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Summary 

 
Introduction 
 

The treatment of head and neck cancer (HNC) patients is one 
of the widest applications of radiation treatment; in fact, intensity-
modulated radiotherapy (IMRT) is able to provide high dose con-
formity and homogeneity on complex-shaped targets, allowing at 
the same time a concomitant sparing of the surrounding organs at 
risk (OARs) (Eisbruch et al 2001). Nevertheless, a complete sparing 
of some critical structures is quite impossible, thus not preventing 
the appearance of critical side-effects. One of the main organs in-
volved in dose delivery in HN district and playing a relevant role in 
the quality of life of patients is the parotid gland, the major salivary 
gland, responsible of the half of the total saliva secretion, whose 
damage causes a pathologic condition called xerostomia (Konings et 
al 2005). 

During the treatment, HNC patients may undergo significant 
anatomical changes, like the shrinkage of the primary tumor and 
nodal volumes, weight loss and alteration in muscle mass and fat 
distribution. Several studies have focused on anatomical variations 
of the parotid glands: it was generally reported that parotids shrink 
during RT with a shift of the center of mass (COM) toward the mid-
line (Barker Jr et al 2004, Hansen et al 2006, Robar et al 2007, 
Broggi et al 2010, Bhide et al 2010, Vásquez Osorio et al 2008). The-
se modifications cause a translation of the glands into the high dose 
region, thus the effective delivered dose on parotids is significantly 
higher than that planned (Robar et al 2007, Hansen et al 2006, Han 
et al 2008). 

The reported parotid shrinkage was found to be correlated 
with the mean parotid dose (Hansen et al 2006, Bhide et al 2010, 
Vásquez Osorio et al 2008, Broggi et al 2010) and also the risk of 
xerostomia was demonstrated to be strictly related to the dose-
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volume histogram (Eisbruch et al 2001, Jellema et al 2005, Deasy et 
al 2010, Bussels et al 2004, Beetz et al 2012). Although there are a 
very limited number of studies reporting a direct influence of parot-
id volume decrease in the development of xerostomia in human 
(Teshima et al 2010), it is clear that a relationship between these 
two conditions exists. 

Therefore, the study of local changes in parotid glands due to 
irradiation is still an open challenge, and the exploitation of the in-
formation content in medical images acquired during the radiation 
treatment is of practical interest for the non-invasiveness of these 
techniques. Along this line of research, recently some groups have 
developed new approaches aimed to assess structural and anatomi-
cal variations in parotid tissue by studying grey-level variations in 
terms of local patterns (Teshima et al 2012, Obinata et al 2013, 
Houweling et al 2011, Kan et al 2010, Yang et al 2012). 

The aim of this work was thus to extensively evaluate mor-
phological and structural modifications induced by RT on parotid 
glands using image-based indices extracted from CT images ac-
quired during the treatment. In particular, in this PhD project it was 
proposed to estimate morphological changes by the deformation of 
the glands, evaluated by applying a non-rigid registration method 
optimized and validated on CT images of the HN district. Secondly, a 
method of image analysis based on textural feature extraction was 
proposed to characterize structural variations of parotid tissue. All 
these methods were evaluated and optimized for the specific clini-
cal problem and all these parameters were studied in relation to 
dosimetric and clinical indices and to the clinical outcome, in order 
to better assess their contribution in this research field. 

 

Methods 
 

Parotid deformation was here estimated through an image 
registration and contour propagation method (Faggiano et al 2011). 
The adopted registration method was a classic sum of rigid and elas-
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tic transformation, modeled by a cubic B-spline hyperpatch 
(Rueckert et al 1999); the algorithm used mutual information and a 
four-step multi-resolution strategy (Mattes et al 2003). After the es-
timation of the deformation field between the two images, a con-
tour propagation method is needed to obtain a spatial correspond-
ence of the considered structures of interest. The contour propaga-
tion method consists of a surface 3D mesh generation step followed 
by a mesh deformation step; the final deformed contours are ob-
tained by cutting the deformed object through the transversal plane 
(see Figure A.1).  

 

 
Figure A.1. Description of contour propagation algorithm. From left to 

right: parotid contour manually drawn on CT1; parotid contour manually 
drawn on CT1 visualized on CT2; displacement map; deformed contour 

visualized on CT2. 

 
A deep validation of this method was performed to assess the 

accuracy of contour propagation method and to ensure a reliable 
quantification of parotid deformation. Accuracy evaluation was 
based on the comparison of parotid contours automatically propa-
gated and contours manually traced by three experts and was 
aimed to demonstrate that automatic delineation was not signifi-
cantly different from manual segmentation. In fact, results of our 
experimental protocols, which considered 10 paired of kVCT-MVCT 
images from 10 patients treated with IMRT, confirmed that neither 
parotid volume, neither DICE (DSC), COM distance, nor distance be-
tween contours (Average Symmetric Distance, ASD, and Maximum 
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Symmetric Distance, MSD) significantly differed between the two 
contouring methods (see Table A.1). 

 
Table A.1. Analysis of contour propagation accuracy. Mean value ± stand-
ard deviation of parotid volume and COM distances are reported for each 
operators and the automatic method. For DSC, ASD and MSD index, mean 

value ± standard deviation are reported as average between operators 
(Op-Op) and between automatic and operators (Op-A). 

 Op1 Op2 Op3 Auto 

Volume [mm3] * 16.8 ± 5.1 16.4 ± 5.0 18.2 ± 5.0 17.5 ± 5.1 
COM distance 
[mm] ** 

111.4 ± 8.4 111.0 ± 8.6 110.4 ± 7.7 111.2 ± 8.0 

 Op-Op Op-A 

DSC *** 0.79 ± 0.04 0.77 ± 0.05 
ASD [mm] *** 1.57 ± 0.24 1.66 ± 0.34 
MSD [mm] *** 9.49 ± 1.90 9.47 ± 2.17 

    *  
No significant differences found (Tukey test) 

  **  
No significant differences found (Anova test) 

***  
No significant differences found (Wilcoxon test) 

 
The quantification of parotid deformation was carried out 

starting from the estimated deformation field, by calculating the 
Jacobian index, defined in each voxel of the image as the determi-
nant of the gradient of the transfromation: 

                        

where, xf =(xf, yf, zf) is the fixed image domain and T(xf) is the esti-
mated transformation. This index quantifies the shrinkage or the 
expansion of the single voxel; in particular: Jac=1 corresponds to a 
voxel that doesn't change; Jac>1 identifies an expanding voxel and 
Jac<1 a shrinking voxel (Davatzikos et al 1996, Ding et al 2010). The 
mean Jacobian index within an organ of interest (Jac_mean), calcu-
lated as the average value between all voxels belonging to this 
structure, is descriptive of the average deformation of the organ it-
self.  



SUMMARY 

 

v 
 

The structural characterization of parotid tissue was per-
formed by the extraction of features related to the intensity pat-
terns of the image, quantified by texture analysis. In this context, 
first and second order statistical indices were calculated in terms of 
mean gray value μ, variance σ2, global entropy S1, local entropy S2 
and homogeneity H; finally, fractal dimension FD was also comput-
ed. These parameters are descriptive of the complexity and organi-
zation of the image and can adequately characterized changes in 
parotid structure. In particular, high values of variance means an in-
homogeneous image with high gray value differences, global entro-
py is an index of histogram uniformity: the more the value of entro-
py increases, the more disordered is the gray value distribution; 
high tissue homogeneity and high organization were featured by 
high values in H and low values in S2. Fractal analysis provides a 
measure of the complexity and the roughness of a surface, deter-
mining the relative amounts of detail or irregularities at different 
scales. FD of a 2D image ranges between 2 (the topological dimen-
sion of a 2D image) and 3 (the topological dimension of a 3D vol-
ume), where larger FD indicates rougher image (Peitgen et al 1988). 

 

Experimental protocols 
 

Anatomical and structural variations in parotid glands were 
assessed in this project by considering different populations and dif-
ferent time-points. First, starting from the known volume decrease 
measured after RT, the correlation between Jac_mean, descriptive 
of the anatomical deformation of the organs, and some pre-
treatment clinical and dosimetric parameters was evaluated in 168 
parotid glands. kVCT or MVCT images were acquired at the begin-
ning and at the end of therapy, depending on the type of IMRT 
used. A multivariate analysis (MVA) was performed between 
Jac_mean and clinical/dosimetric parameters, in order to find the 
most relevant variables related to parotid shrinkage. Moreover, pa-
rotid glands DVHs were stratified according to their degree of de-
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formation, trying to assess the most predictive dose-volume combi-
nation in the low and medium dose region. 

Second, a further multivariate regression analysis was carried 
out in the same population considering density variations between 
the start and the end of treatment; correlation between Jac_mean 
and density variation was also assessed to investigate if anatomical 
changes could be directly associated to functional modifications 
globally described by a change in the image intensity. 

Then, we studied the kinetic of textural indices during the 
whole treatment in 37 patients (74 parotid glands), considering CT 
images acquired at the beginning, at the half and at the end of ther-
apy. Differences between textural parameters and volume at each 
time-point were tested using t-test statistics for each index, to eval-
uate time trend variations. Moreover, correlations between total 
variations measured at the end of therapy were assessed with Pear-
son's coefficient. 

Another important issue in studying the effect of RT on OARs 
is the capability of early predict those subjects that will experiment 
worse side effects and thus that can mostly benefit of a replanning 
strategy. Considering this intent, the ability of textural features in 
predicting parotid shrinkage measured at the end of treatment, as 
an index which is known to be related to the presence of acute tox-
icity, was preliminary investigated in 21 patients, taking into ac-
count CT images acquired in the first, second and last week of RT. 
Fisher's linear discriminant function analysis was applied to varia-
tions occurred in the first two weeks of RT, in order to assess the 
power of textural indices in predicting parotid shrinkage after 
treatment. A priori classification was based on the amount of total 
parotid volume decrease, as index of parotid shrinkage. Discrimi-
nant analysis was applied to each index and to different combina-
tions of parameters and accuracy (Acc) of classification was esti-
mated. 

Finally, in these same 21 patients we evaluated possible cor-
relations between the found structural variations and the clinical 
outcome. This aspect can help in understanding the clinical impact 
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of image-based analysis in head and neck RT and in finding possible 
patients which can better benefit of a re-planning of dose delivery 
during treatment, based on the prediction of RT side effects. The 
correlation between early parotid gland variations in the first two 
weeks of RT and xerostomia was investigated.  A logistic uni-variate 
analysis was performed and a ROC curve was utilized to evaluate 
the predictive value of the model. Finally the probability risk of ex-
periencing high scores of xerostomia vs early density variation was 
evaluated. 

 

Results 
 

Overlap between PTVs and parotid gland, age, mean dose on 
parotids and most of the DVH parameters were found as the pre-
treatment variables significantly correlated with Jac_mean. MVA 
analysis showed that age, overlap between PTV and parotid gland 
and V10 were the best independent predictors of low values of 
Jac_mean (great parotid shrinkage). Parotid glands were divided in 
three different sub-groups (bad-, medium- and good-DVH) based on 
the DVH shape. The risk to have Jac_mean less than the first quartile 
of the population was 39.6% vs 19.6% vs 11.3% in these three 
groups. By including in the MVA analysis this “DVH grouping” pa-
rameter, age and bad-DVH was found as the most predictive pa-
rameter for large shrinkage. 

A decrease in density was found in 116/168 parotids (69% of 
the whole population, 78% when only kVCT patients were consid-
ered). Individual density variation was highly correlated with parotid 
deformation both in terms of volume change and Jac_mean, and 
with neck thickness variation; these correlations were much strong-
er for kVCT data. Logistic analyses showed a two-variable model in-
cluding large deformation (Jac_mean < 0.68) and initial neck thick-
ness to be the most predictive variables (p < 0.0005, AUC = 0.683; 
AUC = 0.776 for kVCT). 
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Regarding the behavior of textural indices, a general decrease 
was measured (Δμ=-4.7 HU and -5.3 HU, ΔS2=-0.15 and -0.27, ΔFD=-
0.02 and -0.03, ΔV=-3.5 cm3 and -5.1 cm3, in the first half and in the 
whole treatment respectively), with different time trends (see Fig-
ure A.2). T-test revealed that significant differences were present 
for each parameters during the whole treatment (p<0.001) and in 
the first half (p<0.001), while in the second half a significant varia-
tion was found for S2, V (p<0.001) and FD (p<0.01), but no signifi-
cant difference was found for μ. Strong linear correlations were 
found between ΔV-Δμ, ΔV-ΔS2 and Δμ-ΔS2 (see Table A.2). 

 
Table A.2. Results of Pearson correlation analysis between variations of 

each parameter during the whole treatment. Pearson coefficient and sig-
nificance are reported. 

 ΔS2_total ΔFD_total ΔV_total 

Δμ_total 0.309** 0.215 0.405** 

ΔS2_total  0.113 0.591** 

ΔFD_total   -0.078 
**

 p<0.001 

 
In the prediction analysis of parotid shrinkage, when varia-

tions in the first two weeks were considered, it was found that the 

most powerful predictors were V and (Acc=66.7%), followed by FD 
(Acc=50%). Considering the multi-parametric analysis, the best re-
sults (Acc=71.4%) were achieved by the combinations of FD and V, 
and the combination of all considered indices.  

Finally, a clear correlation was found between early changes 
of volume and density and mean xerostomia score. A significant dif-
ference for both the ∆μ and ∆V was found when splitting the popu-
lation in two groups according to the median value of the mean 
xerostomia score (1.57). On the contrary, no significant results were 
found for local entropy and fractal dimension. The group with a 
mean xerostomia ≥ 1.57 has a larger density and volume variation 
during the first part of treatment, while it is almost unchanged at 
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the end (or during the second half of treatment); on the other hand, 
patients with low xerostomia mean scores show almost constant 
values for both Δμ and  ΔV during the entire course of treatment. 
Figure A.3 shows the probability risk of experiencing a mean 
xerostomia ≥ 1.57 versus Δμ. 

 

 
Figure A.2. Variations of mean intensity, local entropy, fractal dimension 
and volume during RT, considering CT images acquired at the beginning, 

half and end of therapy. 

 
 

Conclusion 
 

CT-based features proposed in this PhD project were deeply 
studied for the characterization of radiation-induced effects on pa-
rotid glands during the RT on HNC patients. We evidenced that pa-
rotid shrinkage is highly related to low dose DVH values; at the same 
time, density variation measured after RT is significantly correlated 
with volume decrease, suggesting that the loss of acinar cells and 
the consequent increase in the percentage of the fatty component 
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is related to the decrease in functionality. We proved that the major 
reduction in density is concentrated in the first half of the treat-
ment, while the decrease in volume and in tissue complexity (meas-
ured by local entropy and fractal dimension) is quite constant during 
the whole treatment. Finally, we found that the most accurate pre-
diction of parotid shrinkage is achieved by the combination of varia-
tion in volume, density and fractal dimension measured in the first 
two weeks and that the early prediction of xerostomia score was 
preliminary achieved by early density and volume variation. These 
last analyses are still an open challenge, since our dataset was too 
small to generalize this conclusion.  

 

 
Figure A.3. Probability risk (95%CI) of mean xerostomia ≥ 1.57 (median 

value) vs early density variation, expressed as daily variation rate 
(rΔρ1→2). The dashed line indicates the best cut-off value (-0.49) of rΔρ.  

 
Possible future works in this line of research will regard the 

improvement in accuracy and optimization of the registration 



SUMMARY 

 

xi 
 

method and texture analysis. Moreover, results of correlations with 
clinical outcome should be confirmed by considering a larger da-
taset. For a complete evaluation of the RT treatment in the HN dis-
trict, this image-based analysis should be also performed on differ-
ent medical imaging acquisitions (e.g. MRI, PET), in order to have a 
multi-parametric characterization of parotid tissue. Finally, an ex-
tension of these methods on other OARs interested by dose delivery 
in HNC treatment and playing a relevant role in the quality of life of 
patients (e.g. organs assigned to swallowing) should be considered. 
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Chapter 1 
 
 
 

Introduction 
 

 

 

The main goal in Radiotherapy (RT) is to accurately focus ra-
diations on tumor, sparing normal tissues, in order to damage the 
DNA of tumoral cells, thus blocking their proliferative properties. 
However, in many case, organs at risk (OARs) are partly overlapped 
with the planned high dose region and a complete sparing of these 
structures is impossible. Modern techniques, like Intensity Modu-
lated RT (IMRT), generates steep dose gradients, providing higher 
conformity to target volumes with complex shapes and avoiding 
OARs more accurately than classical 3D conformal RT approach. An-
other important step in improving RT techniques was made by the 
availability of tomographic images acquired during the treatment, 
allowing the on-line correction of patient positioning errors before 
each RT fraction, and thus guiding the therapy (Image-Guided RT, 
IGRT). This new approach is able to correct global and rigid misa-
lignments, but local anatomical deformations that occur during RT, 
due to physiological movements (heartbeat, breathing, visceral 
movements) or to the effects of therapy (weight loss, alteration in 
muscle mass and fat distribution), have to be taken into account. 

For the treatment of head-and-neck cancer (HNC) it is im-
portant to consider this second kind of local deformations, since the 
weight loss and the radiation-induced effects on some critical struc-
tures have a significant impact on the quality of life of the treated 
patients. In particular, this PhD project was focused on the effects of 
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RT on parotid glands (PG), the main salivary glands, which are 
known to have a volume reduction and a shift toward the midline, 
moving from the low-dose region to the high-dose region, thus re-
ceiving a radiation dose higher than that planned. This condition has 
a strong impact on the health of the patient, which in many cases 
experiments a dry mouth and difficulties in swallowing, a pathology 
known as xerostomia. The analysis of images acquired during RT can 
help in characterizing the parotid gland tissue and in assessing the 
causes of these symptoms, the other possible effects of radiations 
on parotid glands, and the possibility of an early prediction of those 
patients who could be interested by severe xerostomia. In particu-
lar, this last aspect could be crucial for a potential re-planning of the 
delivered dose during RT, thus adapting therapy based on the pa-
tient response to the treatment (Adaptive RT, ART). 

The aim of this work was thus the evaluation of morphologi-
cal and structural modifications induced by RT on parotid glands us-
ing image-based indexes extracted from CT images acquired during 
the treatment. In particular, in this PhD project it was proposed to 
estimate morphological changes by the deformation of the glands,  
evaluated by applying a non-rigid registration method expressly op-
timized and validated on CT images of the HN district. Secondly, a 
method of image analysis based on textural feature extraction was 
proposed to characterize structural variations of parotid tissue. All 
these methods were evaluated and optimized for the clinical prob-
lem and all these parameters were studied in relation to dosimetric 
and clinical indexes and to the clinical outcome, in order to better 
assess their contribution in this research field. 

The work was developed at the Istituto di Bioimmagini e 
Fisiologia Molecolare - Consiglio Nazionale delle Ricerche (IBFM-
CNR) of Milan (Italy) in collaboration with the Medical Physics De-
partment of San Raffaele Hospital, and involved a multidisciplinary 

group of engineers, medical physicists and radiotherapists. 
The thesis is so developed: in Chapter 2 a description of the 

anatomy, physiology, radiosensitivity and common imaging of pa-
rotid glands is reported, followed by an overview of the state of art 
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of image-based analysis of radiation-induced effects on parotid 
glands. In Chapter 3 and 4 the proposed and developed image anal-
ysis method is described. In particular, in Chapter 3 the extraction of 
morphological indexes is presented: the first part of the chapter is 
focused on the image registration method and its validation on our 
dataset, while the second part treats the quantification of parotid 
glands deformation directly derived from the deformation field es-
timated by image registration. In Chapter 4 the structural analysis 
based on texture analysis is described: here a method for the cor-
rection of metal artifacts in CT images is proposed and textural fea-
tures are widely faced. Moreover, correlations between image-
based indexes and dosimetric and clinical parameters are studied; 
an initial analysis with clinical outcome is also performed. Finally, in 
Chapter 5 discussion of all the reported results is presented with 
further research possibilities to continue this project line. 

 
 

 



 

 



 

 

Chapter 2 
 
 
 

Parotid glands as organs at 

risk in radiotherapy 
 

 

 

2.1. DESCRIPTION OF PAROTID GLANDS ANATO-
MY, PHYSIOLOGY, RADIOSENSITIVITY AND IMAGING 
 

Salivary glands play an important role in oral health and their 
normal functionality is essential to maintain a good quality of life in 
patients. The major salivary glands consist of paired parotids, sub-
mandibular and sublingual glands, that work in concert with many 
other minor salivary glands for the saliva production, aiding in food 
digestion, protecting oral mucosa, facilitating remineralization of 
dental hard tissues and moistening the palate for articulation 
(Grundmann et al 2009). In this section, an essential overview of the 
normal anatomy, functionality and radiosensitivity of parotid glands 
is reported, followed by a list of the classical imaging modalities 
employed in clinical practice. 

 

2.1.1. Anatomy 
Parotids are the largest salivary glands and are located in the 

space that extends (see Figure 2.1, 2.2) (Bridge and Tipper 2011): 
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 posteriorly from the pinna to the anterior borders 
adjacent to and occasionally over the masseter mus-
cle; 

 inferiorly beyond the angle of the mandible to the 
platysma muscle; 

 medially adjacent to the fatty parapharyngeal space. 
 

 
Figure 2.1. Axial graphic of the parotid space (PS) at the level of C1 verte-
bral body. The PS contains from medial to lateral the external carotid ar-

tery, retromandibular vein and facial nerve. The intraparotid Cranial Nerve 
(CN7) creates a surgical plane that divides the gland into superficial and 

deep lobes. PS is enclosed by the superficial layer of the deep cervical fas-
cia. Figure from Amirsys reference centers.  

 
Parotid glands can be partitioned into deep and superficial 

lobe; despite this definition, there is actually no anatomic separa-
tion between these portions. By convention, parotid tissue situated 
deep to the facial nerve is referred as the deep lobe, while parotid 
tissue superficial to this plane is considered to be the superficial 
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lobe (Som and Brandwein-Gensler 2011). Another possible division 
of parotid portions can be done with respect to the mandible: pa-
rotid tissue external to the mandible is referred to as superficial, 
whereas the smaller amount of parotid tissue that resides behind 
and deep to the mandible is referred to as the retromandibular or 
deep portion of the parotid gland. 

 

 
Figure 2.2. Axial graphic of skull base viewed from below illustrating the 

interaction between the parotid space and the skull base. CN7 exits 
through the stylomastoid foramen at the skull base, just posterior to the 
styloid process and lateral to the jugular foramen. The PS is the most lat-

eral space in the nasopharyngeal and oropharyngeal area, extending from 
the external auditory canal above to the level of the mandibular angle be-

low. Figure from Amirsys reference centers.  

 
Each salivary gland consists of acinus, myoepithelial cells, and 

ducts, organized as a tree-like branching pattern in intercalated, 
striated and excretory duct (see Figure 2.3). All salivary acinar cells 
contain secretory granules: in adult parotid glands, the acini are 
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purely serous (protein-secreting), while in other glands (e.g. sub-
mandibular) serous acini are mixed with mucous acini (mucin-
secreting). The fat component is characteristic in parotids with re-
spect to other salivary glands: in fact, the adipocyte to acinar cell 
ratio is 1:1 and this ratio tends to increase with age. 

