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1
Introduction

Digital advertising expense in the US reached 189 billions USD in 2021, showing
a staggering 35% year-over-year growth [1]. This was the highest level of growth
seen since 2006 [2], and was to be partially imputed to COVID-19 restrictions and
the consequent reliance on digital media: a deceleration in advertising revenues
was thus to be expected. Moreover, the macroeconomic climate (high inflation
rates, raising interest rates and economic uncertainty throughout 2022) impacted
marketing budgets among others. Nevertheless, in 2022, far from decreasing,
digital advertising expense reached a two-digit growth (10.8%) with respect to
2021, totalling 210 billions USD in the US [2]. These numbers show that digital
marketing is an ever so important expense item for brands. Moreover, the current
shift in focus from growth to profitability due to raising costs and interest rates
means it is vital to efficiently and effectively manage digital marketing budget.

Digital marketing owes its appeal to several factors. First and foremost, given
the current prevalence of online search and social media, digital marketing in-
creases brand visibility. Moreover, when compared to traditional advertising
channels like TV and billboards, it often offers better cost-efficiency, making it
more accessible to smaller businesses. Most importantly for the scope of the
present work, it offers measurable results: digital marketing provides extensive
data and analytics tools that allow companies to track the performance of market-
ing campaigns in real-time. In particular, it is most often performance marketing: as
the name suggests, the advertiser is charged on the basis of measurable metrics,
such as the number of views, clicks, customer contacts, or sales.

The challenge of optimising digital marketing campaigns has thus attracted
the interest of the Machine Learning community (see for instance [3–5]). It is
possible to reliably measure the impact of decisions, hence closing the data loop
between the action a learning agent performs (e.g., targeting a certain segment of
the audience, or choosing a certain creative content for adverts) and the reward, i.e.,
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an increment in the metrics mentioned above. Moreover, tabular data consisting
of many dimensions are appealing for learning algorithms, as opposed to human
intuition. Finally, and crucially for the present work, the optimisation usually takes
place while the marketing campaigns are running. In other words, the advertiser
is asked to solve a sequential decision making problem by facing the exploration-
exploitation dilemma: the algorithm in charge of optimising marketing expense (the
agent) must continuously decide between dedicating resources to gathering more
data on how different choices perform (exploration) and sticking to the choice
that has proven the best so far (exploitation). Collecting more data allows making
sharper decisions, but it comes at a cost.

This sequential decision making problem can be fruitfully formalised in the
framework of stochastic Multi-armed Bandits (MABs) [6–8]. The stochastic MAB
problem can be seen as a special case of Reinforcement Learning, in which the
actions of the agent do not modify the environment in which it acts [9, 10]. Put
differently, the simplifying assumption that the actions that are available to the
agent, and the consequent rewards, are not affected by past decisions, has proven
very effective both in general [11] and in digital marketing in particular [12].

However, during the course of my PhD I identified several aspects that limit
the application of MABs to the optimisation of performance marketing campaigns.
This dissertation is devoted to three aspects in particular:

1. The extension of previous results to a widespread format for digital market-
ing campaigns; this format endows marketing campaigns with a hierarchical
structure, not covered by state-of-the-art methods.

2. The switch from a general purpose regression method to a newly developed
model, crafted specifically for digital marketing campaigns; this new model
makes learning from acquired data significantly more efficient with respect
to the state of the art.

3. The study of the negative impact of delayed feedback (an intrinsic facet of
digital marketing) on the learning process and the development of a new
technique to counter this effect; this technique achieves significantly better
performances with respect to the state of the art in extensive simulations.

The next section presents an outline of these results and of how they address
needs previously unfulfilled by the specialised literature. Contributions 1 and 2,
being closely connected, are presented together in subsection 1.1.1, while subsec-
tion 1.1.2 is dedicated to contribution 3. In section 1.2, we will see an outline of the
structure of this dissertation.

1.1 Contributions

1.1.1 Hierarchical campaigns and data efficiency

Major digital advertising platforms share the same basic strategy for choosing
which adverts get shown to internet users: every time a user is eligible for seeing
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an ad, compatible advertisers compete in an automated auction. For every ad, the
advertiser is thus called to choose wisely a bid for the auction and a maximum
daily budget (i.e., the maximum total expense one plans to sustain for that ad in a
given day).

Search Engine Marketing (SEM) keywords and ads that share a common theme
are usually gathered by practitioners into ad groups [13], which are in turn grouped
in campaigns, that can be used to specify which demographic group to target. The
daily budget is a parameter of the whole campaign, i.e., during the course of the
day it gets eroded as the users interact with its constituting ad groups. We assume
a total daily budget is imposed externally as a constraint for a group of several
campaigns. The bid is instead set at the ad group level. The task is then deciding
how to split the total budget across campaigns, and which bid to choose for each
ad group.

We will see in chapter 3 that it is quite natural to see the bids and the budgets
as the possible actions available to a learning agent in a Multi-armed Bandit
formulation. Indeed, a recent series of papers (see [12] and references therein) has
formulated the daily choice of bids and budgets of SEM campaigns as a Multi-
armed Bandit problem. In particular, we will see in section 2.2 and in greater detail
in chapter 3 that, to effectively face the sequential decision making problem, the
agent builds a regression model of how the expected reward functionally depends
on the combination of all bids and budgets.

These state-of-the-art results, however, suffer several limitations that hinder
practical application. First, they concentrate on campaigns without substructure,
while, as seen above, campaigns are routinely divided by practitioners in ad groups:
the target audience of the ads and the budget are set at campaign level, while
the ad content, the keywords and consequently the bids are set at ad group level.
Moreover, Gaussian Processes are employed in [12] to build the regression model
that maps bids and budgets into expected reward:

• They are very expressive, but for this reason they are also data intensive.

• They need approximations or proxies to accommodate censored data (which
occur naturally when the daily budget limits the number of clicks in a day).

• They are non-monotonic, hence they require global optimisation methods
when selecting the best bid/budget combination.

Given the above, under this setting my first contribution was to extend the
framework to the multi-ad group domain [14]. This is non-trivial, because budgets
and bids are set at different levels (respectively campaigns and ad groups): this
creates an effective interaction among ad groups, since raising the bid for one
erodes the click count for the others belonging to the same campaign. Moreover,
all clicks are not created equal: clicks pertaining to different ad groups typically
carry different monetary value to the advertiser. The solution I developed solves
the problem switching from modelling the mapping of a single bid to the number
of clicks, to modelling a function that maps a vector of bids (one element for
every ad group) to the total value of a whole campaign (which takes into account
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the expected monetary value of clicks coming from different ad groups). A
corresponding ansatz to simplify the regression problem had to be generalised too.

The second aspect I tackled is data efficiency. In lieu of Gaussian Processes, I
devised a parametric Bayesian regression model, informed by domain knowledge.
Few interpretable parameters reduce the variance, and thus the need for data,
allowing for faster convergence. Moreover, the model naturally accounts for
censoring. Since the dependence of the number clicks on the bid is modelled as
monotonically increasing, this model allows for local optimisation, which is both
more reliable and faster with respect to global optimisation. While the bid choice
can be carried out with off-the-shelf methods, I developed a local constrained
optimisation algorithm for the budget splitting.

In order to test the model, I designed and developed a simulation environment,
using what is disclosed about Google automated auctions. Simulations agree
with experience, and also with the parametric model. The results show that the
proposed approach brings a clear improvement in revenue, especially for short
time frames: this means that the parametric model converges much more quickly
than the Gaussian Process one.

Real-world data have also been used to validate above results [15]. In particular,
I used the Criteo Attribution Modeling for Bidding Dataset [16]. The dataset
contains more than 16 million user interactions, but these have a very low conversion
rate (less than 3‰), i.e., they very rarely lead to further signs of user engagement
besides the click: advertisers are usually interested in maximising these long-term
metrics, such as add-to-cart or purchase events. This low rate and the fact that the
experiment only lasts 30 days (as opposed to 100 days as in previous simulations)
make data efficiency even more important.

In general, to evaluate the performance of competing bandit policies on logged
data one would need a full counterfactual analysis, and this dataset is no exception,
as it contains only winning auctions, i.e. those for which the competing bids were
low enough: in other words, it contains truncated data, and the bid distributions
are biased. In line with relevant literature, I opted for noise injection to tackle the
problem of selection bias.

Real data granted me the possibility to compare my parametric regression
model and the theoretical curve: they adhere very closely, while Gaussian Pro-
cesses struggle to converge. This reflects directly in the performance of the
optimisation algorithm. I conducted a host of experiments varying one external
parameter at a time (i.e. total budget, number of campaigns and number of ad
groups per campaign): in every setting, on average the Gaussian Process method
totals less reward with respect to the method herein proposed, and the average
relative difference can reach in some settings a staggering 40%, especially when
an optimisation algorithm is needed the most (i.e., with tight budget or many ad
groups).

In the same setting, with an eye to applications and in view of further contribu-
tions, Bootstrapped Thompson Sampling [17], an easy to implement approximated
Bayesian inference method, has been adapted to the contextual bandit object of
study and tested.
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1.1.2 Delayed feedback

A defining aspect of Search Engine Marketing is that the reward is often delayed
for many days, in particular when optimising for contacts or sales (hereafter
generically called conversions): prospect customers need time to evaluate the
purchase. Both [12] and the contributions introduced in the previous subsection,
however, are placed in the idealised setting of no delay.

