© 2024 |IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

Hierarchical Multiclass Continual Learning
for Network Intrusion Detection

Jacopo Talpini, Fabio Sartori, Marco Savi
Department of Informatics, Systems and Communication (DISCo), University of Milano-Bicocca, Italy

Abstract—The evolution of Internet and its related communi-
cation technologies have consistently increased the risk of cyber-
attacks. In this context, a crucial role is played by Intrusion
Detection Systems (IDSs), which are security devices designed
to identify and mitigate attacks to modern networks. In the
last decade, data-driven approaches based on Machine Learning
(ML) have gained more and more popularity for executing the
classification tasks required by signature-based IDSs. However,
typical ML models adopted for this purpose are trained in static
settings while new attacks — and variants of known attacks — dy-
namically emerge over time. As a consequence, there is the need
of keeping the IDS capability constantly updated, which poses
peculiar challenges especially in resourced-constrained scenarios.
To this end, we propose a novel hierarchical model based on a
binary classification of benign and malicious traffic performed
by a Bayesian Neural Network that is trained continuously
and efficiently by exploiting Continual Learning. A generative
multiclass classifier is then adopted to incrementally classify new
kinds of attacks with respect to the malicious traffic. We prove
the effectiveness of our approach showing that it removes the
need of storing network traffic data samples related to historical
data, representative of all the kinds of attacks, while ensuring
good detection capabilities.

I. INTRODUCTION

Network intrusions stand as a major scourge within modern
communication networks. As the frequency and complexity
of these incidents continues to rise [1], it becomes crucial to
develop meticulous detection strategies and resilient counter-
action measures. This is essential for the effective identifica-
tion and mitigation of the threats posed by such intrusions.
Intrusion Detection Systems (IDSs) are among the primary
security measures in communication networks, to identify
attacks, unauthorized intrusions, as well as malicious activities
[2]. IDSs are generally divided into two families: signature-
based and anomaly-based [3]. In this paper, we analyze the
first category, which is based on pattern recognition and aims
to compare signatures of well-known attacks and benign traffic
with the current network traffic patterns. On the other hand,
anomaly-based methods rely on a model only for the normal
(i.e., benign) network traffic so that any pattern that deviates
from the usual one is considered an intrusion. In contrast to
signature-based IDSs, anomaly-based IDSs are able to detect
also new types of attacks, but they typically suffer from a high
rate of false positives [4].

Traditional approaches to IDSs rely on knowledge-based
systems [5]: however, the increasing complexity of networks
makes those systems more prone to errors [3] [6]. As a con-
sequence, data-driven approaches based on Machine Learning
(ML) have been widely considered in recent years for de-
tecting attacks, demonstrating great performance in terms of
classification scores [4].
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Fig. 1. A pictorial representation of Continual Learning on a sequence of two
tasks. Blue dots represent benign traffic while dark green ones are attacks,
light blue and green areas represent the decision contour of a binary classifier,
namely an IDS, that should adapt to the appearance of new attacks in the
second task, while keeping good performance on the older one.

However, the vast majority of the proposed methods in the
literature on ML-based IDSs are based on a static framework,
where a model is trained once on a given training set, which is
supposed to be representative of all possible network patterns
encountered during the deployment. On the other hand, we
may expect that in a real-world scenario intrusions do not
emerge at once but gradually over time, so that the original
training dataset will eventually become outdated. Thus, there is
the need for a continuous training of an IDS to accommodate
new intrusion variants, i.e., we require that a model should
be able to learn from a subsequent collection of potentially
different data distributions, referred to as fasks, and revealing
new attacks. This process becomes particularly challenging
when it is not feasible to store all potential historical data,
and instead, older data are permanently discarded. This is the
typical case occurring in resource-constrained scenarios such
as when intrusion detection capabilities are deployed at the
edge in shared virtualized environments, or in the far-edge
(e.g. in IoT gateways) [7]. In this setting, the main issue is
represented by the so-called catastrophic forgetting [8], i.e.,
the phenomenon according to which the performance on older
data drops when the model is re-trained on the newest ones.

Figure 1 illustrates the impact of a distribution shift resulting
from the emergence of novel attack types. The scatter-plots
are generated using manifold learning through t-Distributed
Stochastic Neighbor Embedding (t-SNE) [9] to reduce the
dataset dimensionality and allow a 2D representation. This is



performed for two distinct task categories of the considered
dataset (see Section IV), providing an intuitive insight into
the necessity of retraining an IDS to maintain high predictive
capabilities for both new and older data distributions.

