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Abstract

Systematic reviews (SR) summarise the knowledge available in the literature
on a specific topic. Keeping SRs up to date with new publications as soon
as they become available—a problem known as living SR—is fundamental
to avoid their early obsolescence. Recently, automated workflows have been
proposed to deal with one or a few living SRs. However, there is a need to
scale these workflows across science to maintain large numbers of living SRs
across entire domains of research in a task known as living evidence.

The typical workflow to update an existing SR—or to create it from
scratch—is usually the following: (i) identify the bibliographic databases
which are relevant for updating the SR; (ii) search useful new citations, which
were published after the last SR update; (iii) perform citation screening to
discard the citations which are clearly irrelevant to the SR; (iii) perform
abstract screening to assess in more details the remaining citations after
the previous step; (iv) manually review all the publications selected in the
previous step to decide which ones to include in the SR.

The traditional approaches to automate living SRs require reviewers ac-
tive participation, to carry on the steps in the above workflow. The reasons
for this active participation are multiple. First, the available bibliographic
databases are many and etherogeneous, and each SR has its own relevant
ones. In addition, the search queries used to find the interesting citations
are inherently complex, and requires huge efforts to be developed and tested.
Moreover, the algorithms used for screening citations and abstracts often
compromise on efficiency to achieve near-perfect effectiveness, which requires
to manually assess many irrelevant publications and to fine-tune the screen-
ing algorithms on the specific SR.

This traditional process for updating a single SR requires huge efforts and
resources. Thus, it is usually applied periodically, when a SR requires to be
updated and a project can be allocated to it. Hence, the reviewers efforts to
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attend the SR update process are usually expected. However, this approach
is too specific to its target SR to be fully useful in large living evidences. In
fact, especially in life sciences, living evidences comprise thousands of SRs,
with new SRs being released on a daily basis.

The expectation for a living evidence is that it runs automatically, and it
provides to reviewers frequent recommendations about the new evidences to
assess for inclusion in their SRs. If the living evidence system is not efficient,
reviewers would receive too many inaccurate recommendations every day,
and they would lose interest. On the other hand, compromising effectiveness
to reduce the number of recommendations is not really an option.

This research proposes ContReviews, an automated system to manage
living evidences in the health care domain. Specifically, ContReviews is
based on an academic knowledge graph and a content-based recommendation
model.

The academic knowledge graphs allow the quick identification of new
publication for entire domains of research, without the need to identify SR-
specific bibliographic databases. Specifically, OpenAlex [1] is used, though
it is not restricted to the health care domain.

The content-based recommendation model generalizes the notion
of relevance assessment, avoiding SR-specific models to infer new publica-
tions relevance to SRs. Specifically, a content-based recommendation model
matches items to recommend (i.e., new publications) to user profiles (i.e.,
SRs) based on a formal representation of their content; moreover, a rele-
vance assessment function is learnt from data, based on matching outcomes.

In the context of ContReviews, the content-based recommendation model
leverages publication already included in the living evidence to learn a unique
model to assess new publications relevance to each SR in the living evidence.
In one hand, this lets to avoid designing and testing complex search queries
over bibliographic databases. On the other hand, content-based matching is
a general concept which applies to every SR in a living evidence, letting to
avoid developing, training and evaluating SR-specific citation and abstract
screening models.

Moreover, as SRs usually have few dozens of publications included (this is
especially true in life sciences SRs), training SR-specific models is challenged
by their data scarcity, leading to sub-optimal performance. On the contrary,
as the content-based recommendation model is unique, it leverages the entire
living evidence for training and evaluation.

To represent publications and SRs more faithfully, ContReviews lever-
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ages multiple of their features, which includes titles, abstracts, citations and
authors. ContReviews leverages both bag of words and embeddings to repre-
sent textual features (i.e., titles and abstracts), and combine them with the
vector representations of entities (i.e., authors and citations). The system is
extensible, in that additional publication features can be used.

These faithful representations aim to achieve efficiency with near-perfect
effectiveness when assessing the relevance of new publications to SRs. Specif-
ically, new publications and SRs are matched on all the available features,
producing multiple ‘likelihoods of relevance’. These are used by a binary
classification model to infer the final likelihood of relevance. The classifier is
based on machine learning, and is trained over the entire living evidence.

Among the others, textual features—such as titles and abstracts—are
particularly useful to represent publications content. Pre-trained language
models based on the transformer neural architecture (such as BERT and
GPT) provide dense and contextual vectors to represent language expressions
(embeddings). They are adapted to a specific application domain (such as
living evidences) through fine-tuning, to provide more faithful embeddings.
To achieve such adaptation, a fine-tuning dataset and a fine-tuning task are
used.

This research proposes and evaluate two fine-tuning approaches. The
first, is fine-tuning SciBERT for abstract screening, using a dataset based
on the Cochrane Reviews.1 The second one is fine-tuning LongFormer for
semantic similarity, also using the Cochrane Reviews. Note that SciBERT
is pre-trained on scientific publications, though not necessarily all of them
belong to the health care domain as the Cochrane Reviews do. In addition,
LongFormer supports longer input sequences than SciBERT, which better
align to the average length of the Cochrane Reviews abstracts.

ContReviews has been evaluated over a large dataset of Cochrane Re-
views, to assess its ability to correctly infer relevance of some new publica-
tions to each one of the Cochrane Reviews. Its performance was compared to
two baseline models, which align to the traditional approaches for abstract
screening. To infer relevance to SRs, the first baseline calculates the cosine
similarity between the embeddings of SRs and publications; while the second
baseline consists in training one binary classification model per SR, which

1Cochrane Reviews are SRs of research in health care and health policy, published
in the Cochrane Database of Systematic Reviews (https://www.cochranelibrary.com/
about/about-cochrane-reviews).
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uses the embeddings of the included publications as features.

Following, the main research questions and results are reported.

• Independence on the target SR is an important design factor for a
living evidence system because, as argued above, it should run without
any active reviewers participation. ContReviews design and evaluation
shows that the same content-based recommendation model is used to
match all the new publications to all the SRs, without any reviewer
intervention to either design queries or optimize SR-specific systems.

• While the previous factor is true by design, the most important as-
pect is ContReviews effectiveness, i.e., the system ability to correctly
capture all the relevant publications for each SR. Traditional systems,
which are based on search queries specifically designed for specific SRs,
achieve near-perfect effectiveness. This is usually measured in terms
of the classification metric of ‘precision’ and ‘recall’, where many re-
searches aim for precision as high as possible with at least 95% recall.
ContReviews evaluation results show it can achieve better precision
than the traditional approaches with recall of 100%.

• The evaluation’s ablation studies show the importance of the Con-
tReviews content-based matching mechanism to achieve good precision
with high recall. Specifically, when compared to the baseline meth-
ods, the greatest contribution to achieving high precision with high
recall (i.e., precision above 97% with recall of 100%) is given by the
content-based matching by itself. In addition, using multiple features
to represent publications further helps to improve precision by a smaller
factor.

• As mentioned, embedding models are helpful to represent textual fea-
tures and complement the bag of words based representations: while
the former focus on text semantics, the latter accounts for word statis-
tics. The fine-tuning approaches introduced above beat the pre-trained
model. Specifically, evaluation’s ablation studies show that the most
important factor is fine-tuning with the living evidence publications
(i.e., Cochrane Reviews), to adapt to the domain specific distributional
semantics. However, the specific fine-tuning task and base model (i.e.,
the supported size of the input sequences) did not leave a particular
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footprint on performance, steering to fine-tune with computationally
efficient models, rather than more sophisticated ones.
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Chapter 1

Introduction

Literature reviews and evidence syntheses are important research practices,
aiming to advance science based on the available knowledge. In this con-
text, Systematic Reviews (SRs) have emerged as a distinctive approach
in health sciences to provide a rigorous and comprehensive way of assessing
the literature [3, 4]. SRs are characterized by being methodical, comprehen-
sive, transparent, and replicable; this systematic approach aims to minimize
subjectivity and bias [5]. Unlike SRs, traditional literature reviews are often
driven by their authors experience, missing the same systematic approach.

Developing SRs and maintaining them up to date with the most current
knowledge is an important challenge, given the size of the available research,
the pace at which new studies are published, and ultimately the complexity
of the task. To address these issues, living evidences—which are libraries
of Systematic Reviews—have been recently proposed, aiming to provide re-
searchers, practitioners, and policy makers with a current and comprehensive
review of the available knowledge across entire domains of research. However,
living reviews are relatively rare and there is not large-scale grant funding
that would enable researchers and partners to build out living evidence across
science.

This research focuses on the problem of maintaining living evidences cur-
rent with the latest researches, studies, and publications (these terms will
be used interchangeably). This chapter introduces SRs and living evidences,
to clarify the application context of this study. Then, the existing methods
for updating SRs are briefly reviewed and their limitations for dealing with
living evidences explained. Finally, the specific research questions that this
study aims to address are presented.
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1.1 Application Context

Systematic Reviews (SRs) can be applied to any field that can benefit from
evaluating the existing literature based on specific inclusion criteria, aiming
to expand the current knowledge. SRs can assess different types of evidence,
such as clinical trials, public health interventions, environmental interven-
tions, social interventions, adverse effects, policy reviews, and economic eval-
uations. However, health care is the most mature domain where SRs are
applied. Looking at the type of SRs produced by the Cochrane Collabora-
tion,1 the leading international network that creates and shares SRs in health
care, provides a clear idea about the variety of the topics in the health domain
that are addressed with SRs.

SRs are a recent development in the field of evidence-based medicine,
which aims to base clinical decisions on the most reliable scientific data.
Before SRs were developed, evidence-based medicine used to synthesise re-
search by means of conventional literature reviews, which provided only a
broad summary of a topic, rooted to the authors’ perspective, without try-
ing to cover all the available evidence or describing the methods used to
choose and combine studies. Thus, conventional literature reviews may yield
biased outcomes, subjective opinions, and untested protocols which do not
help to inform clinical practices in the best way possible. To overcome these
issues, researchers proposed to treat the review process as a scientific process
in itself, which evolved into the SR process [6].

1.1.1 Systematic Reviews (SRs)

In Cochrane’s words:

a systematic review attempts to identify, appraise, and synthe-
size all the empirical evidence that meets pre-specified eligibility
criteria to answer a specific research question. Researchers con-
ducting systematic reviews use explicit, systematic methods that
are selected with a view aimed at minimizing bias, to produce more
reliable findings to inform decision making.

The standard process adopted by reviewers for developing, conducting, and
reporting a SR in the health care domain is the following [6].

1https://www.cochranelibrary.com/about/about-cochrane-reviews
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1. Formulate the research questions, and define precise inclusion and ex-
clusion criteria.

2. Develop a search strategy aimed at covering the broadest possible range
of sources which are relevant to the research questions.

3. Assess the studies identified by the search strategy to decide if they
meet the inclusion criteria. This step is usually performed in two
stages: a first stage where (often thousands of) titles and abstracts
are screened, and a second stage where the full texts of studies not
excluded in the first stage are evaluated.

4. Report and interpret results by using pre-defined methods to assess the
quality of studies and to extract, analyse, and synthesise the data of
interest from each included study.

Usually, two or more reviewers collaborate to perform the above tasks, thus,
some procedures must be set beforehand to manage disagreements.

The SR process is extremely rigorous and specific, and the number of
scientific publications to consider is huge; therefore, SRs often take years
to complete, demand large-scale collaboration, and consume significant re-
sources. Conducting SRs involves the following methodological and practical
challenges, in addition to those intrinsic to their inevitable large-scale nature.

Search complexity. The initial search for relevant articles can be very
long and difficult, and the precision of search is generally low; for example,
in some researches [6], about 2% of the publications considered for a SR are
ultimately included.

SR updating. A second major challenge is keeping SRs up to date: re-
search does not stop after a SR is initially constructed, and new publications
can quickly make the results of many SRs obsolete. With the increasing vol-
ume of new studies published every day, updating SRs can be as challenging
and time-consuming as creating them from scratch, especially if they have
not been updated for a long time. Moreover, as the timing of updating a SR
may not be clear—since it is impossible to know how many new and rele-
vant publication have been published [7]—SRs are usually updated when a
compelling need arises and a project to do it is funded. Furthermore, there
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may not be a consistent group of people being responsible for the SR and,
therefore, SR updating would be even less homogeneous in these cases.

These type of complexities make SRs of poor quality, duplicative, and
out of date as soon as they are published, or even before [8, 9].

1.1.2 From SRs to living evidences

Recently, health sciences have proposed living evidences to address the
above problems [7, 10]. Living evidences are libraries of domain specific SRs,
which are current, automated and centrally managed on behalf of an entire
community of researchers, practitioners, and policy makers. For example,
NICE maintains 350 ‘guidelines’, i.e., recommendations on broad topics cov-
ering health, public health and social care in England.2 In addition, the
Cochrane Database of Systematic Reviews,3 is the leading database for SRs
of research in health care and health policy. A report from 2010 estimated
that about 75 trials and 11 SRs were published every day to the Cochrane
Database of Systematic Reviews [11], and a more recent study found an av-
erage of 10,000 SRs published annually in the past 22 years [12]. However,
some of them might be old, or not actively maintained.

A living evidence requires an automated process which involves (i) con-
tinuously surveying the research across a whole domain of knowledge, (ii)
automatically assessing the relevance of the new publications to the SRs
and (iii) flagging the potentially relevant ones for inclusion. Note that, al-
though a living evidence is largely automated, the final decision to include
new publications in a SR is always a human responsibility. Indeed, a living
evidence provides a current understanding of the state of the art, in terms of
which new scientific publications ‘could’ be relevant to the owned SRs. This
way, the new (potentially relevant) studies can be immediately notified to
reviewers as soon as they are published, so that they can update their SRs
sooner and faster, avoiding early obsolescence. This fastest pace of ‘update
operations’ plays down the need for periodical large and expensive efforts
to update deeply outdated SRs. However, some SRs might not be tightly
owned, with reviewers being either not available or loosely committed to the
SR update task. In these cases, some new (potentially relevant) publications
would remain locked within the living evidence with nobody being available

2https://www.nice.org.uk/process/pmg20/chapter/glossary#recommendations
3https://www.cochranelibrary.com/
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Figure 1.1: Workflow for SR update.

to judge for their inclusion.
While living reviews can be hugely effective, they require significant com-

putational, organizational, and human resources. For these reasons, living
reviews are relatively rare and there is not large-scale grant funding that
would enable researchers and partners to build out living evidence across
science. Creating these funding opportunities is a critical next step to opti-
mizing and scaling this model for the research community, which is unfeasible
with the current SR workflows [13].

1.2 Current Approaches to SR Updating

Given the large scale of the SR updating process, technology can certainly
play a big role to ensure it can be conducted as much efficiently as possible:
to this aim, information retrieval, machine learning, and natural language
processing techniques are of great help [14]. Approaches at the state of
the art focus on updating individual SRs (or small groups of SRs), rather
than whole living evidences. One common approach is re-running the same
procedure which is undertaken to create a SR: this way, from a technology
perspective, there is a little difference between creating or updating a SR.
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Creating and updating SRs involves performing the following steps, as
represented in Figure 1.1.

• The most useful data sources, such as bibliographic databases and jour-
nals, are first manually identified. Usually, these data sources are spe-
cific to a SR and diverse in their scope, interface, search method and
access policy.

• Adequate search queries are formulated and run on the selected data
sources, to identify an initial list of citations. A common approach
in the health care domain is to use Boolean queries, which combine
keywords and other terms extracted from domain taxonomies (e.g.,
PICO, and MeSH terms, as explained in the next chapter). A great
experience and domain expertise is required to formulate these queries
effectively and efficiently.

• Citation screening is done to exclude the clearly irrelevant citations.
When search queries are not well formulated, citation screening can
perform sub-optimally: ineffective queries lead to missing important
citations and inefficient ones expose many (useless) publications to ci-
tation screening. Information retrieval techniques help to re-rank all
the citations returned by the search queries.

• The remaining publications are evaluated in more details within an
eligibility assessment step, usually based on abstracts screening. This
involves considering publication abstracts in light of the SR inclusion
criteria. Natural language processing and machine learning techniques
are involved.

• The resulting abstracts are considered by reviewers for the final analy-
sis, to take a decision about their inclusion in SRs. This step is mostly
manual and involves considering the whole documents to evaluate if
they meet the SR criteria.

Updating SRs sporadically presents little technology advantages over cre-
ating them for the first time; for example, SRs are more stable after they have
been created, meaning that all of their important components (such as the re-
search questions and inclusion criteria) are established [15]. Apart from this,
especially if the SRs remain unchanged for longtime, updating them presents
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the same exact challenges than creating them for the first time. Thus, up-
dating SRs periodically is hindered by the complexity of searching across
heterogeneous data sources, the large number of citations that are involved
in citation screening, the still large number of abstracts to be screened for el-
igibility assessment and, ultimately, the amount of full documents that must
be reviewed manually. To overcome these limitations, living SRs [16, 17]
have been proposed as a more efficient method to address the problem of up-
dating SRs. Early examples of this new living approach are EPPI-Reviewer,4

Trialstreamer,5 and the Human Behaviour-Change Project [18]. The main
component of a living SR, as shown in Figure 1.2, is the continuous surveil-
lance of the research literature to identify new relevant publication as soon
as they are available and to run the down-stream steps of citation and ab-
stract screening over a smaller amount of data. The notion of continuous
surveillance of data sources has been proposed in contrast to periodically
producing Boolean queries to update existing SRs [19, 20]. However, beside
continuous surveillance, the living SR process is still the same as SR update.
Given this similarity, from now on the term living SR will be used to mean
the SR updating process.