To overcome this issue, the first challenge has been finding the appropriate
way to model the problem of delayed reward in digital marketing. To this end,
I performed an extensive review of the literature about bandits with delayed
feedback. I focused in particular on the manifold of settings in which bandits
with delayed feedback have been applied, and the consequent modelling choices.
Differences regard for instance the probability distribution of delays (i.e., whether
it is sub-Gaussian or heavy-tailed, whether it depends on the chosen action or not,
and so on), whether the agent has access to intermediate signals that can act as a
proxy for the reward, or whether the feedback is anonymous in some way.

This has permitted me to identify the simplest non-trivial setting which is
relevant for Search Engine Marketing, and to pinpoint [18] as the state-of-the-art
approach in this setting. I thus decided to study this setting for two groups of
reasons, one which is general and one which is specific to the bid/budget selection
problem described above.

General In this setting, the state-of-the-art approach [18] presents room for im-
provement:

• It ignores how delays are distributed: when available, data on the entity
of delays can be valuable in modelling the environment.

• It employs a specific heuristic (called LinUCB, see section 2.2) to face the
exploration-exploitation dilemma. Another heuristic, Thompson sam-
pling, has proven more robust to delays and to model misspecification
in a variety of other settings.

Specific Perfecting the approach to this simplified setting can pave the way to
more complex scenarios:

• In this setting, avoiding some of the intricacies of the bid/budget se-
lection problem (such as non-linearity, the hierarchical structure, and
resource constraints), simulations are much more transparent, and can
shed light on the specific effect of delays on the total reward.

• Having a clear state-of-the-art competitor, it is possible to test a new
technique with the goal of generalising it to more complex settings.

• The LinUCB algorithm mentioned above requires calculations that are
specific to the linear case (i.e., the case in which the function that maps
actions to expected rewards is linear). Ideally, one wants a technique
which can be extended to more complex settings with minor effort.
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For these reasons, I have worked on extending the aforementioned Thompson
sampling technique to linear bandits for delayed conversions. This setting, however,
presents several challenges:

Complex reward structure In usual MAB models, the agent observes both positive
and negative rewards. In the present setting, on the other hand, the agent
cannot distinguish the case in which a prospect customer decides not to
proceed with a purchase from the case in which the customer will proceed,
but the sale is yet to happen. In other words, the reward is partially observable.

Long-tailed delay distributions Depending on the business area, the distribution
of delays can present heavy tails. Hence, parametric distribution families
could perform poorly, hindering straightforward application of Bayesian
methods such as Thompson sampling.

An approximate version of Thompson sampling has been recently applied to
partially observable delayed rewards in the case of finite and static sets of actions
(i.e., not the linear case) [19]. The approach there proposed, however, presents
some shortcomings, besides the need to be generalised to linear bandits:

• While the model is derived for a general distribution of delays, it is then
specialised to exponential distributions. As specified above, the delay distri-
bution can be heavy-tailed, hence the need for a non-parametric estimator.

• As the name suggests, when adopting Thompson sampling, the agent uses
samples from a distribution to guide its next move. This distribution captures
its uncertainty about the expected outcome of its possible actions. In [19]
only the uncertainty over the link between action and reward is taken into
account, while the uncertainty on the model of delays is ignored; this could
hamper exploration.

Besides the aforementioned review of the literature concerning bandits with
delayed feedback, my contributions in this setting are hence the following:

• I extended the model to include a standard Maximum Likelihood non-
parametric estimator for delays, namely the Kaplan-Meier estimator. Since it
is widespread, it has the advantage of being implemented in many Machine
Learning libraries that deal with time data, such as [20].

• To take into account both the uncertainty on rewards and on delays, I applied
the model to Bootstrapped Thompson Sampling. This has the advantage of re-
quiring minimal assumptions and being way faster than standard approaches
to Bayesian inference, such as Markov chain Monte Carlo.

• I applied the resulting model to linear bandits.

• I tested the proposed approach against the state of the art on a host of delay
distributions. The proposed approach performed significantly better in the
great majority of cases, behaving comparably to the state of the art in the
remaining ones.
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1.2 Thesis outline

This dissertation is organised as follows. In chapter 2, a refresher on stochastic
Multi-armed Bandits is given. With some motivating examples, the exploration-
exploitation dilemma is presented, and the general notion of regret as a measure of
performance is introduced. In section 2.1, bandits with a finite number of possible
actions are defined and lead to the introduction of some heuristics that recur in all
the present work, namely Upper Confidence Bound (as representing optimism in the
face of uncertainty) and Thompson sampling. In section 2.2, the important setting in
which actions are described by features, which can help learning, is introduced.
In section 2.3, it is shown how representing actions as vectors of features actually
permits treating the case of an infinite number of possible actions.

Chapter 3 is devoted, after an introduction to the bid/budget selection prob-
lem in online marketing campaigns (section 3.1), to presenting the contributions
outlined in subsection 1.1.1 above, namely:

• The extension of a state-of-the-art bandit to admit online marketing cam-
paigns with hierarchical structure (section 3.2).

• A new parametric model for the dependency of number of clicks and cost
on the bid, which eases the task of learning from past data and permits
extrapolation on unseen data (3.3).

• How this parametric model can be used in a bandit setting, also in the context
of an approximate, lightweight technique which had to be generalised to this
setting (subsections 3.3.2 and 3.3.3).

• The details of the purpose-built simulation environment to test the proposed
methods, and simulation results (section 3.4).

• The results of tests on real data, including an analysis of the impact of
environment parameters on performance (section 3.5).

Chapter 4 is devoted to analysing the impact of delayed feedback on perfor-
mance. Section 4.1 contains the aforementioned review of the bandit literature on
delayed rewards. Section 4.2 restricts the scope to the problem at hand, i.e., that
of delayed conversions, and positions the present contributions within the related
literature, highlighting differences and similarities. In section 4.3 the supervised
learning model for partially observable, delayed rewards is derived in detail. In
section 4.4 the contributions outlined in subsection 1.1.2 are analysed, namely:
the use of a non-parametric estimator, how the model can be used within ap-
proximated Thompson sampling and in particular in the context of linear bandits.
Moreover, the positive results of tests on a manifold of delay distributions are
given and commented upon.

Finally, chapter 5 is devoted to drawing the conclusions on the present work.
In section 5.1, the contributions are summarised, emphasising the novelty and
increased performance with respect to the state of the art. Section 5.2 is devoted
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to discussing the limiting aspects of the proposed approaches, and suggesting
some ways to circumvent some of them. Section 5.3 presents the promising future
avenues of research that emerged from the present work.



2
Bandits and the exploration-exploitation

problem

In this chapter, I am going to present the basic ideas behind Multi-armed Bandits
(MABs), the workhorse that powers the rest of the work. Bandit algorithms
constitute a highly effective framework for decision-making in the presence of
uncertainty over extended time periods. Let us start from a stylised version of the
problem we are going to tackle in chapter 3 and highlight the characteristics that
make bandits the natural choice.

As we will see, digital advertisers must select, daily, a host of parameters
for their marketing campaigns. Since the possibility to appear on a web page is
regulated by automated auctions, among other parameters the advertiser must
choose a bid. If the bid is too low, the advertisement will not appear on the page,
and the opportunity to gain a click is lost. On the other hand, if the bid is too high,
the user may click on the advertisement, but the cost paid by the advertiser will
be high as well. In this scenario, we can frame the advertiser’s goal in this way:
maximising the total number of clicks (or contacts, or sales) given a certain budget.

Two traits of this challenge need to be stressed:

• When choosing a bid, the advertiser observes the reward (i.e., if the user
clicks) only for that bid: they don’t know what would have happened had they
chosen another bid.

• Since every user and every auction is different, for a given bid the reward is
afflicted by noise: selecting the same bid twice does not necessarily lead to
the same reward.

We are now ready to define Multi-armed Bandits. In doing so, we will mainly
follow the treatment of [8] and occasionally of [10] and [11]. We will privilege the
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concepts we will need in this work, consciously trying to convey general concepts
and intuition, rather than focusing on detailed mathematical proofs.

2.1 Multi-armed Bandits

In the most basic form of the MAB problem, an algorithm (also called the agent)
plays a game over T rounds (T is also called the horizon): in each round t = 1, . . . , T,
it must choose among K possible actions, for some finite K. Depending on its
choice, it collects a reward: such reward is drawn from a probability distribution
which depends only on the chosen arm, and in particular does not depend on
time. Problem is, the agent does not know the K distributions corresponding to the
possible actions. Moreover, since the agent receives only the reward corresponding
to the played action, it receives no information on the distributions corresponding
to unplayed actions. The goal of this game is maximising the total reward over the
T rounds.

The term Multi-armed Bandit refers to a (rather old) colloquial name for slot
machines, one-armed bandits, because of the lever used to operate them (and the
fact that they typically steal money from gamblers). The name came into being
to describe a decision-making problem where a gambler is faced with a row of
slot machines with different payout probabilities. Due to this historical origin,
the K actions are also called arms: in the following, the two terms are used
interchangeably.

Given the definition above, we readily see how the bid selection problem maps
into a bandit problem:

• If the possible bids are discrete and finite in number, they represent the set
of allowed actions.

• The reward is 1 if the advertisement is clicked and 0 otherwise.

Note that our simplified auction example already points to possible generalisations
of the bandit definition given above:

• The bid is more naturally modelled as a continuous quantity. Even if there is
a smallest scale (e.g., one Euro cent), the environment will respond to consec-
utive bids in a similar way; this similarity is lost if every bid is represented
as an isolated action.

