [46] for a nice review of conformal supergravity. Some original papers are [47–53].
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currents of a generic SCFT, being the energy-momentum tensor Tµν , the supersymmetry

current Jµ and the R-symmetry current Jµ.

Conformal Killing spinors from the bulk

Remarkably, it turns out that this minimal gauged supergravity in an asymptotically,

locally AdS space-time reduces to conformal supergravity on the boundary [1, 2, 54, 55].

We will explicitly perform this computation in the next chapter, here we report only few

details. If one assumes the metric of asymptotically, locally AdSd+1,

ds2
d+1 =

dr2

r2
+ (r2ds2

Md
+O(r))

where Md is any curved d-dimensional manifold, one can expand the supersymmetry

variations of minimal gauged supergravity in 1/r,

δξψM
r→∞−−−→ ∇A

µ ε− γµη

where the indices M and µ run in ALAdSd+1 and Md, respectively, and the bulk supersym-

metry parameter ξ has the asymptotic expansion ξ = r
1
2 ε + r−

1
2η. Upon identifying the

boundary profile of the graviphoton appearing in∇A with an R-symmetry gauge field, and

the asymptotic spinors ε and η with Q- and S- supersymmetry parameters respectively, we

uncover the supersymmetry variation of conformal supergravity in d dimensions. Setting

to zero this variation actually implies the existence of a charged conformal Killing spinor

on the boundary manifold as in (1.1), which can be seen by gamma-tracing ∇A
µ ε = γµη

and plugging back the expression obtained for η. The treatment is generalised appropri-

ately in the case of extended supersymmetry, where other background fields and also the

dilatino variation need to be included. In this outline section we will focus on the simplest

case with four supercharges, the generalised CKS is discussed in detail in the chapters 6

and 7.

Classifying geometries with conformal Killing spinors, a.k.a. SUSY

We now have established that manifolds which admit a charged conformal Killing spinor

(1.1), preserve some supersymmetry3. In this thesis we want to classify such manifolds

3 Again, if the flat space theory has extended supersymmetry, the manifolds need to admit a generalised

version of CKS.
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in various dimensions. The strategy which was applied in [1–3]4 is based on the following

idea. By looking at all possible spinor bilinears one can determine the geometry that

is defined by a generic spinor. Restricting on the bilinears made from conformal Killing

spinors then gives certain constraints on this general geometry. We want to make some

of the ideas outlined in this chapter more explicit by (repeatedly) discussing a concrete

example.

Ex.: Let us consider N = 1 in four Euclidean dimensions. The complete

analysis of this example will be presented in chapter 3 (see also [43]), here we

will be very sketchy. A chiral spinor in four dimensions defines a real two-form

j and a complex two-form ω 5

jmn = ε†+γmnε+ ωmn = εT+γmnε+ .

They fulfil ω2 = 0 and ω ∧ ω̄ = 2j2. Note that if ε+ is charged under a U(1)

gauge field, so will be ω. In the language of G-structures, a charged chiral

spinor in four dimensions thus defines a U(2)-structure.

Next we want to get a handle on the geometry. To this end one can parameterise the

derivatives of the forms which are defined by the spinors, in some natural base. The

coefficients are often called intrinsic torsions.

Ex.: In our example, they look like

dj = W 4 ∧ j dω = W 5 ∧ ω +W 3 ∧ ω̄ (1.2)

where the one-forms W i are the intrinsic torsions. As we see, the natural base

for us is given by the forms themselves.

The last step is to impose that the spinor defining the forms is conformal Killing. This will

give certain geometrical constraints on the manifold. Moreover, in all cases studied in this

thesis we will also solve for the values of the background fields in terms of the geometrical

data. That allows us not only to determine the class of manifolds which preserve some

4 There are several related works [40, 56–69] in some of which a similar strategy has been applied and

some of which significantly overlap with the results presented in this thesis. Supersymmetric backgrounds

have been classified in [1, 2, 56, 57, 62] for N = 1 theories in 4d, in [1, 58, 59] for N = 2 theories in 3d

and in [3, 69] for N = 2 theories in 4d. We will point out the precise overlap in the respective chapters.
5 Note: In order to make most clear the underlying structure, we omit here and in other formulae of

this overview section various factors. All formulae are given in their full blossom in the detailed sections.
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supersymmetry, but it also tells us how we can preserve it, i.e. which background fields we

need to turn on in order to generate the curvature couplings. An important observation

is that in the Euclidean we allow these background fields to take complex values. This

is justified as we do not consider their physical fluctuations. In consequence, however,

the resulting Lagrangians for the field theory possibly are not reflection-positive. On the

contrary in the Lorentzian analogue, a non-unitary theory clearly would not be acceptable

and we require the background fields to be real.

Ex.: More explicitly, in our example, we need to impose the differential con-

straint PA
m · ε+ = 0, where the conformal Killing operator has been defined in

(1.1). Here, d = 4 and Am is a U(1) gauge field, which being in the Euclidean

we allow for taking complex values. It is slightly technical to translate the

spinorial CKS condition (1.1) into a differential condition on the forms. The

result is roughly6

W 3 = 0 Am ≈ W 5
m +W 4

m . (1.3)

The first equation is a geometrical constraint. Looking at (1.2) shows that it

enforces M4 to be complex. The second equation does not impose additional

conditions on the geometry, it simply determines the value of the gauge field

Am in terms of the torsions W 4 and W 5, which are unconstrained geometrical

data. As a word of caution we should mention here that this analysis is local,

we assumed that the spinor ε+ has no zeros. In order to obtain a global solution

one needs to analytically continue the results into the vanishing locus.

This example, though the simplest one and with all technicalities omitted, yet captures

the main conceptual features of the analysis performed in part I of the thesis. We have

identified the class of Euclidean four dimensional manifolds that preserve some supersym-

metry and we have given the values of the background fields, which generate the necessary

curvature couplings in the field theory.

The curved space Lagrangian

Conformal supergravity has the important feature that the matter sector does not ap-

pear in the supersymmetry variations of the gravity multiplet. Hence a configuration of

(gµν , Aµ, ψµ) is supersymmetric independently from arbitrary matter couplings. In the

6 see (3.25) for the exact formulae for Am, including a contribution from the norm of the spinor ε+.
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matter sector, the frozen background values of the gravity multiplet generate extra cou-

plings which are not present in the flat space theory, as we have discussed above. On the

linearised level one has for instance

− 1

2
gµνT

µν + AµJ
µ + ψ̄µJ µ (1.4)

where Tµν is the energy momentum tensor and Jµ and J α
µ are respectively the R-symmetry

and the supersymmetry current in the boundary field theory. The non-linear level works

conceptually the same and the matter coupled Lagrangian for conformal supergravity

freezes to the curved space Lagrangian of the rigid theory.

Ex.: Coming back to our case study of N = 1 theories in four dimensions,

one simple example for a complex manifold is the Hopf surface S1×S3 7. This

manifold has been prominently used to study superconformal indices, see e.g.

[22–24]. If we choose the metric ds2 = dt2 +ds2
S3 , we can compute the torsions

in (1.2) as dj = −2dt ∧ dj and dω = −2dt ∧ ω. One confirms that indeed

W 3 = 0. Moreover, for a t-independent spinor ε+, we find from (1.3) a purely

imaginary gauge field with a leg along the S1 circle,

A = − i
2
dt .

Via couplings as in (1.4) or inside the covariant derivative, this value for Am

indeed generates the extra terms in the Lagrangian and the supersymmetry

variations of the field theory on S3 × S1, see e.g. [22].

We have thus seen how we can start with a geometry, extract the background fields from

that, and then determine the curved space Lagrangian and supersymmetry transforma-

tions.

From CFT to QFT

So far, formally we only discussed conformal field theories. We coupled them to conformal

supergravity, and gave a physical interpretation of this coupling as boundary residue of

the holographic bulk dual. It turns out that many of the results extend to the case where

the rigid field theory is just supersymmetric, without necessarily being conformal. In that

case, one would naturally couple the theory to a suitable version of off-shell Poincaré

supergravity. Recall that all known off-shell formulations of Poincaré supergravity can be

7 The complex structure works by pairing the Hopf fibre in S3 with the S1 factor.
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obtained from conformal supergravity via the old-established formalism of superconformal

tensor calculus. There, the conformal symmetry is removed by introducing “compensator

multiplets”, upon which the unwanted gauge freedom is fixed [70, 71] (see also [46] for

a review). Some components of these compensator multiplets remain unfixed, they cor-

respond to additional background fields. Different choices for the compensator lead to

the various off-shell formulations. We found that often the same additional background

fields can be introduced by identifying them with a particular combination of the intrinsic

torsions (1.2), without loosing any degrees of freedom. In this sense, their value also is

determined by the geometry; and together with the CKS in that geometry they constitute

a solution to the corresponding Poincaré supersymmetry condition.

Ex.: In the case in which the Euclidean N = 1 field theory preserves R-

symmetry, it is natural to couple it to ”new minimal supergravity” [72], which

is a Poincaré supergravity with a U(1) gauge field. In the formalism of su-

perconformal tensor calculus it is obtained by choosing a tensor multiplet as

conformal compensator. Fixing the conformal symmetry introduces a tensor

bmn as an additional background field. It turns out that this freedom exists

also in the conformal supergravity. To see this, note that we can rewrite the

CKS equation (1.1) by expanding DAε in the basis γmε for chiral spinors,

DAε ≡ 2i/vε

where at this point the 2ivm are arbitrary expansion coefficients. In the form

language, this translates8 to 2iv = W 4
0,1 −W 4

1,0 = −i ∗ dj , where 0,1 and 1,0

denotes the (anti-)holomorphic part with respect to the complex structure of

M4. It is straightforward to see that the CKS equation becomes (we stress

that this is formally just a re-writing)

∇mε = −i
(

1

2
vnγnm + (v − a)m

)
ε , a ≡ A+

3

2
v . (1.5)

When vm is the dualised tensor, vm = (∗db)m, this is precisely the super-

symmetry condition of new minimal supergravity. Since this is the case for

our v, the conditions for some preserved supersymmetry in a theory with an

R-symmetry is indeed in a one-to-one correspondence with the condition for

supersymmetry in a superconformal theory.

8 The translation is no equivalence, though. There is an ambiguity in the definition of vm, the

discussion of which we postpone to sec. 3. Also, our discussion needs to be refined wherever ε has a zero.
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In summary, if we can identify a particular combination of the intrinsic torsions with

the background fields specific for an off-shell version of Poincaré supergravity (and we

often can), the geometrical conditions for unbroken supersymmetry are exactly the same

whether the theory is superconformal or just supersymmetric.

Manifolds that allow supersymmetry - Results

We have obtained a classification of manifolds that admit supersymmetry in three and four

dimensions with varying signature and for different amounts of flat-space supersymmetry.

In this paragraph we will summarise our results.

N = 1 in Euclidean 4d This situation has been worked out in [1], see also [56] which

has a big overlap, and [57, 62]. It has been the case study of the outline section so far

and we will only state the final result.

On any Euclidean four manifold which is complex one can define an N = 1 conformal

field theory that preserves some of its four flat-space supercharges. The same is true

for supersymmetric but not superconformal theories whenever the theory has an U(1)

R-symmetry.

N = 1 in Lorentzian 4d This situation has been worked out in [2], similar results have

also appeared in [63]. A chiral spinor in four Lorentzian dimensions defines a real null

vector z and a complex two-form ω = z ∧ w, where w is a complex one-form. Up to a

shift symmetry by a complex parameter, this set of forms is equivalent to a (null) vierbein

with line element ds2 = ze−+ww̄. Supersymmetry requires that the chiral spinor is CKS,

which in turn implies that the null vector z must be conformal Killing, i.e. ∇(µzν) = λgµν .

That is the only geometrical constraint. In addition, the supersymmetric values of the

background fields are determined by the geometry. In the case when z becomes Killing9 we

can choose a general set of coordinates. We give explicit expressions for the background

fields in these coordinates.

To sum up, on any Lorentzian four manifold with a null conformal Killing vector

one can define an N = 1 conformal field theory that preserves some of its four flat-

space supercharges. If the theory is only supersymmetric (with an R-symmetry) and not

superconformal, the vector needs to be Killing instead of conformal Killing.

9 We can always achieve this by a conformal rescaling. As discussed in section 4 this actually becomes

an additional constraint when the theory is supersymmetric but not conformal.
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N = 2 in Euclidean 3d This situation has been worked out in [1], a broad analysis has

also appeared in [58]. Any (charged) spinor in three dimensions defines a dreibein (up to

a phase). Supersymmetry requires again that the spinor is charged CKS, which gives a

condition on the geometry looking very similar to complexity in 4d, namely do = W ∧ o
where o = e1 + ie2 and W some one-form.10 The CKS condition also determines the

value of the background gauge field in terms of the geometrical data. The supersymmetry

condition for an N = 2 non-conformal theory with an R-symmetry can be obtained from

the four dimensional N = 1 case by dimensional reduction. As in 4d, the analysis is very

similar to the conformal one and the resulting condition on the geometry is the same.

To sum up, on any Euclidean three-manifold with a dreibein e3, o, ō which fulfils do =

W ∧ o with W some one-form, one can define a N = 2 theory which preserves some of its

flat-space supersymmetry.

N = 2 theories in 4d This situation has been worked in [3], similar results had also

appeared in [69]. If the flat-space theory has 8 supercharges, the analysis is a little bit more

complicated. That is because the gravity multiplet is richer and so are the supersymmetry

conditions. Albeit major technical differences, the analysis for Euclidean and Lorentzian

signature runs fairly parallel and in this sketchy summary we will not discuss the two

cases separately. A chiral spinor doublet of the U(2) R-symmetry defines, amongst other

things, a tetrad eαµ, where α = 0, 1, 2, 3. The core of the supersymmetry condition remains

the existence of certain generalised conformal Killing spinors, involving other background

fields in the definition and also additional differential constraints. With one of the spinors

vanishing identically, we get degenerate solutions, including the topological twist in the

Euclidean. In the generic case the differential equations don’t constrain the space-time

and the sole geometrical constraint is that e0
µ is a time-like conformal Killing vector. The

set of remaining equations fixes again the values of the background fields, leaving three

unconstrained degrees of freedom in the gauge field. Upon a special choice of coordinates

we could explicitly solve the differential equations.

To sum up, on any four dimensional manifold with a time-like conformal Killing vector,

one can define a N = 2 theory which preserves some of its flat-space supersymmetry.

As somewhat degenerate cases arise also the possibilities of topological twisting on any

manifold in the Euclidean and manifolds with a null CKV in the Lorentzian (which is

basically the reduction to the N = 1 case).

10 The geometries are known in the math literature as transversely holomorphic foliations with a

transversely hermitian metric, see the discussion and maths references in [73].
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From bulk to boundary

Sometimes the solutions to our bulk theory, i.e. minimal gauged supergravity, have been

classified in the literature, see e.g. [74, 75]. To check whether the holographic understand-

ing of the curved manifolds is more than a curious observation, it is useful to expand the

results of such a bulk-classification in asymptotically locally AdS space and compare

against the classification done on the boundary, reported about in the previous para-

graphs. We have in fact done such a comparison for five dimensional minimal gauged

supergravity (in Lorentzian signature), whose solutions have been classified in [74]. There

the authors have found that all solutions fall into two classes, which have a time-like

or a null Killing vector, respectively. We showed that on the boundary of ALAdS both

classes reduce to solutions with a null conformal Killing vector, in agreement with our

four dimensional findings. Furthermore, all other differential and algebraic constraints

of the 5d classification reduce to the set of equations which we found in the purely four

dimensional analysis.

Organisation of the rest of part I

The rest of the first part of this thesis is organised very straightforwardly. In chapter 2 we

discuss locally asymptotically AdS space-times and superconformal theories on the curved

boundary. In particular, we show how conformal Killing spinors emerge from the bulk.

In the chapters 3 – 7 we classify geometries with (generalised) conformal Killing spinors

in various dimensions and for different amount of flat-space supersymmetry, according to

the chapter’s titles. In each case we discuss issues, particularities and examples that are

specific for that dimension/supersymmetry.
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Chapter 2

The Holographic Perspective –

Conformal Killing Spinors from the

Bulk

In this chapter, we review how supersymmetry in the bulk implies the existence of a “con-

formal Killing spinor” on the boundary [54]; a very similar version of this computation

has also appeared in [76, App. E]. We will focus on the case with 8 bulk supercharges,

which correspond to boundaries with N = 1 supersymmetry in four, and N = 2 in three

dimensions. The analogous case of extended supersymmetry, where the bulk-to-boundary

analysis gives rise to a generalised version of the CKS, together with an extra supersym-

metry equation, is discussed in detail in [55] for asymptotically AdS, the generalisation

to asymptotically locally AdS is straightforward and we will not review it here. We will

describe the emergence of a CKS from five-dimensional gravity in section 2.1, and in sec-

tion 2.2 for four-dimensional gravity. In section 2.3, we will interpret the result in terms

of the superconformal theory at the boundary.

The material presented in this chapter has appeared originally in the papers [1, 2]

2.1 From five-dimensional gravity to CFT4’s

We will mainly discuss the Lorentzian signature case here, eventually discussing the Wick

rotation to the Euclidean. Our starting point is N = 2 gauged supergravity with an

AdS4 vacuum corresponding to the dual of a four-dimensional conformal field theory on

flat space. According to the holographic dictionary, other solutions of the bulk theory
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which are asymptotically AdS describe deformations (or different vacua) of the CFT. We

are interested in studying the CFT on a curved manifold M4 and therefore we look for

solutions of the bulk theory with a conformal boundary M4. This can be implemented by

assuming for the asymptotic bulk metric the Fefferman–Graham form

ds2
5 =

dr2

r2
+ (r2ds2

M4
+O(r)) . (2.1)

This describes a locally asymptotically AdS5 space-time. For our further analysis, it will

be useful to compute the asymptotic fünfbein

êα = r eα +O(1) , ê5 =
dr

r
, (2.2)

where α = 0, . . . , 3 are flat four-dimensional indices and eα = eαµ(x)dxµ is a vierbein

for M4. We denote with a hat five-dimensional quantities that might be confused with

four-dimensional ones. Similarly, the associated spin connection to leading order in r is

ω̂αβ = ωαβ , ω̂α5 = reα . (2.3)

In general, in order to define the theory on the curved manifold in a supersymmetric

way, we will need to turn on a non trivial background for the R symmetry current. This

corresponds to a relevant deformation AµJ
µ of the CFT and we expect a non trivial profile

of the graviphoton field in the bulk. On the other hand, we do not want to include explicit

deformations induced by scalar operators so we can safely assume that all the scalars in

the bulk vanish at the boundary.

It is hence natural to look at minimal gauged supergravity in the bulk. In Lorentzian

mostly plus signature the bosonic part of the action is1

S =
1

4πG

∫ ((1

4
R̂ +

3

`2

)
∗ 1− 1

2
F̂ ∧ ∗F̂ − 2

3
√

3
F̂ ∧ F̂ ∧ Â

)
, (2.4)

where F̂ = dÂ and ` 6= 0 is a real constant.

The Killing spinor equation corresponding to a vanishing gravitino variation is[
∇̂A +

i

4
√

3

(
γA

BC − 4δBAγ
C
)
F̂BC

]
εI +

1

2
εIJ
(
iγA + 2

√
3ÂA

)
εJ = 0 , (2.5)

1We use notations adapted from [74], to which we refer for details. To compare with [74], one has

to identify χ = 2
√

3. Moreover, one needs to switch between mostly plus and mostly minus signature,

which means flipping the sign of the metric and taking γAhere = −i γAthere. Also, for ease of reading we set

` = 1 in most other formulae.
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where we are using flat A,B,C five-dimensional space-time indices. Our conventions for

the spinors, which are symplectic-Majorana, can be found in Appendix A.1.

We want to expand this in the asymptotic metric (2.1). For the bulk gauge field we

assume the asymptotic behaviour

Âµ(x, r) = − 1√
3
Aµ(x) +O(r−1) , Âr(x, r) = 0 , (2.6)

which is compatible with the equations of motion. Here and in the following, µ, ν, . . .

are curved Lorentzian indices on M4. From the point of view of the gravity solution, this

corresponds to the non-normalisable mode for A, which indeed is interpreted in AdS/CFT

as the deformation of the theory induced by a background field for the R-symmetry. We

can also turn on the bulk fields corresponding to global symmetries of the CFT but,

allowing for a redefinition in A, this will not change the form of the supersymmetry

transformation. It follows that F̂µν = O(1) and F̂µr = O(r−2).

At leading order in the asymptotic expansion in r, the radial part of the Killing spinor

equation (2.5) gives rise to

∂rε
I +

i

2r
γ5 ε

IJεJ = 0 , (2.7)

where the index on γ5 is flat. Note that the contribution of the gauge field strength

obtained from (2.6) is sub-leading and therefore drops out. Eq. (2.7) implies that the two

symplectic-Majorana spinors take the asymptotic form

ε1 = r1/2ε+ r−1/2η ,

ε2 = iγ5(r1/2ε− r−1/2η) ,
(2.8)

where ε and η are independent of r. Plugging these expressions back into the remaining

components of (2.5), one finds that at leading order the spinors obey the following equation(
∇µ − iAµγ5

)
ε+ γµγ5η = 0 . (2.9)

Here, a term from the covariant derivative relative to the metric ds2
5 has combined with

the term linear in γA in (2.5). In the gamma matrix representation we adopted (see

appendix A.1), the symplectic-Majorana condition in five dimensions implies that the

four-dimensional spinors obey ε∗ = ε and η∗ = −η. We can also use γ5 to define the

chirality for the boundary spinors,

ε = ε+ + ε− , η = η+ + η− , (2.10)
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where γ5ε± = ±ε and γ5η± = ±η. Taking the trace of (2.9) allows us to solve for η:

η = −1

4
(γ5∇µ + iAµ)γµε . (2.11)

Finally, inserting this back into (2.9), we find

∇A
µ ε+ =

1

4
γµD

Aε+ , (2.12)

where ∇A
µ = ∇µ − iAµ and DA = γµ∇A

µ . This is the equation for a (charged) conformal

Killing spinor, and will be the starting point of our subsequent analysis. In the math

literature such a spinor is also known as twistor spinor. We will review the mathematics

behind it and classify its solutions in section 3.1 for Euclidean and in section 4.1 for

Lorentzian signature. Note that in the Lorentzian a similar equation is given for ε− by

complex conjugation.

Let us comment on the Euclidean case. Upon Wick rotation we drop the Majorana

condition ε∗ = ε. This implies that ε+ and ε− are not charge conjugate any longer and we

have two independent equations,

∇A
mε± =

1

4
γmD

Aε± ,

where ∇A
mε± = (∇m ∓ iAm)ε± and we allow for complex values of Am. m,n, . . . will

denote curved indices for Euclidean M4. As usual, in the Euclidean the spinors have been

doubled.

2.1.1 Generalisation to extended supersymmetry

The analogous case withN = 2 supersymmetry on the boundary is slightly more involved.

Minimal gauged N = 4 supergravity in five dimensions [77] contains more fields, and so

does N = 2 conformal supergravity in four [78, 79]. In particular, there is an additional

spinor, but also a tensor and a scalar in the off-shell multiplet. Nevertheless, it is still

true that the latter can be obtained from the former in an asymptotical AdS background,

see e.g. [55]. We will not review this here. The structure and supersymmetry conditions

for N = 2 conformal supergravity will be discussed in detail in section 6.1 for Lorentzian

signature and in section 7.1 for the Wick rotation to the Euclidean. Here we just want

to briefly report on the fact that also for extended supersymmetry, superconformality

is ensured by the existence of a somewhat ’generalised‘ conformal Killing spinor. More

explicitly, the vanishing of the gravitino variation gives

∇A
µ ε

i
+ +

1

4
T+
µνγ

νεi− =
1

4
γµD

Aεi+ , (2.13)
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where ∇A
µ ε

i
+ = ∇µε

i
+ − iAµijε

j
+ is twisted with the U(2) R-symmetry gauge field, i = 1, 2

is a U(2) index and T+
µν is the tensor field mentioned above. We recognise the similarity to

the CKS equation (2.12) found above. There is another equation (see (6.4b)) coming from

the vanishing of the aforementioned ‘additional’ spinor in the gravity multiplet, which a

priori gives extra conditions for the generalised Killing spinor reported here. We will

discuss these conditions in detail in the later chapters.

2.2 From four-dimensional gravity to CFT3’s

The analysis of N = 2 gauged supergravity in four dimensions is very similar and we

will be brief here. In one dimension less, the asymptotic bulk metric we will be using is,

analogously to (2.1),

ds2
4 =

dr2

r2
+ (r2ds2

M3
+O(r)) , (2.14)

where M3 is the Euclidean2 three dimensional boundary manifold we are interested in.

The asymptotic behaviour of the gauge field parallels that of the four dimensional one

and we find again that to leading order in 1
r

the curvature of the gauge field drops out of

the Killing spinor equation on the boundary. In frame indices (a, 4), a = 1, 2, 3, we get

for the leading order asymptotic Killing spinor equation(
∂4 +

1

2
γ4

)
ε = 0 ,

(
∇A
a +

r

2
γa(1 + γ4)

)
ε = 0 , (2.15)

where ∇A
a ≡ ∇a − iAa is now the covariant derivative with respect to the metric ds2

M3
.

Since γ4 squares to one, we can divide spinors into eigenspaces of eigenvalue ±1,

γ4ε± = ±ε±. The first equation in (2.15) then gives

ε = r
1
2 ε− + r−

1
2 ε+ . (2.16)

Plugging this into the second equation of (2.15) gives, at leading order,

∇A
a ε− + γaε+ = 0 . (2.17)

We can use γ4 to reduce spinors from four dimensions to three. In a basis where

γa =

(
0 σa

σa 0

)
, γ4 =

(
0 i

−i 0

)
, (2.18)

2 For a discussion of supersymmetry on Lorentzian three-manifolds, see [59]
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the spinors ε± can be rewritten as ε± =
( ±iχ±

χ±

)
, where χ± are three-dimensional spinors.

This gives

∇A
a χ− = −iσaχ+ . (2.19)

We can get an expression for χ+ by taking the trace:

χ+ =
i

3
DAχ− , (2.20)

where DA ≡ σa∇a is the Dirac operator. We have obtained again(
∇A
a −

1

3
σaD

A

)
χ− = 0 . (2.21)

Which we recognise as three dimensional version of the (charged) conformal Killing spinor.

We will classify the spaces that admit a solution to this equation in section 5.1.

2.3 Conformal Killing spinors and superconformal the-

ories

The appearance of the equation (2.21) and (2.12) for a conformal Killing spinor at the

conformal boundary of the gravity solution can be easily explained.

As we reviewed in the outline section, if we want to define a supersymmetric theory

on a curved manifold M , an efficient strategy [43] consists in coupling the theory to

supergravity and then freeze the fields of the gravitational multiplet. The value of the

auxiliary fields determines the coupling of the theory to the curved background.

For a superconformal theory, one can proceed similarly and couple the theory to the

fields of conformal supergravity gmn, ψm and Am. At the linearised level, these fields

couple to the superconformal currents:

− 1

2
gmnT

mn + AmJ
m + ψ̄mJm , (2.22)

where Jm is the R-symmetry and Jm is the supersymmetry current. For us, the fields

of conformal gravity will play the role of background fields; since we work in Euclidean

signature, we will allow the auxiliary field Am to be complex.

In order to preserve some supersymmetry, the gravitino variation must vanish. For

simplicity, we write the variation for a four-dimensional theory where they read (with

obvious redefinitions) [46, 50]

δψm = (∇m − iAmγ5) ε+ γmγ5η (2.23)
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where ε is the parameter for the supersymmetries Q and η for the superconformal trans-

formations S. It is crucial for our arguments that, as stressed many times in the old days3,

the algebra of the superconformal transformations of gmn, ψm, Am closes off shell. There-

fore the variation (2.23) depends only on the background field Am and is not modified

by the coupling to matter. Moreover, the supergravity action for the fields gmn, ψm, Am

is separately invariant and can be safely omitted without spoiling the superconformal

invariance of the matter part.

The vanishing of the gravitino variation constrains the manifolds where we can have

supersymmetry. As expected, equation (2.23) is identical to (2.9) which, in turn, is equiv-

alent to the conformal Killing equation. Notice that ε and η in our bulk computation

appear in the asymptotic expansion (2.8) with a different power of r corresponding pre-

cisely to the conformal dimension of the supercharges Q and S.

3See for instance [80] for a very simple example of the logic we will be using in this thesis.
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Chapter 3

The geometry of N = 1 in four

Euclidean dimensions

In this chapter, we focus on the four dimensional case with one of the four N = 1

supercharges preserved in Euclidean signature. We saw in section 2.1 that starting from

very mild assumptions on the structure of the gravity dual, the boundary manifold will

have a conformal Killing spinor, namely a solution of the conformally invariant equation(
∇A
m − 1

d
γmD

A
)
ε = 0, where D = γm∇m is the Dirac operator, and A denotes twisting by

a gauge field, in general complex. Following the same logic as in [43], applied this time to

conformal supergravity [47–53], the existence of a conformal Killing spinor is exactly the

condition one needs in order to preserve one supercharge for a superconformal theory1.

We show that a conformal Killing spinor exists on any complex manifold (Kähler or

not)2. Thus, a superconformal field theory on any complex manifold preserves at least

one supersymmetry, if we turn on a background field (in general complex) for the R-

symmetry. In fact, conformal supergravity gives rise to ordinary supergravity once one

breaks conformal invariance by giving expectation value to fields in auxiliary compensator

multiplets (as for example in [70]; for a review see [46]). In particular, applying this

idea to a tensor multiplet gives rise to “new minimal supergravity” [72]. This suggests

that one might extend our results to any supersymmetric theory with an R-symmetry

(not necessarily conformal); and we indeed show, using again the method in [43], that a

1 The relevance of conformal Killing spinors was also realised for superconformal σ models in [81, 82].
2 There exist many complex manifolds which are not Kähler. The most famous example is perhaps

the Hopf surface, which is diffeomorphic to S3 × S1, or more generally all “class VII” Kodaira surfaces.

Primary and secondary Kodaira surfaces in the Enriques–Kodaira classification are also non-Kähler (see

for example [83, Ch. VI]).
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supersymmetric theory preserves at least one supercharge on any complex manifold. A

very similar analysis has been presented for the “old minimal supergravity” in [57, 62] 3.

Our analysis can also be used to identify concretely the Lagrangian of the theory dual

to a given supergravity background. Suppose we have a supergravity theory whose AdS

solution is dual to a given CFT in flat space. If one has another solution of the same

supergravity theory which is asymptotically locally AdS, it is possible to read off the

value of the boundary metric and of the background field for the R-symmetry, and to

write the Lagrangian of the CFT on the resulting curved space using our discussion in

section 2.3 (and in particular (2.22)), in agreement with the standard AdS/CFT dictio-

nary. Moreover, from (3.30) one can also identify the background field appearing in new

minimal supergravity, which is crucial to write the Lagrangian for any supersymmetric

but non-conformal deformation of the CFT.

This chapter is organised as follows. We did already review how conformal Killing

spinors arise from holography in section 2.1, now in section 3.1 we will study the geometry

of such spinors; in the charged case, we find that any complex manifold admits one. In

section 3.2, we show that any supersymmetric field theory preserves one supercharge on

a complex manifold.

The material presented in this chapter is based on the paper [1]. Similar results have

appeared in [56].

3.1 Geometry of conformal Killing spinors

We have seen in the previous chapter that preserved supersymmetry implies the existence

of a charged conformal Killing spinor. In this section, we will review some geometry

behind the defining equation

PA
mε ≡

(
∇A
m −

1

d
γmD

A

)
ε = 0 , (3.1)

and classify its solutions. Notice that the conformal Killing operator PA
m is covariant

under Weyl rescaling. The operator P̄A
m of the rescaled metric ḡ = efg is indeed given by

P̄A
me

f/4 = ef/4PA
m . (3.2)

3See also [61].
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3.1.1 The A = 0 case

In the uncharged case (A = 0), the conformal Killing spinor equation reads(
∇m −

1

d
γmD

)
ε ≡ Pmε = 0 . (3.3)

One way to think of the operator Pm is the following. The covariant operator ∇m goes

from the bundle of spinors Σ to the bundle T ⊗ Σ of vector-spinors. The sections of

the latter are a reducible representation of the orthogonal (or Lorentz) group. It can be

written as the direct sum of two representations: a “trace”, defined by taking a section

ψm and multiplying it by γm, and the traceless part.4 The orthogonal projector on this

second irreducible representation can be written as δnm − 1
d
γmγ

n. Now, projecting ∇m on

the trace representation gives the Dirac operator D, while projecting on the traceless part

gives (
δnm −

1

d
γmγ

n

)
∇n = ∇m −

1

d
γmD = Pm . (3.4)

So in a sense Pm is the “complement” of the Dirac operator. Some of the properties

of Pm (and of its zero modes, the conformal Killing spinors) have been studied by math-

ematicians; see for example [84] in the Euclidean case and [85] in the Lorentzian case.

In particular, some of these results can be used to classify completely the manifolds on

which a conformal Killing spinor can exist, as we will now review.

Consider a conformal Killing spinor ε. One can show that D2ε ∝ R ε, where R is the

scalar curvature. Using the solution to the Yamabe problem [86, 87], one can make R

constant by a conformal rescaling of the metric. ε is then an eigenspinor for D2; namely,

(D2 − µ2)ε = (D − µ)(D + µ)ε = 0 , (3.5)

for some µ. The spinors

ψ ≡ ε+
1

µ
Dε , ψ̃ ≡ ε− 1

µ
Dε , (3.6)

are then eigenspinors of D. A theorem by Hijazi [88] now tells us that any eigenspinor of

D is also a Killing spinor, namely a spinor ε that satisfies

∇mε = µγmε . (3.7)

4This is familiar from the NS⊗R sector of the NSR superstring, which decomposes into a dilatino (the

trace) and the gravitino (the traceless part).
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Such spinors are familiar from the supergravity literature; for example, one can find

explicit expression for Killing spinors on the sphere Sn in [89]. One can readily check that

every Killing spinor is a conformal Killing spinor; thus, a priori (3.7) would seem to be

more restrictive than (3.3). However, as we have just described, existence of a solution to

(3.3) is in fact equivalent to existence of a solution to (3.7) (with a Weyl rescaled metric).

In fact, manifolds which admit Killing spinors have been classified. Notice first that

the usual compatibility between different components of (3.7) gives Rmn = −2µ2gmn.