1.3 Updating living evidences

In principle, the living SR process could be run at scale over all the SRs
comprised within a living evidence; however, this would be challenged by
the living evidences size and the pace at which new SRs are published every
day. Indeed, such a scalability issue is expected and the latest cloud tech-
nologies make it addressable from a cost and computing perspective. Beyond
this ‘scalability factor’, the living SR process is inherently not well suited to
support living evidences, and a different approach is necessary [13]. In fact,
reviewers are actively involved in all the phases of the living SR process, as
they develop complex search queries and they must manually assess many ir-
relevant publications. This type of participation of reviewers to the living SR
process represents a too strong assumption in the case of living evidences ; in
fact, the expectation is that they run almost unattended, i.e., reviewers only
receive daily or weekly notifications to check the latest potentially relevant
evidences, instead of being actively involved in all of the SR phases.

4https://eppi.ioe.ac.uk/cms/Default.aspx?alias=eppi.ioe.ac.uk/cms/er4
5https://trialstreamer.ieai.robotreviewer.net/
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Figure 1.2: Workflow for a living SR.

Specifically, this research focuses on the two following important issues
which, in the above sense, severely hinder the applicability of the living SR
process to living evidences.

Complexity of searching. As introduced in the Section 1.2, searching
for the new evidences is a complicated task due to the need to identify the
relevant data sources and, especially, to the complexity of formulating ad-
equate queries over them. Specifically, domain experts in health sciences
blend keywords and other terms extracted from domain taxonomies into ar-
ticulated and well tested Boolean queries. These must be both effective, to
retrieve all the relevant evidences, and as efficient as possible to reduce the
amount to useless ones. Moreover, leveraging any type of taxonomies intro-
duces a potential bug in the overall retrieval system, because it assumes that
all the new publications are correctly labeled by their authors, which might
not be true. As living evidences must automatically survey whole research
domains, which span thousands of SRs, it is not feasible to maintain one set
of so complex search queries for each one of them.

21



Poor efficiency of screening models. To be really useful, living evi-
dences should be highly effective in identifying all the relevant new publi-
cations and as efficient as possible to reduce the ‘false positives’ that are
mistakenly deemed relevant [12]. In one hand, clearly, loosing any relevant
publication would simply not be acceptable. In the other hand, a system that
is too lenient in accepting ‘false positives’ to catch all the relevant new pub-
lications would burden human reviewers with many irrelevant publications
that they have to assess manually.

SRs in the same sub-domain are often similar to each other, supporting
research questions whose differences lay in the details. For this reason, the
typical citation and abstract screening models might be unable to clearly
discriminate the evidences being relevant to a SR from the ones which are
irrelevant; thus, to be effective, the criteria to discard the irrelevant evidences
are made less selective. For this reason, the automation techniques employed
to keep a living SR current, are tightly related to the SR itself: reviewers
are encouraged to either optimize the screening models for their SRs, or
supervise the entire process to complement the weakness of the system. An
example is using active learning techniques [14]: machine learning models are
used to classify abstracts as relevant and not relevant, however, as they are
usually trained with scarce data (SRs in the health care space hold in average
a few dozens of publications), they are not always accurate; thus, training
steps and manual selection of new relevant publications can be alternated
until they reach the inflection point. In the context of living evidence this
participation of reviewers to the SR updating process is clearly unfeasible,
due to the large number of SRs and to the fact that some of them might have
not fully dedicated reviewers.

Complexity of queries and inefficient screening models are a challenge for
any SR updating method, not only for living evidences. However, updating
individual SRs usually happens in the context of a project, i.e., in a con-
text where there is budget coverage, temporal boxing, and dedicated human
resources. SR updating project stakeholders all expect to have to evaluate
many potential data sources, formulate and test complex queries and manage
a large amount of poorly screened documents. In fact, this is basically the
main scope of their SR updating projects.

Instead, a living evidence is an on-going and semi-unattended system.
Every week, or every day, new evidence recommendations will be notified
to a full community of reviewers, practitioners, and policy makers: if these
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recommendations are too many, due to an inefficient system, people will not
be able to manage them; if they are too few, due to an ineffective system,
people will not trust it. In all of these cases, the living evidence system would
loose traction with the community. If domain experts were needed to engage
on SR-specific projects, either for fine-tuning queries or optimizing screening
models, the living evidence would loose control of its own update processes.

1.4 Research Questions

To progress in the field of updating entire living evidences, the focus of this re-
search is twofold. First, a content-based recommendation system is proposed
as a novel approach to identify the new publications to suggest to reviewers.
Second, a new method for representing publications and SRs is introduced.
In the next two paragraphs, the specific research questions concerning these
objectives are presented.

Content-based recommendation system. A content-based recommen-
dation system leverages the content of the publications already included in
a SR for: (i) identifying the new potentially relevant publications, among all
the newly published researches; and (ii) screening these new potentially rele-
vant publications to find the most useful ones, to be considered by reviewers
for manual assessment. To this aim, the main research problem is whether
such a system can replace complex search queries (such as Boolean queries),
citations screening, and abstracts screening. Specifically, the following re-
search questions are relevant to this problem.

• Can a content-based recommendation system be applied uniformly to
all the SRs in a living evidence or, instead, it still requires SR-specific
optimizations? This is relevant for addressing the issue of the current
living SR systems which depend too much on the specific SR, which
means they need constant reviewer supervision.

• Can they achieve good efficiency with near-perfect effectiveness, at least
as much as the current systems?

Representation of publications and SRs. For the content-based recom-
mendation model to achieve good efficiency with near-perfect effectiveness,
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it is crucial that the methods used to represent publications and SRs capture
their key features. This research proposes two representation methods. First,
multiple publication characteristics are considered (such as title, abstract, ci-
tation network, and authors). This is unlike most of the existing methods
that rely on publication titles and abstracts only. Second, to generate embed-
dings of titles and abstracts, a language model fine-tuned for living evidence
is proposed. This is unlike the traditional representation methods, which
mostly use pre-trained language models, sometimes fine-tuned over general
scientific datasets. The following research questions are relevant to these
representation approaches, considering the notion of ‘usefulness’ in terms of
system efficiency with near-perfect effectiveness:

• In the context of the content-based recommendation system introduced
above, how useful are the proposed methods to represent publications
and SRs?

• How useful is fine-tuning the embedding model using living evidence
data, instead of a more generic scientific dataset,

• How useful is fine-tuning the embedding model through tasks which
are compatible with living evidence, instead of the original pre-training
tasks?

• How important is considering full abstracts (instead of a truncated
version of them) when computing the embeddings, and how much it is
worth paying for the additional computational costs?

1.5 Final Remarks

This chapter introduced the concept of living SRs, which reviewers update
regularly to reflect the most recent research. Living evidences have also been
introduced, as collections of ‘continuously updated’ SRs that cover entire
fields of research. Unlike living SRs, which requires huge resources to main-
tain a set of search queries and screen an elevate number of citations and
abstracts, living evidences must address the SRs update process in a more
agile manner. To this aim, this research focuses on two contributions: one is
to get after search queries; the other one is to improve the system efficiency
to identify the relevant new publications for each SR in the living evidence,
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while preserving near-perfect effectiveness. To do this, a content-based rec-
ommendation model is proposed, as well as a novel method to represent
publications and SRs.

The next chapter reviews the application context from a technical per-
spective, and survey the state of the art. Next, Chapter 4 analyzes the
embedding methods which are more commonly used for living SRs and their
issues, and proposes a fine-tuning method for living evidences. Chapter 3 de-
scribes in details the proposed content-based recommendation model, which
is named ContReviews, and the methods for representing publications and
SRs. Chapter 5 is about the evaluation of ContReviews. Finally, before
drawing the conclusions, Chapter 6 discusses the implementation of ContRe-
views.
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Chapter 2

Application Context and State
of the Art

This chapter first introduces the application context, based on the living SR
and living evidence processes discussed in the previous chapter. In addition
it surveys the existing literature: most of it is about living SR, while no
structured works exist about living evidences. Finally, the last section de-
scribes the datasets, evaluation methods, and benchmarks available to com-
pare researches in this space. However, it can be argued that they are not
homogeneous, nor well suited to the living evidence problem.

2.1 Application Context

The previous chapter explained that the main method for updating SRs is to
run the process again at regular intervals, with the living SR option trying
to reduce the time between two consequential updates. This approach is
highly customized for each SR, so it has to be done separately for every
one of them. Living evidences have been recently proposed to overcome the
main challenges of these traditional methods. Specifically, a living evidence
is a large set of SRs in a specific domain, which are maintained current in
a continuous manner—from this perspectives, SRs are ‘living’. To do so,
reviewers for each one of those SRs are notified as soon as new evidences
which might be relevant to their SRs are published. They then can decide
whether to include the recommended evidences in their SRs or not. The
living evidence approach is substantially different from the more traditional

26



ones used for living SR, as motivated in Subsection 1.3.

2.1.1 Living SR

To update one specific SR through the living SR process—which is de-
scribed in Subsection 1.2—domain experts first select the most important
data sources, and develop and test search queries over them. Then, to con-
duct a living SR, the following steps are performed.

• Search: the search queries are automatically executed, to retrieve po-
tentially relevant citations.

• Citation screening : the citations retrieved by the previous step are
ranked, and the less relevant ones are eliminated.

• Abstracts screening : the abstract of the citations identified at the pre-
vious step are assessed to select the eligible ones.

• Final inclusion: the reviewers analyze the eligible abstracts to manually
select those to include in the SR.

The search queries often make use of PICO [21] and MeSH terms.1 PICO
is a mnemonic standing for: patient, problem or population (P), interven-
tion (I), comparison, control or comparator (C) and outcome (O). PICO are
used to frame and answer a healthcare-related question, helping to identify
keywords or search terms for efficiently searching the literature for the best
evidences. The Medical Subject Headings (MeSH), is a controlled vocab-
ulary thesaurus used for indexing articles for PubMed and other biomedical
databases; particularly MeSH terms are useful to label and classify the con-
tent of publications so that they can be retrieved with search and other
information retrieval methods.

PICO and MeSH terms, as well as other important keywords, are usually
combined to construct Boolean queries, which are complex search strings
formulated using Boolean operators (AND, OR, NOT)—an example of a
Boolean query is shown in Figure 2.1). Formulating effective Boolean queries
can be very challenging and time-consuming, and it is mainly a manual op-
eration. Instead, citations and abstracts screening are greatly supported by

1https://www.nlm.nih.gov/mesh/intro_retrieval.html
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Figure 2.1: Example of a Cochrane’s search strategy, taken from the Cochrane training
material available at https://training.cochrane.org/handbook/current.

technologies such as information retrieval, machine learning, and natural lan-
guage processing [14]. However, all the above steps are usually very tailored
to the specific SR, thus, it is not possible to re-use the same procedure to
address different SRs. For example, abstract screening often uses SR-specific
classification models based on machine learning, which are trained with SR
data.

2.1.2 Living Evidence

The procedure for living evidences, which is based on the process introduced
in Subsection 1.1.2, is not dissimilar from the one for living SR described
above. The main difference is the need for one or more data sources which
cover the entire domain research, instead of one specific SR. Academic knowl-
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Figure 2.2: Workflow for a living evidence.

edge graphs are a convenient choice for these data sources, as discussed below
in this chapter. The procedure for a living evidence is composed of the fol-
lowing steps, as represented in Figure 2.2.

• Collection of new citations : new citations are collected from an aca-
demic knowledge graph.

• Citation screening : citations are prioritized for each SR in the living
evidence.

• Abstract screening : the abstracts of the most promising citations are
assessed and prioritized for each SR in the living evidence.

• Final inclusion: reviewers consider the eligible abstracts to manually
select those to include in their own SR.

As introduced in Subsection 1.3, both these procedures perform citations
and abstracts screening, but the characteristics of the latter motivate the
need for a different approach. The most important thing is that a living
evidence comprises thousands of SRs (i.e., this is the case in health science),
and they all must be considered by the updating procedure. Thus, to handle
SRs collectively, a general method for searching, citation screening, and ab-
stract is required, instead of using a specific method for each SR as in living
SRs. Note, as introduced in the previous chapter, that the living SR charac-
teristics that hinder most their applicability to living evidences are two: (i)
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the complexity of formulating Boolean queries, which requires active involve-
ment of reviewers into the update process; and (ii) the level of efficiency (i.e.,
usually too poor as motivated in 2.2.3) of traditional screening techniques,
which again requires active reviewers participation.

2.2 State of the Art

The large majority of the state of the art regards the creation and update of
SRs and, more recently, living SRs. A very few mentions of living SRs exist
and they are mainly of methodological nature. There are three main research
areas that support the creation and update of SRs automatically, either in
a traditional or living style. One area—which regards citation screening—
involves information retrieval techniques, which aim to find and rank cita-
tions effectively. The other area, which regards abstract screening, relates
to machine learning and natural language processing to classify abstracts as
relevant or not relevant to SRs. These techniques can work together: the
results of search can be re-ranked with information retrieval techniques and
then sent to a classifier for automated abstract screening. However, reviewers
usually focus their efforts on the either of these techniques. Therefore, they
are typically used independently and fall under distinct research domains,
each with its own datasets and evaluation criteria.

The following subsections describe some of the useful works available in
the literature, which regard the steps of the living SR process. As discussed,
these techniques are usually applied to individual SRs.

2.2.1 Finding Useful Citations

Methods at the state of the art for identifying an initial, broad set of po-
tentially useful citations are fundamentally rooted in using adequate queries
for searching the relevant data sources. In an SR update these queries are
usually developed and run every time an update project is in place. In living
SRs, data sources and queries are formulated once and deployed within a
continuous surveillance service. More recently, Academic Knowledge Graphs
have emerged as more generalized, domain-independent data sources which
are maintained up to date with all the new published researches.
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Search

To search bibliographic data sources for useful citations effective queries must
be developed by reviewers and domain experts. The quality of these queries is
crucial, as it affects how many documents need to be checked for inclusion in
the final SR by human reviewers. Developing a search strategy is an iterative
process, involving continual assessment and refinement: as keywords or key
terms are used in a search, their usefulness will be determined by the search
results. Thus, searching for evidence is sometimes considered more of an
art than a science; it is therefore unlikely that two people, whether they are
clinicians or librarians, develop an identical search strategy or yield identical
results from a search on the same review question [22].

In addition, in the health care domain, complex Boolean queries are often
used to identify studies. Developing Boolean queries for this task requires
the expertise of trained information specialists. For example, one challenge
to creating an effective Boolean queries is the selection of adequate MeSH
terms to include in the query [23]. However, even for expert searchers, query
formulation can be difficult and lengthy: especially when dealing with areas
of medicine that they may not be knowledgeable about [24].

The problem of creating effective Boolean queries to make SRs in health
care has been tackled by several works. To cite a few of them, the challenge
has been tackled with MeSH term suggestion methods [23], data-driven query
generation from existing citations [25], pre-trained generative models [15, 26],
and seeding methods [27].

In conclusion, the effectiveness of Boolean queries relies on the keywords,
MeSH terms, and PICO that are used to formulate queries, and the correct-
ness and completeness of the ones that were assigned to original publications
by their authors. One drawback of this method—in addition to being time
consuming, as highlighted above—is that it is prone to errors; for instance,
a reviewer might omit an important MeSH term or PICO when formulating
the search query; similarly, authors might omit to assign an important MeSH
term when publishing their research. In any case, an important publication
might be missed by a SR update process. As described in Chapter 3, an
alternative method to find useful citations, is matching the new publications
to the ones already included in a SR, by means of their content.
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Continuous Surveillance

The notion of continuous surveillance of data sources was proposed in con-
trast to periodically producing Boolean queries to update existing SRs, as
introduced in Section 2.1.1. For example, Trialstreamer [20] implements a
continuous aggregated database search with push notifications, covering the
majority of health care literature and focusing on randomized controlled tri-
als. Note that this approach does not provide an alternative to the challenges
due to the complexity of formulating Boolean queries; instead, it continuously
runs Boolean queries to increment the frequency of discovering new publica-
tions. Thus, if the original Boolean queries are not well formulated, having
them continuously run will not make them better.

Recently, freely-available academic knowledge graphs (AKG) [1, 28] have
emerged; they maintain continuous, web-scale search over bibliographic data-
bases and publicly available repositories in multiple domains. An AKG can
be helpful to reduce the need for identifying compelling data sources, as it
provides a unique repository of new publications; however, it still requires
query techniques to extract the relevant publications. In addition, the new
publications are provided continuously, as they are discovered as soon as
they are published. However, it could be debatable if a unique, domain-
independent repository covers all the relevant publications for a certain SR.
Moreover, the issue is even more relevant when considering living evidences,
that are made of thousands of SRs with new SRs being added daily. Lit-
erature is not abundant around this issue however, the Microsoft Academic
Graph [28] was found to be sufficiently comprehensive to maintain a living
map of COVID-19 research [29].

2.2.2 Citation Screening

One drawback of Boolean queries is that they tend to generate many results
but only a few of them are pertinent to the target SR [30]. Therefore, to
reduce the amount of manual labor, it is necessary to filter out the irrelevant
citations automatically, without missing any important ones. This problem is
particularly researched in the context of SR creation, though it also applies to
SR update. In fact, the same problem arises when there is a long gap between
two consecutive SR updates. To mitigate this issue, citation screening has
been proposed by several studies to re-rank the set of citations initially found
through Boolean queries, so that reviewers can focus on the most promising
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ones [31].
Several methods have been proposed to re-rank citations [15, 30–34].

They match the representations of the citations initially found through the
search to the representation of a revisited version of the Boolean query; a
relevance function is finally used to re-rank citations based on their relevance
to the revisited query. These methods use different approaches to revisit the
Boolean query, to obtain representations used for matching and to re-rank
citations after the matching. Earlier studies [32, 33] proposed to rewrite the
Boolean query based on keywords extracted from the SR’s title and from the
Boolean query itself. In addition, they proposed to represent citations and
the rewritten query through bag of words, and a lexical relevance function to
re-rank citations. An issue of these early approaches is that the SR’s title is
usually unknown at the time the SR is constructed [15], thus, using keywords
extracted only from the Boolean query has also been proposed [33]; however,
this issue does not apply when updating SRs which already exist, because
their title has been already established. Rank fusion techniques [35] have also
been proposed to implement the relevance function [33]; specifically, rank fu-
sion is used to rank the citations retrieved by means of each clause of the
Boolean query.