• Some other information, besides the reward corresponding to the chosen bid,
is revealed: if there is a click, the advertiser knows that, for that particular
user, any higher bid would have resulted in a click (and vice versa for the
no click situation and lower bids). In other words, the algorithm observes
reward for some other arms, but not for all.

• A cost is associated with every action, namely, the amount paid to the
advertising platform if the user clicks. The goal is maximising the total
reward subject to a given budget.
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We will touch upon these generalisations in subsequent sections and chapters.
Nonetheless, we will see that the concepts here introduced set the foundations
for all subsequent developments. Among these concepts, we see here the need
of balancing exploration and exploitation. The agent needs to explore, both trying
out unplayed arms and replaying past arms to fight the effect of noise. On the
other hand, there is a tradeoff with leveraging the information acquired, to make
best-guess decisions on which one is the optimal arm.

In what follows, we will focus on so-called stochastic bandits, characterised by
independent and identically distributed (IID) rewards: in each round, the reward
is drawn independently from the distribution corresponding to the played arm.
At the opposite end of the spectrum lie adversarial bandits: in this setting, it is
assumed that rewards are chosen by an adversary right before the agent makes its
move, with the goal of minimising the agent’s cumulative reward. Since advertising
competitors are usually many and not coordinated, and since we can assume that
the user deciding whether to click is not colluded with competitors, IID rewards
seem the most natural way to frame the problem.

It must also be remarked that, in the basic stochastic bandit setting, arm
distributions do not have an explicit dependence on time. On the other hand, we
can expect many natural settings, and in particular the online advertising scenario,
to show some degree of time dependence. We will touch upon time dependence
in section 2.2 and chapter 3.

For concreteness, let us focus in this section on the most basic form of bandit:
Bernoulli bandits. They owe their name to the fact that the reward distribution for
each arm is a Bernoulli distribution, i.e., the reward can be either 1 or 0 (click or no
click) and each arm a is characterised by its expected value µ(a). Different problem
instances are then characterised by different expected value vectors µ(1), . . . , µ(K).

Let us denote the best arm as a∗ and the corresponding best mean reward as
µ∗. An oracle agent, which has access to the full vector of means, would always
play a∗ up to the horizon T: it can then expect a total reward of µ∗T. On the other
hand, a real agent that has to infer the arm distributions shall play a sequence at

of arms for every round t = 1, . . . , T, totalling an expected reward ∑T
1 µ(at). Due

to this dependence on the expected reward vector µ(1), . . . , µ(K), some problem
instances allow greater rewards than others. To have a metric of performance that
is somewhat instance-independent, it is customary to define the realised regret (or
pseudo-regret):

R(T) = µ∗T −
T

∑
t=1

µ(at). (2.1)

Since the reward for each turn is a random realisation coming from the correspond-
ing distribution, an agent that adapts its strategy to observed rewards will result
in a random sequence of played arms; moreover, we will see in section 2.1.3 that
some bandit algorithms do not act deterministically given a sequence of realised
rewards. For these reasons, one is usually interested in taking the expected value
E [R(T)] of (2.1), called regret. However, the realised regret is oftentimes simply
called regret, if the meaning is clear from the context.
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We also need to remark that calculating the regret requires knowledge about
the best arm, and this is possible only with simulated data, where we have control
over the data generating process. In chapter 3, in order to compare two different
algorithms without knowing the best action, we will calculate the regret suffered
by one algorithm for not behaving like the other. Moreover, since even the regret can
depend on the size of rewards, we will calculate the relative regret.

There is a clear overlap between MABs and supervised learning, in that the
algorithm strives to learn which arms are best, and an intuitive way to do so is
estimating the reward distribution of the arms, refining the estimates with the
passing of rounds; this overlap will become even more apparent in sections 2.2
and 2.3, and this idea will be at the core of my contributions in chapters 3 and 4.
Two aspects, however, make the bandit problem stand out. One is the already
mentioned exploration-exploitation dilemma, which stems from the fact that
the agent itself guides data collection, differently from the standard supervised
learning problem, where the dataset is a given. The other differentiating aspect
is the notion of regret itself, which endows the problem with a clear notion of
performance with respect to standard supervised learning accuracy metrics. In
supervised learning there are many possible way to measure model quality and
identify the “best” possible model, and these metrics are often somehow detached
from the final application of the model. On the other hand, in MABs the agent is
focused only on totaling the highest cumulative reward at the horizon T, even if
this comes at the expense of some notion of predictive accuracy.

After having defined precisely MABs and regret, we are in the position of going
through the most important strategies to tackle the bandit problem. As it is for
the problem itself, we will see that the strategies defined in this basic setting carry
over to more general environments.

2.1.1 Epsilon-greedy strategy

The simplest heuristic we will define is the so-called epsilon-greedy algorithm. In
this strategy, the balance between exploration and exploitation is explicitly encoded
in a time dependent probability εt: for every turn t = 1, . . . T, the agent either
explores with probability εt choosing an arm uniformly at random, or exploits
(hence being greedy) with probability (1− εt), choosing the arm that has yielded
the highest empirical average up to round t.

While the probability εt could in principle be (and sometimes is) kept constant,
intuitively we want this probability to decrease over time, as the agent collects
more data and becomes more and more certain about its estimates. Besides time,
εt can depend also on the parameters of the problem that are known to the agent:
the number of arms K and the horizon T. For the Bernoulli bandit one can prove
that, if εt = t−1/3 (K log t)1/3, an upper bound on regret is minimised, and this
bound is

E [R(t)] ≤ t2/3 O
(
(K log t)1/3

)
.
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2.1.2 Optimism in the face of uncertainty: the UCB algorithm

In the previous section on the epsilon-greedy algorithm, the time-dependence
of εt is known to the agent from the start, before having observed any reward.
Intuitively, however, some problem instances will be “easier” than others, namely
those where the difference between the mean of the best arm and the mean of
suboptimal arms is great. In those cases, the agent will reach high confidence about
which arm is best faster than in instancese where arms are very similar among
each other. Moreover, in those easier instances “wasting” rounds exploring is also
more costly in terms of regret, since choosing suboptimal arms the agent incurs in
greater losses. On the other hand, in harder instances, where arm distributions are
more similar among each other, it is less wasteful to play a suboptimal arm. For
these reasons adaptive strategies, which evolve based on observed rewards, usually
reach better performances.

Let us then focus on measuring confidence, which was mentioned above
without being properly defined. Informally, we can define the confidence radius as a
measure of how far the empirical average of an arm’s rewards could be from the
true expectation, with high probability. More formally, given an expected value µ,
the empirical average µ̂ and a radius r, Hoeffding’s inequality holds:

P (|µ̂− µ| ≥ r) ≤ 2e−2nr2
,

where n is the number of samples used to calculate µ̂. As the radius r or the
number of observations n increase, this bound decreases fast.

In particular, if we make the bound constant by defining c = e2nr2
, it is easy to

see that the inequality becomes:

P

(
|µ̂− µ| ≥

√
log c
2n

)
≤ 2

c
. (2.2)

Keeping the bound constant and increasing the number of observations, the radius
reduces.

With this notion, we are ready to introduce the Upper Confidence Bound
(UCB) algorithm: for each round t, the agent acts optimistically, assuming that the
true expectation of each arm is located at the upper border of the corresponding
confidence interval, based on the observations collected up to t. In other words, in
each round t, the agent chooses argmax

a
UCBt(a), where UCBt(a) = µ̂t(a) + rt(a).

Note that Hoeffding’s inequality as it is written in (2.2) gives no prescription on
how to choose the confidence radius rt(a): it just regulates the relationship between
a given radius and deviation probabilities. As it was for εt in the previous section,
also in this case we want to choose carefully the dependence of the confidence
radius rt(a) on K, T, t and the rewards gathered up to t, in order to minimise regret.
Before doing that, it is fruitful to gain an intuition of why the UCB algorithm
makes sense.

The agent can choose an arm a at round t for one of two reasons (or both):
because the empirical average µ̂t(a) is large, or because the confidence radius rt(a)
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is wide. If µ̂t(a) is large, it means the agent mostly got positive rewards playing
this arm in past rounds, and we can expect it to behave similarly in future rounds.
From inequality (2.2), if c does not depend on n or t (or, more generally, if this
dependence is o(n)), the radius shrinks with n. Thus a radius rt(a) is wide if
the arm a has not been explored extensively. Hence, the two terms in UCBt(a)
transparently represent exploitation and exploration respectively.

Given that the radius in (2.2) shrinks with n, for each problem realisation, there
is a round t̃ beyond which the algorithm always chooses the most promising arm,
i.e., the one with highest empirical average. If we are interested in the asymptotic
performance for large T, we want to be reasonably sure that, when t̃ comes, the
best arm has been correctly identified as the most promising. In particular, we
want the probability of locking in on the wrong arm to be small enough that the
average regret coming from this case is negligible for high T. This suggests the
following form for the inequality:

P

(
|µ̂− µ| ≥

√
α

log T
n

)
≤ 2

T2α
. (2.3)

The constant α must then be carefully chosen to minimise regret.
We are now ready to state without proving the following: UCB algorithm with

α = 2, i.e., with confidence radius

rt(a) =

√
2 log T
nt(a)

satisfies the regret bound

E [R(T)] ≤ O
(√

KT log T
)

.

2.1.3 Thompson sampling

We will now introduce the heuristic that is used in the rest of this work owing to
its generality, conceptual simplicity and good practical performance: Thompson
sampling. While rooted in Bayesian probability, as we will see it proves effective
also in the frequentist setting we are considering.