This implies that µ should be either real or purely imaginary. The real case can be shown

[90] to be realised only on non-compact manifolds, which are in fact a warped product

of R with any manifold M , with metric dr2 + e−4µrds2
M . When µ is purely imaginary,

one can observe [91] that the existence of a Killing spinor on Md implies the existence of

a covariantly constant spinor on the cone C(Md). Such manifolds are in turn classified

using their restricted holonomy.

For example, in dimension four, the cone C(M4) would be a five-dimensional manifold

with restricted holonomy, which can only be R5. This tells us that S4 is the only four-

manifold with Killing spinors, and thus the only four-manifold with conformal Killing

spinors (up to Weyl rescaling).

The case of S4 is also instructive in other respects. It is known that there is no almost

complex structure on this manifold. A chiral spinor defines at each point an almost

complex structure; thus, there can be no chiral spinor without zeros on S4. On the other

hand, a Killing spinor has no zeros, because (3.7) implies that the norm of ε is constant.

There is no contradiction: a Killing spinor is never chiral; so ε = ε+ + ε−, where ε± are

chiral. Both ε+ and ε− have one zero, which explains why there is no almost complex

structure on S4, but the norm of ε is still constant. In fact, [84, Th. 7] shows that, in any

dimension, the sphere Sd is the only manifold on which a conformal Killing spinor can

have a zero.

In dimension three the situation is similar. Since R4 is the only four-manifold with

restricted holonomy, S3 (or quotients thereof) is the only compact three-manifold with

Killing spinors. Unlike in the four dimensional case, the conformal Killing spinors on S3

never vanish. In higher dimensions, we have a larger class of possibilities. The existence of

Killing spinors identifies Sasaki-Einstein manifolds in five dimensions and nearly-Kähler

manifolds in six [91]. The corresponding cones with restricted holonomy are Calabi-Yau

three-folds and G2 manifolds, respectively. Only in the case of S6 the conformal Killing

spinor is allowed to have a zero.

Let us summarise the results we have reviewed in this subsection. If a manifold
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admits a conformal Killing spinor (uncharged, namely with A = 0), it also admits a

closely related Killing spinor. Manifolds with Killing spinors, in turn, are also completely

classified; they are either warped products of a manifold with R, or bases of cones with

covariantly constant spinors.

3.1.2 The A 6= 0 case in four dimensions

We will now turn to the case with A 6= 0:(
∇A
m −

1

d
γmD

A

)
ε = PA

mε = 0 , m = 1, . . . , 4 . (3.8)

In general, A will be a connection on a bundle. We will actually take ReA to be a

connection on a U(1) bundle U , and ImA to be a one-form. Accordingly, ε will be not

quite a spinor, but a “charged”, or Spinc, spinor; namely, a section of

U ⊗ Σ , (3.9)

where Σ is the spinor bundle.

(3.8) has also been considered by mathematicians (see e.g. [92, Part III]), but in this

case it is no longer true that existence of its solutions is equivalent to the existence of

charged Killing spinor (which have been studied for example in [93]). Thus a complete

classification of the solutions to (3.8) is currently not available.

We will thus study (3.8) here. In this section, we will deal with the four-dimensional

case. Since (3.8) does not mix different chiralities (unlike (3.7)), we can consider its chiral

solutions separately. For simplicity, we will assume that ε = ε+ is a spinor of positive

chirality.

Intrinsic torsions

We can borrow some of the tools that have been successfully used in the analysis of

supersymmetric solutions in supergravity. The first idea is to parameterise the covariant

derivatives of ε+ in terms of a basis of spinors. This strategy has been used for a long

time (for example [94, (2.2)]); in the case of a four-dimensional Euclidean manifold, this

was used recently in [62, 95]. In the case at hand, a basis in the space of spinors with

positive chirality is given by

ε+ , εC+ ≡ Cε∗ , (3.10)

27



where C is the intertwiner such that γ∗m = C−1γmC. A basis for the space of spinors of

negative chirality is given by either

γmε+ (3.11)

or by

γmε
C
+ ; (3.12)

as we will see shortly, this second choice is related to (3.11). Using the basis (3.10), we

can expand

∇mε+ = pmε+ + qmε
C
+ . (3.13)

pm, qm are locally complex one-forms. Globally speaking, Imp is a connection on U , Rep

is a one-form, and q is a section of U2 ⊗ T ∗.
An alternative, perhaps more transparently geometrical, point of view, consists in

noticing that ε+ defines an U(2) structure on M4. We can express it in terms of forms by

considering the bispinors

ε+ ⊗ ε†+ =
1

4
eBe−i j , ε+ ⊗ ε+ =

1

4
eBω , (3.14)

where ε ≡ εTC−1, eB ≡ ||ε+||2, and j is a real two-form. ω is locally a complex two-form;

globally, it is actually a section of

U2 ⊗ Ω2,0 , (3.15)

where recall U is the U(1) bundle for which A is a connection. j and ω satisfy

ω2 = 0 , ω ∧ ω̄ = 2j2 , (3.16)

or, more symmetrically,

j ∧ Reω = Reω ∧ Imω = Imω ∧ j = 0 ,

j2 = (Reω)2 = (Imω)2 .
(3.17)

One can use these forms to relate the two choices for a basis of spinors of negative chirality,

(3.11) and (3.12):

γmε+ =
1

2
ωmnγ

nεC+ . (3.18)

Notice that this also implies that ε+ and εC+ are annihilated by half of the gamma matrices5:

Π̄m
nγnε+ = 0 , Πm

nγnε
C
+ = 0 , (3.19)

5In other words, they are pure; it is indeed well-known that any spinor in even dimension ≤ 6 has this

property [96, Rem. 9.12].
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where Πm
n ≡ 1

2
(δnm−iImn) = 1

4
ωmpω̄

np is the holomorphic projector (relative to the almost

complex structure Im
n ≡ jmpg

pn).

Strictly speaking, the previous discussion should be taken with a grain of salt in the

case where ε+ has zeros. In general j and ω will not be well-defined on any zero zi, and

will define a U(2) structure only on M4 − {zi}.
Similarly to (3.13), it is easy to parameterise the derivatives of j and ω, by decomposing

dj and dω in SU(2) representations. A three-form α3 can always be written as α3 = α1∧j,
where α1 is a one-form; or, it can be decomposed into its (2, 1) part and its (1, 2) part,

which can in turn be re-expressed as ω ∧ β0,1 and ω̄ ∧ β̃1,0. These two possibilities can be

exchanged with one another by using (3.18).

We follow both strategies to write

dj = w4 ∧ j , dω = w5 ∧ ω + w3 ∧ ω̄ . (3.20)

w4 is a real one-form. w5 and w3 are locally complex one-forms; globally, Imw5 is a

connection on U2, Rew5 is a one-form, and w3 is a section of U4 ⊗ T ∗.
The wi are collectively called “intrinsic torsion”. Our choice to write dj using j and

dω using ω and ω̄, and our names for the one-forms wi, might seem mysterious. We made

these choices to be as close as possible to a notation commonly used for U(3) structures on

six-manifolds, where the intrinsic torsion consists of forms W1, . . . ,W5 of various degrees

(a notation which is also not particularly suggestive, but which has become traditional;

see [94, 97]). Notice that w5 can be assumed to have (0, 1) part only, and w3 to have only

(1, 0) part.

Our parameterisation of ∇ε+ in (3.13) is nothing but a spinorial counterpart of the

intrinsic torsions wi in (3.20). In fact, we can easily compute a relation between the two,

using the definitions (3.14) of j and ω. We get:

w4 = −2Re(q̄xω) , w5
0,1 = 2i(Imp)0,1 −

1

2
qxω̄ , w3

1,0 =
1

2
qxω . (3.21)

As a byproduct, we also obtain a relation on B (which was defined earlier as eB ≡ ||ε+||2):

dB = 2Rep . (3.22)

General solution

In supergravity applications, it is usually straightforward to compute dj and dω directly

from the spinorial equations imposed by supersymmetry. In this case, it is more convenient
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to compute first the torsions p and q in (3.13) from the conformal Killing spinor equation

(3.8). The computation involves the action of γmn:

γmnε+ = ijmnε+ − ωmnεC+ ,

γmnε
C
+ = −ijmnεC+ + ω̄mnε+ .

(3.23)

This allows us to rewrite (3.8) as6

pA1,0 = 0 , 2pA0,1 + q1,0xω̄ = 0 , q0,1 = 0 . (3.24)

where pAm ≡ pm − iAm.

(3.24) can also be translated into equations for the intrinsic torsions wi defined in

(3.20):

w3 = 0 , (3.25a)

iA1,0 = −1

2
w5

0,1 +
1

4
w4

1,0 +
1

2
∂B , (3.25b)

iA0,1 = +
1

2
w5

0,1 −
3

4
w4

0,1 +
1

2
∂̄B . (3.25c)

We see that (3.25b) and (3.25c) simply determine A and do not impose any constraints

on the geometry. On the other hand, w3 = 0 has a geometrical meaning: namely,

(dω)1,2 = 0 . (3.26)

When ε has no zeros anywhere, this is just a way of saying that the manifold M4 should

be complex.

Let us briefly review why7. From its definition as a bispinor in (3.14), we know that

the two-form ω is decomposable, i.e. it can locally be written as a wedge of two one-forms:

ω = e1 ∧ e2 . (3.27)

These one-forms ei can be taken as generators of the holomorphic tangent bundle T 1,0;

this defines an almost complex structure Iω. Clearly, if Iω is integrable, dω is a (2, 1)-form,

and hence (3.26) holds. To see that the converse is also true, observe that (3.26) can only

be true if d of a (1, 0) form never contains a (0, 2) part; or, by conjugation, if

(deī)(2,0) = 0 , (3.28)

6Writing (3.8) as E1
mε+ + E2

mε
C
+ = 0, one would expect two vector equations; decomposing each into

(1, 0) and (0, 1) parts would give four equations. However, E1
0,1 and E2

1,0 can be shown to be equivalent.

This can also be seen from the fact that multiplying (3.8) by γm is automatically zero, and from (3.18).
7This idea is usually attributed to Andreotti.
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where i = 1, 2 is a holomorphic index. Consider now any two (1, 0) vectors Ei, Ej. We

have the following chain of equalities:

([Ej, Ek]Lie)xe
ī = [{d,Ejx}, Ekx]xeī = −Ekx{d,Ejx}eī = −EkxEjxdeī = 0 . (3.29)

In the first step, we have used Cartan’s magic formulas relating d, Lie derivatives and

vector contractions. (3.29) means that the Lie bracket of any two (1, 0) vectors is still

(1, 0), which is the definition of integrability. So Iω is a complex structure, and the

manifold M4 is complex.

Conversely, if M4 is complex, there exists a solution of (3.8). Given a complex structure

I, let ωI be a section of its canonical bundle K ≡ ΛT ∗1,0. I defines a Gl(2,C) structure

on M4; but Gl(2,C) is homotopy equivalent to U(2), and for this reason there is actually

a U(2) structure on M4. This means that there always exists a two-form j compatible

with ω, in the sense that j ∧ ω = 0 (as in (3.16)), or in other words that j is a (1, 1) for

I; this also implies that j and I define together a metric via g = Ij.8 The volume form

of this metric is just −1
2
j2; by choosing an appropriate function B, we can now define

a normalised ω = e−BωI so that ω ∧ ω̄ = 2j2 is also true (again as in (3.16)). We can

now define the wi from (3.20); since I is complex, w3 = 0. Finally, as remarked earlier,

(3.25b) and (3.25c) simply determine A in terms of the wi and B; it can be checked that

it transforms as a connection.

If ε has zeros zi, only M4 − {zi} will be complex, and not the whole of M4. This is

for example the case for S4. As we discussed at the end of section 3.1.1, in this case a

chiral conformal Killing spinor ε+ has a zero at one point; the complement of that point is

conformally equivalent to R4, which obviously admits a complex structure. Conversely, if

one finds a complex structure on M4−{zi}, one can determine A through (3.25b), (3.25c),

and one should then check whether it extends smoothly to the entire M4.

To summarise, the charged version of the conformal Killing spinor equation, (3.8),

is much less restrictive than the uncharged version studied in section 3.1.1. We found

that the only requirement on the geometry is (3.26), which can be solved for example

by requiring that the manifold is complex. Moreover, A is determined in terms of the

geometry by (3.25b), (3.25c).

8One can alternatively reason as follows. Given any metric g̃ on M4, the ‘projected’ metric gmn ≡
(Πm

pΠ̄n
q + Π̄m

pΠn
q)g̃pq = 1

2 (g̃mn + Im
pIn

q g̃pq) is hermitian with respect to I. One can then define a

two-form via Jmn ≡ Impgpn, which is indeed antisymmetric, as one can easily check.
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3.2 Supersymmetric theories on curved spaces from

new minimal supergravity

In the previous section, we have studied the constraints imposed by the presence of at

least one supercharge in a superconformal theory, by coupling the theory to conformal

supergravity. We will now show that those results can be interpreted very naturally also

as the coupling of a supersymmetric theory to “new minimal supergravity” [72, 98]. In

particular, we show that every solution of the new minimal equations is a conformal Killing

spinor. Vice versa, every conformal Killing spinor (without zeros9) gives rise to a solution

of the new minimal equations. We can then use the results in section 3.1 to understand

when we can consistently define a supersymmetric, but not necessarily conformal, theory

with an R-symmetry on a curved manifold.

3.2.1 Equivalence with conformal Killing spinor equation

We start with a solution of the conformal Killing spinor equation (3.8) without zeros,

charged under a connection A.

As a first step, notice that DAε+ is a negative chirality spinor, and as such can be

expanded in the basis (3.11):

DAε+ ≡ 2ivε+ (3.30)

where v = vmγm and vm is a vector.10 Since ε has no zeros, vm is defined everywhere. An

easy computation now shows that (3.8) can be rewritten as11

∇mε+ = −i
(

1

2
vnγnm + (v − a)m

)
ε+ , a ≡ A+

3

2
v . (3.31)

This is exactly the condition for the existence of at least one unbroken supersymmetry in

new minimal supergravity [72, 98]. When this condition has a solution, we can consistently

define supersymmetric theories on the four-manifold M4 using the strategy in [43].

Actually, v starts its life as the auxiliary field of a tensor multiplet; so one should

impose that it can be dualised back:

d ∗ v = 0 . (3.32)

9We thank the authors of [56] for a useful comment about this point.
10Its (1, 0) part is immaterial because of (3.19); its (0, 1) part can be written in terms of the intrinsic

torsions in (3.13) as v0,1 = − i
2

(
pA0,1 − 1

2qxω̄
)
.

11We use lower-case letters a and v for the auxiliary fields of new minimal supergravity, in order to

avoid confusion with the A of conformal supergravity we have been using until now.
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We can use the ambiguity in the definition of v to arrange this condition. Since v is

defined only up to its (1, 0) part, we have two arbitrary complex parameters that can be

used to enforce (3.32). An alternative geometrical perspective is the following. We can

first choose v imaginary and then perform a conformal rescaling of the metric

gmn → e2fgmn ⇒ D →
(
e−fD +

d− 1

2
∂mfγ

m

)
. (3.33)

In d = 4, this transforms v → v − i3
4
df , and one can use the freedom in choosing f to

arrange so that (3.32) is satisfied.

Hence we have shown that one can take the charged conformal Killing spinor equation

(3.8) to the condition of unbroken supersymmetry in new minimal supergravity (3.31).

The fact that one can bring (3.8) to (3.31) was to be expected because of the formalism

of conformal compensators (for a review see [46]). In that formalism, one obtains new

minimal supergravity by coupling a tensor multiplet to conformal supergravity, and by

then giving an expectation value to the tensor multiplet.

By reversing the previous argument, it is clear that every solution of the new minimal

equation (3.31) is also a solution of the conformal Killing equation (3.8).

We have now two ways of defining a conformal field theory on a curved background,

either by coupling to conformal supergravity or by coupling to new minimal supergravity.

The resulting theory is however the same. The coupling to new minimal supergravity will

add linear and quadratic terms in the auxiliary fields a, v, as discussed in [43] At the linear

level in the auxiliary fields the bosonic action contains the coupling to the supercurrent

multiplets [43, 72]

− 1

2
gmnT

mn +

(
am −

3

2
vm

)
Jm + ψ̄mJm − 1

2
bmntmn , (3.34)

where Jm and Jm are the R-symmetry and the supersymmetry current, respectively. In

the non conformal case, the multiplet of currents also contains a conserved tmn (∇mtmn =

0) which measures precisely the failure of the theory at being conformally invariant. tmn

couples to the dual of the auxiliary field v: vm = εmnpr∂nbpr. In the conformal case tmn = 0

and the linear coupling to vm vanishes. The remaining terms reproduce the couplings to

the conformal supergravity 2.22 since A = a− 3
2
v. The quadratic terms work similarly.

3.2.2 One supercharge

Even though we have already analysed the geometrical content of the conformal Killing

spinor equation (3.8) in section 3.1.2, it is instructive to repeat the analysis starting
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directly from (3.31).

We again introduce j and ω as in (3.14). This time it is most convenient to calculate

directly dj and dω from (3.31). First of all we compute

d(ε+ε
†
+) = (−2Ima ∧+iRevx)ε+ε

†
+ +

1

2
eB(Imv − i ∗ Rev) ,

d(ε+ε+) = 2ia ∧ ε+ε+ .
(3.35)

Using (3.14), we get expressions for dj and dω, which in turn give us

v0,1 = − i
2
w4

0,1 , (3.36a)

a0,1 = − i
2

(∂̄B + w5
0,1) , (3.36b)(

a− 3

2
v

)
1,0

= − i
4
w4

1,0 +
i

2
w5

0,1 −
i

2
∂B , (3.36c)

as well as

(dω)1,2 = 0 . (3.37)

Not surprisingly, these relations are consistent with (3.25), which we found by directly

analysing the conformal Killing spinor equation (3.8). In particular, we have found again

that the vector A =
(
a− 3

2
v
)

is completely determined in terms of the geometry and B,

and that the constraint on the geometry can be solved by taking the manifold complex,

by following the steps described in section 3.1.2.

The vector v must satisfy d∗v = 0. We can actually solve this condition for v explicitly:

although A1,0 =
(
a− 3

2
v
)

1,0
is fixed by (3.36c), a1,0 and v1,0 are not. By choosing a1,0

and v1,0 in a convenient way we can impose (3.32). There is a particularly simple choice

that always works. By choosing a1,0 = − i
2
∂B + i

2
(w4

1,0 +w5
0,1), we get v1,0 = i

2
w4

1,0, which

together with (3.36a) gives

v = −1

2
∗ dj . (3.38)

This obviously satisfies (3.32).

Due to the ambiguity in choosing a1,0 and v1,0, we can have different pairs (a, v) that

solve all constraints for supersymmetry. For particular manifolds, for example R ×M3,

there can be different and more natural choices for v, as discussed below.

To summarise, using new minimal supergravity and the strategy in [43], a super-

symmetric theory with an R-symmetry on any complex manifold M4 preserves at least

one supercharge. This is in agreement with our result in section 3.1 for superconformal

theories.

We will now comment in particular on the important subcase where M4 is Kähler.
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Kähler manifolds

A very simple case is v = 0 and a real. The new minimal condition 3.31 reduces to the

equation for a covariantly constant charged spinor

(∇m − iam) ε+ = 0 , (3.39)

which is well known to characterise Kähler manifolds. In our formalism this can be seen

easily from equations (3.35). Using (3.14) we learn that B is constant and

dj = 0 , dω = 2ia ∧ ω . (3.40)

The second condition implies, as already stressed, that M4 is complex and the first that

it is a Kähler manifold.

It is interesting to consider the case of conical Kähler metrics

ds2
4 = dr2 + r2ds2

M3
. (3.41)

The three dimensional manifold M3 is, by definition, a Sasaki manifold. The cone is

conformally equivalent to the direct product R ×M3 through the Weyl rescaling ds2
4 →

1
r2
ds2

4. R ×M3 will also support supersymmetry but with different a, v. If we keep the

norm of the spinor fixed, the new minimal conditions (3.36) for a Weyl rescaled metric

e2fds2
4 will be satisfied with the replacement

v → v − idf a→ a− idf . (3.42)

In the case of R ×M3, we see that a and v have acquired an imaginary contribution idt

in terms of the natural variable r = et parameterising R. Notice that v is not of the form

(3.38) but that it nevertheless satisfies d ∗ v = 0.

The theory on R ×M3 can be reduced to give a three dimensional supersymmetric

theory on M3. We will return to the study of three dimensional theories in chapter 5.

3.2.3 Two supercharges

It is interesting to consider the case where we have two supercharges ε± of opposite

chirality. The Euclidean spinors should satisfy the new minimal equations [43] which in

the Euclidean read

∇mε+ = −i
(

1

2
vnγnm + (v − a)m

)
ε+ ,

∇mε− = +i

(
1

2
vnγnm + (v − a)m

)
ε− .

(3.43)
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With two spinors, in addition to (3.14), we can construct the odd bispinors

ε+ ⊗ ε†− =
1

4
eB (z2 + ∗z2) , ε+ ⊗ ε− =

1

4
eB (z1 + ∗z1) , (3.44)

where {zi} is a holomorphic vielbein, in terms of which ω = z1∧z2 and j = i
2

(
z1 ∧ z1 + z2 ∧ z2

)
.

It is easy to show that z1
m = ε−γmε+ is a Killing vector. In fact

∇{mz1
n} = 0 , ∇[mz

1
n] = −iεmnprz1

pvr . (3.45)

We thus learn that we always have two isometries when there are two supercharges of

opposite chirality.

The commutator of the two supersymmetries closes on the isometry generated by z1.

For example, if we take the transformation rules for a chiral multiplet [43, 62]:

δφ = −ε+ψ+ , δφ̄ = −ε−ψ− ; (3.46a)

δψ+ = Fε+ +∇a
mφγ

mε− , δψ− = F̄ ε+ −∇a
mφ̄γ

mε+ ; (3.46b)

δF = ε−γ
m

(
∇a
m −

i

2
vm

)
ψ+ , δF̄ = ε+γ

m

(
∇a
m +

i

2
vm

)
ψ− ; (3.46c)

a straightforward use of Fierz identities shows that

[δε+ , δε− ]F = Lz1F , (3.47)

where F is any field in the multiplet (φ, ψ±, F ) and the Lie derivative L is covariantised

with respect to a.
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Chapter 4

The geometry of N = 1 in four

Lorentzian dimensions

From the point of view of rigid supersymmetry, the Lorentzian signature case has so far

been less studied; one exception is anti-de Sitter, which has been considered for a long

time, since e.g. [41, 42, 99], and more recently in e.g. [45, 61] (which also contain a more

complete list of references). In this chapter we consider the same question as in the last

one, namely under what conditions a N = 1 supersymmetric field theory can preserve

any supersymmetry on a curved space, in Lorentzian signature.1 We begin by considering

superconformal theories. In section 2.1 we found very generally that the boundary M4

needs to admit a conformal Killing spinor (CKS) ε, possibly charged under a gauge field

Aµ. The smallest amount of supersymmetry corresponds to ε being chiral; since the

equation is linear, whenever ε is a conformal Killing spinor iε is one too. So the minimal

amount of supersymmetry is two supercharges; we focus on this case. As we will show, the

condition on the geometry of M4 for this to happen is very different from the Euclidean

case. Namely, M4 has a conformal Killing spinor if and only if it has a null conformal

Killing vector z. The gauge field Aµ can then be determined purely from data of the

metric on M4.

As usual, one can also study supersymmetric theories on curved spaces using the

method proposed in [43]. We recall that this consists in coupling the theory to supergrav-

ity, and then freezing its fields to background values. For a superconformal theory, the

appropriate gravity theory is conformal supergravity the result of this procedure is again

that M4 should admit a conformal Killing spinor. For a supersymmetric theory with an

1 One might also attack this question using superspace, as in [100, Chap. 6].
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R-symmetry which is not superconformal, it is natural to use new minimal supergravity

[72], where the off-shell gravity multiplet contains gµν and two vectors aµ, vµ (the former

coupling to the R-symmetry current). For the theory obtained by this procedure to be

supersymmetric on a curved M4, one should then solve an equation for ε which is (locally)

equivalent to the CKS equation, with a suitable map of aµ, vµ with Aµ and some data of

the geometry. This map in general produces a vµ which is complex, which in Lorentzian

signature is not acceptable; imposing that it should be real turns out to require that the

conformal Killing vector z is now actually a Killing vector. As we will see, this stronger

condition arises automatically from the bulk perspective when a certain natural choice of

coordinates is used.

After having determined that supersymmetry leads to clear geometrical requirements,

one naturally wonders how this is related to the geometry in the bulk. The geometry of

supersymmetric solutions of (Lorentzian) five-dimensional minimal gauged supergravity

was considered in [74], and it is interesting to compare our result to their classification.

Indeed, one of the conditions found in [74] in the bulk was the existence of a Killing vector

V , which may be time-like or null. We will show that this vector always becomes null at

the boundary, and reduces to the conformal Killing vector z. We will also check that the

other conditions from the bulk become redundant at the boundary, in agreement with our

results.

The rest of this chapter is organised as follows. Recall that in section 2.1 we have

shown that supersymmetric asymptotically locally AdS solutions in the bulk imply the

existence of a charged conformal Killing spinor on the boundary M4. Here in section 3.1

we will show that such a spinor can exist if and only if M4 has a null conformal Killing

vector, and thus that this is the condition for a superconformal theory on M4 to preserve

some supersymmetry. In section 4.2 we extend our analysis to theories which are not

necessarily superconformal, but simply supersymmetric with an R-symmetry; we show

that the condition on M4 is now that it admits a null Killing vector. In sections 4.3 and

4.4 we compare our results on M4 with the bulk analysis of supersymmetric solutions of

gauged minimal supergravity performed in [74], and find agreement.

This chapter is based on the paper [2].
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4.1 Geometry of conformal Killing spinors in Lorentzian

signature

In this section we will analyse the geometrical content of conformal Killing spinors (2.12),

charged under a gauge field A, in Lorentzian signature. This equation is also known as

twistor equation, and it is well-studied in conformally flat spaces [101]. The case where

A = 0 has already been analysed in [102]: all possible spaces on which a conformal Killing

spinor exists were classified. It turns out that they fall in two classes: Fefferman metrics,

and pp-wave space-times. We will review these two as particular cases (with A = 0) of

our more general classification in section 4.2.4. As stated in the introduction, we will find

that a charged conformal Killing spinor exists if and only if there exists a null conformal

Killing vector. To explain the computations that lead to this result, we need to review

first some geometrical aspects of four-dimensional spinors in Lorentzian signature.

4.1.1 Geometry defined by a spinor

In this section we review the geometry associated with a Weyl2 spinor ε+ in Lorentzian

signature. As in section 2.1, we work in the signature (−,+,+,+) and with real gamma

matrices. We start with a spinor of positive chirality ε+ and its complex conjugate ε− ≡
(ε+)∗. We can use ε+ and γµε− to form a basis for the spinor of positive chirality and

ε− and γµε+ for those of negative chirality. A convenient way of choosing the basis is

obtained as follows. At every point where ε+ is not vanishing, it defines a real null vector

z and a complex two form ω. We can express this fact in terms of bispinors 3

ε+ ⊗ ε+ = z + i ∗ z , ε+ ⊗ ε− ≡ ω , (4.1)

where, as usual, ε = ε†γ0. Equivalently, as spinor bilinears the forms read

zµ =
1

4
ε̄+γµε+ , ωµν = −1

4
ε̄−γµνε+ . (4.2)

It can be shown easily that z ∧ ω = 0, which implies that we can write

ω = z ∧ w (4.3)

for some complex one-form w. The form ω looks very similar to the holomorphic top-form

of an almost complex structure; in section 4.2.2 we will make this similarity more precise

2We could also use a Majorana spinor.
3We are using conventions where ∗α ∧ α = ||α||2Vol4 and Vol4 = e0123 = 1

2e
+−23.
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by introducing the concept of CR-structure. One can then show that the spinor ε+ is

annihilated by z and w, namely

z · ε+ = w · ε+ = 0 , (4.4)

and

z2 = z · w = w2 = 0 , w · w̄ = 2 . (4.5)

We can think of z and w as elements of a local frame: z = e+, w = e2 − ie3. In order to

complete the frame we can introduce another real one-form e− such that

(e−)2 = 0 , e− · z = 2 , e− · w = 0 . (4.6)

The four-dimensional metric then takes the form

ds2 = z e− + w w̄ . (4.7)

Notice that the pair (z, ω) is uniquely defined by the spinor, while the frame {z, e−, w, w̄}
is not. This is because, given a w that satisfies (4.3), any other one-form of the form w+αz

still satisfies it. After having fixed w, e− is uniquely determined by the conditions (4.6).

Alternatively, one can pick any null e− such that e− · z = 2; a complex w orthogonal to

e− and z and such that w2 = 0, w · w̄ = 2 is then uniquely determined.

In summary, the vielbein {z, e−, w, w̄} is not uniquely determined by ε+; rather, it is

determined up to the ambiguity

w → w + αz , e− → e− − ᾱw − αw̄ − |α|2z . (4.8)

The complex function α has to do with the fact that ε+ by itself describes an R2 structure4,

rather than the identity structure that would be described by the vielbein {z, e−, w, w̄}.

4.1.2 Intrinsic torsions

We are now ready to define a basis of spinors. For the positive chirality we can take

ε+ , e− · ε− (4.9)

and for negative chirality

ε− , e− · ε+ . (4.10)

4The stabiliser of the light-like vector z is SO(2) n R2; w breaks the SO(2) to the identity. For more

details see [103]. See also section 4 of [104] for a similar discussion in six dimensions.
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It follows from (4.4) and the previous definitions that

γµε+ = −wµε− +
1

2
zµe− · ε+ . (4.11)

Using the basis (4.9), we can expand

∇µε+ = pµε+ + qµe
− · ε− . (4.12)

pµ, qµ are (locally) complex one-forms. They can be interpreted as intrinsic torsions

for the R
2 structure defined by ε+.5 It is also possible to express p and q in terms of

exterior differentials. In order to do so, we can use the auxiliary piece of data e−, which

allows to define a vielbein {z, e−, w, w̄}, as described in section 4.1.1. This vielbein is an

identity structure. The intrinsic torsion of an identity structure ea is expressed by the

“anholonomy coefficients” cabc defined by dea = cabce
b ∧ ec. As shown in Appendix B, we

can parameterise the dea as

dz = 2Re p ∧ z + 4Re(q ∧ w̄) , (4.13a)

dw = −2ρ ∧ z + 2iImp ∧ w − 2q ∧ e− , (4.13b)

de− = 4Re(ρ ∧ w̄)− 2Rep ∧ e− . (4.13c)

Here p and q are precisely the one-forms appearing in the covariant derivative of the

spinor (4.12), while ρ is a new one-form which is an intrinsic torsion for the identity

structure {z, e−, w, w̄} but not for the R2 structure defined by ε+. In four dimensions, we

have 4 × 6 = 24 real anholonomy coefficients, which we can identify with three complex

one-forms p, q and ρ.

Alternatively, we can extract p and q from the forms z and ω defined in (4.1). One

can indeed derive the following differential constraints

dz = 2Re p ∧ z + 4Re(q ∧ w̄) , (4.14a)

dω = 2p ∧ ω − 2q ∧ (z ∧ e− + w ∧ w̄) , (4.14b)

(e− · ∇)ω = 2(p · e−)ω − 2(q · e−)(z ∧ e− + w ∧ w̄) , (4.14c)

which allow to determine p and q from the geometry. Notice that dz and dω alone would

not be enough to determine p and q.

5For a G-structure, one decomposes Λ2T = g⊕k (where g is the Lie algebra of G); the intrinsic torsion

is then given by k ⊗ T . In our case, G = R2, so k is 4-dimensional, and k ⊗ T is 16-dimensional. These

are precisely the eight complex components of the complex one-forms p and q.
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4.1.3 Conformal Killing spinors are equivalent to conformal Killing

vectors

In this section we study the geometrical constraints imposed by the existence of a charged

conformal Killing spinor ε+. On the resulting curved backgrounds one can define a su-

perconformal field theory preserving some supersymmetry, see section 2.3. We will show

that existence of a charged conformal Killing spinor is equivalent to the existence of a

conformal Killing vector. In turn, this allows to introduce local coordinates, in which the

metric (or equivalently the frame) takes a canonical form, generalising the one discussed

in [102], corresponding to A = 0. We shall present this metric in section 4.2, in the case

when the conformal Killing vector becomes a Killing vector. The two metrics are simply

related by a Weyl rescaling.

First of all, notice that not only does a spinor ε+ determine a null vector z (via (4.1)

or (4.2)), but also that in a sense the opposite is true. Indeed, let us study the map

ε+ 7→ z. The space of spinors with fixed εt+ε+ is an S3 in the four-dimensional space of all

spinors. This is mapped by (4.2) into the space of all null vectors z with fixed z0, which is

an S2 (the so-called “celestial sphere”). This is the Hopf fibration map, whose fibre is an

S1. So, to any null vector z one can associate a U(1) worth of possible spinors ε+ whose

bilinear is z.

Let us now move on to differential constraints. We consider the equation defining a

charged conformal Killing spinor, or twistor-spinor,

∇A
µ ε+ =

1

4
γµD

Aε+ , (4.15)

where ∇A
µ = ∇µ − iAµ and DA is the covariantised Dirac operator DA = γµ∇A

µ . Note

that the equation does not mix chiralities, and we consider the case of a positive chiral

spinor. A is a real connection and ε+ is a section of the U(1) Hopf fibration described in

the previous paragraph.

We can expand equation (4.15) in the basis (4.9). Using (4.12), we obtain a set of

linear equations for p, q and the gauge field A. Since the gamma-trace of equation (4.15)

is trivial we find a total of six complex constraints

q · z = 0 , pA · e− = 0 , pA · z = 2q · w̄ ,

q · w = 0 , pA · w̄ = 0 , pA · w = −2q · e− ,
(4.16)

where pAµ = pµ − iAµ.

Two of these conditions will determine the real gauge field A. The remaining eight
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real conditions are constraints to be imposed on the geometry. We now show that these

constraints are equivalent to the existence of a conformal Killing vector.

A short computation shows that

∇µzν = 2Re (pµzν + 2 q̄µwν) . (4.17)

Taking the anti-symmetric part of this equation we reproduce the first equation in

(4.13). Taking the symmetric part and imposing that z is a conformal Killing vector,

(Lzg)µν = 2∇(µzν) = λgµν , (4.18)

we obtain the conditions

Re p · e− = 0 , q · z = q · w = 0 ,

Re p · z = 2Re(q · w̄) , Re p · w = −q · e− ,
(4.19)

with

λ ≡ 4 Re(q · w̄) . (4.20)

This set of eight real conditions is precisely the subset of the constraints (4.16) not in-

volving A, as previously stated.