In this paper, we exploit Continual Learning (CL) [10]
capabilities to achieve this goal. The need for CL is partic-
ularly relevant when it may not be feasible to store large
volumes of old data, which constitutes the primary setting
explored in this paper. To this end, we suggest leveraging the
inherent hierarchy in the intrusion detection problem (i.e., first
predicting whether a flow is an attack and then determining
its type) to create a model that can be updated continuously
as new attacks emerge. In particular, we propose to rely on a
parametric discriminative model (e.g. a Neural Network, NN)
as a binary classifier for distinguishing between benign and
attack flows. This model is based on Bayesian Inference [11]
so that it can be continuously and effectively trained on new
tasks. Additionally, we propose incorporating a straightforward
generative classifier (e.g. Quadratic Discriminant Analysis) for
modeling the residual classification problem of different at-
tacks, as it occurs in our considered class-incremental setting.

Our illustrative results show that the proposed model is able
to learn new data patterns, while preserving good classification
abilities on the older ones, without storing historical data.

II. RELATED WORK

The application of ML to network intrusion detection has
been receiving considerable attention as it enables automated
analysis of network traffic by leveraging past data [3] [12]. For
instance, [13] [14] compare different classification algorithms
to develop an IDS and, in general, the best performance
is achieved by tree-based classifiers, like Random Forests,
and Multi-Layer Perceptrons (MLPs). However, as already
said, most existing works adopt a static approach, where
training occurs once on a specific dataset, assuming that test
data originates from the same distribution. This limitation
is significant given the dynamic nature of communication
networks, where new network traffic and attacks may emerge
during deployment. As a consequence, the field of CL has
gained more and more attention, also in the context of intrusion
detection, for implementing both anomaly and signature-based
IDSs. In the following, we analyze the most relevant work
tackling this problem in the context of signature-based IDSs,
as it is strictly coupled with multiclass classification.

In [15] the authors propose a comparison of different strate-
gies for addressing the CL problem in the field of intrusion
detection. The primary discovery indicates that models for
CL based on replay surpass conventional statistical methods,
as well as cutting-edge Boosted Decision Trees and Deep
Neural Network (DNN) models, in effectively addressing the
distribution shift problem. A similar conclusion was reached
in [16]. In both these works the experiments are based on
a setting where all the classes are a-priori known and then
the model should adapt only to the covariate shift happening
for each known class. In contrast, in our work we tackle
the problem from a class-incremental perspective where the
number of classes is not a-priori known, which we believe
better sticks to the real world.

On the other hand, [17] analyzes the problem of adapting
a signature-based IDS to new kinds of attacks in a few-shot
regime. However, the solution proposed by the authors relies
on having access also to a certain number of historical data
to adapt the classifier. In this work we instead analyze a
scenario where historical data may no longer be available
while executing the current task, due to privacy reasons or
due to stringent resource constraints. Another contribution that
analyzes a similar setting as the one considered in this paper is
[18] which, however, exploits different models, not based on
NNs. The authors propose an ensemble Incremental Learning
algorithm based on Hoeffding Tree, Adaptive Boosting and
Hard Sampling, which is capable of learning new attacks
without forgetting the previously learned traffic patterns. This
approach shows encouraging results but it still requires a list
of samples from older tasks that are hard to classify.

III. PROBLEM FORMULATION AND ADOPTED MODELS

The field of Continual Learning is getting more and more
attention since for several applications data comes in a se-
quence of datasets that are used for training and then perma-
nently discarded, as it should occur for network traffic. More
formally, the problem statement may be formulated as follows:
given T subsequent and disjoint datasets Dy, called fasks,
ie., D; = {(x:,y,;)}, each with N; input-output pairs, we
want to train a parametric model f, characterized by a set of
weights w, sequentially on each task (i.e., y, = fp,(x;, w))
without forgetting the knowledge gained from the previously
encountered tasks. In the context of this study, our objective
is to develop a classifier that can categorize network traffic for
each task, defined by the presence of benign traffic and only a
specific type of attack. Since tasks vary with the introduction
of new attack types, it is essential to consistently retrain the
IDS to effectively identify diverse intrusion patterns.