The agent is endowed with a prior distribution P over problem instances I . As
the agent plays arms, a history of action-reward pairs is collected. Round by round,
as this new information streams in, the agent updates its posterior distribution,
narrowing the volume in the space of possible problem instances where that
specific instance could live. The missing ingredient is how to turn this posterior
belief in the action for the next round. This strategy can be characterised via two
equivalent formulations

1. For each round t and arm a, the algorithm computes the posterior probability
that a is the best arm, and samples arms according to these probabilities.

2. For each round t the algorithm samples an instance I from its posterior, and
chooses the arm that would be best in that instance.
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For concreteness, we will now specialise this algorithm on the Bernoulli bandit
we have considered so far. In this setting, it is most often assumed that the priors
are independent, i.e., according to the prior P the mean values µ(a) for each arm a
are independent variables. It can be proven that, with this assumption, each arm
can be updated separately: in other words, the posterior factorises across arms.

Thompson sampling in the second characterisation for the Bernoulli bandit can
thus be formulated as follows. For each round, the agent samples mean rewards
µs(a) for each arm a from the respective posterior distributions; it then chooses
the best arm ã according to these sample means, ã = argmax

a
µs(a). The posterior

corresponding to ã gets then updated according to the received reward.
A very common prior, in the Bernoulli case, is the uniform prior over the

interval [0, 1]. With this prior, the posterior at round t is a Beta distribution
Beta(αt, βt): if arm a has been played n times and the total reward gathered from
a is m, then αt(a) = 1 + m and βt(a) = 1 + n−m. More generally, since the Beta
distribution and the Bernoulli distribution form a conjugate pair, one can assume
a prior Beta(α0, β0) and the posterior at round t is just Beta(α0 + m, β0 + m− n).
This is consistent with the uniform prior, as Beta(1, 1) is the uniform distribution.

Note that, in the stochastic bandit setting we are considering, the problem
instance I is considered fixed, and not governed by a prior distribution P. In this
sense, the prior can be seen just as a parameter of the model. Of course, the more
the fixed instance I is “typical” with respect to the prior, the faster it is for the
agent’s posterior to concentrate around I . We can now state the bound for the
expected regret for Thompson Sampling in the frequentist setting:

E [R(T)] ≤ O
(√

KT log T + K
)

.

2.2 Contextual bandits

After having introduced the most basic MAB problem in section 2.1, we can now
cover a very important extension, contextual bandits.

We will start from the following motivating example [21]. The learning agent
represents a news website, which has the goal of optimising the experience for
each visiting user. For simplicity, let us assume that the agent must choose only
which headline to show at the top of the page. Of course, different users will have
differing interests: rather than discovering the most interesting headline for its user
base as a whole, the action must be personalised. To this end, the website observes
several features regarding the user, such as location, demographics, device and
so on: this information is called the context. As a proxy for user satisfaction, the
end goal of the procedure is maximising the number of clicks on the displayed
headline.

Not only users, but also the news pool from which to choose is changing
constantly: in other words, the action set evolves with time. Rather than cold
starting our algorithm every day with a new set of actions, it is thus convenient to
represent news too via some features, and include these features in the context.
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In order to make sense of this problem, we will have to place some regularity
assumptions on the dependence of click probability on features. This is sensible:
for instance, we can expect users with similar demographics and interests to react
similarly to the same news story.

We can now distill the defining characteristics of the example above and define
contextual bandits in general. As in the previous section, the algorithm must
choose among K actions in T rounds. However, for each round t, the agent
observes a context xt(a) ∈ Rd for every arm a = 1, . . . , K, prior to choosing the
action. After an arm is chosen, the agent collects a reward rt. Rewards are drawn
from a distribution which depends on the context xt(a). In particular, we will
denote the expected reward given a context as µ (xt(a)). Note that the contexts
may change every round, but the functional dependence of rewards on context is
the same for all rounds: this dependence is what the agent is interested in learning.

The most basic and common class of contextual bandits, and the one which we
will cover in this section and in chapter 4, is that of linear contextual bandits. As the
name suggests, in this setting there is a linear link between contexts and expected
rewards: µ (xt(a)) = ϑ · xt(a), for some fixed vector ϑ, which is unknown to the
algorithm.

To see how the example above can fit in this model, let us assume that incoming
users are represented by feature vectors u and headline a is represented by vector
y(a) (dropping dependence on t for simplicity). If we also assume the expected
reward to be linear both in u and y(a), we can write: µ(u, y(a)) = ∑ij uiΘijyj(a)
for some matrix Θ. Let us then define an index I = (i, j), the vector x(a) with
elements xI(a) = (ui, yj(a)) and the vector ϑ with entries ϑI = Θij. Our relation
then becomes, with a slight abuse of notation, µ(x(a)) = ∑I ϑI xI(a) = ϑ · x(a).
In other words, if the environment at t (the user) and the arms (the headlines)
are represented separately by feature vectors, the context for the linear contextual
bandit is the outer product of these vectors.

In the definition above, we can see precisely in which sense contextual bandits
generalise vanilla MABs. If we suppose that the set of contexts is kept constant,
and corresponds to the canonical basis vectors (ei, 1, i = 1, . . . , d) of Rd, we simply
recover the d−armed bandit: every arm has its corresponding expected reward,
ϑa. This simple remark will come handy when generalising the UCB algorithm to
linear contextual bandits.

We can now define the regret for linear contextual bandits in a similar fashion
as the one for vanilla MABs: if the agent were to know ϑ, the obvious optimal
strategy would be picking, for each round t, the action a∗t = argmax

a
ϑ · xt(a),

accumulating reward x∗t = ϑ · a∗t in expectation. The regret in this setting is then
defined as:

R(T) =
T

∑
t=1

ϑ · x∗t −
T

∑
t=1

ϑ · xt(at)

We will not show how the ideas behind the algorithms designed for vanilla
MABs can be fruitfully generalised to this linear setting.
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2.2.1 LinUCB

The first algorithm we cover is Linear Upper Confidence Bound (LinUCB): it shows
that the principles introduced in section 2.1, far from being limited to that settings,
are actually quite general. Here we refer in particular to optimism in the face of
uncertainty, i.e., acting as if unknown quantities are as favourable to the agent as
they can plausibly be.

For linear contextual bandits, instead of constructing confidence bounds on
the mean rewards of the single arms, we need to do something similar for the
theta vector: we must devise a confidence region Ct such that, with high probability,
ϑ ∈ Ct. For each incoming context xt(a), the agent then selects the ϑ in Ct such that
its expected reward is maximal. Finally, it plays the most promising arm.

First, we note that the confidence region for the expected rewards of each arm
in vanilla MABs is centered around the empirical average. To guide us in the linear
setting, we recall that the empirical average is the estimator (without covariates) of
a quantity that minimises the mean square error:

µ̂t =
1
t

t

∑
s=1

rs = argmin
r

t

∑
s=1

(r− rs)
2 ,

where rs is the s-th reward. For the center of the confidence region, we do
something similar, adopting the regularised least-squares estimator:

ϑ̂t = argmin
ϑ∈Rd

(
t

∑
s=1

(rs − ϑ · xs)
2 + λ∥ϑ∥2

2,

)
where xs is the context corresponding to the s-th played arm.

At odds with the empirical average, here we regularise the estimation for two
reasons. One is technical: choosing λ > 0 ensures that the loss function has
a unique minimum even when the arm vectors do not span Rd. The other is
practical: we want to reduce noise. Since we are not placing bounds on the size of
the context d, having a big number of features could mean that the above estimator
would be overfitting (i.e., would be bad at generalising on unseen samples) for a
great number of rounds. In essence, we are dealing some bias in exchange for a
reduction in variance of our estimator. We will see, when extending Thompson
sampling to the linear setting, that the regulariser λ has a transparent meaning in
terms of a Bayesian prior.

It is a basic fact of supervised learning that the solution to the regularised
least-squares problem is:

ϑ̂t = V−1
t

t

∑
s=1

rsxs, (2.4)

where

Vt = λ1 +
t

∑
s=1

xsx⊤s . (2.5)

Having selected the center of the confidence region Ct, the next, harder, question
is: how do we define “plausible” values of ϑ? In other words, how far from the
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real ϑ could ϑ̂t be with high probability? Since we noted that d-armed bandits
can be seen as special linear contextual bandits in Rd, we resort to the confidence
region (2.3). Rearranging terms, the confidence region of each arm is the set of
values of ϑi such that ni|ϑ̂i − ϑi|2 ≤ γT, where γT = α log T. If we consider all d
conditions at once, they imply:

d

∑
i=1

ni|ϑ̂i − ϑi|2 ≤ d γT. (2.6)

Here we are just saying that ϑ̂i needs to be closer to ϑi for arms where ni is large,
i.e. for which the agent gathered more observations. In the case we are considering,
it is easy to see that Vt is diagonal and (if λ = 0) has diagonal entries equal to ni.
This means we can rephrase condition (2.6) in a base independent way writing(

ϑ− ϑ̂t
)⊤

Vt
(
ϑ− ϑ̂t

)
≤ d γT,

or, more concisely, ∥ϑ− ϑ̂t∥2
Vt
≤ d γT.

We then define the confidence region

Ct =
{

ϑ ∈ Rd s.t. ∥ϑ− ϑ̂t∥2
Vt
≤ βT

}
(2.7)

For a general, linear contextual bandit, this confidence region is an ellipsoid, whose
principal axes are the eigenvectors of Vt, and the lengths of these axes are the
inverse of the eigenvalues. In (2.7), the bound is left more general than d γT: as it
is for vanilla MABs, the bound must be carefully chosen to minimise regret. As it
turns out, however, our intuitive analysis is correct for the leading term in T:

βT ∼ 2 log T for T → +∞.