Another variations to re-ranking is based on technology-assisted review (TAR),
which refers to iterative active learning for citation review in high recall re-
trieval tasks [34]. TAR research have applied linear models to lexical features,
such as bag of words, reporting better effectiveness than the traditional lex-
ical rankers. Methods at the current state of the art are based on neural
ranker [31]. These methods rely on pre-trained language models such as
BERT [36] and have achieved similar performance as TAR methods based
on lexical features. However, in contrast to lexical models, there are still
challenges in using these neural rankers; in fact, the maximum input token
length imposed by most BERT-based models (i.e., 512 tokens) does not al-
low processing longer language expressions, such as the full text of candidate
citations and extensive revisited queries.

No research on continuous surveillance has addressed citation screening;
however, they use methods which are similar to citation screening to reg-
ularly identify and select the pertinent studies. For example, one system
that performs continuous surveillance is Trialstreamer [20]: it identifies ran-
domized controlled trials (RCTs) and continuously updates some systematic
reviews (SRs) with them. Trialstreamer still runs queries to retrieve can-
didate RCT documents and use a binary classification model to filter the
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RCTs, which is a similar to what citation screening does.

2.2.3 Abstract Screening

Once new publications are retrieved by means of Boolean queries or other
search strategies, their relevance to SRs can be checked through abstract
screening techniques, which determine whether a publication is relevant to a
SR by analyzing its abstract. As anticipated, citation screening and abstract
screening can work together, where the former provides the inputs for the
latter, though, they are more frequently used alternatively.

Abstract screening is often framed as a binary classification task, where
various models have been proposed based on machine learning [19, 37–40]
and, more recently, on deep learning [41–44]. These models extract their
features from publication title and abstract, usually using embeddings (see
Section 4.1), and use them to infer publications relevance to one single,
model-specific SR. Note that this close connection between abstract screen-
ing models and SRs differs from living evidences, which handle multiple SRs
simultaneously. The abstract screening problem has been addressed by sev-
eral works in the literature; despite having a similar architecture, they differ
significantly by various factors. These factors are explained in the following
paragraphs.

Evaluation process. A common way to evaluate abstract screening mod-
els is to measure how well they perform against human reviewers over an
observation period [19], where some new publications are fed to both an
abstract screening method and a review group (i.e., humans!). These new
publications are usually obtained from a research phase that uses search
tools, as mentioned earlier. Another approach is to collect some SRs and put
apart some publications for evaluation and testing; this approach is more
standardized and easier to replicate in comparison efforts though, as ex-
plained in Section 5.1.2, it is still a challenge and fully replicable generalized
datasets are missing. Finally, some works consider the ‘review performance’
of two competing groups of reviewers [39], where only one of them is given
a semi-automated tool to assist during the review. The focus of these stud-
ies is to evaluate aspects like abstract screening speed, screening accuracy,
characteristics of included texts, and user satisfaction. Thus, they have a
methodological nature and they do not necessarily follow under either the
categories of search, citation screening, and abstract screening.
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Evaluation metrics. Several metrics are proposed in the literature to
measure model performance [12]: a common choice is using the classifica-
tion metrics based on the confusion matrix, such as precision and recall.
The recall classification metric measures the fraction of all the truly relevant
publications that are correctly captured by the model, while the precision
classification metric measures how many of the publications judged as rele-
vant by the model are actually so. On the one hand, requesting a recall of
95% or more is a common choice, aiming to identify all the relevant publica-
tions; in fact, in the living SR task, new relevant publications should never be
lost. On the other hand, higher precision corresponds to lowering the man-
ual effort of assessing new publications that are actually irrelevant. Usually,
when recall rises, precision drops, that is, to identify more relevant publi-
cations it is possible that some irrelevant ones are also collected. Hence, a
common criterion for evaluating abstract screening models is measuring pre-
cision while maintaining a recall of 95% or higher: to reduce the manual work
of screening out irrelevant abstracts, precision should be as high as possible.

Some older works also consider the Work Saved over Sampling at r% recall
(WSS) [45], that is, the percentage of papers that meet the original search
criteria that the reviewers do not have to read, because they have been filtered
out during abstract screening. Again, a common value for the WSS’s recall
is 95%. However, recent research has exposed limitations with WSS [46] and
showed that it is equivalent to the specificity. The specificity classification
metric, which is also known as True Negatives Rate, is based on the confusion
matrix and measures the fraction of all the irrelevant publications predicted
by the model which are actually so.

Classification performance Abstract screening models at the state of the
art, when evaluated by means of precision and recall, often achieve high recall
and relatively low precision (see Table 2.1 for a summary). This is a common
and challenging issue that hinders the applicability of these models [47] to
the living evidence problem.

One reason is that they are often trained in presence of highly imbalanced
data, where the positive class (i.e., the relevant publications) has so fewer ele-
ments compared to the negative class. In fact, these models are often trained
on individual SRs, which include only a few dozen publications (especially
in health care) [12, 48], while the irrelevant publications are obviously many
more. Active learning represents a broadly adopted approach [14, 49] to ad-
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Table 2.1: Precision and recall of some abstract screening models.

Model Precision Recall

Binary classification over BERT embeddings [19] 0.55 1

LightGBM over different BERT encoders [38] 0.496 0.96

LR classifier using topics (LDA) as features [40] 0.559 0.987

Binary classifier over fastText word embeddings [41] 0.121 0.95

SVM classifier using auto-encoding [42] 0.167 0.95

CNN classifier over GloVe word embeddings [43] 0.135 0.95

dress classification performance in presence of imbalanced data. Specifically,
it has been argued that active learning over a small subset of informative
data can actually produce a better generalized model than one trained over
large, randomly selected data [50].

In an active learning setting, abstract screening classifiers are trained
interactively by providing labels for publications the classifier thinks will be
most informative [25, 49, 51, 52]. Specifically, few seeding publications that
are known to be relevant (i.e., they might have been identified in full manual
way) are used to train an abstract screening classifier that, in turn, it is
applied to infer the relevance of a group of new publications (i.e., discovered
by means of a search phase). The model is trained again considering the
publications that scored best with the current version of the model and were
judged as relevant by users. The process is iterated until reviewers think it
is not providing any better results. However, the decision about stopping
to train the model is critical and not fully supported by clear metrics. The
performance of the active learning process is evaluated in terms of Yield
and Burden [49]: the former determines the percentage of eligible studies
identified by the active learner, while burden represents the percentage of
studies that are manually labelled. It is common to aim for Yield of 95%
and Burden as low as possible.

Another factor which affects low precision is that some SRs cover very
similar research topics, thus, many publications can use similar terminologies
and address similar problems, but they might not be relevant to the same
SRs. Few works tackle the challenge by focusing on representing publications
in a more informative manner. To do so, they consider additional publication
aspects besides their title and abstract [53, 54], such as bibliographic infor-
mation [47], citation network, and context [55], MeSH terms, and UMLS
concepts [51].
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2.3 Datasets and Evaluation Metrics

In recent years there has been a growing interest in automating the process
of SR update, especially in health care, through the application of informa-
tion retrieval, machine learning, and natural language processing techniques.
Most works at the state of the art focus on methods for identifying the new
publications and automating the screening of citations and abstracts. How-
ever, the systematic comparison of different methods is challenged by the
lack of standardised datasets and common evaluation criteria [12].

The evaluation of the proposed methods is not uniform, not only because
a common dataset is missing, but also because of the adoption of different
evaluation methodologies. Methods that focus on Boolean queries and ci-
tation screening usually report their performance in terms of information
retrieval metrics; on the other hand, abstract screening methods report their
performance in terms of classification metrics. The latter usually focus on
the classification matrix, i.e., precision with recall at 95% or more [19, 37].
Some older works adopts the Work Saved over Sampling at r% recall [45],
which is still based on the classification matrix, but measures the amount of
work that reviewers do not need to do thanks to the model.

Regardless of the specific evaluation metrics used, these methods offer
recommendations to reviewers, who then complete the task by manually
examining the abstracts and full documents. Other works focus on methods
where humans and models jointly perform the task of updating SRs in a
semi-automated setting. As mentioned in Subsection 2.2.3, examples of this
approach are active learning [49] and assistant tools for reviewers [39]. In
the former case, to report evaluation performance authors mostly focus on
Yield and Burden, which are still based on the confusion matrix, but they
discriminate whether publications are successfully considered as relevant by
a model or by a reviewer. In the latter case, a semi-automated tool is given
to one of two groups, and both groups are compared on the same task of
updating a systematic review; usually, the typical classification metrics of
precision and recall are used for this comparison.

To the best of our knowledge, ContReviews is the first attempt to ad-
dress the problem of living evidence. Common datasets and benchmarks
for this problem, thus, are not available. Although they are not homoge-
neous, as mentioned above, various datasets have been published in relation
to the different studies that have tackled the problem of SR currency. These
datasets contain only a few SRs, which are insufficient to assess a living ev-
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idence system. Moreover, many of the available datasets suffer from either
data leakage and overlapping, miss canonical train/test splits, lack common
evaluation criteria and have limited applicability [12].

2.4 Final Remarks

This chapter first discussed the living SR and living evidence procedures,
aiming to clarify the application context that this research addresses. The
state of the art related to living SRs has been discussed: it comprises informa-
tion retrieval, machine learning and natural language processing techniques
to address the main phases of living SRs, i.e., searching for new citations
which might be relevant to a SR, usually through complex Boolean queries;
re-ranking these citations to discard the less relevant ones; and classify ab-
stracts for relevance to SRs.

This chapter explained the reasons why the traditional methods for liv-
ing SRs are not well suited to address living evidences, arguing that they are
fundamentally too specific to one single SR. Instead, living evidences would
take benefit from a more general approach to address all the SRs in the living
evidence simultaneously. The main aspects of living SRs which hinder their
applicability to living evidences are the complexity of Boolean queries and
the usually poor efficiency of the screening methods. These factors motivate
the active involvement of reviewers, to handcraft the update process to the
specific SR. The next chapter introduces ContReviews, a content-based rec-
ommendation model for living evidences, aiming to overcome the challenges
of the living SR update procedures.
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Chapter 3

ContReviews: a Content-based
Recommendation System for
living evidences

Section 1.3 discussed the limitations of the conventional living SR methods
which hinder their applicability to living evidences, and motivated the need
for a novel approach. In summary, the living SR approach is well suited to
update one SR or a few ones, but is not general enough to address entire
domains of SRs, as required in living evidence. In fact, living SRs are hand-
crafted for specific target SRs, and do not generalize to cover other different
SRs. Instead, a living evidence system would benefit from a more general
approach, that can be applied to any SR being part of it.

This chapter introduces ContReviews, which is the proposed system for
addressing the living evidence problem. Although ContReviews could be in
principle applied to SRs in any domain, it was specifically developed for the
health care domain and tested over a large subset of the Cochrane Reviews.

3.1 Requirements and Approach

The ideal approach to living evidence is be based on the following require-
ments.

• The procedures to discover all the new publications that might be rel-
evant to any of the SRs in the living evidence is automated and runs

39



Figure 3.1: Workflow for living evidence.

continuously, without reviewers active involvement to design and main-
tain complex search queries.

• The new (potentially relevant) publications discovered by the system
in the previous step are automatically screened, and the most relevant
ones are identified for each SR and notified to reviewers. The screening
methods should be automatic and general enough to not require the
active involvement of reviewers or any SR-specific optimizations.

• For their SRs, reviewers only assess the publications that were identified
in the previous step, when notified to them. They do not participate
to any SR-specific design, preparation, or fine-tuning activity.

• The success of a living evidence lays in its ability to recommend to
reviewers all the truly relevant publications (effectiveness) and a limited
number of irrelevant ones (efficiency).

ContReviews, an SR-independent system for living evidence, is intro-
duced to realize the approach described above. ContReviews is based on the
three following design principles, which are represented in Figure 3.1.

Academic knowledge graphs (AKG). As proposed in [29], ContRe-
views leverages academic knowledge graphs (AKG) for continuous surveil-
lance. AKGs are domain-independent, unified sources of new publications
which are continuously updated by agents searching the Web and biblio-
graphic databases. They provide a periodic feed where the new publications
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are organized over a common schema, which can replace multiple and hetero-
geneous SR-specific data sources. AKGs generalize the problem of identifying
data sources for each SR.

Content-based recommendation model. ContReviews is based on a
content-based recommendation model that leverages the publications already
included in the living evidence’s SRs to infer the relevance of new publica-
tions. Specifically, it provides a relevance assessment function which is based
on content-based matching of new publications and SRs. This approach lets
avoiding to formalize one set of search queries for each SR, and represents
a general method that can be used with all the SRs in a living evidence,
avoiding SR-specific models.

Multi-property representation of publications and SRs. Vector rep-
resentations are used by the content-based recommendation model to match
publications and SRs. ContReviews leverages multiple publication features
to construct these representations. Specifically, the features used in this re-
search are the publication titles, abstracts, citations network and authors;
however, the system is not limited to them. By doing so, ContReviews aims
to increase meaningfulness of representation and, ultimately, to achieve bet-
ter recommendation efficiency with almost-perfect effectiveness.

3.2 Intuition of ContReviews

Very informally, ContReviews is based on a very simple concept: if a new
publication ‘looks like’ those included in a SR then it might be relevant to
the SR. Such a ‘resemblance’ between the new publication and the SR might
be because they have similar abstracts, similar citations networks, similar
features, or a combination of them. Moreover, their ‘extent of resemblance’
can be used to calculate a likelihood of relevance between the new publication
and the SR, and decide whether to recommend it to the SR’s reviewers based
on its value. This section explains this idea, before formalizing it in the next
two sections.

ContReviews is a content-based recommendation system. In general terms,
a content-based recommendation system is used to recommend new items to
users based on their past item preferences, formally described in terms of
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item features. The following quote helps to define a content-based recom-
mendation model [56]:

In the real world, it would be straightforward to recommend the
new Harry Potter book to Alice, if we know that (a) this book
is a fantasy novel and (b) Alice has always liked fantasy novels.
An electronic recommender system can accomplish this task only
if two pieces of information are available: a description of the
item features and a user profile that somehow describes the (past)
interests of a user, maybe in terms of preferred item features.
The recommendation task then consists of determining the items
that match the user’s preferences best. This process is commonly
called content-based recommendation.

In the living evidence context, the new publications act as the items to
recommend and the SRs as the user profiles; moreover, the publications al-
ready included in the SRs describe the user past preferences. Instead of using
Boolean queries to find potentially useful citations, and applying screening
models to refine the set of citations and abstracts, ContReviews leverages
the publications already included in the living evidence’s SRs to identify the
new relevant ones for each SR.

The ContReviews system comprises an academic knowledge graph (AKG)
and a content-based recommendation model, working together to manage a
living evidence. The AKG, which is OpenAlex [1],1 provides a periodic stream
of domain-independent new publications to the content-based recommenda-
tion model. The latter, in turns, assesses their relevance to each SR in the
living evidence, based on publications and SRs content.

The ContReviews ’s content-based recommendation model relies on a for-
mal representation of publications, which is based on their features,2 such
as title, abstract, citations, journal, authors, venue. Note that the ContRe-
views ’s AKG conveniently provides several of these features in a structured
manner. The experiments conducted to evaluate ContReviews used only
some of these properties (i.e., title, abstract, citation network, and authors);
however, the model can be instantiated with any combination of publication
properties, provided by either the AKG or any other system. For example,
PICO and MeSH terms are viable options, which are commonly employed in
Boolean queries.

1https://openalex.org/
2In ContReviews parlance, publication features are also called publication properties
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ContReviews uses publication properties to provide vector representations
of the new publications provided by the AKG and the publications already
included in the living evidence. SRs vector representations are obtained by
aggregating the ones of their included publications. For both new publica-
tions and SRs, ContReviews creates one vector representation for each publi-
cation property. For example, a publication (or, similarly, a SR) will have one
vector representation based on authors, one based on abstract, and another
one based on citations. ContReviews uses these property-specific vector rep-
resentations to obtain property-specific likelihoods of relevance between SRs
and new publications.

To assess the relevance of a new publication to a SR, their property-
specific vector representations are constructed and one likelihood of rele-
vance for each of them is calculated. A relevance assessment function uses
the property-specific likelihoods of relevance to estimate how relevant the
new publication is to the SR. ContReviews considers such a relevance assess-
ment function as a binary classification model, based on machine learning. A
unique binary classification model for the entire living evidence can be used,
and trained using a supervised dataset which is based on all the living evi-
dence publications. This let to overcome the data imbalance problem which
is typical in living SRs, where the SR-specific citation and abstract screening
models are trained using their target SR data only.

The supervised dataset for training the living evidence binary classifi-
cation model consists of records, each of which corresponds to a SR and a
publication. The records have a binary label that shows whether the pub-
lication is relevant to the SR, and a set of likelihoods of relevance derived
from their vector representations. To construct such supervised dataset from
the living evidence publications and SRs, the following procedure is used (see
Figure 3.2):

• The publications in the living evidence are represented with one vector
per publication property.

• SRs are represented with one vector per publication property, by aver-
aging the vectors of their included publications.

• Likelihoods of relevance between publications and SRs are obtained
(the △ in the picture), by computing and re-scaling the cosine similarity
between their property-specific vector representations (this is described
in details in the next sections).
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Figure 3.2: ContReviews’s relevance assessment function training method.

• For pairs of one publication and one SR a vectors of property-specific
likelihoods of relevance is obtained. If the publication is included in
the SR, a positive label is associated to it (a negative label otherwise).