At a high level, CL methods can be broadly classified into
three main families [10]: Replay methods, Parameter Isolation
methods, Regularization-based methods. Since a complete
overview of the CL field is beyond the scope of this paper,
we limit to describe the last approach which is the most
suited for resourced-constrained scenarios. More specifically,
the file-rouge of the models of this family is to rely on an
extra regularization term introduced in the loss function of
each task, in order to consolidate previous knowledge when
learning on new data. Among the most commonly-employed
methods it is worth mentioning Elastic Weight Consolidation
[8], which imposes a quadratic penalty to regularise the update
of model parameters that were important to previous tasks. The
importance of parameters is approximated by the diagonal of
the Fisher Information Matrix [8]. More recent and compet-
itive approaches rely on the Bayesian Inference framework
for mitigating forgetting. In fact, Bayesian Inference offers a
straightforward and principled way of implementing CL, as
shown in the following.

A. Background on Bayesian Neural Networks

This Section is devoted to introducing Bayesian Inference
for Neural Networks and how we exploit it to define our
model. The most distinguishing property of Bayesian NNs



(BNN:ss) is that the parameters of a model w are treated as ran-
dom variables for which we aim to infer a posterior distribution
p(w|D), given the training data D, starting from a prior p(w)
and a likelihood p(D|w), through Bayes theorem. Predictions
are then obtained by marginalizing over the posterior [19].
Unfortunately, the posterior distribution is intractable for NNs
of practical size. To get around this problem, several approx-
imate inference methods were proposed. One of the most
common is represented by Variational Inference, which aims
to find a tractable approximation to the Bayesian posterior
distribution of the weights [20]. It is important to specify
that variational inference can be exploited also for Continual
Learning. For instance, in [11] the authors propose VCL, a
method based on a Bayesian approach to learn parameters
of a model, using the previous task’s posterior as the new
task’s prior when new data are seen. More specifically, it is
possible to approximate each task’s posterior by a variational
distribution, g;(w) ~ p;(w|D1.+) by maximising the following
objective function for every task ¢ [11]:
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The first term in Eq. 1 is the expected log-likelihood of the
current model over the data in the current dataset, and it
contributes to updating the model knowledge for the current
task. The second term is the Kullback-Leibler (KL)-divergence
between the actual and the old variational posterior, and
penalizes the difference between the current model and the
approximate posterior of the previous task. The variational
distribution ¢;(w) should be chosen to be easy to sample and
is typically a diagonal multivariate Gaussian, as used in this
paper. It is worth noting that this approach has the advantage
of not requiring free parameters to be tuned on a validation
set (w.r.t. [8] for instance) which can be non-trivial, especially
in the considered setting. Last, we emphasized that in contrast
to [11] we do not implement the fine-tuning phase for each
task with a certain amount of data retained from the previous
tasks, the so-called “coresets”, and we solely rely on Eq. 1,
aligning with the considered resource-constrained scenario.

B. Proposed model architecture

The proposed approach relies on a hierarchical model: first
we exploit a BNN trained in a continual way as a binary
classifier (benign/attack) and then we rely on a second genera-
tive classifier, to discriminate between known types of attacks,
trained in a class-incremental way. Figure 2 summarizes the
overall workflow at a high level, and in the following we
describe the two models in more details.

The base model adopted in this paper is a MLP composed of
two hidden layers of 32 and 16 neurons respectively employing
ReLU as activation function. The last layer employs the sig-
moid function so that the outputs of the model, given an input,
can be interpreted as the probability of being an attack/benign
traffic. This particular architecture was chosen to maximize the
validation accuracy at a reasonable computational cost, where
the training and validation were performed in the standard way,
with all the training data present at training time. Then the
question is if and how much Continual Learning impacts the

Binary Classifier
BNN

. Attacks Classifier
DQDA

kT N

‘Attack 15 | .. } \Attack K},

Fig. 2. A pictorial representation of the proposed hierarchical system. The
binary classifier is constituted by a BNN while the multiclass attacks classifier
is based on a simple generative classifier.

overall classification performance. In order to exploit Bayesian
Inference in the considered model and employ the previously-
described approach for Continual Learning, we relied on
TensorFlow probability infrastructure [21]. More specifically,
we exploited Variational Inference with a multivariate diagonal
Gaussian distribution as variational distribution. The model
is trained for 50 epochs on each task with batches of 128
samples. In this way, it is possible to continuously train a
binary classifier for benign/malicious flows, once new attacks
are discovered, as previously described.