To summarise, we showed that on any manifold M4 with a null conformal Killing

vector we can find a charged conformal Killing spinor. In section 4.1.5 we will give an

expression for the gauge field A under which the conformal Killing spinor is charged.

Notice that the presence of a conformal Killing spinor also implies

dω = i
(

2A− 3 ∗ (q ∧ e− ∧ w̄)
)
∧ ω . (4.21)

In the Euclidean signature case, we found a very similar condition (3.26), dω = W ∧ ω,

where ω is the (2, 0) form of a complex structure. While in that case that condition turns

out to be necessary and sufficient for the existence of a charged conformal Killing spinor,

in the present case of Lorentzian signature this condition alone is not sufficient to imply

supersymmetry.

4.1.4 Conformal Killing spinors are equivalent to conformal Killing–

Yano forms

Our two-form ω satisfies an interesting property, namely it is a charged conformal Killing–

Yano form (CKF). In general, a p-form ϕ on a d-dimensional space(-time) (M, g) is con-

formal Killing–Yano (or simply conformal Killing) if it satisfies the equation

∇ρϕµ1...µp = ∇[ρϕµ1...µp] + p
d−p+1

gρ[µ1∇σϕ|σ|µ2...µp] . (4.22)

43



This is a conformally invariant equation: if ϕ is a conformal Killing form on (M, g) and

the metric is rescaled as g → g̃ = e2fg, then the rescaled form ϕ̃ = e(p+1)fϕ is conformal

Killing on (M, g̃).

In the uncharged case (A = 0), it is known that the bilinears of conformal Killing

spinors are conformal Killing forms, see e.g. [105]. We already saw that this is true for

z, since a conformal Killing one-form is just the dual of a conformal Killing vector. For a

two-form in four dimensions, this is easiest to check in the two-component formalism for

spinors. Because of its definition in (4.1), ω can be written as ωαβ = εαεβ, and the CKF

equation (4.22) reads

D
(β
α̇ ω

γδ) = 0 . (4.23)

The CKS equation reads in this formalism D
(β
α̇ ε

γ) = 0, which implies obviously (4.23).

Since for us the CKS is actually charged under A, we obtain that (∇A)
(β
α̇ ω

γδ) = 0, where

∇A
µ = ∇µ − 2iAµ; or, going back to four-component language,

∇A
ρ ωµν = ∇A

[ρωµν] − 2
3
gρ[µ∇Aσων]σ , (4.24)

which is a charged version of the standard conformal Killing form equation.

It is interesting to ask to what extent this property can be used to characterise our

space-time, similarly to what we saw in section 4.1.3. First of all, we should ask when a

two-form ω can be written as a spinor bilinear as in (4.1). One possible answer is that

the form should define an R2 structure; namely, that the stabiliser of ω in SO(3,1) should

be R2. We can also give an alternative, more concrete characterisation by using again

the two-component formalism for spinors. The two-form ω should be imaginary self-dual,

which means it is in the (1, 0) representation of SO(3,1); the corresponding bispinor then

is a symmetric matrix ωαβ. As a 2× 2 matrix, this can be factorised as εαεβ if and only

if it has rank 1, which is equivalent to det(ω) = 1
2
εαβεγδω

αγωβδ = 0; in the original form

language, ωµνω
µν = 0. So we have obtained that a two-form ω can be written as a bispinor

as in (4.1) if and only if it is imaginary self-dual and null:

ω = ε+ ⊗ ε− ⇐⇒

{
∗ω = iω ,

ωµνωµν = 0 .
(4.25)

Remarkably, it turns out that the content of the equation (4.24) for a CKF is exactly

the same as the content of the system (4.15) for a CKS. Indeed, if one uses (4.12) in

(4.24) (or in (4.23)), the system one finds is exactly (4.16). Thus, we can conclude that a

choice of metric and gauge field A admits a charged CKS if and only if it admits a null,

imaginary self-dual charged CKF.

44



This reformulation is slightly less interesting than the one involving a null CKV in

section 4.1.3. Although CKF’s do have physical applications (such as helping in finding

first integrals of the geodesic equation, see for example [106]), their geometrical meaning

is less compelling than that of a CKV. Moreover, one needs both the data of the geometry

and of the gauge field A to check the condition (4.24), whereas in the previous section

we saw that the presence of a null CKV tells us that a geometry can admit a charged

CKS for some A (without having to guess its form, which will actually be determined in

section 4.1.5). Last but not least, the CKV condition is computationally easier to check

than the CKF condition (4.24).

4.1.5 Determining the gauge field

The gauge field A can be determined by the four equations in (4.16) involving A. One

possible expression is

A = Im
(
p+ i ∗ (q ∧ e− ∧ w̄)

)
. (4.26)

Here, p and q are intrinsic torsion forms that can be computed for example from (4.13).

The fact that (4.26) involves e− might look puzzling, since, as we stressed in section 4.1.1,

e− is an auxiliary degree of freedom, not one determined by the spinor ε+. More precisely,

the vielbein {z, e−, w, w̄} is only defined up to the freedom (4.8). From the definition of

p and q in (4.12), using (4.11) we see that under (4.8)

pµ → pµ − 2ᾱqµ , qµ → qµ . (4.27)

Using this and (4.26), we can show that A is invariant under (4.8). This means it is

independent on the choice of e−, and is in fact determined by ε+ alone.

We now show that the gauge curvature is invariant under the action of the vector field

z, namely that

LzF = 0 . (4.28)

We first compute the Lie derivative of a set of vielbein with respect to the vector z.

Using equation (4.13) and the constraints (4.16) imposed by the conformal Killing spinor

equation we find

Lzz = ιzdz = λz ,

Lzw = ιzdw = −2(Rep · w + ρ · z)z +

(
λ

2
+ iz · A+ 3iIm(q · w̄)

)
w , (4.29)

Lze− = ιzde
− = 2(Rep · w̄ + ρ̄ · z)w + 2(Rep · w + ρ · z)w̄ ,
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where λ has been defined in (4.20). In order to simplify these expressions we can make

use of the freedom in the choice of a basis (4.8) to set

Re p · w̄ + ρ̄ · z = 0 (4.30)

and the gauge invariance to impose

z · A = −3 Im(q · w̄) . (4.31)

At this point, the Lie derivative of the vielbein simply becomes6

Lzz = λz , Lzw =
λ

2
w , Lze− = 0 , (4.32)

which is consistent with (4.18). We can also take the Lie derivative of (4.13) to compute

the Lie derivatives of the torsions

Lzp =
1

4
(dλ · z)e− +

1

4
(dλ · w)w̄ ,

Lzq =
λ

2
q − 1

8
(dλ · z)w − 1

8
(dλ · w)z , (4.33)

Lzρ = −λ
2
ρ− 1

8
(dλ · w)e− +

1

8
(dλ · e−)w .

It is then straightforward to check from equation (4.26) that in our gauge LzA = 0. It

follows that

ιzF = LzA− d(z · A) = d(3Im(q · w̄)) . (4.34)

Notice that this expression is independent of the choice of gauge and frame (due to (4.16))

and it is valid in general. It follows from (4.34) that F is invariant, LzF = 0.

4.2 Supersymmetric theories with an R-symmetry

In this section we will discuss an alternative supersymmetry equation, that arises as the

rigid limit of new minimal supergravity [72, 98]. This formulation is particularly well

suited to describe supersymmetric field theories with an Abelian R-symmetry, and it may

be thought as a special case of the CKS equation.

6As we will see in section 4.2, in the new minimal case λ = 0, hence z is a Killing vector and the Lie

derivative of the vielbein vanishes, Lzz = Lzw = Lze− = 0. In the notation of section 4.2 the gauge

condition (4.31) reads a · z = 0.
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4.2.1 New minimal supersymmetry equation

Solutions of the conformal Killing spinor equation (4.15) are closely related to solutions

of the supersymmetry equation

∇µε+ = −i
(

1

2
vνγνµ + (v − a)µ

)
ε+ , (4.35)

arising from the rigid limit of new minimal supergravity7 [72, 98]. Here a and v are

real vectors and v is required to satisfy d ∗ v = 0. When this condition has a solution,

we can consistently define supersymmetric field theories on the four-manifold M4, with

background fields v and a, using the strategy of [43].

It is simple to see that a solution of (4.35) is a conformal Killing spinor associated

with the gauge field A = a − 3
2
v. It follows from our analysis in section 4.1.3 that there

should exist a null conformal Killing vector. It is in fact straightforward to see with a

direct computation that equation (4.35) implies that zµ = 1
4
ε+γµε+ is not only conformal

Killing, but actually even Killing.

Vice versa, if we start with a solution of the conformal Killing spinor equation (4.15)

without zeros, charged under a connection A, we can define a complex vector v through

DAε+ ≡ 2i v · ε+ . (4.36)

Every spinor of negative chirality can indeed be written as a linear combination of gamma

matrices acting on ε+. If ε+ has no zeros, v is defined everywhere8. Using (4.12) we can

express some components of v in terms of q

w · v = 2i q · e− , z · v = −2i q · w̄ . (4.37)

All other components of v are immaterial and v itself is not uniquely determined, since

we can always add to it a term along z and w (recall that z · ε+ = w · ε+ = 0). We can

use this freedom to make v real, except for an imaginary part given by

Im v = −λ
4
e− , (4.38)

where λ was defined in (4.20). This rewriting of q in terms of v will be useful in section

4.3, where we will perform a comparison between bulk and boundary solutions. It is now

easy to show that (4.15) can be rewritten as equation (4.35) with a = A+ 3
2
v.

7We use lower-case letters a and v for the auxiliary fields of new minimal supergravity, in order to

avoid confusion with the A of conformal supergravity we have been using until now.
8Conformal Killing spinors with zeros do exist; see for example [107] for a characterisation.
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So far, all we have done is rewriting the equation for conformal Killing spinors (4.15)

as (4.35); v, however, is potentially still complex, with imaginary part given by (4.38),

and in general d ∗ v 6= 0. We will now show that v can be made real by an appropriate

Weyl rescaling gµν → e2fgµν . To see this, remember that z is a conformal Killing vector,

namely a vector satisfying (4.18). However, a null conformal Killing vector can always be

made a null Killing vector by a Weyl transformation. In particular,

Lzgµν = λgµν ⇒ Lz(e2fgµν) = (λ+ 2z · df)gµν . (4.39)

In coordinates where z = ∂
∂y

, it is then enough to solve 2∂f
∂y

= −λ. This is possible as long

as there are no closed time-like curves. In the rescaled metric e2fgµν , z is now a Killing

vector, which implies that λ = 0; from (4.38), we then see that v is real. Moreover,

a similar argument shows that we can use the remaining ambiguity in shifting the z

component of v to arrange for

d ∗ v = 0 . (4.40)

Hence we have shown that, by a conformal rescaling of the metric, one can take the

charged conformal Killing spinor equation (4.15) to the condition of unbroken supersym-

metry in new minimal supergravity (4.35). The fact that one can bring (4.15) to (4.35)

was to be expected because of the formalism of conformal compensators (for a review

see [46]). In that formalism, one obtains new minimal supergravity by coupling a tensor

multiplet to conformal supergravity, and by then giving an expectation value to the tensor

multiplet.

To summarise, the geometrical constraints imposed by the new minimal equation just

amounts to the existence of a null Killing vector z. As a check, we can count components.

The new minimal equation (4.35) brings 16 real constraints and the existence of a Killing

vector brings 9 real conditions. The remaining 7 real constraints can be used to determine

the components of the gauge fields: 4 for a and 3 for v. a and v can now be computed as

follows. v can be computed from (4.37), and from (4.40), while a = A+ 3
2
v, where A was

given in (4.26). Recall that the intrinsic torsion p and q can be computed for example

from (4.13).

Finally, we observe that a solution ε+ of the new minimal equations is defined up to

a multiplication by a complex number. We can form two independent Majorana spinors

ε1 = ε+ + ε− and ε2 = i(ε+ − ε−) corresponding to two independent real supercharges.

The commutator of these two supersymmetries closes on the isometry generated by z:

[δε1 , δε2 ]Φ = LazΦ , (4.41)
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where Φ is any field in the Lagrangian and the Lie derivative La is covariantised with

respect to a. The superalgebra can be easily extracted from the transformation rules of

matter fields in the new minimal supergravity or from the algebra of local supergravity

transformations [72, 98].

4.2.2 Introducing coordinates

We can obtain more explicit expressions for v and A after introducing a local set of

coordinates, as promised earlier. First, notice that, using (4.37), (4.38) and the fact that

λ = 0, equations (4.13a) and (4.21) simplify considerably:

dz = −2ιv ∗ z , (4.42a)

dω = 2ia ∧ ω . (4.42b)

As noticed at the end of section 4.1.3, the second of these equations is similar to the

equation that in Euclidean signature implies that the manifold is complex. (4.42) can be

used to compute all the components of a and v not along z. In particular, (4.42a) can be

inverted to give

v⊥ ≡ v − 1
2
(e− · v)z = −1

4
ιe− ∗ dz . (4.43)

As discussed before, the component of v along z is ambiguous and is determined by

requiring (4.40).

Given a null Killing vector, there exists a set of natural coordinates adapted to this.

We will follow the discussion in [104]. We can introduce a coordinate y such that as vector

field

z =
∂

∂y
, (4.44)

and then the vector field dual to the one-form e− introduced earlier can be parameterised

as

e− = 2H

(
∂

∂u
−F ∂

∂y

)
, (4.45)

for some H and F . Taking as coordinates on the four-dimensional space (y, u, xm), the

functions H and F do not depend on y, and are otherwise arbitrary functions of u and

xm. In these coordinates, the four-dimensional metric can be written as

ds2 = 2H−1(du+ β)
(
dy + %+ F(du+ β)

)
+Hhmndx

mdxn, (4.46)
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where hmn is a two-dimensional metric, while β = βmdx
m and % = %mdx

m are one-forms.

Everything depends on u and xm, but not on y. Therefore, as one-forms,

z = H−1(du+ β) , e− = 2 (dy + %+ FHz) . (4.47)

The remaining elements of the vielbein can be complexified as w = e2 − ie3.

Our four-dimensional manifold M4 can be seen as an R fibration (with coordinate

y) over a three-dimensional manifold M3 (spanned by {z, w}). The latter admits a CR

structure: namely, a one-dimensional complex subbundle T1,0 ⊂ TM3, such that T1,0 ∩
T1,0 = {0}. Roughly speaking, this can be thought of as a complex structure on two of

the three dimensions of M3. For us, T1,0 is spanned by the vector dual to the one-form

w̄. From a dual point of view, the subbundle of T ∗M3 spanned by one-forms which are

orthogonal to T1,0 has dimension two, and it is spanned by the one-forms we have been

calling z and w; so its volume form is z ∧ w, which is the form we have been calling ω,

and which in a sense can be used to characterise the CR structure. The role of z ∧ w
actually becomes clearer in higher odd dimension 2n + 1; the bundle T1,0 is now an n-

dimensional bundle which should be closed under Lie bracket (just like for a complex

manifold). The subbundle of T ∗M3 orthogonal to T1,0 now has dimension n+ 1, and it is

spanned by forms z, w1, . . . , wn. Integrability of T1,0 is equivalent to the statement that

d(z ∧ w1 ∧ . . . ∧ wn) = a ∧ (z ∧ w1 ∧ . . . ∧ wn) for some one-form a. Summing up, on our

three-dimensional manifold M3 the form z ∧ w is the analogue of a holomorphic volume

form for a CR-structure, and can be used to characterise it.

Let us now present expressions for v and A in these coordinates. Evaluating (4.43) we

find

v⊥ =
1

4
H−2 [∗2(β ∧ ∂uβ − d2β)] e− +

1

2
H ∗2

[
∂u(H

−1β)− d2(H−1)
]
, (4.48)

where we defined d2 = dxm∂m and ∗2 is the Hodge star operator with respect to the metric

hmn. Inserting a ≡ a⊥ + 1
2
(a · e−)z into (4.42b), we determine a⊥ as

a⊥ =
1

4
∗2

[
d2(H−1w̄)− ∂u(H−1β ∧ w̄)

]
w + c.c. , (4.49)

where c.c. denotes the complex conjugate9. The remaining component of the gauge field

is given by a · e− = A · e−+ 3
2
v · e−. As already noticed the component v · e− is ambiguous;

A · e− can be extracted for example from the second and third equations in (B.7) and

9Comparing with section 4.1.5 we see that a · z = 0 is a consequence of the Lie derivative Lz of our

vielbein being zero, and corresponds to the gauge condition (4.31) (see footnote 6).
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reads

A · e− =
1

2
H−1 ∗2 [d2%+ Fd2β + (∂u%+ F∂uβ) ∧ β +H Re(w̄ ∧ ∂uw)] . (4.50)

Perhaps it is worth emphasising that the data entering in the metric (4.46), gauge

field A and v (H,F , β, %, hmn) are completely arbitrary. This is in stark contrast with

the typical situation in supergravity, where e.g. the Bianchi identities and equations of

motion impose more stringent constraints on the geometry.

4.2.3 Non-twisting geometries

In the special case that z ∧ dz = 0 everywhere, z is hypersurface orthogonal, in the sense

that the distribution defined by vectors orthogonal to z is integrable (by Frobenius theo-

rem). As we will show in section 4.4, this corresponds to the case where the Killing vector

in the bulk is null. Since z is hypersurface orthogonal, there exist preferred functions H

and u such that

z = H−1du . (4.51)

Comparing with equation (4.47), we see that in these particular coordinates β = 0. After

performing a further local change of coordinates to eliminate %, the metric can be brought

to the pp-wave form, namely

ds2 = 2H−1du (dy + Fdu) +Hhmndx
mdxn . (4.52)

In addition we have

v⊥ = −1

2
H ∗2 d2(H−1) (4.53)

a⊥ =
1

4

[
∗2d2(H−1w̄)

]
w + c.c. (4.54)

A · e− =
1

2
∗2 [Re(w̄ ∧ ∂uw)] (4.55)

where in particular notice v · z = 0.

4.2.4 The case A = 0

It is interesting to study what happens in the particular case A = 0. Actually, as we

showed in this section, every solution to the new minimal equation (4.35) is also a solution

to the CKS equation (4.15), and hence must be included in the classification of uncharged
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conformal Killing spinors obtained in [102]. We will first consider the case z ∧ dz 6= 0,

and then the case z ∧ dz = 0.

When z ∧ dz 6= 0, z is a contact form on the three-dimensional manifold M3, spanned

by {z, w}. It follows from (4.42a) that 1
2
z · v ≡ v− 6= 0; using (4.8), we can then make

w · v = 0, so that10

v = v−e
− + vzz . (4.56)

Since A = 0, we have that a = A + 3
2
v = 3

2
(v−e

− + vzz). Moreover, from (4.34) and

(4.37), we see that v− is actually constant. Our (4.42) now become

dz = 2iv−w ∧ w̄ , (4.57a)

dω = 3iv−e
− ∧ ω . (4.57b)

Moreover, from (B.7) and the fact that Re(σ · w̄) = 0 as a consequence of (4.57a), we also

have

e− ∧ dw ∧ w̄ =
1

8
(ιwιw̄de

−)e− ∧ z ∧ w ∧ w̄ . (4.58)

A metric of the form (4.7), such that (4.57) and (4.58) hold, is called a Fefferman metric

[108]. It has the property that, if one rescales the one-form z → z̃ = e2λz, where λ is a

function on the CR manifold M3, and one computes new w̃, ẽ− so that (4.57) and (4.58)

are still satisfied, the new metric z̃ẽ−+ w̃w̃ is equal to e2λ(ze−+ww̄).11 Notice that (4.57)

are very similar to the conditions for Sasaki–Einstein manifolds (which have Euclidean

signature rather than Lorentzian, and odd dimension rather than even). The fact that

we found a Fefferman metric in the A = 0, z ∧ dz 6= 0 case is in agreement with the

classification in [102].

Let us now consider the case z∧dz = 0. Using (4.53) and (4.54) it follows that A⊥ = 0

implies

d2(
√
Hw) = 0 . (4.59)

Hence, we can choose a complex coordinate ζ and a function α so that locally
√
Hw =

dζ+αdu. We can then rearrange (4.52) as ds2 = H−1[du(2dy+dζᾱ+dζ̄α+Fdu)+dζdζ̄],

after suitably redefining F . Moreover, from (4.55) we learn that the component of dα

along w is real. This implies in turn that the one-form dζᾱ + dζ̄α is closed, up to terms

10As pointed out after (4.37), the component vz is immaterial, and can be used to set d ∗ v = 0.
11Such a characterisation of Fefferman metric can be found in [109]. The metric is defined there by

[109, (3.7)]. The term Lθ in that equation is defined composing (4.57a) with the complex structure

associated to T1,0, the one-dimensional complex subbundle of TM3 defining the CR structure on M3, and

corresponds to our term ww̄ in (4.7). Moreover, the term 2θσ in [109, (3.7)] is identified with the term

e−z in our (4.7), once we compare our (4.57b) with [109, (3.5)]. Finally, [109, (3.6)] is (4.58).
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du ∧ (. . .); locally, we can then write dζᾱ + dζ̄α = df + gdu, for some functions f and g.

We can now further redefine y and F to obtain

ds2 = H−1[du (2dy + Fdu) + dζdζ̄] , (4.60)

which agrees (locally) with the classification in [102, Eq. (41)].

4.3 Boundary geometry from the bulk

The general analysis of the supersymmetry conditions in the minimal gauged supergravity

in five dimensions was performed in [74]. Here we would like to asymptotically expand

these results, to extract a set of conditions on a four-dimensional boundary geometry.

Not surprisingly, at leading order we find agreement with the conditions that we derived

from the CKS equation on the boundary in sections 4.1 and 4.2.

4.3.1 Asymptotic expansion of the bilinears

The analysis in [74] uses the following set of five-dimensional bilinears:

fεIJ = iε̄IεJ ,

VAε
IJ = ε̄IγAε

J ,

X
(1)
AB + iX

(2)
AB = −iε̄1γABε1 = −(iε̄2γABε

2)∗ ,

X
(3)
AB = ε̄1γABε

2 = ε̄2γABε
1 .

(4.61)

Here, f is a real scalar, V is a real one-form, and X(i), i = 1, 2, 3, are real two-forms12.

We will also define Ω = X(2) − iX(3).

We can expand the bulk bilinears (4.61) near the boundary using (2.8). In order to

facilitate the comparison with the boundary results, let us again define a complex one-form

v via the covariant derivative of ε as in (4.36), which when plugged into (2.11) yields

η = iγµRe(vµε+) =
1

2
γµ (iRevµε− Imvµγ5ε) , (4.62)

where we have used that the Majorana condition on ε implies that ε∗+ = ε−. Recall that

v has a complex part given by (4.38). Recall also the definition of the boundary bilinears

(4.2), which together with the Hodge dual of z correspond to the four-dimensional bilinears

12They satisfy a set of algebraic relations that can be found in equations (2.8)–(2.12) of [74] (changing

the sign of the metric in order to take into account the opposite choice of signature).
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defined by a single chiral spinor ε+, and determine an R
2 structure. Note also that using

the properties of the 4d gamma matrices, one can check that

∗ ω = i ω (4.63)

where the Hodge star is four-dimensional and the metric is the boundary metric gµν .

With these definitions, it is straightforward to compute the asymptotic expansion of

the bulk bilinears (4.61) at leading order in r, namely

f/8 ∼ −Rev · z , (4.64a)

`−1V/8 ∼ r2z + r−1Imv · z dr , (4.64b)

`−2X(1)/8 ∼ rdr ∧ z − r2 (Re ιv ∗ z + Imv ∧ z) , (4.64c)

`−2 Ω/8 ∼ ir3ω + dr ∧ ιvω . (4.64d)

Using (4.63), as well as the identity ∗ιvω = iv ∧ ω, one also finds that at leading order

`−3 ∗̂Ω/8 ∼ −ir3v ∧ ω − r2dr ∧ ω , (4.65)

where ∗̂ denotes the five-dimensional Hodge star.

4.3.2 Differential conditions from the bulk

The conditions for the existence of supersymmetric solutions in the bulk can be written

in terms of a set of differential conditions on the bilinears [74]. We will now expand these

conditions near the boundary where the metric is given by (2.1) and the gauge field by

(2.6). They read

df = −2

3
iV F (4.66a)

∇̂AVB = `−1X
(1)
AB + · · · (4.66b)

∇̂AX
(1)
BC = 2`−1 ηA[BVC] + · · · (4.66c)

∇̂AΩBC = −i`−1
(

2
√

3 ÂAΩBC + (∗Ω)ABC

)
+ · · · (4.66d)

where we omitted terms containing F , whenever they are manifestly sub-leading in r.13

We can now further expand the bulk differential conditions (4.66) near the boundary.

In the computation, we will need the expressions of the Christoffel symbols for the five-

dimensional metric with expansion given in (2.1). We have the following identities

Γ̂ µ
rr = Γ̂ r

µr = 0 , Γ̂ r
rr = −1

r
, (4.67)

13Full expressions can be found in eqs. (2.15), (2.17), (2.18), (2.19) in [74].
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as well as the expansions

Γ̂ ρ
µν = Γ ρ

µν +O(r−1) , Γ̂ ν
µr =

1

r
δνµ +O(r−1) , Γ̂ r

µν = −r3gµν +O(r2) , (4.68)

where Γ ρ
µν denotes the Christoffel symbols of the four-dimensional metric gµν . Let us start

with equation (4.66b). Its symmetric part is simply

∇̂(AVB) = 0 , (4.69)

which states that V A is a Killing vector in the bulk. It is an easy check to see that, at

leading order in r, this just says that zµ is a conformal Killing vector on the boundary.

To this end, note that the equations having components along r do not give rise to any

conditions on the boundary, while the ones without leg along r imply

∇(µzν) = −gµνImv · z ≡
λ

2
gµν . (4.70)

This is the same condition that we found from the purely four-dimensional analysis in

(4.18) and (4.38).

Having reproduced the existence of a boundary conformal Killing vector from the grav-

ity analysis, let us now consider the other differential conditions. We have reformulated

the conditions on the boundary geometry in (B.8) and (B.9) in such a way to make the

comparison with the bulk analysis of this section most straightforward. Plugging (4.64b)

and (4.64c) into the anti-symmetric part of (4.66b), we find that again the only non triv-

ial information at leading order in r comes from the four-dimensional part. We get the

condition

dz = −2(Re ιv ∗ z + Im v ∧ z) , (4.71)

which is just the anti-symmetric part of (B.8). Next on the list are equations (4.66c)

and (4.66d). At leading order, (4.66c) and the (µν5)-part of (4.66d) do not give any new

information. On the other hand, upon using (4.65), the four-dimensional part of equation

(4.66d) yields

(∇ρ − 2iAρ)ωµν = i(v ∧ ω)µνρ + i (gρνωµσ − gρµωνσ) vσ , (4.72)

which is precisely the equation (B.9).

The final equation (4.66a) would seem to be more problematic. It involves the scalar

bilinear in the bulk which has no correspondence in the boundary and involves the cur-

vature of the gauge field which we usually neglected because sub-leading in r. However,

equation (4.66a) expands to

df = −16

3
ιzF , (4.73)
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a relation that we also found on the boundary. It corresponds indeed to (4.34), as we can

see by using (4.37) and (4.64a).

We have thus shown that, as expected, all the conditions for supersymmetry in the

bulk reduce to conditions that can be derived from the CKS equation on the boundary.

In other words, any supersymmetric bulk solution that can be written asymptotically in

the Fefferman–Graham form (2.1) and with a gauge field A satisfying (2.6) reduces to the

boundary to a metric with a null conformal Killing vector. This vector is associated with

a conformal Killing spinor ε+ charged under A. Vice versa, any Lorentzian metric with

a null conformal Killing vector gives rise to a bulk metric (2.1) that solves, at leading

order, the supersymmetry conditions of gravity. In this regard, we expect to be able to

find a supersymmetric bulk solution with a given boundary condition order by order in

r, in the spirit of the Fefferman–Graham construction. It is then a very hard problem to

determine which boundary metrics give rise to regular solutions in the bulk. Few examples

are known in the literature and they will be reviewed in the next section.

4.4 Time-like and null solutions in the bulk

In this section we will analyse in more detail the classification of supersymmetric solutions

of minimal five-dimensional gauged supergravity given in [74]. We will demonstrate how

to extract the boundary data from a bulk solution and we will discuss how the examples

found in [74] fit in the general discussion of supersymmetric boundary geometries.

Let us analyse some general features of the bulk solutions that can be written asymp-

totically in the Fefferman–Graham form (2.1) and with a gauge field A satisfying (2.6).

As discussed in the previous section, the five-dimensional vector V is Killing and its

asymptotic expansion (written here as the dual one-form),

V ∼ r2z + r−1Imv · z dr + · · · , Imv · z = −1

2
λ , (4.74)

gives rise to a null conformal Killing vector z on the boundary. As in [74], we can introduce

a coordinate y such that

V =
∂

∂y
. (4.75)

In this (particularly natural) coordinate system the metric is independent of y and so

will be the boundary metric. This means that z is actually Killing and we can identify

the bulk coordinate y here with the coordinate y introduced in section 4.2.2. We also

learn that the term Imv · z = −1
2
λ, which controls the failure of z at being Killing (recall
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(4.38)), must vanish and

V ∼ r2z + · · · . (4.76)

There is no loss of generality here. As discussed in section 4.2, one can always make z

Killing by a Weyl rescaling of the boundary metric. But Weyl rescalings in the boundary

are part of diffeomorphisms in the bulk and they can be arranged with a suitable choice

of coordinates. In a different coordinate system, for example with an (unnatural) choice

of radial coordinate depending on y, we would find that z restricts to a conformal Killing

vector on the boundary.

The boundary data can be easily extracted from the bulk metric. It follows from our

discussion that the natural framework where to discuss the boundary supersymmetry is

that of the new minimal equation. The boundary metric and gauge field A can be read off

from equations (2.1) and (2.6). To have full information about the supersymmetry realised

on the boundary we also need the vector v. This is real and satisfies equation (4.42a).

It can easily be computed starting from z, using for example (4.43); the component of v

along z is ambiguous and is determined by requiring (4.40). We will see explicit examples

of this procedure in the following.

Note that while z is always null with respect to the boundary metric, the five-

dimensional Killing vector V can be null or time-like [74]. This follows from the algebraic

constraint (equation (2.8) in [74])

V 2 = −f 2 . (4.77)

For f 6= 0, V is time-like while, for f = 0, V is null. The time-like and null solutions

have different properties and, following [74], we will discuss them separately. Recall from

(4.64a) that

f ∼ −8v · z , (4.78)

so the time-like and null bulk solutions correspond to v · z 6= 0 and v · z = 0, respectively.

As already noticed in section 4.2.3, these correspond to z ∧ dz 6= 0 and z ∧ dz = 0,

respectively. It then follows that the null bulk case corresponds to the non-twisting

geometries discussed in section 4.2.3. In the following, we consider these cases in turn,

also discussing two explicit examples as an illustration of our general results.

4.4.1 Time-like case

In the time-like case, the bulk metric can be written as a time-like fibration over a four-

dimensional base B4, as

ds2 = −f 2(dy + τ)2 + f−1ds2(B4) , (4.79)
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where f , τ and ds2(B4) do not depend on y. As a one-form, V reads

V = −f 2(dy + τ) . (4.80)

Supersymmetry in the bulk requires the base B4 to be Kähler [74]; in particular, as shown

in [74], this is equivalent to the equations14

dX(1) = 0 , dΩ = i`−1(2
√

3Â− 3f−1V ) ∧ Ω . (4.81)

We are interested in metrics that can be written in the Fefferman–Graham form (2.1).

As already discussed, such metrics have the properties that at large r, f is independent

of r and V ∼ r2z. It then follows that τ = O(r2). The boundary supersymmetry is

determined by the background fields a and v. v is extracted from (4.42a), while a = A+ 3
2
v,

where A can be read off from (2.6). Once again, we can check that v is real in such

solutions. Indeed, a non-vanishing term r−1Imv · z dr in (4.74) would contradict the

mutual consistency of the two metrics (4.79) and (2.1) by introducing dydr terms.

It is interesting to write explicitly the asymptotic Kähler structure (X(1),Ω) on the

base manifold B4. Using the freedom to take v = v−e
−+vzz, combining (4.64) with (4.81)

we get

`−2X(1) ∼ rdr ∧ z − 2v−r
2w ∧ w̄ = 1

2
d
(
r2z
)
, (4.82)

`−2Ω ∼ (2v−dr − ir3z) ∧ w̄ , (4.83)

and correspondingly the Kähler metric reads

`−2ds2(B4) ∼ 2v−

(
dr2

r2
+ r2ww̄

)
+

1

2v−
r4z2 . (4.84)

Eq. (4.82) characterises Kähler cones, however the asymptotic metric is not homogeneous

in r, and this is reflected by the (2, 0)-form Ω. Equations (4.82)–(4.84) may be thought

of as boundary conditions that a Kähler base B4 should satisfy. We also note that on

surfaces of constant r, Ω pulls back to a form proportional to z ∧ w, which characterises

the CR structure on M3, as we saw in section 4.2.2.

In [74, 110], an explicit time-like solution was presented, in which AdS5 is deformed by

a gauge field, and two supercharges are preserved. The Kähler base of the five-dimensional

space-time is the Bergmann space, which is an analytic continuation of CP2. The five-

dimensional metric takes the asymptotic form (2.1), with boundary metric

ds2 = −1

`

(
dt+ µ`2σ1

)
σ3 +

1

4
(σ2

1 + σ2
2 + σ2

3) , (4.85)

14These equation are valid in the gauge ιV Â = −
√
3
2 f , used in [74]. (4.81) are therefore equations on

the base B4.

58



where the σ’s are right-invariant one-forms on S3:

σ1 = sinφdθ − sin θ cosφdψ ,

σ2 = cosφdθ + sin θ sinφdψ , (4.86)

σ3 = dφ+ cos θdψ .

This is a non-Einstein, non-conformally flat metric on R × S3. In our conventions, the

gauge field at the boundary reads

A =
3

2`
(dt+ µ`2σ1) . (4.87)

Here, µ is a parameter of the solution. When µ = 0, the gauge field is trivial, the boundary

metric becomes the standard one on R× S3 (after a coordinate transformation), and the

bulk space-time is just AdS5.