 

 
Figure 2.3. The tree-like branching structure of parotid ducts. Figure from 

(Som and Brandwein-Gensler 2011) 

 
From histological images, terminal secretory portions 

(adenomeres) are clearly visible with their acinous or alveolar 
shape, containing cubic or pyramidal exocrine cells, with spherical 
nuclei and secretory vesicles in the cytoplasm, and with contractile 
myoepithelial cells surrounding acini. Each acinar cell is drained by 
intercalated ducts, which drain in striated ducts, whose cells are 
specialized in concentrating secretory products (Figure 2.4). 
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Figure 2.4. Example of histological image of parotid tissue, in which serous 

acini, intercalated duct and striated duct are clearly visible (figure from 
www.pathologyoutlines.com). 

 

2.1.2. Physiology  
Salivation is physiologically controlled by the parasympathetic 

nervous system; the interruption of parasympathetic innervation to 
the salivary glands results in atrophy, while the interruption of the 
sympathetic results in no significant changes (Som and Brandwein-
Gensler 2011). The stimulation by the parasympathetic nervous sys-
tem produces an abundant, watery saliva with a decrease in amyl-
ase concentration in saliva and an increase in amylase concentration 
in the serum. On the other hand, the stimulation by the sympathetic 
nervous system produces a scant, viscous saliva rich in organic and 
inorganic solutes with an increase in amylase concentration in the 
saliva and no change in the amylase concentration in the serum. 

Normal saliva is composed predominantly of water (99.5%) 
and parotids contribute about the 45% of the total secretion. The 
secretion of electrolytes into saliva is under parasympathetic con-
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trol via acinar cholinergic receptors, whose stimulation activates the 
transport of sodium, which enters along the basal cell membrane 
following an electrochemical gradient. The result of this process is 
the formation of an isotonic, high-sodium, low-potassium fluid. The 
saliva becomes hypotonic as sodium is reabsorbed and potassium is 
excreted in the striated ducts (Mason and Chisholm 1975).  

Saliva's functions are multiple: it protects mucosa from the 
harmful effects of microbial toxins, noxious stimuli, and minor 
trauma. The salivary mucins are glycoproteins, which act as lubri-
cants. Although the minor salivary and sublingual glands produce 
10% of the total saliva volume, they secrete the majority of the mu-
cinous components of saliva, and functional compromise of these 
glands (e.g., by autoimmune disease or irradiation) results in 
xerostomia. The antibacterial activity of saliva is accomplished by 
secretory IgA (Immunoglobulin A), plus enzymes such as lysozyme, 
peroxidase, alpha-amylase, and lactoferrin and ions such as 
thiocyanate and hydrogen (Mason and Chisholm 1975).  

 

2.1.3. Radiosensitivity  
Since parotid glands are normal tissue interested by dose de-

livery in RT, it is essential the knowledge about the radiosensitivity 
of these organs, in order to understand their behavior in response 
to radiation.  

Salivary glands are extremely sensitive to radiation, yet, un-
like classically radiosensitive tissues, they proliferate slowly and are 
made up of highly differentiated cells. In fact, a high radiosensitivity 
is generally a characteristic of undifferentiated cells. Early and late 
effects of radiation generally correlate with a tissue's rate of prolif-
eration. Early (acute) effects occur within few days or weeks of irra-
diation, due to high levels of cell death. Late effects occur months or 
years after irradiation and may be affected by vascular damage and 
loss of parenchymal cells (Grundmann et al 2009). 

In the acute phase the loss of acinar cells occurs with a glan-
dular shrinkage (Robar et al 2007), which affects the composition 
and volume of saliva (Dirix et al 2006). The acute reduction in saliva 
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flow and changes in saliva composition have been attributed to an 
impairment of the gland tissue to produce sufficient saliva volume, 
as well as to reduced secretion of certain components of normal sa-
liva (Makkonen et al 1986). Chronic radiation-induced effects may 
be caused by acute damage, as reported in many studies (Stephens 
et al 1986, Li et al 2007): also in this case, patients show a significant 
decrease in saliva flow for several months or years after the end of 
the RT. It is reported that in some cases, parotids that have received 
lower dose (< 25 Gy) can recover the salivary function within 12-24 
months (Dirix et al 2006, Li et al 2007). However, in many subjects a 
permanent salivary gland hypofunction occurs, which has been at-
tributed to attrition of acinar cells followed by replacement with fi-
brotic tissue (Radfar and Sirois 2003). 

The possible mechanism of damage of salivary glands after RT 
was studied by Konings et al (Konings et al 2005), who observed 
that saliva-producing cells do not disappear but lose their function 
during the first days after irradiation. Two separate mechanisms to 
explain this dysfunction are proposed. First, there is a defect in cel-
lular functioning because of selective membrane damage, con-
founding the receptor-mediated signaling pathways of water excre-
tion. No immediate cell death or lysis takes place. Late damage is 
explained by classical cell killing of progenitor cells and stem cells, 
thus inhibiting proper cell renewal, and by damage to the cellular 
environment, causing a shortage of properly functioning secretory 
cells. This two mechanisms are clearly visible during the kinetics of 
damage expression, described in 4 different phases, after the irradi-
ation with 15 Gy: 

1. Phase I (0-10 days), acute phase of radiation damage. Water 
excretion is quickly impaired to about 60% of the normal 
condition, while no cell loss is observed and the amylase se-
cretion is not affected (Figure 2.5, top). 

2. Phase II (10-60 days). The compromised acinar cells, suffer-
ing damage to the plasma membrane, disappear and, at the 
same rate so does the secretion of amylase (Figure 2.5, bot-
tom). 
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3. Phase III (60-120 days). No major changes are observed with 
respect of phase II in terms of secretion and cells number 
(Figure 2.5, bottom). 

4. Phase IV (120-240 days), late phase of radiation damage. 
This phase is marked by a lack of functional acinar cells, 
caused by the killing of progenitor and stem cells. Genera-
tion of new acinar cells takes place in this period, but flow 
rate and amylase production are deteriorated (Figure 2.5, 
bottom). 

 
In a successive study of the same authors (Konings et al 2006) 

it was evidenced that parotid glands have a different response to 
radiation with respect to the irradiated portion. In fact, from a 
histopathologic study of the rat, it has been seen that the irradiation 
of the cranial half resulted in a positive volume effect for late tissue 
injury because function loss was more than proportional to the irra-
diate volume. These volume effects are caused by late development 
of secondary radiation damage in a nonexposed region of the parot-
id gland. The most probable first step (primary radiation event) in 
the development of this secondary damage is radiation exposure to 
the hilus region (located between the ventral and dorsal lobe). By 
injuring major excretory ducts and supply routes for blood and 
nerves in this area, the facility system necessary for proper function-
ing of the nonexposed lateral lobe is seriously affected. 

Typical imaging modalities employed to image salivary glands 
are ultrasounds (US), computed tomography (CT) and magnetic res-
onance (MR) images, depending on the pathology to be assessed. 
CT and US are the modalities chosen for patients interested by in-
flammatory disease and calcifications, while MR is generally useful 
to identify and characterize parotid's pathology before surgery. 
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Figure 2.5. kinetics of parotid glands damage in terms of flow rate, amylase 
and acinar cells number. On the top: acute phase (0-10 days); on the bot-

tom: whole period (0-240 days). Figure modified from (Konings et al 2005). 
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2.1.4. Imaging modalities 
 

2.1.4.1. CT imaging 
Normal salivary glands are visualized on CT images as a rela-

tively fatty structure with numerous thin interstitial strands interlac-
ing throughout it; the resulting classical CT attenuation is around 
15-25 HU, lower than that of the muscles but greater than that of 
fat. The fine anatomy of the intraglandular ducts is not normally 
visualized on CT images, but it is possible to individuate the 
retromandibular vein and the external carotid artery. In Figure 2.6 
an example of CT images at different axial planes of the parotid 
gland is presented.  

 

 
Figure 2.6. Example of CT scan of the parotid region (white arrow). Left: 
axial view; centre: coronal plane; right: sagittal plane. The crosshair indi-

cates the same point in the 3 views. Figure from Amirsys reference centers. 
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Figure 2.7. Example of kVCT (left) and MVCT (right) of the same patient. 

Parotid glands, indicated by the white arrows, are well visible in kVCT im-
age, but hardly identifiable in MVCT image. 

 
CT scan is the modality of choice in RT protocols, since the 

treatment planning is based on the information about the x-ray at-
tenuation provided for each voxel. Moreover, a diagnostic kilo-
Voltage CT (kVCT) is always acquired before the treatment to plan 
the dose map that has to be delivered to the patient, based on the 
contours of OARs and target delineated and on the dose that should 
be delivered to this structures. The new frontier of RT is based on 
the use of images for the optimization of the treatment, in terms of 
significant reduction of errors due to patient repositioning. Depend-
ing on the type of treatment chosen, the images acquired during 
treatment for this purpose can be of different type and quality: 
kVCT with high resolution and good contrast can be replaced by dif-
ferent x-ray tomographies, with worse contrast and quality, but de-
livering less dose and in the same energy range used for treatment. 
Mega-Voltage CT (MVCT) images are an example of these, charac-
terized by higher noise level and lower soft-tissue contrast with re-
spect to kVCT, due to their high energy, since they are generally 
used only for repositioning through bone matching. On MVCT imag-
es parotid glands are hardly identified, but it is still possible to ob-
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tain some quantitative information, in terms of parotid volume and 
deformation, useful in assessing radiation-induced effects on these 
glands. In Figure 2.7 it is possible to appreciate the difference in im-
age quality and noise of kVCT and MVCT acquisition of the same pa-
tient. 

The major problem with CT imaging is the presence of metal 
artifacts due to dental filling (see Figure 2.8), that worsens the quali-
ty of the image, making difficult the contouring of parotid glands 
even for radiologic experts and affecting the quantitative infor-
mation within the image. A possible solution to this limitation is the 
application of a method able to reduce these artifacts; more infor-
mation about it can be found in Chapter 3.1.  

 

 
Figure 2.8. Example of CT image with metal artifacts due to dental filling. It 
is evident that the quality of the image is worsened and the identification 

of parotid glands becomes very difficult. 

 

2.1.4.2. MR imaging 
The poor contrast between soft tissue, typical of CT scans, 

limits the ability of identify the microanatomy of the glands, that 
can be better assessed using a different acquisition technique, like 
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the ultrasound, or, preferably, the magnetic resonance imaging. The 
T1-weighted signal intensity of the gland is nonhomogeneous, with 
multiple irregular areas of lower signal intensity that represent in-
terstitial tissues, salivary ducts, and possibly branches of the facial 
nerve. The major vessels are identified by their flow voids and the 
facial nerve and the intraparotid ducts can be identified on MR im-
aging. The parotid gland showed intermediate signal intensity and 
the fat spaces showed high signal intensity (Figure 2.9, top row). 
The vessels had variable signal intensity, depending on the satura-
tion. The nerves, muscles, ducts, and saliva had lower signal intensi-
ty. On fast spin-echo T2-weighted images the gland maintains an in-
termediate to high signal intensity reflecting both its fat content and 
the gland’s water content (Figure 2.9, bottom row). Generally, both 
T1-weighted and T2-weighted sequences are acquired to better as-
sess the pathology of salivary glands (Som and Brandwein-Gensler 
2011). 

 

 
Figure 2.9. Example of MR T1-wighted (top row) and MR T2-weighted (bot-
tom row) scan of the parotid region, at different axial planes. Figure from 

Amirsys reference centers. 
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2.1.4.3. US imaging 
US has traditionally been used to differentiate solid and cystic 

salivary gland masses and to identify salivary calculi. Normal parotid 
glands present a homogeneous and highly reflective echostructure, 
with a large number of echoes, regularly placed all over the glandu-
lar space (Figure 2.10, left). After irradiation, the echo-pattern of 
the glands become heterogeneous due to the presence of 
nonuniform US reflective interfaces from the disorganized acinar 
cells arrangement after parenchymal loss and cell atrophy (Yang et 
al 2012) (Figure 2.10, right).  

Usually, the US examination is performed with a linear probe, 
high frequency (7-10 MHz) transducer. This gives higher resolution 
images but does not penetrate as deeply as the lower-MHz trans-
ducer. This limitation is one of the reason that US is not utilized as 
frequently as CT or MR imaging to examine patients with possible 
deep extensions of their salivary lesions (Som and Brandwein-
Gensler 2011). 

 

 
Figure 2.10. Example of US study of a normal (left) and irradiated (right) 
parotid gland, in which is evident the more heterogeneous echo-pattern 

induced by radiation. Figure from (Yang et al 2012)  

 
In this work, image-based assessment of the effects induced 

on parotid glands by RT is performed on kVCT and MVCT images, 
widely available when radiation treatment is required. 
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2.2. IMAGE-BASED ANALYSIS OF RADIATION-
INDUCED EFFECTS ON PAROTID GLANDS: STATE OF 
ART 
 

The study of RT effects on salivary glands was widely faced by 
a large number of groups, since acute and late toxicity can severely 
affect the quality of life of patients. Therefore, it is important to as-
sess the possible causes of salivary glands toxicity, related to the 
clinical and dosimetric parameters registered and imposed before 
RT and to the possible effects of radiations. Moreover, each subject 
has a different radiosensistive behavior and an early identification 
of those patients that could experiment the worst consequences is 
of great interest. The availability of tomographic images acquired 
during and after the treatment has significantly improved the accu-
racy of these studies and the extraction of image-based indexes has 
become a valid support in evaluating RT effects. 

The first and more evident effect of RT on parotid glands is 
the shrinkage of these glands and a shift towards the midline and 
the high dose region (Barker Jr et al 2004, Hansen et al 2006, Robar 
et al 2007, Broggi et al 2010, Bhide et al 2010). This aspect was 
deeply assessed by Vasquez Osorio et al (Vásquez Osorio et al 
2008), who proposed an image registration framework in order to 
estimate local shape and position variations in parotids. In this 
study, parotid and submandibular glands were classified in two 
groups (irradiated and spared glands) in order to assess if the mean 
dose delivered on these organs has an impact on the volume chang-
es measured after the whole treatment. They found an average vol-
ume reduction for both groups of 14%, but an asymmetric shift, 
more evident for irradiated glands than for the spared. Moreover, 
they performed a local estimation of shape and position changes, by 
dividing parotids in six regions (superior, inferior, anterior, posteri-
or, right and left), finding different displacements depending on the 
anatomical position. In particular, they found an average shift of 1 ± 
3 mm and 3 ± 3 mm for the medial and lateral regions of the irradi-
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ated glands, respectively (Figure 2.11 summarizes their results). 
They concluded that for irradiated glands, the lateral regions, with 
the lower planning doses, displace inward, toward the higher doses, 
while spared parotids present little and near homogeneous defor-
mation. 

 

 
Figure 2.11. 3D lengths of average 3D vectors and standard deviations for 
each region in millimeters. Arrows show projection of average 3D defor-

mation vectors in (a) right, (b) frontal, and (c) left views. Solid lines repre-
sent irradiated glands; dashed lines represent spared glands. External lat-
eral walls of glands represented with gray shadows. Figure from (Vásquez 

Osorio et al 2008). 

 
The kinetic of parotid volume variation was studied by differ-

ent groups (Bhide et al 2010, Tomitaka et al 2011, Fiorentino et al 
2012), taking into account CT images acquired at different time 
points during and after RT. Bhide et al (Bhide et al 2010) studied the 
evolution of parotid volume in 20 patients during RT considering CT 
scans acquired before treatment and at weeks 2, 3, 4 and 5 during 
RT. The greatest reduction (14.7%) was found in the first two weeks 
of RT, and shrinkage was more evident in ipsi-lateral glands than in 
contro-lateral, though this difference was not significant. Another 
group (Fiorentino et al 2012) studied the kinetic of parotid volume 
in 10 patients during treatment, considering Cone-Beam CT (CBCT) 
daily acquired, for an average value of 14 scans for each patient. 
They found a linear trend in the volume decrease (r2 of linear re-
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gression=0.91), with a variation rate of 1.6% and 1.8% for ipsi- and 
contro-lateral parotid glands, respectively. In the third week of RT 
both parotid glands had shrunk of 30% of the original volume, and 
for this reason the authors suggest that a check of parotid volume 
or a re-planning at this time point could be indicated.  A wider re-
search, taking into account a larger period, was dealt in (Tomitaka et 
al 2011), where the authors considered CT images acquired before 
RT and 2 weeks and 6-12-24 months after 30 Gy irradiation to eval-
uate volume modifications in ipsi- and contro-lateral parotid glands. 
Their major finding about morphological changes was that parotid 
volume experimented a maximum shrinkage 6 months after RT, 
consistent with the other studies, but it gradually recuperated in the 
course of the subsequent 2 years. 

This volume variation was also correlated with the dose dis-
tribution and dose changes during treatment.  One of the first work 
that has studied volume and dosimetric changes in different struc-
tures using CT images at the beginning and at the end of IMRT re-
ported a overdosage on parotid glands due to the shift toward the 
higher dose region (Hansen et al 2006). Similarly, in (Bhide et al 
2010) an increase in the mean dose was found in the last two 
weeks, with respect to that planned: this is due to the medial shift 
of parotid glands started in the second week and to the shrinkage of 
the target. A high correlation (p<0.001, r=0.68) between the de-
crease in parotid volume and the planned mean parotid dose was 
found in (Vásquez Osorio et al 2008). Similar results were obtained 
by (Broggi et al 2010), where a two-variable linear model of parotid 
shrinkage was proposed. Performing a multi-variate analysis with 
clinical and dosimetric variables and considering volume variation at 
the end of RT as end-point, the authors suggested that the main 
predictors of absolute parotid shrinkage were the initial parotid vol-
ume and the mean dose, described by the equation: 

                                            
where ΔVcc is the volume variation in cc, Dmean is the mean parot-
id dose at planning and IVP is the initial parotid volume, indicating 
that larger glands may experiment larger volume variations. When 
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the percentage of volume variation was considered, the main pre-
dictors were age and V40 DVH, suggesting that acute radiation-
induced function loss of salivary glands could be more active in 
younger patients. 

Knowing this relationship between volume decrease and dose 
received by parotid glands, the next step is the assessment of corre-
lations with the degree of xerostomia, the more expected toxicity in 
acute and late phase after RT. Many works have underlined the 
dose-function relationship in parotids, trying to understand which is 
the contribution of dose-volume histogram in the progress of 
xerostomia. One the first study about this subject (Eisbruch et al 
2001) discussed the importance of sparing parotid glands, reducing 
the severity of xerostomia over time: this is a benefit gained by 
IMRT with respect to the classical 3D standard RT. Jellema et al 
(Jellema et al 2005) , in accord to the other work, studied the effect 
of mean dose on parotid and submandibular glands on xerostomia 
over time. 6 months after RT xerostomia was more severe in pa-
tients with high mean dose both on parotids and submandibular 
glands, but after 12 months it was partially reversible, depending of 
the dose on these glands. It was reported by Deasy et al (Deasy et al 
2010) that the risk of xerostomia is minimum if at least one parotid 
gland is spared to a mean dose of less than 20 Gy or if both glands 
are spared to less than 25 Gy. Loss of functionality of salivary glands 
was studied by Bussels et al (Bussels et al 2004) with SPECT imaging: 
their results suggested that after a low dose (10-15 Gy) there can be 
a serious loss of function. Moreover, they found that the dose re-
sulting in 50% loss of excretion fraction 7 months after RT is 22.5 Gy. 
In a recent work (Beetz et al 2012), a NTCP (Normal Tissue Compli-
cation Probability) model was developed to study the significance of 
the radiation dose in the major and minor salivary glands of 167 pa-
tients treated with 3D conformal RT, and other pre-treatment and 
treatment factors, with regard to the development of xerostomia. 
With a multivariate analysis they found that the risk of developing 
xerostomia increased with age and was higher when minor baseline 
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xerostomia was present in comparison with patients without any 
xerostomia complaints at baseline. 

Resuming these considerations, the reported parotid shrink-
age was found to be correlated with the mean parotid dose and also 
the risk of xerostomia was demonstrated to be strictly related to the 
dose-volume histogram. Although there are a very limited number 
of studies reporting a direct influence of parotid volume decrease in 
the development of xerostomia in human (Teshima et al 2010), it is 
clear that a relationship between these two conditions exists. In 
particular, in this study (Teshima et al 2010), morphological changes 
of twenty patients treated with chemo-RT were evaluated using CT 
or MRI images acquired before and after RT; salivary function was 
evaluated before and after the treatment in terms of saliva produc-
tion. After 30 Gy irradiation, both saliva production and parotid vol-
ume were significantly decreased; moreover, the parotid volume 
ratio was found to be inversely correlated with the saliva reduction 
amount (r=-0.79, p<0.01). The authors suggested that the volume 
reduction measured from CT/MRI images can be used as a predic-
tive index of the decreased parotid gland function. 

Recently, new studies were focused on new image-based in-
dexes able to describe radiation-induced damage on parotid glands. 
In particular, more attention is given to the analysis of density varia-
tion estimated from intensity values in CT images. In fact, since CT 
values are linearly correlated with tissue density through the ab-
sorption coefficient, it is easy to extract a parameter which may rep-
resent functional behavior of the considered region.  Therefore, 
changes in the composition of parotid gland tissue, i.e. the ratio be-
tween acinar cells and fat component, can be assessed by the varia-
tion of CT number. Teshima et al (Teshima et al 2012) published a 
work in which correlations between CT values variations and 
histopathological changes were assessed to evaluate the robustness 
of CT intensity in reflecting salivary function. They retrospectively 
evaluated the relationship between CT and histopathological find-
ings of parotid and submandibular glands in six patients treated for 
advanced oral cancer, with preoperative chemoradiation therapy 
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(CRT) with a total dose of 30 Gy and oral S-1 (80 mg/m2/day) and CT 
and histopathological images available. From CT images, they found 
a decrease in parotid volume and in CT number after 30 Gy irradia-
tion; these results were confirmed in histopathological images by 
the loss of acinar cells and by the inverse correlation of CT values 
with adipose ratio (r=-0.98, p<0.01). These results suggest that 
acinar cell loss is a main contributor to changes in the volume and 
function of irradiated human parotid and submandibular glands and 
that CT value may reflect the adipose ratio rather than salivary func-
tion. 

Another very recent work (Obinata et al 2013) evaluated 
morphological and functional changes in parotid glands of six pa-
tients after IMRT by the estimation of parotid volume and CT num-
ber before and after treatment. According to previous studies, they 
found a decrease in parotid volume (39.4 % and 26.5 % for 
ipsilateral and contralateral parotidds, respectively) and CT number 
(13.8 HU and 5.4 HU for ipsilateral and contralateral parotids, re-
spectively). They also estimated the saliva production using Saxon 
test and correlated the reduced functionality of the glands with the 
decrease in volume and density. No significant correlation was iden-
tified with volume variation, probably due to the small sample size, 
but a strong correlation (r=0.84, p<0.01) was found between CT 
number and salivation. In accord with (Teshima et al 2012), they 
speculated that the CT number reduction after RT may have result-
ed from acinar atrophy, parenchymal loss, and fatty replacement. 
However, a consideration should be taken into account, as reported 
in (Rabin et al 1996): in some cases it is possible to individuate an 
increased attenuation which could be a result of increases in water 
content caused by edema of the inflamed parotid gland, in patients 
affected by sialadenitis. 