However, for choosing an effective countermeasure, a net-
work administrator also needs to know what kind of attack
is happening. To this end, we propose to rely on a gen-
erative multiclass classifier [19] for identifying the attack
type. The advantage of an even simple generative classifier,
like a Quadratic Discriminant Analysis (QDA), is that the
parameters of each class-conditional density are estimated
independently, meaning that there is no need to retrain the
model from scratch when more classes are added. In contrast,
in discriminative models (like NNs), all the parameters are
entangled, so the whole model must be retrained if new classes
are added. Here, we exploit a further simplified version of
QDA, by approximating the class-conditioned distributions
of the data as diagonal multivariate Gaussian; we refer to
this model as Diagonal QDA (DQDA). It should be noted
that a generative classifier may perform poorly if applied to
the whole dataset (see Section V) but it may provide decent
predictive performance on a subset of the data (e.g. represented
by only the attack classes). The adopted DQDA classifier has
the advantage of being a lightweight model with only O(C'D)
parameters, given C' classes and D features; we exploited the
implementation provided by Scikit-learn [22].

IV. DATASET DESCRIPTION

We consider an open-source dataset, i.e., CICIDS2017!
[23], to evaluate our proposed system. CICIDS2017 is a
labeled per-flow dataset that covers both benign and intrusion
traffic, and it is widely used in the literature (e.g. [2] [3]).
Table I shows the per-class distribution of samples.

A. Data preprocessing

It is clear from Table I that the dataset exhibits a significant
imbalance, with some classes including only a few tens or

Uhttps://www.unb.ca/cic/datasets/ids-2017.html



TABLE I
SAMPLES DISTRIBUTION

Class Number of samples
Benign 2095057
DoS Hulk 172846
DDoS 128014
PortScan 90694
DoS GoldenEye 10286
FTP-Patator 5931
DoS slowloris 5385
DoS Slowhttptest 5228
SSH-Patator 3219
Bot 1948
Web Attack-Brute Force 1470
Web Attack-XSS 652
Infiltration 36
Web Attack-Sql Injection 21
Heartbleed 11

hundreds of samples. This imbalance poses challenges for both
model training and evaluation, particularly for classes that
are underrepresented. Consequently, we decided to evaluate
our method on the most represented, i.e., the first eight in
the Table. This means that we consider seven different tasks,
being benign traffic always present. However, we intentionally
utilized the underrepresented classes for testing the generaliza-
tion capabilities of the proposed approach, i.e., in a scenario
involving new types of attacks.

The dataset including the eight classes is partitioned into
60% training, 20%, validation, and 20% testing sets. To
reduce the unbalance across tasks and classes we randomly
subsampled the training data according to the minority class.
As a consequence, each task is composed of ~ 3100 benign
flows and ~ 3100 samples belonging to an attack class.
Finally, data are standardized per-task, ensuring that each
feature distribution has a zero mean and unit variance. The
parameters for standardization (mean and standard deviation
of each feature) are continuously updated on a task basis.

V. ILLUSTRATIVE NUMERICAL RESULTS

We initially analyze the performance of the proposed ap-
proach in binary classification (i.e., benign traffic vs. attack)
and later we analyze the performance of the multiclass clas-
sifier in recognizing various types of attacks.

A. Binary classification

We compare our CL-based BNN classifier updated through
Variational Inference with two baselines:

o Full Dataset: a traditional BNN classifier is trained from
scratch on the full dataset including both current and
historical data from past tasks.

o Naive: a traditional BNN classifier is re-trained from
scratch solely on the data of each task in the standard
way. Basically, this training differs from our CL-based
approach by neglecting the second term of Eq. 1. This
baseline is useful for assessing the impact of distribution
shifts on the traditional BNN classifier.

The main metric to assess the capabilities of the classifiers is
the Area Under the ROC curve (AUROC) [24] for each model
(the higher, the better). In this way it is possible to fairly
compare the classifiers in a threshold-independent manner.
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Fig. 3. Evolution of the AUROC and overall Accuracy over tasks for the
different training strategies for the BNN model.