Identifying the frame as

e+ =
σ3

2
, e− = −2

`
(dt+ µ`2σ1) +

σ3

2
, w =

1

2
(σ1 − iσ2) , (4.88)

we see that (4.85) agrees with our general description of section 4.2.2, with the coordinate

identification {y, u, x1, x2} = {−t/`, φ, θ, ψ}. We also need to identify

H = 2 , F =
1

4
, β = cos θdψ , % = −µ`σ1 , (4.89)

and the metric hmn with the round metric on S2. One can also check that the gauge field

in (4.87) is consistent with our general formulae in section 4.2.2. Using (4.48), we find

that v⊥ = 1
2
e− and this can be completed by choosing e− · v = −1, so that

v =
1

2
(e− − e+) = −e0 (4.90)

satisfies d ∗ v = 0. Finally, a = A+ 3
2
v = 0 is consistent with (4.49) and (4.50).

We checked that with these values of v and a, the new minimal equation (4.35) is

solved by a constant spinor ε+ satisfying the projection γ0γ1ε+ = ε+. This shows that the

background preserves precisely two supercharges15. Finally, we note that from the point

of view of the boundary geometry we could deform the metric on S3 in various ways.

However, which deformations can be completed to a non-singular solution in the bulk is

a very hard question to address.

15Note that in order to map the frame chosen in [110] into the five-dimensional frame used here, one

needs to perform an r-dependent Lorentz transformation. Acting on the spinors, this transforms the

spinors in [110], which are independent of r, into r-dependent spinors, with asymptotic form given in

(2.8). Note also that the t-dependence of the spinors in [110] arises as a consequence of a different gauge

for A. In particular, in [110]: A · z = 0.
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4.4.2 Null case

In the null case, f = 0 and the bulk metric can be written as [74]

ds2 = −2Ĥ−1du
(
dy + 1

2
Fdu

)
+ Ĥ2γmndx

mdxn , (4.91)

where Ĥ, γmn and F depend only on u and xm, m = 1, 2, 3, but not on y. Here

V = Ĥ−1du (4.92)

and by comparison with (4.76) we see that Ĥ−1 = r2H−1 + . . . , and z = H−1du, in

agreement with the results of section 4.2.3.

Explicit asymptotically locally AdS solutions in the null case are also discussed in [74].

These are the magnetic string solutions of [111, 112]. The boundary is R1,1 ×M2, with

metric (after some obvious rescaling)

ds2 = 2 dudy + ds2(M2) , (4.93)

and the gauge field is

F = −k
2

vol(M2) . (4.94)

Here, M2 is S2 if k > 0 (with radius k−1/2), T2 if k = 0, or the hyperbolic space H2 if

k < 0 (with radius (−k)−1/2). The bulk space-time has a regular horizon when k < 0,

while it has a naked singularity when k > 0. Setting H = 1, F = 0, we find that the

formulae in our section 4.2.3 are consistent with v = 0 and F = da.

Notice that these bulk solutions can be easily Wick-rotated to Euclidean signature,

giving boundary metrics on R2×M2, or T2×M2. In the case M2 = H
2, the Wick-rotated

bulk solution is non-singular, and interpolates between Euclidean AdS5 asymptotically

and H
3×H2 in the interior. Indeed in [62] these four-dimensional geometries were shown

to preserve supersymmetry in Euclidean signature.

60



Chapter 5

The geometry of N = 2 in three

Euclidean dimensions

A big part of the excitement that recent years have seen about exact results in super-

symmetric field theories has been due to the ability of computing partition functions of

various theories on three dimensional curved spaces, see the discussing in the introduc-

tion & motivations chapter. One in the context of holography particularly interesting

result are the gravity duals [113–116] to field theories on various squashed three-spheres

[117, 118] and Lens spaces . These are amongst the first examples of AdS/CFT dualities

with a conformally non-flat boundary.

In this chapter we want to address the same question as in the last two chapters,

namely on which general curved spaces we can define a supersymmetric field theory with

some residue fermionic symmetry. Our interest will be in Euclidean space-times and three

dimensional N = 2 theories. The analysis will parallel closely the one of chapters 3 and

4 and we will hence be brief with the introduction.

Again we will start with the superconformal case. We have seen in section 2.2 that also

in three dimensions, holography tells us that supersymmetry is equivalent with the exis-

tence of a charged conformal Killing spinor (2.21). Alternatively, following the strategy

of [43] we can couple the theory directly on the boundary to three dimensional confor-

mal supergravity [119]. In consistency with the holographic approach, the condition for

unbroken supersymmetry is again the existence of a conformal Killing spinor. We find

that such a spinor exists on every manifold with dreibein ei, that fulfils the condition

do = W ∧ o where o = e1 + ie2 and W some one-form. The condition we find is very simi-

lar to the one for complexity in four dimensions. As was discussed in [73], it is equivalent
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to what is known in the mathematic literature as transversely holomorphic foliation with

transversely hermitian metric.

We can also get the three dimensional analogue of new minimal supergravity by di-

mensional reduction of (3.31) and study the condition for unbroken supersymmetry with-

out necessary conformal invariance.1 As it turns out the geometrical condition that one

finds is exactly the same as for the conformal case. We also determine the values of the

background fields in terms of the geometrical data. As an application for our formulae we

discuss various examples, such as round and squashed spheres, which had been so popular

in the context of supersymmetric partition functions.

The rest of the chapter is as follows. In section 5.1 we classify manifolds with charged

conformal Killing spinors in 3d. In section 5.2 we discuss the reduction of new mini-

mal supergravity to three dimensions and solve again the supersymmetry equations. To

illustrate our findings we provide various examples.

This chapter is based on the paper [1], a detailed analysis with some overlap has also

appeared in [58].

5.1 Geometry of conformal Killing spinors

In this section, we will deal with equation (3.8) in d = 3. The arguments are very similar

to those in d = 4, and we will be brief.

Given a spinor χ, we can complete it to a basis with its complex conjugate:

χ , χC ≡ Cχ∗ , (5.1)

where C−1σmC = −σTm. Any nowhere-vanishing χ defines an identity structure. If it is

charged this is true up to a phase. We can indeed construct the bispinors

χ⊗ χ† =
1

2
eB (e3 − ivol3) , χ⊗ χ = − i

2
eB o (o ≡ e1 + ie2) , (5.2)

where ea are a vielbein for the metric on M3. We defined χ = χTC−1. Notice that in

odd dimensions the map between bispinors and forms is not bijective; a bispinor can be

identified both with an even or an odd differential form. In writing (5.2) we opted for

odd forms. In terms of this vielbein, one can also show

σmχ = em3 χ− iomχC , m = 1, 2, 3 . (5.3)

1This problem has been studied very detailed also in [58].
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We can now define “intrinsic torsions” by expanding ∇mχ in the basis (5.1):

∇mχ ≡ pmχ+ qmχ
C . (5.4)

Alternatively, we can simply use the “anholonomy coefficients” cabc defined by dea =

cabce
b ∧ ec. It is more convenient to work with e3 and o = e1 + ie2, and to organise the

cabc as

de3 ≡ Re(w1e3 ∧ o) + iw2 o ∧ ō ,
do ≡ w3e3 ∧ ō+ w4 o ∧ ō+ w5e3 ∧ o .

(5.5)

Here, w2 is real, while all the other wi are complex, which gives a total of nine (which is the

correct number for the cabc). Together with dB, these are in one-to-one correspondence

with the p and q in (5.4):

dB = 2Rep , w1 = −2iq̄ · e3 , w2 = Re(q · ō)
w3 = iq · o , w4 = −iImp · o , w5 = iq · ō+ 2iImp · e3 .

(5.6)

We are now ready to impose (3.8). Using (5.4) and (5.3), we get

2pA · e3 = iq · ō , pA · o = −2iq · e3 , pA · ō = 0 = q · o . (5.7)

The first three simply determine A. The last can be written as w3 = 0, which means that

the sole geometrical constraint is that

do = w ∧ o (5.8)

for some w, in analogy to (3.26).

5.2 New Minimal Supergravity reduced to Three Di-

mensions

It is also of some interest to reduce the condition of supersymmetry to three dimensions,

where partition functions of Euclidean supersymmetric theories have been recently studied

and computed using localisation.

In this section we will study the solutions of the dimensionally reduced new minimal

condition

∇mχ = −i (vnσnm + (v − a)m)χ+
v4

2
σmχ , m, n = 1, 2, 3 , (5.9)
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where χ is a two-component three-dimensional spinor on the manifold M3, v and a are

vectors and v4 is a scalar. Similarly to four dimensions, v is subject to the constraint

d(∗v) = 0. A discussion of the off-shell N = 2 new minimal supergravity in three

dimensions can be found in [120, 121].

Every solution of (5.9) can be uplifted to a solution of the four-dimensional new

minimal condition (3.31) on a manifold with metric

ds2 = e−2bds2
M3

+ e2b (dφ+ µ)2 , (5.10)

with connection µ determined by

v + i db =
i

4
eb ∗ dµ (5.11)

and background fields v4d ≡ (v4, v), a4d ≡ (v4, a) satisfying d(∗v4d) = 0. We split all

four-dimensional vectors in a component along e4 = eb(dφ + µ) and a vector on M3. We

used the basis (2.18) and wrote the chiral spinor ε+ as ε+ =
(
χ
0

)
. Notice that we identified

a4 = v4.

More general reductions from four to three may exist and a more general analysis can

be performed, but (5.9) will be sufficient to illustrate various examples.

To characterise the geometry, we can use the bispinors we defined in (5.2). The

equations they satisfy follow readily from the new minimal condition (5.9):

de3 = −(dB + 2 Ima) ∧ e3 + 4 ∗ Rev + i Imv4 o ∧ ō , (5.12)

do = (2 v4e3 + 2i a− dB) ∧ o , (5.13)

dB = 2 Im(v − a) + iRevx(o ∧ ō) + Rev4e3 . (5.14)

As in four dimensions, the problem of finding solutions of the new minimal condition

(5.9) is closely related to the problem of finding solutions of the conformal Killing equation

(3.8). In fact, any solution of equation (3.8) without zeros in 3d is also solution of (5.9)

with the scalar and vector (v4, v) defined by DAχ ≡ 3
(
ivmσm + 1

2
v4

)
χ and a = A + 2v.

It should come as no surprise that all results obtained in section 5.1 are consistent and

equivalent to the set of equations (5.12-5.14). It is also obvious from this discussion

that not all components of the auxiliary fields (v4, v) are independent and there is some

redundancy in their use.

We will now discuss some simple examples.
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5.2.1 Spheres, round and squashed

Supersymmetric theories on the round sphere have been considered in [11, 14, 15]. Local-

isation leads to a matrix model for the partition function, whose applications have been

a very active subject of research in the past years. In part II of this thesis we will discuss

some aspects of this.

On S3 we have Killing spinors satisfying ∇mε = ±1
2
σmε and we can satisfy the new

minimal condition (5.9) with a = v = B = 0 and v4 = ±i. It is easy to see how this

translates in terms of forms. We can define left- and right-invariant vielbeine:

ds2 =
3∑

a=1

l2a =
3∑

a=1

r2
a . (5.15)

They satisfy dla = εabclb ∧ lc and dra = −εabcrb ∧ rc. The equations (5.12) simplify to

de3 = 2Imv4 e1 ∧ e2 do = 2v4 e3 ∧ o , (5.16)

which can be solved by taking ea to be a permutation of the la for Imv4 = +1 or a

permutation of the ra for Imv4 = −1. It is worthwhile to notice that, if we define a

superconformal theory on S3, there will be no couplings linear in v4 in the Lagrangian,

and the theory will be invariant under all the supersymmetries with ∇mε = ±1
2
σmε; they

obviously close to the superconformal algebra on S3. If we instead consider a generic

supersymmetric theory, v4 will appear explicitly in the Lagrangian and we can only keep

half of the supersymmetries.

One can also consider the squashed three-sphere

ds2 = l21 + l22 +
1

s2
l23 . (5.17)

Several different supersymmetric theories have been constructed on the squashed three-

sphere [117, 118] and have attracted some attention in the context of localisation and the

AGT correspondence [7]. For the interested reader, we quote the corresponding back-

ground fields. The simplest theory [117] is based on a deformation of the left invariant

vielbein

e3 =
l3
s
, e1 = l1 , e2 = l2 , (5.18)

which corresponds to the background fields v4 = i
s
, a =

(
1− 1

s2

)
l3 and v = B = 0. A

different theory has been constructed in [118] and it is based instead on a deformation of

the right invariant vielbein

ea = cos θra + sin θεabcnbrc (5.19)
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where na is a unit vector on the sphere and eiθ = 1+i
√

1−s2
s

. The background fields

are v4 = − i
2s
, a = v = i

2

√
1−s2
s

l3 and B = 0. The squashed three-sphere lifts to a

four-dimensional bundle (5.10) with connection proportional to v, as also discussed in

[118]. The gravity dual of the theory in [118] have been identified in [114], where also an

analytical continuation of the theory, (θ, v, a)→ i(θ, v, a), has been considered. One can

explicitly check that the asymptotic behavior of the spinors in the gravity dual [114] is

consistent with our general discussion in section 2.2.

Using the v and a computed for these examples to couple to the reduction of new

minimal supergravity, one can check that one gets the same Lagrangians as in [15, 118].

5.2.2 Sasaki Manifolds

Another very general class of solutions is provided by Sasaki three-manifolds MS. The

spinorial characterisation [93] of a Sasaki manifold is the existence of a solution of the

charged Killing equation

(∇m − iam)χ =
i

2
σmχ (5.20)

with real a. The new minimal condition (5.9) provides a characterisation in terms of a

vielbein {ea}:
de3 = 2e1 ∧ e2 , do = 2iα ∧ o . (5.21)

where a = α − e3. Notice that e3 has the property that e3 ∧ de3 is nowhere zero, which

makes it a contact form on MS.

An equivalent characterisation of a Sasaki manifold is the fact that the cone

ds2
4 = dr2 + r2ds2

MS
(5.22)

is Kähler. Let us briefly review why the two characterisations are equivalent. First

of all, it is easy to check that the spinorial equation (5.20) lifts to the condition for a

charged parallel spinor on the cone (equation (3.39)) whose existence is equivalent to

the Kähler condition, as discussed in section 3.2.2. Alternatively, using the differential

conditions (5.21), we can construct a Kähler form j = 1
2
d(r2e3) and a complex two form

ω = r(dr + ire3) ∧ o with dω = w5 ∧ ω.

We can generalise this example and include squashed Sasaki metrics [122]

ds2 = e2
3 +

1

h2
oS ōS (5.23)

where e3 and oS satisfy (5.21) and h is a function with no component along the contact

form (e3xdh = 0). We can easily solve the new minimal conditions (5.9) with background
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fields v4 = ih2 and

a = α− h2e3 +
i

2h
(∂oSh− ∂ōSh) (5.24)

where ∂oSh, ∂ōSh are the components of dh along oS and ōS, respectively. This class

of manifolds is quite general and include for example Seifert manifolds, which are U(1)

bundles over Riemann surfaces. On all these spaces we can easily define a supersymmetry

field theory with at least a supercharge.

Notice that the new minimal condition here reads

(∇m − iam)χ = i
h2

2
σmχ . (5.25)

This kind of generalised Killing equations with a non-trivial functions on the right hand-

side have solution only in dimensions less than or equal to three [122].
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Chapter 6

The geometry of N = 2 in four

Lorentzian dimensions

In this chapter we analyse theN = 2 case in four Lorentzian dimensions and we determine

the general couplings to auxiliary backgrounds fields that preserve some of the extended

supersymmetry. The case where part of the superconformal invariance is gauge fixed by

compensators has already been analysed and completely solved in [69] for applications to

black hole entropy1. Here we generalise the result to the full CKS equation.

For theories with higher supersymmetry, the analysis done so far is more involved

since the conformal gravity multiplet contains another dynamical fermion in addition

to the gravitino. Its supersymmetry variation leads to additional, differential equations

which should be added to a generalised CKS equation involving various background fields.

Although some of the constraints are differential, we show that they can always be

solved by choosing appropriate local coordinates. We give very explicit expressions for

the auxiliary fields that we need to turn on to preserve some supersymmetry. In general,

the auxiliary fields are not unique and there is some arbitrariness in their choice.

Our strategy is as in the last chapters to couple the theory to some background super-

gravity [43]. We mainly focus on superconformal theories, where it is natural to couple

to N = 2 conformal supergravity [78, 79]. As usual, this can be understood also from

the holographic dual. As discussed in section 2, minimal supergravity in asymptotically

locally AdS spaces reduces to conformal supergravity on the (non-trivial) boundary.

The condition for preserving some supersymmetry for an N = 2 theory in four di-

1 We thank Sameer Murthy for pointing out to us their results, which have substantial overlap with

this chapter.
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mensions is equivalent to a ‘generalised’ CKS, involving additional background fields and

differential constraints, see (6.4). We show that these equations are equivalent to the

existence of a conformal Killing vector (CKV). Of course, it is simple to see that the

existence of a (charged) CKS implies the existence of a CKV. The converse is also true:

the geometric constraints following from supersymmetry just amount to the existence of

a CKV, all other constraints determine the background auxiliary fields of the gravity mul-

tiplet. Analogously to three dimensions [59], the CKV can be null or time-like, the null

case being related to the existence of an N = 1 subalgebra, the case discussed in detail

in chapter 4.

In general, Poincaré supergravities arise from conformal supergravity through the

coupling to compensator multiplets which gauge fix the redundant symmetry. Some of

our results can be used also to define general supersymmetric field theory on curved

space, although we do not discuss this issue in this chapter. The case where the spinor η

associated with the conformal supersymmetry vanishes has been analysed thoroughly by

[69] in the context of the study of black hole entropy. When η = 0, the conformal Killing

vector actually becomes Killing.

The chapter is organised as follows. In section 6.1 we review the field content of N = 2

conformal supergravity and we write the supersymmetry variations which include a gen-

eralised conformal Killing spinor equation. In section 6.2 we then discuss the geometrical

structure induced by a pair of chiral spinors and the technical tools we will be using in

this chapter. Section 6.3 contains the main results for this chapter: the proof that any

manifold with a conformal Killing vector supports some supersymmetry and the explicit

expressions for the background auxiliary fields.

This chapter is based on [3], it overlaps at various points with the paper [69].

6.1 The multiplet of conformal supergravity

The structure of conformal supergravity in 4 dimensions is nicely reviewed in [123]2. The

independent field content of the gravity (Weyl) multiplet is

gµν ψiµ T+
µν d̃ χi Aµ0 Aµ

i
j (6.1)

2 In our discussion of conformal supergravity in 4 dimensions, we mostly follow the conventions of

[123] with few changes that are discussed in the Appendix. We have also redefined the gauge field and

the scalar.
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where Aµ0 and Aµ
i
j = Aµxσ

x i
j are the gauge fields of the U(1) and SU(2) R-symmetry,

respectively (with ~σ the usual Pauli matrices), T+ is a (complex) self-dual tensor, d̃ a

scalar field and χi the dilatino. The fermions are chiral spinors in the 2 of U(2). The

fermionic part of the supersymmetry variations is

δψiµ = ∇A
µ ε

i
+ +

1

4
T+
µνγ

νεi− − γµηi−

δχi =
1

6
∇A
µT

+ µ
νγ

νεi− −
i

3
RSU(2) i

j · εj+ +
2i

3
RU(1) · εi+ +

d̃

2
εi+ +

1

12
T+
µνγ

µνηi+

(6.2)

with

∇A
µ ε

i
+ = ∇µε

i
+ − iAµασαijε

j
+

∇A
µT

+ = (∇µ − 2iAµ0)T+

RSU(2) i
j = (∂µAνx + AµyAνzε

yz
x)σ

x i
jγ

µν

RU(1) = ∂µAν0γ
µν

where we have introduced

σα ij = (1, ~σ)ij . (6.3)

The spinor doublets εi and ηi are the Q- and S- supersymmetry parameters, respectively.

Our conventions are summarised in appendix A.2, in particular α, β, · · · = 0, 1, 2, 3 and

x, y, · · · = 1, 2, 3.

To preserve some supersymmetry on a manifold with metric gµν we need to find a

configuration of auxiliary fields of the Weyl multiplet that solves (6.2). Obviously, this

is not always possible and we now want to analyse in which cases it can be done. The

special case where ηi = 0 has already been analysed in [69], in the following we extend

this result to the general case.

We can eliminate ηi by taking the γ-trace of the first equation ηi− = 1
4
DAεi+, with DA =

γµ∇A
µ . Note that T drops out of the computation since γµT

+γµ = 0. The supersymmetry

condition can then be re-written as3

∇A
µ ε

i
+ +

1

4
T+
µνγ

νεi− −
1

4
γµD

Aεi+ = 0 (6.4a)

∇A
µT

+ µ
νγ

νεi− +DADAεi+ + 4i∇µAν0γ
µνεi+ + 2d εi+ = 0 (6.4b)

where we have used the first equation and we have redefined d ≡ d̃ + 1
6
R, with R being

the curvature scalar.

3 See also [10] for a similar presentation.
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The gravitino equation (6.4a) can be seen as a generalisation of the charged conformal

Killing spinor equation found in theN = 1 case of chapter 3. For T+ = 0 we simply obtain

a non-abelian version of the CKS equation. In general, the situation is more involved due

to the presence of the tensor T+, however the equation (6.4a) shares many similarities

with the CKS equation, in particular, it is conformally covariant. If the doublet εi+ is a

solution to the equation with metric gµν , the rescaled doublet eλ/2εi+ is a solution to the

equation with rescaled metric e2λgµν . In particular, the tensor has conformal weight +1

T+
µν → eλT+

µν .

A further complication that affects all extended supergravities is the presence of the

dilatino equation. As a difference with the generalised CKS equation (6.4a) which can be

analysed in terms of a set of algebraic constraints for the geometric quantities involved, as

in the previous chapters, the dilatino equation contains derivatives of the auxiliary fields

and it seems to be more complicated to analyse. However, we will show how to extract

the relevant information from it. It turns out that it is only the gravitino equation that

restricts the geometry of the space-time, while the conditions coming from the dilatino

equation (6.4b) merely fix some of the background field values.

We stress that the supersymmetry variations of conformal supergravity do not depend

on the explicit matter content of the field theory. Our result will therefore be valid

for any conformal theory with rigid supersymmetry. We also notice that all Poincaré

supergravities arise from conformal supergravity through the coupling to compensator

multiplets which gauge fix the redundant symmetry. Some of our results can also be

used to define general supersymmetric field theories on curved space, although we do not

discuss that issue further in this thesis. The close relation between N = 1 CKS and

new minimal supergravity spinors is described in detail in chapters 3 and 4. For the

N = 2 case we just observe that we can always set ηi = 0 after a partial gauge fixing of

the superconformal symmetry using a hypermultiplet compensator. The results in [69],

where this gauge fixing is done, can therefore be used to define general supersymmetric

field theories on curved space. As can be seen in [69], or by specialising the results in

section 6.3 to the case ηi = 0, the conditions of supersymmetry now requires that the

conformal Killing vector is actually Killing. This is similar to what happens in the N = 1

case of chapter 4.

The supersymmetry transformations and the most general Lagrangian for matter cou-

plings to conformal supergravity can be found in [123]4. For completeness, here we give

4An analysis of supersymmetry Lagrangians using conformal supergravity has also appeared in [124]
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the Lagrangian for the vector multiplet (φ,Wµ, ψ+i, Y
ij),

LLorentz = d φφ̄+∇A
µφ∇Aµφ̄+

1

8
Y ijYij − g

[
φ̄, φ

]2
+

1

8
FµνF

µν

+
{1

4
ψ̄i−D

Aψ+i +
1

2
gψ̄i− [φ, ψ−i]−

1

4
φFµνT

+µν − 1

16
φ2T+

µνT
+µν + h.c.

}
(6.5)

where Yij = (Y ij)
∗

= εikεjlY
kl is a triplet of real SU(2) scalars.

In the next sections we will classify the geometries in which one can solve (6.4).

The background fields that we will determine in terms of the geometry can be coupled

to arbitrary vector and hypermultiplets as in (6.5), giving rise to supersymmetric field

theories on curved space.

6.2 The geometry of spinors

In our analysis we follow a similar formalism as in the previous chapters and [59, 69]. We

want to analyse the geometry that is defined by a chiral spinor doublet of U(2). To this

end, let us look at the two spinor bilinears

s =
1

2
εij ε̄

i
−ε

j
+

zµ =
1

2
ε̄+iγµε

i
+

(6.6)

with zµz
µ = −‖s‖2. It is a simple consequence of the generalised CKS equation that z is

a conformal Killing vector. To proceed, we need to distinguish two situations.

When s = 0, the two spinors in the doublet are linearly proportional ε1+ ∝ ε2+ and zµ is

null. We essentially fall in the N = 1 case that has been studied in chapter 4. In fact, by

a gauge transformation we can always set one of the spinors to zero. By further restricting

the gauge fields to a suitable abelian subgroup and by setting the tensor T+ to zero, we

obtain the charge CKS equation discussed and solved in chapter 4. In that reference it is

shown that any manifold with a null CKV supports supersymmetry. It is enough to turn

on a background abelian gauge field whose explicit form is given in chapter 45.

We therefore refer to chapter4 for the case with s = 0 and from now on we will discuss

the non-degenerate situation where s ≡ eB+iβ 6= 0. Apart from the complex scalar s, a

where various explicit solutions have been discussed.
5It is not excluded that more general solutions with non abelian gauge fields and a non-vanishing

tensor exist but we will not discuss this case in this thesis.
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generic chiral doublet of spinors in four dimensions defines four real vectors enµ and three

self-dual two-forms ηxµν

eB
∑
α

eαµ σ
αi
j = ε̄+jγµε

i
+

2eB+iβηxµν σ
xij = ε̄i−γµνε

j
+

(6.7)

where σαij = σαikε
kj and e0

µ = e−Bzµ. The self-duality condition reads√
|g| εµνρσηxρσ = 2i ηxµν

where g is the determinant of the metric.

Using the Fierz identities one can show that eαµ is a tetrad, eα · eβ = ηαβ. One can also

show that in this frame the ηx’s have components

ηαβx = eαµe
β
νη

µν
x = δα0 δ

β
x − δ

β
0 δ

α
x − iεxαβ . (6.8)

We give some details in the appendix.

Note that the information contained in the spinor doublet can also be written in

bispinor language6

εi+ε̄+j =
eB

4

∑
α

(eα + i ∗ eα)σαij

εi+ε
j
− =

eB+iβ

4
ηασ

αij

(6.9)

where η0 = − (1 + γ), ηx = 1
2
ηxµνγ

µν and eα = eαµγ
µ. Here, i ∗ eα = γeα.

From the definition in (6.7) we see that ex and ηx transform as vectors under the action

of the SU(2) R-symmetry. From (6.7) it also follows that we can gauge away β by a U(1)

R-symmetry transformation. Similarly, since our equations are conformally covariant, we

can – at least locally – also set B to zero by an appropriate Weyl rescaling.

We will find useful to work in the frame defined by en where the action of the gamma

matrices on the spinors takes a very simple form. For example it is easy to show that

γαεi− = e−iβσαijε
j
+

γαβεi+ = ηαβx σxijε
j
+ .

(6.10)

From (6.10) it readily follows that, in the frame defined by en, the spinors are constant,

up to an overall norm factor.

6See [103], in particular Appendix A, for a nice review of the formalism.
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Before we attack the supersymmetry conditions, note that it is useful to choose a

covariant basis for the space of chiral spinor doublets7

σαijε
j
+ . (6.11)

We can expand in particular the covariant derivative of a spinor in this basis

∇µε
i
+ = Pµασ

αi
jε
j
+ (6.12)

where we call the coefficients P intrinsic torsions. More explicitly, in our frame with

constant spinors one has

Pµx =
1

4
ωµ

αβηxαβ Pµ0 =
1

2
∂µ(B + iβ) (6.13)

where ηxαβ projects on the self-dual part of the spin connection. A similar parameterisa-

tion has appeared in [125].

6.3 Solving the supersymmetry conditions

In this section we show that all manifolds with a timelike conformal Killing vector (CKV)

admit a solution to the equations (6.4).

Let us analyse the two conditions for unbroken supersymmetry (6.4) separately. We

define the symmetric traceless part of the torsion8

pαβ ≡ P(αβ) −
ηαβ
4
P γ
γ

and the gravitino equation (6.4a) is readily solved by requiring

Re(pαβ) = 0 (6.14a)

Im (pαβ) = A(αβ) −
ηαβ
4
Aγγ (6.14b)

T+
αβ = −4eiβ

(
P+
αβ − iA

+
αβ

)
. (6.14c)

The first line is a constraint on the geometry of the manifold, while the second and the

third line are merely fixing some of the background fields in terms of this geometry. Let

us discuss this more explicitly.

7 Another obvious choice of basis would be γµε
i
−. The two bases are related by (6.10).

8It will be convenient to consider P(αβ) and A(αβ) as four-by four matrices where the indices are raised

and lowered with ηαβ . All our formulae will be valid in the frame define by the eα.
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The geometrical interpretation of (6.14a) is very simple, it is equivalent to z = eBe0

being a conformal Killing vector, i.e. fulfilling

∇(αzβ) = ληαβ . (6.15)

To see this, note that (6.15) written in our frame reads

λ = −eB∂0B ω(x
0
y) = δxy∂0B ω0

0
x = ∂xB (6.16)

where we defined ∂nB ≡ eµn∂µB etc. Then, using (6.13), it is easy to see that this is

equivalent to Re (pαβ) = 0.

The other two equations determine the “symmetric traceless” part of the gauge field

and the value of the tensor field, respectively. In our frame, (6.14b) reads

A(αβ) −
ηαβ
4
Aγγ = −1

4

(
εuv(αωβ)

uv +
1

2
δ 0

(α∂β)β −
ηαβ
4

(εyz
xωx

yz +
1

2
∂0β)

)
(6.17)

while (6.14c) fixes T+ in terms of the “antisymmetric” part of the gauge field, which we

will determine in the next paragraph.

It actually turns out that z being a CKV is the only geometrical constraint for un-

broken supersymmetry. The dilatino equation (6.4b) gives no extra conditions for the

manifold, in fact it has exactly the right amount of degrees of freedom to fix the back-

ground fields which are yet undetermined. There are 8 components and we still have to

determine the values of A[αβ], A
γ
γ and d.

To this end it is useful to parameterise the gauge fields satisfying (6.17) as

Ax0 ≡ −bx +
1

2
∂xβ

A0x ≡ bx −
1

4
εxuvω0

uv

A00 ≡ −
1

4
α +

1

2
∂0β

Axy ≡ εxy
zaz +

1

4
δxyα−

1

4
εuvyωx

uv .

(6.18)

The new quantities α, ax and bx parameterise the “trace” and the “antisymmetric” part
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of the gauge field Aαβ
9. Then, the background value for the complex tensor T+ becomes

1

2
e−iβT+

0x = i(bx −
1

4
εx
yzωy

0
z) + (ax +

1

2
∂xB) . (6.20)

The spatial components are given via self-duality T+
xy = iεxy

zT+
0z.

In this language the dilatino equation can be re-written in a particularly simple form.

This re-writing is a bit lengthy but straightforward. As a result we find eight real equa-

tions, coming from the real and imaginary part of (6.4b) in the basis (6.11)

∂0ax + (ωx
y

0 − ω0
y
x)ay = −1

2
e−B∂x(e

B∂0B)

∂0bx + (ωx
y

0 − ω0
y
x)by = 0

∂0(eBα) = 0

(6.21)

d = 2(∂x + ωu
u
x + ax)a

x − (εx
yzωy

0
z + 2bx)b

x +
1

4
α2

+
1

4
(ωx

0y)2 + ∂0∂0B −
1

2
(∂xB)2 +

5

4
(∂0B)2

(6.22)

where expressions like ∂0∂0B are to be understood as eµ0∂µ(eν0∂νB) etc. The seven equa-

tions (6.21) determine the missing parts of the gauge field in terms of the geometry, while

equation (6.22) fixes the scalar d.

Note that we can solve these equations, at least locally, by choosing a particular set of

coordinates. So far, (6.21) is valid for any frame in which z is conformal Killing. We can

choose a Weyl representative of the metric such that it becomes Killing instead. Then,

one can choose coordinates such that z = ∂/∂t and the metric can locally be written as

ds2 = −e2B(dt+ 2F)2 +Hijdx
idxj (6.23)

where B, F and H do not depend on t. F is a one-form on the spatial part transverse to

z. As a one-form, we have

z = e2B(dt+ 2F) . (6.24)

In such coordinates we have additional symmetries of the spin connection. If we also

choose a t-independent frame for the spatial dimensions, we have e0 · dex = 0, which

9Note that ax, bx correspond precisely to the imaginary antisymmetric part of the (“twisted”) intrinsic

torsions

PAx0 = −PA0x = ibx +
1

2
∂xB

PAxy = −i
(
εxy

zaz +
1

4
δxyα

)
− 1

2
ωx

0
y

(6.19)

where the superscript A denotes twisting with the U(2) gauge field PAαβ = Pαβ − iAαβ .
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implies

ω0
x
α + ωα

x0 = 0 (6.25)

and we gain more explicit expressions for the spin connection

ω0
x = ∂xB e0 + eB(dFyx) ey ωxy = ω̃xy − eB(dF)xy e

0 (6.26)

where ω̃xy = ωz
xyez is the spin connection on the three-dimensional space transverse to z.

Taking into account the symmetry (6.25), the differential constraints (6.21) boil down

to

∂tα = ∂tax = ∂tbx = 0 . (6.27)

We see that we have the freedom to choose arbitrary values for ax, bx and α as long as

they do not depend on the isometry coordinate t. One simple solution can be obtained

for example by requiring T+ to vanish, yielding

T+
αβ = 0

A00 = −α
4

Ax0 =
1

2

(
∂xβ − eB(∗̃ dF)x

)
A0x = eB(∗̃ dF)x

Axy = −1

4

(
εuvyωx

uv + 2εxy
z∂zB − δxyα

)
(6.28)

where ∗̃ is the three-dimensional Hodge dual, acting on forms living on the spatial part.

The value for the scalar field follows immediately from (6.22).

We can explicitly check that, by restricting to the case where ηi = 0, we reproduce the

results found in [69]. In this particular case the conformal Killing vector becomes Killing.

To summarise, we can preserve some supersymmetry on any manifold with a time-like

Killing vector. To this end, we have to turn on the “symmetric traceless” part of the

background gauge field as determined in (6.17), the background tensor field as in (6.20),

and the background scalar as in (6.22). Upon picking special coordinates (6.23), we are

free to choose a t-independent “trace” and “antisymmetric” part of the gauge field.
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6.4 Examples, comments and possible extensions to

higher dimensions

We have seen that any metric with a non-vanishing timelike Killing vector (and all con-

formally equivalent metrics) supports some supersymmetry. The general form of such

metrics, up to Weyl rescaling, is given in (6.23).