Te supervised dataset obtained as described above is used to train a
binary classification model, which provides a unique relevance assessment
function for all the SRs in the living evidence. In addition, it can be used
at inference time to score the new publications for relevance to each of the
SRs in the living evidence. To this aim, new publications are provided by
the AKG: ContReviews constructs their property-specific vector representa-
tions for each SR, calculates the property-specific likelihoods of relevance
and applies the binary classification model to obtain the final likelihoods of
relevance. The latter, provide the relevance for each new publication and
each SR in the living evidence, and it is used to notify reviewers about useful
new publications.
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3.3 Problem Statement

Let P be the domain of scientific publications, and R the domain of system-
atic reviews SRs, where each SR r ∈ R is formally represented as the subset
of the publications it includes (r ⊆ P). In other words, a SR is characterised
by the set of publications that are relevant to it, and hence included in it.

Let Pubs be the function returning all the publications included in a
subset R of SRs: Pubs(R) =

⋃
r∈R r. That is, R is a subset of SRs and

Pubs(R) denotes all the publications that appear in at least one of these SRs.
Moreover, let η be the Boolean function returning True if a publication is
relevant to a SR and False otherwise. Note that p ∈ Pubs(r) ⇒ η(p, r) but
p /∈ Pubs(r) ⇏ ¬η(p, r); in fact, new publications are not already included
in the living evidence.

Let R̂ ⊆ R be a a living evidence, i.e., a subset of SRs all belonging to the
same scientific domain. Moreover, let P̂ ⊆ P be a set of new publications
which are not included in the living evidence; that is, Pubs(R̂) ∩ P̂ = ∅. For
each SR r ∈ R̂ the living evidence task is to determine P̂r ⊆ P̂ , which is the
subset of new publications being relevant to r:

P̂r∈R̂ = {p ∈ P̂ | η(p, r)} (3.1)

3.4 Formal Definition of ContReviews

This section formalizes the ContReviews ’s content-based recommendation
model. To do so, first Subsection 3.4.1 introduces the formal representa-
tion method for publications and SRs; then Subsection 3.4.2 illustrates the
matching method between publications ans SRs and the calculation of the
likelihoods of relevance; finally, subsections 3.4.3 and 3.4.4 describe the rel-
evance assessment function and its implementation as a binary classification
model based on machine learning (i.e., training and inference). Note that
this binary classification model provides an estimation of equation 3.1.

3.4.1 Formal Representation of Publications and SRs

As previously outlined, we formally represent both publications and SRs
through what we name their publication properties. In the scope of this work
we consider, as properties of a publication, its title, abstract, authors, and
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citations. However, this does not preclude that any set of publication prop-
erties can be considered. Specifically, each publication p ∈ P is represented
by a set of vectors vπ(p), one for each publication property π. Formally, the
representation v(p) of the publication p ∈ P is defined as the following set:

v(p) = {vπ1(p), . . . , vπn(p) | πn ∈ Π} (3.2)

where Π = {π1, . . . , πn} is the set of considered properties. Analogously,
each SR r is represented by a set of vectors vπ(r) that summarise all the
publications it contains. In this case, each vπ(r) is obtained by averaging the
vector representations of the publications included in it. For each property
π ∈ Π:

vπ(r) = avg({vπ(p) | p ∈ Pubs(r)}) (3.3)

where avg is the function which averages numeric vectors, i.e., avg(vi, vj) =
[avg(vi1, v

j
1), ..., avg(vin, v

j
n)].

The specific construction of each vector vπ(p) depends on whether the
property π represents an entity (such as authors and citations) or a language
expression (such as title and abstract).

Representation of entities. Binary vector representations are consid-
ered, which are based on vocabularies of entity instances extracted from the
entire living evidence. For example, considering authors: a vocabulary of n
distinct authors is constructed by extracting them from the living evidence;
hence, a publication p can be represented by a binary vector vauths(p) of
length n, having 1 as the i-th element if p is authored by the i-th author in
the vocabulary, and 0 otherwise. Citations or any other entity would behave
exactly in the same manner.

Note that new publications may contain new entities that are not included
in the relevant vocabularies. Therefore, it may be difficult to construct the
publication representations using these new entities. This is known as the
‘out of vocabulary’ issue. For example, a new publication may reference
citations that are not referenced by any of the existing publications in the
living evidence; therefore, these citations would not be part of the relevant
vocabulary. ContReviews simply ignore these out of vocabulary entities, for
two reasons. In one way, if a new entity was added to the relevant vocabulary
prior to constructing the representations of the new publications, it would
not contribute to rise any measure of relevance between the new publications
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and the SRs in the living evidence: in fact, no one of them has a ‘1’ in their
representation for that entity. Thus, it is not useful to update the vocabulary.
In addition, whenever the vocabularies are updated all the representations
must also be updated and the entire ContReviews system should in turn
be updated. Thus, adding entities to the vocabularies is a computationally
expensive operation that should be carefully planned.

Representation of language expressions. Two distinct vector repre-
sentations are considered, which may carry different aspects of the text. The
first vector representation corresponds to a bag of words, using TF-IDF (see
Subsection 4.1). The other vector representation is based on contextual em-
beddings, obtained by means of pre-trained language models, such as SciB-
ERT [57]. There are various language models that have been pre-trained on
specific datasets. These models can be further fine-tuned for specific tasks
and datasets.

3.4.2 Computing Likelihoods of Relevance

Likelihoods of relevance is an important notion in ContReviews, as introduced
in Section 3.2. These likelihoods of relevance are employed in two cases: to
construct the supervised dataset for training the binary classification model,
that estimates the relevance assessment function; and to assess the relevance
of a new publication to a SR, by inferring it through the binary classification
model. In the first case, likelihoods of relevance are computed for pairs of
one SR and one publication which are already known to be relevant or not.
In the second case, the likelihoods of relevance are used for infer relevance of
new publications.

This subsection describes how likelihoods of relevance are computed,
through the following two steps: first, publication and SR representations
(which are calculated exactly as explained in Subsection 3.4.1) are matched
and similarity scores are computed through their cosine distance; then, sim-
ilarity scores are re-scaled.

Computing similarity scores. The calculation of the similarity between
a publication p and a SR r ∈ R̂ is an intermediate step, either to construct
the supervised training dataset or to assess the relevance of p to r. In either
case, one similarity score for each publication property is computed as the
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cosine similarity between the vector representations of the SR and the vector
representations of the publication p.

A set R̂ of SRs (each of them described as the set of included publications
Pr = Pubs(r), r ∈ R̂) and a set of properties Π = π1, ...πn are considered.
For each publication p ∈ Pubs(R̂) one vector representation vπ(p) for each
property π ∈ Π is obtained (equation 3.2). Similarly, for each SR r ∈ R̂,
one vector representation vπ(r) for each property π ∈ Π is obtained as well
(equation 3.3). The property-specific similarity scores between p and r cor-
responds to the set ϕ(p, r) = {κ(vπ(p), vπ(r) | π ∈ Π}, where κ denotes the
cosine similarity function.

Re-scaling similarity scores. The similarity scores computed at the pre-
vious step could be directly used as measures of the property-specific like-
lihoods of relevance. However, as shown by the experiments conducted to
evaluate ContReviews, re-scaling them is more effective. For each SR r ∈ R̂,
the set of publications Sr = P ∪N is sampled from Pubs(R̂), where P com-
prises a sample of the publications included in r (i.e., relevant to r) and N
comprises some publications randomly sampled from other SRs (i.e., irrele-
vant to r):

Sr = P ∪N = {p ∈ Pubs(r)} ∪ {p ∈ Pubs(R̂) − Pubs(r)} (3.4)

note that as data is imbalanced (i.e., for each SR the irrelevant publications
are many more than the relevant ones), N is downsampled to be in the right
proportion to P .

The set of similarity scores Φπ
Sr

between r and the publications in Sr is
computed for each property π ∈ Π, yielding the following set of similarity
scores:

ΦΠ
Sr

= {κ(vπ(p), vπ(r)) | p ∈ Sr, π ∈ Π} (3.5)

Let p be one publication, which could be either a new publication or a
known one that is used to construct a supervised training record. To obtain
the likelihoods of relevance between p and a SR r ∈ R̂, with respect to
the set of properties Π, we first calculate—for each property π ∈ Π—the
similarity scores κ(vπ(p), vπ(r)), and re-scale them with respect to Φπ

Sr
. This

is achieved by computing the fractions of publications in the sample Sr that
are less similar to r than p, with respect to π ∈ Π (| · | denotes the cardinality
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of a set):

θπ(p, r) =
|{p′ ∈ Sr : κ(vπ(p′), vπ(r)) < κ(vπ(p), vπ(r))}|

|Sr|
(3.6)

Thus, the vector whose elements are likelihoods of relevance, as defined by
equation 3.6, can be either used to infer relevance of p to r (see Subsec-
tion 3.4.4), or to construct one supervised training record, where the rele-
vance is already known (see Subsection 3.4.3).

The reason for using re-scaled similarity scores, rather than absolute ones,
stands on the fact that many SRs in health care are related to similar re-
search questions, or are compiled for the same research topic. Thus, some
publications and SRs might be similar from the angle of certain properties
just because of that. For example, ‘smoking cessation’ is a group of sev-
eral SRs in the ‘human behaviour’ domain: clearly the language used in
these SRs is homogeneous, and potentially also authors and citations are so.
Thus, publications from such sub-domains might have high absolute similar-
ity scores with all the ‘smoking cessation’ SRs, even if they are irrelevant.
Re-scaling provides a statistical dimension for evaluating relevance, allowing
the extent of similarity for relevant publications to be emphasised compared
to irrelevant (but plausible) ones.

3.4.3 Learning the Relevance Assessment Function

The relevance assessment function is estimated by a model ΘR̂
Π that infers

relevance to SRs R̂ based on a set of publication properties Π. Such a model
can be conveniently learnt from data through machine learning. Specifically,
we consider a binary classification model using the likelihoods of relevance
formalized in equation 3.6 as its features. To train ΘR̂

Π a supervised dataset
can be constructed, where each element represents one training record being
relative to one publication p ∈ Pubs(R̂) and one SR r ∈ R̂: Each one of these
records is made of some features and a label, defined as follows:

• label : True if p is relevant to r (i.e., p ∈ Pubs(r)), False otherwise;

• features : the likelihoods of relevance θπ(p, r), π ∈ Π (as per equa-
tion 3.6).

The relevance assessment function is learnt for the entire living evidence
by considering the contribution of all the SRs together. In fact, for each
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SR in the living evidence, a sample of relevant publications and irrelevant
publications is considered. Irrelevant publications for a SR r are sampled
from the ‘other SRs’ given by R̂−r. Any publication can be sampled multiple
times: at least once as a relevant case for the SRs it is included into, and
potentially several other times as irrelevant cases for different SRs. The
likelihoods of relevance will be different every time, because they are obtained
for different SRs.

3.4.4 Inference

Let ΘR̂
Π be a relevance assessment function as defined in Subsection 3.4.3;

and S = {Sr | r ∈ R̂} be the union of the sets Sr, as defined by equation 3.4.
Given some new publications P̂ , such that P̂ ∩PubsR̂ = ∅, the goal is to rank
these new publications for relevance to each SR r ∈ R̂, using the relevance
assessment function ΘR̂

Π. For every new publication p ∈ P̂ and SR r ∈ R̂ the
goal can be achieved by means of the following steps:

• Calculate the new publication’s vector representations {vπ(p), π ∈ Π}
(equation 3.2).

• Calculate the similarity scores {κ(vπ(p), vπ(r)), π ∈ Π} (equation 3.5).

• By using using Sr (equation 3.4), calculate the vector of likelihoods of
relevance θΠ(p, r) = [θπ0(p, r), ..., θπn(p, r)] (equation 3.6).

• Score the vector of likelihoods of relevance associated to the new pub-
lication p and the SR r by using the relevance assessment function
ΘR̂

Π(θΠ(p, r)).

The latter provides a score that can be used to rank p for relevance to r and,
ultimately, to estimate P̂r∈R̂ (equation 3.1):

P̂r∈R̂ = {p ∈ P̂ | ΘR̂
Π(θΠ(p, r)) ≥ τr} (3.7)

where τr is a threshold which depends on the SR r.

3.5 Final Remarks

This chapter described the ContReviews system, which is used to infer rele-
vance of new publications to each SR in a living evidence. The new publica-
tions are sourced through an academic knowledge graph, which can replace
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developing adequate search queries for each SR. In addition, a content-based
recommendation model is used to match these new publications to each SR
in the living evidence, based on their content. A content-based recommen-
dation model provides a general approach which can replace developing one
abstract screening model per SR. Finally, to match the new publications and
the SRs, multiple publication features are used to construct multiple vector
representations.

The vector representations are based on bag of words and embeddings
for the textual features (such as title and abstract), and on binary vectors
for entities (such as citations network and authors). Before describing the
ContReviews evaluation results, the next chapter describes the state of the
art of using embeddings in the context of SRs, and the fine-tuning approch
used for ContReviews.
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Chapter 4

Representation of Publication
Titles and Abstracts

Representing language expressions is crucial to any SR updating method,
including living SRs and living evidences. In fact, publications and SRs
provide multiple textual descriptors which can be useful to infer relevance
of new publications to SRs. For example, publications have a title and an
abstract, while SRs provide their inclusion criteria in text. Thus, capturing
and representing the most meaningful text features from these descriptors
become crucial to effective and efficient SR updating models.

Section 4.1 surveys the most common text representation techniques,
which includes bag of words and embeddings, and how they are used in
SR updating models at the state of the art. Section 4.2 introduces the em-
bedding models considered for ContReviews.

4.1 Representation of Language Expressions

Citation screening models, abstract screening models, and the ContReviews
content-based recommendation model all use publication textual features
(such as title and abstract) to drive their inference process. They require to
transform raw language expressions to meaningful numeric representations,
prior to being able to process them.

A traditional method is based on bag of words, which describes the occur-
rence of words within a document, disregarding syntax and word order but
maintaining word frequency. The bag of words representation technique is
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well known and established in the domain of information retrieval and, more
in general, in the natural language processing community. However, as it is
fundamentally based on word statistics, it is challenged by representing the
semantic of language expressions independently of the specific words which
are used. In the last decade, bag of words have been compensated with em-
beddings that are able to capture the meaning of language expressions by
means of contextual vectors.

4.1.1 Bag of Words Representations with TF-IDF

Bag of words representations often use TF-IDF [58] scores, where TF stands
for ‘term frequency’ and IDF stands for ‘inverse document frequency’. TF-
IDF is a numerical statistic based on word counts, that reflects how important
a term is to a document with respect to a collection of documents.

For example the term ‘and’ could be considered important in one doc-
ument, as it certainly occurs many times; however, given the same can be
assumed for many more documents, the term ‘and’ cannot be considered
important to characterize any document. The opposite holds for the term
‘Paris’ with respect to a corpus of documents about capital towns (i.e., it
must occur within documents about France); however, it would not be dis-
tinctive with respect to a corpus of documents about tourism in France, as
all of them would mention Paris multiple times.

In the context of systematic reviews, a publication can be represented
through a vector of TF-IDF scores, with respect to a set of SRs. Each
element of the vector corresponds to a term in a given vocabulary (usually,
initialized from the set of SRs itself). Such an element is a real number
obtained as the product between the TF and the IDF statistics. There are
various ways for determining the exact values of both statistics, however,
TF is the relative frequency of a term within a publication, and IDF is a
measure of how much information the term provides (i.e., if it is common or
rare across the set of SRs).

The majority of the latest citation and abstract screening models, which
have been previously introduced in Chapter 2, shifted their attention to em-
beddings and only a few of them used bag of words representations. Em-
beddings have received, in fact, a lot of attention due to the well known
weaknesses of bag of words based representations: they lose the ordering of
the words and they ignore semantics of the words [59].

In the specific application context of SRs, the supremacy of embeddings
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in regard to bag of words is debatable and both can actually be useful: in
fact, scientific publications are fundamentally technical documents, where
some specific keywords have their own importance that goes beyond seman-
tics. Examples of such keywords are the name of proteins, diseases, medical
treatments or procedures.

The representation power of bag of words with respect to embeddings
has been addressed by studies such as morbidity identification in clinical
notes [60], automation in job interview grading [61] and fine-grained event
classification [62]. These studies all reported better results using bag of words
comparing to embeddings. Specifically, the first of the cited works is in the
medical domain. However, there is no work that provides a structured and
motivated indication of the type of representations to use and most results
are empirical.

4.1.2 Embeddings

Embeddings are vector representations of language expressions that capture
their semantics. In fact, their vector space is designed so that words with sim-
ilar meanings are closer together. Word embeddings [63], which provide static
embeddings of words, have been initially proposed; then, transformers [64]
introduced the notion of contextualized embeddings, where the meaning of
a words depends on the words around it.

Word embeddings. Word embeddings are obtained by means of shal-
low neural networks that learn word features from a large corpus of generic
data [65–67]. Word embedding models usually leverage a fixed vocabulary of
words, which associates an embedding to each of them. These word embed-
dings can be applied to a multitude of downstream tasks (including updating
SRs); to this aim, task-specific architectures [36], which include the pre-
trained representations as features, are used. Some studies involving SR
update undertook this approach [41, 43], using word embeddings to provide
representations of publication titles and abstracts.

Transformers. A relatively recent advancement in the field of embeddings
is the use of transformers [64], which are a deep learning architectures for
language modeling that provide contextualized embeddings. Instead of hav-
ing a fixed mapping between words in a vocabulary and their embeddings,
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transformers provide representations that take into account the context of
words. Specifically, embeddings of words are influenced by the embeddings
of the surrounding words, thus, the same word will have different embeddings
when used in different contexts.

Transformers have a notion of token, which is a sub-word. The main
reason is that by using a vocabulary of words, like word embedding models
do, there is a risk of following in ‘out-of-vocabulary’ errors (i.e., the word for
which the embedding is requested is not available in the vocabulary). Tokens
can be learnt from data and used to embed any input sequence.