TABLE I
BINARY CLASSIFICATION METRICS

Metric (Mean value + Standard Error)

Model

AUROC Accuracy  F1 Weighted F1 Macro
Continual (Our) 0.93 +£0.02 0.89£0.02 0.88+0.02 0.85 =+ 0.05
Naive 0.77+0.06 0.82£0.02 0.79£0.02 0.68£0.04
Full Dataset ~ 0.98 +£0.01 0.98 £0.01 0.98£0.01 0.97£0.01

AUROC has also the advantage of being insensitive to the
imbalance of classes [24], which makes this metric particularly
well-suited to our scenario. We also exploited other common
metrics, like the overall accuracy and the F1-Score. All the
experiments were repeated 15 times by randomly permuting
the order of the task, i.e., by changing the order of appearance
of new attacks. Figure 3 reports the average evolution of the
AUROC and Accuracy over different tasks for the considered
models. The test set exploited to compute the AUROC for
each task is composed of the union of all previous tasks’
test sets, to check the ability of retaining past knowledge. In
general, it is possible to state that the problem of distribution
shifts badly affects the performance of an IDS: a classifier
trained on a specific task is not able to generalize well to
unseen kinds of attacks, despite they belong to the same
macro-category (i.e., attack). On the other hand, these plots
demonstrate that the proposed strategy based on Bayesian
Inference allows the model to retain a certain amount of
knowledge related to the older tasks, even though there is
a performance gap compared to the model trained with the
full dataset. This is also confirmed by the results of Table
II, where the performance computed after the last task on
the overall test-set is reported. Such a performance gap is
expected; however, keeping training data related to older tasks
is not feasible in many resource-constrained scenarios, as
already thoroughly stressed.

Another aspect we investigated concerns the generalization
capabilities of our binary classifier. For this purpose, we
provided it with samples belonging to the six unrepresented
classes (refer to the bottom of Table I) to simulate a zero-day-
attack scenario. Our model reaches a True Positive Rate of
0.83 £ 0.03, the one trained on the Full Dataset 0.86 + 0.02
and the Naive model 0.77 4= 0.05. Thus, Continual Learning
has a negligible impact on the generalization capabilities of a
baseline BNN in a scenario with zero-days attacks.



TABLE III
MULTICLASS CLASSIFICATION METRICS

Metric (Mean value =+ Standard Error)

Scenario Model Accuracy F1 Weighted F1 Macro
Attacks Only Continual (Our) 0.98 +0.01 0.98 £0.01 0.99 + 0.01
Continual (Our) 0.88 +0.02 0.87 +£0.02 0.84 +0.02
Overall BNN (Full) 0.894+0.01 0.90+0.01 0.69+0.01
DQDA (Full) 0.524+0.01 0.554+0.01 0.53+0.01

B. Multiclass classification

Table III provides a summary of the overall performance
in multiclass classification. For our model, we divided the
analysis into two parts: the first row (Attacks Only scenario)
reports the metrics computed on samples that are previously
correctly classified by the binary classifier. Following that, we
present the Overall performance of the multiclass classification
computed across all classes, including the benign one (i.e.,
system-level evaluation). For comparison, we also considered
DQDA and BNN stand-alone models trained on all available
data in the typical static setting (i.e., Full dataset), where
all classes are present during training. It is interesting to
note that the DQDA classifier performs remarkably well for
discriminating attacks (i.e., as done in our approach) but
struggles in a multiclass setting when benign traffic is also
present: in this case, the performance drops significantly.
This fully justifies our choice of adopting a more flexible
classifier (i.e., a BNN) for binary benign-attack classification,
and relying on DQDA for the residual complexity of further
classifying the attack among different attack types. Overall,
we argue that the adoption of Continual Learning and the
combination of two simple but specialized models can show
decent overall performance compared to the same models
trained conventionally, while removing the need of keeping
historical data when re-training with new data is performed.

VI. CONCLUSION

In this work, we introduced a novel approach based on
Continual Learning for continuous training of an IDS upon
discovering new attacks. Our method leverages the inherent
hierarchy of the problem by utilizing a binary BNN con-
tinously updated by means of Variational Inference, and a
generative DQDA multiclass classifier only for further at-
tack classification. Numerical results on a real-world dataset
demonstrate that our proposed approach effectively manages
class-incremental training without the need of storing histor-
ical data on past attacks. For this reason, it is well-suited
for scenarios with stringent resource constraints, where the
demand for thin models and limited storage size of training
datasets is prevalent.

One notable limitation of the proposed solution is its in-
ability to automatically recognize (i.e., without an external
intervention) new types of attacks. As part of future work,
we plan to enhance the model by incorporating Out-of-
Distribution detection capabilities.
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