In the particular case where the manifold is the direct product R×M3 with M3 being

an Euclidean three-manifold we can just use the SU(2) gauge group and set Aµ0 = 0 and

T+ = 0. This is obvious from our solution (6.28), which for a direct product space collapses

to Aµx = −1
4
εuvxω̃

uv
µ , with all other background fields vanishing. We have taken the spinor

to be constant. The SU(2) R-symmetry background field is identified with the SO(3) spin

connection on M3, making the spinor covariantly constant. This is a particular instance

of the Euclidean Witten twist applied to the three-manifold M3. These kind of solutions

have an interesting application in holography as boundary theories of supersymmetric

non-abelian black holes in AdS5 [126].

We should mention that we have assumed up to now that the norm of the Killing

vector were nowhere vanishing. In the cases where it becomes null on some sub-manifold

more attention should be paid to the global properties of the solution. Examples of this

kind are discussed explicitly in the three-dimensional case in [59].

We can also make some speculations about extended supersymmetry in higher dimen-

sions. Curiously, a counting of degrees of freedom in the Weyl multiplet of conformal

supergravity suggests the possibility that theories with 8 supercharges generally preserve

some of their supersymmetry precisely on manifolds with a conformal Killing vector. It

is easy to check that in 4, 5 and 6 dimensions the number of conditions coming from

the vanishing of the gravitino and dilation variations, i.e. the d-dimensional analogue of

(6.2), is exactly the same as the number of conditions corresponding to the existence of

a conformal Killing vector plus the number of components of the bosonic auxiliary fields

in the Weyl multiplet.

Lat us discuss for example the 5d case. The generalised CKS equation of the gravitino

imposes 4 × 8 conditions10 and the dilatino brings another set of 8, making a total of

40 constraints coming from supersymmetry. This is to be confronted with the auxiliary

bosonic background fields, which have a total of 26 components [123]. The SU(2) gauge

field has 15 components, the scalar 1 and the tensor Tµν additional 10. The remaining 14

degrees of freedom can be stored in a traceless symmetric degree 2 tensor, corresponding

10 Note that in 5d, we have symplectic Majorana spinors.
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to the CKV condition , ∇(µzν) = λgµν . The analysis is analogous in 6d. In some sense, the

CKV condition takes the role of the degrees of freedom in the graviton, the tracelessness

being related to the Weyl invariance of the equation. The previous counting can be then

reformulated as the equality of the fermionic and bosonic off-shell degrees of freedom in

the conformal gravity multiplet. The off-shell closure of the algebra is actually true only

modulo gauge transformations and the previous argument should be taken as an analogy,

although it probably can be made more precise.

The previous argument suggests that extended supersymmetry can be preserved on

spaces with a conformal Killing vector also in 5 and 6 dimensions.
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Chapter 7

The geometry of N = 2 in four

Euclidean dimensions

Supersymmetric theories on curved Euclidean manifolds have attracted much interest in

the last years. This is mainly due to the possibility of calculating the partition function

on some of these spaces, using supersymmetric localisation techniques.

A word of caution should be spend for the case of N = 2 in four Euclidean dimensions.

Of course, it is well known that we can define a consistent N = 2 theory on any Euclidean

four manifold by a topological twist [5]. The twist was analysed in the language of this

thesis long time ago [44]. However this is not the only way of preserving supersymmetry.

For example, we can define a SCFT on any conformally flat curved space just by a

conformal mapping from flat space. This is the case of the theories studied in [6], for

example. In between these two extreme situations there is a full spectrum of possibilities

with different auxiliary fields that is investigated in this chapter.

The different ways of putting a theory on curved space have lead to very different

results. For instance in the topological twist the energy-momentum tensor is Q-exact

and the quantum field theory is topological, i.e. the partition function and correlators

are independent of the metric. In fact, the correlation functions compute the Donaldson

polynomials of the four-manifold, which are topological invariants. Instead in [6] the

partition function was used to find a matrix model description for certain Wilson loops

in the N = 2 theory. Curiously, [7] observed that the basic matrix model in [6] can be

identified with four point functions in two dimensional Liouville theory. The construction

of Pestun has been generalised in [10] where the same theories were put on a squashed four-

sphere, preserving some supersymmetry. The generalisation allowed for a more detailed
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comparison with the 2-dimensional duals1. In this more general example background

gauge and tensor fields take non-trivial values.

In this chapter we want to systematically discuss the Euclidean geometries preserving

N = 2 supersymmetry and the possible background fields we need to turn on for this. The

general result turns out to be very similar to the one we found for Lorentzian signature

in chapter 6, with the exception of few degenerate cases.

The conditions for supersymmetry involve two symplectic Majorana Weyl spinors of

opposite chirality. A degenerate case arises where we preserve supersymmetry by using

spinors of one chirality. The conditions of supersymmetry collapse to a non-abelian version

of the CKS equation. The topological twist [5] falls in this class; the spinor is made

covariantly constant by identifying the SU(2) R-symmetry of the theory with the spin

connection of the four manifold. This works for any four-manifold. In this thesis we

analyse in detail the general case where supersymmetry is preserved using spinors of

both chirality. In this case, as in Lorentzian signature, the condition for preserving some

supersymmetry is equivalent to the existence of a conformal Killing vector (CKV), all

other constraints determining the background auxiliary fields for which we provide general

expressions.

It is worth mentioning that in the case of extended supersymmetry the results turn

out to be almost independent of the space-time signature. In fact, the Euclidean results

are actually similar to the ones for Lorentzian theories with four supercharges in three

and four dimensions, see chapter 4 and [59], and somehow different from the Euclidean

results with four supercharges where the geometric constraints require the manifold to be

complex in four dimensions (see chapter 3 and [56]) and to possess a suitably constrained

contact structure in three, see chapter 5 and [58].

The chapter is organised as follows. In section 7.1 we discuss the field content of

the Euclidean version of N = 2 conformal supergravity and we write the supersymmetry

variations which include a generalised conformal Killing spinor equation and a Lagrangian

for vector multiplets coupled to gravity. In section 7.2 we discuss the geometrical structure

induced by a pair of chiral spinors and the technical tools we will be using in this chapter.

Section 7.3 contains the main results of this chapter: the proof that any manifold with

a conformal Killing vector supports some supersymmetry and the explicit expressions for

the background auxiliary fields. Finally in section 7.4 we discuss some examples, ranging

from various topological twists to the supersymmetry on round and squashed spheres are

then discussed.

1 See also [127] where further details in this context have been studied.
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This chapter is based on [3].

7.1 Wick rotation of the conformal supergravity

In order to obtain the Euclidean supersymmetry conditions we have to Wick rotate (6.2).

Our strategy is to double the equations and then impose a symplectic Majorana-Weyl

condition on the spinors(
εi+
)c

= iεijε
j
+ (ε−i)

c = −iεijε−j (7.1)

where (ε)c ≡ B−1ε∗. ± still denotes chirality. See the appendix A.2.2 for more details.

We get two real equations for the gravitino

∇A
mε

i
+ +

i

4
T+
mnγ

nεi− −
1

4
γmD

Aεi+ = 0

∇A
mε

i
− +

i

4
T−mnγ

nεi+ −
1

4
γmD

Aεi− = 0 .
(7.2)

Note that we have redefined Ama and T±mn which are now both real. The vanishing of the

dilatino gives the two conditions

i∇A
mT

+m
nγ

nεi− +DADAεi+ − 2∇mAn4γ
mnεi+ + 2d εi+ = 0

i∇A
mT
−m

nγ
nεi+ +DADAεi− + 2∇mAn4γ

mnεi− + 2d εi− = 0 .
(7.3)

We have

∇A
mε

i
+ = ∇mε

i
+ +

i

2
Amaσ̄

ai
jε
j
+ ∇A

mT
+
mn = (∇m + Am4)T+

mn

∇A
mε

i
− = ∇mε

i
− +

i

2
Amaσ

ai
jε
j
− ∇A

mT
−
mn = (∇m − Am4)T−mn

where we have defined

σaij = (~σ, i)ij σ̄aij = (~σ,−i)ij . (7.4)

After Wick rotation, Am4 becomes an SO(1, 1) gauge field, the total R-symmetry

being SO(1, 1) × SU(2). This is consistent with the R-symmetry group coming from

compactifying R
1,9 on R

6 to four Euclidean dimensions, see e.g. [6] and with the known

classification of Euclidean superconformal algebras. The non-compactness of Am4 is also

necessary to make equations (7.2) and (7.3) consistent with the symplectic Majorana

condition.
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Similarly, we can Wick rotate the Lagrangian and the supersymmetry transformations

of arbitrary vector- and hypermultiplets coupled to the Weyl multiplet above. Here we

note the form of the Lagrangian for a vector multiplet

LEuclid = d φφ̄+∇A
mφ∇Amφ̄+

1

8
Y i

jY
k
i − g

[
φ̄, φ

]2
+

1

8
FµνF

µν

+
1

4

(
ψ̄i−D

Aψ+i + ψ̄−iD
Aψi−

)
+
i

2
g
(
ψ̄i− [φ, ψ−i]− ψ̄+i

[
φ̄, ψi+

] )
− 1

4

(
φFmnT

+mn + φ̄FmnT
−mn)− 1

16

(
φ2T+

mnT
+mn + φ̄2T−mnT

−mn) (7.5)

where the Euclidean SU(2) triplet satisfies (Y i
j)
∗

= −Yij ≡ −εjkYik. We will comment

on the supersymmetry transformations below.

In the following we want to discuss on which manifolds we can solve the equations

(7.2) and (7.3). There is a degenerate situation where the spinor of one chirality is set

to zero. In this case the equations collapse to a non-abelian version of the CKS equation

for the remaining spinor, which we can always solve by a twist, as discussed later2. From

now on we will focus on the general case where supersymmetry is preserved using spinors

of both chiralities. In this case the result is very similar to the Lorentzian one: the only

geometrical constraint imposed by supersymmetry is the existence of a CKV. We will

solve explicitly the condition of supersymmetry and determine the auxiliary fields for any

manifold with a CKV.

7.2 The geometry of spinors

It turns out that –albeit the technical details are quite different – many of the equations

that we have seen in the Lorentzian describing the geometry defined by the spinors have

a very close analogue in the Euclidean. In fact, two chiral Majorana-Weyl spinors define

two scalars, two sets of real (anti-)selfdual two-forms ηxmn and η̄xmn and again a tetrad ean.

2We can not exclude that more general solutions may exist.
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To see this, note that we can construct the following spinor bilinears

eA =
1

2
ε†+iε

i
+

eB =
1

2
ε†−

iε−i

eam = −e
−b

2
ε†−jγmε

i
+σ̄

aj
i

η̄xmn = −ie
−A

2
ε†+jγmnε

i
+σ

xj
i

ηxmn = i
e−B

2
ε†−jγmnε

i
−σ

xj
i

(7.6)

where b = (A + B)/2. As opposed to the Lorentzian, in the Euclidean all the forms are

real. The ηx and η̄x are (anti-)selfdual, respectively√
|g| εmnpqη̄xpq = −2η̄xmn

√
|g| εmnpqηxpq = 2ηxmn .

Applying the Fierz identities, one can show that, similarly to the Lorentzian case, the

ean’s form a tetrad,

ea · eb = δab .

In this frame, the two-forms have components

η̄xab = δ4
aδ
x
b − δxaδ4

b + εxab ηxab = −δ4
aδ
x
b + δxaδ

4
b + εxab (7.7)

and we give more details in the appendix. For completeness, let us mention how the forms

defined by the spinors can be stored elegantly into the bispinors

εi+ε
†
−j = −e

b

4

∑
a

(ea + ∗ea)σaij

εi+ε
†
+j =

ieA

4
ηaσ

ai
j

εi−ε
†
−j =

ieB

4
η̄aσ

ai
j

(7.8)

where we have defined η4 = −i(γ + 1) and η̄4 = i(γ − 1). In this language, ea = eamγ
m,

η̄x = 1
2
η̄amnγ

mn and ηx = 1
2
ηamnγ

mn. The hodge dual of a one-form is ∗ea = γea.

As in the Lorentzian case, we will mainly work in the frame defined by the ea’s. Again,

the action of the flat gamma matrices can then be translated into multiplication with Pauli

matrices,

γaεi+ = −e∆σaijε
j
− γabεi+ = −iη̄abx σxijε

j
+

γaεi− = −e−∆σ̄aijε
j
+ γabεi− = −iηabx σxijε

j
−

(7.9)
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where ∆ = (A − B)/2. This can be used to show that in this frame the spinors are

constant (up to an overall norm factor).

Before we discuss the supersymmetry conditions in the next section, note that a con-

venient base for spinor doublets of positive and negative chirality is given by, respectively,

σ̄aijε
j
+ σaijε

j
− . (7.10)

Since the spinors are Majorana-Weyl, each of the two bases contains 4 real components.

We define the intrinsic torsions

∇mε
i
+ = − i

2
P̄maσ̄

ai
jε
j
− ∇mε

i
− = − i

2
Pmaσ

ai
jε
i
+ (7.11)

where Pma and P̄ma are independent real objects. In the frame defined by the spinors,

they are, as in the Lorentzian case, composed of the spin connection and the norms of

the spinors

P̄m4 = −∂mA P̄mx =
1

2
ωm

abη̄xab

Pm4 = ∂mB Pmx =
1

2
ωm

abηxab

(7.12)

Here ηxab and η̄xab project on the (anti-)selfdual part of the spin connection, respectively.

Our choice of frame degenerates at the points where the spinors vanish. A more

detailed analysis will be necessary at the vanishing locus of the spinors to ensure that the

results we will obtain are globally defined.

We are now ready to classify the solutions to the equations (7.2) and (7.3).

7.3 Solving the supersymmetry conditions

The analysis will be very similar to the Lorentzian one in section 6.3. Again we define

the symmetric traceless part of the torsions

pab ≡ P(ab) −
1

4
δabP

c
c p̄ab ≡ P̄(ab) −

1

4
δabP̄

c
c

and it is an easy exercise to check that the gravitino equation (7.2) is solved by

p̄ab = pab (7.13a)

pab = A(ab) −
δab
4
Acc (7.13b)

T+
ab = −2e∆

(
P̄+
ab − A

+
ab

)
(7.13c)

T−ab = −2e−∆
(
P−ab − A

−
ab

)
. (7.13d)
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The first equation tells us that z = ebe4 is a conformal Killing vector, while the other

three equations fix some parts of the background fields. More explicitly, the conformal

Killing condition ∇(mzn) = λgmn implies

λ = eb∂4b ω(x
4
y) = −δxy∂4b ω4

4
x = ∂xb (7.14)

where we have denoted ∂4 = em4 ∂m etc. It is an easy task to see that these conditions are

equivalent to (7.13a), using the explicit formulae given in (7.12). The other three equations

in (7.13) determine the “symmetric traceless” part of the gauge field and the value of the

tensor field, respectively. As in the Lorentzian case, it still remains to determine the

“antisymmetric” part of the gauge field, its “trace” and the scalar d. In close analogy,

this is done by the dilatino equation, which does not impose any new restrictions on the

geometry.

Similarly to the Lorentzian case, we introduce a re-definition of the gauge field

Ax4 ≡ −bx − ∂x(b+ ∆)

A4x ≡ bx +
1

2
εxyzω4

yz + ∂xb

Axy ≡ εxy
zaz +

1

4
δxyα +

1

2
εuvyωx

uv + ω[x
4
y]

A44 ≡
1

4
α− ∂4∆ .

(7.15)

Note that ax and bx correspond to the anti-symmetric part of the twisted torsion P̄

P̄[4x] − A[4x] = −bx P̄[xy] − A[xy] = −εxyzaz (7.16)

and, in terms of this re-definition, the tensor field in (7.13) can be written as

e−∆T+
4x = bx + ax

e∆T−4x = bx − ax + 2∂xb− εxyzωy4
z .

(7.17)

Note that 2∂xb− εxyzωy4
z = −4

(
∇[4zx]

)−
= ηx

ab∇azb. The remaining components of T+

and T− are fixed according to self-duality.

The analysis of the dilatino equation (7.3) is similar to the Lorentzian case. It can be

re-written in a way that it fixes the seven missing pieces of the gauge field

∂4ax + (ωx
y

4 − ω4
y
x)ay = e−b∂x(e

b∂4b)

∂4bx + (ωx
y

4 − ω4
y
x)by = −e−b∂x(eb∂4b)

(∂4 + ∂4b)α = 0

(7.18)

86



and the scalar field d

d = −∂4∂4b− 2 (∂4b)
2 +

1

16
α2

− (∂x + ωz
z
x −

1

2
εx
yzωy

4
z −

1

2
ax)a

x +
1

2
(εx

yzωy
4
z + 2∂xb+ bx)b

x
(7.19)

In these equations, expressions like ∂x∂yb are to be understood as emx ∂m(eny∂nb) etc.

We can again pick a set of local coordinates that automatically solve (7.18) and leave

us with an arbitrariness in the “anti-symmetric” and the “trace”-part of the gauge field.

After a Weyl rescaling and a choice of coordinates such that z = ∂/∂ξ, the metric can

locally be written as

ds2 = e2b(dξ + F)2 +Hijdx
idxj (7.20)

where b, F and H do not depend on ξ. F is a one-form on the “spatial” part transverse

to z. As a one-form, we have

z = e2b(dξ + F) . (7.21)

In such coordinates we can have additional symmetries of the spin connection. By choosing

the three-dimensional frame ex such that e4 · dex = 0, one gets

ω4
y
x = ωx

y
4 (7.22)

and (7.18) boils down to

∂ξα = ∂ξax = ∂ξbx = 0 . (7.23)

We see that also in the Euclidean case we have the freedom to choose arbitrary values for

ax, bx and α as long as they do not depend on the isometry ξ.

For example we can always use the freedom in the gauge field to locally impose T+
mn =

T−mn = 0. From (7.17) we see that this condition is satisfied for

ax = −bx = ∂xb−
1

2
εx
yzωy

4
z

and it is a quick check that these ax and bx solve (7.18), where one has to use the Bianchi

identities. In the coordinates introduced in (7.20), we find for the gauge and scalar fields

A44 =
α

4

Ax4 = −
(
∂x∆ + eb (∗̃ dF)x

)
A4x = 2eb (∗̃ dF)x

Axy = εxy
z∂zb+

1

2
εuvyωx

uv +
δxy
4
α

(7.24)
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where ∗̃ denotes the three dimensional Hodge dual. The value for the scalar d follows

from (7.19).

To summarise, in complete analogy to the study of the Lorentzian case, the only

constraint imposed by supersymmetry is the existence of a conformal Killing vector. Given

such a vector z · z = e2b, we can preserve some supersymmetry by turning on background

values for the SO(1, 1) × SU(2) gauge field as determined in (7.15) and for the tensor

field as in (7.17), where ax, bx, α and ∆ are free parameters of the solution subjected to

(7.18). One also has to turn on a background scalar field as in (7.19).

The previous expressions may become singular at the points where the spinors vanish,

in particular where the conformal Killing vector degenerates. A more careful analysis is

required near the zeros of the spinors in order to ensure that the solution is regular. The

large arbitrariness in the choice of auxiliary fields should usually allow to find globally

defined solutions.

7.4 Examples

In this section we present some examples for the formalism we have introduced above.

Round and squashed spheres

Round and squashed spheres have been a main focus in the study of supersymmetry on

curved spaces and exact results in quantum field theory. In fact, the work of Pestun

[6], who considered N = 2 theories on the round S4, has in a sense triggered the recent

activity in this field. This work has been generalised in [10], where N = 2 theories on

a squashed sphere, or ellipsoid, were considered. The squashing preserves a U(1)× U(1)

isometry and the manifold can be described by the equation

x2
1 + x2

2

`
+
x2

3 + x2
4

˜̀
+
x2

5

r2
= 1

where ` and ¯̀ are the squashing parameters and r is the radius of the sphere. A metric

for this space is given by

(g2 + h2)dρ2 + 2fh sin ρ dθ dρ+ sin2 ρ (f 2dθ2 + `2 cos2 θ dφ2 + ˜̀2 sin2 θ dχ2) (7.25)
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where the functions f, g and h are defined in [10]

f =
√
`2 sin2 θ + ˜̀2 cos2 θ

h = (˜̀2 − `2)f−1 cos θ sin θ cos ρ

g =

√
`2 ˜̀2f−2 cos2 ρ+ r2 sin2 ρ

(7.26)

On the ellipsoid there is a Killing vector (here identified with the dual one-form)

z =
1

`
∂φ +

1
˜̀
∂χ =̂ sin2 ρ (` cos2 θ dφ+ ˜̀sin2 θ dχ) .

with z ·z = e2b = sin2 ρ. In order to apply the formulae discussed in this thesis, we choose

a frame with e4 = e−bz,

e1 = f sin ρ dθ + hdρ e3 = sin ρ cos θ sin θ(`dφ− ˜̀dχ)

e2 = gdρ e4 = sin−1 ρ z
(7.27)

which is related to the vierbein in [10] by an SO(4) rotation. Let us discuss the round

and the squashed sphere separately.

The round sphere result of Pestun, with all background fields but the scalar vanishing,

is recovered in the limit ` = ˜̀ = r. In particular, it should be reproduced by our special

solution with vanishing tensor field described around (7.24). Plugging the explicit frame

(7.27) into (7.24), we find that the vector field is pure gauge, Aij = −(dφ+dχ)σ2i
j, when

∆ = ln cot ρ
2

and α = 0. Note that SU(2) gauge transformations correspond to local

Lorentz transformations in the three “spatial” coordinates, as follows from the definition

of the vierbein in (7.8). In fact, if we rotate the frame (7.27) by (φ + χ) around e2,

we find that the gauge field vanishes identically. The scalar field (7.19) is constant,

d = 2/r2 = R/6 3.

Now let us discuss the case of the ellipsoid. The solution found in [10] has non-

vanishing tensor fields T± and an SU(2) gauge field Aµx whose explicit expressions can

be found in equations (3.28) and (3.29) of that paper. Of course, the same result follows

from our formalism. After computing the spin connection from the vierbein (7.27), all

background fields are fixed in terms of this geometrical data, plus the eight free parameters

in our solutions. This is to be contrasted with the result in [10], which is a 3-parameter

family instead. The reason for the mismatch is that the authors of [10] work with explicit

spinors and have switched off the SO(1, 1) gauge field. We checked that choosing ∆

3This value corresponds to a vanishing scalar d̃ = 0 in the original Weyl multiplet (6.1).
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appropriately and tuning the SO(1, 1) vector to zero indeed leads to their 3-parameter

solution. More explicitly, setting Am4 = 0 eliminates four of the parameters,

α = 0 bx = δx2
1

g
tan

ρ

2
(7.28)

where we set the value of e∆ = cot ρ
2
. Our scalar (7.19), the gauge field (7.15) and the

tensor (7.17) are then identical4 to the ones in [10], when we identify our parameters ax

with their c1, c2 and c3,

ax = δx1

(
4c2 −

h

fg
tan

ρ

2

)
+ δx2

(
4c1 −

1

f
tan

ρ

2

)
− δx34c3 .

The three parameters ci can be chosen as in [10] in order to have a regular solution on

S4 which reduces at the North and South pole of the squashed sphere to the Ω-background

[128] which plays an important role in reducing the computation of the partition function

to the Nekrasov partition functions for instantons. The local form of this solution and

the Ω-background are discussed in the next section.

Twisting the theory

In this subsection we want to discuss the special case ∆ = −b. This choice is is actually

related to a general solution discussed in [128]. There the authors have noticed that it is

possible to preserve extended supersymmetry on every manifold with a Killing vector z

by generalising the Witten twist for N = 2 theories [5].

Let us first discuss the Witten twist in our formalism. The twist corresponds to the

degenerate situation where one uses only one chiral spinor, say ε+, while the spinor of the

other chirality vanishes and we cannot immediately use our previous formulae. Since only

the self-dual part of the spin-connection acts on ε+, corresponding to an SU(2) subgroup

of the tangent group SO(4), the spinor can be made covariantly constant by cancelling the

spin-connection with the SU(2)-gauge field in the covariant derivative. More explicitly, a

constant spinor ∂mε
i
+ = 0 will be covariantly constant if we turn on the SU(2)-gauge field

Amx =
1

2
ωm

abη̄xab . (7.29)

The generalised CKS equation is then satisfied with vanishing tensor fields. One can check

that the dilatino equation is also satisfied with a value for the scalar field d̃ = −R/6. This

computation was first done long time ago in [44].

4 Note that there is a reshuffling in the order of SU(2) indices. Furthermore, the two gauge fields

differ by a gauge transformation.
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Let us now consider a more general case, where the gauge field is still as in (7.29)

but the negative chirality spinor is different from zero. As suggested in [128], the pair

(εi+, ε
i
− = iγazaε

i
+) preserves supersymmetry on any manifold with Killing vector z. We

can easily see this in the picture of coupling to conformal supergravity discussed in this

thesis. As it is clear from equation (7.9), the relation εi− = iγazaε
i
+ is true for our spinors

exactly when the norm of ε+ vanishes, or

∆ = −b .

One can then check that for the choice of background fields

d = 0 T+
ab = 0 T−ab = −4eb

(
∇[azb]

)−
(7.30)

both ε+ and ε− = izε+ are generalised conformal Killing spinors fulfilling (7.2) and (7.3).

There is obviously an analogous solution with a covariantly constant spinor εi− and a

self-dual tensor T+.

For completeness, let us derive it from our general expressions above. For the choice

∆ = −b, our gauge field takes the value

Am4 = bm Amx =
1

2
ωm

abη̄xab + δymεyx
zaz

where we have called b4 ≡ α + 4∂4b. Recall that the covariant derivative of ε+ is

∇A
a ε

i
+ =

i

2
P̄A
abγ

bεi− . (7.31)

If we set b4 = 0 by an appropriate choice of α, the torsion P̄ becomes anti-symmetric,

P̄mn = P̄[mn], and is given by linear expressions in ax and bx as in (7.16). So we see that

for vanishing ax and bx the spinor ε+ is covariantly constant and the gauge field cancels

the self-dual part of the spin-connection as in (7.29). Hence, the class of our solutions

with ∆ = −b and bm = ax = 0 reduces to the generalised twist solution described above.

The value of the scalar (7.19) and the tensor field (7.17) become as in (7.30).

The Ω-background

One notable example of the Nekrasov-Okounkov twist discussed in the previous section

is the Ω-background on flat R4. It uses the Killing vector

z = ε1 (x1∂x2 − x2∂x1) + ε2 (x3∂x4 − x4∂x3)
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An N = 2 theory will still preserve some supersymmetry on flat space if the tensor field

T− = −2(ε1 + ε2)(dx1dx2 + dx3dx4)

is turned on. The corresponding field theory has a prepotential determined in terms of

the Nekrasov instanton partition function. Alternatively, in the analogue solution with a

covariantly constant negative chirality spinor, supersymmetry requires turning on

T+ = 2(ε1 − ε2)(dx1dx2 − dx3dx4) .

This example is discussed at length in [10] where the background fields on the squashed

sphere have been chosen in order to reduce to the Ω-background near the poles, with

tensors of opposite chirality at the North and South pole.
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Part II

Some exact results in

supersymmetric field theory and the

AdS4/CFT3 correspondence
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Chapter 8

Introduction and Outline

So far in this thesis we have studied the very formal question of supersymmetry on curved

spaces. In this second part we now want to become more practical, if at a certain point

not even a bit technical. Recall the brief tour through some of the most exciting, recent

results obtained considering supersymmetric field theories on curved spaces, which we had

given in the introduction to the thesis. We had mentioned that there is a matrix model

for the N = 2 partition function of field theories on S3, obtained in [11, 14, 15] following

the seminal four dimensional work of [6].

This matrix model will play a crucial role in our further analysis. Before we will be

able to appreciate solving it for some explicit examples, we should however briefly review

the field theories we are interested in.

N = 2 Chern-Simons gauge theories and AdS4/CFT3

We are interested in superconformal field theories with a holographic dual. Consider

a stack of N M2 branes sitting at the tip of a conical Calabi-Yau four-manifold X4 =

C(Y/Zk), where Y is a Sasaki-Einstein 7-manifold. Such a set-up has two dual descriptions

[129–132]. On one side of the duality we have M-theory on AdS4×Y7/Zk, including fluxes.

On the other side of the duality we have generically a three dimensional N = 2 Chern-

Simons gauge theory, with some product gauge group
∏

a U(N)ka and bifundamental

matter. Here ka denotes the (integer) Chern-Simons level of the ath gauge group and

gcd({ka}) = k. For Y = S7 this is just the ABJM model [129] withN = 6 supersymmetry.

One fundamental check of the correspondence is that the abelian vacuum moduli space

of the field theory equals the transverse Calabi-Yau geometry. The field theory is weakly

coupled for k � N , while N � k5 corresponds to the M-theory limit of the gravity dual.
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Questions

We want to present a list of issues that one might want to address in this context.

From the holographic perspective, one can wonder if it is possible to go beyond match-

ing the moduli spaces when comparing the two descriptions. This matching gives beautiful

evidence for a large class of duals but it is clearly desirable to perform a deeper check of

the correspondence.

The brane picture brings a puzzling prediction for the scaling of the free energy. From

the weekly coupled point of view we expect the partition function to factorise such that

each gluon contributes the same amount to the free energy F = − lnZ. In the large N

limit of a U(N) theory this implies a scaling as F ∝ N2, growing with the number of

gluons. However, at strong coupling the gravity description for M2 branes predicts F to

scale like N3/2 [12]. It has been a longstanding puzzle to observe such a counterintuitive

scaling in any field theory with a weekly coupled description.

Even from the purely CFT point of view we find some interesting issues with these field

theories. Recall the notion of exact R-symmetry that is selected by the superconformal

algebra of a N = 2 theory. It is the R-symmetry which sits in the current multiplet and

gives R = ∆, with ∆ being the scaling dimension of a chiral multiplet, via saturation of

a unitary bound. This feature makes it useful to know the exact R when constructing

a superconformal theory, yet it is non trivial to determine it. Formally any symmetry

that does not commute with the supersymmetry is a good R-symmetry, in fact there

is an infinite family. It is desirable to have a mechanism that selects from this infinite

family the one in the superconformal algebra. The four dimensional problem was solved

in the beautiful work [17], where the authors showed that the anomaly coefficient a is

maximised when the R symmetry is chosen to be the exact one. In AdS/CFT there

exist a dual geometrical mechanism [16] whose arguments do actually not depend on the

dimension of the set-up. This suggests that a similar process to [17] should also exist in

3d, in absence of anomalies it is though not obvious what that should be. To find an

appropriate 3d analogue of a-maximisation has been a longstanding puzzle.

Related to the last point is also the quest for a ‘c-function’ in three dimensions. Fol-

lowing the pioneering c-theorem in two dimensions [19], it is desirable to have a function

that decreases along the RG flow, similar to the central charge c in a two dimensional

field theory. It has been argued that in 4d the role of c is played again by the anomaly

coefficient a [133–136] and it has not been obvious for a long time if any such function

could exist also in three dimensions.
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Answers

It turned out that the free energy F = − lnZ, where Z is the partition function of the field

theory on S3, seems to give answers to most of the questions raised in the last paragraph.

AdS/CFT ties together what will be presented in the rest of the second part of this

thesis and the remarkable success with which everything fits together gives a significant

backing of the conjecture. We will come back to this several times.

Let us first mention again that in [13] the peculiar N3/2 scaling has indeed been

observed to arise at strong coupling for the partition function for the ABJM model.

As for the analogue of a-maximisation, Jafferis proposed that F itself is the right

function which determines the exact R-symmetry via extremisation [14]1, and in [137]

it has been argued that it is actually maximised. In this picture, recall that the matrix

model for N = 2 theories depends on the choice of the R charges for the matter fields.

Moreover, it has been suggested that F obeys an F -theorem, providing a monotonically

decreasing function along the RG flow [18].

These proposals have passed many tests [4, 18, 138–146]. In chapter 10 we will see

how the F -maximisation works in the context of AdS/CFT. There we will also verify

that F decreased when flowing from one theory to another by giving a vev to some chiral

multiplet.

Outline of part II

Let us elaborate on the AdS/CFT picture of F -maximisation. As we said earlier, R-

symmetry is not uniquely defined. Formally any symmetry that does not commute, by

the amount of some given normalisation, with the supersymmetry is a good R-symmetry.

We can parameterise this ambiguity by fixing a reference R0 and mixing it with all possible

flavour symmetries Fi,

R[ai] = R0 +
∑
i

aiFi , (8.1)

where the ai’s are parameters keeping track of the mixing. The sum runs over the set of

abelian flavour groups. For IR fixed points, we can think about the charges under the

1 This is actually not that endlessly far off from the even dimensional analogous statement one might

first think. In a very brought sense one could say that it is always the finite part of F that plays the role we

are after. Note that in odd dimensions F has only power-like divergences, which all can be absorbed in a

local counterterm, hence F itself can be given a finite meaning. In even dimensions, however, there is also

a logarithmic divergence for which this cannot be true. Nevertheless, the coefficient of this logarithmic

divergence is proportional to a, which makes this very brought picture close.
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reference R0 as the canonical UV values ∆ of the free theory, and the mixing as happening

along an RG flow, but we don’t have to do that.

Now we come to the main point. The statement about the N3/2 scaling can actually

be made precise at the level of coefficients, also for theories with less supersymmetry

[147, 148],

F [ai] = N3/2

√
2π6

27 Volb (Y )
, (8.2)

where Y is the Sasaki-Einstein 7-manifold at the base of the non-compact Calabi-Yau

moduli space cone. The volume Volb(Y ) depends on a certain vector b [16] and in order to

match both sides of the equation we need to give a map between this b and the R-charges

in F [ai], parameterised as in (8.1). Recall that the computation of F depends on a choice

for the R-symmetry.

The authors of [16] have defined a ‘Z-functional’ for any odd-dimensional Sasaki-

Einstein manifold Y , depending on a trial vector b. This functional is extremised when

b is the Reeb vector of Y , then Z becomes Vol(Y ). Abusing some language, we should

hence view Volb(Y ) as a trial, or ‘off-shell’ volume for Y , which is minimised at the Sasaki-

Einstein value. In 4d, this is the aforementioned geometrical dual of ‘a-maximisation’

(which predicted the existence of something like F -maximisation in 3d).

The beautiful formula (8.2) relates a very non-trivial non-perturbative result in field

theory for F to the geometrical object Vol(Y ). One should appreciate that the actual

computation of F is quite involved and a certain technical challenge. Nevertheless, (8.2)

has been checked to hold in many examples [4, 18, 138, 139, 149]. We will discuss this

formula to more detail in chapter 10. In particular we will suggest a very natural map

between R[ai] and b for theories where X4 is toric. In that case we can use the systematic

technology of brane tilings [150, 151] extended to M2 branes [152, 153] to compute the

volume as a function of the R-charges. The subject is rather technical and we refer the

reader to chapter 9 and section 10.2 for details. Before we go on, it is worth mentioning

that (8.2) holds even before extremisation. This is curious, it is an off-shell statement.