2.2.2 LinTS

We introduce here LinTS, the generalisation of Thompson sampling to linear
contextual bandits. In its second formulation at page 14, Thompson sampling is
already apt to be applied to linear contextual bandits. Since problem instances
are characterised by the vector ϑ, the agent will be endowed with a prior belief
over ϑ. As it pulls arms and collects data, its posterior gets updated. For every
round, a problem instance is drawn from this posterior, and the best arm is selected
accordingly.

We thus need to place a prior on ϑ. As it was for Bernoulli bandits, also in this
case we can use a conjugate prior (assuming Gaussian noise). We assume that the
reward distribution given context x(a) for arm a is

r ∼ N
(
x(a) · ϑ, σ2)

for some variance σ2. We can then assume a multivariate Gaussian prior over ϑ:

ϑ ∼ N (0, Σ), Σ = σ2
0 1.
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It is then well known that the posterior is (dropping arm reference for simplicity):

P(ϑ|x1, r1, . . . , xt, rt) = N
(

V−1
t

t

∑
s=1

rsxs, σ2V−1
t

)
.

This expression illuminates the formulas (2.4) and (2.5) of the LinUCB algorithm:
ϑ̂t can be seen as the maximum a posteriori (MAP) of an agent with a Gaussian
prior for a problem with Gaussian rewards; the parameter λ in (2.5) is the ratio σ2

σ2
0
.

Moreover, given the expression for the covariance of the posterior, the confidence
region given above is just the ellipsoid in which the posterior probability density
exceeds a certain threshold.

2.3 Static contextual bandits

As we have seen in section 2.2, contextual bandits have a close connection with
supervised learning, as contexts are encoded in features and the relationship
between these features and rewards is learnt from data, on the basis of some
regularity assumption. Once the agent is confident enough about the model, it can
reliably pick the next arm, even when the number K of arms is huge: this choice
may be computationally challenging, but assuming the agent is able to efficiently
optimise the reward function over the space of features the problem is essentially
solved.

On the other hand, in the standard MAB problem, for large number of arms
K, achieving low regret is a hopeless endeavour: while similar contexts (and, by
extension, similar arms) in a contextual bandit problem share information, in a
standard MAB each arm is isolated from the others.

For these reasons, the contextual bandit problem is useful even when contexts
do not change from one round to the next, if one is able to associate a fixed feature
vector to each arm, and posit that the reward function is regular in some sense.
This setting is called for obvious reasons static contextual bandit.

When dealing with a static contextual bandit, the agent reduces the problem
of learning K independent distributions to learning a function belonging to some
family of “well behaved” functions. Hence, we can also consider the case in which
K approaches infinity, or even the case of continuously many arms: continuum-
armed bandits. As we have seen commenting the motivating example in section 2.1,
continuum-armed bandits are quite appropriate for the auction problem of online
marketing: in that case, arms correspond to bids, and similar bids are expected to
yield similar rewards.

One typical assumption for reward functions is linearity, also in the case
of static, continuum-armed bandits: the learning problem (and thus either the
confidence region of LinUCB or the posterior of LinTS) is exactly the same as in
the finite-armed case. What changes is just the set of actions, which can be for
instance a closed subset of Rd.

Besides linear functions, another important class of continuum-armed bandit
problems is that of Gaussian process bandits: given some kernel, it is assumed that
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the reward function is sampled from a Gaussian Process (GP). Much of the interest
for GP bandits stems from the problem of optimising an unknown, noisy function
that is expensive to evaluate: given a maximum number of evaluations T, the task
is approximating the true maximum as close as possible.

There are several ways to evaluate an optimisation algorithm designed for such
problem; the most natural one is perhaps the minimum simple regret, i.e. calculating
how far the value of the best action considered so far is from the true maximum:
min

t=1,...,T
[ f (x∗)− f (xt)], where f is the function to be optimised. However, the

cumulative regret is often used: by minimising the cumulative regret instead of
the minimum simple regret, we punish exploration in regions that are unlikely to
contain the optimum, thus ensuring progress towards optimality uniformly over t.
Moreover, the average cumulative regret (obtained simply dividing the cumulative
regret by T) is an upper bound on the minimum simple regret. Finally, focusing
on the cumulative regret, the problem becomes a bandit one, and one can re-use
results and techniques from the bandit literature.

Among these techniques, GP bandits, too, admit variants of the UCB and
Thompson sampling strategies. In particular, since GPs are a Bayesian model,
GP-Thompson sampling (GP-TS) is perhaps the most natural: the posterior over
functions is updated as more data points are gathered, and then a function is
sampled from this posterior; the next action corresponds to the maximum of the
sampled function over the action space.

The GP-UCB decision rule [22] again follows the optimism in the face of
uncertainty principle: the next point to query xt in the domain D is given by

xt = argmax
x∈D

[
µt−1(x) + α1/2

t σt−1(x)
]

(2.8)

where µt−1(x) and σt−1(x) are the mean and standard deviation respectively of
the posterior evaluated at x, given the data gathered up to round t− 1. Here αt is
a time-varying parameter, that must be tuned (akin to what is done in UCB and
LinUCB algorithms) to trade off exploitation and exploration and attain minimum
regret.

We will see an application of GP-bandits to online advertising auctions in
chapter 3, and how its state-of-the-art results can be surpassed by specifying a
family of functions which is less rich than GPs, but models the problem well.
Indeed, as noted in [23], to achieve low regret, we must choose a regression model
which is both simple enough to be learned fast, and expressive enough to capture
the behavior of the function mapping actions to rewards: for specific problems as
the one tackled in chapter 3, it is possible to leverage domain knowledge to this
end.
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Multi-armed Bandits for Performance

Marketing

This chapter is devoted to the contributions introduced in section 1.1.1 on the topic
of optimising bids and budgets of a set of digital advertising campaigns. First, in
section 3.1, we will cover the problem in detail and see how bandits have been
successfully used to tackle it. We will also point to the limitations of state-of-the-art
approaches. In section 3.2, the optimisation problem is formalised mathematically,
and we will see how this formulation can be effectively generalised to encompass
real world marketing campaigns: as mentioned in the Introduction and explained
below, real world campaigns present a hierarchical structure, which must be
properly taken into account to solve the optimisation problem. In section 3.3 we will
go through my proposed parametric bandit approach for learning more efficiently
from the data the agent accumulates during the course of the optimisation. This
method is supported, as we will see in sections 3.4 and 3.5, by extensive numerical
experiments, performed on synthetic and real world data: these experiments show
that, on average, the proposed parametric bandit gains more conversions than the
state-of-the-art approach. Moreover, gains in performance are particularly high
when an optimisation algorithm is needed the most, i.e., with tight budget or many
ad groups.

3.1 Bandits and the bid/budget selection problem

In 2022, only three digital advertising formats accounted for the overwhelming
majority (93%) of the total digital advertising spend [2]:

Search ads (40.2%), i.e., the ads that appear in the search engine results page
together with so-called organic results.
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Display ads (30.3%), mostly made of banner ads, i.e., images prominently displayed
on websites, that serve as clickable links to the advertiser’s website.

Video ads (22.5%) in the format of short videos that are displayed on streaming
platforms together with the actual content.

In all three cases, the most common payment model is performance dependent:
this means that, in order for the advertiser to pay the advertising platform, the
user that is exposed to the ad must have some measurable interaction with it.
Such interaction is often clicking on it, but this notion can also encompass other
format-specific forms: for instance, for video ads, a watching time that exceeds
a given threshold could trigger the payment. In the following we will generally
refer to clicks as the most common interaction mechanism, but any other form of
immediate interaction is included in the treatment.

The other most common charging principle is, in a sense, performance related
too. It is distinguished from performance marketing proper because it serves
a different objective: rather than pushing users to interact with a website and
hopefully buying a product, it aims at getting a message to a target audience,
in so called brand awareness campaigns [24]. For this second objective, the most
common charging principle is CPM (cost-per-mille, i.e., payments are calculated
on the number of times an ad is seen, expressed in thousands), as opposed to
CPC (cost-per-click) and CPA (cost-per-acquisition, i.e., payments are based on the
number of contacts or sales).

A second characteristic trait of digital marketing is the way in which advertisers
are chosen, among many others, to be shown on a web page. Typically, every time
a user is eligible for being shown an ad, compatible advertisers take part in an
automated auction. Compatibility is mainly decided through associating ads with
targets, such as demographic groups or keywords. Besides choosing the target, the
advertiser must thus decide on the bid for taking part in auctions and a maximum
daily budget (i.e., the maximum total expense one wants to sustain for that ad in a
day).

While a complete description of the different auction types is beyond the scope
of this work, they mainly belong to three kinds: Generalised Second Price, VCG [25]
and First Price [26]. For definiteness, in this work we focus on Generalised Second
Price auctions with CPC payments, typical of Search Engine Marketing. In this
setting, the bid represents the maximum cost the advertiser is willing to pay if
the user clicks on the ad. However, as will become apparent, the methods can be
easily adapted to other kinds of auction and charging principles. In fact, we will
see that the auctions are treated as a black-box mechanism, which maps bids into
clicks and costs in a probabilistic way.