Supporting this last consideration, a recent work (Houweling 
et al 2011), assessing early radiation-induced changes in salivary 
glands of 18 patients using anatomical MRI and DCE-MRI images, 
found a decrease in T1w signal of 10% and an increase in T2w signal 
of 25%. These results indicated an elevated water content, while 
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both the increase in νe and the decrease in kep (indexes related to 
DCE-MRI) suggested an increase in the extra-cellular extra-vascular 
space. These parameters can be related to the same underlying 
mechanism, vascular edema. Despite the edema, the gland volume 
reduced by 25%. The volume reduction of the glands was implying 
cell loss as an early effect, that have been proposed as the main ef-
fects of salivary gland dysfunction in previous studies (Konings et al 
2006, Feng et al 2009). 

High-resolution MRI (HR-MRI) was used in another work (Kan 
et al 2010) in order to evaluate morphological changes in the inter-
nal architecture of salivary glands induced by RT. The advantage of 
using HR-MRI (resolution=0.31 mm/pixel) is the possibility of provid-
ing precise information about the internal architecture of the gland, 
and in particular of the main excretory duct, without any invasive-
ness. The quantitative analysis performed by the authors on 12 pa-
tients showed that the width of the main duct is reduced and the 
intensity ratio of the main duct lumen is significantly decreased af-
ter RT. The signal intensity of the duct lumen reflects the salivary 
content and is considered to offer a measure for the evaluation of 
functional changes caused by RT.  

Finally, sonographic images were also employed to evaluate 
the effects of RT on parotid glands (Yang et al 2012). Notwithstand-
ing the type of image is very different from CT and MRI, it is worthy 
to mention this work, since its conclusions are consistent with all 
the other studies. US images were acquired in 7 healthy volunteers 
and after RT in 12 patients and then analyzed using texture analysis. 
Significant differences were found in textural features between 
healthy and post-RT subjects: normal parotid glands exhibited ho-
mogeneous texture, while the postradiotherapy parotid glands ex-
hibited heterogeneous echotexture. This heterogeneous echo-
pattern of post-RT parotid gland is likely due to the presence of 
nonuniform ultrasound reflective interfaces from the disorganized 
acinar cell arrangement after parenchymal loss and acinar atrophy. 



 

 

 
 



 

 

Chapter 3 
 
 
 

Extraction of morphological 

indexes 
 

 

 

3.1. IMAGE REGISTRATION AND CONTOUR PROP-
AGATION METHOD 

 
3.1.1. Typical image registration methods in Radiotherapy 

 Image registration is the process of finding a geometric 
transformation between two respective image-based coordinate 
systems that maps a point in the first image set to the point in the 
second set that has the same patient-based coordinate, i.e. repre-
sents the same anatomic location (Mattes et al 2003). The estimat-
ed geometric transformation finds a voxel-by-voxel correspondence 
between a fixed image f and a moving image m: 

 

                               

 
The image registration methods can be divided in two main 

groups, depending if the estimated spatial transformation is rigid, 
thus preserving distances between all points in the image, or non-
rigid (NRR). Rigid registration allows only translations and rotations 
to align the images, and it can be used for a global transformation, 
such as for patient repositioning during a treatment, for multi-
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modal image integration of non deformable districts (for example, 
the integration of CT and PET brain images) or for the initialization 
step in the NRR approach. 

However, since human body cannot be seen as rigid body and 
misalignments at local scale can occur, NRR techniques are intro-
duced for the correction of the elastic deformations that may hap-
pen due to physiological motions or anatomical changes. In litera-
ture, a great number of different NRR methods are reported, based 
on different information type used for the estimation of transfor-
mation.  

 

 
Figure 3.1. Image registration definition 

Some approaches use specific features in the images (ana-
tomical landmarks, implanted landmarks or delineated organs) 
which have to be realigned to find the best correspondence be-
tween the two images. One of the most applied method in RT is the 
thin plate spline - robust point matching (TPS-RPM), firstly proposed 
by Chui and Rangarajan (Chui and Rangarajan 2003) and improved 
by Bondar (Bondar et al 2010).This method iteratively estimates 
point correspondence between two sets of contour points of organs 
of interest, and updates a non-rigid transformation modeled by a 
thin-plate spline. The main advantage of this algorithm is the inde-
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pendence of the registration accuracy from the image quality, from 
low contrast between structures or from the presence of artifacts. 
However, accuracy is controlled only on the neighborhood of the 
control points; moreover, modeling deformations using thin plate 
spline can be a disadvantage because it limits the ability to model 
complex and localized deformations, since a perturbation on a sin-
gle point has influence on all the others. In RT applications, TPS-
RPM has been employed in several contexts, for example to evalu-
ate anatomical changes in head and neck cancer patients (Vásquez 
Osorio et al 2008), for the estimation of the dose actually delivered 
on tumor when two treatment modalities are combined (Vásquez 
Osorio et al 2011) and to automatically segment vessels in the liver 
(Vasquez-Osorio et al 2012).  

The other main approach in NRR methods is represented by 
the intensity-based registration algorithms, which use only image 
intensity information to recover the spatial transformation connect-
ing the images consequently being more automatic and less costly 
but more sensitive to image noise or intensity mismatching. Most 
used methods belonging to this category are optical-flow (Horn and 
Schunck 1981), Thirion’s Demons algorithm (Thirion 1998) and B-
spline free-form registration (Rueckert et al 1999).  

Fluid registration, also known as optical flow (OF), methods 
consider that the differences between target and source images 
could be described as motion of voxels based on the OF equation, 
and, given two images, they find voxels correspondence by compu-
ting a displacement field describing the apparent motion represent-
ed by matching the intensity gradients in the two images. Different 
algorithms are proposed in literature to solve the OF equation, each 
of them was characterized by an additional set of equations intro-
ducing some constraints and conditions for estimating the actual 
flow (Horn and Schunck 1981, Lucas and Kanade 1981, Bruhn et al 
2003). Thirion's Demons algorithm was inspired by the OF equation, 
but instead of having a flow field in the entire image, the forces are 
applied in the borders of the objects inside the images, introducing 
demons that push according to local characteristics of the images. 
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Demons algorithm is generally more accurate than OF  methods, but 
it requires a great deal of computation time. The main drawback of 
these fluid registration methods is the limitation on mono-modal 
registration, since they are constrained by the assumption of inten-
sity conservation between images. Thanks to their accuracy, De-
mons algorithms, and their novel improved implementations 
providing diffeomorphic registration (Vercauteren et al 2009, 
Janssens et al 2009), are widely employed in RT mono-modal appli-
cations; for example, they found their natural use in 4DCT thoracic 
images, to model breathing movement in lungs and GTV (Boldea et 
al 2003, Zhang et al 2008, Østergaard Noe et al 2008, Castillo et al 
2009, Janssens et al 2011). In addition, Demons algorithm was used 
also to estimate daily prostate deformations (Wang et al 2005) and 
anatomical changes in head and neck patients (Wang et al 2005) 
during RT treatment for dose tracking, and to automatically deline-
ate organs in adaptive head and neck RT (Hardcastle et al 2012). 

In this thesis, the NRR method used to evaluate anatomical 
deformations of parotid glands is the free-form deformation (FFD) 
based on B-Spline (Rueckert et al 1999). The basic idea of FFD is to 
deform an object by manipulating an underlying mesh of control 
points (Sederberg and Parry 1986). This method, associated with a 
contour propagation method specifically developed, was validated 
in the context of head and neck CT image registration, as part of this 
research. The proposed method will be deeply described in the fol-
lowing paragraph, for the most part based on Faggiano et al 
(Faggiano et al 2011). 

 
3.1.2. Image registration method 

In order to obtain an accurate description of anatomical and 
structural variations induced by RT on parotid glands, a registration 
and contour propagation method is required. The flow-chart of the 
whole procedure employed to extract geometrical indexes describ-
ing parotid glands deformations is represented in Figure 3.2. In this 
section the focus is on the implementation and validation of the 
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proposed method, while in the next one it is on the description of 
morphological indexes. 

 

 
Figure 3.2. Flow-chart of the procedure employed to extract morphological 

indexes. 

 

 The adopted registration method was a classic sum of rigid 
and elastic transformation, modeled by a cubic B-spline hyperpatch 
(Rueckert et al 1999); the algorithm used mutual information and a 
four-step multi-resolution strategy (Mattes et al 2003). In the fol-
lowing paragraphs, the characteristics of the FFD registration will be 
described in terms of: 

 Cost function (Mutual Information) 

 Interpolation (B-spline) 

 Transformation model (Free-form deformation) 

 Optimization method 
 

3.1.2.1. Cost function 
For the estimation of the transformation between the two 

images, a cost function has to be defined and maximized (or mini-
mized). In this implementation, the negative of the Mutual Infor-
mation (MI) was used as term to be minimized. MI is a measure of 
statistical dependency between two data sets and it is particularly 
suitable for registration of images from different modalities, where 
intensity values of the two images could present any form of de-
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pendency. MI between two random variables A and B starts from 
the entropy of the single variable, defined as: 

                        

where pA(a) is the marginal probability density of that variable. The 
joint entropy of A and B is defined as: 

                                    

where pAB(a,b) is the joint probability density of the variables A and 
B. If there is any dependency between A and B, then 

                 
while if A and B are independent 

                 
The MI between A and B is then defined as: 

                         
Therefore, MI ≥ 0 and the equality is verified if A and B are inde-
pendent.  
In the discrete domain, as the digital image is, MI can be re-written 
as: 

                     
        

          
  

 

Typically, the joint and marginal probability densities are not 
available and then these should be estimated from image data; MI 
estimation is thus calculated from the marginal and joint gray level 
image histograms. Usually, Parzen windows are used for this pur-
pose, to generate continuous estimates of the underlying image dis-
tributions, thereby reducing the effects of quantization from inter-
polation and discretization from binning the data (Thévenaz and 
Unser 2000). With this method, densities are constructed taking 
from the image N samples of intensity values S   I (intensity values 
of the whole image) and super-positioning kernel functions cen-
tered on the sampled elements S. As kernel function, a large variety 
of functions could be used with the requirement of being smooth, 
symmetric, with zero mean and integrate to one. Typically, the pa-
rameters that have to be tuned in the implementation of MI calcula-
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tion are the number N of voxels to be considered and the number of 
bins used for the histograms estimations.  

 

 
Figure 3.3: Marginal and joint gray level image histograms. In the first row, 
kVCT (left) and MVCT (right) histograms denote a similar gray level distri-
bution in the two images. In the second row, joint gray level image histo-
grams before image registration (left) and after image registration (right) 

are shown. The dispersion in the joint histogram after image registration is 
reduced, denoting good efficacy of the registration method. 

 
An example of joint histogram is presented in Figure 3.3: in 

this case a kVCT image was considered as fixed image and a MVCT 
image was considered as moving image. The two studies have simi-
lar information content (first row) with a soft tissue intensity rang-

ing from −200 to 250 HU (Hounsfield Unit) in kVCT and from −300 to 
180 HU in MVCT, approximately. The spatial misalignment, present 
before registration, results in a joint histogram with marked disper-
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sion (second row, left), indicating that the gray level of a pixel in an 
image does not systematically correspond to a specific gray level of 
the corresponding pixel in the second image. The effect of MI image 
registration in recovering the spatial mismatch is highlighted by the 
decreased dispersion of the joint histogram, which shows better 
correlation between pixel gray levels in the whole range (second 
row, right). 

 

3.1.2.2. Spatial interpolation 
Elastic transformation and image representation are modeled 

by using cubic B-spline as interpolant function (Unser 1999). Cubic 
B-spline are piecewise polynomial functions of degree 3 and are de-
fined as the convolution of B-spline of degree (n-1) with B-spline of 
degree 0. In particular, basis function of the B-spline are the follow-
ing: 

      
      

 
 

      
         

 
 

      
             

 
 

      
  

 
 

 
 The general formulation of cubic B-spline is (see also Figure 3.4 for 
a graphical representation): 
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Figure 3.4. Graphical representation of cubic B-spline for mono-

dimensional case. 

 
In contrast to thin-plate splines, B-splines are locally con-

trolled, which makes them computationally efficient even for a large 
number of control points. In particular, the basis functions of cubic 
B-splines have a limited support, i.e. changing control point affects 
the transformation only in the local neighborhood of that control 
point. 

 

3.1.2.3. Transformation model 
The transformation that has to be estimated is a composition 

of rigid motion recovery to correct global misalignment and local 
elastic deformation: 

                                       

 
Rigid transformation: The rigid motion recovery is a classical global 
rigid transformation in 3D with 6 degrees of freedom (3 parameters 
for translation and 3 parameters for rotation): 
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where R is a 3x3 homogeneous rotation matrix characterized by the 

Euler angles (), x=[x,y,z]T is the position of any voxel in the 
fixed image and T=[tx, ty, tz]

T is the translation vector. Therefore, the 
parameters to be estimated are: 

                    

 
Elastic transformation: The elastic deformation is estimated by the 
FFD model, based on B-splines. A deformation is defined on a 

sparse, regular grid of control points i,j,k with resolution 

xyz, placed over the test image and is then varied by defin-

ing the motion g(i,j,k) of each control point. The FFD can be written 
as the 3D tensor product of the 1D cubic B-splines: 

                                            

 

       

 

where         , j       ,         ,   
 

  
  , 

  
 

  
  ,   

 

  
  , and Bl represents the lth basis function of 

the B-spline. The unknown parameters are the values of the control 

points i,j,k. The higher the number of control points, the higher the 
resolution of the grid and thus of the estimated transformation, but 
the higher the computational cost. 

 

3.1.2.4. Optimization method 
The optimization method adopted is different for the estima-

tion of rigid and elastic transformation: for the rigid method a vari-
ant of gradient descent optimizer is used, while L-BFGS-B (limited 
memory Broyden, Fletcher, Goldfarb and Shannon minimization) 
optimizer is employed for the elastic registration (Jorge. Nocedal 
and Wright 1999). This method is useful here because of the high 
dimensionality of the parameter space: instead of estimating the 
entire Hessian during minimization, only a low-rank approximation 
is calculated. 
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The optimization criterion provides an efficient hierarchical 
multi-resolution scheme, in order to avoid local minima and to de-
crease computation time. The basic idea of multi-resolution is to ini-
tially recover the gross motion of the patient and large anatomic 
structures and then, increasing the resolution, to recover finer misa-
lignments. This scheme is controlled by the resolution of the defor-
mation grid, the number of image samples used to measure MI, the 
variance of the Gaussian blurring and the optimizer's termination 
criterion (see Figure 3.5). In particular, as the resolution increases, 
the Gaussian kernel narrows, the number of considered voxels in-
creases and the stopping criterion decreases. In Table 3.1 multi-
resolution parameters used in this implementation are reported. 

 
Table 3.1. Multi-resolution parameters used for elastic registration 

Parameters 
Level  

1 
Level 

2 
Level 

3 
Level 

4 

Gaussian kernel (pixels)     
If dimension along z ≥ (dimen-
sion along x)/2 

16/16/16 8/8/8 2/2/2 0/0/0 

If dimension along z < (dimen-
sion along x)/2 

16/16/8 8/8/4 2/2/2 0/0/0 

Percentage voxels used in MI 
estimation 

0.8 3.4 9.3 19.7 

Stopping criterion 10-5 10-6 10-7 10-8 

Final grid spacing 10x10x10 mm3 
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Figure 3.5. Multi-resolution scheme with the definition of the variance of 

the Gaussian filter and the grid resolution for each step. 

 
Another step introduced to optimize the image registration 

performance is a pre-processing step by which the fixed and moving 
images are cropped and processed to maximize the mutual infor-
mation in the region of interest. Therefore, the two images were 
resized and resampled to the same image size and resolution, and 
cropped around the volume of interest  in order to avoid a great 
number of spatial samples belonging to the background. Then, we 
masked the background and bone areas to constrain the algorithm 
not to deform these regions. First, a threshold was applied to indi-
viduate the head and to set all the voxels outside this region to a 
fixed value of -1000 HU. For bone mask, a threshold of 300 HU was 
applied to obtain a binary bone segmentation, that was refined us-
ing morphological operations to merge or remove small islands. Fi-
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nally, voxels inside the bone mask were set to 3000 HU (see Figure 
3.6). 

 

 
Figure 3.6. Pre-processing step of bone and background saturation. On the 

left: original CT image; on the right: saturated CT image. 

 

3.1.3.  Contour propagation method 
After the estimation of the deformation field between the 

two images, a contour propagation method is needed to obtain a 
spatial correspondence of the considered structures of interest (see 
Figure 3.7). The contour propagation method here adopted and de-
scribed in (Faggiano et al 2011) consists of a surface 3D mesh gen-
eration step followed by a mesh deformation step. The triangular 
mesh of parotid gland is generated from the contour points manual-
ly delineated by an expert on each CT slice, using the Power crust 
method proposed by Amenta et al (Amenta et al 2001). These sur-
faces are then deformed through the FFD procedure: 

1. The world coordinate space (x,y,z) containing the 
object is associated  to a parametric hyperpatch, 
defined by a trivariate cubic B-spline tensor prod-
uct volume; 
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2. Object vertices are transformed into the 
hyperpatch reference coordinate system; 

3. A number of control points are displaced with a 
consequent distortion of the hyperpatch; 

4. Deformation estimated by the image registration 
step is applied to all the parameterized object ver-
tices to produce the deformed object in the world 
coordinate. 

The final deformed contours are obtained by cutting the de-
formed object through the transversal plane. The FFD surface de-
formation method ensure a regular parotid surface which does not 
need any post-deformation smoothing. 

 

 
Figure 3.7. Description of contour propagation algorithm. From left to 

right: parotid contour manually drawn on CT1; parotid contour manually 
drawn on CT1 visualized on CT2; displacement map; deformed contour 

visualized on CT2. 

 

3.1.4. Accuracy evaluation of contour propagation method1 
To evaluate the accuracy of the contour propagation method 

in parotid glands delineation, we investigated inter-observer vari-
ability in contouring parotid glands on MVCT images and compared 
the results of the automatic method with the protocol- related ob-
server variability. The analysis of operators contour variability in 

                                                           
1
 Based on Faggiano E et al. An automatic contour propagation 

method to follow parotid glands deformation during head-and-neck cancer 
Tomotherapy. Physics in Medicine and Biology, 2011. 56 (3), pp 775-791. 



3. EXTRACTION OF MORPHOLOGICAL INDEXES 

 

41 
 

kVCT and MVCT also allowed us to verify the potential impact of 
contour propagation in this specific application. 
 

3.1.4.1. Clinical dataset 
For this validation, we considered 10 patients treated for HNC 

on an Helical Tomotherapy (HT) unit (HiArt2 Tomotherapy, Madi-
son, Wisconsin). The planning kVCT images of all patients were ac-
quired with a multislice CT scanner (GE Medical System), with a 
number of slices ranging from 66 to 129, an image plane size of 512 
x 512 pixels and voxel size equal to 0.976 x 0.976 x 3.27 mm3. The 
daily MVCT images of all patients were acquired using the on-board 
HiArt2 CT scanner of the Tomotherapy unit before each treatment 
fraction and were clinically used for patient repositioning. Each slice 
was 512 x 512 pixels with variable voxel size from 0.754 x 0.754 x 4 
mm3 to 0.754 x 0.754 x 6 mm3.  

MVCT delivers higher doses to the patient with lower image 
quality than diagnostic kVCT. MVCT images were relatively smaller 
and were included in the reference kVCT image space, as MVCT ac-
quisition was restricted to the irradiated volume with small cranial-
caudal margins.  

The number of slices was different for each patient on differ-
ent days, ranging from 23 to 48 for a voxel axial dimension of 4 mm, 
and from 19 to 36 for a voxel axial dimension of 6 mm.   

For this study we used the planning kVCT scans of each pa-
tient and the final daily MVCT image (fraction 30, on average after 
45 days from the start of the therapy).   

 

3.1.4.2. Inter-observer variability.  
Three expert operators manually contoured parotid glands 

slice-by-slice on the transversal view of the kVCT and MVCT studies 
of our dataset using a commercially available treatment planning 
software (Varian Eclipse v.8.6). No observers had knowledge of con-
tours outlined by the other observers.  
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First, inter-observer variability related to both KVCT and 
MVCT was evaluated testing the equivalence between the three op-
erators in terms of volumes and centre-of-mass (COM) distances us-
ing a two-way Anova test. The normality of the variables distribu-
tions was verified for volumes and COM distances using the Jarque-
Bera test. A post-hoc Tukey test was used to evaluate statistical sig-
nificance of the difference between two operators.  

Parotid glands volumes were estimated using Gauss' theorem 
(Hughes et al 1996) and distances between right and left parotid 
COM were collected as suggested in (Lee et al 2008).  

Then, a comparative analysis between kVCT and MVCT con-
touring variability was carried out in terms of DICE similarity coeffi-
cient (DSC) (Dice 1945) and volume variability coefficient (DeltaVol) 
(Geets et al 2005). Given two binary masks representing the area 
delimited by a contour, DSC was calculated as 

     
   

   
 

where A and B are two different binary masks. DSCs were calculated 
between each pair of operators and averaged to obtain a mean in-
dex (Op-Op) for both kVCT and MVCT.  

To calculate DeltaVol, the volume that is common to all ob-
servers (common volume) and the volume that encompasses all ob-
servers (encompassing volume) were calculated.  DeltaVol was then  
obtained as the ratio between the common and the encompassing 
volumes (Geets et al 2005). 

As DSC and DeltaVol indices were non-normal distributed 
(Jarque-Bera test), differences between their values in kVCT and in 
MVCT were tested using the non parametric Wilcoxon signed rank 
test. 

In Table 3.2 parotid volumes and COM distances, estimated 
by the three observers on both kVCT and MVCT, are reported: there 
was no statistical difference among different operators in parotid 
volume estimation on kVCT (p=0.453) while differences were signifi-
cant in MVCT contouring (p=0.0176). Regarding COM distances val-
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ues, no statistical difference among different operators both in kVCT 
and in MVCT was found. 

 
Table 3.2. Inter-observer variability in terms of volume and Centre-of-mass 
(COM) distance of parotid glands manually drawn by the three observers 

(mean value ± standard deviation). 

 KVCT  MVCT 

 Op1 Op2 Op3  Op1 Op2 Op3 

Volume 
[mm3] 

25.2 ± 
6.3 

24.6 ± 
6.5 

24.4 ± 
6.3 

 16.8 ± 
5.1 

16.4 ± 
5.0 

18.2 ± 
5.0 

Anova p=0.45  p=0.018 

COM dis-
tance 
 [mm] 

115.4 ± 
8.3 

115.4 ± 
8.2 

115.1 ± 
8.2 

 
111.4 
± 8.4 

111.0 
± 8.6 

110.4 
± 7.7 

Anova p=0.74  p=0.21 

 

Table 3.3 summarizes average DSCs and DeltaVols for both 
kVCT and MVCT studies. MVCT contours resulted significantly dif-
ferent from those drawn on kVCT  (p<0.05) in terms of both DSC and 
DeltaVol values: MVCT indices were significantly lower than kVCT, 
indicating worst match in MVCT contour delineation. Finally we can 
note that kVCT DSC indices were always greater than 0.81 indicating 
good agreement between operators, while MVCT values ranged 
from 0.67 to 0.87, thus demonstrating more variability.  
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Table 3.3. Inter-observer variability in terms of Dice index (DSC) and 
DeltaVol, averaged between operators and subjects, presented as mean 

value ± standard deviation. Wilcoxon test is performed to evaluate signifi-
cant differences between KVCT and MVCT.  