The analogue fact for a in four dimensions has been shown to be generally true [20, 21],

in three dimensions so far this holds only at the level of observation.

The whole picture has one big caveat. No-one has been able to evaluate the matrix

model of [14, 139] at large N for ‘chiral’ theories. A theory is called chiral when the matter

fields do not come in charge conjugate pairs (and the four dimensional YM theory would

be chiral). In all these cases, the free energy does not even show the correct N3/2 scaling

behaviour. Therefore, many interesting models are excluded from the analysis presented
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so far. We will briefly take up this issue in section 10.3.5, where we also report on some

attempts to overcome the problem.

For ‘vector-like’ theories where the fields do come in charge conjugate pairs, and the

large N formalism gives us well-behaved formulae, we also discuss Seiberg duality with

multiple gauge groups. In chapter 11 we observe that the large N free energy is preserved

even before extremisation, as in the N = 3 case [148] under the rules derived in [154–156].

A similar discussion has also appeared in [157].

The last topic that we discuss is related to the construction of a purely field theoretical

quantity from the geometrical data, along the lines of [20]. Indeed in that paper it was

shown that the central charge a can be obtained directly from the information of the

dual geometry. In chapter 12 we show that the generalisation does not follow straightfor-

wardly. By exploiting the symmetries of toric Calabi-Yau four-folds, we give a procedure

to generalise the cubic formula of [20, 158] to three-dimensional field theories. We apply

our general discussion to many examples and find, quite surprisingly, a formula that is

quartic in the R charges and reproduces the field theory computations by only using the

geometrical data and without any reference to localisation. The results in this chapter

have been extended in the work [149].

The rest of part II is organised as follows. In chapter 9 we review the computation

of the moduli space of toric N = 2 gauge theories and review the methods to extract

the geometrical data from the field theory. In chapter 10 we compute the free energy in

vector-like models and compare with the geometric dual predictions. We also comment

on chiral-like theories. The Seiberg dual phases of a large class of vector-like theories with

multiple gauge groups are discussed in chapter 11 and the duality is verified at the level

of the large N free energy. We conclude be commenting on a different formulation of the

extremisation problem in field theory and on its relation to the volume minimisation in

chapter 12.

Part II of this thesis is based on the paper [4].
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Chapter 9

N = 2 quiver gauge theories in 3d

with a toric moduli space

9.1 The field theory description

In this section we briefly review the main aspects of the gauge theories that we study in

the rest of this chapter. They are three dimensional N = 2 supersymmetric quiver gauge

theories which are believed to describe the low energy dynamics of a stack of M2 branes

probing a conical CY4 singularity [129–132]. Generically they have a product gauge group∏
U(N)ka with Chern-Simons (CS) kinetic terms at level ka and bifundamental matter

Xab, transforming in the fundamental of U(N)ka and the anti-fundamental of U(N)kb .

The field content is conveniently represented by a ‘quiver diagram’, see the first part of

figures 10.1, 10.2, 10.3 and 10.4 for examples. In N = 2 language, the Lagrangian reads

L =
∑
a

ka
2π

∫
d4θ

∫ 1

0

dt VaD
α
(e−tVaDαe

tVa) +

∫
d4θ

∑
Xab

X†abe
VaXabe

−Vb

+

∫
d2θW (X) + c.c. (9.1)

The first term is the CS Lagrangian at level ka for the gauge superfield Va associated to

the gauge group U(N)ka . The second term is the usual minimal coupling between matter

and gauge fields, and W is the superpotential. The three dimensional vector superfield is

(in WZ gauge)

V = iθθ̄ σ + θγµθ̄ Aµ − θ2θ̄ λ̄− θ̄2θ λ+ θ2θ̄2D . (9.2)

The field σ is an extra scalar with respect to the four dimensional vector multiplet, coming

from the fourth component of the gauge field upon dimensional reduction. In terms of
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component fields, the Chern-Simons Lagrangian reads

SCS =
∑
a

ka
4π

∫
Tr

(
Aa ∧ dAa +

2

3
Aa ∧ Aa ∧ Aa − λaλa + 2Daσa

)
(9.3)

The abelian moduli spaceM is a Calabi-Yau four-fold that corresponds to the transverse

space of the M2-branes. We will briefly review how it can be obtained [131, 132]. Roughly

speaking, it is the solution to the F -term equations ∂XabW = 0, with fixed complexified

gauge freedom. The solution to the F -terms is a (g+2) dimensional toric variety sometimes

called ‘master space’ F [159], here g denotes the number of gauge groups. We obtain

M = F/GC , (9.4)

where GC is a complexified gauge group. The action of GC in (9.4) is a bit subtle for 3d

Chern-Simons theories, it is not the full gauge group
∏g

a=1 U(1)ka that acts here. One can

show that from the g gauge groups, only the (g− 2) combinations sitting in the kernel of

C =

(
1 1 1 1 1 1

k1 k2 . . . . . . kG−1 kG

)
. (9.5)

are imposed in (9.4) [131, 132].1 It includes also a discrete part, see footnote 1 for a very

brief discussion and references. As a result, we find that

M = CY4/Zk .

In this thesis we will be interested in ‘toric field theories’. We call a theory toric when

the moduli space is a toric Calabi-Yau. This will be satisfied when every matter field

appears exactly twice in the superpotential, once in a term with a positive sign and once

in a term with a negative sign. In that case there is a developed algorithm for solving (9.4)

by an ambient space construction. In chapters 9.2 and 9.3 we will review this formalism

in more detail.

9.2 The toric description

In the case of toric quiver gauge theories, the information about the moduli space of

the field theory is encoded in a set of combinatorial data which is represented in the so-

called toric diagram. The toric diagram can be extracted from the field theory in various

1 By taking linear combinations, one can see that only (g − 2) non-trivial groups have a vanishing

D-term, which can be ditched by imposing complexified gauge invariance. The diagonal gauge group∑
a U(1)ka is trivial, no field is charged under it. The remaining group, which can be taken along∑
a kaU(1)ka , is broken to a discrete Zk subgroup [129, 131, 132, 160, 161]. Here, k = gcd({ka}).
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(equivalent), purely algorithmic ways. This is true for four as for three dimensional field

theories, see e.g. [150–153, 162, 163] and references therein. The particular algorithm we

will use relies on the results presented in [152, 162, 163].

In order to obtain the toric diagram from the field theory data, we construct, in two

steps, the so-called perfect matching matrix. Due to the toric condition, there is an even

number of superpotential terms, half of them come with a positive sign, and the other

half with a negative sign. Moreover, every field X appears exactly once in each set of

terms, say in the i-th term of the positive set and in the j-th term of the negative set.

As a first step, we construct a matrix by adding the fields X to the (i, j)-th entries. Let

us denote its determinant by K and the number of terms in K by c. As a second step

we construct another matrix, this time the (I, α) entry is 1 if the I-th field is in the α-th

term of K, and 0 otherwise. This is is the perfect matching matrix, which we denote P .

We can decompose the fields as

XI =
c∏

α=1

pPIαα , (9.6)

where the pα’s are called perfect matchings and I labels the set of chiral matter fields. The

whole point of the procedure is that this decomposition, which is completely algorithmic,

by construction solves the F -term equations.

We then define the incidence matrix d of the quiver. Each row corresponds to a gauge

group, and each column to a field. The (i, j) entry is 1 if the j-th field transforms in the

fundamental representation of the i-th gauge group, −1 if the field transforms according

to the anti-fundamental representation, and 0 otherwise. By using the incidence matrix

and the perfect matching matrix we can define a new matrix Q by

d = Q · P T (9.7)

It is the charge matrix of the associated GLSM, and gives the D-terms when modded out

by the gauge symmetry. Similarly, the perfect matching matrix P , extracted from the

superpotential alone, gives the F-terms. Putting this together, the toric diagram for the

complex four-dimensional Calabi-Yau cone is given by

GT = Ker

(
QF

QD

)T

≡ Ker

(
Ker(P )T

Ker(C) ·Q

)T

(9.8)

where C is the matrix in (9.5). GT is a matrix with four rows and the n columns are

the n four-vectors generating the fan for the four-dimensional toric Calabi-Yau cone. See

[164] for an introduction to toric geometry. Every column of this matrix is in one-to-one
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correspondence with the perfect matchings represented as the c columns of P or the c

terms in K. By a SL(4,Z) transformation we can rotate all the vectors such that each last

component is 1, viz. vi = (wi, 1), i = 1, . . . , n. This is special for Calabi-Yau manifolds.

The convex hull of the w’s is called toric diagram, by some abuse of notation we will

sometimes also call the entire matrix GT toric diagram as the incorporated information is

equivalent. See figures 10.1, 10.2, 10.3 and 10.4 for examples of toric diagrams and their

dual quiver graphs.

The toric diagram encodes all the relevant data of the toric Calabi-Yau cone M =

C(Y ). In particular, we can compute the volume of the seven-dimensional Sasaki-Einstein

base manifold Y and of its five-cycles without any knowledge of the metric just by looking

at the vectors in GT [16]. Each independent compact five-cycle is in correspondence with

an external point of the toric diagram and its volume can be determined as a function of a

certain vector b. Let vi = (wi, 1) be the vector in GT , corresponding to the external point

wi in the toric diagram and consider the counter-clockwise ordered sequence of vectors

wk, k = 1, . . . , ni, that are adjacent to vi. We can compute the volume of a 5-cycle Σi as

[16, 152]

Vol(Σi) =

ni−1∑
k=2

(vi, wk−1, wk, wk+1)(vi, wk, w1, wni)

(vi, b, wk, wk+1)(vi, b, wk−1, wk)(vi, b, w1, wni)
(9.9)

where (v1, v2, v3, v4) denotes the determinant of four vectors v1,2,3,4. Note that this is a

functional of the vector b. Let us define the sum of these volumes as

Z =
∑
i

Vol(Σi) . (9.10)

The central statement in [16] is that this functional is minimised when b is the Reeb vector

and that then Z is proportional to the volume of Y . We can thus view b in (9.9) as a

‘trial Reeb vector’. Note that the Calabi-Yau condition v4 = 1, implies setting the fourth

component of the Reeb vector b4 = 4.

A five-brane wrapped on a given five-cycle Σi corresponds to an operator with dimen-

sion [165]

∆i =
2Vol(Σi)

Z
(9.11)

In the next section we present a different way to compute the volume functional of the

underlying moduli space geometry, directly from the field theory data but having a very

natural interpretation in the toric language.
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9.3 The Hilbert series

A convenient way to extract the volume of the moduli space, which does not require the

geometrical technologies involving the Reeb vector and individual 5-cycles, is related to

counting the mesonic operators of the field theory. The counting can be performed by the

Hilbert series, which is the partition function for the mesons on the M2 moduli space, see

e.g. [152, 159, 166].

As a crucial fact, the pole of the series gives the volume of the Sasaki-Einstein space,

while keeping track of the dependency on the global symmetries [167]. We want to elab-

orate a bit on how exactly this track-keeping works in our context.

In the toric case the counting becomes particularly easy, since we we can systematically

solve the F -terms through perfect matchings, which results in the quotient description of

the moduli space

M = C
d/ (C∗)d−4 . (9.12)

Here, d denotes the number of perfect matchings assigned to external points of the toric

diagram and the charge matrix of the quotient is given by the linear relations amongst

the corresponding vectors in the fan. This quotient construction makes manifest the

dependency on all of the global symmetries, which the moduli space inherits from the

natural isometries of the ambient space Cd. Generically, there are more external perfect

matchings than global symmetries. This is because we had to introduce extra fields

together with spurious symmetries, which are not seen by the physical fields. It is the prize

we have to pay when solving the F -terms via perfect matchings. Upon parameterising

the symmetries by the perfect matchings we might encounter a redundancy.

Nevertheless, it is a prize we are happy to pay; we will find it convenient to parameterise

the set of global symmetries of the field theory in terms of coordinates on C
d, as this will

make the comparison with the geometry most straightforward.

The Hilbert series for the flat ambient space reduces to the geometrical series Hil ∼
1/(1−t)d, and the quotient can be realised by projecting on the singlets under the (C∗)d−4

action,

Hil(ti;M) =

∮ d−4∏
k=1

dzk
2πizk

1∏d
i=1(1− tiZi)

, (9.13)

where Zi = Zi(zk) is the monomial weight of the i-th homogeneous coordinate under the

(C∗)d−4 action in (9.12). If we further set ti = e−2εai and take the ε → 0 limit, we have

[152, 167]

Hil(ti;M) ∼ Volai(Y )

ε4
+ . . . , (9.14)
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which gives us an expression for the volume of the base Y in terms of the parameters ai.

The equation (9.14) is a geometric formula that knows about the flavour symmetries of

the field theory, precisely through the ai’s which appear on the CFT side via the perfect

matchings. We will see in section 10.2 how we can reproduce this geometric formula from

a purely field theoretical computation.
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Chapter 10

The free energy in the large N limit

and holography

10.1 The large N free energy of vector-like quivers

In this section we discuss the computation of the leading order term of the free energy of

vector-like field theories in a large N expansion. Localisation leads to a matrix model for

the partition function on the three-sphere [11, 14, 15],

Z[∆] =

∫ ∏
i,a

dλ
(a)
i exp

(
− F

(
λ

(a)
i ,∆

))
(10.1)

where the integral is over the Cartan of the gauge group
∏g

a=1 U(N)ka , parameterised by

the g ×N many variables λ
(a)
i , i = 1 . . . N and

F
(
λ

(a)
i ,∆

)
= ln

∏
a

[
e
i
∑
kaλ

(a)
i

2

4π
−
∑

∆
(a)
m λ

(a)
i

∏
i<j

sinh2

(
λ

(a)
i − λ

(a)
j

2

)∏
ρ

el(1−∆+iρ( λ
2π ))

]
(10.2)

Furthermore, ∆
(a)
m is a monopole charge associated with the ath gauge group [14] and `(z)

is the one loop determinant of the matter fields computed in [14, 15]

`(z) = −z ln
(
1− e2πiz

)
+
i

2

(
πz2 +

1

π
Li2e

2πiz

)
− iπ

12
(10.3)

with derivative

`′(z) = −πz cot (πz) . (10.4)

Finally, ρ refers to the weights of the representation of each matter field with R-charge

∆, the product is over all chiral fields. Note that the full matrix model is a functional of

the R-charges.
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We want to solve this matrix model in a large N approximation, following closely the

procedure of [18]. The integral at large N and finite ka is dominated by the minimum

of the free energy F
(
λ

(a)
i ,∆

)
and can be approximated by configurations that obey the

saddle point equations ∂
λ
(a)
i
F = 0. For vector-like theories, it turns out that a sensible

ansatz for the eigenvalues λ is given by

λ
(a)
i = N1/2xi + iy

(a)
i (10.5)

For large enough N , one can replace the discrete set (10.5) with g continuous variables.

The real part of the eigenvalues becomes a dense set with density ρ(x) = ds/dx and the

imaginary parts y
(a)
i become functions ya(x). The free energy can be split in two parts, a

piece from the Chern-Simons and monopole terms

FCS =
N3/2

2π

∫
dx ρ(x)x

∑
a

(
kaya + 2π∆(a)

m

)
(10.6)

and a second piece from the one loop determinant of the vector and the matter fields. For

a pair of bifundamental and anti-bifundamental fields (Xab, Xba) in a vector-like theory,

charged under the ath and the bth gauge group, with R-charges (∆ab,∆ba), we have

F1−loop = −N3/2 (2−∆+
ab)

2

∫
dxρ(x)2

(
δy2

ab −
π2

3
∆+
ab(4−∆+

ab)

)
(10.7)

where δyab ≡ ya(x) − yb(x) + π∆−ab and ∆±ab = ∆ab ± ∆ba. For an adjoint field we use

(10.7) with a = b and divide by a factor two. Equation (10.7) is only valid in the range

|δyab| ≤ π∆+
ab, which will indeed be satisfied by all our solutions.

In the continuum limit, the resulting free energy is extremised as a functional of ρ

and the y’s at the saddle point. The eigenvalue density is subjected to the consistency

constraints ∫
dx ρ(x) = 1 ρ(x) ≥ 0 point− wise

One can impose the first constraint through a Lagrange multiplier µ. This set of rules

is enough to compute the free energy of the vector like theories as a function of the R

charges, F (∆) [18].

As observed in [18] the expressions (10.6) and (10.7) possess flat directions which

parameterise the symmetries on the eigenvalues and on the R charges. By defining the

real parameters η(a) they are

ya → ya − 2πη(a)

∆ab → ∆ab + η(a) − η(b) (10.8)

∆(a)
m → ∆(a)

m + kaη
(a)
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10.2 Relation with the geometry

We want to put forward the immediate coincidence of the mesonic expression for the

volume of the Sasaki-Einstein space Y given in equation (9.14),

Hil(ti;M) ∼ Volai(Y )

ε4
+ . . . , (10.9)

with the free energy of the field theory evaluated at large N .1 The free energy is a function

of the R-charges ∆I of the fields XI and we can identify

F (∆I) = N3/2

√
2π6

27 Volai (Y )
, (10.10)

where we have the identification

∆I =
∑
i

PIi ai , (10.11)

with i running over the external perfect matchings and PIi being the matrix introduced

around equation (9.6). The flat directions (10.8) of F identify g− 2 baryonic symmetries

which do not contribute to the free energy functional. A similar decoupling is well-known

from the four-dimensional case [20]. The flat directions of the free energy are analogue to

the invariance of the Hilbert series under (g− 2) combination of gauge symmetries, recall

that we projected on the mesonic singlets as in equation (9.4). In the explicit construction

of (9.4) via (9.12), and correspondingly upon (10.11), we also encounter spurious extra

flat directions via relations amongst the perfect matchings. This will be discussed for

some concrete examples in 10.3.

We identify several advantages when inferring the volumes from the Hilbert series.

First, (10.9) provides a fast and more direct way than (9.10) to obtain the geometrical

informations of the volumes, without the need of mapping the R-charges of the PM with

the volumes of the 5-cycles as in (9.11). Moreover we can compute the Hilbert series even

in non-toric models, where we cannot use the simple formulas (9.10) and (9.13) anymore,

opening the way for a more general analysis as in [21].

In the next section we want to make all these words more concrete and present some

examples. In the appendix C we also discuss the matching of the field theory free energy

with the geometrical Z-function at arbitrary trial Reeb vector.

1 Related discussions appeared in [168, 169].
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10.3 Examples

We now apply the discussion above to compute the free energy of some models. Our aim

is to compare the field theoretical quantity F (∆) with the volume of the dual Sasaki-

Einstein manifold and verify equation (10.10). In all our examples we find that the result

from the Hilbert Series and the large N free energy coincide even before extremisation.

Our results do not rely on the underlying symmetries enjoyed by the quiver gauge theories

at the infrared fixed point and generalise some of the results in [138].

We first study the vector-like theories C×C, S̃PP and C̃/Z2. Here we use the notation

of [152], where the tilded names are inherited from the four-dimensional theories with the

same quiver but Yang-Mills instead of Chern-Simons gauge interactions. The mesonic

moduli space and the Hilbert Series of the first two and various other models have been

studied in [152]. The three theories we will first study are connected by an RG flow, which

on the field theory side corresponds to giving a vev to one of the scalar fields and then

integrating it out. This is reproduced on the gravity side by a partial resolution of the

singularity, which can be conveniently represented as removing an external point in the

toric diagram. The geometric RG flow is equivalent to blowing up a singularity, which

in turn implies that the volume of the manifold increases. Hence, once established the

relation F 2 ∼ 1/Vol, the decreasing of F follows immediately in these cases, in agreement

with the conjectured F -theorem [18]. We will comment on this in slightly more detail in

section 10.3.3.

In section 10.3.5 we will also report on some attempts to solve the matrix model for

chiral theories.

10.3.1 C× C

Consider a theory with gauge group U(N)k × U(N)−k, two adjoints φi and two pairs

Ai, Bi, i = 1, 2 of bifundamental fields in the (N, N̄) and (N̄,N), respectively, as depicted

in the quiver of figure 10.1. The superpotential is

W = Tr (φ1(A1B2 − A2B1) + φ2(B1A2 −B2A1)) (10.12)

and the moduli space is C×C, where C is the conifold. Finding the exact superconformal

R symmetry requires, a priori, an arbitrary choice of combining the g + 2 = 4 abelian

symmetries (subjected to Rtrial[W ] = 2) to parameterise the dimensions ∆ and eventually

finding the exact choice of R by extreme zing F . We want to keep an eye on the corre-

spondence and parameterise the dimensions in a way that allows for natural comparison
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Figure 10.1: Quiver and toric diagram for C× C.

with the geometry even before extremisation. To this end, we assign to each external

perfect matching pi the charge ai, where we deliberately over-count global symmetries by

the number of relations between the external pi’s. Since perfect matchings correspond

to points in the toric diagram, given in figure 10.1, we can then directly incorporate the

toric data of the moduli space.

The perfect matching matrix suggests the charge assignment

∆A1 = a1 + a4 ∆A2 = a2 + a4 ∆φ1 = a3

∆B1 = a1 + a5 ∆B2 = a2 + a5 ∆φ2 = a3

(10.13)

where the marginality condition on the superpotential ∆(W ) = 2 is reflected by
∑

i ai = 2.

Following the rules outlined in the previous section, we get the free energy functional

F [ρ, u, µ]

N3/2
=

∫
dx

(
k

2π
ρ x u+ ρ2

[
Pai − a3(π(a4 − a5) + u)2

])
− µ

2π

(∫
ρ− 1

)
where

Pai = −a3π
2
(
(a1 − a2)2 − (a3 − 2)2

)
(10.14)

and we defined u = u(x) ≡ y1(x)−y2(x). Note that we have included the monopole charge

∆m not via a topological term in the free energy functional, but via a4/5 → a4/5 ± 2∆m,

corresponding to the direction in the abelian gauge space which is broken to Zk. This can

be done by shifting ya → ya −∆m/k
a. The free energy functional is extremised for

ρ =


µ+2 k π xA2

8π3(A1−A2)φ(A2+B2)
, − µ

2kπA2
< x < − µ

2kπA1

µ/π+k x(B1−B2)
4Pai

, − µ
2kπA1

< x < µ
2kπB1

µ−2k π xB2

8π3(A1−A2)φ(A2+B2)
, µ

2kπB1
< x < µ

2kπB2

, (10.15)

where, without loss of generality, we assumed that a1 > a2 and a4 > a5. Furthermore, we

used (10.13) and for the ease of notation we denoted ψ ≡ ∆ψ for a field ψ. In the outer
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regions of (10.15), u is frozen to umin = −2π(a2 +a4) and umax = 2π(a2 +a5), respectively.

In the middle region we find

u(x) =
kPaix

a3 (µ+ kπx (a4 − a5))
− π (a4 − a5) . (10.16)

The Lagrange multiplier µ is fixed by
∫
ρ = 1 and the free energy finally reads(

F

N3/2

)2

=
32π2k a3 (a1 + a4) (a2 + a4) (a1 + a5) (a2 + a5)

9 (2− a3)
(10.17)

We want to compare this to the Hilbert series. From the toric data in figure 10.1 and

(C.1), we read off the monomial weights

(Zi) = (z, z, 1, z−1, z−1) . (10.18)

We can then compute the Hilbert series (9.13),

Hil(YC×C; ti) =

∮
dz

2πiz

1

(1− t1z)(1− t2z)(1− t3)(1− t4/z)(1− t5/z)
, (10.19)

whose pole for ti = e−2εai → 1 indeed reveals 1/F 2 from (10.17).

That this is a good description of the mesonic moduli space might look puzzling, when

only counting parameters. As mentioned above, there are generically more ai’s, namely

(g + 2 + (# of relations on the external p.m.’s)) 2 than there are mesonic symmetries,

namely 4. The key observation is though, that the ai’s appear only in combinations of

meson charges, hence modulo baryonic and spurious symmetries. In our example this is

particularly easy since, given g = 2, there are no baryonic symmetries in the game. We

do, nevertheless, identify the non-physical, spurious symmetry

a1/2 → a1/2 + s , a4/5 → a4/5 − s ,
2 This redundancy amongst the external perfect matchings originates from the splitting of points in

the parent 2d diagram, which have a multiplicity [152]. These points may sit on the perimeter or in

the internal of the diagram. Depending on this, the new external points of the 3d diagram may not

be in 1 : 1 correspondence with the (g + 2 many) global symmetries of the CFT3. This is opposed to

four dimensional theories, where the number of the external points is always identical with the number

of non-anomalous global symmetries. When going to 3d, the anomalies disappear and all g + 2 global

symmetries are physical. Pick’s theorem relates the number of these symmetries to the properties of the

2d toric diagram, g + 2 = Perimeter + 2(Internal Points) . We see that precisely in the cases in which all

internal points split, the number of external points of the split3d diagram is g + 2. Else, there are extra

points coming from split points on the perimeter. This is the case for the vector-like theories discussed

in this section. We marked the split points by green dots.
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23

Figure 10.2: Quiver and toric diagram for S̃PP . The diagram is plotted for CS levels

(2,−1,−1).

which reflects the relation p1 + p2 = p4 + p5 of the perfect matchings and reduces the

number of independent ai’s to 4. These can in principle be mapped to the charges under

the Cartan-part of the global symmetry

SU(2)1 × SU(2)2 × U(1)1 × U(1)2 .

In absence of baryonic symmetries the bifundamental fields by themselves are mesonic

operators, and their dimensions appear in the final result for F .

We conclude this example by observing that in [18] the authors discussed a dual phase

of this theory, which involves fundamental flavor fields. Upon the identifications of the

PM the two expressions for the free energy coincide.

10.3.2 S̃PP

Next, we want to study the quiver in figure 10.2 with gauge group U(N)1×U(N)2×U(N)3,

one adjoint φ of the U(N)1, and three pairs Ai, Bi, Ci of (anti) bifundamentals in the

(N, N̄, 1), (1,N, N̄), (N̄, 1,N) representation of the gauge group, respectively, and Chern-

Simons couplings (−k2 − k3, k2, k3). The superpotential reads

W = φ(A1A2 − C2C1)− A2A1B1B2 + C1C2B2B1 . (10.20)

As special cases, the family includes ˜SPP−211 and D3 = ˜SPP1−10. From the perfect

matching matrix, we again infer the charge assignment [152]

∆Ai = ai + ai+4, ∆Bi = ai+2, ∆Ci = ai + a7−i, ∆φ = a3 + a4 , (10.21)
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where the six ai’s include one redundancy and one baryonic direction. For the ease of

notation, let us introduce the combinations

A− = ∆A1 −∆A2 , B− = ∆B1 −∆B2 , C− = ∆C1 −∆C2 , B+ = ∆B1 + ∆B2 , (10.22)

a convenient parameterisation for solving the saddle point equations. The free energy

functional is given by

F [ρ, u, v, µ]

N3/2
= −

µ(
∫
ρ− 1)

2π
+

∫ [
− xρ (k2u1 − k3u3)

2π

+
ρ2

2

(
P −B+(πA− + u1)2 − (2−B+)(πB− − u1 − u3)2 −B+(πC− + u3)2

) ]
,

with

P = π2 (−4 +B+) (−2 +B+)B+ . (10.23)

Here u = y1 − y2 and v = y3 − y1. For arbitrary CS levels and R-charges, the eigenvalue

distribution is generically divided in five regions. We refrain from writing down the

explicit functions u(x), v(x) and ρ(x),3 since their expressions are cumbersome and not

illuminating. We have computed F with arbitrary levels k2 and k3, where we had to made

a choice on the relative sign. We skip the general expression because it is too cumbersome,

and we focus on two specific examples. Nevertheless, we checked the agreement with the

geometry at arbitrary levels ki. Consider ˜SPP−211

(
F

N3/2

)2
=
π2(4+A−−C−−2B+)(4+2A−+B−−B+)(4+B−+2C−−B+)B+(4−2A−−B−−B+)(4−B−−2C−−B+)(4−A−+C−−2B+)

9(128+2A2
−(−4+B+)+2C2

−(−4+B+)−112B+−B2
−B+−2B−C−B++32B2

+−3B3
+−2A−(4C−(−2+B+)+B−B+))

and D3 = ˜SPP1−10(
F

N3/2

)2

=
1

9
π2 (2−B− − C−) (2 +B− + C−) (2− A− −B+) (2 + A− −B+)B+

(10.24)

Note that upon (10.21), these are expressions in terms of the ai’s. The monopole charge

is included along

δa1 ∼ k3∆m, δa3 ∼ −2 (k2 + k3) ∆m, δa5 ∼ (k2 − k3) ∆m,

δa2 ∼ k2∆m, δa4 ∼ (k2 + k3) ∆m, δa6 ∼ (k3 − k2) ∆m,

3 Beyond the central region where (10.23) is extremised, there’s a middle region with constant u or v

(depending on relations amongst the ka’s and the ai’s). Finally, in the outer regions, both u and v are

constant and ρ is eventually becoming zero.
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which corresponds to the direction in gauge space parallel to the k’s. The over-counting

is reflected by the spurious symmetry

δa1/2 ∼ s , δa3/4 ∼ −s

and also the contribution of the baryonic symmetry k3U(1)2 − k2U(1)3,

δa1 ∼ −bk2, δa3 ∼ b (k2 − k3) , δa5 ∼ b (k2 + k3) ,

δa2 ∼ bk3, δa4 ∼ 0, δa6 ∼ −b (k2 + k3) ,

is indeed a symmetry of F .

For the Hilbert series, we extract the weights of the quotient from the toric data in

figure 10.2 and (C.3),

(Zi) = (w,wz−k2−k3 , z−k2−k3 , zk2+k3 , w−1zk3 , w−1zk2) , (10.25)

from which we compute

Hil(YSPP; ti) =∮
dz dw

(2πi)2zw

1

(1− t1w)(1− t2w/zk2+k3)(1− t3/zk2+k3)(1− t4zk2+k3)(1− t5zk3/w)(1− t6zk2/w)
.

(10.26)

The ti = e−2εai → 1 pole of (10.26) reproduces the free energy, where one again has to

make choices on the signs of the ki’s.

10.3.3 C̃/Z2 and an RG flow

The generalised conifold with N = 3 supersymmetry has been studied in [148], here we

do not want to assume N = 3 supersymmetry and consider the quiver as a N = 2 model,

i.e. we assign arbitrary R charges to the fields. The field content is shown in figure

10.3, the CS couplings are (k, k,−k,−k) and we parameterise the R-charges of the fields

corresponding to the perfect matchings

∆Ai/Ci = ai , ∆Bi = ai+2 + ai+4 , ∆Di = ai+2 + a7−i . (10.27)

There is no redundancy but two baryonic symmetries, which are no actual degrees of

freedom in the free energy. The eigenvalue distribution is divided in five parts, again we

refrain from giving all the formulae and just present the result(
F

N3/2

)2

=
2kπ2A+

(
4− (A− +B−)2) (4− (A− +D−)2) ((B− −D−)2 − 4 (2− A+)2)

9
(
A+ (4 + A2

− +B−D− + A− (B− +D−)) + (B− −D−)2 − 16
) ,

(10.28)
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Figure 10.3: Quiver and toric diagram for C̃/Z2.

where we used a similar rewriting as in (10.22).

From the toric diagram in figure 10.3 and (C.5), we read off the charge matrix for the

Hilbert series

Hil(Ygen.Con.; ti) =∮
dz dw

(2πi)2zw

1

(1− t1w)(1− t2/w)(1− t3/(wz))(1− t4w/z)(1− t5z)(1− t6z)
. (10.29)

Its pole for ti = e−2εai → 1 immediately reproduces (10.28).

Let us comment on the RG flow between the three theories discussed so far. We can

follow the flow between the fixed points C̃/Z2 → S̃PP → C×C by partially resolving the

singular spaces. This corresponds to removing points in the toric diagram [162]. More

explicitly, upon removing point 1 and one of the internal points in figure 10.3, we obtain

the diagram of figure 10.2, up to renaming. In the field theory, this corresponds to giving

a vev and integrating out A1 = p1p7. Note that p7 is an internal perfect matching, which

is the reason we have omitted it in the discussion so far. The groups U(N)k1 and U(N)k2
are identified to U(N)k2+k3 and A2 becomes the adjoint field in S̃PP . If we now in figure

10.2 remove also point 4, we end up with the diagram of C × C in figure 10.1, modulo

relabeling the points. In the field theory this is achieved by higgsing B2 = p4.

10.3.4 ABJM/Z2

We consider the theory with product gauge group
∏4

i=a U(N)a, Chern-Simons levels

(k,−k, k,−k) and four pairs of bifundamental fields Ai, Bi, Ci, Di as shown in figure 10.4.
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Figure 10.4: (Left) Quiver for F̃0. According to the choice of the CS levels, it gives several

theories studied in the thesis. (Right) Toric diagram for ABJM/Z2, which corresponds to

CS levels (k,−k, k,−k).

At a first look, the theory seems chiral and it is not clear how the long-range forces vanish

without modifications. Taking into account the symmetry of the quiver, though, we find

that the contribution to the long range forces coming from A/B cancels with that of C/D,

respectively. In fact, the theory can be seen as a Z2 quotient of ABJM, effectively being

vector-like and having a saddle point solution following the ansatz used so far. We assign

to the fields charges under the perfect matchings,

∆Ai/Ci = ai , ∆Bi/Di = ai+2 , (10.30)

where the affiliation to ABJM is manifest: Both baryonic directions are killed by the Z2

flip symmetry of the quiver and we are left with the 4 mesonic charges only. Imposing

the symmetry y1 = y3 and y2 = y4, makes the orbifold of ABJM obvious even at the level

of the free energy functional. As a solution we find consequently(
F

N3/2

)2

=
128

9
kπ2a1a2a3a4 . (10.31)

The toric diagram is given in figure 10.4 and (C.7). Modulo a discrete Z2, the Hilbert

series is trivial

Hil(S7; ti) =
1

(1− t1)(1− t2)(1− t3)(1− t4)
, (10.32)

matching with (10.31) as ti = e−2εai → 1.
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10.3.5 Chiral-Like models

As we have mentioned in the introduction, all the beauty that we have seen for the vector-

like models does not apply anymore when the field theory has a ‘chiral’ field content, i.e.

matter that does not come in charge conjugate pairs. Certain long range forces do not

cancel in the large N saddle point approach of [18], the ansatz (10.5) is not sensible

anymore and one cannot even reconstruct the predicted N3/2 scaling. We have also put

the problem on a computer, with a standard approach the numerical analysis indeed picks

a saddle point where F scales as N2, if it scales homogeneously at all.