Search engine marketing keywords and the accompanying ads that share the
same theme are usually gathered together by practitioners into so called ad groups.
These are in turn further grouped, to form campaigns. Campaigns are characterised
by their user targeting (based on location, age, and so on). The daily budget is set
as a parameter on whole campaigns. The bid is, instead, a parameter of ad groups:
it is expected that the competition will be higher on some sets of keywords and
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lower on others, so the bids must be adjusted accordingly. What follows is set
under the assumption that a total daily budget is imposed as an external constraint:
this total budget must be split among several campaigns. We will call portfolio the
collection of campaigns over which this total budget is set.1

Two recent works [12, 27] have cast the daily bid/budget optimisation as a
Multi-armed Bandit problem. In particular, the goal is to maximise the long
term revenue, choosing daily the combination of bids and budgets for the whole
portfolio. In this formulation, the whole combination of bids and budgets is the
arm that the learning agent plays, in the terminology introduced in chapter 2.

The authors of [27] note that, when the agents plays one such combination,
it does not observe just the total number of clicks and conversions gained by
the portfolio over the day: it observes also the single numbers of clicks and
conversions totalled by the each ad group. In other words, even if the space of
possible actions is combinatorial in nature, a richer feedback with respect to the
typical bandit feedback we have seen in chapter 2 makes the problem manageable,
as the agent can learn how to associate the bids and budget of a single campaign to
the expected number of clicks. Since the feedback is richer than in the pure bandit
setting, it is called semi-bandit feedback, and the corresponding bandit problem is
called combinatorial bandit [8, 28, 29]. As the whole combination of bids a budgets
can be seen as a combination of arms of single, simpler bandits (the campaigns
and the ad groups), it is sometimes called a super arm.

Campaigns are in turn seen as static contextual bandits in the language in-
troduced in section 2.3: similar bid/budget combinations for a campaign share
information. The fixed context (feature) vector is indeed given by the bids/budget
pair.

The application of these results in practical settings is, however, limited by the
following shortcomings:

1. The literature concentrates on campaigns without substructure (single ad
group campaigns). This means that, besides the budget, only one bid must
be chosen per campaign. However, the typical campaign is divided in ad
groups, thus requiring generalisation. Given the regression model introduced
in [27] this generalisation is non-trivial.

2. Agnostic nature of Gaussian Processes (GPs) with respect to the functional
form which links bid to observed clicks. While this regression method is very
flexible, it also reflects in the need for more data to converge to a sensible
posterior, if compared to a more informed model (in particular, a parametric
model).

3. The need to extrapolate, from the observed clicks, the so-called saturation
clicks, i.e. the number of clicks the agent would have observed if there were

1We specify that the term “portfolio” is less established in the industry with respect to terms such
as “ad group” and “campaign”: we use it here just to refer to the collection of campaigns involved
in the optimisation. If these make up the totality of an advertiser’s campaigns, one could use the
term account interchangeably.
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no budget constraints. The authors of [27] suggest using the time of the
day at which the daily budget run out and an estimate of how searches are
distributed during the day to perform the extrapolation (see also [12] where
the example of a constant distribution is given). However, this information
on time is not available, and ad showing frequency is explicitly reduced
throughout the day to make sure the budget lasts until the end of the
day [13]. Other metrics could be used to this end, but they are inherently
noisy. Perhaps more importantly, this extrapolation method needs a certain
share of the total budget to be always reserved for exploration (akin to
the ε-greedy strategy we saw in section 2.1). The need for this missing
data imputation stems from the use of vanilla GPs (i.e. with a Gaussian
likelihood [30]). On the other hand, censored regression is a principled way to
avoid the need for missing data imputation. While GPs can accommodate
non-Gaussian likelihoods, this requires giving up exact update formulas, and
switching to approximate methods [31].

Reasons 2 and 3 point to parametric regression, exploiting a functional form
suggested by domain knowledge, as a way to use data more efficiently and
without resorting to proxies. In this spirit, I have overcome the aforementioned
shortcomings making the following contributions:

• To address point 1 above, I developed a multi-ad group generalisation of the
relation between bid/budget and clicks (section 3.2), suitable regardless of
the regression model one employs.

• To tackle points 2 and 3 above, I devised an informed alternative to GP regres-
sion, namely a parametric regression model, which accounts for censoring in
a principled way and with interpretable parameters (section 3.3.1).

• I explored the use of such a model in the context of bandits (and specifically
Thompson sampling) (section 3.3). In particular, bid and budget selection
are recast as local constrained optimisation problems, as opposed to global
optimisation required by GPs: this brings advantages both in terms of
resource requirements and accuracy of the found optimum.

• To test and compare performances of the proposed approach, I developed a
simulation environment, built on what is known about the inner workings
of the auctions (section 3.4.1). Numerical results reported in section 3.4.2
confirm the advantages of the proposed method.

• The performance of the proposed approach has also been extensively tested
on real world data by exploiting the Criteo Attribution Modeling for Bidding
Dataset [16] (described in section 3.5.1).

• With an eye to applications, Bootstrapped Thompson Sampling [17, 29],
an easy to implement approximated Bayesian inference method, has been
adapted to our contextual bandit and tested (see section 3.3.3).
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• The impact of various parameters on model’s performance has been studied
on the Criteo dataset. Furthermore, an ablation experiment, to study the
effect of the model alone on single-ad group campaigns, has been performed
(section 3.5.2).

The rest of the chapter is organised as follows. In section 3.2 we will set the
notation and define the multi-ad group optimisation problem. In section 3.3 we will
see how the optimisation can be carried out using a parametric Bayesian regression
model. Sections 3.4 and 3.5 are devoted to testing the proposed technique in an
artificial simulated environment and on real-world data respectively.

3.2 Optimisation problem for multi-ad group campaigns

To generalise the single-ad group model to multiple ad groups per campaign. let
us first establish the notation in the single-ad group regime, and proceed with
the generalisation below. Following [27] assume for now that we have a portfolio
of N campaigns, each with just one ad group. Let us call nj(bj, Bj) the average
number of clicks obtained by the j-th campaign with budget Bj and bid bj. Let vj
be the average value of one click from the j-th campaign. The task of maximising
the revenue can then be formulated as the following constrained optimisation
problem:

max
N

∑
j=1

vjnj(bj, Bj) s.t.
N

∑
j=1

Bj ≤ B, bj ∈ [bj, bj] ∀j (3.1)

where the maximum is taken over the budgets B1, . . . , BN and the bids b1, . . . , bN , B
is the total budget and bj and bj are the (possibly campaign-dependent) minimum
and maximum allowed bids.

Both the functions nj and the values vj are unknown, and must be estimated
from the collected data, hence the need to balance exploration and exploitation.
Early estimates could be inaccurate and lead to sub-optimal decisions, but one
does not want to spend too many resources on data gathering either, since this
comes at the expense of exploiting acquired knowledge.

Note that, in accordance with [27], we are here assuming stationarity, i.e. that
the probability distributions of click value and number of clicks given a bid and
budget don’t change with time. This is a realistic approximation only on short
time spans: as detailed in section 3.4.2, this motivates the need for fast-learning
models, as the one presented in section 3.3.1.

In order to reduce the burden of exploration, in [27] an ansatz for the form
of nj is proposed, reducing the complexity of a two-variable regression to two
one-variable functions:

nj(bj, Bj) ≈ n sat
j (bj) min

(
1,

Bj

c sat
j (bj)

)
. (3.2)

Here the function n sat
j denotes the saturation clicks, i.e. the number of clicks

a campaign would obtain if there were no budget limits. Likewise, c sat
j denotes
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the saturation cost, i.e. the cost faced in the same situation. Since the right hand
side depends non-linearly on n sat and c sat, and given that we are speaking about
averages, the equality in 3.2 strictly holds only in the deterministic case.

The issue in generalising the problem (3.1) to the multi-ad group setting is
that the budget is shared by all the ad groups of the same campaign, as stated
in section 3.1. While we can let an index k run over ad groups, and define vjk as
the value of a click from the ad group k of campaign j and do similarly for the
bid bjk, we cannot define a corresponding click function njk(bjk, Bj): the number of
clicks gathered by an ad group depends also on the bids of all the other ad groups
belonging to the same campaign. Intuitively, raising the bid bjk will bring more
clicks for the corresponding ad group, but it will also erode the budget Bj more
quickly, thus lowering the clicks received by the other ad groups. This difficulty can
be circumvented introducing the total value function Vj(bj, Bj) of a campaign, which
depends on the whole vector of bids bj. Therefore, the optimisation problem (3.1)
generalises to

max
N

∑
j=1

Vj(bj, Bj) s.t.
N

∑
j=1

Bj ≤ B, bjk ∈ [bjk, bjk] ∀j, k. (3.3)

In order to preserve data efficiency, the ansatz (3.2) must be generalised too,
linking the total value function to the corresponding saturation quantities. Note
that the aforementioned interdependence among different ad groups is a conse-
quence of a limited budget, while the dependence of saturation quantities n sat

jk
and c sat

jk on the single bid bjk is well defined. If the j-th campaign contains mj ad
groups, and we let

V sat
j (bj) =

mj

∑
k=1

vjkn sat
jk (bjk),

c sat
j (bj) =

mj

∑
k=1

c sat
jk (bjk),

(3.4)

then ansatz (3.2) generalises to

Vj(bj, Bj) ≈ V sat
j (bj) min

(
1,

Bj

c sat
j (bj)

)
. (3.5)

Since the right hand side is not a sum over single-ad group contributions, this
formula captures the interaction among different ad groups.