Two major transformer-based language models are BERT [36] and GPT [68].
Both of them are pre-trained over large unsupervised data-sets of general
data, requiring extensive processing capabilities (for example, training GPT
required 8 GPUs for 30 days.1) GPT is a causal language model, which
means it predicts the next word based on the context of the words coming
before it. BERT is a masked language model, that predicts some masked
words based on the context of the full input language expression. GPT, tra-
ditionally, is used in generative tasks given its causal modeling nature, while
BERT is more used in tasks where it is important to obtain meaningfully
representations of language expressions.

A common way to use transformer-based language models for downstream
applications is fine-tuning [36]. This means optimizing the pre-trained
model parameters on a specific dataset, and for a desired task. This approach
represents the current state of the art, and the most recent works related to
abstract screening and citation screening are based on it (see Section 2.2.3).
Specifically, fine-tuning a language model is based on the following concepts:

• the fine-tuned model uses a pre-trained model as its base model ; this
means that the fine-tuned model architecture and its parameters are
initialized using the pre-trained model;

• the fine-tuning model uses a dedicated final neural layer and a dedicated
loss function (usually called the model’s head), which are specific to the
target down-stream applications;

• the fine-tuning dataset is used to train the fine-tuned model, that is,
the base model and the model’s head are used to process the training
input sequences, and the loss function is used to fine-tune the model.

1https://openai.com/research/language-unsupervised
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The fine-tuned model absorbs the domain specific language, thanks to the
fine-tuning dataset: for example, using the Cochrane Reviews to fine-tune an
embedding model lets it to understand the medical language and semantics.
In addition, it learns to capture the language expression nuances which are
meaningful to the specific task it has been fine-tuned for. Note that, although
this task does not necessarily need to be exactly the same as the target
down-stream application–also because the same fine-tuning model could be
used for a family of down-stream applications—it can be designed to be
significant to it. For example, learning to predict semantic similarity between
pairs of sentences is useful to down-stream tasks like semantic search and
semantic clustering. Finally, note that this fine-tuning approach is more
advantageous compared the task-specific architectures usually employed with
word embeddings: in fact, it is highly standardized and does not need to train
from scratch a neural network, but just to optimize the pre-trained weights
for the new scenario.

Several variants of BERT have been fine-tuned on scientific or health
care datasets, such as SciBERT [57], BioMed-RoBERTa [69], and PubMed-
BERT [70]. Most of the recent works in living SR that leverages the concept
of fine-tuning are based on these type of models. In fact, compared to the
original BERT model, they have been exposed to data which is closer to
the specific domain of interest. For example, SciBERT [57] is a fine-tuned
language model based on the BERT’s architecture, i.e., it uses BERT as a
base model for encoding the input sequences, and it uses the same BERT’s
pre-training tasks. SciBERT provides a convenient baseline for health care
applications, because it is fine-tuned with scientific publications from Se-
mantic Scholar.2 Specifically, its fine-tuning corpus comprises 1.14M full
text of papers. Semantic Scholar aligns to the living evidence problem in
health care as it provides scientific publications, however, Semantic Scholar
is cross-domain and it covers health care partially. Note that the fine-tuned
SciBERT, in turn, is provided as a pre-trained model to anyone willing to
use it for down-stream tasks.

4.1.3 Paragraph Embeddings

Systems for updating SRs need representations of publication titles and ab-
stracts, which means obtaining one embedding for each title and abstract.

2https://scholar.google.com/
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These are known as paragraph embeddings, because they represent a full para-
graph of text. Usually, embedding models returns one embedding for each
token in the input sequence. Thus, a common approach to obtaining para-
graph embeddings, is to average all the token embeddings. In addition, some
models, also return one embedding for the full input sequence. For example,
BERT and its variants provide the pooler output, that is the embedding of
a special token (named [CLS]) which is trained with a sentence-scoped task
(i.e., next sentence prediction).

Input sequence embeddings of this type seem an ideal approach to pro-
ducing paragraph embeddings, although they often pose two challenges for
the downstream applications that use them. In one hand, fine-tuning is usu-
ally required to achieve adaptation to the specific downstream application.
In the other hand, the embedding model maximum length of the input se-
quence might be too limited in regard to the typical application’s domain
documents. These challenges are especially important for health care living
evidences, where the document abstracts tend to be lengthy and the task of
determining their relevance to SRs is difficult in itself.

Fine-tuning paragraph embeddings. As discussed above, fine-tuning
an embedding model has two parts: one is the dataset used for fine tuning,
which should be representative of the specific domain so that the model
can learn the relevant distributional semantics; the other one is the fine-
tuning task, that is the objective function used to optimize the neural network
parameters. A common approach that is relevant to paragraph embedding
is the one adopted by BERT and its variants. They pre-train the [CLS]
token for the ‘next sentence prediction’ task [36], which involves feeding two
input sequences to the network and checking if the second sequence is the
immediate successor of the first one. To do this, BERT uses the [CLS] token
to cross-encode the two input sequences, and train it for binary classification.

Some applications are challenged by this cross-encoding approach and
using the above methods for paragraph embeddings does not usually provide
satisfactory results for them. Examples of these applications are large-scale
semantic similarity, clustering, and semantic search. Specifically, they are
challenged by the quadratic complexity of cross-encoding [71]; and updating
SRs is also challenged the same way. In fact, considering the task of deter-
mining the similarity between n new abstracts and the m abstracts already
included in a SR, it would be needed to cross-encode m × n sequence-pairs
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to obtain a similarity score. Instead, it would be desirable to compute m+n
embeddings and use any distance function (e.g., the cosine similarity) to
obtain a similarity score.

To this aim, Sentence-BERT [71] uses a siamese BERT-network to en-
code two input sequences independently, pool their outputs (through either
the [CLS] token or the average of the token embeddings) and fine-tune for
semantic similarity the shared BERT weights and the pooler weights. Specif-
ically, as a loss function, the cosine distance is used. A similar approach is
proposed by GPT [68].

These methods usually approach fine-tuning with sentence pairs which
are either fully similar or completely dissimilar. Instead, when updating
SRs, the desired notion of similarity is more subtle. The main issue is that
some SRs belong to the same family of SRs, while other SRs belong to com-
pletely different sub-domains (and even different domains!). Thus, useful
embeddings are those which are able to discriminate the relevance of pub-
lications to SRs in the same sub-domain. In other words, the relationship
between a publication and a SR can follow in the following categories: (i)
they publication is relevant to the SR; (ii) the publication is irrelevant to the
entire SR’s sub-domain; and (iii) the publication is irrelevant to the SR, but
it could be relevant to other SRs in the same sub-domain. In other words,
the embedding model should not get confused by sub-domains and, instead,
it should be able to capture enough nuances to discriminate between SRs in
the same sub-domain. The fine-tuning procedure is crucial to address this
issue.

To this aim, SPECTER [72] suggests an interesting approach. SPECTER
focuses on the scientific domain, though not specifically on the health care
domain, where publications have a network of citations. Thus, the degree
of similarity between two publications can be determined by their distance
on the citations network. Specifically, SPECTER employs three siamese
networks (based on SciBERT) to encode three scientific publication abstracts,
and fine-tunes the SciBERT shared parameters for sentence similarity with a
triplet loss function. To do so, out of the three publications, one is designated
as the ‘query document’, and the other two have varying degrees of similarity
to it. The similarity degree depends on the citation network, such that a
direct reference from the ‘query document’ gives a similarity of 1, and an
indirect reference gives a similarity of 0.5. The dissimilar publication has a
similarity degree of 0. The triplet loss function incorporates these similarity
scores and learns embeddings that capture a semantic similarity based on

58



citations.

Input sequence size. The most popular transformer based architectures
support input sequences of limited size: for example, all the BERT variants
are limited to 512 input tokens (i.e., all the tokens following the 512th one
are ignored). Some empirical statistics on the dataset of Cochrane Reviews
used for this research, show that the average length of an abstract is 2000
tokens and a few of them overcome 4000. Paragraph embedding models
using BERT variants as their base model, would truncate Cochrane Reviews
abstracts when calculating their embeddings.

One challenge of embedding long sequences depends on the attention
mechanism, which is the building block of transformers [64]. Specifically,
transformers employ several neural layers of self-attention, where the inter-
nal representation of each token is matched to the one of all the others. For
example, given an input sequence of n tokens, each self-attention layer per-
form n × n operations, to update each token embedding. In other words,
each token attends to all the other tokens. This quadratic complexity of the
original attention mechanism is not well suited to represent long sequences.

Recently, language models supporting longer input sequences have been
introduced, such as LongFormer [2] and others. They use variants of the
original self-attention mechanism, where a sub-set of all the attention op-
erations are performed. For example, LongFormer, as well as other similar
pre-trained language models, uses a variant of the self-attention [64] mech-
anism where each token attends only to the ones in a surrounding window
(this is named ‘local attention’), instead of attending to all the tokens in the
input sequence. In addition, some selected tokens attend to all the tokens
in the sequence (this is named ‘global attention’). Global attention can be
configured, as the tokens attending globally depend on the fine-tuning task.

4.2 ContReviews Embeddings

As discussed in the previous chapter, the ContReviews ’s embedding model is
used to represent publications and SRs, and these representations are used
by the content-based recommendation model to match them. In this context,
the following requirements are crucial to fine-tune an adequate embedding
model: (i) the corpus covers the health care domain and comprises documents
similar to the ones in the living evidence (i.e., Cochrane Reviews); and (ii) the
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fine-tuning task is enough meaningful in regard to the downstream problem
of determining if a publication is relevant to a SR.

The first requirement can be simply achieved by fine-tuning the ContRe-
views embedding model using the abstracts available in the Cochrane Re-
views. The fine-tuning task, instead, is less obvious and several approaches
can be considered. The following subsections describe the two of them used
with ContReviews.

4.2.1 Fine-tuning for Abstract Screening

The first approach to fine-tuning the ContReviews embedding model is us-
ing the abstract screening task. To this aim, the neural network shown in
Figure 4.1 is proposed. It encodes an input sequence using SciBERT [57] as
the base model and applies a classification head to the pooler output. The
network is auto-regressive in that it is applied to Cochrane Reviews abstracts
to learn predicting their relevance to the Cochrane Reviews. The classifier is
‘multi-class’ and ‘multi-label’, because Cochrane Reviews comprise multiple
SRs, and each abstract can be relevant to multiple SRs.

The linear layer in the above neural network outputs a tensor of length
equal to the number of classes (i.e., SRs): the sigmoid activation function
maps each of those output elements to the [0, 1] ∈ R range, so that they
can be interpreted as class probabilities. The network is trained to minimize
the Binary Cross Entropy (BCE) loss between the network’s output class
probabilities and the true class probabilities. The BCE is typically used
as a loss function for binary classification models: note that a multi-label,
multi-class classification model can be seen as a series of binary classification
models (i.e., one model per class). For each class, the BCE computes the
loss as bcs(x, y) = ylog(x) + (1− y)log(1− x), where x is the predicted class
probability and y is the true class probability (i.e., it is either 0 or 1). For a
multi-class, multi-label classification model, the BCE returns the average loss
over all classes, i.e., bce(X, Y ) = mean(bce(X1, Y1), ..., bce(Xn, Yn)), where X
and Y are vectors of probabilities.

ContReviews uses the fine-tuned SciBERT pooler output as a represen-
tation of publication abstracts. ContReviews evaluation in Chapter 5.4.4
shows that the fine-tuned SciBERT model provides better results than its
corresponding pre-trained model.
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Figure 4.1: Neural architecture to fine-tune SciBERT for abstract screening, through a
multi-class, multi-label (MCML) classifier. The pooler output is used as an abstract
embedding at inference time.

4.2.2 Fine-tuning with Semantic Similarity.

Fine-tuning for abstract screening is challenged by the following issues. First,
as discussed in Section 2.2.3, there are few abstracts available for each SR,
especially in an health care related living evidence; thus, each class is trained
with scarce data. In addition, SciBERT supports relatively short input se-
quences, if compared to the average size of abstracts in Cochrane Reviews,
as introduced in the previous section.

To assess weather the above two challenges have a tangible impact on
the quality of the generated embeddings, an alternative embedding model
is proposed. Specifically, instead of SciBERT, LongFormer [2] is used as a
base pre-trained model; in fact, LongFormer supports longer input sequences
(i.e., up to 4096 tokens). In addition, to make use of more training data for
each inference case, semantic similarity is chosen as the fine-tuning task. In
fact, given two input sequences, the output of the network should be either
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Figure 4.2: Neural architecture to fine-tune LongFormer for semantic similarity. The
LongFormer pooler output is used as an abstract embedding at inference time.

‘similar’ or ‘not similar’; thus, a large amount of supervised data can be used
to train those two cases.

The proposed embedding model, which is represented in Figure 4.2, fol-
lows the same approach as SPECTER [72] with the two following differences:
(i) LongFormer is used as the base model (instead of SciBERT); and (ii) the
abstracts’ similarity is determined by the SRs that contain them, not by their
citation network as in the original SPECTER model. Likewise SPECTER,
the pooler output is used as the input sequence embedding, and it is trained
by means of a triplet loss function. As represented in Figure 4.3 the pooler
output leverages ‘global attention’, i.e., the one token which feeds the pooler
output attends to all the other tokens in the input sequence.

A fine-tuning dataset can be constructed from the Cochrane Reviews,
where each element comprises three abstracts (note that Cochrane Reviews
has a notion of ‘family’, which represents a research sub-domain comprising
many SRs which are close to each other):

• the first abstract is randomly sampled from all the Cochrane Reviews,
and is named the ‘query abstract’;

• the second abstract is selected to be similar to the ‘query abstract’, i.e,
it is randomly selected from the same SR where the ‘query abstract’ is
included;

• the third one is selected to be not similar to the ‘query abstract’, i.e., it
is randomly sampled from either all the other SRs in the same family
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Figure 4.3: A representation of full self-attention (left) and local/global self-attention
(right) as proposed by LongFormer [2]. With full self-attention every token attends to
every other token, leading to quadratic complexity. With local/global self-attention, each
token attends to their immediate context (in the picture this context is a window of 3
tokens) and some selected tokens attend to all the other tokens (in the picture the first
token).

as the ‘query abstract’, or from all the other families, or from outside
the Cochrane Reviews.

Discriminating the source of the third abstract ensures that the model is
exposed to different extent of dissimilarity. In fact, abstracts coming from the
same family are ‘less dissimilar’ compared to abstracts coming from different
families or even from outside the Cochrane Reviews. This training approach
aims to expose the model to subtle inference cases, so that it learns the
difficult task of addressing relevance to SRs in the same family.

To train the network, the loss function is the same used for SPECTER [72].
Let AQ be the ‘query abstract’, A+ an abstract similar to AQ and A− an ab-
stract not similar to AQ:

loss = max(∥AQ − A+∥2 − ∥AQ − A−∥2 + m), 0)

where, following the SPECTER settings, m is a constant set empirically to
1 and ∥ · ∥2 is the l2 − norm, which is defined by ∥x∥2 =

√∑
i=0..n x

2
i . The

above loss function steer the network to learn embeddings as vectors being
close to each other for abstracts included in the same SR (and far otherwise).

4.3 Final Remarks

This chapter examined different ways of representing publication titles and
abstracts, which are likely the most important features for the SR updating
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task. Two methods, bag of words and embeddings, were compared, with the
latter being more prevalent in recent research on SR updating. However,
bag of words can also offer useful representations, as they can capture key
phrases that have significance beyond semantics in the scientific literature.
ContReviews uses both methods.

In addition, this chapter summarized the current literature on fine-tuning
embeddings for SR updating, and introduces two novel methods. The first
method fine-tunes SciBERT for abstract screening, and the second method
uses LongFormer for semantic similarity. Both methods leverage the Cochrane
Reviews publications to adapt to the domain-specific language. Moreover,
the Cochrane Reviews offer valuable information to create the supervised
dataset, which consists of the relationships between publications, SRs and
SR families.

In summary, this chapter introduced how to create embeddings for the
publication abstracts, which can be used as an input for the ContReviews
content-based recommendation model. Based on this outcomes and the for-
mal definition of ContReviews, the following chapter presents the evaluation
results.
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Chapter 5

Evaluation of ContReviews
over Cochrane Reviews

This chapter reports the ContReviews evaluation results. Section 5.1 dis-
cusses data preparation issues and construction of train and test datasets;
Section 5.2 regards training the relevance assessment function model, includ-
ing calculation of the likelihoods of relevance; finally, Section 5.3 discusses the
ContReviews evaluation results and compares it to a baseline. Specifically,
the model’s ability to correctly infer the relevance of the new publications
(i.e., publications in the test dataset) to SRs is measured in terms of classi-
fication metrics of precision with high recall.

5.1 Data Preparation

As motivated in Section 2.3, datasets and evaluation metrics to assess living
evidence performance are either missing or not homogeneous. For this reason,
ContReviews performance is evaluated through a dedicated dataset, which is
extracted from a large subset of Cochrane Reviews (CRs).

5.1.1 Pre-processing

The subset of the Cochrane Reviews (CRs) used for evaluating ContReviews
contains thousands of SRs; each of them includes a set of relevant publi-
cations. As anticipated, the publications included in a SR can be used to
construct positive (i.e., with a positive label) training pairs of one publication
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and one SR; moreover, negative ones (i.e., with a negative label) can be con-
structed as pairs of one SR and one publication which is not included in it.
In addition, each training example must be enriched with one set of features
for each publication property; these features are the likelihoods of relevance.
To evaluate ContReviews the publication properties used are: title, abstract,
authors and citations network (as previously discussed in Section 3.4.2, the
set of publication properties is not limited to these). However, these prop-
erties are provided by CRs in text format, which is not ideal to construct
a robust dataset for training and testing. In fact, while title and abstract
are inherently textual properties, citations and authors must be managed as
entities. The following cases could apply:

• The same author is reported on different studies with a different name
or different authors are reported on different studies with the same
name. For example, it is subtle to determine if ‘J Thomas’ and ‘JD
Thomas’ refer to the same author, which requires explicit disambigua-
tion (e.g., considering the e-mail or the associated University).