It is not clear if there is a problem with the matrix model, with the chiral models per

se4 or with the large N ansatz that we applied for solving the matrix model.

Here we want to comment very briefly on some results we have obtained by modifying

the large N ansatz, for few more details see appendix D and for a full discussion the paper

[4]. By applying a proposal put forward in [171] we found indeed the correct scaling for

various theories. However, while in a couple of theories we could even match the volumes

with the on-shell value of the free energy, other theories did not give the expected result.

The modified ansatz is technically very hard to evaluate and we need to make some

assumptions for our calculations. It is not clear if the modified ansatz is wrong, or if the

assumptions were too strong. Many open questions remain for future work. We put a

quick summary for the interested reader in appendix D.

4 A quantum analysis of chiral quiver theories indeed shows some particularities [170].
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Chapter 11

Seiberg duality in vector-like

theories

In this section we show that the large N free energy preserves the rules of Seiberg duality

for vector like gauge theories worked out in [155]. First of all, we review the rules of

Seiberg duality in three dimensional vector like CS matter theories with product groups,

and their relation with toric duality. In three dimensions a vector multiplet can have

either a YM or a CS term in the action. In the first case the theory is similar to the four

dimensional parent but the rules of duality cannot be extended straightforwardly. Indeed,

the vector multiplet has an additional scalar coming from the dimensional reduction which

modifies the moduli space. As a consequence it was observed in [172] that the rules of

Seiberg duality are modified by adding new gauge invariant degrees of freedom in the

dual magnetic theory, which take into account the extra constraints on the moduli space.

On the other hand, YM-CS (or even CS) theories do have a dual description with the

same field content as their four dimensional parents. The only difference is on the gauge

group. Indeed for CS SQCD with U(N)k gauge group and Nf pairs of Q and Q̃, the

dual field theory has U(Nf + |k| − Nc)k gauge group, as shown in [155]. The partition

function has already been used to check this extension of CS N = 2 Seiberg duality in

three dimensions in [29, 141, 144, 173–176].

One may then wonder if the same rules can be extended to more complicated gauge

theories, like the ones related by AdS/CFT to the motion of M2 branes on CY4. The first

generalisation of Seiberg like dualities on CS quiver gauge theories appeared in [154] for

the ABJM model. It was observed that the field content transforms as in 4d while the
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gauge group transforms as

U(N)k × U(N +M)−k → U(N)−k × U(N −M)k (11.1)

Differently from the four dimensional case, also the gauge group spectator feels the duality,

since its CS level is modified. The above rule can be derived by looking at the system

of branes engineering the gauge theory. This consists of a stack of N D3 on a circle and

two pairs of (1, p) branes orthogonal to them. Moreover M fractional D3 branes on a

semicircle connecting the fivebranes are added. By moving the fivebranes on the circle

and by applying the s-rule [177], when one stack of (1, p) branes crosses the other, the

rule above is derived.

It is then natural to extend these ideas to theories with a higher number of gauge

groups. When these theories can be described as a set of (1, pi) and D3 branes on a

circle, they are the extension of the four dimensional Laba gauge theories [151, 178, 179].

They consist of a product of gauge groups U(Ni) with bifundamentals and adjoints (the

presence of the adjoint is related to the choice of the angles between the (1, pi) fivebranes).

In absence of an adjoint field on the node Ni the interaction in the superpotential is Wi =

Xi−1,iXi,i+1Xi+1,iXi,i−1 while if there is an adjoint on Ni we have Wi = Xi−1,iXi,iXi,i−1 −
Xi+1Xi,iXi,i+1. The signs as in four dimensions alternate between + and −.

Even in this case the duality rules are found by exchanging the (1, pi) and the (1, pi+1)

fivebranes. The final rule is

U(Ni−1)ki−1
→ U(Ni−1)ki−1+ki

U(Ni)ki → U(Ni−1 +Ni+1 + |ki| −Ni)−ki (11.2)

U(Ni+1)ki+1
→ U(Ni+1)ki+1+ki

while the matter field content and the interactions transform as in four dimensions.

11.1 Matching the free energy

In this section we provide the rules for the action of Seiberg duality (11.2) on the eigen-

values of non chiral theories and we show that the free energy matches even before the

large N integrals are performed. Consider a duality on the i-th node. The CS level of this

group becomes −ki and the imaginary part of this eigenvalue yi becomes −yi. Moreover

the CS levels ki±1 (here we just refer to necklace quivers) become ki±1 + ki. This rule and

the constraint that the sum of the CS level is vanishing provide the duality action on the
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eigenvalues. We have

yi+1 → ỹi−1 = −yi−1 yi−1 → ỹj−1 = −yi+1

yj → ỹj = yj − yi−1 − yi+1 j 6= i, i± 1 (11.3)

Note that the shift in the rank of the gauge group has a subleading effect at large N .

This apparently trivial statement is subtle, since naively one finds new fundamental-like

terms scaling like N3/2, which descend from the N5/2 contributions to F . To see this, let us

consider a shift of the i-th rank by δN and collect the additional contributions to the free

energy following (2.9) of [18]. At N3/2, one has extra contributions ρ x δN from the gauge

sector, ρ x δN/2(∆j,i−1+yj/4π) from each incoming and ρ x δN/2(∆i,j−1−yj/4π) from

each outgoing matter field, where j = i± 1. We see that the net contribution cancels for

the non-chiral theories at hand. The dependency on the y’s drops out due to the vectorial

nature of the quiver and the y-independent part is the anomaly cancellation of the 4d

parent, which has already been used in the treatment of the long-range forces.

In the case of a L̃abaki theory, we distinguish between the duality action on the classical

term of the free energy (10.6) and the one on the loop contribution (10.7). By supposing

that the duality acts on the i-th node, the CS levels transform as in (11.2) while the sum

in the integral (10.6) becomes

G∑
a=1

kaya → −kiyi + ki−1yi−1 + ki+1yi+1 +
∑

a6=i,i±1

kaya (11.4)

By applying (11.2) this last formula becomes

G∑
a=1

kaya → kiỹi
∑

a6=i,i±1

kaỹa − ỹi−1

∑
b 6=i−1

kb − ỹi+1

∑
c 6=i+1

kc =
G∑
a=1

kaỹa (11.5)

The second term is the one loop contribution coming from the vector and the matter

fields. In the non chiral case of L̃abaki theories this contribution is

F1L =
∑
a,b

F a,b
1L (11.6)

where F a,b
1L has been defined in (10.7) and the sum extends to the pairs of bifundamentals

(a,b) and adjoint fields (a, a) (counted twice). We are going to show that the rules (11.2)

leave F1L invariant.

This result is proven by distinguishing two cases. In the first case, shown in figure 11.1,

the theory does not posses adjoint fields in the first phase and after duality two adjoints

arise. In the second case there is one adjoint field and the duality acts as in figure 11.2.
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Figure 11.1: Quiver diagram for the first type of the Seiberg duality

Let us discuss the first case in more detail, where in the quiver before duality there

are no adjoint fields (at least next to the group which undergoes the duality). The dual

theory has instead two adjoint fields on the nodes Ni±1 if the U(Ni) group is dualised.

The superpotential

W = Xi−2,i−1Xi−1,iXi,i−1Xi−1,i−2 −Xi−1,iXi,i+1Xi+1,iXi,i−1

+ Xi,i+1Xi,i+2Xi+2,i+1Xi+1,i + ∆W (11.7)

becomes

W = Xi−2,i−1Yi−1,i−1Xi−1,i−2 − Yi,i−1Yi−1,i−1Yi−1,i + Yi−1,iYi,i+1Yi+1,iYi,i−1

− Yi,i+1Yi+1,i+1Yi+1,i +Xi+2,i+1Yi+1,i+1Xi+1,i + ∆W (11.8)

where in ∆W we collected all the superpotential terms which are not involved in the

duality. Moreover there is a relation between the R charges ∆ in the two phases. Indeed

the adjoint fields Yi±1,i±1 are related to the original fields as

Yi±1,i±1 = Xi±1,iXi,1±1 (11.9)

and the R charges become

∆̃i±1,i±1 = ∆i,i±1 + ∆i±1,i = 2∆i,i±1 (11.10)

where the last equality follows from the symmetry of the L̃aba quivers. From (11.10) and

from the constraints imposed by the superpotential the other R charges are assigned as

in the figure 11.2. The fields which are not directly involved in the duality (mesons and

dual quarks) have the same R charge in both the theories. At this stage of the discussion

one can apply the rules (11.3) and check that even the matter content of the dual theories
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Figure 11.2: Quiver diagram for the second type of the Seiberg duality

gives the same contribution to the free energy. We distinguish three sectors: the fields

charged under Ni, the adjoints and the bifundamentals uncharged under Ni, and we show

that each sector separately contributes with the same terms.

The two pairs of bifundamental fields Xi,i±1 and Xi±1,i contribute to the free energy

as

∆Fi = −(1−∆)

∫
ρ2(δy2

i−1,i −
4

3
π2∆(2−∆))−∆

∫
ρ2(δy2

i,i+1 −
4

3
π2∆(1 + ∆)) (11.11)

while in the dual phase this contribution is

∆Fi = −∆

∫
ρ̃2(δ̃y2

i−1,i −
4

3
π2∆(1 + ∆))− (1−∆)

∫
ρ̃2(δ̃y2

i,i+1 −
4

3
π2∆(2−∆)) (11.12)

The rules (11.3) map the new ỹ variables in the former ones as

δ̃yi±1,i = −δyi∓1,i (11.13)

By substituting (11.13) in (11.12) formula (11.11) is recovered (with ρ = ρ̃ as in Fcl).

The second contribution to the one loop free energy comes from the adjoint fields. In

the electric theory this contribution vanishes, because there are no adjoints for the nodes

Ni±1. In the dual theory there are two adjoint fields and their contribution is

∆Fi±1 =
2

3
π2

2∑
α=1

∆α(1−∆α)(2−∆α)

∫
ρ2dx (11.14)

In this case ∆1 = 2∆ and ∆2 = 2(1−∆) and the sum is vanishing, as in the other phase.
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The last contribution comes from the other matter fields. The integrals are the same

in both the phases and the relation (11.2) guarantees that δyαβ = δ̃yαβ if α 6= i 6= β. This

proves that the dual theories have the same F even before the extremisation.

The second case is similar to the former one and we refer to it in the figure 11.2. By

repeating the analysis on the superpotentials above one finds a distribution of R charges

as in figure 11.2. Then the analysis in straightforward. Indeed the contributions of the CS

term and the one loop contribution of the bifundamental fields are exactly as before, while

the contribution from the adjoints is trivially the same, since there is no y dependence

for the adjoints and they have the same R charge.

Let us conclude this chapter with some comments. An extension of our work is study-

ing the role of the subleading contributions in the dualities that we checked here. Indeed,

as we observed, the finite k contribution in the dual gauge group gives a leading contri-

bution at large N which cancels because the theory is vector like. A deeper check should

consist of matching the subleading contributions between the dual phases. Moreover one

should study the existence of similar dualities among theories completely unrelated in

four dimensions. Usually the dual phases are obtained by unhiggsing. In many cases the

unhiggsing involves a bifundamental field and a chiral like theory is generated,. Anyway

by unhiggsing an adjoint field the daughter theory is still vector like. For example this

is the case for the third phase of D3 discussed in [180]. This duality relates the classical

mesonic moduli spaces, but a better check should be the matching of the free energy at

large N .
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Chapter 12

An alternative formula

In this section we construct a function quartic in the R charges, that reproduces the

volume formula from the toric diagram / the free energy. It is an attempt for a three

dimensional generalisation of [20], in which it was shown that the volume minimisation

is equivalent to the a-maximisation in field theory. In [20] the authors computed the

‘geometrical R charges’ from the toric data and provided a formula for the a-function in

terms of these geometrical R charges and the data of the toric diagram. Then in [158]

it was observed that this formula could be simplified by imposing the constraints of the

superpotential. The final result for the geometrical version of the a-function is

ag =
1

4

∑
〈vi, vj, vk〉RiRjRk (12.1)

where vi represent the external points of the toric diagram, 〈·, ·, ·〉 is the area of the

oriented surface generated by every set i, j, k of external points and Ri are the R-charges

associated to each point of the diagram, which represent the set of fields in a given perfect

matching. This cubic formula corresponds to the sum of the areas among the external

points weighted by the R charges of their PM.

One may be tempted to extend (12.1) to the three dimensional case. Here the field

theory candidate for the matching with the geometric data is the free energy. Then, our

candidate geometrical version of the free energy, Fg, is

F 2
g =

1

6

∑
〈vi, vj, vk, vl〉RiRjRkRl (12.2)

We observe that (12.2) reproduces the Z function in all cases without internal lines or

surfaces in the toric diagram. If there are internal lines or surfaces, we did not find

any example in which (12.2) reproduces the Z function. Surprisingly, by adding some
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contribution related to the internal lines and surfaces we have reproduced the geometric

Z as a function of the Reeb vector. We have not found a derivation for a general formula

but we will show the equivalence in several examples. The most interesting result is that

in all the examples only a quartic correction in the R charges associated to the external

points of the toric diagram is needed in order to identify F 2
g ' 1/Z.

We therefore conjecture that this can always be done. If proven to be true, and if the

corrected Fg equals the field theoretical free energy, our discussion would offer a simpler

extremisation problem than the large N limit of the localised free energy. Some extensions

of the ideas in this chapter have appeared in [149].

Before we show our ideas with some examples, let pause for two comments. It is

important to stress that this relation between F 2
g and Z does not involve any information

about the dual field theory and applies directly to the toric diagram. This implies that

it is not necessary to know the field theory dual, to state the correspondence between F 2
g

and Z it is enough to have control over the geometry of the mesonic moduli space. It

follows that the Fg function we define cannot solve the problems discussed in [18] for the

large N scaling of the free energy in chiral theories.

Another observation is that here we simply define the R charges of the perfect match-

ings associated to the external points of the toric diagram, and we do not relate them to

any field theory description. With this procedure our candidate Fg is always polynomial

in the R charges, contrary with the known examples computed in the literature [18, 138]

and in chapter 10, where the free energy at large N is a rational function of the R charges

of the fields and monopoles. We checked in every example that the large N free energy

and our geometrical Fg coincide once the symmetries among the perfect matchings are

imposed.

The existence of this quartic object on the geometric side makes it very tempting to

speculate about a quartic function that one can define in the field theory. This would be

computationally much simpler than the current F and might overcome the problems with

the chiral theory. It is, however, highly speculative to think about such a function.
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12.1 Examples

The first case that we discuss is D3. In this case the toric diagram is

GT =


0 1 0 1 0 1

0 0 1 1 0 0

1 1 0 0 0 0

1 1 1 1 1 1

 (12.3)

The Z function in terms of the trial Reeb vector is

Z =
16

(b1b2b3(4 + b1 − b2)(b3 − 4))
(12.4)

The R charges associated to the six external points become Ri = 2Vol(Σi)/Z. In this case

we find that the conjectured geometrical free energy becomes

F 2
g =

1

6

∑
〈vi, vj, vk, vl〉RiRjRkRl =

b1b2b3(4 + b1 − b2)(b3 − 4)

16
(12.5)

and F 2
gZ = 1. Even if the (12.5) is a polynomial function while (10.24) is a rational

function they match once the symmetries among the PM are imposed.

Consider the general class of toric diagrams 1

GT =


x1 0 0 x4 0

x2 0 x3 0 0

0 0 0 0 x5

1 1 1 1 1

 (12.6)

with the constraint coming from the convexity x1x3 + x2x4 − x3x4 > 0. The Z function
is given by

Z =
((4x5(x2((b2 − 4x5)x1x3 + b1x5(x3 − x2))x4 + b3x5x1x3(x4 − x1)))

(b1b2b3(b3x5x1 + (b2 − 4x5)x1x3 + b1x5(x3 − x2))(b3x5(x4 − x1) + x2(b1x5 + (b2 − 4x5)x4))))
(12.7)

By choosing xi > 0 and x1x3 + x2x4 − x3x4 > 0 the geometric F 2
g becomes

F 2
g =

1

6

(3b1b2b3(b3x5x1 + (b2 − 4x5)x1x3 + b1x5(x3 − x2))(b3x5(x4 − x1) + x2(b1x5 + (b2 − 4x5)x4))))

((2x5(x2((b2 − 4x5)x1x3 + b1x5(x3 − x2))x4 + b3x5x1x3(x4 − x1)))
(12.8)

and again ZF 2
g = 1.

1Up to SL(4,Z) transformations this class generalises to every example of the class C2 ×C where the

C2 basis refers to a four-dimensional parent theory with four external points.

125



We now move to a vector-like example which requires a correction. It can be obtained

by modifying the toric diagram of the D3 theory. We consider a basis with four points

(0, 0, 0) (1, 0, 0) (0, 1, 0) and (1, 1, 0) as in D3 but we modify the two points in the z

directions, such that they are not associate to the splitting of two points on the same line

on the plane (x, y). This is not associated to an SL transformation and the toric diagram

should describe a different model (for example it can by obtained by an appropriate

un-higgsing of the ABJM model). The toric diagram is

GT =


0 0 1 1 0 1

0 1 0 1 0 1

0 0 0 0 1 1

1 1 1 1 1 1

 (12.9)

The Z function is

Z =
(16((b1 − b2)2 − 16) + 8(8 + b1b2 − 2b1 − 2b2)b3)

(b1b2b3(b1 − 4)(b2 − 4)(b1 − b2 − b3 + 4)(b1 − b2 + b3 − 4))
(12.10)

while F 2
g , if computed from (12.2), does not reproduce the expected result and it is a

complicate expression. However we observe that in this case there exist two internal lines,

connecting the points 1, 6 and 4, 5, and an internal plane which passes through the points

1, 4, 5 and 6. As we discussed above a correction proportional to ∆F 2
g = −2(R1R6−R4R5)2

can be added to F 2
g . With this correction it is straightforward to observe that F 2

g and

1/Z match.

We can consider another class of vector-like models in which (12.2) does not coincide

with Z. We refer to this class as S̃PP (−m−1,m,1) (with m > 0). The toric diagram is given

by

GT =


0 2 0 1 1 1

0 0 1 1 0 0

0 m− 1 0 0 −1 m

1 1 1 1 1 1

 (12.11)

In this case the F 2
g function reproduces the Z function only after the deformation

∆F 2
g =

4(mR2
1R

2
4 − 2R1R2R3R4 +mR2

2R
2
3)

m+ 1
(12.12)

It is interesting to observe that the formula is still quartic and the deformation of Fg

involves all the sets of coplanar and collinear external points .

The last examples that we analyse are associated to the chiral-like cases investigated

in the thesis, M111 and Q222. If the intuition that we got from the other examples is
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correct one must add a contribution proportional to all the possible internal planes and

lines, by a quartic combination of their charges.

Let us turn to the first of the two examples, where the toric diagram is

GT =


1 0 −1 0 0

0 1 −1 0 0

0 0 0 k1 −k2

1 1 1 1 1

 (12.13)

with k1, k2 > 0. This diagram reduces to M111/Zk for k1 = k2. We found that the

geometrical F 2
g and the Z function may be identified if a correction

∆F 2
g = −4(k1 + k2)3

9k1k2

R2
4R

2
5 (12.14)

is added to F 2
g (where R4 and R5 refer to the points with k1 and −k2 splitting.

In the second case, Q222, the expression for Fg reduces to the Z function only after adding

the correction

∆F 2
g = 4(R1R2 +R3R4 +R5R6)2 − 8(R2

1R
2
2 +R2

3R
2
4 +R2

5R
2
6) (12.15)

We see that even in this case it is possible to express the free energy as a set of quartic

combinations of the R charges.

It would be interesting to find a derivation of this result like in [20] and to see if it

provides, at least in the toric case, a different way for the computation of the free energy

instead of the localisation of [14].
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Appendix A

Notations and Conventions

A.1 Spinor conventions N = 1 Lorentzian

In this appendix we collect our spinor conventions. The Clifford(1, 4) gamma matrices γα

satisfy

{γα, γβ} = 2 ηαβ , γ†α = γ0γαγ0 , γtα = CγαC
−1 , (A.1)

where the five-dimensional charge conjugation matrix C satisfies C = −Ct = C∗ = −C−1.

We adopt a representation of the Clifford algebra in which the first four gamma matrices

are real, while γ5 = iγ0γ1γ2γ3 is purely imaginary. Then γ1, γ2, γ3 are symmetric, while

γ0 and γ5 are anti-symmetric. In this case, a consistent choice of the charge conjugation

matrix is C = iγ0γ5. Our spinors are commuting. Furthermore, for five-dimensional

spinors, the symplectic-Majorana condition is

ε̄I = (εI)tC , (A.2)

where εI , I = 1, 2, are Dirac spinors and we define ε̄I = εIJεJ †γ0, with εIJ being the

antisymmetric symbol, such that ε12 = +1. So a symplectic-Majorana pair εI carries in

total eight real degrees of freedom.

A.2 Spinors & Conventions N = 2

Throughout the thesis Greek indices denote Lorentz signature. The indices µ, ν, . . . are

curved and α, β, · · · = 0, 1, 2, 3 are flat. Similarly, we use Roman indices for Euclidean

spaces. More explicitly, m,n, . . . are curved while a, b, · · · = 1, 2, 3, 4 are flat. We de-
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note with x, y, . . . flat “spatial” indices running from 1 to 3, both in Euclidean and in

Lorentzian signature.

A.2.1 Lorentzian Signature

We work with a mostly plus signature, (ηαβ) = (−,+,+,+). The conventions for our

gamma matrices are

γ∗µ = γµ γ†µ = γ0γµγ
0 γ = iγ0γ1γ2γ3 γ∗ = γT = −γ . (A.3)

Following the conventions in [123], we have supersymmetry parameters that are chiral

spinor doublets of SU(2)

εi+ ε−i =
(
εi+
)∗

η+i ηi− = (η+i)
∗ (A.4)

and we define

ε̄+i =
(
εi+
)†
γ0 ε̄i− = (ε−i)

† γ0 . (A.5)

We can use the SU(2) invariant tensor to raise and lower indices

ε+i = εijε
j
+ εi− = εijε−j ηi+ = εijη+j η−i = εijη

j
− , (A.6)

where ε12 = ε12 = 1. Note that this is different to the conventions in [123]. As opposed to

there, for us the SU(2) index position does not denote chirality but the SU(2) represen-

tation: we allow for raising and lowering with εij and put explicit labels +/− to indicate

chirality. The reader who wants to compare with [123] should contract with εij whenever

the index structure of a spinor here is different from its analogous spinor there.

In our conventions, the (anti-)selfduality conditions read

εαβ
γδΩ±γδ = ±2iΩ±αβ . (A.7)

Note that (Ω+)
∗

= Ω−.

Let us also summarise some details on the symbols ηx. They enter our equation

through the identity

σασβ = −ηxαβσx + δβα1

and they obey the following orthogonality and self-duality relations

ηxαβη
γδ
x = iεαβ

γδ − 2δ[α
γδβ]

δ ηxαβη
αβ
y = −4δxy

εxyzηyαβη
γδ
z = −4iδ[α

[γηxβ]
δ] εαβ

γδηxγδ = 2iηxαβ
(A.8)

where εxyz = ε0xyz and ε0123 = 1.
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A.2.2 Euclidean Signature

We work with gamma matrices

γ∗m = γTm = BγmB
−1 with B∗ = BT = −B−1 = −B

γ = γ1γ2γ3γ4 γ∗ = γT = γ .
(A.9)

The supersymmetry parameters are symplectic Majorana-Weyl(
εi+
)c

= iεijε
j
+ (ε−i)

c = −iεijε−j (η+i)
c = −iεijη+j

(
ηi−
)c

= −εijηj−, (A.10)

where (ε)c ≡ B−1ε∗ and the position of the SU(2) index distinguishes the two represen-

tations. We also define

ε†+i =
(
εi+
)†

ε†i− = (ε−i)
† (A.11)

Again, εij is used to raise and lower indices

ε+i = εijε
j
+ εi− = εijε−j ηi+ = εijη+j η−i = εijη

j
− , (A.12)

where ε12 = ε12 = 1.

We use conventions with (anti-)selfduality conditions as

εab
cdΩ±cd = ∓2Ω±ab . (A.13)

The t’Hooft symbols η in Euclidean signature appear in the identities

σaσ̄b = iη̄abx σ
x + δab1

σ̄aσb = iηabx σ
x + δab1 .

(A.14)

They obey the following orthogonality and self-duality relations

η̄xabη̄
cd
x = −εabcd + 2δ[a

cδb]
d η̄xabη̄

ab
y = 4δxy

ηxabη
cd
x = εab

cd + 2δ[a
cδb]

d ηxabη
ab
y = 4δxy

εxyzη̄yabη̄
cd
z = 4δ[a

[cη̄xb]
d] εab

cdη̄xcd = −2η̄xab

εxyzηyabη
cd
z = 4δ[a

[cηxb]
d] εab

cdηxcd = 2ηxab

(A.15)

where εxyz = εxyz4 and ε1234 = 1.
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Appendix B

Intrinsic torsions and differential

forms in N = 1 Lorentzian

In this appendix we will explain how to obtain the system (4.13), which allows to compute

the intrinsic torsions p and q by using differential forms and exterior differentials only,

and not spinors. We will also give explicit expressions for the differentials and covariant

derivatives of the vielbein {z, e−, w, w̄} and the two form ω corresponding to a conformal

Killing spinor.

We start with the derivation of system (4.13), consisting of the derivatives of the

elements of the vielbein. The easiest to compute is dz, (4.13a). z is a spinor bilinear, as

can be seen in (4.1); so its derivative can be computed in the standard way. We actually

even gave its covariant derivative in (4.17); indeed by anti-symmetrising its µ and ν indices

one obtains (4.13a).

dw and de− are trickier because w and e− are not directly expressed as bilinears of ε+;

as explained in section 4.1.1, they are an additional piece of data, subject to the ambiguity

(4.8). The two-form ω, on the other hand, is a bispinor, defined in (4.1), and one can

compute dω again in a standard way; one gets (4.14b). Now, since w is that ω = z ∧ w,

from d(z ∧ w) = z ∧ dw − dz ∧ w one sees that

z ∧ dw = −2iImp ∧ z ∧ w − 2q ∧ e− ∧ z ; (B.1)

from this, it follows that one can write dw as in (4.13b), for some one-form ρ.

We can give an alternative characterisation of ρ by computing dw in a different way:

namely, by writing

ε̄−γµe
−ε+ = −4(e−)νωµν = 8wµ (B.2)
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and deriving the left hand side. For this, we need to compute

Dµ(e−ε+) = [Dµ, e
−]ε+ + e−(pµε+ + qµe

−ε−) = (Dµe
−
ν + pµe

−
ν )γνε+ =

= −wµDµe
0
νε− +

(
pµ +

1

2
zνDµe

−
ν

)
e−ε+ . (B.3)

Here we have used the definition (4.12) of the intrinsic torsions, and (4.11). Using this

and (B.2), we get again (4.13b), where now we see that

ρµ =
1

4
wνDµe

−
ν , Repµ = −1

4
zνDµe

−
ν . (B.4)

This now suggests a way of computing e−. Using

e−µ =
1

16
ε̄+e

−γµe
−ε+ , (B.5)

the expression for Dµ(e−ε+) computed in (B.3), and the formula for ρ in (B.4), we obtain

(4.13c).

The system of equations (4.13) is general and applies to any vielbein constructed from

a chiral fermion ε+ as explained in section 4.1.1; ε+ is not assumed to satisfy any particular

differential equation. It is of some interest to go on-shell and write the derivatives of the

elements of a vielbein corresponding to a solution of the CKS equation (4.15). Imposing

the constraints (4.16) on the torsions we have

dz = 2Re(q · w̄)e− ∧ z + 2Im(q · w̄)iw ∧ w̄ + 4Re((q · e−)z ∧ w̄) ,

dw =
(
2iA+ (Re(q · w̄) + 3iIm(q · w̄)) e− − (q · e−)w̄

)
∧ w − 2σ ∧ z , (B.6)

de− = 4Re(σ ∧ w̄) ,

where σ = ρ− 1
2
(q · e−)e−. Equation (4.21) easily follows from these equations. By con-

struction, the set of equations (B.6) implies that z is conformal Killing. These equations

are also interesting because they can be used to determine the gauge field A.

In the new minimal case, using (4.37) and the definition a = A+ 3
2
v we find

dz = i ιv(z ∧ w ∧ w̄),

dw = 2i

(
a− 3

4
(v · e−)z − 1

2
(v · w)w̄

)
∧ w − 2σ ∧ z , (B.7)

de− = 4Re(σ ∧ w̄) ,

from which equations (4.42) follows. The set of equations (B.7) implies that z is Killing.

They allow to determine uniquely the background fields a and v.
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Finally, we also give some expressions for the covariant derivatives of the forms z and

ω corresponding to a solution of the CKS equation, which have been used in the bulk to

boundary comparison in section 4.3. The expressions are not particularly nice in terms

of the torsions p and q but become simple if we replace q with the vector v using (4.37).

This formal redefinition can be used both in the case of solutions of the CKS equation

and in the case of solutions of the new minimal conditions. As discussed in section 4.2,

the only difference between the two cases is that, for conformal Killing spinors, v has a

complex part given by (4.38). We also use a = A + 3
2
v. By explicitly differentiating the

bilinears z and ω and using (4.16), we find

∇νzµ = 2 Imv[µzν] + Revτ (∗z)µντ − gµνzτ Imvτ , (B.8)

∇τωµν = 2iAτωµν + i(v ∧ ω)µντ + i(gντv
σωµσ − gµτvσωνσ) . (B.9)

As expected, by symmetrising and anti-symmetrising and using (4.37) and (4.38) we

recover known formulae: (4.18), the first expression in (B.6) and (4.42).

134



Appendix C

The Z-function for arbitrary trial

Reeb vector

Here we compute the volumes 12/π4Z(bi) of the Sasaki-Einstein manifolds dual to the

field-theoretical models we will be interested in the rest of the thesis. In the case of

toric manifolds, the computations only need the knowledge of the toric diagram and the

volumes are rational functions of the trial Reeb vector b = (bi)i=1...4. By identifying

ai(b) = 2VolΣi/Z, these results are in agreement with the ones discussed in the thesis.

C× C. The toric diagram is shown in figure 10.1, it is spanned by the vectors

Gt =


2 0 0 1 1

0 0 −1 0 0

1 0 0 1 0

1 1 1 1 1

 , (C.1)
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and, applying the standard techniques discussed above, we find the volumes at trial Reeb

vector

VolΣ1 =
−1

b2 (4 + b2 − b3) (4− b1 + b2 + b3)
,

VolΣ2 =
1

b2b3 (b3 − b1)
,

VolΣ3 =
4 + b2

(4 + b2 − b3) b3 (b1 − b3) (4− b1 + b2 + b3)
,

VolΣ4 =
1

b2 (4 + b2 − b3) (b3 − b1)
,

VolΣ5 =
−1

b2b3 (4− b1 + b2 + b3)
,

Z =
4 (4 + b2)

b2 (4 + b2 − b3) b3 (−b1 + b3) (4− b1 + b2 + b3)
, (C.2)

with Z ≡
∑5

i=1 VolΣi = 12Vol(H)/π4.

S̃PP . The toric diagram for the SPP is

Gt =


0 0 −1 −1 0 0

0 2 0 1 1 1

0 k2 − k3 0 0 −k3 k2

1 1 1 1 1 1

 , (C.3)

shown in figure 10.2 for the case k2 = k3 = −1. Note that we have chosen a different

SL(4,Z) frame then in chapter 12. We can compute the volumes

VolΣ1 =
k2 + k3

b1 (b2k2 − b3) (b3 + b2k3)
,

VolΣ2 =
k2 + k3

b1 (b3 + (4− b2) k2 + (4 + b1) k3) ((4 + b1) k2 + (4− b2) k3 − b3)
,

VolΣ3 =
(k2 + k3) (b3 (k2 − k3) + (4 + b1 + b2) k2k3)

(b3 − (4 + b1) k2) (b2k2 − b3) (b3 + (4 + b1) k3) (b3 + b2k3)
,

VolΣ4 =
−(k2+k3)((4+b1)k22+(4−b2)k2k3+(4+b1)k23+b3(k3−k2))

(b3−(4+b1)k2)(b3+(4+b1)k3)(b3+(4−b2)k2+(4+b1)k3)(b3−(4+b1)k2−(4−b2)k3)
,

VolΣ5 =
b3 (k2 + k3) + k3 (4k2 + (4 + b1) k3)

b1 (b3 + (4 + b1) k3) (b3 + (4− b2) k2 + (4 + b1) k3) (b3 + b2k3)
,

VolΣ6 =
b3 (k2 + k3)− k2 ((4 + b1) k2 + 4k3)

b1 ((4 + b1) k2 − b3) (b3 − b2k2) ((4 + b1) k2 + (4− b2) k3 − b3)
.
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The formula for Z is lengthy, we refrain from an explicit expression here. Note, neverthe-

less the two special cases D3, corresponding to CS levels (1,−1, 0), and SPP2−1−1,

ZD3 =
16

b1b3 (4 + b1 + b3) (4− b2 − b3) (b2 + b3)
,

ZSPP2−1−1 =
8 (b3

1 + b2
1 (20− b2) + b1 (128− 8b2 + b2

2 − 3b2
3) + 16 (16− b2

3))

b1

(
(4 + b1)2 − b3

2
) (

(8 + b1 − b2)2 − b2
3

)
(b2

3 − b2
2)

. (C.4)

C̃/Z2. The toric diagram is spanned by

Gt =


1 1 0 0 0 0 1 1

0 −2 0 −2 −1 −1 −1 −1

0 0 0 0 −1 1 0 0

1 1 1 1 1 1 1 1

 , (C.5)

which gives the volumes

Vol(Σ1) =
2 (4− b1 − b2)

((4− b1) 2 − b2
3) (b2

2 − b2
3)
,

Vol(Σ2) =
2 (12− b1 + b2)

((4− b1) 2 − b2
3) ((8 + b2) 2 − b2

3)
,

Vol(Σ3) =
2

b1 (b2
2 − b2

3)
,

Vol(Σ4) =
2

b1 ((8 + b2) 2 − b2
3)
,

Vol(Σ5) =
2 (4 + b3)

b1 (4− b1 + b3) (b3 − b2) (8 + b2 + b3)
,

Vol(Σ6) =
−2 (4− b3)

b1 (4− b1 − b3) (8 + b2 − b3) (b2 + b3)
,

Z =
18 (b1 (32 + 8b2 + b2

2 − b2
3) + 8 (b2

3 − 16))

kπ2b1((4− b1)2 − b2
3)((8 + b2)2 − b2

3)(b2
3 − b2

2)
. (C.6)

ABJM/Z2. The toric diagram in figure 10.4 is spanned by

Gt =


1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

2 0 0 0 1 1 0 0

1 1 1 1 1 1 1 1

 , (C.7)

137



which gives the volumes

Vol(Σ1) =
2

(b3 − 2b1) (4 + b1 − b2 − b3) (4 + b1 + b2 − b3)
,

Vol(Σ2) =
2

(4 + b1 − b2 − b3) (4 + b1 + b2 − b3) b3

,

Vol(Σ3) =
2

(b3 − 2b1) (4 + b1 − b2 − b3) b3

,

Vol(Σ4) =
2

(4 + b1 + b2 − b3) b3 (b3 − 2b1)
,

Z =
16

(4 + b1 + b2 − b3) b3 (b3 − 2b1) (4 + b1 − b2 − b3)
. (C.8)

Q222/Zk. The toric diagram for k = 1 is given by

Gt =


1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

1 1 1 1 1 1 1 1

 (C.9)

The volume of Q222/Zk is proportional to the minimum of

Z =
32(b2

1 + b2
2 + b2

3) + b4
1 + b4

2 + b4
3 − 2(b2

1b
2
2 + b2

1b
2
3 + b2

2b
2
3)− 768

−
√∏

α,β,γ,δ=±1 (4α + βb1 + γb1 + δb3)
(C.10)

In this case no computation is actually needed: by the symmetry of the Z function, the

minimum is found for b1 = b2 = b3 ≡ b and the variational problem further sets b = 0.