As a way to intuitively justify (3.5) for fixed bids and budget, we can think
of the single n sat

jk as the sizes of “reservoirs”, one for each ad group, from which
clicks are randomly drawn, up until the moment when the total cost paid matches
the assigned budget. If the clicks pertaining to different ad groups are well
mixed, each will bring approximately the same fraction of its saturation value
V sat

jk (bjk) = vjkn sat
jk (bjk) and saturation cost. The value of this fraction is found

equating the total cost paid and the assigned budget Bj, hence (3.5).
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3.3 Optimisation strategy with parametric bandits

In the previous section, we established how the optimisation problem is formulated,
generalising it to the multi-ad group domain, which contains single-ad group as a
special case. In this section, we explore an efficient way to perform the optimisation
itself.

As seen in the Introduction and in section 3.2, we face here the exploration-
exploitation dilemma, since the function we want to optimise must be learnt from
the data. Among the strategies to solve this dilemma in the context of Multi-armed
bandits, Thompson sampling [7] is of particular interest to practitioners, due both
to its performance [32], generality and conceptual simplicity [29].

In general, as seen in section 2.1.3, Thompson sampling involves two steps:

1. Making optimal use of the data gathered thus far with Bayesian inference,
establishing a posterior distribution on the space of parameters (section 3.3.1);

2. Sampling from the posterior distribution, and selecting the best arm acting
as if the sample represented the reality (section 3.3.2).

We will examine these steps separately in the upcoming subsections, while in
section 3.3.3 we will see how Bayesian inference can be simplified with an approxi-
mated technique.

3.3.1 Parametric regression model

If we see the j-th campaign as a static contextual bandit (as defined in section 2.3),
Thompson sampling requires performing Bayesian regression on the correspon-
dence between (bj, Bj) and the reward rj. We can restrict the search space by
placing few, sensible hypotheses on the shape of the functions n sat and c sat, intro-
duced in equations (3.5) and (3.4) (we are here dropping indices for simplicity).
These hypotheses will lead us naturally to a parametric model: Bayesian regression
can then be conducted with Markov chain Monte Carlo (MCMC) [33].

Clicks and cost paid are of course highly correlated, so to be able to perform
separately the two regressions it is convenient to introduce the cost-per-click (CPC)
function φ(b) = c sat(b)

n sat(b) . Both functions n sat and φ must be positive, be monotonic
increasing with the bid, saturate for high enough bid and vanish for vanishing
bid. Moreover, φ was empirically found to be linear for small bids (in accordance
with the law of diminishing returns), and must be strictly smaller than the identity
(because of the meaning of bid as maximum CPC). These considerations suggest
to use a properly shifted and scaled logistic function. Starting from the saturation
clicks,

n sat(b) = k(1 + e−ac)︸ ︷︷ ︸
scale factor

(
1

1 + e−a(b−c)︸ ︷︷ ︸
logistic function

− 1
1 + eac︸ ︷︷ ︸
vert. shift

)
. (3.6)

An example of this function is shown in figure 3.1a.
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(a) Saturation clicks regression

(b) CPC regression

Figure 3.1: Bayesian regression for models (3.6) and (3.7). Data have been simulated as in
section 3.4.1. Orange dots denote censored quantities: the number of saturation
clicks is greater or equal than the observed number of clicks (see section 3.3.1).
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The term in parentheses in the scale factor has the goal of providing a mean-
ingful k, which is the saturation value, i.e., the maximum number of clicks one can
expect when setting a very high bid. The coefficients a and c have the meaning of
an inverted length scale and of a horizontal shift. In order to give them a more
intuitive meaning (since it is required to place priors on them), we can link them
to the elbows of the curve, which can be identified as the maximum and minimum
of the second derivative of the function. The left elbow can be interpreted as
the threshold below which the bid yields a negligible number of clicks, while
above the right elbow the function effectively saturates. For a standard logistic
function (with a = c = 1) such elbow points are: x± = log(2±

√
3). For a general

logistic function, the elbows b− and b+ are linked to the parameters a and c via:
a = x+−x−

b+−b− , c = b+ − x+
a . Switching to the CPC function φ (figure 3.1b), the

additional hypothesis of being linear near the origin suggests the same functional
form as (3.6), with c = 0:

φ(b) = 2κ

(
1

1 + e−αb −
1
2

)
. (3.7)

Here κ is the maximum CPC which can be paid, and the same considerations
connecting α with elbows apply.

In order to perform regression, one needs to model the likelihood of the data
given the parameters. Since n sat is a count of clicks at saturation, a natural choice
is the Poisson distribution, centered around the mean given by (3.6). We note
however that this count is often censored, i.e. only partially known: this happens
when the assigned budget is less than the saturation cost. In these cases, all
we know is that saturation clicks are greater or equal than observed clicks, and
one needs a principled way to take these data into account, without introducing
systematic bias. In the bandit model one can assume non-informative censoring [34].
Thus, just a simple change in the likelihood is needed: censored data enter the
likelihood via the so-called survival function, i.e. the complementary of the Poisson
CDF. Finally, a natural model for the CPC is offered by the lognormal distribution.

Summing up, this model has the following advantages: i) lower variance (with
a small bias increase), ii) closed form functions, iii) it forces monotonicity, which
helps optimisation to choose the next action, iv) transparent hyperparameters
make it easy to elicit priors, and finally v) parametric Bayesian regression easily
accommodates censoring.

Contextual bandits have been mostly studied in the linear [35, 36], generalised
linear [37] and kernelised domain [22, 38]. More recently, deep neural networks
have been explored for the regression step [39]; their expressive power is, however,
balanced by the large need of data. To the best of my knowledge, this is the
first instance of contextual bandits with full-fledged Bayesian regression on a
parametric function which is not (generalised) linear.

3.3.2 Next super-arm selection

We now turn to the problem of sampling from the posterior distribution, and
selecting the best arm accordingly: this means drawing a particular instance of the
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functions introduced in (3.4) and (3.5) and solving the optimisation problem (3.3)
for those instances. As noted in [27], since the constraint acts only on the budgets,
the optimisation problem (3.3) can be decoupled as follows:

max
N

∑
j=1

Vj(bj, Bj) = max
B1,...,BN

(
N

∑
j=1

max
bj

Vj(bj, Bj)

)
.

In other words, if we are able to find the bid vector bj = bj(Bj) which maximises
the value Vj(bj, Bj) for a fixed budget Bj, we are then left only with the constrained
optimisation on the budget splitting B1, . . . , BN .

While the grid search approach suggested in [27] works well in one dimension
(i.e. for single-ad group campaigns), it scales badly with increasing dimensionality.
If a GP regression model is employed, owing to the non-monotonic nature of
extracted samples, one must recur to global methods, as opposed to local ones. On
the other hand, employing the monotonic functions (3.6) and (3.7), the function
Vj(bj, Bj) with fixed budget was empirically found to have only one local maximum,
which is also global (see figure 3.2a). Therefore, optimisation is amenable to local
methods: when applicable, these are both faster and more reliable. Such methods
can be applied in practice as follows. Starting from (3.5), Vj(bj, Bj) can be rewritten
as a piecewise function:

Vj(bj, Bj) =

V sat
j (bj), c sat

j (bj) ≤ Bj

Bj
V sat

j (bj)

c sat
j (bj)

, c sat
j (bj) ≥ Bj

. (3.8)

Note that, on the boundary
{

c sat(bj) = Bj
}

between the two regions, the functions
coincide. On the other hand, traversing the boundary the gradient changes abruptly,
thus hindering the direct application of gradient-based optimisation methods. We
will see, however, that a constrained optimisation on just one region is sufficient.
First we note that, if both regions are non-empty, the global maximum of Vj(bj, Bj)

is given by the maximum between the two maxima of the function on the two
regions. Moreover, every directional derivative of V sat

j (bj) (sum of monotonic
single-variable functions) is strictly positive. If the boundary

{
c sat(bj) = Bj

}
is

not empty, the maximum of V sat
j (bj) then lies on said boundary. This, in turn,

means that the maximum over the region
{

c sat(bj) ≤ Bj
}

is less than or equal to
the maximum over the region

{
c sat(bj) ≥ Bj

}
, i.e. that, if the latter region is not

empty, it suffices to search the maximum there.
Up to now we dealt with finding the optimal bids for a campaign given the

budget, thus finding a function bj = bj(Bj). We must now solve the following
optimisation problem:

max
B1,...,BN

N

∑
j=1

Vj(bj(Bj), Bj) s.t. ∑
j

Bj ≤ B. (3.9)

The terms Vj(bj(Bj), Bj) in the sum are single-argument functions that depend only
on the budget of the campaign.
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(a) Total value function for fixed budget

(b) Total value function for varying budget, selecting optimal bids for
each budget

Figure 3.2: Thompson sample of the total value function Vj(bj, Bj) of a campaign with two
ad groups (click values vjk are set to 1 for simplicity).
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For budgets Bj greater than the spending capability c sat
j (bj1, . . . bjmj) of the cam-

paign, such functions become constant, as can be seen by (3.8). For budgets
below the spending capabilities, the functions have been empirically found to be
downwards concave (see figure 3.2b), in agreement with the law of diminishing
returns.

Interestingly, this property, which in the present work is emergent from the
characteristic of the click and cost-per-click functions, is instead assumed in [40]:
that work, however, deals with the optimisation of budgets only, implicitly assum-
ing that bid choice is either unnecessary or taken care of by some dedicated (and
undescribed) mechanism. 2

Convexity also means that this optimisation step is amenable to local gradient
methods too. If, however, the optimisation over bids is performed with numerical
methods, extra care must be taken in choosing the step size over budgets: small
errors in the first step translate to a small noise in the function Vj(bj(Bj), Bj).
To control this issue, I developed an intuitive optimisation procedure which
generalises the budget splitting strategy presented in [41] to the case of non-
constant return on investment (i.e. non-linear functions): this procedure is outlined
in Algorithm 1.