• Citations often exist in different versions, e.g., the same work could
have been first presented to a conference, then released as a pre-print
and finally published in a journal. The research is the same, but it
might be subtle disambiguate references to it. In fact, for example, the
title might have been slightly changed.

To disambiguate citations and titles the AKG could be used. In fact, it
provides de-duplicated and indexed entities and a schema with formal re-
lationships between them. For example, the author ‘James Thomas’ from
the ‘University College London’ is an entity and publications authored by
him reference that entity in a non ambiguous manner. From another angle,
all the publications included in the AKG are indexed and, among others,
have a title, an abstract, cited publication references, and author references.
Thus, the AKG is an ideal resource to collect in a robust manner the publi-
cation properties required by ContReviews (i.e, title, abstract, authors, and
citations network). To do so, the publications in CRs are matched to those
maintained in the AKG. i.e., OpenAlex [1]. OpenAlex provides APIs 1 which
make it easy to run structured queries against its content. Specifically, some
properties of the publications in the CRs (i.e., title, journal, authors, volume,

1https://docs.openalex.org/#access
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Table 5.1: Statistics about train and test datasets: number of SRs and
their included publications.

Train dataset Test dataset
CR-5 CR-40 CR-5 CR-40

Num. SRs 6395 699 6395 699

Num. sub-domains 52 52 52 52

Tot num. publications per SR 141240 45636 22955 4800

Min num. publications per SR 3 3 2 2

Avg num. publications per SR 22 65 3 6

Max num. publications per SR 596 363 10 10

issue, pages and DOI) are used to formalize and run OpenAlex queries, and
retrieve corresponding publications.

As a consequence of matching publications from CRs to OpenAlex, a new
set of publications is obtained. Each of them is associated to the SRs it is
included into, its properties and the publication date (which is useful to split
train and test publications). From this new set of publications, two distinct
datasets are obtained; they are denoted as CR-5 and CR-40, corresponding
to all the SRs from CRs including respectively at least 5 publications and 40
publications (Table 5.1 reports some statistics). Specifically, CR-5 is useful to
evaluate ContReviews with both small and large SRs, and CR-40 to compare
ContReviews to state of the art methods. In fact, as previously discussed
in Section 2.2.3, state of the art methods for abstract screening leverage one
model per SR, requiring enough publications to support model training.

5.1.2 Train and Test Datasets

To evaluate ContReviews, CR-5 and CR-40 are split in two datasets, one
used for training and one for testing (Table 5.1). The test dataset is used to
simulate the set of new publications that, in reality, would be provided by
the academic knowledge graph (AKG). In fact, it is not feasible to get test
publications from the AKG directly, because determining their actual ‘label’
would require excessive manual work.

To discriminate which publications to use for training and which one
for testing, the date of publication is used: the most recently published
publications in each SR are used to construct the test dataset, while the
others are used for training the relevance assessment function model. The
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rationale to consider the most recent publications for testing is preserving the
temporal order of publications. This is particularly relevant for the citation
network. In fact, the older publications do not reference the newer ones,
thus, having them in the test dataset would cause missing key references to
the living evidence in the training dataset.

The elements of each dataset are relative to one publication and one SR;
moreover, they comprise the features (i.e., the likelihoods of relevance, as
introduced in Section 3.4.2) and the binary label. The latter holds True
if the publication is relevant to the SR (positive publications), and False
otherwise (negative publications).

The date of publication can be extracted from the AKG together with the
other publication properties: for each SR, the most recent 10% of publications
are used for testing, and the rest is used for training. Positive publications
can be easily generated by simply considering the publications included in
the SRs. Instead, CR-5 and CR-40 do not comprise any negative publication;
thus, they are artificially generated by simply considering that publications
included in one SR can be taken as negative publications for other SRs.

To have enough differentiation an additional source of negative publica-
tions has been used, that is a set of health care related publications not
included in any of the considered SRs in CRs (external publications). The
rationale behind using external publications is that the considered SRs from
the CRs do not cover the entire domain of health care, and so do all the
CRs. Thus, there will be some health care related publications which are
not relevant to any of the SRs in the living evidence. The relevance assess-
ment function model must correctly manage the inference for those profiles
of research which are not comprised by the considered SRs.

The test datasets for CR-5 and CR-40 are generated as follows.

• Up to the 10% newest publications included in each SR are considered
as positive publications; and, to be realistic, they are constrained to
be at least 2 and at maximum 10 per SR. Each of them, together with
the SR they are taken from, constitutes an element in the test dataset
with a positive label.

• For each positive publication, 25 negative ones are sampled from the
external publications; the SR which includes the positive publication
together with each one of the external publications constitute an ele-
ment in the test dataset with a negative label.

68



The rationale of this setting is to simulate a realistic stream of new publica-
tions, where most of them are irrelevant to the SRs in the living evidence (in
fact, they are sampled from external publications) and only few of them are
relevant for each SR.

The training datasets are generated in a similar manner. The positive
publications are constrained to be at maximum 75 per SR, to streamline
computational efficiency; moreover, 10 negative publications every positive
one are also sampled from the other SRs. Conversely to the test dataset,
where negative publications are external to CRs, the negative publications
in the train dataset are sampled from other SRs within CR-5 and CR-40: this
is specifically purposed to support the calculation of likelihoods of relevance.
We briefly recall that, as detailed in 3.4.2, a likelihood of relevance reflects the
degree of relevance of one publication to a SR relatively to the relevance of
other publications (positive and negative). To make likelihoods of relevance
effective, their calculation should involve a set of publications that are similar
to each other, hence, we have sampled them from within CR-5 and CR-40.

5.2 Learning the Relevance Assessment Func-

tion

To learn a relevance assessment function for the content-based recommenda-
tion model, a binary classification model is trained using the dataset intro-
duced in the previous section. The elements of this dataset correspond to
pairs of one publication and one SR, and they comprise the model’s features
(i.e., the likelihoods of relevance) and the binary label. In this section the
actual calculation of likelihoods of relevance and the training procedure are
discussed.

5.2.1 Calculating the Likelihoods of Relevance

Calculating the likelihoods of relevance involves obtaining property-specific
vector representations of publications and SRs, as formalized in Section 3.4.2.
These vector representations are obtained as follows, depending on the spe-
cific publication property they are based on:

• Binary vector representations based on authors and citations : vocabu-
laries of authors and citations are constructed from de-duplicated au-
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thors and citations provided by OpenAlex. The vocabularies are di-
rectly used to construct the binary vector representations.

• Bag of words of titles and abstracts : text pre-processing operations are
applied to titles and abstracts, i.e., lower-casing language expressions,
removing stop-words, and tokenizing over uni-grams. All the uni-grams
obtained from all the publications in all the SRs are used to construct
a vocabulary of terms, which is directly used to construct the vectors
of TF-IDF scores.

• Title and abstract embeddings : different language models are used, i.e.,
SciBERT pre-trained, SciBERT fine-tuned for abstract screening, and
LongFormer fine-tuned for semantic similarity.

5.2.2 Training the Relevance Assessment Function Model

A binary classification model is used to learn a relevance assessment function
for the content-based recommendation model. The classification model is
based on LightGBM [73], which is an implementation of the Gradient Boost-
ing Decision Tree (GBDT) ML algorithm [74]. We trained a LightGBM
model.2 The classification model is trained over the training set previously
introduced in this chapter: its elements regard pairs of one publication and
one SR, and comprise their likelihoods of relevance and a binary label rep-
resenting relevance. As discussed in Section 5.1.2, the train dataset holds 10
negative publications for each positive one: to avoid any issue related to class
imbalance, the negative publications are downsampled as suggested by [19].

5.3 Evaluation

The evaluation was conducted using the datasets and the training method-
ology described in Section 5.1.2. ContReviews performance is compared to
two baseline models in terms of precision and recall, as described in details
below. The evaluation results are reported in Table 5.2.

2https://lightgbm.readthedocs.io/en/stable/
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5.3.1 Baseline

As motivated in Section 2.3, common evaluation metrics and benchmarks in
the context of living evidence are not available; thus, two baseline models was
developed over the CR-40 dataset. The first baseline model is inspired by the
one proposed in [12], which is based on the similarity between the embeddings
of publications and the embeddings of SR eligibility criteria (which are still
language expressions). Instead of the eligibility criteria, the first baseline uses
publication abstracts: specifically, the embedding of a SR is constructed as
the average of the embeddings of its included publication abstracts. This is
coherent with the content-based recommendation model that the baseline is
meant to be compared with, which represents SR with the same strategy.

The second baseline model follows the abstract screening methods pro-
posed in several studies at the state of the art [19, 38, 41, 43], where relevance
is seen as the result of a binary classification model over the embeddings of
publication abstracts. Specifically, the second baseline uses one binary clas-
sification model for each SR, which leverages the embeddings of abstracts as
features to infer relevance to its target SR. To be coherent with the relevance
assessment function model, based on the LightGBM algorithm as discussed
in Section 5.2, the second baseline model also uses LightGBM.

5.3.2 Evaluation Metrics

To assess evaluation performance the classification metric of precision with
recall of (at least) 97% is used, as proposed in [19, 38, 41, 43] (note that
these works mostly consider 95% as the evaluation recall threshold; however,
97% is a more challenging objective). This is because the priority for SR
updating is to capture all the relevant publications (that is, recall should be
as high as possible); and, although precision can be sacrificed in the name
of high recall, achieving good precision is still desirable to lower the number
of new irrelevant publications recommended to reviewers and, ultimately, to
reduce the amount of manual work.

To calculate precision and recall for SRs, the following procedure is ap-
plied to each individual SR:

• for each publication in the SR’s test dataset, the likelihood of relevance
to the target SR is calculated;

• initially, all the test publications are considered included in the target
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SR, regardless of their likelihood of relevance;

• all the new publications are sorted ascending by their likelihood of
relevance to the target SR;

• starting from the one with the lowest likelihood of relevance, the new
publications are excluded from the target SR one by one;

• precision and recall are computed and recorded at each step of the
above process;

• a threshold of 97% over the recall is considered to chose the best per-
forming step; and

• the actual precision and recall (which will be between 97% and 100%)
are recorded for the target SR.

The rationale behind this approach is that a living evidence model should
perform well for all the SRs it contains; thus, it is interesting to monitor
the distribution of precision and recall over all the SRs, rather than one
single value aggregating all the SRs. In more detail, the latter scenario
would correspond to having one single confusion matrix, aggregating all the
prediction operations over all the SRs. This would make it difficult to analyze
the model’s performance in relation to SR characteristics. The proposed
approach, instead, is based on one confusion matrix per SR which means
the following for each SR: (i) the SR test publications are scored with a
model, and a likelihood of relevance is obtained; (ii) all the most relevant test
publications are taken until the recall threshold (i.e., 97%) is reached; and
(iii) the precision value provides an indication of the fraction of the taken
publications that are irrelevant. This approach supports decision making,
such as:

• for each SR, find the best threshold in the test phase and use it for
inference;

• obtaining a measure of the model’s accuracy for each SR, to assess the
reliability of recommendations at inference time;

• identify the low-performing SRs and take correction actions (e.g., man-
ually seed additional publications);
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• profile the characteristics of the good performing SRs (e.g., the number
of included publications) and use them to profile the ones which are
ready to be included in the living evidence; and

• report and monitor the quality of the living evidence.

5.3.3 ContReviews Evaluation

Evaluation results are reported in Table 5.2, in terms of the evaluation met-
rics introduced in the previous subsection:

• ContReviews@lGBM refers to the ContReviews content-based recom-
mendation model, using LightGBM as the relevance assessment func-
tion model; as model features it uses the bag of words and the embed-
dings of publication textual properties (title and abstract) and binary
vector representations of entities (authors and citations);

• similarity@eABST refers to the first baseline model, i.e., the one us-
ing cosine similarities between embeddings of publication and SR ab-
stracts);

• classification@eABST refers to the second baseline model, i.e., the one
using SR-specific binary classification models for abstract screening.

The baseline models leverage both the pre-trained SciBERT language
model and its fine-tuned version. The notations pt and ft are used to express
when the pre-trained or the fine-tuned version of the embedding model is
used. Specifically, the fine-tuned embedding model is trained with the ab-
stract screening task (i.e., SR prediction from abstracts), that is described
in Section 4.2.1.

The ContReviews content-based recommendation model is trained and
tested with both the CR-40 and CR-5 datasets. Instead, the classifica-
tion@eABST baseline results are only reported for the CR-40 dataset. In
fact, to train one abstract screening model per SR (which is the case for
the baseline using LightGBM), a minimal number of publications should be
available: to this aim, 40 publications per SR are empirically considered as
that minimal number, and both the baseline models have been reported for
the CR-40 dataset only.
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Table 5.2: Average precision and recall over all the SRs. The closest recall
to 97% is specifically considered. The standard deviation refers to precision.

Dataset Avg precision Avg recall Std Dev

classification@eABST (pt) CR-40 0.115 0.981 0.202
classification@eABST (ft) CR-40 0.211 0.982 0.356

similarity@eABST (pt) CR-40 0.065 0.981 0.092
similarity@eABST (ft) CR-40 0.227 0.981 0.372

ContReviews@lGBM CR-40 0.974 1 0.086
ContReviews@lGBM CR-5 0.981 1 0.086

Description of Evaluation Results

Results show that ContReviews achieves average precision above 97.4% with
recall of 100% with both datasets; instead, both the baseline models (clas-
sification@eABST (pt) and classification@eABST (ft)) achieve recall greater
than 97% as ContReviews does, but at the price of precision being signif-
icantly lower. As discussed, lower precision rates correspond to an higher
amount of irrelevant publications recommended to reviewers, triggering ad-
ditional human labour.

Moreover ContReviews shows better standard deviation over SR precision
values, meaning that the average precision is more regular compared to the
base models. Note that the latter have much higher standard deviation,
except similarity@eABST (pt) which, however, achieves the lowest precision.

In addition, Table 5.3 reports the statistics about the gap in precision
between ContReviews and the baseline models. It shows that for a small
fraction of SRs (i.e., the % worst column is less than 4%) the baseline models
perform better than ContReviews in terms of precision with recall grater than
95%. However, ContReviews still achieves precision values above 86% (Avg
precision column), though the gap with the baseline model is consistent (Avg
gap column is less than 12%). Moreover, shifting the threshold over recall
from 95% to 97%, ContReviews beats the baseline models for all the SRs.

Figure 5.1 shows descriptive statistics about the results summarized in
Table 5.3. Specifically, it uses candlesticks3 to display the precision values for
each SR, and represent them for both ContReviews@LightGBM (precision y)
and the best baseline model (precision x ). In addition, their gap (delta p)

3https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.boxplot.

html#matplotlib.pyplot.boxplot
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Table 5.3: Statistics about the gap in precision between the baseline models
and ContReviews, with the CR-40 dataset. % worst of all the SRs perform
better with the baseline models; for them ContReviews achieve average pre-
cision as of Avg precision with a gap to baseline models as of Avg gap.

Model Threshold % worst Avg precision Avg gap

classification@eABST (ft) 0.95 3.15% 0.867 -0.113
similarity@eABST (ft) 0.95 3.78% 0.870 -0.106

classification@eABST (ft) 0.97 0% na na
similarity@eABST (ft) 0.97 0% na na

Figure 5.1: Candlesticks of precision with recall of 95%, for similarity@eABST (ft) (left-
most), ContReviews@LightGBM (center) and their gaps (rightmost). The box extends
from the first quartile to the third quartile of the precision points, with a line at the me-
dian; and the whiskers extend from the box to the farthest data point lying within 1.5x the
inter-quartile range from the box. Outlier points are those past the end of the whiskers.

is also shown. The candlesticks show that the inter-quartile range of both
models (that is, the precision points between the first quartile and the third
quartile) collapsed around their median value; and that the SRs achieving
better precision with the baseline model are outliers.

Compared to the bare mean values in Table 5.2, the candlesticks provide
a better intuition about the performance of ContReviews compared to the
baseline models. However, it is required to formally confirm that the differ-
ence between the means is statistically significant. To this aim a statistical
significance test was used, to check the default expectation (‘null hypothesis’
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Figure 5.2: The distributions of the values of precision with recall of 95%, for the baseline
model similarity@eABST (ft) (precision x ) and ContReviews (precision y.

or ‘status quo’) that both samples of precision values were drawn from the
same population. Failing to reject this hypothesis means that there is no sig-
nificant difference between the means, i.e., they are different by chance, and
so it is the observed difference in performance between the baseline mod-
els and ContReviews. Thus, the objective of this test is to reject the null
hypothesis.

Figure 5.2 displays the distribution of the precision values for the base
model (left) and Contreviews (right), which intuitively shows that the means
come from different populations and their difference is meaningful. To pro-
vide a statistical proof, two steps were undertaken. First, a statistical test4

rejected the null hypothesis that the data samples follow a normal distri-
bution. Second, given there is not normal distribution of data samples, the
Kolmogorov-Smirnov5 two-sided test was used to check the null hypothesis
that two independent samples are drawn from the same continuous distribu-
tion. The test rejected the null hypothesis, hence, the means of the baseline
model and ContReviews are drawn from different populations, and their dif-
ference is statistically meaningful.