 
KVCT MVCT 

Wilcoxon test  
(p-value) 

DSC 0.85 ± 0.03 0.79 ± 0.04 2.2∙10-4 

DeltaVol 0.64 ± 0.05 0.53 ± 0.07 2.5∙10-4 

 

3.1.4.3. Accuracy of contour propagation.  
To apply contour propagation to our dataset, we created a 

median kVCT contour from the kVCT contours of the three observ-
ers. For each slice a coverage matrix was constructed: for each voxel 
on a 0.976 mm grid it was scored how many times the voxel was in-
side a contour. The median boundary was constructed by founding 
the 50% isocontour of the coverage image using a B-spline interpo-
lation algorithm. KVCT and MVCT were then roto-translated and 
elastically registered to obtain control points displacements. A me-
dian mesh was then generated and deformed using our contour 
propagation method.  

The deformed median kVCT contours on daily MVCT scans 
were qualitatively, i.e. visually, inspected by the three observers to 
ensure that they were within established anatomic boundaries of 
the parotid glands.  

For quantitative evaluation, the deformed contours were 
compared with the manual contours directly outlined on MVCT im-
ages by the three observers, with the purpose of assessing if the un-
certainties of the automatic contours fell within those of the human 
observers. This analysis was carried out by studying both the 3D 
performance and the 2D performance of our method. To analyze 
the 3D performance we compared parotid volumes and COM dis-
tances through Anova analysis of variance and DSC operator vs. op-
erator (Op-Op) values to operator vs. automatic (Op-A) values 
through a Wilcoxon signed rank test. Since MVCT did not always 
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cover the extent of parotid glands and, additionally, parotid con-
tours were usually delineated on 2D images, we performed a sup-
plementary 2D analysis to verify the goodness of automatic 2D con-
tours on axial image planes. In this analysis we excluded slices that 
were not contoured by all the operators in order to mask out the 
superior and the inferior end of parotid glands that were not well 
defined in MVCT images and involved large human variations (Zhang 
et al 2007, Lee et al 2008). 2D accuracy of contour propagation was 
evaluated in terms of Average Symmetric Distance (ASD) and Maxi-
mum Symmetric Distance (MSD)  (Heimann et al 2009).  Zero value 
for the two indices represents a perfect matching between two con-
tours. The ASD gives an averaged accuracy assessment while MSD 
distance captures the worst case mismatch.  

ASD between 2D contours A and B is defined by the following 
formula: 

         
 

             
            

       

            

       

  

where C(A) and C(B) indicate the set of voxels belonging to the con-
tours A and B, respectively; d(v,C(A)) and d(v,C(B)) indicate the 
shortest distance between an arbitrary voxel and the contours A 
and  B, respectively, calculated using a 3D Euclidean distance map 
(Maurer Jr et al 2003), which found the closest point on the test 
contour from each reference contour point. 

MSD is determined on the basis of the same considerations 
adopted for the ASD, but it yields the maximum distance between 
the contour sets, therefore being most sensitive to outliers. It is de-
fined as: 
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The final value was then obtained as the mean (for ASD) and 
the maximum (for MSD) value over the slices common to all the 
four delineations (Huyskens et al 2009). 

Average ASD and maximum MSD between operators (Op-Op) 
and between automatic and operator (Op-A), were then calculated 
between each pair of manual contours and between automatic con-
tour and each manual contour, respectively (Huyskens et al 2009). 

As ASD and MSD were non-normal distributed (Jarque-Bera 
test), statistical significance of the differences between Op-A and 
Op-Op indices was assessed using Wilcoxon signed rank test.  

All statistical analyses were performed using MATLAB 64bit 
(R2009b, The MathWorks, Natick, MA) and R (Hart et al 1994). 

 
Table 3.4 summarizes the results of the 3D analysis of contour 

propagation accuracy. No significant differences were found be-
tween the automatic method and the manual contour delineations 
in terms of parotid volume ( p>0.05 in multiple comparisons Tukey 
test), parotid COM distances (p=0.3043 by the Anova test) and DSC 
values (p=0.1672 by the Wilcoxon signed rank test).  

Table 3.5 summarizes 2D analysis of accuracy. Also in these 
cases, no statistically significant systematic difference was found be-
tween manual and automatic contouring (p=0.2043 for ASD and 
p=0.8228 for MSD, by the Wilcoxon signed rank test). 

These results suggest that the automatic contour method 
could successfully substitute manual operator, as it could be as-
sessed in Figure 3.8. 
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Table 3.4. 3D analysis of contour propagation accuracy. Mean value ± 
standard deviation of parotid volume and COM distances are reported for 
each operators and the automatic method. For DSC index, mean value ± 
standard deviation are reported as average between operators (Op-Op) 

and between automatic and operators (Op-A). 

 Op1 Op2 Op3 Auto 

Volume 
[mm3] * 16.8 ± 5.1 16.4 ± 5.0 18.2 ± 5.0 17.5 ± 5.1 

COM distance 
[mm] ** 111.4±8.4 111.0 ± 8.6 110.4 ± 7.7 111.2 ± 8.0 

 Op-Op Op-A 

DSC *** 0.79 ± 0.04 0.77 ± 0.05 
     *  

No significant differences found (Tukey test) 
  **  

No significant differences found (Anova test) 
***  

No significant differences found (Wilcoxon test) 

 
 

Table 3.5. 2D analysis of contour propagation accuracy. Mean value ± 
standard deviation of average symmetric distance (ASD) and maximum 

symmetric distance (MSD) between operators (Op-Op) and automatic and 
operators (Op-A) are reported. 

 Op-Op Op-A 

ASD [mm] * 1.57 ± 0.24 1.66 ± 0.34 
MSD [mm] * 9.49 ± 1.90 9.47 ± 2.17 
*
 No significant differences found (Wilcoxon test) 
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Figure 3.8. Comparison between manual contours drawn by the 3 experts 

(expert1, expert2, expert3) and the contour obtained by the algorithm 
(automatic contour). On the right, in the zoomed image, it is possible to 
see that the automatic contour is placed in the same position than the 

other three. 

 

3.2. QUANTIFICATION OF DEFORMATION 
 

Once image registration method was applied to a set of CT 
images acquired during RT treatment, and therefore the anatomical 
deformation was estimated and recovered, a quantification of these 
geometrical changes is useful for the evaluation of the treatment 
itself and of the correlated side-effects on normal tissues. The easi-
est index that can be extracted from CT images is the volume of the 
structure of interest (parotid gland in our case): the contour propa-
gation method previously described guarantees that the considered 
parotid volume in each CT study is related to the same spatial loca-
tion. Therefore, every volume variation can be related to anatomical 
modifications induced by the radiation treatment, unless the regis-
tration error previously estimated.  

A direct quantification of the deformation can also carried out 
in terms of compression and expansion of each single voxel, using 
the Jacobian index. 
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3.2.1. Definition of the Jacobian index 
As deeply described in the previous section, every point in the 

registered image xe=(xe, ye, ze) is defined by the corresponding point 
in the fixed image xf =(xf, yf, zf) and by the estimated transforma-
tion: xe =xs + T(xs). The Jacobian of the transformation is then de-
fined as: 

                                               

where I is the identity matrix and grad is the transformation gradi-
ent. This index quantifies the shrinkage or the expansion of the sin-
gle voxel; in particular: Jac=1 corresponds to a voxel that doesn't 
change; Jac>1 identifies an expanding voxel and Jac<1 a shrinking 
voxel (Davatzikos et al 1996, Ding et al 2010). A negative Jacobian 
index indicates a folding in space, which is not consistent with a 
physically admissible deformation, and thus it should be avoided: 
FFD, thanks to B-splines properties of local control and smoothness, 
has very few voxels (generally less than 1% of the image) character-
ized by a negative Jacobian value. 

The Jacobian map can be visualized on the CT image using a 
different colormap, in order to easily individuate the expanding re-
gions and the shrinking regions. In Figure 3.9, an example of the 
jacobian map overlapped on the reference CT image is shown: in 
particular, the colormap from green to blue indicates compression 
areas (green: Jac≈1; blue: Jac≈0), whilst the colormap from yellow to 
red indicates expanding areas (yellow: Jac≈1; red: Jac≈2). 

The mean Jacobian index within an organ of interest 
(Jac_mean), calculated as the average value between all voxels be-
longing to this structure, is descriptive of the average deformation 
of the organ itself. This parameter can help in assessing the ana-
tomical behaviour of parotid glands as a consequence of radiation 
treatment. In particular, the study of the correlation between pa-
rotid deformation at the end of RT and some clinical, anatomical 
and dosimetric parameters can be helpful in determining those pre-
treatment indexes predicting large anatomical variations. This type 
of analysis could provide some useful information about the optimi-
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zation of the treatment and for the selection of those patients who 
could better benefit of a re-planning strategy. In this section, the as-
sessment of the correlation between Jac_mean and pre-clinical pa-
rameters is presented in a large population of patients treated for 
head-and-neck cancer. 

 

 
Figure 3.9. Example of jacobian map overlaid on the CT image and with pa-
rotid gland structure (in red), at different axial planes: from green to blue: 
shrinking voxels (1-->0); from yellow to red: expanding voxels (1-->2); un-
colored voxels: no deformation (Jac=1). From the picture it is evident that 

shrinkage is focused on the superficial lobe of the parotid. 
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3.2.2. Patient dataset and imaging procedure 
Data of 168 parotid glands of 84 patients from three institu-

tions treated for different Head and Neck cancer, both with radical 
and adjuvant intent, were pooled. Median patient’s age was 59 
years (range: 29-86 years). Most of the patients (79/84, 94%) didn’t 
undergo upfront surgery. 75/84 (89.2%) patients received chemo-
therapy: in 18 patients as neo-adjuvant treatment while concomi-
tant to radiotherapy in 70 cases. 12 patients received both neo-
adjuvant and concomitant chemotherapy. All patients were treated 
with intensity–modulated techniques (IMRT): 41 patients with the 
Helical Tomotherapy Unit, 43 with the conventional Linac IMRT, in 
dynamic or step-shoot modality. An inverse planning optimization 
approach was considered with the goal to deliver at least 95% of the 
prescribed dose to at least 95% of each PTV volumes, while keeping 
the dose as homogeneous as possible and sparing parotids without 
compromising PTVs coverage. 

Parotid deformation was evaluated through images taken at 
start and at the end of the treatment. For the 41 patients treated 
with Helical Tomotherapy, MVCT images were acquired with 4-6 
mm slice thickness; for the rest of the population, treated with con-
ventional Linac IMRT, KVCT images were available with 3-5 mm slice 
thickness. The in-plane pixel resolution was about 1 mm in each im-
age. 

Image registration was performed between the images ac-
quired at the beginning (MVCT/KVCT1) and at the end 
(MVCT/KVCT2) of the treatment, using the FFD method described in 
the previous section. The estimated deformation field was used to 
calculate the Jac_mean of the parotid glands, manually delineated 
on MVCT/KVCT1 by an expert in radiological images. 

 

3.2.3. Clinical/geometric and dosimetric data 
A number of clinical, anatomical/geometric and dosimetric 

data were collected. Age, chemotherapy (y/n), neo-adjuvant (y/n) 
and concomitant (y/n) chemotherapy, surgery (y/n) and primary 
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tumour site (oropharynx, nasopharynx, hypopharynx, larynx) were 
considered as clinical variables. Anatomical/geometric and dosimet-
ric parameters included: initial parotid volume (IVP) (average: 
27.49cc; range: 7.58–63.48 cc), tumour volume (T) (aver-
age:232.73cc; range:7.22–577.62cc), overlap between the parotid 
gland and the lynphnode chain volume (OVPPTV2) (average:4.10cc; 
range:0–22.90cc) and between the parotid and the high dose tu-
mour (OVPPTV1) (average:1.11cc; range:0–14.20cc), prescribed 
dose and daily dose, parotid planning mean dose (Dmean) (aver-
age:33.03Gy; range: 20.20-70.42Gy) and V10-V40 dose–volume his-
togram (DVH) values at planning. In addition to these “pre-
treatment” parameters, the absolute and the percentage body 

thickness variation  between the start and the end of the 
treatment were also considered. Thickness variation was measured 
on the available CT images as the difference between the half-
thickness between the end and the start of the therapy at the level 
of C2, taking the line tangent to the vertebral body on CT, selecting 
the side opposite to the disease and/or to previous neck surgery. 

 

3.2.4. Statistical analysis 
Several statistic tests were performed to assess correlation 

between parotid shrinkage and all considered parameters. 
First, the correlation between Jac_mean and all the recovered 

parameters was assessed through Spearman’s test. An univariate 
and a stepwise logistic multivariate analysis (MVA, selecting vari-
ables with p-value<0.1) were performed by considering as the end 
point the parotid Jac_mean value smaller than the first quartile 
value of the population (Q1). Parotid glands DVHs were stratified 
according to their degree of deformation, trying to assess the most 
predictive dose-volume combination in the low and medium dose 
region. Logistic MVA analyses including the shape of DVHs were also 
performed. Analyses were carried out with the MedCalc software (v. 
12.1.4, MedCalc software bvba). 
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Table 3.6. Results of Spearman’s correlation tests between parotid 

Jac_mean and the pre-treatment variables 

Variable p-value 

Institute 0.192 
Chemotherapy (y/n) 
       Chemo - neoadjuvant (y/n) 
        Chemo - concomitant (y/n) 

0.725 
0.923 
0.369 

Surgery (y/n) 0.378 
Age 0.021 
Tumor Site 0.001 
Tumor Volume 0.152 
Initial Parotid Volume (IVP) 0.193 
Overlap parotid-lymphonodal tumour 0.003 
Overlap parotid- tumour 0.004 
Prescribed lymphonodal tumour dose 0.152 
Prescribed tumour dose 0.030 
Daily lymphonodal tumour dose 0.514 
Daily tumour dose 0.606 
Parotid mean dose (Dmean) 0.0005 
V10 <0.0001 
V15 0.0001 
V20 0.0015 
V30 0.0106 
V40 0.0003 

 

3.2.5. Results 
 

3.2.5.1. Correlation between Jac_mean and clini-
cal/dosimetric parameters 

It was found that, on average, the 82.6% of the parotid glands 
voxels experiments a shrinkage effect (Jac<1), and, in particular, 
13.7% of voxels presents a compression greater than 50% (Jac<0.5). 
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The average value of Jac_mean among patients was 0.77 (median 
value=0.76; range: 0.38-1.10; first quartile Q1=0.67). Only 5.9% 
(10/168) of the parotid glands showed an expanding behaviour 
(Jac_mean>1). 

Results of correlation tests for Jac_mean and all clinical, geo-
metric, anatomic and dosimetric variables are reported in Table 3.6. 
Based on correlation tests, OVPPTV1 (p=0.004), OVPPTV2 (p=0.003), 
age (p=0.021) were found as the pre-treatment anatomi-
cal/clinical/geometric variables mostly correlated with Jac_mean; 
Dmean (p=0.0005) and all the DVH parameters, V10 (p<0.0001), V15 
(p=0.0001), V20 (p=0.0015), V30 (p=0.0106), V40 (p=0.0003), were 
also found significantly correlated with Jac_mean. In addition to 
pre-treatment parameters, absolute and percentage body thickness 
variation were found significantly correlated (p<0.0001) with pa-
rotid deformation. 

 

3.2.5.2. Risk of large deformations: pre-treatment vari-
ables 

 The results for the logistic univariate analysis are reported in 
Table 3.7 when considering Jac_mean<Q1. Focusing on pre-
treatment parameters, OVPPTV1 (p=0.002; OR=0.934, CI:0.895-
0.976) and OVPPTV2 (p= 0.005; OR=0.966, CI: 0.943-0.990) were 
found as the most predictive geometric variables; while V10 
(p=0.019; OR=0.949, CI:0.909-0.992), V15(p=0.041; OR=0.974, CI: 
0.950-0.999) and V40 (p=0.041; OR= 0.976, CI:0.953-0.999) were 
the dosimetric ones. MVA analysis reported that age (p=0.02; 
OR=1.05, CI:1.01-1.09) and OVPTV1 (p=0.0006; OR=0.92, CI:0.88-
0.96) were found as the best independent pre-treatment predictors 
(p=0.0001; AUC=0.69 (0.61-0.75)). If we exclude geometrical pa-
rameters, (being correlated to dosimetric variables), V10 (p=0.02; 
OR=0.95, CI: 0.91-0.99) was found as the best predicted variable 
(p=0.008; AUC=0.64 (0.56-0.71)).  
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Table 3.7. Results of Univariate logistic analysis. End point: Jac_mean<0.67 
(first quartile value of the population). 

Variable p-value 

Chemotherapy (y/n) 
       Chemo - neoadjuvant (y/n) 
       Chemo - concomitant (y/n) 

0.647; OR= 0.76 (0.24 -2.42) 
0.192; OR= 0.47 (0.15 – 1.45) 
0.892; OR= 0.94 (0.40 -2.21) 

Surgery (y/n) 0.097; OR= 0.35 (0.10 -1.21) 
Age 0.070; OR= 1.03 (0.998 -1.07) 
Tumor Site 0.032; OR= 1.75 (1.05 -2.91) 
Tumor Volume 0.2;      OR= 0.999 (0.996 – 

1.001) 
Initial Parotid Volume (IVP) 0.56;    OR= 0.990 (0.95 -1.03) 
Overlap parotid-lymphonodal 
tumour 

0.005 ; OR= 0.97 (0.94 -0.99) 

Overlap parotid- tumour 0.002;  OR= 0.93 (0.895 -0.976) 
Prescribed lymphonodal tumour 
dose 

0.824;  OR= 0.99 (0.89 -1.10) 

Prescribed tumour dose 0.557;  OR= 1.03 (0.94 -1.12) 
Daily lymphonodal tumour dose 0.416;  OR= 2.84 (0.23 -35.31) 
Daily tumour dose 0.647;  OR= 0.67 (0.12 -3.67) 
Parotid mean dose (Dmean) 0.042;  OR= 0.96(0.92 -0.998) 
V10 0.019;  OR= 0.949 (0.909 – 

0.992) 
V15 0.041;  OR= 0.974 (0.950 -0.999) 
V20 0.104;  OR= 0.98 (0.96 -1.004) 
V30 0.129;  OR= 0.981 (0.96 - 1.006) 
V40 0.041;  OR= 0.976 (0.953 -0.999) 

 
 

3.2.5.3. Risk of large deformations: shape of parotid 
DVH 

In order to better understand the correlation between pa-
rotid deformation and dosimetric parameters, the impact of the 
DVH shape was better investigated in the following way: the aver-
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age DVHs of parotid gland with Jac_mean<Q1 (large shrinkage) and 
Jac_mean≥Q1 (small shrinkage) were compared through a two-tails 
t-test. As result, V10 and V40 were assessed as the most predictive 
dosimetric parameters, being corresponding to the lowest p-values. 
A further ROC analysis found V10=93% (sensitivity: 41.4%, specific-
ity: 82.5%) and V40=36% (sensitivity: 68%, specificity: 52.5%) to be 
the best cut-off values discriminating large and small shrinking pa-
rotids. Parotid glands were then separated according to their DVH 
shape as: bad-DVH (V10>93% and V40>36%), intermediate-DVH 
(V10>93% and V40<36%), good-DVH (V10<93%). The risk to have 
Jac_mean<Q1 was 39.6% vs 19.6% vs 11.3% in three groups respec-
tively (p=0.0001). When adding the “DVH grouping” variable in the 
MVA, patient’s age (p=0.028; OR=1.04, CI:1.005-1.086), OVPPTV1 
(p=0.009; OR=0.93, CI:0.88-0.98), OVPPTV2 (p=0.085; OR=0.96, 
CI:0.92-1.01), V30 (p=0.012; OR=1.07, CI: 1.01-1.12) and bad-DVH 
(p=0.0035; OR: 0.19; CI:0.06-0.58) were found as the clinical, geo-
metric and dosimetric variables more significantly correlated with 
large parotid deformation (p<0.0001; AUC=0.78, CI:0.71-0.84). If we 
exclude geometric parameters correlated with dosimetric variables, 
patient’s age (p=0.077; OR=1.032; CI:0.997-1.069) and bad-DVH 
(p=0.0009; OR=0.282; CI:0.133-0.597) were found as the best inde-
pendent predicted variables (p=0.0009; AUC=0.70, CI:0.63-0.77) of 
the risk of large shrinkage (Jac_mean<Q1). 

 

3.2.6. Risk of large deformations: inclusion of patient modifi-
cations 
When considering not only pre-treatment parameters, but 

also patient modifications, the percentage (p<0.00001; OR=1.1807, 
CI:1.1022-1.2648) and the absolute (p<0.00001; OR=9.1887, 
CI:3.6704-23.003) body thickness variation were found significantly 
correlated with Jac_mean. When including these variables in the 
backward MVA, the final models (including or excluding geometric 
parameters, i.e.: OVPPTV1 and OVPPTV2) the predictivity of the 
model increases, with AUC passing from 0.70 and 0.78 to 0.79 and  
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Table 3.8. Results of the logistic regression models by considering or not 
body thickness variation and overlaps between targets and parotid glands. 

Conditions  Predictive Variables 
Significance/          

ROC curve 

 Variable p-value 
OR  
(95% CI) 

 

Body Thickness 
(no) 
OVPTV1/OVPT2 
(yes) 

Age 0.03 
1.04  
(1.01-1.09) 

p<0.0001 
AUC=0.78 
(0.71-0.84) 

OVPPTV1 0.009 
0.92  
(0.88-0.98) 

OVPPTV2 0.09 
0.96  
(0.92-1.01) 

V30 0.01 
1.07  
(1.01-1.12) 

Bad-DVH 0.004 
0.19  
(0.06-0.58) 

Body Thickness 
(no) 
OVPTV1/OVPT2 
(no) 

Age 0.08 
1.03  
(1-1.07) 

p=0.0009 
AUC=0.70 
 (0.63-0.78) Bad-DVH 0.0009 

0.28  
(0.13-0.60) 

Body Thickness 
(yes) 
OVPTV1/OVPT2 
(yes) 

BodyTh% < 0.0001 
1.26  
(1.14-1.39) 

p<0.0001 
AUC=0.87  
(0.81-0.92) 

OVPPTV1 0.002 
0.90  
(0.84-0.96) 

OVPPTV2 0.06 
0.96  
(0.91-1.00) 

V20 0.06 
0.95  
(0.91-1.00) 

V30 0.0009 
1.15  
(1.06-1.25) 

Bad-DVH 0.0010 
0.12  
(0.03-0.42) 

Body Thickness 
(yes) 
OVPTV1/OVPT2 
(no) 

BodyTh% 0.0003 
1.17  
(1.08-1.28) 

p=0.0001 
AUC=0.79  
(0.70-0.86) Bad-DVH 0.07 

0.40 
(0.15-1.07) 
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0.87 respectively. In Table 3.8, a summary of the four logistic mod-
els (including or not body thickness variation and/or 
OVPPTV1/OVPPTV2) is shown: in any case, bad-DVH grouping al-
ways results to be highly correlated to the risk of large deforma-
tions. 