Then, the volume of the compact manifold is given by

vol(Q222) =
π4

12
Z =

π4

16
(C.11)

M111/Zk. The toric diagram for this geometry is specified by

Gt =


1 −1 0 0 0 0

0 −1 1 0 0 0

0 0 0 1 −1 0

1 1 1 1 1

 (C.12)

and the corresponding Z function is

Z = − 723 (b2
3 − 3 (b2

1 − b1b2 + b2
2 − 16))

(b2
3 − (4 + b1 − 2b2)2) (b2

3 − (4− 2b1 + b2)2) (b2
3 − (4 + b1 + b2)2)

(C.13)

138



The b1 and b2 components of the trial Reeb vector b = (4, b1, b2, b3) can be fixed by the

symmetries to be equal. By minimising this function the components of b are b1 = b2 =

b3 = 0 and all the R charges of the fields become 2/3 while the monopole charge vanishes.

The volume of the compact manifold M111 is

vol(M111) =
π4

12
Z =

9π4

128
(C.14)
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Appendix D

Summary of the treatment for chiral

quivers at large N

The main idea of [171] is to make manifest in the integrand of the matrix model the reflec-

tion λ→ −λ, which naively is a symmetry of the problem but which is lost in the standard

saddle point approach. Roughly, this is done by re-writing Z = 1
2

∫
dλ[exp(−F (λ)) +

exp(−F (−λ))], where we use a very condensed notation for the set of {λ(a)
i }.1 Since the

integration limits are symmetric, this really is a mere re-writing.

However, computing the saddle point equations leads to a potentially different result.

The equations one obtains are very complicated, in order to solve them we had to make

the simplifying assumption of a symmetric eigenvalue distribution. This is a strong as-

sumption, in all the vector-like examples above it holds on-shell, but not off-shell. It turns

out that the equations of motion that follow from this explicitly symmetrised ansatz will

not suffer from contributions of the problematic long range forces.

Note that this ‘vectorialisation’ of the field theory closely resembles the one found in

the weak coupling case [171], where it was observed that at two loop order the contribution

coming from a field in a representation of the gauge group is the same of that coming

from a field in the conjugate representation, even at finite N .

Let us briefly browse through some of the results in [4] obtained at strong cou-

pling. Two models of interest are the field theories with moduli spaces C(Q222)/Zk and

C(M111)/Zk. The quiver diagram for these theories is given in 10.4 and D.1 with Chern-

Simons levels (k, k,−k,−k) and (k, k,−2k), respectively. With the assumption of a sym-

metric eigenvalue distribution, we computed the on-shell value of the volume via the free

1In fact, we should symmetrise with respect to all λ
(a)
i ’s.
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1

23

Figure D.1: Quiver diagram for M111.

energy (10.10) for these two cases as

Vol(Q222/Zk) =
π4

16k
Vol(M111/Zk) =

9π4

128k
, (D.1)

which agree with the values found in the literature. We did not observe a matching of

F with the geometry before extremisation. Given that in the well understood vector-like

theories the off-shell eigenvalue distribution is not symmetric anymore, we are not too

surprised about this.

Despite this motivating result, we leave many open problems that deserve further

studies. Since the symmetrised free energy functional is technically so hard to control,

our computations relied on the simplifying assumption on the eigenvalue distribution.

This is clearly a huge limitation. First, as we have seen does it make it impossible to

check the proposal off-shell. Furthermore, we can trust our free energy computation only

for theories with expected vanishing monopole charge, which is why we had to restrict

our analysis to few models. It would be interesting to study the more general case, for

instance on a large cluster of computers.

There are also other issues. The field theory dual to AdS4×Q111/Zk has no expected

monopole charge on-shell and in principle we should be able to understand it in our sim-

plified approach. We found a solution with a well-behaved free energy scaling F ∝ N3/2,

but the field theory computation for the volume does not match with the supergravity

one.

Similarly, we would like to comment on the dual phases of our models proposed in

[156, 180, 181]. Strictly speaking, these dualities have been derived for vector-like models,

but they were shown to be also applicable to some chiral-like theories, namely Q111/Zk

and Q222/Zk. The latter has a toric phase which is the analog of the Phase II of F0 in

four dimensions. We applied our procedure to this phase as well and got a result which

differs from the expected one.
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These mismatches are a severe problem that might rule out the validity of our modified

saddle point technique. However, notice that the full understanding of the quantum

corrected moduli space of chiral theories is intricate. It certainly would be rewarding to

see if an extension of the field theory models along the lines of [145] shed light on some

of the open problems reported here.

The understanding of ‘chiral’ theories in three dimensions remains the big open ques-

tion in this subject. We hope that our results can give a small contribution on the way

to a more complete picture.
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gravity,” Phys. Lett. B76 (1978) 54.

[71] T. Kugo and S. Uehara, “Conformal and Poincare Tensor Calculi in N = 1 Super-

gravity,” Nucl.Phys. B226 (1983) 49.

[72] M. F. Sohnius and P. C. West, “An Alternative Minimal Off-Shell Version of N = 1

Supergravity,” Phys. Lett. B105 (1981) 353.

[73] C. Closset, T. T. Dumitrescu, G. Festuccia, and Z. Komargodski, “The Geometry

of Supersymmetric Partition Functions,” 1309.5876.

[74] J. P. Gauntlett and J. B. Gutowski, “All supersymmetric solutions of min-

imal gauged supergravity in five dimensions,” Phys.Rev. D68 (2003) 105009,

hep-th/0304064.

[75] M. M. Caldarelli and D. Klemm, “All supersymmetric solutions of N=2, D = 4

gauged supergravity,” JHEP 0309 (2003) 019, hep-th/0307022.

[76] M. C. Cheng and K. Skenderis, “Positivity of energy for asymptotically locally AdS

spacetimes,” JHEP 0508 (2005) 107, hep-th/0506123.

[77] L. Romans, “Gauged N=4 supergravities in five-dimensions and their magnetovac

backgrounds,” Nucl.Phys. B267 (1986) 433.

[78] B. de Wit, J. van Holten, and A. Van Proeyen, “Transformation Rules of N=2

Supergravity Multiplets,” Nucl.Phys. B167 (1980) 186.

[79] B. de Wit, J. van Holten, and A. Van Proeyen, “Structure of N=2 Supergravity,”

Nucl.Phys. B184 (1981) 77.

[80] A. Das, M. Kaku, and P. K. Townsend, “A unified approach to matter coupling in

Weyl and Einstein supergravity,” Phys. Rev. Lett. 40 (1978) 1215.

148

http://arXiv.org/abs/1305.0499
http://arXiv.org/abs/1307.6567
http://arXiv.org/abs/1208.6221
http://arXiv.org/abs/1309.5876
http://arXiv.org/abs/hep-th/0304064
http://arXiv.org/abs/hep-th/0307022
http://arXiv.org/abs/hep-th/0506123


[81] E. Sezgin and Y. Tanii, “Superconformal sigma models in higher than two- dimen-

sions,” Nucl. Phys. B443 (1995) 70–84, hep-th/9412163.

[82] E. Bergshoeff, S. Cecotti, H. Samtleben, and E. Sezgin, “Superconformal Sigma

Models in Three Dimensions,” Nucl. Phys. B838 (2010) 266–297, 1002.4411.

[83] W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, vol. 2. Springer,

2004.

[84] A. Lichnerowicz, “Killing spinors, twistor-spinors and Hijazi inequality,” Journal of

Geometry and Physics 5 (1988), no. 1, 1–18.

[85] H. Baum, “Conformal Killing spinors and special geometric structures in Lorentzian

geometry — a survey,” math/0202008.

[86] J. Lee and T. Parker, “The Yamabe problem,” Bull. Amer. Math. Soc 17 (1987),

no. 1, 37–81.

[87] R. Schoen, “Conformal deformation of a Riemannian metric to constant scalar cur-

vature,” J. Differential Geom 20 (1984), no. 2, 479–495.

[88] O. Hijazi, “A conformal lower bound for the smallest eigenvalue of the Dirac operator

and Killing spinors,” Communications in Mathematical Physics 104 (1986), no. 1,

151–162.

[89] H. Lu, C. N. Pope, and J. Rahmfeld, “A construction of Killing spinors on Sn,” J.

Math. Phys. 40 (1999) 4518–4526, hep-th/9805151.

[90] H. Baum, “Complete Riemannian manifolds with imaginary Killing spinors,” Annals

of Global Analysis and Geometry 7 (1989), no. 3, 205–226.

[91] C. Bär, “Real Killing spinors and holonomy,” Communications in mathematical

physics 154 (1993), no. 3, 509–521.

[92] A. Lichnerowicz, “On the twistor-spinors,” Letters in Mathematical Physics 18

(1989), no. 4, 333–345.

[93] A. Moroianu, “Parallel and killing spinors on spinc manifolds,” Communications in

Mathematical Physics 187 (1997), no. 2, 417–427.

149

http://arXiv.org/abs/hep-th/9412163
http://arXiv.org/abs/1002.4411
http://arXiv.org/abs/math/0202008
http://arXiv.org/abs/hep-th/9805151


[94] M. Graña, R. Minasian, M. Petrini, and A. Tomasiello, “Supersymmetric

backgrounds from generalized Calabi–Yau manifolds,” JHEP 08 (2004) 046,

hep-th/0406137.

[95] D. Lust, P. Patalong, and D. Tsimpis, “Generalized geometry, calibrations and

supersymmetry in diverse dimensions,” JHEP 1101 (2011) 063, 1010.5789.

[96] H. Lawson and M. Michelsohn, Spin geometry, vol. 38. Princeton Univ. Pr., 1989.

[97] S. Chiossi and S. Salamon, “The intrinsic torsion of SU(3) and G2 structures,”

math/0202282.

[98] M. Sohnius and P. C. West, “The tensor calculus and matter coupling of the al-

ternative minimal auxiliary field formulation of N = 1 supergravity,” Nucl. Phys.

B198 (1982) 493.

[99] E. Ivanov and A. S. Sorin, “SUPERFIELD FORMULATION OF OSP(1,4) SU-

PERSYMMETRY,” J.Phys. A13 (1980) 1159–1188.

[100] I. L. Buchbinder and S. M. Kuzenko, Ideas and methods of supersymmetry and

supergravity, or a walk through superspace. IOP Publishing Ltd., Bristol, 1995.

[101] R. Penrose and W. Rindler, Spinors and space-time: spinor and twistor methods in

space-time geometry, vol. 2. Cambridge Univ. Pr., 1988.

[102] J. Lewandowski, “Twistor equation in a curved spacetime,” Classical Quantum

Gravity 8 (1991), no. 1, L11–L17.

[103] A. Tomasiello, “Generalized structures of ten-dimensional supersymmetric solu-

tions,” JHEP 1203 (2012) 073, 1109.2603.

[104] J. B. Gutowski, D. Martelli, and H. S. Reall, “All Supersymmetric solutions of

minimal supergravity in six dimensions,” Class.Quant.Grav. 20 (2003) 5049–5078,

hep-th/0306235.

[105] U. Semmelmann, “Conformal Killing forms on Riemannian manifolds,” Math. Z.

245 (2003), no. 3, 503–527, math/0206117.

[106] M. Walker and R. Penrose, “On quadratic first integrals of the geodesic equations

for type {22} spacetimes,” Comm. Math. Phys. 18 (1970) 265–274.

150

http://arXiv.org/abs/hep-th/0406137
http://arXiv.org/abs/1010.5789
http://arXiv.org/abs/math/0202282
http://arXiv.org/abs/1109.2603
http://arXiv.org/abs/hep-th/0306235
http://arXiv.org/abs/math/0206117


[107] F. Leitner, “About twistor spinors with zero in Lorentzian geometry,” SIGMA Sym-

metry Integrability Geom. Methods Appl. 5 (2009) Paper 079, 12.

[108] C. L. Fefferman, “Monge–Ampère equations, the Bergman kernel, and geometry of

pseudoconvex domains,” The Annals of Mathematics 103 (1976), no. 3, pp. 395–416.

[109] J. M. Lee, “The Fefferman metric and pseudohermitian invariants,” Transactions

of the American Mathematical Society 296 (1986), no. 1, pp. 411–429.

[110] J. P. Gauntlett, J. B. Gutowski, and N. V. Suryanarayana, “A deformation of

AdS5 × S5,” Class. Quant. Grav. 21 (2004) 5021–5034, hep-th/0406188.

[111] A. H. Chamseddine and W. Sabra, “Magnetic strings in five-dimensional gauged

supergravity theories,” Phys.Lett. B477 (2000) 329–334, hep-th/9911195.

[112] D. Klemm and W. Sabra, “Supersymmetry of black strings in D = 5 gauged super-

gravities,” Phys.Rev. D62 (2000) 024003, hep-th/0001131.

[113] D. Martelli, A. Passias, and J. Sparks, “The gravity dual of supersymmetric gauge

theories on a squashed three-sphere,” Nucl.Phys. B864 (2012) 840–868, 1110.6400.

[114] D. Martelli and J. Sparks, “The gravity dual of supersymmetric gauge theories on

a biaxially squashed three-sphere,” Nucl.Phys. B866 (2013) 72–85, 1111.6930.

[115] D. Martelli, A. Passias, and J. Sparks, “The supersymmetric NUTs and bolts of

holography,” Nucl.Phys. B876 (2013) 810–870, 1212.4618.

[116] D. Martelli and A. Passias, “The gravity dual of supersymmetric gauge theories on a

two-parameter deformed three-sphere,” Nucl.Phys. B877 (2013) 51–72, 1306.3893.

[117] N. Hama, K. Hosomichi, and S. Lee, “SUSY Gauge Theories on Squashed Three-

Spheres,” JHEP 1105 (2011) 014, 1102.4716.

[118] Y. Imamura and D. Yokoyama, “N=2 supersymmetric theories on squashed three-

sphere,” Phys.Rev. D85 (2012) 025015, 1109.4734.

[119] M. Rocek and P. van Nieuwenhuizen, “N ≥ 2 SUPERSYMMETRIC CHERN-

SIMONS TERMS AS d = 3 EXTENDED CONFORMAL SUPERGRAVITY,”

Class.Quant.Grav. 3 (1986) 43.

151

http://arXiv.org/abs/hep-th/0406188
http://arXiv.org/abs/hep-th/9911195
http://arXiv.org/abs/hep-th/0001131
http://arXiv.org/abs/1110.6400
http://arXiv.org/abs/1111.6930
http://arXiv.org/abs/1212.4618
http://arXiv.org/abs/1306.3893
http://arXiv.org/abs/1102.4716
http://arXiv.org/abs/1109.4734


[120] S. M. Kuzenko, U. Lindstrom, and G. Tartaglino-Mazzucchelli, “Off-shell

supergravity-matter couplings in three dimensions,” JHEP 1103 (2011) 120,

1101.4013.

[121] S. M. Kuzenko and G. Tartaglino-Mazzucchelli, “Three-dimensional N=2 (AdS)

supergravity and associated supercurrents,” JHEP 1112 (2011) 052, 1109.0496.

[122] M. Herzlich and A. Moroianu, “Generalized killing spinors and conformal eigenvalue

estimates for spin c manifolds,” Annals of Global Analysis and Geometry 17 (1999),

no. 4, 341–370.

[123] A. van Proeyen, “N = 2 supergravity in d = 4, 5, 6 and its matter couplings.”

http://itf.fys.kuleuven.be/ toine/LectParis.pdf.

[124] B. de Wit and M. van Zalk, “Electric and magnetic charges in N=2 conformal

supergravity theories,” JHEP 1110 (2011) 050, 1107.3305.

[125] D. Rosa and A. Tomasiello, “Pure spinor equations to lift gauged supergravity,”

1305.5255.

[126] K. Hristov and A. Rota, “unpublished,”.

[127] N. Hama and K. Hosomichi, “AGT relation in the light asymptotic limit,”

1307.8174.

[128] N. Nekrasov and A. Okounkov, “Seiberg-Witten theory and random partitions,”

hep-th/0306238.

[129] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, “N=6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals,” JHEP 0810

(2008) 091, 0806.1218.

[130] D. L. Jafferis and A. Tomasiello, “A Simple class of N=3 gauge/gravity duals,”

JHEP 0810 (2008) 101, 0808.0864.

[131] D. Martelli and J. Sparks, “Moduli spaces of Chern-Simons quiver gauge theories

and AdS(4)/CFT(3),” Phys. Rev. D78 (2008) 126005, 0808.0912. %%CITATION

= 0808.0912;%%.

[132] A. Hanany and A. Zaffaroni, “Tilings, Chern-Simons Theories and M2 Branes,”

JHEP 10 (2008) 111, 0808.1244. %%CITATION = 0808.1244;%%.

152

http://arXiv.org/abs/1101.4013
http://arXiv.org/abs/1109.0496
http://arXiv.org/abs/1107.3305
http://arXiv.org/abs/1305.5255
http://arXiv.org/abs/1307.8174
http://arXiv.org/abs/hep-th/0306238
http://arXiv.org/abs/0806.1218
http://arXiv.org/abs/0808.0864
http://arXiv.org/abs/0808.0912
http://arXiv.org/abs/0808.1244


[133] J. L. Cardy, “Is There a c Theorem in Four-Dimensions?,” Phys.Lett. B215 (1988)

749–752.

[134] D. Anselmi, J. Erlich, D. Freedman, and A. Johansen, “Positivity constraints on

anomalies in supersymmetric gauge theories,” Phys.Rev. D57 (1998) 7570–7588,

hep-th/9711035.

[135] E. Barnes, K. A. Intriligator, B. Wecht, and J. Wright, “Evidence for the strongest

version of the 4d a-theorem, via a-maximization along RG flows,” Nucl.Phys. B702

(2004) 131–162, hep-th/0408156.

[136] Z. Komargodski and A. Schwimmer, “On Renormalization Group Flows in Four

Dimensions,” JHEP 1112 (2011) 099, 1107.3987.

[137] C. Closset, T. T. Dumitrescu, G. Festuccia, Z. Komargodski, and N. Seiberg, “Con-

tact Terms, Unitarity, and F-Maximization in Three-Dimensional Superconformal

Theories,” JHEP 1210 (2012) 053, 1205.4142.

[138] D. Martelli and J. Sparks, “The large N limit of quiver matrix models and Sasaki-

Einstein manifolds,” Phys.Rev. D84 (2011) 046008, 1102.5289.

[139] S. Cheon, H. Kim, and N. Kim, “Calculating the partition function of N=2 Gauge

theories on S3 and AdS/CFT correspondence,” JHEP 1105 (2011) 134, 1102.5565.

[140] A. Amariti, “On the exact R charge for N=2 CS theories,” JHEP 06 (2011) 110,

1103.1618.

[141] V. Niarchos, “Comments on F-maximization and R-symmetry in 3D SCFTs,”

J.Phys.A A44 (2011) 305404, 1103.5909.

[142] S. Minwalla, P. Narayan, T. Sharma, V. Umesh, and X. Yin, “Supersymmetric

States in Large N Chern-Simons-Matter Theories,” 1104.0680.

[143] A. Amariti and M. Siani, “Z-extremization and F-theorem in Chern-Simons matter

theories,” JHEP 1110 (2011) 016, 1105.0933.

[144] T. Morita and V. Niarchos, “F-theorem, duality and SUSY breaking in one-adjoint

Chern-Simons-Matter theories,” Nucl.Phys. B858 (2012) 84–116, 1108.4963.

[145] F. Benini, C. Closset, and S. Cremonesi, “Quantum moduli space of Chern-Simons

quivers, wrapped D6-branes and AdS4/CFT3,” JHEP 1109 (2011) 005, 1105.2299.

153

http://arXiv.org/abs/hep-th/9711035
http://arXiv.org/abs/hep-th/0408156
http://arXiv.org/abs/1107.3987
http://arXiv.org/abs/1205.4142
http://arXiv.org/abs/1102.5289
http://arXiv.org/abs/1102.5565
http://arXiv.org/abs/1103.1618
http://arXiv.org/abs/1103.5909
http://arXiv.org/abs/1104.0680
http://arXiv.org/abs/1105.0933
http://arXiv.org/abs/1108.4963
http://arXiv.org/abs/1105.2299


[146] A. Amariti and M. Siani, “F-maximization along the RG flows: A Proposal,”

1105.3979.

[147] R. Emparan, C. V. Johnson, and R. C. Myers, “Surface terms as counterterms in

the AdS / CFT correspondence,” Phys.Rev. D60 (1999) 104001, hep-th/9903238.

[148] C. P. Herzog, I. R. Klebanov, S. S. Pufu, and T. Tesileanu, “Multi-Matrix Models

and Tri-Sasaki Einstein Spaces,” Phys.Rev. D83 (2011) 046001, 1011.5487.

[149] A. Amariti and S. Franco, “Free Energy vs Sasaki-Einstein Volume for Infinite

Families of M2-Brane Theories,” JHEP 1209 (2012) 034, 1204.6040.

[150] A. Hanany and K. D. Kennaway, “Dimer models and toric diagrams,”

hep-th/0503149.

[151] S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh, et al., “Gauge theories from

toric geometry and brane tilings,” JHEP 0601 (2006) 128, hep-th/0505211.

[152] A. Hanany, D. Vegh, and A. Zaffaroni, “Brane Tilings and M2 Branes,” JHEP 0903

(2009) 012, 0809.1440.

[153] K. Ueda and M. Yamazaki, “Toric Calabi-Yau four-folds dual to Chern-

Simons-matter theories,” JHEP 12 (2008) 045, 0808.3768. %%CITATION =

0808.3768;%%.

[154] O. Aharony, O. Bergman, and D. L. Jafferis, “Fractional M2-branes,” JHEP 0811

(2008) 043, 0807.4924.

[155] A. Giveon and D. Kutasov, “Seiberg Duality in Chern-Simons Theory,” Nucl.Phys.

B812 (2009) 1–11, 0808.0360.

[156] A. Amariti, D. Forcella, L. Girardello, and A. Mariotti, “3D Seiberg-like Dualities

and M2 Branes,” JHEP 1005 (2010) 025, 0903.3222.

[157] D. R. Gulotta, J. Ang, and C. P. Herzog, “Matrix Models for Supersymmet-

ric Chern-Simons Theories with an ADE Classification,” JHEP 1201 (2012) 132,

1111.1744.

[158] S. Lee and S.-J. Rey, “Comments on anomalies and charges of toric-quiver duals,”

JHEP 0603 (2006) 068, hep-th/0601223.

154

http://arXiv.org/abs/1105.3979
http://arXiv.org/abs/hep-th/9903238
http://arXiv.org/abs/1011.5487
http://arXiv.org/abs/1204.6040
http://arXiv.org/abs/hep-th/0503149
http://arXiv.org/abs/hep-th/0505211
http://arXiv.org/abs/0809.1440
http://arXiv.org/abs/0808.3768
http://arXiv.org/abs/0807.4924
http://arXiv.org/abs/0808.0360
http://arXiv.org/abs/0903.3222
http://arXiv.org/abs/1111.1744
http://arXiv.org/abs/hep-th/0601223


[159] D. Forcella, A. Hanany, Y.-H. He, and A. Zaffaroni, “The Master Space of

N=1 Gauge Theories,” JHEP 08 (2008) 012, 0801.1585. %%CITATION =

0801.1585;%%.

[160] J. Distler, S. Mukhi, C. Papageorgakis, and M. Van Raamsdonk, “M2-branes on

M-folds,” JHEP 0805 (2008) 038, 0804.1256.

[161] N. Lambert and D. Tong, “Membranes on an Orbifold,” Phys.Rev.Lett. 101 (2008)

041602, 0804.1114.

[162] S. Franco, A. Hanany, J. Park, and D. Rodriguez-Gomez, “Towards M2-brane The-

ories for Generic Toric Singularities,” JHEP 0812 (2008) 110, 0809.3237.

[163] A. Hanany and Y.-H. He, “M2-Branes and Quiver Chern-Simons: A Taxonomic

Study,” 0811.4044. %%CITATION = 0811.4044;%%.

[164] W. Fulton, Introduction to Toric Varieties. Princeton University Press, 1993.

[165] D. Fabbri, P. Fre’, L. Gualtieri, C. Reina, A. Tomasiello, et al., “3-D superconformal

theories from Sasakian seven manifolds: New nontrivial evidences for AdS(4) /

CFT(3),” Nucl.Phys. B577 (2000) 547–608, hep-th/9907219.

[166] S. Benvenuti, B. Feng, A. Hanany, and Y.-H. He, “Counting BPS Operators in

Gauge Theories: Quivers, Syzygies and Plethystics,” JHEP 0711 (2007) 050,

hep-th/0608050.

[167] D. Martelli, J. Sparks, and S.-T. Yau, “Sasaki-Einstein manifolds and volume min-

imisation,” Commun.Math.Phys. 280 (2008) 611–673, hep-th/0603021.

[168] D. R. Gulotta, C. P. Herzog, and S. S. Pufu, “From Necklace Quivers to the F-

theorem, Operator Counting, and T(U(N)),” 1105.2817.

[169] D. Berenstein and M. Romo, “Monopole operators, moduli spaces and dualities,”

1108.4013.

[170] F. Benini, C. Closset, and S. Cremonesi, “Chiral flavors and M2-branes at toric

CY4 singularities,” JHEP 02 (2010) 036, 0911.4127.

[171] A. Amariti and M. Siani, “Z Extremization in Chiral-Like Chern Simons Theories,”

JHEP 1206 (2012) 171, 1109.4152.

155

http://arXiv.org/abs/0801.1585
http://arXiv.org/abs/0804.1256
http://arXiv.org/abs/0804.1114
http://arXiv.org/abs/0809.3237
http://arXiv.org/abs/0811.4044
http://arXiv.org/abs/hep-th/9907219
http://arXiv.org/abs/hep-th/0608050
http://arXiv.org/abs/hep-th/0603021
http://arXiv.org/abs/1105.2817
http://arXiv.org/abs/1108.4013
http://arXiv.org/abs/0911.4127
http://arXiv.org/abs/1109.4152


[172] O. Aharony, A. Hanany, K. A. Intriligator, N. Seiberg, and M. J. Strassler, “Aspects

of N = 2 supersymmetric gauge theories in three dimensions,” Nucl. Phys. B499

(1997) 67–99, hep-th/9703110. %%CITATION = HEP-TH/9703110;%%.

[173] A. Kapustin, “Seiberg-like duality in three dimensions for orthogonal gauge groups,”

1104.0466.

[174] F. Benini, C. Closset, and S. Cremonesi, “Comments on 3d Seiberg-like dualities,”

JHEP 1110 (2011) 075, 1108.5373.

[175] A. Kapustin, H. Kim, and J. Park, “Dualities for 3d Theories with Tensor Matter,”

JHEP 1112 (2011) 087, 1110.2547.

[176] F. Dolan, V. Spiridonov, and G. Vartanov, “From 4d superconformal indices to 3d

partition functions,” Phys.Lett. B704 (2011) 234–241, 1104.1787.

[177] A. Hanany and E. Witten, “Type IIB superstrings, BPS monopoles, and three-

dimensional gauge dynamics,” Nucl.Phys. B492 (1997) 152–190, hep-th/9611230.

[178] S. Benvenuti and M. Kruczenski, “From Sasaki-Einstein spaces to quivers via BPS

geodesics: L**p,q—r,” JHEP 0604 (2006) 033, hep-th/0505206.

[179] A. Butti, D. Forcella, and A. Zaffaroni, “The Dual superconformal theory for L**pqr

manifolds,” JHEP 0509 (2005) 018, hep-th/0505220.

[180] J. Davey, A. Hanany, N. Mekareeya, and G. Torri, “Phases of M2-brane Theories,”

JHEP 0906 (2009) 025, 0903.3234.

[181] S. Franco, I. R. Klebanov, and D. Rodriguez-Gomez, “M2-branes on Orbifolds of

the Cone over Q**1,1,1,” JHEP 0908 (2009) 033, 0903.3231.

156

http://arXiv.org/abs/hep-th/9703110
http://arXiv.org/abs/1104.0466
http://arXiv.org/abs/1108.5373
http://arXiv.org/abs/1110.2547
http://arXiv.org/abs/1104.1787
http://arXiv.org/abs/hep-th/9611230
http://arXiv.org/abs/hep-th/0505206
http://arXiv.org/abs/hep-th/0505220
http://arXiv.org/abs/0903.3234
http://arXiv.org/abs/0903.3231


Acknowledgments

Both scientifically and personally, I would never have been able to finish this work without

the existence of certain people, to whom I want to express my gratitude.

My first and by far biggest thanks is to Alberto Zaffaroni, who has been a supervisor

fantastico. Being pedagogically gifted, scientifically sharp and equipped with a profound

insight into the big picture, it was an extremely beneficial pleasure to work with him. On

top of that, behind a more formal surface does he hide a wonderful, funny, and good-

hearted character, which made these years also personally enriching. Endless thanks for

the whole package.

A very big thank you also to Alessandro Tomasiello, @. Being able to work with this

bright mind was a great possibility to learn many things and it gave a huge extra value

to this thesis. Apart from this concrete benefits for myself did he bring a good spirit to

Bicocca, a fair share of political correctness, restless activity and the virtues of youth.

Clearly a very big thanks also to my other collaborators, Antonio Amariti, Davide

Cassani, Dario Martelli and Massimo Siani. I have benefited much from the common

work, this thesis would definitely lack vast parts of its content without these people. Out

of them a special thanks to Antonio, the ‘crazy guy from San Diego’, for many things well

beyond physics. I also want to thank Luciano Girardello for the classy glimmer he gives

to the department and some literally very original insights into supergravity.

Very very big gratitude to all the other students and postdocs from the institute, many

of which I’d consider a friend by now. It has been stimulating at times, hilariously funny

at more times and always good-spirited to hang out in Bicocca. Without this exceptional

environment it would absolutely never ever have been the same. Thank you all guys!

In the private department I want to be brief. As a well-known fact, the German heart

is easily seduced by the Italian charms and so it has happened also to me. Thanks to all

of Italy, for its food, people, language and . . . well in short, for being absolutely fabulous.

The people I met in and around Milan have been so welcoming from the very first day

that it was hard to not feel at home here very quickly. Grazie infinito a tutta la gente

meravigliosa che ho conosciuto.

Nevertheless being brief I want to mention four people personally. I thank Diana and

Christian for accepting me as a foster daughter in these years, it made all the difference.

Last but not least, I acknowledge being lucky to have parents who supported me both

morally and financially without expressing any doubts on me throughout all of my studies.

Dafür ein großes Dankeschön an meine Eltern.

157


	Introduction and Motivations
	I Supersymmetry on curved spaces
	Introduction, Outline and Summary of the Results
	The Holographic Perspective – Conformal Killing Spinors from the Bulk
	From five-dimensional gravity to CFT4's
	Generalisation to extended supersymmetry

	From four-dimensional gravity to CFT3's
	Conformal Killing spinors and superconformal theories

	The geometry of N=1 in four Euclidean dimensions
	Geometry of conformal Killing spinors
	The A=0 case
	The A=0 case in four dimensions

	Supersymmetric theories on curved spaces from new minimal supergravity
	Equivalence with conformal Killing spinor equation
	One supercharge
	Two supercharges


	The geometry of N=1 in four Lorentzian dimensions
	Geometry of conformal Killing spinors in Lorentzian signature
	Geometry defined by a spinor
	Intrinsic torsions
	Conformal Killing spinors are equivalent to conformal Killing vectors
	Conformal Killing spinors are equivalent to conformal Killing–Yano forms
	Determining the gauge field

	Supersymmetric theories with an R-symmetry
	New minimal supersymmetry equation
	Introducing coordinates
	Non-twisting geometries
	The case A=0

	Boundary geometry from the bulk
	Asymptotic expansion of the bilinears
	Differential conditions from the bulk

	Time-like and null solutions in the bulk
	Time-like case
	Null case


	The geometry of N=2 in three Euclidean dimensions
	Geometry of conformal Killing spinors
	New Minimal Supergravity reduced to Three Dimensions
	Spheres, round and squashed
	Sasaki Manifolds


	The geometry of N=2 in four Lorentzian dimensions
	The multiplet of conformal supergravity
	The geometry of spinors
	Solving the supersymmetry conditions
	Examples, comments and possible extensions to higher dimensions

	The geometry of N=2 in four Euclidean dimensions
	Wick rotation of the conformal supergravity
	The geometry of spinors
	Solving the supersymmetry conditions
	Examples


	II Some exact results in supersymmetric field theory and the AdS4/CFT3 correspondence
	Introduction and Outline
	N=2 quiver gauge theories in 3d with a toric moduli space
	The field theory description
	The toric description
	The Hilbert series

	The free energy in the large N limit and holography
	The large N free energy of vector-like quivers
	Relation with the geometry
	Examples
	C C
	SPP"0365SPP
	C/Z2"0365C/Z2 and an RG flow
	ABJM/Z2
	Chiral-Like models


	Seiberg duality in vector-like theories
	Matching the free energy

	An alternative formula
	Examples


	III Appendix
	Notations and Conventions
	Spinor conventions N=1 Lorentzian
	Spinors & Conventions N=2
	Lorentzian Signature
	Euclidean Signature


	Intrinsic torsions and differential forms in N=1 Lorentzian
	The Z-function for arbitrary trial Reeb vector
	Summary of the treatment for chiral quivers at large N