An interesting question would be if there is any variable affecting this

4Python function ‘normaltest’, https://docs.scipy.org/doc/scipy/reference/

generated/scipy.stats.normaltest.html
5Python function ‘ks 2samp’, https://docs.scipy.org/doc/scipy/reference/

generated/scipy.stats.ks_2samp.html
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Figure 5.3: Scatter plot of SRs, by their gap in precision (between ContReviews and
similarity@eABST (ft)) and their size (i.e., number of included publications).

difference between the means. Specifically, the question is whether the size
of the SR affects the precision of the inference. To this aim the chart in
Figure 5.3 was plotted, which displays one point per SR by the coordinates of
the gap in precision at 95% recall (delta p) and the SR size (train size). The
chart empirically shows no correlation exists between the observed variables.

The same conclusion can be drawn by calculating the Kendall’s Tau,6

which is a measures of the non-parametric rank correlation between to vari-
ables. The value of Kendall’s Tau between the SR size (train size) and the
gap in precision (delta p) is -0.5176, which confirms the two variables are
not dependent. Note that the Kendall correlation is similar to the Spearman
correlation, however, it measures the dependence of two variables, which is
a broader concept than correlation. On one hand, dependence refers to the
relationship between two variables, where the value of one variable directly
affects the value of the other. On the other hand, correlation measures the
strength and direction of the linear relationship between two variables.

Finally, ContReviews shows good adaptation to large datasets with small
SRs, i.e., CR-5 holds 6000+ SRs with 22 publications included in average,
with some of them having a few publications included. The chart in Fig-
ure 5.4 shows the trend of precision with recall of 100% for SRs with up to

6https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.

DataFrame.corr.html
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Figure 5.4: ContReviews precision with recall of 100%, obtained with the CR-5 dataset.
Data points are plotted for SRs with 50 publications included at maximum, in bins of size
5. For each bin, the average precision is shown.

50 publications included, being above 86%. The trend of precision leans to
be even better with small SRs and, considering the SRs with more than 50
publications included (which are not shown in the chart), the trend tends to
be less regular.

A possible explanation is twofold. Large SRs occur less often and those
with unusual precision values stand out more clearly. On the other hand,
extremely large SRs (i.e., those with hundreds of publications included) tends
to be more generic, and the task of inferring relevant publications becomes
intrinsically more difficult. Hence, a possible interpretation of this analysis is
that ContReviews performs well where the SRs are truly more selective, and
inevitably less well where the SRs are more generic. On the contrary, the
traditional models (which are based on SR-specific machine learning models,
i.e., they are trained on each SR) prefers large SRs, which is where the very
efficient inference is truly more difficult to obtain.

5.4 Ablation Studies

To assess the evaluation results introduced above, we focus on (i) the con-
tribution of re-scaling the cosine similarities when calculating likelihoods of
relevance, as illustrated in Section 3.4.2; (ii) the contribution of using mul-
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tiple publication vector representations; and (iii) using different pre-trained
language models and fine-tuning techniques. To this aim, a simplified version
of ContReviews—that is called single property model—is introduced.

5.4.1 Definition of Single-property Models

Single-property models are simpler ContReviews content-based recommen-
dation model, which are based on a single publication property. Thus, they
can only count on a single likelihood of relevance, which corresponds to the
considered publication property. This likelihood of relevance is directly used
to assess the relevance to SRs.

For example, the single property model using embeddings of abstracts
would infer one publication relevance to one SR as follows: the embedding
of the publication abstract is obtained; it is then matched to the one of the
SR, and a similarity score is obtained through the cosine similarity function
(recall that the SR’s embedding is obtained as the average of the abstract
embeddings of its included publications); the cosine similarity is re-scaled
and one likelihood of relevance is obtained; then the likelihood of relevance is
immediately used as the final likelihood of relevance between the publication
and the SR.

5.4.2 Re-scaling Cosine Similarities

To assess the importance of re-scaling the cosine similarities two models are
compared: one (ContReviews@eABST (ft) in Table 5.4) is a single prop-
erty model based on embeddings of abstracts; the other one is the baseline
model similarity@eABST reported in Table 5.2). Note that these two mod-
els only differ because the former re-scales cosine similarities to obtain likeli-
hoods of relevance, while the latter uses absolute cosine similarities. ContRe-
views@eABST (ft) largely outperforms similarity@eABST (with or without
fine-tuning), that is, re-scaling similarity scores is effective. Moreover, we
also report in Table 5.4 the evaluation results for other single property mod-
els (i.e., sABST, sTITL, sCITA, sAUTH ): they all outperform the baseline
models in Table 5.2, showing effectiveness of re-scaling.
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Table 5.4: Evaluation results for models using one single property, in terms
of precision with recall of 0.95 or greater. The notion of P(R) is used, where
P and R respectively are the precision and the recall. ContReviews@feat
uses one single property, using the identity deterministic relevance assess-
ment function. feat can be embeddings of abstracts (eABST ), bag of words
representation of abstracts (sABST ), embeddings of titles (eTITL) or binary
representations of citations (sCITA) and authors (sAUTH ).

Model Dataset Mean - P(R) Std dev - P(R)

ContReviews@eABST (ft) CR40 0.964 (0.981) 0.11 (0.036)
CR5 na na

ContReviews@sABST CR40 0.944 (0.981) 0.131 (0.036)
CR5 0.919 (0.995) 0.175 (0.02)

ContReviews@sTITL CR40 0.875 (0.981) 0.216 (0.364)
CR5 0.87 (0.995) 0.232 (0.19)

ContReviews@eTITL (ft) CR40 0.953 (0.981) 0.132 (0.036)
CR5 0.881 (0.995) 0.222 (0.02)

ContReviews@sCITA CR40 0.517 (0.981) 0.470 (0.036)
CR5 0.623 (0.995) 0.461 (0.02)

ContReviews@sAUTH CR40 0.191 (0.981) 0.349 (0.036)
CR5 0.173 (0.995) 0.334 (0.02)

5.4.3 Using Multiple Properties

To assess the effectiveness of using multiple vector representations, the Con-
tReviews content-based recommendation model (ContReviews@lGBM (ft) in
Table 5.2) is compared to the single property models (ContReviews@eABST
(ft) in Table 5.4). The difference between these two models is clearly that
the former uses all the available publication properties and a relevance as-
sessment function is learnt from their corresponding likelihoods of relevance.
Instead, as introduced above, the single property model only uses one sin-
gle publication property. The former achieves the best results over all the
evaluation tests, showing that using an ensemble of vector representations is
effective.

Indeed, single property models, especially those using textual features,
achieve competitive average results and are more computationally efficient.
However, their standard deviation is considerably higher, suggesting they are
less regular across all the SRs.
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Table 5.5: Evaluation results for different embedding models.

LightGBM Cosine similarity

Model Method Precision Recall Precision Recall

SciBERT Pooler 0.073 0.979 0.046 0.979
pre-trained Average 0.141 0.979 0.213 0.979

SciBERT Pooler 0.209 0.979 0.213 0.979
fine-tuned Average 0.213 0.979 0.218 0.979

LongFormer Pooler 0.134 0.976 0.072 0.976
pre-trained Average 0.129 0.979 0.058 0.979

LongFormer Pooler 0.212 0.979 0.212 0.979
fine-tuned Average 0.167 0.979 0.091 0.979

5.4.4 Using Different Embedding Models

Multiple embedding models have been evaluated on their ability to infer new
publications relevance to SRs in a living evidence, as reported in Table 5.5.
SciBERT and LongFormer are used as base models. For both of them, the
CR-40 dataset was used to provide fine-tuning data. Moreover, SciBERT
was fine-tuned for SR prediction (multi-class/multi-label classification), while
LongFormer was been fine tuned for semantic similarity. To obtain abstract
embeddings two methods have were used, respectively denoted as pooler and
average in Table 5.5: the first one considers the token trained to represent
the entire input sequence; the second one averages the embeddings of all
the input sequence’s tokens. Two inference algorithms were considered: the
first one is a binary classification model (i.e., LightGBM, similarly to the
previous evaluations) using the input sequence embeddings as features; the
second one simply uses the cosine similarity between the SR’s embeddings
and the publications embeddings and a threshold for classification.

Based on the evaluation results reported in Table 5.5, the following ob-
servations can be made.

• Almost all fine-tuned models achieve consistent performance: the base-
model, the fine-tuning task and the evaluation model do not seem to
be important to determine the quality of the obtained embeddings, at
least in regard to the SR updating task.

• The fine-tuned model based on LongFormer and the average method
for calculating sentence embeddings is the only one that performs worse
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than the other fine-tuned models, but it still does better than the pre-
trained ones. The averaged embeddings, in this case, are affected by a
local attention mask. That is: each token only attends to its neighbor-
hood tokens, not to the whole sequence. In other words, attending to
whole sequence seems to be an important factor.

• All the fine-tuned models significantly out-perform their pre-trained
versions, showing the importance of fine-tuning on the living evidence
data.

Based on these observations, the conclusion that can be drawn is that the
most important factors to obtain high quality embeddings, in relation to the
SR update task, is to fine-tune with SRs data and using global attention.
Surprisingly, the ability to process the entire input sequence did not appear
to be relevant. Certainly, LongFormer with global and local masks is much
more computational expensive compared to the smaller SciBERT, although
the latter obtained comparable performance.

5.5 Final Remarks

This chapter discussed the evaluation results of ContReviews, based on two
large datasets obtained from 6000+ Cochrane Reviews. The first dataset
(named CR-5) comprises all the Cochrane Reviews with at least 5 publica-
tions included. The other one (named CR-40) uses Cochrane Reviews with
at least 40 publications included.

ContReviews was evaluated over both datasets, using all the available
publication representations, i.e.: embeddings and bag of words of title, em-
beddings and bag of words of abstracts, binary representations of authors,
binary representations of citations. ContReviews reported precision above
97% and near-perfect recall with both datasets.

These performance metrics were compared to two baseline models: one
using semantic similarity between publications and SRs embeddings of their
abstracts, and the other one using a SR-specific binary classification model
based on the embeddings of abstracts of the included publications. For the
same level of recall (i.e., above 97%), ContReviews reported much better
precision.

Finally, ablation studies were also reported: (i) re-scaling of likelihoods of
relevance provides the greatest improvement over precision; (ii) representing
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publications by means of multiple features of themselves provides a modest
improvement over precision; (iii) the best contribution to embeddings is given
by fine-tuning over the living evidence data, while using more sophisticated
fine-tuning tasks and encoding longer input sequences does not provide any
benefits.

The next chapter provides some details about the system architecture
and implementation.
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Chapter 6

ContReviews Implementation
and Architecture

ContReviews is implemented in Python and provided as a Python package
for simple installation and usage. Unit tests are provided to simplify main-
tenance and change management. Integration tests are also provided. The
ContReviews package can be run on a laptop computer for development and
test purposes, provided the size of data is reasonable. For example, integra-
tion tests use 5 SRs with about 50 publications included and a full run takes
some minutes. Instead, as argued below, running with full sized living evi-
dences requires parallel processing over cloud resources and can take many
hours.

The ContReviews package provides several classes, the most important
ones are the Encoder class and the VEM class (Vectors Ensemble Model).
The former provides the publication vector representations, which are based
on bag of words, embeddings and binary vectors; the latter provides the
grounding of a SR, which comprises the SR’s vector representations and
the supporting data needed to calculate the likelihoods of relevance (i.e.,
the cosine similarities for the SR’s positive publications and for a sample of
negative ones).

Input data consists of publication records, which comprise the publication
ID, the SR ID, the title, the abstract, a list of comma-separated author IDs,
a list of comma-separated citation IDs and the date of publication. These
publication records are extracted from OpenAlex and fed to the ContReviews
classes as a TSV file. Note that this file can be constructed in any way, al-
though the use of academic knowledge graphs was motivated in Section 5.1.1.
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The ContReviews package leverages several typical Python packages and
frameworks; among the others, the following are particularly relevant: the
Scikit Learn package1, to construct publication vector representations based
on entities and bag of words; the Hugging Face transformers package2, to
work with different pre-trained and fine-tuned embedding models; the Pandas
package3, to construct the various involved datasets for training and testing.

6.1 Operating ContReviews

Running ContReviews over a living evidence requires to training the system
once and run it for inference every time new publications are provided by
the academic knowledge graph. Sometimes, tests must also be conducted as
described in Chapter 5.

To train ContReviews over a living evidence, the following operations are
necessary:

• match the SRs in the living evidence to OpenAlex to obtain, for each
SR, the disambiguated publications;

• ground the SRs in the living evidence by means of the VEM class, as
introduced above;

• generate features for the relevance assessment function model (i.e., like-
lihoods of relevance);

• train the relevance assessment function model.

As discussed in more details in Section 6.3, running ContReviews over
large living evidences require cloud resources to support parallel processing.
To this aim, the Azure Machine Learning4 platform has been used. This
cloud platform provides (among the others) cloud storage, cloud compute
resources (i.e., CPUs, GPUs and clusters), convenient abstraction layers and
tools to run data science software in a reliable, repeatable and observable
manner.

1https://scikit-learn.org/stable/modules/generated/sklearn.feature_

extraction.text.TfidfVectorizer.html
2https://huggingface.co/docs/transformers/model_doc/auto
3https://pandas.pydata.org/
4https://learn.microsoft.com/en-us/azure/machine-learning
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To use ContReviews for inference, the following operations are necessary:

• collect the new (disambiguated) publications from OpenAlex;

• perform citation screening for each SR in the living evidence to obtain
a reduced list of new candidate publications for each SR;

• obtain likelihoods of relevance, for each SR and its candidate publica-
tions;

• predict relevance using the relevance assessment function model.

The citation screening step is required to reduce the amount of new pub-
lications passed to the content-based recommendation model. In fact, the
academic knowledge graph provides domain-independent new publications
which, in large part, are completely irrelevant to the entire living evidence.
This first layer of screening, does not actually require the complexity of the
full ContReviews system and the computation of likelihoods of relevance for
multiple publication features. To this aim, each new publication is scored in
two steps for relevance to SRs: (i) first, citation screening is applied through
the ‘single property model’ based on bag of words of title and abstract (see
Section 5.4.1), (ii) then, abstract screening is applied to the abstracts result-
ing from the previous step, through the ContReviews relevance assessment
function model. Note that only the latter scoring operation requires comput-
ing all the likelihoods of relevance. On the other hand, the former scoring
operation is much less computational expensive as it simply concerns cal-
culating the likelihood of relevance for one single property and filter out
publications by means of a convenient threshold.

The objective of citation screening is achieving recall of 100% without
any specific requirement for precision. In fact, its aim is simply to discard all
the completely and clearly irrelevant publications for each SR (which are the
majority), leaving to the ContReviews content-based recommendation model
the task to perform the actual recommendations.

A more interesting approach to citation screening would make use of a
vector database: (i) the embeddings of all the new publication abstracts are
stored and indexed into the vector database; (ii) SRs are used to query the
vector database by means of their aggregated abstract embeddings, which is
available as part of their grounding data (i.e., their associated VEM object);
(iii) finally, the top k results are taken for each query. Different SRs would
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benefits from a different value of k. In fact, the most recent and active SRs
(for example, those relevant for ‘the Covid’) would benefit from an higher
value compared to the oldest and slower ones which might have very few
relevant studies in a whole year. A good reason of adopting this approach
would be to permanently store publication abstract embeddings for multiple
and different purposes. For example, older publications could be searched
anytime to start new SRs, clusters of publications could be compared to
existing SRs to monitor their alignment, clusters of publications could be used
to monitor topics and their evolution over time. More generally speaking,
organizations maintaining living evidences are actually information driven
organizations and their ability to conduct analysis on their information assets
(i.e., the scientific publications) is important.

6.2 Reproducibility

The above operating workflows to train ContReviews and perform inference
are run within reproducible pipelines, as shown in Figures 6.1 and Fig-
ure 6.2. A pipeline makes it easy to monitor execution, to scale it over
compute clusters, to re-run pipelines with different parameters and to log re-
sults. Using pipelines is an important ability within the ‘ML-Ops’5 strategy.
‘ML-Ops’ platforms aim to achieve reproducibility of results in several
manners, one of which is being able to re-run pipelines multiple times with
reproducible results and reliable execution with changing parameters. For
example, when a new version of a living evidence is available, for example
because some SRs have been updated, the pipeline to train ContReviews
is re-run with the new input data and it will produce new outputs. Re-
running a pipeline is assured to run without any accidental modification or
side effect compared to the previous runs. Another example is performing
evaluation, when the system is run multiple times with different model pa-
rameters: pipelines allows to quickly set new parameters and run the system
in a reliable manner.

In addition, pipelines log results within a MLFlow6 database, as shown
in Figure 6.3 and Figure 6.4. This is particularly useful for observability,
meaning that results of pipelines must be discoverable with ease, for the

5‘ML-Ops’ is a shortcut for ‘machine learning operations’, which is conceptually derived
from the acronym ‘Dev-Ops’, i.e., ‘development operations’.

6https://mlflow.org/
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Figure 6.1: A list of executed pipeline jobs to support the lifecycle of the ContReviews
system.

Figure 6.2: A pipeline workflow for instantiating the ContReviews system.

purpose of consulting older evaluations, compare them with newer evalua-
tions or simply share them. Observability provides an important aspect of
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Figure 6.3: Pipeline stages report their metrics, for reproducibility and observability.
Metrics are stored in a query-able MLFlow database for discoverability.

Figure 6.4: Pipeline stages track the code they had executed, for reproducibility and
observability.

reproducibility of results.
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6.3 Scalability and Computational Efficiency

Running ContReviews is resource intensive, especially with large living ev-
idences. The ‘VEM class’ participates to all the ContReviews phases: it
grounds SRs and their supporting data; it constructs the likelihoods of rele-
vance to train and test a relevance assessment function model; and it com-
putes the likelihoods of relevance for the new publications to run inference. In
all of these cases, for each pair of a publication and a SR, a VEM object per-
forms some core operations, which consist in constructing publication vector
representations, computing cosine similarities between them and re-scaling
these cosine similarities to compute likelihoods of relevance. This core com-
putational engine needs to be scalable over the SRs in a living evidences,
which can comprise tens of thousands of them.