 

 

Chapter 4 
 
 
 

Extraction of structural in-

dexes 
 

 

 

The morphological indexes previously described in Chapter 3 
can be considered as directly related to the parotid shrinkage, which 
has been extensively discussed in Chapter 2. In particular, in several 
works, on the basis of CT images acquired during RT, the authors 
have described anatomic variations with a global index intrinsically 
related to the deformation, such as the Jacobian index (Fiorino et al 
2011) or the simple volume variation (Vásquez Osorio et al 2008, 
Teshima et al 2010). Beside the anatomical variations, recent inves-
tigations have suggested that parotid deformation may be related 
to complex structural and functional modifications of the glands, by 
investigating the change in global structure/function during RT 
through the measure of density variations (Fiorino et al 2012, 
Teshima et al 2012). In this scenario, a full exploitation of the infor-
mation contained in CT images, provided, for example, by texture 
analysis, could lead to a more precise description of parotid gland 
modifications, in terms of structural characterization of tissue or-
ganization. 

In this chapter, texture analysis and its applications in RT will 
be deeply discussed and this method will be introduced on CT imag-
es with the aim to characterize structural variations in parotid 
glands during the course of treatment and, moreover, the predic-
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tion power of these parameters in early determining parotid shrink-
age will be assessed. 

 

4.1. TEXTURE ANALYSIS  
 

4.1.1. State of art  
Texture analysis has been used in various context in medical 

imaging, for identification, classification and segmentation of re-
gions or structures. Ganeshan et al used texture analysis at different 
scales to reveal changes in apparently disease-free areas of the liver 
in colorectal cancer patients with liver metastases as compared to 
those with no evidence of tumour or extra-hepatic tumour only, 
making this detection less complex than classical perfusion tech-
niques (Ganeshan et al 2009). Differentiation between aggressive 
and nonaggressive malignant lung tumors was performed in (Al-Kadi 
and Watson 2008) by measuring fractal dimension on Contrast En-
hanced CT images, in order to enhance CT tumor staging prediction 
accuracy through identifying their malignant aggressiveness.  

Classification of different grades of neoplasia was dealt by 
Ahammer et al, by the extraction of fractal dimension and statistical 
features from histological images of anal carcinoma (Ahammer et al 
2011). A classification between different type of tissue in pelvic dis-
trict (bladder, rectum and prostate) was performed with textural 
feature extraction in (Nailon et al 2008, Liao et al 2010). In these 
works, a method for features reduction was also presented, in order 
to identify the most powerful parameters in classifying tissues. Un-
supervised classification results demonstrated that with a reduced 
feature set the approach offered significant classification accuracy 
on axial, coronal and sagittal CT image planes and had the potential 
to be developed further for radiotherapy applications, particularly 
towards an automatic outlining approach.  

Texture analysis can be used also for automatic segmentation 
of structures, as proposed by Assefa et al in delineating 
glioblastoma on T1-w and T2-w MRI brain images (Assefa et al 
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2010). They have presented a new and computationally efficient 
technique for texture analysis based on the second order statistics 
of the power map of the localized Hartley transform. The power 
map enhanced dominant texture and revealed information which 
might not be accessible in the original image, allowing a more accu-
rate segmentation of the structures of interest. In head and neck 
district, target delineation on parotid glands using a voxel-based ap-
proach based on textural information was described by (Yu et al 
2009) on FDG-PET and CT images; a preliminary textural characteri-
zation of oral cancer involving buccal mucosa for the differentiation 
between the various grades of the tumor was proposed by (Raja et 
al 2012), using fractal dimension and statistical features.  

Parotid glands structure was described in sonographic images 
using texture analysis to discriminate different type of salivary 
glands tumor, based on fractal dimension (Chikui et al 2005). Re-
cently, a description of radiation-induced parotid gland injury was 
proposed in (Yang et al 2012) through the extraction of textural fea-
tures from ultrasound images. In this case, textural features identi-
fied a different echo-pattern for irradiated glands with respect to 
normal subjects (see also Chapter 2.2) and, thus, these parameters 
have been proved to be able to correctly characterize the biological 
process induced by RT. 

In this project, structural and functional changes during the 
therapy were assessed on CT images in two phases: first, a simple 
analysis of density variation in OAR was performed to evaluate first-
order statistical variations (Palma et al 2011); then, a more complex 
texture analysis, including the extraction of first and second order 
statistical indexes and fractal dimension, was carried out to take in-
to account changes in intensity pattern (Ahammer et al 2011). All 
these indexes were then correlated with pre-clinical and dosimetric 
parameters and with clinical outcomes, in order to reach an exhaus-
tive description of the parotid glands behavior due to radiation.  
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4.1.2. Influence of noise and image registration in texture 
analysis 
The assessment of the influence of quantum noise and blur-

ring effect, typical in radiographic images, in the estimation of tex-
tural features, and in particular of fractal dimension, was dealt in 
literature by some groups. This is an interesting evaluation, since in 
real images the characteristics of the imaging technique influence 
their information content and thus the estimated textural features. 
The main source of noise in CT images is the quantum noise, which 
depends on the number of discrete x-ray photons reaching the de-
tector. The most straightforward way to improve the signal to noise 
ratio is to increase the radiation dose to the patient, which has its 
own detriments.  

Mathematically, the amplitude of the quantum noise closely 
follows a Poisson distribution, which can be approximated by a 
Gaussian when the count is large. Although the quantum noise oc-
curs in the raw projection data, simulating its effects can be simpli-
fied by introducing it directly to the reconstructed image, following 
some linear attenuation corrections (Herman 2009). Therefore, to 
study the effects of quantum noise on the estimation of fractal di-
mension, Veenland et al (Veenland et al 1996) simulated different 
signal to noise ratios on synthetic fractal images (Peitgen et al 1988) 
by varying the noise level of a Poisson process and used a modula-
tion transfer function to describe the image blurring. Different 
methods of fractal dimension estimation were tested with this im-
ages and results have shown a decrease in the estimated range, in-
dependently from the algorithm used. Therefore, when a compari-
son of fractal dimension in different images is needed, the only way 
to achieve a reliable result is to provide the same controlled acquisi-
tion protocol, in order to ensure similar image quality in terms of 
spatial resolution and signal to noise ratio. 

The same group (Veenland et al 1998) evaluated the impact 
of noise and blurring on the estimation of other textural features: 
statistical indexes from co-occurrence matrix, features from the 
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Fourier Power Spectrum (Bajcsy 1973, Katsuragawa et al 1988, Liu 
and Jernigan 1990) and fractal dimension calculated with Power 
Spectrum method (Pentland 1984) and Blanket method (Peleg et al 
1984). All texture analysis methods are negatively influenced by 
noise, although the influence of noise depends on the image type; 
again, the comparison of images with different noise characteristics 
is not sensible since the different image quality has a different influ-
ence on the discriminative performance of the methods. 

Recently, the influence of registration in texture analysis was 
studied (Cunliffe et al 2012, Cunliffe et al 2013) for lung CT images. 
In several ROIs identified in the baseline CT within lung borders and 
matched in the follow-up CT using different image registration algo-
rithms (rigid, affine, B-splines and demons) a total of 140 textural 
features were extracted and compared. Since the considered sub-
jects were not affected by lung pathologies, the authors hypothe-
sized that textural features had similar values in both CT studies; 
therefore, the effects of registration and image acquisition proto-
cols were assessed by comparing values of the extracted features. 
Among the studied image registration methods, the lowest registra-
tion-dependent bias introduced in textural features was achieved by 
demons algorithm. Moreover, the authors identified the 19 "regis-
tration-stable" parameters and measured the magnitude of varia-
tion introduced by registration: this knowledge would allow for bet-
ter distinction between texture differences caused by disease pro-
gression and texture differences from registration-induced artifacts 
(Cunliffe et al 2012). In the following work (Cunliffe et al 2013), the 
same authors went deeper in this kind of analysis, focusing on the 
effects of demons algorithm and trying to minimize the registration-
induced changes in texture analysis. These works can thus help in 
choosing the better set of features for an accurate detection of local 
changes in serial CT lung images. 
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4.1.3. Texture analysis method 
 

4.1.3.1. Metal artifacts correction2 
In the HN district, dental filling can cause metal streaks arti-

facts that affect the image quality. Previous works have demon-
strated that metal artifacts in HN district degrade the precision of 
contouring (O'Daniel et al 2007) and increase the dose estimation 
inaccuracies (Kim et al 2006). Metal streaks can also affect the esti-
mation of intensity calculation (Yazdia et al 2005, Bal and Spies 
2006), increasing the value of the standard deviation within a region 
of interest. Therefore, in RT it is important to reduce metal artifacts 
in CT images to improve contour delineation and densitometric 
evaluation. 

Various methods of metal artifacts reduction (MAR) have 
been illustrated in literature, based on the interpolation of sinogram 
data, aimed at removing data belonging to metal trace (Kalender et 
al 1987, Wei et al 2004, Bal and Spies 2006, Abdoli et al 2009). I 
proposed here a modified version of a previously published algo-
rithm (Meyer et al 2010) and I evaluated the improvement of image 
quality after the correction both qualitatively and quantitatively. In 
particular, variations in intensity calculation are studied to assess 
the adequacy of the correction to perform an accurate density anal-
ysis in ROIs for RT. 

 

 Algorithm 
Starting from the algorithm proposed by Meyer et al. (Meyer 

et al 2010), here a modified version of the proposed Normalized 
Metal Artefacts Correction (NMAR) is implemented. NMAR is a 
method based on sinogram inpainting, where metal trace in the 
original sinogram is treated as missing data and is then replaced by 

                                                           
2
 Based on Scalco E.; Fiorino C.; Sanguineti G.; Cattaneo G.M.; Rizzo G. 

Metal artifacts reduction for Radiotherapy application. Atti del 
Congresso Nazionale di Bioingegneria, Roma, 26-29 Giugno 2012. 
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interpolated data. Innovation in NMAR with respect to previous 
works is the step of normalization of the sinogram before the inter-
polation. To perform the normalization, a prior image is created; 
this image is a segmented version of the original image, where four 
different classes are defined: air, soft tissue, bone and metal. In 
(Meyer et al 2010) the original CT image is segmented using a sim-
ple thresholding, after having applied a Gaussian filter, to reduce 
the streaks artefacts. The metal class is then forward projected to 
define the metal trace in the original sinogram. The normalized si-
nogram is obtained by dividing the original sinogram by the prior 
sinogram, in order to give more emphasis to the metal trace and 
preserve bone information. Metal trace in the normalized sinogram 
is linearly interpolated and the corrected sinogram is denormalized; 
the final corrected image is obtained by a Filtered Back-Projection 
of the corresponding sinogram. A schematic representation of this 
algorithm is reported in Figure 4.1. 

Two different modifications, as proposed by (Bal and Spies 2006), 
with respect to the original NMAR method are implemented: 

1. an adaptive filter, instead of a Gaussian filter, was applied to 
the original image to reduce the noise content and to selec-
tively smooth streaks artefacts.  

2. k-means algorithm, instead of the simple thresholding, was 
used to automatically segment the filtered image into the 
four classes. A morphological operation of erosion is also per-
formed on the metal class to correct misclassification errors 
of bone voxels, caused by the smoothing filter. In this case 
prior image can be obtained in a completely automatic way, 
thus avoiding the problem of choosing threshold values, al-
though we expect a corrected image very similar to the one 
obtained using a simple threshold. 
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Figure 4.1. Schematic representation of the implemented NMAR method. 

 

 Algorithm evaluation 
The described algorithm was applied to 5 different CT images 

of the HN district of 5 patients undergone to RT treatment. Metal 
artefacts were due to multiple dental filling of both side of the jaw. 
Evaluation of the correction was made both qualitatively, by visually 
comparing image quality, and quantitatively. To quantify the effect 
of the algorithm, mean intensity value with its standard deviation of 
different ROIs in the images was calculated before and after metal 
artefacts correction, as proposed in (Bal and Spies 2006). ROIs were 
placed close to the source of artefacts (Art_ROI) and in a typical 
OAR (parotid glands) for HN RT planning. We also considered a ROI 
in an artefact-free region, in order to verify that there's not statisti-
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cal difference between the original and the corrected image in an 
area that doesn't need a correction (see Figure 4.2). 

 

 
Figure 4.2. Position of the ROIs in the image. From left to right: Art_ROIs, 

placed near teeth, parotid ROI and artefact-free ROI. 

 

 Results 
Figure 4.3 shows the results of the correction method, ap-

plied to an exemplificative case: in the left the original image with 
streaks artefacts and in the right the corrected image. Artefacts are 
well eliminated and anatomical structures, affected by streaks, be-
come more visible, improving, therefore, the contour delineation of 
target and OAR. 

 

 
Figure 4.3. Result of the correction method. Left: original image with 

streaks artefacts; right: corrected image. Evident metal streaks are re-
moved and image quality is improved. 
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Tables 4.1, 4.2 and 4.3 show the results of the quantitative 

evaluation: in  Art_ROI, standard deviation of intensity is signifi-
cantly different (Wilcoxon signed rank test, p= 0.005) between 
original and corrected images. For parotid glands both mean and 
standard deviation become significantly smaller (Wilcoxon signed 
rank test, p=0.009 and p=0.005 for mean and standard deviation re-
spectively), confirming improvements in image quality. In artefact-
free ROI, no statistical difference between original and corrected 
image was found (mean intensity value of the original image: -97.26 
± 19.32; mean intensity value of the corrected image: -99.03 ± 
21.97; p_value > 0.05). 

 
Table 4.1. Mean intensity and standard deviation (HU units) in Art_ROI. 

  
Original 

 
Corrected 

  mean std  mean std 

A
rt

_R
O

I 

P1 142.66 118.08  61.15 52.22 

 48.66 121.49  33.07 87.94 

P2 97.45 148.80  65.50 82.57 

 -7.94 187.46  46.40 65.86 

P3 53.76 74.01  65.83 47.18 

 41.89 87.80  16.56 77.67 

P4 68.81 88.11  53.90 55.65 

 89.06 79.47  26.36 39.31 

P5 64.69 60.36  60.53 31.01 

 105.65 57.83  72.92 45.66 

Mean  70.47 102.34  50.22 58.51 

WILCOXON  
TEST 

p_value mean= 0.074 
p_value std= 0.005 
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Table 4.2. Mean intensity and standard deviation (HU units) in parotid 

glands. 

  
Original  Corrected 

  mean std  mean std 

P
ar

o
ti

d
s 

P1 -30.84 32.24  -40.59 30.61 

 -81.17 56.47  -94.79 35.93 

P2 -29.69 65.48  -43.84 51.99 

 -21.52 67.03  -31.97 55.23 

P3 -34.33 55.85  -43.56 42.03 

 -67.74 69.69  -59.60 41.73 

P4 10.40 78.07  -2.43 73.79 

 -23.86 47.63  -34.31 36.92 

P5 -18.98 44.50  -29.42 35.23 

 -50.11 54.55  -53.18 41.49 

Mean  -34.78 57.15  -43.37 44.49 

WILCOXON  
TEST 

p_value mean= 0.009 
p_value std= 0.005 

 
The significant decrease in mean and standard deviation in 

the intensity measurements is in agreement with other works 
(Yazdia et al 2005, Bal and Spies 2006), which evidenced the capabil-
ity of the method of recovering the CT number of the imaged ob-
jects; meanwhile, the method can preserve original intensity value 
in artefact-free regions. These two properties can allow an accurate 
densitometric analysis.  
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Table 4.3. Mean intensity and standard deviation (HU units) in artefacts-
free ROI. 

  
Original  Corrected 

  mean std  mean std 

ar
te

-
fa

ct
s-

fr
e

e
 R

O
I P1 -97.96 20.60  -110.14 24.17 

P2 -106.72 19.72  -104.28 23.51 

P3 -101.03 16.11  -100.88 18.29 

P4 -85.46 20.64  -79.25 23.81 

P5 -95.11 19.52  -100.58 20.06 

Mean  -97.26 19.32  -99.03 21.97 

WILCOXON  
TEST 

p_value mean > 0.05 
p_value std > 0.05 

 
 

4.1.3.2. Index description 
To perform texture analysis using statistical approach, the 

image is treated as a 3D surface, where the intensity values are the 
third dimension of a 2D image. Statistical approach provides the es-
timation of first order and second order texture parameters. In first 
order statistical analysis, texture parameters are extracted from the 
histogram of image intensity; this analysis gives global information 
about the image without consider the spatial information between 
pixels. In second order statistics, texture parameters are calculated 
taking into account spatial correlation between pixels, using the co-
occurrence matrix (Ahammer et al 2011). 

 

 First-order statistical texture analysis 
First order statistical parameters are calculated from the his-

togram of the intensity of a set of pixels. The first order histogram is 
defined as: 
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where n(i) is the number of pixel with actual gray value of i, L 
is the maximal gray value and N is the total number of pixel in the 
considered region. 

From the histogram, standard indices can be extracted to de-
scribe the properties of the image texture. In this study, the mean 
gray value μ, the variance σ2 and the entropy S1 are computed as: 

        

 

   

 

              

 

   

 

                 

 

   

 

High values of variance means an inhomogeneous image with 
high gray value differences. The entropy is an index of histogram 
uniformity: the more the value of entropy increases, the more dis-
ordered is the gray value distribution. 

 

 Second-order statistical texture analysis 
Second order statistical parameters are calculated from the 

co-occurrence matrix (Haralick et al 1973). In this matrix, the entries 
are the probability of finding a pixel with gray level value of i at a 
distance d and angle α from a pixel with a gray level value of j. The 
co-occurrence matrix C is defined as: 

          
      

 
                               

where n(i,j) is the number of occurrences of pixels with gray 
level i and pixel with gray level j at a distance d and angle α; N is the 
total number of pixel in the region and L is the maximal gray value. 

We computed the symmetric co-occurrence matrix for d=1 
and α=[0°, 45°, 90°, 135°], in order to consider eight-neighborhood 
of a pixel. The resulting parameters, calculated from each matrix, 
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were averaged as proposed by (Ahammer et al 2011) in order not to 
emphasize a particular direction.  

From the co-occurrence matrix, homogeneity H and local en-
tropy S2 were then computed as follows: 

     
      

        
 

 

   

 

   

 

                      

 

   

 

   

 

These indices were used to characterize spatial patterns of an 
image; in particular high tissue homogeneity and high organization 
were featured by high values in H and low values in S2. 

 

 Fractal dimension 
Fractal analysis provides a measure of the complexity and the 

roughness of a surface, determining the relative amounts of detail 
or irregularities at different scales. FD of a 2D image ranges be-
tween 2 (the topological dimension of a 2D image) and 3 (the topo-
logical dimension of a 3D volume), where larger FD indicates rough-
er image (Peitgen et al 1988). 

Among the different methods proposed in the literature for 
FD estimation (Dubuc et al 1989, Chaudhuri and Sarkar 1995, 
Veenland et al 1996, Murato and Saito 1999), for this study we 
adopted the variogram method (Murato and Saito 1999), proven to 
be the most accurate in FD estimation (Nauta et al 2011) and based 
on the statistical Gaussian modeling of images: FD is estimated by 
assuming that an image is derived from a fractional Brownian mo-
tion (fBm). In fBm, the expected value of the intensity difference be-
tween two points is zero but the square of difference is proportional 
to the distance between the points at a power 2H, where H is the 
Hurst coefficient. FD is related to H with this relation: 
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where n is the Euclidean dimension. A common technique for esti-
mating FD, assuming the data was statistically similar to fBm, is pro-
vided by the semi-variogram function γ(h), defined as: 

     
 

  
                

 

 

   

 

where N is the number of points whose lag is h. γ(h) is related to FD 
by a power law of the lag given by 

             
for a constant c. It is then possible to derive FD in the log-log space, 
by considering the linear slope m that the semi-variogram should 
have (see Figure 4.4): 

   
   

 
 

Due to the finite size of the parotid volume, the range of lag 

for the straight line appearing on the log((h)) versus log(h) is less 
than 10% of the profile length (only 6 points were considered in the 
linear regression), as suggested by Murato and Saito (Murato and 
Saito 1999) (see Figure 4.4). Moreover, the lag h=1 was not included 
in the regression in order to reduce the effects of voxelisation and 
CT noise. 

This method was defined for profiles and can be extended to 
images by calculating FD of each row and column, averaging them 
all, and adding one (Nauta et al 2011).  

The methods were tested for accuracy and precision across a 
range of FDs and image sizes. More specifically, the performance of 
each FD method was evaluated with a set of digital image represen-
tations of mathematical fractal surfaces known as fractional Brown-
ian surfaces (see Figure 4.5) (Peitgen et al 1988), that can model ra-
diologic images more reliably than other synthetic representations 
(Veenland et al 1998). These digital surfaces were generated to 
have known FDs ranging from 2.1 to 2.9 in steps of 0.1. The imple-
mented semi-variogram method was evidenced to be accurate and 
precise, in accord to the findings of other works (Nauta et al 2011). 
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Figure 4.4. Representative plot showing the relationship between the 

semi-variogram γ(h) and the lag h in log-log space, calculated from a row in 
a CT slice of our dataset. FD can be derived from the slope of the regres-

sion line, considering only 6 points (about 10% of the profile length). 

 
 

 
Figure 4.5. Examples of fractional Brownian surfaces represented as digital 

images, with known FD.  

 
Texture analysis was performed using a 2D approach on each 

slice of the CT study, within the parotid contours; the textural indi-
ces descriptive of each parotid gland were calculated as the median 
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value between all slices, as proposed by Assefa et al (Assefa et al 
2010). 

 
 

4.2. CORRELATION OF MEAN INTENSITY WITH 
MORPHOLOGICAL, PRE-CLINICAL AND DOSIMETRIC 
PARAMETERS3 

 
The first and simplest structural index giving a synthetic de-

scription of parotid function is the mean grey intensity value, line-
arly related to its density, estimated within the whole volume. The 
possibility to link deformation with density variation could be very 
important, being both the glandular volume variation and the rela-
tive weight of the fat component likely to be correlated with the 
glandular secretion capacity. Within the project dealing with the 
impact of organ deformation during HN IMRT, density changes 
measured with MVCT or kVCT of a large number of patients were 
investigated. 

 

4.2.1. Materials and Methods 
4.2.1.1. Patient data and imaging procedure 
Data of 168 parotid glands of 84 patients from three Institu-

tions treated for different HNC were pooled. Median patient’s age 
was 59 years (range: 29–86 years). Most patients (79/84, 94%) did 
not undergo upfront surgery; 76/84 (90.5%) patients received che-
motherapy (before Radiotherapy: 18; concomitant: 70; both: 12). All 
patients were treated with IMRT: 38 patients (from one Institution) 

                                                           
3
 Based on Fiorino C, Rizzo G, Scalco E, et al. Density variation of 

parotid glands during IMRT for head-neck cancer: correlation with 
treatment and anatomical parameters. Radiotherapy and Oncology, 
2012. 104, pp 224-229. 
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with the Helical Tomotherapy Unit (Hi-Art II), 46 (from two Institu-
tions) with Linac-IMRT, in dynamic or step-shoot modality. 

In all Institutes, an inverse planning optimization approach 
was followed with the goal to deliver P95% of the prescribed dose 
to P95% of PTV volumes, while keeping the dose as homogeneous 
as possible and sparing both contro- and omo-lateral parotid glands 
without compromising PTVs coverage. Different dose-volume con-
straints and optimization approaches were applied in the different 
institutions, generating a wide range of parotid DVH shapes. 