For example, grounding SRs in the evaluation experiments illustrated in
Chapter 5 over the CR-40 dataset, the core operations are performed for
about 6000 SRs, up to 825 publications per SR (positive and negatives) and
6 vector representations. This leads to about 30M sets of core operations,
which produce about 30GB as an aggregated memory footprint (i.e., about
5MB per SR). Table 6.1 reports some statistics about the execution time and
the computing infrastructure. Note that publication vector representations
could be reused multiple times, i.e., at least once for positive publications and
several times as negative publications. Thus, a caching strategy is of great
help to improve computational efficiency; however, caching is hindered by the
large memory footprint, which could cause run time errors if not managed
properly.

A VEM object grounds one single SR, thus, different SRs can be run in
parallel to scale out ContReviews operations. In addition, each SR operates
independently on all the others, that is, there is no need for one SR to
access to other SRs’ grounding data. In terms of parallel processing this
means that there is one thread for each SR and threads do not need to
synchronize with each other to exchange grounding data. Thus, ContReviews
scales linearly with the number of SRs. Provided enough computational
resources are available, ContReviews latency for grounding, training, testing
or inference operations is the one of its largest SR. However, new publications
are provided by academic knowledge graphs on a weekly or bi-weekly basis,
thus, it is debatable how much it is worth using extremely large clusters to
finish a computation quickly.

Some additional efforts might lead to better computational efficiency.
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Size of living evidence
Num. SRs 6395
Num. included publications in total 169790
Num. included publications per SR (mean) 25

Grounding
Num. positive grounding publications per SR (mean) 22
Num. negative grounding publications per SR (mean) 220
Fitting vectorizers (exec. time) 52 min
Grounding SRs (exec. time) 2h 50 min

Relevance assessment function model
Computing likelihoods of relevance w/ embeddings (exec. time) 4h 16 min
Training (exec. time) 36 min

Testing
Num. positive test publications per SR (mean) 2
Num. negative test publications per SR (mean) 50
Computing likelihoods of relevance w/ embeddings (exec. time) 4h 44 min
Computing likelihoods of relevance no embeddings (exec. time) 1h 42 min

Table 6.1: Execution time and publication statistics for the evaluation ex-
periments reported in Chapter 5 over the dataset named CR-5. A 8-nodes
cluster was used, each node being a virtual machine with 16 CPU cores and
32 GB RAM. Training the relevance assessment function model was done
with an Auto-ML platform.
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Specifically, vector representations of entities are large and highly sparse:
for example, there are tens of thousands of authors and even more citations
in the considered living evidence, and each publication has, say, about less
than 10 authors and 100 citations. On the contrary, embeddings and bag
of words based vectors are much denser and less sparse. Thus, adopting a
solution for embedding authors and citations might help to improve com-
putational efficiency. In addition, the publication vector representations are
stored within Python lists and dictionaries, and loops are used to calculate
the cosine similarities. A potentially more efficient solution, especially if
paired with embedding entity vector representations, would be to store vec-
tor representations as numpy arrays7 and use optimized matrix operations.
However, beside computational efficiency, using embeddings might lead to
loosing precious information, thus, they need extensive testing.

6.4 Embeddings

PyTorch8, a machine learning framework to build and train neural networks,
is used to implement the ContReviews embedding model. Moreover, the
Hugging Face transformers library9 is used as an abstraction to instantiate
neural language models and tokenize language expressions. Hugging Face
also provides a community hub10 to share many pre-trained and fine-tuned
language models, including SciBERT and LongFormer.

As discussed in Chapter 4, ContReviews considers the following embed-
ding models:

• SciBERT [57] pre-trained;

• SciBERT fine-tuned for the abstract screening task over Cochrane Re-
views;

• LongFormer [2] fine-tuned for the semantic similarity task over Cochrane
Reviews.

Compared to the SciBERT-based models, the LongFormer-based model
requires more resources: first, LongFormer can process longer input se-

7https://numpy.org/
8https://pytorch.org/
9https://huggingface.co/docs/transformers/index

10https://huggingface.co/models
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Figure 6.5: Training and evaluation loss for fine-tuning the LongFormer pre-trained lan-
guage model for the semantic similarity task.

quences, which leads to an higher number of model parameters to train;
second, each training case involves three runs of the LongFormer base model
(i.e., as discussed in Section 4.2.2, the query abstract AQ and the similar
and dissimilar abstract instances A+ and A−), while the other models only
need one run of SciBERT. Training the third model took two days for two
epochs on a single GPU that had a NVIDIA Tesla V100 card—Figure 6.5
shows the training and evaluation loss. The SciBERT based models also
required the same GPU based resources, but it required less training time,
using the GPU smoothly. Without an adequate training strategy, the Long-
Former model can run out of the GPU’s memory due to its higher number of
trainable parameters and the need to encode three input sequences instead
of one.

Training a neural network is made of three main steps: (i) the forward
step applies the neural network to a mini-batch of input sequences, produces
a loss value and calculates the gradients of the loss value for each trainable
parameter in the network; (ii) the back-propagation step allocates the loss
value to the network’s trainable parameters, based on the gradients; (iii) the
optimization step fine-tune the network’s trainable parameters proportion-
ally to their gradients and their loss values. Particularly, the forward step
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allocates a large data structure of gradients in the GPU’s memory (i.e., about
2GB per abstract was observed with LongFormer, leading to about 6GB for
each element in the input mini-batch), which is then released by the back-
propagation step. To avoid running out of the GPU memory, the following
training strategies have been implemented (see Figure 6.6):

• reducing the size of mini-batches, to reduce the amount of memory
required to store gradients;

• using gradient accumulation, to accumulate a few mini-batches before
optimization;

• freezing some layers on the network, to reduce the number of trainable
parameters;

Note that using, say, 4 mini-batches with 8 training cases is equivalent
to using one single mini-batch with 32 training cases. However, the former
uses a quarter of the GPU’s memory, thought, it is less effective in terms of
optimization of parameters.

Overall, fine-tuning the SciBERT based model was faster, easier and al-
lows to fine-tune the full base-model. Instead, LongFormer’s complexity only
allowed to fine-tune the last three attention layers and the pooling layer. Cer-
tainly, more sophisticated strategies to train the LongFormer based model
could be considered, such as parallel training; however it would lead to ad-
ditional complexity and it would require more GPUs. As argued in Sec-
tion 5.4.4, in the specific context of living evidences, the LongFormer based
model did not clearly outperform the SciBERT based model.
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Figure 6.6: Training and evaluation loop for fine-tuning LongFormer
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Chapter 7

Conclusions

Accordingly to Cochrane,1 “Systematic Reviews (SRs) attempt to identify,
appraise and synthesize all the empirical evidences that meet pre-specified
eligibility criteria to answer a specific research question. Researchers con-
ducting SRs use explicit, systematic methods that are selected with a view
aimed at minimizing bias, to produce more reliable findings to inform de-
cision making”. SRs use rigorous methods to find, assess, and synthesize
studies that meet certain quality standards. They also check for potential
sources of bias that could affect the results or conclusions of the review.

One critical challenge for SRs is their currency. SRs should be regularly
updated to incorporate the new studies and reflect the current state of knowl-
edge. To this aim, SR owners periodically drive a project to update their
SRs. However, updating a SR requires almost the same level of complexity
as creating it from scratch.

For this reason, living evidences have been recently proposed as a method
to manage large collections of SRs efficiently, offering up to date and rigorous
evidence syntheses to reviewers, researchers, practitioners and policy mak-
ers. Maintaining living evidences up to date with the huge amount of new
publications released daily is a big enterprise. This work introduces Con-
tReviews, a system to address the problem of keeping a living evidence
current by updating its SRs as soon as new publications are available.

The living evidence process is based on the following steps:

• new research studies are continuously identified, by surveying the ap-
propriate data sources;

1https://www.cochranelibrary.com/about/about-cochrane-reviews
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• the research studies identified in the previous step are assessed for rel-
evance to each SR in the living evidence;

• reviewers are continuously notified about the new research studies which
might be interesting to their SRs;

• the final decision to include a new study in a SR is taken by the SR’s
reviewers in a manual process.

This work focuses on the health care domain: a Cochrane Review is a
SR of research in health care and health policy, useful for those providing or
receiving care, policy-makers, and researchers who want to make informed
decisions based on reliable evidence. Cochrane Reviews are published in the
Cochrane Database of Systematic Reviews, which is a living evidence that
keeps Cochrane Reviews up to date with the latest studies as soon as they
become available. Although ContReviews was evaluated on a large collection
of Cochrane Reviews, it is not restricted to them and it is a general-purpose
tool that can be used in different domains and fields of study.

7.1 Main Research Questions

The challenges related to applying the traditional SR updating methods to
living evidences are introduced in Section 1.3. These traditional methods are
specific to the SR they are meant to update, and they are not easily scalable
across an entire domain of research. In fact, the typical activities coordinated
by reviewers and domain experts consist on (i) identifying the most appro-
priate data sources, (ii) manually designing and testing sophisticated search
queries, (iii) training SR-specific models for citation and abstract screening,
and (iv) manually assess irrelevant studies, which are many due to poor effi-
ciency of automated citation and abstract screening models. Clearly, a living
evidence process, which aims to continuously recommend new publications
to reviewers, cannot be that SR-specific and should run at a different level
of automation.

ContReviews, the proposed system to address living evidences, leverages
an academic knowledge graph to identify all the most recent publications,
and a content-based recommendation model to match them to the available
SRs. In addition, ContReviews leverages a method to formally represent
publications and SRs, which take into consideration multiple publication
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features (i.e., authors, citations network, embedding of abstracts, embedding
of titles, bag of words of abstracts and bag of words of titles).

Following, the research questions introduced in Section 1.4 are reconsid-
ered in light of the ContReviews system definition and the evaluation results.

7.1.1 Independence of the Relevance Assessment Model
from SRs

The traditional SR updating methods are SR-specific, as introduced above,
requiring the direct and active involvement of reviewers into the update pro-
cess. This approach is not adequate to address the currency of entire living
evidences, in fact, the expectation is that they run in an unattended man-
ner, and provide frequent and precise recommendations to reviewers. Con-
tReviews addresses this issue by means of a content-based recommendation
model which, for each SR in the living evidence, leverages the content of the
included publications to identify the new ones to recommend to reviewers.
This approach let to avoid the reviewers involvement to manually designing
and testing complex search queries.

ContReviews matches the new publications to SRs through their vector
representations, and obtain a likelihood of relevance which is used to prior-
itize recommendations to reviewers. Specifically, the vector representations
of SRs are obtained by averaging the vector representations of their included
publications. The evaluation results show that this approach is effective, i.e.,
all the new publications which are relevant to a SR are correctly identified by
the system. The effectiveness of the content-based recommendation model
was measured through the classification metric of recall, which was in average
greater than 97% over all the SRs in the test dataset.

In addition, an academic knowledge graph is proposed as a unified data
source of new publications, to avoid the reviewers involvement to manually
identify SR-specific data sources. This approach is convenient, because it pro-
vides new publications in a structured, normalized, de-duplicated, centralized
and programmatically accessible manner. However, the proposed content-
based recommendation model works independently of its data sources.

7.1.2 Efficiency of Inference

Updating SRs is a so called total-recall task, meaning that the inference sys-
tem must be almost perfectly effective to avoid loosing any relevant new pub-
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lication. To achieve such an high level of effectiveness, current systems often
sacrifice efficiency, which leads to many (ultimately irrelevant) new publica-
tions requiring manual assessment. Poor efficiency forces reviewers to take an
active part in the SR update process: while this is natural when conducting
a specific project to update a SR, it would have challenging implications in
a living evidence. In fact, reviewers would receive many frequent recommen-
dations for mostly irrelevant new publications. In this context, the research
question was whether the proposed method can achieve better efficiency than
the traditional systems, while maintaining near-perfect effectiveness.

ContReviews was tested with a large set of 6000+ Cochrane Reviews,
with a minimum of 3 publications included, and the system performance
was measured in terms of the classification metrics of precision and recall.
Specifically, precision with recall higher than 97% was measured, that is,
efficiency with almost perfect effectiveness. Note that precision and recall
were measured for each SR and their statistics (such as mean and standard
deviation) reported. With such an evaluation setting, ContReviews achieved
average precision of 98.1% with perfect recall of 100%, and the 95% of all
the SRs achieved average precision greater than 87.5%.

As motivated in Section 2.3, a common dataset and evaluation method
is not available for neither the living evidence task nor SR updating more in
general. For this reason two baselines have been proposed to compare Con-
tReviews to canonical methods. The first baseline model considers the cosine
distance between the abstract-based vector representations of new publica-
tions and SRs, and use it to infer their relevance. The second baseline method
is based on one binary classification model for each SR, which uses the em-
beddings of the included publication abstracts as features to learn a relevance
assessment function for each SR. As the second baseline requires a minimum
number of publications included in each SR to train the relevance assess-
ment function model, only the SRs with at least 40 publications included
were considered in the comparison (where 40 was empirically determined).
The baseline models achieved no more than 22.7% precision with 98.1% re-
call, reinforcing that the proposed content-based recommendation model is
efficient and effective.

7.1.3 Representation of Publications and SRs

Most existing methods for determining how relevant new publications are to
SRs rely on the textual properties of the publications, such as their titles and
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abstracts. Some recent works use embeddings to represent these properties.
However, to make the inference process more efficient, it may be helpful to
use more precise representations of the publications. This section focuses
on the research questions of whether using multiple publication features and
more sophisticated embedding models can lead to better efficiency.

ContReviews uses multiple publication properties—such as title, abstract,
citations network and authors—to construct publication vector representa-
tions. To assess this approach, the accuracy of ContReviews to infer publica-
tions relevance to SRs was evaluated in two settings: the first one uses all the
available features (title, abstract, citations network and authors), while the
second one uses only the textual ones (i.e., title and abstract). Using multiple
features contributes to increase both average effectiveness (i.e., from 98.1%
to 100%) and average efficiency (i.e., from 96.4% to 97.4%).

The embedding model used to represent publication textual features, is
another component that can affect efficiency. Several design factors can dis-
tinguish different embedding models; this research focuses on the base model
(i.e., SciBERT and LongFormer), the fine-tuning dataset (i.e., Cochrane Re-
views), and the fine-tuning task (i.e., semantic similarity and abstract screen-
ing).

Note that the majority of the most recent works use variants of BERT,
such as SciBERT, to obtain embeddings of abstracts. In fact, these embed-
ding models are pre-trained on scientific or medical data, which is usually
relatively close to the type of publications included in the SRs to update. This
research, by fine-tuning over Cochrane Reviews, aims to better align the em-
bedding model to the living evidence distributional semantics. In addition,
base models support different sizes for the input sequence; for example, the
SciBERT’s one is about 4x shorter than the average length of the abstracts
in the Cochrane Reviews. Instead, LongFormer supports a longer maximum
input sequence length, which is aligned to the average length of abstracts
in the Cochrane Reviews. Finally, the fine-tuning task lets the embedding
model learning language nuances more precisely, which can be important to
the downstream task. Both abstract screening and semantic similarity are
more aligned to the task of SR updating than the original pre-training ones
(i.e., next sentence prediction and masked language modeling).

Based on the evaluation reported in Subsection 5.4.4, the following con-
clusions can be drawn: the crucial factor is to fine-tune embeddings on the
target living evidence data (i.e., abstracts from Cochrane Reviews in this
research), while the fine-tuning tasks and the input sequence length are not
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very significant factors. This implies that the most computationally efficient
embedding models should be used for fine-tuning, together with the living
evidence data. Note that a living evidence provides sufficient relationships
between publications and SRs to let easily construct meaningful and large
fine-tuning datasets, and that this is not trivial when working with individual
SRs.

7.2 Future work

This research demonstrates that a content-based recommendation model can
successfully infer the relevance of new publications to SRs in a living evidence,
instead of using a separate inference model for each SR. The following are
open research topics.

Improving computational efficiency. Living evidences are computa-
tionally intensive, because they comprise thousands of SRs, and because of
the large number of new studies which are published every day. Therefore,
improving the computational efficiency of the current model is an important
goal. To this aim, several approaches could be considered.

In the one hand, a lightweight model could be used prior to the content-
based recommendation model, aiming to filter out the clearly irrelevant pub-
lications for each SR. It is not clear what this new model should look like,
though it should be computationally very efficient, and it should achieve
perfect recall regardless of the precision.

In the other hand, the current content-based recommendation model uses
highly sparse vectors. For example, a living evidence can have tens of thou-
sands of unique authors, yielding extremely sparse representations (in fact,
publications have only a few authors). To achieve more dense representa-
tions, embeddings of entities (i.e., authors and citations) should be evaluated.
However, this approach might increase the overall system complexity.

Improving contribution of entities. Using multiple publication features
to represent the SRs and the publications themselves provided a positive
contribution in terms of inference efficiency and effectiveness. However, the
contribution of entities (such as authors and citations) was not as huge as ex-
pected, with the textual features steering the performance of inference. One
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possible reason is that their binary representations are quite raw: for exam-
ple, two publications with an indirect connection in their citations network
are considered completely dissimilar through their binary representations, as
much as two publications without any connection in their citations network.
A similar consideration holds for authors. Exploring more sophisticated tech-
niques to represent publications based on their relationships might help to
improve this aspect.

Covering living evidences in different domains. This research focus
on the Cochrane Reviews, which are significant in the field of life sciences.
In principle, the proposed model could be applied to anyliving evidences in
any domain, however, these living evidences may greatly vary from those
in life sciences. For example, a preliminary analysis of a living evidence in
the education domain, revealed much fewer SRs with many more publications
included and, therefore, the publication texts, authors and citations were less
selective than those in the Cochrane Reviews. A more thorough evaluation
of the ContReviews model is needed across different domains, and the most
relevant publication properties for each domain should be determined.
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