Parotid deformation was evaluated through images taken at 
the start and at the end of the treatment. More specifically, in one 
institute MVCT taken with the Helical Tomotherapy Unit on the first 
and last day of the treatment were considered (image matrix of 512 

x 512 pixels, pixel size of 0.754 x 0.754 mm2, slice thickness of 4 or 6 
mm). In the other two centres, diagnostic images were acquired 
with multi-slice Helical CT (KVCT) scanners. KVCT images were taken 
at the first fraction and during the last week of the treatment, using 
similar protocols (image matrices of 512 x 512 pixels, voxel sizes of 
0.977 x 0.977 x 2.5 mm3 or 1.172 x 1.172 x3mm3; acquisition pa-
rameters: 120 kV; 200 mAs in one Institute, 300 mAs in the other). 
These KVCTs images were performed as part of a pilot study with 
the aim of identifying those patients that could take advantage from 
adaptive re-planning.  

The first and second CT of each patient were registered using 
the FFD algorithm described in the previous chapter and parotid 
glands spatial correspondence was achieved using the contour 
propagation method. 

 
4.2.1.2. Quantification of deformation and density vari-

ation 
The entity of deformation of each voxel belonging to the pa-

rotid glands volume, as identified by the manual contours, was as-
sessed by the Jacobian of the deformation field calculated by image 
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registration, as reported in the previous chapter in terms of 
Jac_mean.  

To overcome the problem of metal artefacts due to dental fill-
ing, that can affect the measurement of density values of parotid 
glands in kVCT images, the NMAR method, previously described, 
was applied (Meyer et al 2010). The assessment of density variation 
was performed by measuring the mean intensity value (Hounsfield 
units, HU) and standard deviation within the whole parotid volume 
delineated by the manual and propagated contours on both the first 
fraction and the end of treatment images. Density variations were 
quantified in terms of average HU change between last and first 

fraction (HU); due to the linear relationship between HU and den-

sity in the relatively small range of variation of this study, HU val-
ues taken with both kVCT and MVCT may be used for the purpose.  

 
4.2.1.3. Statistical analysis 
The correlation between HU and a number of parameters 

was tested by the Spearman test. The considered variables were: 
chemotherapy, previous surgery, type of cancer (nasopharynx vs 
others), PTVs volume, age, prescribed dose, daily dose, initial parot-
id volume, mean parotid dose, fraction of parotid receiving more 
than 10,15,20,30,40 Gy (V10–V40), % parotid volume variation, neck 
half-thickness variation (measured at C2, in the normal neck direc-

tion in case of lateral tumor, s), weight variation, Jac_mean, % 
fraction of voxels with Jac < 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3 (Jac0.9–
Jac0.3). 

Analyses were repeated when only considering kVCT data, 
due to the reduced noise concerning density estimate within parot-
ids. A logistic univariate analysis was performed considering the 

HU larger than the quartile value (-11 HU) as end-point, identifying 
the largely changing parotids. Best cut-off values of the most predic-
tive continuous variables were assessed by ROC analysis. Stepwise 
multi-variate analyses were performed taking the most predictive 
factors (p < 0.10) at univariate analysis. The predictive value of the 
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models was assessed by the area under the ROC curve (AUC). The 
analyses were repeated for the whole and the kVCT population.  

 
4.2.2. Results 

4.2.2.1. Density variation 
A summary of HU data in the whole population and in the 

two MVCT/kVCT subgroups is reported in Table 4.4. HU was <0 in 
116/168 parotids (69%); this fraction was larger for kVCT (72/92, 

78%). On average, the mean HU was -7.3 (-9.3 for MVCT vs -5.6 for 
kVCT), corresponding to about 0.20-0.25 HU/fraction. The standard 

deviation of the distribution of HU is much higher for MVCT than 
for kVCT patients (24.3 vs 7.4) due to the higher noise of MVCT 
compared to diagnostic kVCT images.  

 
Table 4.4. Summary statistics of density variations for all parotid glands 

and for parotids acquired with MVCT or KVCT 

 All parotids MVCT KVCT 

Number 168 76 92 
ΔHU mean -7.3 -9.3 -5.6 
Median -4.6 -1.9 -5.0 
Std 17.1 24.3 7.4 
Max 24.0 24.0 13.8 
Min -94.0 -94.0 -27.9 
Lower quartile -11.0 -12.7 -10.5 
Higher quartile 1.9 4.5 -1.0 
N with ΔHU<0 116 44 72 

 
 

4.2.2.2. Correlation between density variation and pre-
treatment factors 

A summary of the results concerning the correlation tests is 
reported in Table 4.5 (variables with p-value≤0.20). When consider-
ing the whole population, the pre-treatment variables mostly corre-
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lated with ΔHU were PTV1 volume (p=0.015), % overlap between 
PTV and parotid (p=0.02), initial parotid volume (p=0.048) and sec-
ondarily initial neck thickness (p=0.10), V40 (p=0.13) and age 
(p=0.11): in particular larger PTV volumes, larger parotids, larger 
neck thickness and younger age predict a larger decrease of ΔHU. 
When considering the kVCT group, better correlations were found 
for initial neck thickness (p=0.03) and age (p=0.13). 

 

4.2.2.3. Modeling large density variations 
Logistic analyses taking HU<-11 (quartile value of the whole 

population) as the end-point were performed for the whole and the 
kVCT populations: summary of the results are reported in Table 4.6. 
When considering the univariate analysis, the most predictive varia-
bles were the pre-treatment half-thickness of the neck and, much 
more important, thickness reduction, parotid volume reduction and 
JVH-based parameters/Jac_mean with this last one being the most 
predictive. When assessing the best cut-off value from ROC analysis, 
Jac_mean < 0.68 was the best value: the incidence of parotids with 

HU < -11 was 18% and 45% below or equal/above the cut-off, re-
spectively (12% vs 48% for kVCT). Stepwise multi-variate analysis 
showed initial neck half-thickness and Jac_mean as the most predic-
tive independent variables. The predictive value of the models ex-
pressed in terms of AUC were 0.683 (CI:0.607–0.752) and 0.776 
(CI:0.677–0.856) for all and kVCT, respectively. In Figure 4.6 the plot 

of the probability that HU<-11 HU is shown for kVCT patients as a 
function of the initial neck thickness for parotids with large defor-
mation (Jac_mean < 0.68) and with moderate/small deformation 
(Jac_mean ≥ 0.68). 
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Table 4.5. Summary of Spearman correlation tests (results presented only 
for correlations with p-value≤0.20): ΔHU vs pre-treatment parameters for 

all parotids and parotids acquired with KVCT. 

Parameters 
All parotids (n=168) KVCT (n=92) 

R  p-value R  p-value 

Age 0.12  0.11 0.16  0.13 
PTV vol-
ume 

0.19 
 

0.015 - 
 

- 

% overlap 
PTV-
parotid 

0.18 
 

0.02 0.21 
 

0.04 

Initial pa-
rotid vol-
ume 

0.15 
 

0.05 - 
 

- 

Initial neck 
thickness 

-0.13 
 

0.10 -0.22 
 

0.03 

V30 0.11  0.19 0.14  0.20 
V40 0.12  0.13 -  - 
ΔVolume 
[cc] 

0.22 
 

0.004 0.15 
 

0.15 

ΔVolume 
[%] 

0.23 
 

0.003 0.23 
 

0.03 

Δs [cm] 0.27  0.0005 0.31  0.003 
Δs [%] 0.25  0.001 0.27  0.01 
Jac_mean 0.22  0.004 0.36  0.0005 
Jac0.2 0.21  0.008 -  - 
Jac0.3 0.20  0.01 0.23  0.03 
Jac0.4 0.18  0.02 0.15  0.15 
Jac0.5 0.17  0.03 0.19  0.07 
Jac0.6 0.20  0.01 0.38  0.0003 
Jac0.7 0.20  0.01 -  - 
Jac0.8 -  - -  - 
Jac0.9 0.16  0.04 -  - 
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Table 4.6. Summary of the results of the uni- and multi-variate logistic 
analysis (results presented for p≤0.20); end-point: ΔHU<-11 (quartile value 

of the population). Analyses for all parotids and parotids acquired with 
KVCT 

Parameters 

All parotids (n=168) KVCT (n=92) 

OR  
(95% CI) 

 
p-value 

OR  
(95% CI) 

 
p-value 

PTV volume - 
 

- 
1.00  

(0.99-1.01) 
 

0.11 

Initial neck 
thickness 

1.58  
(1.00-2.50) 

 
0.05 

1.91  
(0.96-3.78) 

 
0.06 

ΔVolume [cc] 
0.91  

(0.84-0.98) 
 

0.009 
0.92  

(0.84-1.01) 
 

0.07 

ΔVolume [%] 
0.97  

(0.94-0.99) 
 

0.005 
0.96 

(0.92-1.00) 
 

0.03 

Δs [cm] 
0.25  

(0.11-0.58) 
 

0.001 
0.27  

(0.10-0.77) 
 

0.01 

Δs [%] 
0.91 

(0.86-0.97) 
 

0.003 
0.92  

(0.86-0.99) 
 

0.03 

Jac_mean 
1.00  

(1.00-1.26) 
 

0.003 
1.00  

(1.00-1.03) 
 

0.0008 

Jac_mean < 
0.68 

3.76  
(1.82-7.76) 

 
0.0004 

6.71  
(2.39-18.8) 

 
0.0003 

Jac0.2 
1.02 

(1.00-1.03) 
 

0.014 
1.04  

(1.01-1.06) 
 

0.002 

Jac0.3 
1.02  

(1.01-1.04) 
 

0.036 - 
 

- 

Jac0.4 1.03 
(1.01-1.04) 

 0.013 -  - 

Best parameters retained in the Multi-variate model: 

Jac_mean < 
0.68 

3.80  
(1.80-7.90) 

 
0.0004 

8.00  
(2.70-24.2) 

 
0.0002 

Initial neck 
thickness 

1.61  
(0.99-2.62) 

 
0.05 

2.39  
(1.07-5.33) 

 
0.03 

 AUC: 0.683 AUC: 0.776 
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Figure 4.6. Relationship between ΔHU and initial neck thickness for largely 

deforming (Jac_mean < 0.68) and moderately(minimally deforming 
(Jac_mean ≥ 0.68) parotids, considering only KVCT data (logistic model: 

AUC=0.776; p=0.0001) 

 

4.3. DYNAMIC CHARACTERIZATION OF STRUC-
TURAL MODIFICATIONS AND THEIR CORRELATIONS 
WITH DOSIMETRIC PARAMETERS 
 

In IGRT, the availability of CT images acquired daily or weekly 
during the treatment opens the possibility to investigate the dynam-
ic of structural variations in parotid tissue. In particular, texture 
analysis allows the extraction of various parameters related to dif-
ferent aspects of the spatial tissue organization. Therefore, the 
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analysis of density changes during RT can be placed beside a more 
complete characterization performed by texture analysis and con-
sidering different time points, in order to study the kinetic of these 
parameters.  

Another critical issue is about the relationship between tex-
tural and volumetric variations estimated at the end of treatment 
and dosimetric and clinical parameters measured before RT; in fact, 
this can help in understanding the mechanism which can influence 
structural modifications induced by irradiation. 

 

4.3.1. Materials and Methods 
4.3.1.1. Dataset and imaging procedure 
37 patients (74 parotid glands) in two different institutions 

were considered. All patients were treated with IMRT, in dynamic or 
step-and-shoot modality. CTV2 was defined as the contour including 
elective node chains, while CTV1 included the gross tumor vol-
ume+involved nodes. An expansion of 5 mm was used to define the 
corresponding PTV volumes. 24 patients (64.9%) received a simulta-
neous integrated boost approach (SIB), delivering 58.1Gy (1.66 
Gy/day) on PTV2 68.25-70Gy (1.95-2 Gy/day) on PTV1 in 35 frac-
tions, or delivering 54Gy (1.8 Gy/day) on PTV2 66Gy (2.2 Gy/day) on 
PTV1 in 30 fractions. On the other hand, a sequential approach was 
used for 35.1% patients delivering 50.4-64.8Gy (1.2-1.8 Gy/day) on 
PTV2 and 50.4-78Gy (1.66-1.8 Gy/day) on PTV1 in number of frac-
tions ranging from 36 to 43. 

CT images were acquired before RT (CT1), at half treatment 
(CT_half) and after RT (CT_last), using the same acquisition proto-
cols: image matrices of 512x512 pixels, voxel size of 
0.9766x0.9766x2.5 mm3 or 1.217x1.217x3 mm3 and acquisition pa-
rameters of 120 kV and 300 mAs.  

Contours of parotid glands were manually delineated by an 
expert on each CT slice of CT1 and then they were automatically 
propagated on CT_half and CT_last using the contour propagation 
algorithm described in Chapter 3.1. Within this parotid contours, 
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textural features previously described (μ, σ2, S1, H, S2, FD)and vol-
ume (V) were extracted in each CT study. 

 

4.3.1.2. Dynamic analysis 
Differences between textural parameters and volume in CT1 

and CT_last, CT1 and CT_half, CT_half and CT_last were tested using 
t-test statistics for each index, to evaluate time trend variations. 
Moreover,  in order to study the relationship between structural 
and morphological changes, correlations between total variations 
measured at the end of therapy for each parameter resulted signifi-
cant after t-test were assessed with Pearson's coefficient.  

 

4.3.1.3. Correlations with clinical and dosimetric pa-
rameters 

Pearson correlation between the final variation (CT_last-CT1) 
of each parameter and the same dosimetric and clinical parameters 
listed in paragraph 2.1.3 was performed. Then, a stepwise multivar-
iate logistic analysis was applied using as end-point the variation of 
volume or textural index at the end of RT, dichotomized based on 
the median value of population, and as variables the parameters 
with significant Pearson's coefficient. Finally, AUC value was calcu-
lated using ROC curve estimated from results of multivariate analy-
sis. 

 

4.3.2. Results 
4.3.2.1. Dynamic analysis 
In Tables 4.7 and 4.8 the average values of each parameter 

were reported. T-test revealed that no significant differences were 
present for S1 and H; differences were significant for the other pa-
rameters (μ, σ2, S2, FD and V) during the whole treatment (p<0.001) 
and in the first half (p<0.001), while in the second half a significant 
variation was found for S2, V (p<0.001) and FD (p<0.01), but no sig-
nificant difference was found for μ. A general decrease was meas-
ured (Δμ=-4.7 HU and -5.3 HU, ΔS2=-0.15 and -0.27, ΔFD=-0.02 and -
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0.03, ΔV=-3.5 cm3 and -5.1 cm3, in the first half and in the whole 
treatment respectively), with different time trends (see Figure 4.7). 
 

Table 4.7. Textural features and volume measured in CT1, CT_half and 
CT_last. Values are represented as mean and standard deviation among 

the population. 

 
CT1 CT_half CT_last 

 mean (std) mean (std) mean (std) 

Mean (μ) 
[HU] 

-8.62 (21.38) 
-

13.31 
(23.17) -13.9 (23.58) 

Variance (σ2) 817 (315) 889 (322) 934 (344) 
Global entro-
py (S1) 

8.41 (1.26) 8.34 (1.28) 8.43 (1.29) 

Homogeneity 
(H) 

0.247 (0.028) 0.246 (0.027) 0.249 (0.031) 

Local entropy 
(S2) 

8.41 (0.43) 8.26 (0.41) 8.14 (0.48) 

Fractal di-
mension (FD) 

2.591 (0.04) 2.571 (0.05) 2.557 (0.05) 

Volume (V) 
[cm3] 

29.0 (10.5) 25.4 (8.3) 23.9 (8.5) 
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Table 4.8. Differences between every time point for each textural and vol-
ume index and their significance estimated with t-test. Values are repre-

sented as mean and standard deviation among the population. 

 
CT_last-CT1 CT_half-CT1 CT_last-CT_half 

 mean (std) mean (std) mean (std) 

Mean (μ) [HU] 
** -

5.28 (7.43) 
** -

4.69 
(5.86) -0.59 (5.34) 

Variance (σ2) ** 117 (240) * 72 (224) * 46 (175) 
Global entro-
py (S1) 

0.02 (0.83) -0.06 (0.91) 0.08 (0.89) 

Homogeneity 
(H) 

0.002 (0.02) 
-

0.001 
(0.01) 0.002 (0.018) 

Local entropy 
(S2) 

** -
0.27 

(0.26) 
** -

0.15 
(0.20) 

** -
0.12 

(0.24) 

Fractal di-
mension (FD) 

** -
0.03 

(0.04) 
** -

0.02 
(0.04) 

** -
0.01 

(0.04) 

Volume (V) 
[cm3] 

** -5.1 (4.8) ** -3.5 (4.0) ** -1.5 (3.3) 

*
   p<0.05 

** 
p<0.001 

 
A large decrease of μ in the first half of RT, followed by a 

plateau in the second half, was found. The different behavior shown 
by mean intensity  changes (μ) with respect to S2 and FD is likely to 
be related to the rapid loss of water excretion in the first days after 
irradiation. 

For the correlation analysis we considered only μ, S2, FD and 
V, as the indexes that significantly varied during RT; variance was 
excluded, since its variation was probably related to noise in image 
histogram. Strong linear correlations were found between ΔV-Δμ, 
ΔV-ΔS2 and Δμ-ΔS2 (see Table 4.9), indicating a relationship be-
tween structural and morphological variations, as expected.  
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Figure 4.7. Variations of mean intensity, local entropy, fractal dimension 
and volume during RT, considering CT images acquired at the beginning, 

half and end of therapy. 

4.3.2.2. Correlations with clinical and dosimetric pa-
rameters 

The final variation of textural features (Δμ_total, ΔS2_total, 
ΔFD_total) has shown little correlation with dosimetric and pre-
clinical parameters, with respect to the volume variation (see Table 
4.10). In particular, ΔS2_total was not significantly correlated with 
any index. This is probably due to the limited number of samples or 
because there is no evident relationship between dosimetric condi-
tion or the initial anatomical configuration and the structural varia-
tion described by these indexes. 

Stepwise multivariate analysis was then performed using all 
these significant parameters for each structural and morphological 
variation. As expected, no significant regression model was found 
for local entropy and fractal dimension; mean intensity variation 
was explained by both PTV volume and the initial neck thickness 
(the model is different with respect to that found in the previous 
chapter because in this case we considered only pre-treatment fac-
tors, thus jac-mean was excluded), while volume variation was ex-
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plained by the initial parotid volume and V20 (see Table 4.11). The 
first model has an almost random classification power (AUC=0.565), 
while the volume variation model reached a high value 
(AUC=0.878). 

 
Table 4.9. Results of Pearson correlation analysis between variations of 

each parameter during the whole treatment. Pearson coefficient and sig-
nificance are reported. 

 ΔS2_total ΔFD_total ΔV_total 

Δμ_total 0.309** 0.215 0.405** 

ΔS2_total  0.113 0.591** 

ΔFD_total   -0.078 
**

 p<0.001 
 

Table 4.10. Pearson's correlation coefficient between dosimetric and clini-
cal parameters and the final variation of mean intensity, local entropy, 

fractal dimension and volume. Data presented only for correlation with p-
value<0.05. 

Parameters Δμ_total ΔS2_total ΔFD_total ΔV_total 

PTV volume 0.230* - - - 
% overlap 
PTV-parotid 

- - 0.249* -0.220* 

Initial parotid 
volume 

- - 0.269* -0.593** 

Initial neck 
thickness 

-0.446** - - -0.557** 

V10 - - - -0.313** 

V15 - - - -0.259* 

V20 - - - -0.284* 

V40 - - - -0.254* 

*
   p<0.05 

** 
p<0.001 
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Table 4.11. Multivariate regression models for mean intensity and volume 
variation after RT and their AUC values estimated by ROC curve.  

Multivariate model for Δμ_total 

 OR (95% CI)  p-value 

PTV volume 0.991 (0.983-0.999)  0.031 
Initial neck thickness 2.3 (1.05-5.03)  0.037 

 AUC: 0.565 
  

Multivariate model for ΔV_total 

 OR (95% CI)  p-value 

Initial parotid volume 1.00 (1.00-1.00)  <0.001 
V20 1.087 (1.029-1.148)  0.003 

 AUC: 0.878 

 
 

4.4. EARLY PREDICTION OF PAROTID SHRINKAGE 
USING TEXTURAL PARAMETERS4 

 
As already shown, mean CT intensity of parotid glands can be 

used as a functional descriptor of the parotid behavior after RT, 
strictly related to the anatomical deformation, and dependent from 
some pre-clinical and dosimetric conditions. Another important is-
sue in studying the effect of RT on OAR is the capability of early 
predict those subjects that will experiment worse side effects and 
thus that can mostly benefit of a replanning strategy. Considering 
this intent, in this paragraph I present some preliminary results 
about the ability of textural features in predicting parotid shrinkage 
measured at the end of treatment, as an index which is known to be 

                                                           
4
 Based on Scalco E, Fiorino C, Cattaneo GM, Sanguineti G, Rizzo G. 

Texture analysis for the assessment of structural changes in parotid glands 
induced by Radiotherapy. Radiotherapy and Oncology, 2013. In press 
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related to the presence of acute toxicity, as reported in previous 
works (Teshima et al 2010) and extensively discussed in Chapter 2. 
For this study we considered the variations in textural parameters in 
the first two weeks of treatment, in order to assess if early changes 
in parotid structure could be correlated with later morphological 
variations. 

 

4.4.1. Materials and Methods 
4.4.1.1. Dataset and imaging procedure 
The study included 21 patients treated with IMRT for naso-

pharyngeal tumors in 6-8 weeks (more details can be found in Table 
4.12), without involvement of parotid glands. For each patient, CT 
images were acquired on the first, second and last week of RT 
treatment (CT1, CT2 and CTlast, respectively), using the same image 
acquisition protocols: image matrices of 512x512 pixels, voxel size 
of 1.217x1.217x3 mm3 and acquisition parameters of 120 kV and 
300 mAs, in order to provide similar image quality.  

The contours of the 42 parotids were delineated on CT1 by a 
single observer, and were automatically propagated on CT2 and 
CTlast using the contour propagation algorithm. The textural fea-

tures described in Paragraph 1.3 (2, S1, S2, H and FD) and mean 
volume V were extracted for each CT study within the parotid re-
gion. 

 

4.4.1.2. Statistical analysis.  
In order to individuate textural descriptors that varied signifi-

cantly for each subject during RT (thereby adequately characterizing 
individual structural modifications occurring during the treatment) 
non-parametric Wilcoxon signed-rank test statistics were performed 
between each textural parameter, averaged between the two pa-
rotid glands and calculated on CT1 and CT2, and CT1and CTlast. The 
significance of parotid volume variation (ΔV) during RT was also as-
sessed with the same statistics.  
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Table 4.12. Summary of patients data. 

Patients 21 
Parotids 42 

Sex Male 19 
Female 2 

Age Median 54 
Mean 56 
Range 40-72 

Tumore type Nasopharynx 21 

Surgery  0 
Chemotherapy  
(concomitant) 

 21 
% 100 

SIB  21 
% 100 

Dose Range PTV1 Total 68.25-70 Gy 
Per fraction 1.95-2 Gy/fr 

Dose Range PTV2 Total 58.1 Gy 
Per fraction 1.66 Gy/fr 

 
In order to evaluate whether an early variation of these pa-

rameters can predict the final parotid shrinkage, a second analysis 
was carried out. For those parameters whose variations in the first 
two weeks proved significant, Fisher's linear discriminant function 
analysis (Fisher 1936) was applied on the 42 parotids. This analysis 
can classify single data with respect to a priori defined groups, 
based on the amount of parotid volume variation after RT, consider-
ing that significant shrinkage may be associated with subjects who 
could benefit from re-planning. A median value of ΔV (ΔVmed) was 
calculated, and parotids with ΔV > ΔVmed were included in the first 
group (positive results); those with ΔV < ΔVmed were included in the 
second group (negative results). The "leaving-one-out" technique 
was chosen to evaluate accuracy of classification (Gose et al 1996). 
For each index or combination of indices, sensitivity (Se, probability 
of a positive result given that the parotid shrank), specificity (Sp, 
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probability of a negative result given that the parotid did not shrink) 
and accuracy (Acc, percentage of correct classifications) of classifi-
cation were calculated. 

All statistical analyses were performed using SPSS package for 
Windows (version 16.0, SPSS Inc, Chicago, USA) 
 

4.4.2. Results 
Wilcoxon signed-rank test revealed that S1 and H did not vary 

significantly during RT, indicating that these indices are less sensi-
tive to parotid variations; on the contrary, a significant decrease 
was found for μ, S2, FD and V and a significant increase was found 

for 
at the end of RT (Table 4.13). The variations of these textural 

features and volume remained significant also in the first two weeks 

for μand FD The resulting decrease in these textural parameters 
during the treatment indicates a general decrease of complexity of 
parotid structure; moreover, the significant variation in the first two 
weeks suggests a dynamic variation process causing structural and 
anatomical modifications, starting at the beginning of RT. 

Classification of the 42 parotid glands estimated by discrimi-
nant analysis with different combinations of parameters is present-
ed in Table 4.14. Among single parameters, the most powerful pre-

dictors were V and (Acc=66.7%), followed by FD (Acc=50%). Con-
sidering the multi-parametric analysis, the best results (Acc=71.4%) 
were achieved by the combinations of FD and V, and the combina-
tion of all considered indices. This result indicates that the combina-
tion of multiple factors permitted a better classification than a sin-
gle index, and, in particular, the use of FD in addition to V achieved 

the best classification, not improved when  were included. 
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Table 4.13 - Textural parameters and volume of the first, second and last week of RT, averaged among subjects. Data 
presented as median and median of the absolute deviations from the median value (mad). 

 
CT1 CT2 CTlast 

Delta values 
CT2-CT1 

Delta values 
CTlast-CT1 

Mean (μ) [HU] -10.3  (24.5) -10.4  (25.7) -10.8 (27.1) 
a 

-1.7  (3.6) 
a 

-3.8  (6.6) 

Variance (σ
2
) 

[HU] 
862  (309) 1007  (283) 1180 (312) 60   (150) 

a
76   (198) 

Entropy (S1) 8.09  (1.07) 8.45  (1.11) 7.98 (1.06) 0.15  (0.51) -0.16  (0.53) 

Homogeneity 
(H) 

0.25  (0.03) 0.24  (0.03) 0.24 (0.03) -0.00  (0.01) -0.00  (0.01) 

Entropy (S2) 8.35  (0.41) 8.26  (0.42) 8.07 (0.42) -0.06  (0.10) 
c 
-0.30  (0.18) 

Fractal  
Dimension 
(FD) 

2.594  (0.06) 2.590  (0.07) 2.585 (0.06) 
b 

-0.016  (0.02) 
b 

-0.021  (0.02) 

Volume (V) 
[cm

3
] 

33.0  (11) 31.3  (11) 26.0 (9) 
b 

-1.7  (2.0) 
c 
-6.6  (3.5) 

a
= p-value<0.05

 

b
= p-value<0.01  

c
=p-value<0.001 
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Table 4.14 - Classification of 42 parotid glands based on volume variation 

at the end of RT and estimated by Fisher's linear discriminant function 
analysis, using different combinations of variables, calculated as variations 
in the first week of RT. Number of correctly and incorrectly classified data, 

sensitivity (Se), specificity (Sp) and accuracy (Acc) are reported. 

Parameters  
(variations 
in the first 
2 weeks) 

Correct  
classifications 

Incorrect  
classifications 

Se Sp 
Acc 
[%] 

V 28 14 0.67 0.67 66.7 
FD 21 21 0.50 0.50 50 

 28 14 0.67 0.67 66.7 

V,  28 14 0.67 0.67 66.7 
V, FD 30 12 0.71 0.71 71.4 

FD,  26 16 0.63 0.61 61.9 

V, FD, 30 12 0.71 0.71 71.4 

 

 

4.5. RELATIONSHIP BETWEEN STRUCTURAL IN-
DEXES AND XEROSTOMIA 
 

The last step of this project was to evaluate possible correla-
tions between the found structural variations and the clinical out-
come. This aspect can help in understanding the clinical impact of 
image-based analysis in head and neck RT and in finding possible 
patients which can better benefit of a re-planning of dose delivery 
during treatment, based on the prediction of RT side effects.  As re-
ported in Chapter 2.2, only a recent work studied the relationship 
between volume decrease and acute toxicity in salivary glands 
(Teshima et al 2010); therefore, a confirmation of these findings, 
and also the extension of this evaluation to structural indexes, 
should be of great interest.  
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Starting from the results achieved in the previous paragraph 
(early prediction of parotid shrinkage considering textural variations 
in the first two weeks), in this paragraph I present some preliminary 
results about the possible correlations of textural features varia-
tions with acute xerostomia. 

 

4.5.1. Materials and methods 
4.5.1.1. Dataset, imaging procedure and features ex-

traction 
The same dataset and the same imaging procedure described 

in the previous paragraph was considered in this work: the study in-
cluded 21 patients treated with IMRT, and for each patient CT imag-
es were acquired during each week of treatment (CT1, CT2, CT3, ... 
and CTlast). Parotid contours were manually delineated on the first 
CT and then automatically propagated on the other CT studies. 

Significant textural features (μ, S2, FD) and volume were ex-
tracted within each parotid volume and differences between CT1-
CT2 were calculated. The time interval between CT varied from pa-
tients to patient; then, in order to compare homogenous infor-
mation, the rate of variation was calculated for volume [mm3/day] 
(r∆V), mean intensity [HU/day] (r∆μ), local entropy (rΔS2) and frac-
tal dimension (rΔFD) for the first two weeks of treatment.  

 

4.5.1.2. Measure of parotid glands toxicity 
 CTC-based (CTCv.3.0) prospective assessment of xerostomia 

was performed weekly throughout the entire treatment. For each 
patient, the peak value and the mean value of the xerostomia score 
were considered and the correlation with morphological and struc-
tural variations were studied. The mean score was chosen as a ro-
bust longitudinally assessed score depicting both severity and per-
sistence of symptoms (Vásquez Osorio et al 2008, Gulliford et al 
2010). 
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4.5.1.3. Statistical analysis 
The correlation between early parotid gland variations in the 

first two weeks of RT and xerostomia (both peak and mean scores) 
was investigated.  Maximum, minimum and average rΔμ, rΔS2, rΔFD 
and rΔV of the two parotid glands were separately considered for 
each patient. By dividing the population based on the median value 
of the mean acute xerostomia (1.57), the Mann-Whitney test was 
used to evaluate the difference between the two groups. A logistic 
uni-variate analysis was performed, taking as end-point a mean 
xerostomia greater than 1.57; a ROC curve was utilized to evaluate 
the predictive value of the model. Finally the probability risk of ex-
periencing mean xerostomia ≥ 1.57 vs early rΔμ was evaluated. 

 

 
Figure 4.8. Mean rates of density (rΔρ[HU/day]) and volume 

(rΔvol[mm
3
/day]) variations calculated on parotid glands versus the kVCT 

number, divided based on the median value of the mean xerostomia dur-
ing treatment (cubic fit). Density/volume variations refer to the minimum 

value between the two parotid glands for each patient. 

 

4.5.2. Results 
No correlation was found between features variations and 

peak toxicity during treatment. Instead, a clear correlation was 
found between early changes of volume and density (referred to the 
minimum, i.e. the lowest value between the two PGs, correspond-
ing therefore to the larger shrinkage and density decrease) and 



4. EXTRACTION OF STRUCTURAL INDEXES 

 

97 
 

mean xerostomia score. A significant difference for both the ∆μ and 
∆V was found when splitting the population in two groups according 
to the median value of the mean xerostomia score (1.57). On the 
contrary, no significant results were found for local entropy and 
fractal dimension. 

Considering rΔV and rΔμ, as the only parameters presenting 
significant correlations, and taking as end-point a mean xerostomia 
score during treatment ≥ 1.57, the logistic uni-variate analysis re-
sults in an OR=0.15 for ∆μ (p=0.02) and OR=0.10 for ∆V (p=0.04) 
(Table 4.15). A ROC curve analysis shows values for AUC of 0.74 
(p=0.02) and 0.77 (p=0.01) for ∆μ and  ∆V, respectively. 

 
Table 4.15. Mann-Whitney test, logistic multi-variate analysis (MVA) and 
ROC curve for the population. The median value on the population of the 

mean xerostomia during treatment is 1.57. As end-point for the MVA a 
mean xerostomia ≥ 1.57 was considered. 

  r∆ρ [HU/day] 1→2 
 r∆V [mm3/day] 

1→2 

  
mean 
xero ≥ 
1.57 

mean xero 
< 1.57 

 mean 
xero ≥ 
1.57 

mean 
xero < 
1.57 

Mann-
Whitney 
test 

Median -0.98 -0.22  -455 -127 

95%CI 
-

1.37 to -
0.43 

-
0.95 to 0.09 

 
-970 to -

216 
-

550 to 19 

p-value 0.05  0.03 

Logistic 
analysis 

OR 0.15  0.10 
CI 95% 0.03 to 0.93  0.99 to 1.00 
p 0.02  0.04 

ROC 
curve 

AUC 0.74  0.77 
95%CI 0.52 to 0.90  0.56 to 0.91 
p 0.02  0.01 
Best 
Cut-Off 

-0.49 
 

-378 
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Figure 4.8 shows that the group with a mean xerostomia ≥ 
1.57 has a larger r∆ρ and r∆vol during the first part of treatment, 
while it is almost unchanged at the end (or during the second half of 
treatment); on the other hand, patients with low xerostomia mean 
scores show almost constant values for both r∆ρ and r∆vol during 
the entire course of treatment. Finally, Figure 4.9 shows the proba-
bility risk of experiencing a mean xerostomia ≥ 1.57 versus r∆ρ. The 
dashed line indicates the best cut-off value of the ROC curve (-0.49, 
Table 4.15). 

 

 
Figure 4.9. Probability risk (95%CI) of mean xerostomia ≥ 1.57 (median val-
ue) vs early density variation (rΔρ1→2). The dashed line indicates the best 
cut-off value (-0.49, Table 4.15) of rΔρ. Density/volume variations refer to 

the minimum value between the two parotid glands for each patient. 
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Discussion 

 

 

 
This PhD project was aimed to evaluate the effects of radio-

therapy on parotid glands by extracting CT-based indices able to 
characterize geometric and structural properties of parotid tissue. 
Anatomical variations, in terms of volume changes and local defor-
mations, were quantified by using an image registration method ex-
pressly validated, while structural modifications were evaluated by 
applying texture analysis to CT images. All these parameters were 
correlated with dosimetric and pre-clinical features and with the 
clinical outcome, in order to assess their relationship with RT plans 
and their predictive power of the acute toxicity level. 

In this chapter the discussion of all the presented results is 
reported, focusing on the evaluation of image registration accuracy 
(Faggiano et al 2011), on the relationship between dose-volume pa-
rameters and jacobian index measured after the end of RT, on the 
correlation between density variations and jacobian (Fiorino et al 
2012), on the structural characterization of parotid tissue through 
texture analysis and its ability in early predicting parotid shrinkage 
(Scalco et al 2013). Finally, the relationship between CT-based pa-
rameters and acute toxicity is discussed based on the preliminary 
results achieved.  
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5.1. IMAGE ANALYSIS METHODS 
 
5.1.1. Accuracy of the image registration and contour propa-

gation method 
In RT it is essential to follow anatomical variations of organs 

of interest and recontouring is thus required; however, especially in 
the case of MVCT images, characterized by higher noise level and 
lower soft-tissue contrast with respect to kVCT images, this is a criti-
cal issue, since a high inter-observer contour variability is present, 
as demonstrated in an earlier study on prostate contours (Song et al 
2006). Therefore, it is important to have a good contour propaga-
tion method to help the observers as well as to save time in re-
contouring.   

According to these findings, also in the case of parotid gland 
contours, our results, presented in Chapter 3.1, on inter-observer 
variability showed low variability in kVCT where operators are al-
ways similar (DSC index always greater than 0.81) and an increased 
significant variability in MVCT delineations (DSC significantly differ-
ent from kVCT DSC and p= 0.018 in Anova tests on parotid volumes 
comparisons). In particular, the major difficulties in contouring on 
MVCT scans are found for the identification of medial border of the 
deep lobe because of parotid similarity with surrounding soft-
tissues. On the other hand, only the external part of the parotids is 
known to be subject to strong shrinkage during the treatment, and 
this portion  can be clearly detected also with MVCT, so that the 
higher uncertainty in the definition of the medial border has a minor 
clinical relevance (Broggi et al 2010, Duma et al 2010).  

Comparisons between automatic performance and inter-
observer variability revealed that the automatic method, which was 
never significantly different from the manual contours, acts like an 
observer: in particular, the 3D accuracy analysis showed that no sig-
nificant difference between automatic and manual contours was 
present for volumes (Tukey test), COM (Centre Of Mass) distances 
(Anova test) and DSC (Dice Similarity Coefficient) indices (Wilcoxon 
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signed rank test). The 2D analysis confirmed that inter-manual com-
parisons were not significantly different from automatic-to-manual 
comparisons (p-values > 0.05 for both ASD (Average Symmetric Dis-
tance) and MSD (Maximum Symmetric Distance) between con-
tours). Also in absolute terms, differences between manual-to-
manual and automatic-to-manual average ASD and MSD were very 
small (-0.09 mm for ASD and +0.02 for MSD). These findings suggest 
that our method can successfully substitute manual contouring on 
MVCT.  

Considering HN RT applications, contour propagation meth-
ods were often studied applied to kVCT images (Wang et al 2008, 
Zhang et al 2007). In particular, Wang et al (Wang et al 2008) pro-
posed an auto-propagation method from the planning kVCT to the 
daily kVCT that maps binary images generated from planning man-
ual contours using a 3D vector deformation map obtained by De-
mons deformable image registration. This auto-mapping procedure 
produced small islands, holes and irregular boundaries on the 
propagated binary images and authors proposed a contour smooth-
ing and modification procedure to correct them. This approach was 
validated on 8 head-and-neck, 9 lung and 1 prostate cancer patients 
comparing automatically generated contours with contours manu-
ally delineated by one observer using DSC index and the mean abso-
lute surface-to-surface distance. In another work, Zhang et al (Zhang 
et al 2007) used the planning image as the moving image and the 
daily kVCT image as the fixed image, in a variational-based deform-
able registration to prevent artefacts (note that in this way the de-
formation map is not informative about the deformation occurred 
in patient during the course of therapy). They validated the algo-
rithm using the same indices of (Wang et al 2008), on a total of 32 
head-and-neck images. Because of the different signal-to-noise ratio 
and resolution of kVCT images with respect to MVCT images, results 
of our proposed method cannot be directly compared with these 
two works. 

For a comparison of our results with other works present in 
literature, only Lee et al (Lee et al 2008) applied a contour propaga-
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tion method on MVCT images to evaluate parotid glands changes 
after Tomotherapy. Their method deformed a 3D surface mesh con-
structed from manually drawn planning contours by a 3D vector de-
formation map obtained by a variational deformable approach (Lu 
et al 2006). With this approach they avoided the creation of holes 
inside the object, thus obtaining contours which were reasonable in 
shape and location and able to represent the anatomical changes of 
parotid glands. However, a post-processing procedure was required, 
since automatic contours presented an irregular surface and needed 
a smoothing. The validation was carried out by visual inspection and 
by comparison with manual uncertainty evaluated by two manual 
experts in terms of volume and COM distance. As in our work, au-
thors concluded that automatic uncertainties were similar to man-
ual.  

Unlike the before mentioned classical methods, the main ad-
vantages of our contour propagation method are the smoothness of 
the obtained contours, that do not need post-processing adjust-
ments, and the compact representation of the deformation that 
could be defined by a small number of control points. For example, 
the information about deformation field of an image of (240 x 240 x 
32) voxels is generally stored in a (240 x 240 x 32 x 3) vector matrix, 
with a standard approach; with our method, the same deformation 
field calculated on a grid of about 10 mm is contained in a (27 x 27 x 
14 x 3) matrix. This characteristic is very useful especially in radio-
therapy applications where usually every patient study requires up 
to 30 deformation fields to be computed and stored. Moreover the 
information contained in the control point displacement matrix is a 
volumetric information that covers the entire image and that could 
produce the re-contouring of many objects at the same time. Our 
mesh generation and deformation method, once control point dis-
placements are known, is very fast and it could be easily used in ret-
rospective studies of different organs deformation and analysis.  

The contour propagation method was associated to the FFD 
method based on B-spline in order to estimate the deformation 
field from one image to another. A drawback of the B-spline regis-



5. DISCUSSION 

103 
 

tration approach is the relatively high computation time (a typical 
HN registration takes approximately 15 minutes on a 2.26 GHz In-
tel(R) Xeon(R) processor, with 6 GB RAM). For this reason this ap-
proach could be an optimal method to perform retrospective stud-
ies and advanced geometric analysis about regions more involved in 
deformation (Vásquez Osorio et al 2008), but in the present form it 
is not suitable for fast re-contouring in real-time adaptive radiother-
apy. Future works will be addressed to speed up the method by 
adopting a faster registration method (Bondar et al 2010, Paquin et 
al 2009) or by optimizing the here proposed registration procedure.  

 
 

5.1.2. Quantification of deformation with jacobian index 
HNC patients are known to be subject to significant anatomy 

modifications resulting from both tumor response and changes in 
normal tissues as a consequence of acute reactions, including 
weight loss. As suggested by several authors (Lee et al 2008, 
Vásquez Osorio et al 2008, Wu et al 2009, Wang et al 2009, Han et 
al 2008), all the observed anatomic changes may cause significant 
dosimetric effects when highly tailored dose distributions are deliv-
ered; in particular, parotid volume reduction and medial migration 
can lead to the delivery of an higher parotid dose compared to the 
planned one (see Chapter 2.2).  

The quantification of deformation described in Chapter 3.2 
had the primary aim of assessing pre-treatment predictors of parot-
id shrinkage with the potential to better guide planning optimiza-
tion and to select patients that could significant take advantage 
from adaptive strategies. Compared to other investigations where 
anatomical variations were estimated in terms of volume variation 
or in terms of position differences, in this chapter parotid defor-
mations were quantified by using the jacobian of the deformation 
field of the elastic registration. This simple and intuitive method, 
able to condense the information dealing with single voxel defor-
mation in one number, is not novel; in fact, the Jacobian has been 
suggested to quantitatively assess local changes of pulmonary func-
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tions during radiotherapy (Christensen et al 2007, Ding et al 2010), 
by considering expansion/compression of lung voxels during normal 
breathing. In addition, the introduction in a previous study (Fiorino 
et al 2011) of the Jacobian Volume Histogram (JVH), which acts as 
the DVH and permits to condense the information pattern into a 
single curve, provides the possibility to quantify the deformation as 
an "organ-effect". JVH-based parameters were found to add infor-
mation compared to the mere volume reduction, enhancing the 
correlation between the type of the deformation and pre-treatment 
variables. In particular the correlations with Jac_mean were en-
hanced for parotid mean dose and V10. 

Similarly to a previous study (Broggi et al 2010), we found 
that patient’s age was the most predictive clinical variable of parotid 
shrinkage. It was confirmed that the parotid shrinkage is more rele-
vant in younger patients, suggesting that massive apoptosis, leakage 
of granules and subsequent lysis of acinar cells, responsible for the 
acute radiation-induced function loss of salivary glands, could be 
more active for younger patients (Konings et al 2005). The low sen-
sitivity of old patients compared to the younger ones could also be 
correlated to possible interactions with drugs (i.e. anti –depressive, 
anti-hypertensive) mostly used by older patients and/or a likely dif-
ferent level of parotid hydration between old and young patients. 

The Jacobian-based method showed a clear correlation be-
tween parotid shrinkage and dosimetric variables; in particular, by 
considering the multivariate analysis taking also into account the 
DVH grouping, a significant correlation between parotid shrinkage 
and the planned DVH shape is evident, both in the low dose region 
(V10–V15) and in the medium dose region (V40), also if the low–
dose bath effect seems the predominant one. In according to other 
papers (Bussels et al 2004, van Luijk et al 2009, Jeraj et al 2010) in 
which the low dose bath has been reported as a potentially detri-
mental factor when considering salivary function impairment, also 
in our study V10 and V15 were found as the dosimetric pre-
treatment parameters more significantly correlated to parotid 
shrinkage. Although parotid shrinkage mainly involved the external 
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portion of the glands, our results do not exclude that the fraction of 
parotid receiving higher doses (i.e. V40 Gy) could play some role; 
neither a possible interaction between the internal parotid gland 
region irradiated at medium-high dose and the external region reac-
tions could be excluded. In any case, our results confirm the im-
portance of an accurate planning optimization approach in order to 
minimize as much as possible the parotids DVH in the whole dose 
range, including the fraction of parotid receiving doses as low as 
10Gy (Vásquez Osorio et al 2008, Wang et al 2009). 

The significant correlation found with the percentage body 
thickness variation, when not only including pre-treatment variables 
in the MVA analysis, seems to indirectly suggest that parotid defor-
mation may be only partial explained by the planned dose distribu-
tion. A subjective patient’s radiation reaction should be also consid-
ered. 

In conclusion, the clear correlation between parotid defor-
mation and clinical/geometrical/dosimetric parameters found in this 
study together with the possibility to use quantitative image-based 
scoring information from images taken during and after radiothera-
py for measuring the radiation-induced damage (Jeraj et al 2010, 
Bayouth et al 2011) seems to be very promising in predicting indi-
vidual reactions and possibly in adapting the treatment, primarily to 
reduce early and/or late toxicity. 

 
 

5.1.3. Correlation of mean intensity with morphological, pre-
clinical and dosimetric parameters 
Following the considerations previously discussed about the 

possibility of using quantitative information from images taken dur-
ing (and after) RT as image-based scores of toxicity (Jeraj et al 2010, 
Bayouth et al 2011), in Chapter 4.2 we extended these analysis by 
measuring parotid glands density from CT images. The general pur-
pose was thus to predict individual reactions and possibly adapt the 
treatment, primarily to reduce toxicity, based on the correlation be-
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tween pre-treatment parameters and functional and anatomical 
variations after RT. 

The paradigmatic scenario of parotid morphological and func-
tional changes measured by imaging techniques is very intriguing; as 
deeply reported in the previous sections, the largely visible effect of 
parotid shrinkage could be used as a surrogate of radiation-induced 
early reactions (Broggi et al 2010, Vásquez Osorio et al 2008, Kan et 
al 2010, Houweling et al 2011, Fiorino et al 2011, Teshima et al 
2010, Henriksson et al 1994). The clear correlation between parotid 
deformation and a number of clinical/ anatomical/ dosimetric pa-
rameters is very promising (Vásquez Osorio et al 2008, Fiorino et al 
2011) (see also Chapter 3.2). Within this picture, the addition of the 
simple measurement of parotid density could be an important, ad-
ditional measure of a likely surrogate of functional changes. Parotid 
density has been reported to be correlated with age (Drummond et 
al 1995, Percival et al 1994) and consequently to the measurement 
of the fibro-fatty component that is expected to be correlated to 
the reduction of the gland functionality. 

Despite density changes measured after RT may be due to 
complex mechanisms, including inflammatory reactions, the preva-
lence of a significant reduction of density has been reported in few 
studies (Cardello et al 1998, Cheung et al 2010): very recently, pre-
liminary results on 16 patients treated with image-guided IMRT for 
different head–neck cancers were reported, showing an average re-
duction of parotid density around 0.30 HU/fraction (Cheung et al 
2010) which well compares with our findings (0.20–0.25 
HU/fraction).  

Izumi et al. (Izumi et al 1997), investigating patients affected 
by Sjogren Syndrome, suggested a correlation between a decrease 
in saliva production and HU variation on CT images. Two very recent 
works (Teshima et al 2012, Obinata et al 2013), published at the 
same time as our study, estimated density variations within parotid 
glands volume after irradiation, considering CT images of a small 
cohort of patients (6 and 10 subjects, respectively) and found a sig-
nificant decrease of CT number, in accord with our results. 
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Our work is the first large multi-center study clearly reporting 
this phenomenon in a large cohort of patients, more evident when 
considering diagnostic kVCT. The higher noise of in-room imaging 
(like MVCTs) is a well known issue that limits the reliability of densi-
ty measurements in this situation where a relatively small effect is 
expected. Then, although the prevalent effect of parotid density re-
duction was visible and statistically significant in our MVCT popula-
tion, the individual assessment of density changes during Radio-
therapy seems to be unfeasible. Moreover, the relationship be-
tween HU and density has been found to change with time in 
Tomotherapy MVCTs (Duchateau et al 2010) and this represents an 
additional noise in this kind of study; in order to investigate this ef-
fect in our MVCT population, the HU fluctuation between the start 
and the end MVCT was assessed for all patients by measuring ΔHU 
of a fixed region of interest (ROI) in the brain, outside the irradiated 
volume. We found that ΔHU of this ROI was correlated with the cor-
responding ΔHU in the parotids, confirming that the individual as-
sessment of small density variations in parotids through MVCT is 
highly uncertain. MVCTs images could be maybe used for individual 
density changes by re-normalizing HU values following the method 
here used (using the HU change in a ROI outside the irradiated vol-
ume); investigating this possibility is outside the aims of current in-
vestigation. On the contrary, no significant variations were seen in 
the ROI for kVCT images, neither correlation with density changes in 
the parotids. 

One of the major results of this study is the strong correlation 
between parotid deformation and density reduction. In particular, 
jacobian-based parameters, expressing the map of the voxel-by-
voxel compression within the glands, were found to be highly relat-
ed to density reduction. Similarly, the parotid volume reduction and 
the neck thickness reduction were found to be correlated with den-
sity changes, although with a smaller predictive value. 

The reason of this effect may be hypothesized as due to a 
prevalent effect of loss of number and dimension of acinar cells, 
with a consequent relative increase of the fatty component of the 
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gland leading to the average density reduction. This hypothesis was 
confirmed in (Teshima et al 2012), where density reduction meas-
ured from CT images was correlated with histopathological images; 
in fact, histopathological analysis demonstrated that 30-Gy irradia-
tion resulted in a loss of acinar cells in parotid glands. The CT values 
after RT were inversely correlated with adipose ratios (r = –0.98, p < 
0.01) and there was a strong correlation between CT values before 
and after RT (r = 0.97, p < 0.01). The authors suggested that acinar 
cell loss is a main contributor to changes in the volume and function 
of irradiated human parotid glands and that the CT value may re-
flect the adipose ratio rather than salivary function. 

Several other investigators suggested that the reduction of 
salivary flow is associated with this phenomenon, so that, the 
measurement of density changes is candidate to become an addi-
tional easy-to-measure and robust functional score (Teshima et al 
2010, Drummond et al 1995, Konings et al 2005, Radfar and Sirois 
2003). The combination of morphological and density information 
with direct functional information measured with other imaging 
modalities (in particular, diffusion MRI) gives high promise to better 
quantify and model functional changes within the parotids (Kan et al 
2010, Houweling et al 2011, Castadot et al 2011, Wu et al 2011, Lee 
et al 2011, Juan et al 2009, Dirix et al 2008). 

Interestingly, the best logistic model when considering kVCT 
data includes Jac_mean and the initial half-thickness of the neck, 
suggesting that larger patients tend to show a larger decrease in 
density; however, this result is much less robust than the impact of 
deformation and should be confirmed in a larger population. More-
over, neck thickness was found correlated with age and weight vari-
ation in our population, so that the fact that neck thickness could be 
a surrogate of these variables (primarily age) should not be exclud-
ed. 

In this study, DVH parameters were weakly correlated with 
density changes while density changes were highly correlated with 
parotid deformation; this finding indirectly suggests that both parot-
id deformation and density changes may be only partly explained by 
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the planned dose distribution; on the other hand, the strong corre-
lation between parotid shrinkage and density reduction implies that 
early deformation/volume loss may be helpful in assessing the most 
early-reacting patients. Recently, a clear correlation between early 
reduction of saliva flow and volume reduction was reported 
(Teshima et al 2010). A preliminary analysis between grade 3 acute 
xerostomia and Jac_mean, which showed a significant correlation in 
a sub-group of patients prospectively followed in one of the three 
Institutions (see results in Chapter 4.5), seems to confirm this hy-
pothesis. 

However, more investigation is necessary to assess the corre-
lation between CT image-based scores (both morphology and densi-
ty changes) and the clinical impact on acute and late xerostomia 
subjectively reported by the patient: the ability of damage repair as 
well as the adaptation of the patient to the new situation after Ra-
diotherapy may significantly affect the relationship between objec-
tive image-based changes and the subjective perception of symp-
toms that may potentially affect the quality of life. 

 
 

5.1.4. Dynamic characterization of structural modifications 
and their correlations with dosimetric parameter 
Characterization of tissue organization can be carried out 

with texture analysis by studying the spatial variation in the intensi-
ty of image pixel values. In Chapter 4.3 texture analysis, based on 
the calculation of statistical parameters and fractal dimension, was 
used to extract quantitative and synthetic parameters for the de-
scription of structural variations in parotids occurring during the 
course of RT.  

Therefore, in addition to the significant parotid volume de-
crease, extensively described in the previous chapters, and to the 
density decrease, which it was written about in the former chapter, 
in this section we found a significant decrease in S2 (decrease of 
11.4%, p<0.001) and FD (decrease of 5.8%, p<0.001) between the 
start and end of treatment, indicating a less complex tissue organi-
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zation after irradiation. Texture analysis allows the identification of 
other features which characterize the structure of parotid glands 
with respect to simple mean density, and provides a deeper exploi-
tation of the information content of CT images.  

When the kinetic of textural features was studied, a different 
behavior was found for mean intensity  changes (μ) with respect to 
S2 and FD; specifically, mean intensity experienced a large decrease 
in the first half of the treatment (-4.69 HU, p<0.001) followed by a 
plateau in the second half (-0.59 HU, p>0.05), while both S2 and FD 
showed significant variation between CT1 and CT_half and CT_half 
and CT_last (-5.9% and -5.4% for S2; -3.4% and -2.4% for FD, 
p<0.001). The behavior of density variation is likely to be related to 
the rapid loss of water excretion in the first days after irradiation 
(Konings et al 2005). 

 Texture analysis was widely employed in several contexts on 
different imaging modalities, for example, to distinguish normal and 
abnormal tissues in the body, to characterize tumors as aggressive 
or non-aggressive, to classify different grades of pathologies or to 
segment different structures of interest. Statistical features were 
used to characterize tumor region (Ahammer et al 2011, Raja et al 
2012), finding an increase in mean intensity value and entropy com-
pared to normal tissue, and indicating more complex tissue organi-
zation when a neoplastic lesion was present. Specifically, in parotid 
glands, texture analysis was applied to extract statistical features 
from echographic images to characterize neoplastic lesions, with 
the same results (Chikui et al 2005). Focusing on radiation-induced 
changes in parotids, a very recent work compared parotids of nor-
mal subjects with parotids submitted to RT using ultrasound images 
(Yang et al 2012): the authors found an increase in tissue heteroge-
neity in post-RT subjects, with a significant increase in variance and 
entropy with respect to normal subjects. Our findings, reporting a 
significant decrease in local entropy and fractal dimension, thus as-
sociated with a global decrease in tissue complexity, are apparently 
in disagreement with their results; however, our study dealt with 
variations during treatment, while Yang et al compared normal sub-
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jects with patients a year and a half after RT. Moreover, their re-
search was based on ultrasounds, while we studied CT images, and 
the texture analysis thus captured different information. Specifical-
ly, tissue of normal parotid glands, filled with homogenous serous 
acinar cells, provides uniform and highly reflective interfaces for the 
ultrasound beam. After RT, the loss of acinar cells in parotids leads 
to a more disorganized tissue organization, appearing in ultrasound 
images as an heterogeneous echographic pattern. Our decrease in 
local entropy, seen with CT images, can be interpreted in the same 
way: resolution of CT images does not permit the analysis of single 
cells, and it is therefore possible to record a relative increase of fat 
ratio, making the tissue more uniform. 

Fractal dimension was extensively calculated in different con-
texts, as a synthetic index of tissue complexity. However, to our 
knowledge, there are no studies employing this parameter to evalu-
ate structural changes induced by radiotherapy, and our results 
cannot, therefore, be compared with others. In previous works FD 
was used to identify different regions of interest on CT images 
(Nailon et al 2008), or, again, to characterize properties of neo-
plastic tissue (Chikui et al 2005, Ahammer et al 2011, Raja et al 
2012), also in parotid gland tumors, finding a fractal dimension 
higher than in normal subjects. Our study found a significant de-
crease in fractal dimension during the treatment, consistent with 
the decrease in mean intensity and local entropy. 

Correlation analysis has reported a significant high relation-
ship of local entropy variation with volume variation (R=0.591, 
p<0.001) and with density variation (R=0.309, p<0.001) during the 
whole treatment and between density and volume variation 
(R=0.405, p<0.001), as already reported previously. This result sug-
gests that local entropy changes, being mostly correlated with vol-
ume changes, are related to the same biological process of volume 
decrease, i.e. the loss of acinar cells, while density variation is only 
partly explained by this phenomenon. FD resulted not correlated 
with any of these parameters, suggesting that this feature is not di-
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rectly amenable to the same causes; however further investigations 
are needed. 

Interestingly, correlation analysis with pre-treatment parame-
ters gave significant results only for volume (already known in litera-
ture (Broggi et al 2010)) and density variation (as discussed previ-
ously), but no significant correlations were found for local entropy 
and only slight correlations for fractal dimension. Since Pearson's 
coefficients for DVH parameters could become significant if more 
patients were considered, the lack of correlation for S2 and FD could 
be explained by the limited number of data. Also in this case, a 
deeper evaluation should be performed, in order to understand if 
dosimetric prescription and pre-treatment conditions have an influ-
ence on the textural variation. 

Texture analysis methods can be approached in 2D or 3D, as 
widely discussed in the literature (Mahmoud-Ghoneim et al 2003, 
Xu et al 2004, Sanghera et al 2012). In our work the 2D approach 
was chosen as a simpler method to implement and we followed the 
method proposed in (Assefa et al 2010), using an intermediate solu-
tion between a slice based and a 3D texture analysis, i.e. the com-
putation of the median value between textural parameters extract-
ed for each slice separately. As discussed in a previous work (Xu et 
al 2004), when a structure is homogeneous, results obtained from 
2D data and those obtained from volumetric data are similar. 
Moreover, our volumetric data are, in fact, a set of 2D images and 
the sparseness of the set of slices affects the result for volumetric 
data since the inter-pixel distance is different from the inter-slice 
distance. On the other hand, the 3D approach should prove more 
effective for very heterogeneous structures, or in volumetric data 
with a cubic voxel dimension. A comparison between 2D and 3D 
texture analysis deserves future investigation in order to intrinsically 
study three-dimensional variations on parotid gland structure.  

Moreover, an analysis of the influence of misregistration er-
rors should be carried out in order to understand if errors in 
recontouring parotid glands have a significant impact on the extrac-
tion of textural features. In this case, a possible solution to this 
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problem can be a morphological erosion of the structure, so that 
only the portion that certainly belongs to parotid gland would be 
taken into account. 

 
 

5.1.5. Early prediction of parotid shrinkage using textural pa-
rameters 
In Chapter 4.3 we have demonstrated that texture analysis is 

able to adequately characterize structural modification induced by 
RT on parotid glands tissue. In Chapter 4.4 we assessed the ability of 
textural features in early predicting parotid shrinkage at the end of 
RT. For this purpose, a verification of the significant variation of pa-
rameters in the first two weeks of RT was carried out. The decrease 
in tissue complexity was shown by the variation of some textural 
features confirmed even in the first two weeks of RT. Specifically, 
mean intensity and fractal dimension experienced significant varia-

tion between CT1 and CT2, with a decrease in  of 1.7 HU (p=0.042) 
and in FD of 0.6% (p=0.0045). This result suggests that these fea-
tures could be used as early predictors of the final parotid volume 
decrease, also considering that the extraction of textural features is 
a very fast process on a standard PC and requires very little extra 
effort. 

The main finding of this chapter was that textural parameters 
seem to be effective in the timely prediction of parotid shrinkage at 
the end of RT. We have already shown that volume and mean densi-
ty variation are strongly correlated to parotid shrinkage (Broggi et al 
2010, Fiorino et al 2011); here, the simple volume variation seems 
to be sufficient to capture parotid gland modifications. However, it 
can be deduced that a multi-parameter analysis, combining volume 
with other textural parameters, and thus, at the same time, charac-
terizing tissue structure and deformation of parotids, could provide 
more information than a single-parameter description for the iden-
tification of subjects with parotid anatomical variations at the end 
of RT. Although the volume and mean intensity variations alone 
achieved better discriminative results with respect to FD, the com-
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bination of all these parameters gave more accurate classifications 
of parotid glands. The ability of FD to capture structural processes, 
probably related to finer differences in the functional behavior of 

parotid glands, with respect to V and  could help in reaching a 
complete description of the effects induced by RT; in particular, the 
combination of FD and V was sufficient to obtain the best result.  

This work is a preliminary study to investigate the feasibility 
of using texture analysis on CT images to characterize parotid varia-
tions induced by radiation. Considering the limited number of pa-
tients studied (21), although our data were sufficient to obtain sig-
nificant results, a confirmation of these findings should be assessed 
in a larger dataset in order to verify the significance of textural indi-
ces in assessing parotid gland behavior and therefore the real im-
pact of textural analysis in the clinical frame. In particular, correla-
tions between textural features and clinical outcome need further 
investigation, also including other anatomical, clinical and 
dosimetric parameters, as proposed in previous works (Broggi et al 
2010, Fiorino et al 2011, Beetz et al 2012), in order to understand 
whether these structural variations are related to the risk of 
xerostomia. 

Moreover, this study could be extended by including other 
organs at risk, such as other salivary glands or structures related to 
swallowing, in the textural analysis, in order to provide a more 
comprehensive frame of the structural modification induced by RT 
in head and neck patients.  

 
 

5.1.6. Relationship between structural indices and 
xerostomia 
HNC patients are known to suffer relevant toxicity both dur-

ing and after RT. Even in the IMRT era, xerostomia is one of the 
most important adverse side effects, often occurring after few 
weeks from the start of the treatment and persisting for many 
months/years after the end of RT and potentially affecting  patient 
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quality of life (Tribius et al 2013, Deasy et al 2010, Bjordal et al 
1994).  

In Chapter 4.5 we have shown some preliminary results about 
the relationship between image-based features described in this 
thesis and the xerostomia scores recorded for a subgroup of pa-
tients. This is a very interesting issue, since if we can demonstrate 
that variations in parotid glands structure, as measured from CT im-
ages, are correlated with acute toxicity, an early detection of these 
changes could be used to adapt the treatment in the early phase 
and/or activating specific supportive therapies. For this reason, we 
considered variations that occur in the first part of the treatment, 
and in particular in the first two weeks. 

From the results presented in Chapter 4.3 it was evidenced 
that parotid glands density changes are observed mostly during the 
first part of RT, while variations in volume, local entropy and fractal 
dimension are quite constant during the whole treatment. There-
fore, measuring anatomical and structural variations in the first 
weeks can reasonably capture the most part of the significant in-
formation. Our preliminary results have shown significant correla-
tions between acute xerostomia and early changes in volume and 
density, but no correlation was found for the other textural fea-
tures. However, since only 21 patients were considered, and only 
the lowest value of features variation among the two parotid glands 
was used, the sample size was probably too small to obtain signifi-
cant correlations for local entropy. Therefore, further investigations 
are needed in this direction to confirm or update our results. 

Density variation seems to be a more robust parameter than 
volume reduction, being also less dependent on contouring. We 
have previously demonstrated that parotid glands density variation 
was highly correlated with deformation. Our hypothesis is that a de-
crease in gland density, corresponding to a relative increase in fat 
component, is a surrogate of acinar cell loss, thus resulting in an in-
vivo functional score.  

It should be noted that mean xerostomia was not correlated 
with the parotid glands DVH/mean dose (p-value>0.30, data not 
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shown). Of note, DVH shapes were quite homogeneous within the 
considered population (coefficient of Kurtosis for parotid mean 
dose: 5.3; p-value=0.0005). 

Our results indicate early density changes as predictors of 
clinically significant symptoms; roughly, an early r∆ρ reduction of 
about 0.50 HU/day, corresponding to about 3.5 HU/week was able 
to correctly classifying patients with a mean xerostomia score dur-
ing treatment larger than the median value of the considered popu-
lation. 

In conclusion, our first results seem to highlight that early 
density and volume variations highly predict an increased risk of ex-
periencing more intensive acute xerostomia symptoms. This finding 
could guide the activation of ART strategies based on early density 
changes assessment with the aim of reducing xerostomia; prospec-
tive validation of such strategies is mandatory as well as the confir-
mation of these results on a larger prospectively followed cohort of 
patients, where also the long-term effects should be considered 
(unfortunately the limited number of patients did not permit to in-
clude long-term xerostomia in current study). 

On the other hand, it cannot be excluded that early density 
changes could be just a sign of an already occurred effect; in this 
case xerostomia could not be avoided by ART. In any case, this in-
formation could be highly important in early identifying sensitive 
patients and activating appropriate supportive therapies 
(Bohuslavizki et al 1999).  

 
 

5.2. CONCLUSION 
 

In this work, methods to extract CT-based indices to perform 
an extensive analysis of the effects of irradiation on parotid glands 
were proposed and evaluated. In particular, a framework composed 
by an image registration method, based on FFD and B-splines, and 
an automatic contour propagation algorithm, was validated and ap-
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plied on kVCT and MVCT images, in order to estimate anatomical 
deformations that occur during RT treatment on parotid glands. 
Then, an image analysis method, based on texture analysis, was 
proposed to extract features able to characterize parotid glands 
structure. 

These CT-based features were then correlated with pre-
treatment parameters and we evidenced that parotid shrinkage is 
highly related to low dose DVH values; at the same time, density 
variation measured after RT is significantly correlated with volume 
decrease, suggesting that the loss of acinar cells and the consequent 
increase in the percentage of the fatty component is related to the 
decrease in functionality. Other textural features were estimated 
during treatment, showing a different behavior during time: in par-
ticular, we proved that the major reduction in density is concentrat-
ed in the first half of the treatment, while the decrease in volume 
and in tissue complexity (measured by local entropy and fractal di-
mension) is quite constant during the whole treatment. Texture and 
deformation analysis, thus, have been demonstrated to be able in 
characterizing morphological and structural modifications due to ir-
radiation. 

Finally, we tried to predict volume decrease and clinical out-
come by using the early variations of textural features and we found 
that the most accurate prediction of parotid shrinkage is achieved 
by the combination of variation in volume, density and fractal di-
mension measured in the first two weeks. The prediction of 
xerostomia score is still an open challenge, since our results showed 
a significant correlation only with early density and volume varia-
tion, but our dataset was too small to generalize this conclusion.  

Our results can help in adding new information and new in-
struments to evaluate the effects of RT on parotid glands, by per-
forming texture analysis on the CT images acquired in the first half 
of the treatment. In fact, as the extraction of textural features is an 
easy and fast operation, it could be easily introduce in the clinical 
practice to obtain new scores for a multi-parameters evaluation of 
the RT consequences on normal tissues. In particular, the availability 
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of CT images acquired for patient repositioning allows the image-
based analysis without requiring any other acquisition and without 
adding any cost. Moreover, the clinical usefulness of these analyses 
should be evidenced by a significant correlation of these features 
with xerostomia: if this could be confirmed in a larger population, 
the contribution of this work would be even more interesting and 
valuable. 

 
 

5.3. FUTURE WORKS 
 

Some improvements of the methods presented in this thesis 
could be faced in future. In particular, regarding the image registra-
tion method, the algorithm should be optimized in order to improve 
the computation time, making its performance almost in real-time. 
This can be achieved by the exploitation of multi-cores processors, 
after the parallelization of the code. Also the accuracy can be im-
proved, by the introduction of space-variant multi-resolution ap-
proaches, which refine image registration only in regions of interest, 
or constrain the algorithm to not deform rigid structures, like bones. 

Texture analysis can be also improved, by considering the ex-
traction of more statistical and frequency-based features, which de-
scribe in detail every characteristic of the spatial pattern of the im-
age. A classification of these features should then be performed by 
applying data clustering methods, able to identify the most power-
ful parameters in characterizing structural variations. 

As already discussed in the previous paragraph, results about 
the correlation between density and volume variation and 
xerostomia scores should be confirmed by considering a larger pop-
ulation. If these correlations would remained significant and also lo-
cal entropy would become significant, it should be taken into ac-
count that a check of textural features and deformation in the first 
two weeks of treatment could help in identifying those patients that 
could benefit of a replanning. 
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The assessment of the radiation-induced effects on parotid 
glands was here performed by considering CT images acquired dur-
ing treatment, since the availability of these acquisitions is quite 
easy. If other modalities are available, like anatomic MRI, diffusion 
or perfusion MRI, functional imaging (PET or SPECT), this analysis 
can be extended to obtain a multi-parametric characterization of 
parotid tissue. The combination of this multi-modal information al-
lows the evaluation of parotid behavior under different point of 
view, considering both anatomical and structural modifications 
through the analysis of CT and MRI images, and functional varia-
tions, in particular thanks to the investigation of diffusion MRI and 
PET images. In this regard, we have started to collect T2-w MRI im-
ages and Choline-PET images: the high resolution and contrast of 
MRI studies allows a better investigation of parotid tissue, since it is 
possible to distinguish the different macro-components of the 
glands; on the other hand, the functional measure, provided by PET 
studies, permits a direct correlation between textural and anatomi-
cal features and a quantitative clinical outcome. 

Finally, the extension of all these methods to other structures 
of interest in the HN district can be possible and advisable. First of 
all, the other minor salivary glands can be taken into account: in 
fact, salivary production is measured independently from the secre-
tory gland, and it is thus possible that not negligible damages regis-
tered on specific organs have a minor impact on the global salivary 
excretion. Second, other organs at risk can be considered, involved 
in other type of toxicity: for example, structures assigned to swal-
lowing have a great impact on the quality of life of the irradiated pa-
tients. Only recently the clinical interest was focusing on this prob-
lem (Wall et al 2013), thanks to the new technologies which allow 
sparing these structures, and the assessment of the effects of radia-
tion by applying image-based analysis is currently an open chal-
lenge. 
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