Algorithm 1 Local budget splitting optimisation
Input: Spending capabilities of every campaign

1: for every campaign j do
2: Assign j-th spending capability to j as initial budget
3: end for
4: while total assigned budget is greater than B do
5: for every campaign j do
6: Calculate discrete derivative of Vj(bj(Bj), Bj)

7: end for
8: Find campaign with smallest discrete derivative
9: Subtract one unit from its assigned budget (e.g. one euro)

10: end while

The procedure keeps subtracting budget from a campaign until the discrete
derivative matches or becomes smaller than the discrete derivative of another. This
means that the procedure effectively searches for the point in the budget splitting
simplex where the derivatives are approximately equal: this is the solution of the
Lagrange problem corresponding to (3.9).

2Disregarding the more limited scope with respect to optimisation, [40] is interesting for a
manifold of reasons. First, the authors associate time-dependent contexts to campaigns, to tackle the
possibility of portfolios that evolve in time and the consequent cold-start problem for campaigns with
limited or no historical performance data. Moreover, they consider more general constraints beside
fixing the total budget. Further, the dataset augmentation they employ is somewhat reminiscent of
the Bootstrapped Thompson Sampling technique we will see in subsection 3.3.3, though the goal
(transfer learning) and implementation details are different. Finally, they consider the problems of
non-stationarity and delayed rewards, as we will see in section 4.1.
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3.3.3 Bootstrapped Thompson Sampling

While Markov chain Monte Carlo [33] has become the de facto standard for Bayesian
inference when no closed formula for the posterior exists, it presents challenges
that could hinder applications. First, some tuning is often required on the models to
ensure that the Markov process converges, and that the sampled data approximate
the posterior well. Second, it is resource-intensive, and requires much time to
converge (if compared to maximum likelihood models).

To bridge this gap, I adapted an approximated, lighter alternative, i.e. Boot-
strapped Thompson Sampling [17, 29]. As we will see in section 3.3.3 below, this
setting provided also the testbed for comparing Bootstrapped Thompson sampling
with exact Thompson sampling, before using the former in a setting where Markov
chain Monte Carlo cannot be used (since a proper Bayesian formulation is lacking
completely).

Being crucial for the contributions of chapter 4, we will introduce Bootstrapped
Thomspon Sampling in more detail there: we introduce here a high level view of
the technique. The main idea behind this method is to approximate sampling from
the posterior with the Statistical Bootstrap. In the case of our parametric model,
this would mean sampling with replacement from the history of data gathered
so far, and finding the maximum likelihood estimate of the parameters for said
sampled history. This procedure, however, would present two issues [29]: the prior
over parameters is ignored and, more importantly, the uncertainty over parameters
is underestimated in the initial rounds of the optimisation process, when data
points are scarce. Since Thompson sampling leverages this uncertainty to produce
next action decisions, this naive application of the bootstrap is known to lead to
linear regret [17]. In particular, in the first days of optimisation the agent could
conclude that an ad group is underperforming with respect to the others just by
chance, and stop allocating budget to that ad group altogether, never allowing it to
recover.

To overcome this issue, I adapted Algorithm 3 of [17] with Bayesian bootstrap-
ping to the present setting. The adapted algorithm is reported in Algorithm 2.

3.4 Numerical simulations

In order to test the model and compare it with the state of the art, I designed and
developed an environment which tries to capture what is disclosed about the ad
placing auctions [13]: this environment is described in section 3.4.1. In section 3.4.2
we will analyse the results of the simulations.

3.4.1 Simulation environment

To build the simulation environment herein described, I had to make some simpli-
fying assumptions. Nevertheless, the click and CPC dependence on bids agrees
with experience on actual auctions. Moreover, the goal was proving the ability of
the optimiser to adapt to an environment which is similar enough to reality. In
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Algorithm 2 Bootstrapped Thompson Sampling
Input: Prior P over parameters of models (3.6) and (3.7); ad groups list (a1, a2, . . . ).

1: Data D0 = ()

2: for t = 0, 1, . . . do
3: for a = a1, a2, . . . do
4: Uniformly sample artificial bid b̃ over allowed range
5: Sample model parameters (k, a, c, κ, α) ∼ P
6: Sample artificial saturation clicks ñ ∼ Pois

(
n sat(b̃)

)
7: Sample artificial CPC φ̃ ∼ Lognormal

(
φ(b̃)

)
8: Sample t + 1 weights wi ∼ Gamma(1, 1), i = 0, . . . , t
9: Weighted Maximum Likelihood regression over data Dt ∪ (b̃, ñ, φ̃)

10: end for
11: Use ML parameters for choosing next bids and budgets as in section 3.3.2
12: Update data Dt+1 with observed clicks and CPCs
13: end for

particular, note that clicks and CPC are not simulated according to the model that
is being tested (i.e., the one proposed in section 3.3.1) to avoid biasing the results.

For every day, the number of searches compatible with an ad group is sampled
from a Poisson distribution. Then, for each search an auction is simulated. The
number of competing advertisers is again sampled from a Poisson distribution
(with a different mean). The ads belonging to different advertisers are ranked
according to the product of three quantities. The first is the bid: for competing
advertisers, the bid is sampled from an exponential distribution. The second is
a static quality score, which measures the intrinsic quality of the ad: it is sampled
from a triangular distribution. The third is an instantaneous quality score, which
measures the affinity between the single search and the ad group. It is modeled
as an angle between vectors, which is extracted from a rescaled beta distribution;
then the quality score is calculated as the scalar product between said vectors.

After the ads have been ranked, the first ones appear on the search engine result
page: whether they are clicked or not is determined by a Bernoulli distribution.
Then, in keeping with the meaning of the bid as maximum CPC, the advertiser
that has received a click pays the minimum amount necessary to appear in that
position. The budget is then updated accordingly, until either available searches
end or the budget is finished. A second Bernoulli distribution governs which clicks
turn into contacts. What distinguishes various simulations are the parameters of
the manifold of the probability distributions involved.

To run a comparison between the parametric regression model introduced in
section 3.3.1 and the GP model introduced in [27], the latter needs some additional
metric to extrapolate the saturation clicks of the day from the observed clicks, as
stated in section 3.1. To this end, I have chosen lost impression share, an estimate
of the fraction of times the ad was eligible for appearing in a search, but did not
due to limited budget. To capture the fact that it is inherently a noisy quantity, a
convex combination of the actual lost impression share with random fractions was
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used, with varying coefficients.
The code of the simulation environment is available at https://github.

com/MarcoGigli/sem-simulation.

3.4.2 Simulation results

I run 120 experiments randomly drawing the parameters introduced in section 3.4.1
The number of campaigns of the portfolio varied between 2 and 8 and, for each
campaign, the number of ad groups varied between 1 and 4. For each parameter
setting, both the parametric and the GP model optimised the total value for 100

virtual days.
In these numerical simulations the parametric model runs with full-fledged

Bayesian inference, performed with MCMC: tests using the approximated Boot-
strapped Thompson Sampling introduced in section 3.3.3 were deferred to the
real-world experiments (see section 3.5.2).

As explained in section 2.1, the most commonly used figure of merit to evaluate
the performance of bandit algorithms is regret. The latter, however, requires
knowing which action on average leads to the best reward.

In these simulations, however, the mean reward is an emergent property that is
not easily deduced by the parameters that characterise a problem instance: for this
reason I evaluated the regret of using the GP model instead of the parametric one:

Rn =
n

∑
t=1

(
rpar

t − rGP
t

)
.

Here rpar
t and rGP

t represent the rewards received at day t using the parametric and
GP model respectively. In particular, it is given by the number of contacts.

Moreover, to meaningfully compare performances of experiments with different

parameters, I also calculated the relative regret: ρn =
∑n

t=1(rpar
t −rGP

t )
∑n

t=1 rpar
t

.

In figure 3.3, the behavior in time of regret and relative regret is shown for
a particular set of parameters, i.e. one of the 120 experiments. After a short
time in which, due to random fluctuations, the GP model gathers more contacts,
the relative regret quickly raises to 40%. Then, as both models are given more
data, the relative difference in performance gradually tapers off, and converges to
approximately 10%.

This example is typical, as can be seen in figure 3.4 and in table 3.1: at n = 10
days, only in 11 experiments the regret is negative, and in most cases the relative
regret ranges from 8% to 55%.

Fast convergence is especially important if a sliding window strategy is em-
ployed to retroactively take time dependence into account, as in [12] and [42]. At
n = 100 days, the relative regrets are much less spread out and lower on average,
and again they are negative only in roughly one in ten cases (13 runs).

Upon closer inspection the most important feature in determining regret is the
number of ad groups per campaign (see figure 3.5). This shows that the ability

https://github.com/MarcoGigli/sem-simulation
https://github.com/MarcoGigli/sem-simulation
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(a) Regret

(b) Relative Regret

Figure 3.3: Time dependence of regret and relative regret suffered by the GP model when
compared to the parametric model.
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Figure 3.4: Distribution of the relative regret at n = 10 days and n = 100 days for all
synthetic experiments. The boxes show the first quartile, median and third
quartile.

Table 3.1: Descriptive statistics of the relative regret at n = 10 days and n = 100 days.

Days
Relative regret

First
quartile

Median Third
quartile

10 8.6 % 22.4 % 55.8 %
100 4.5 % 8.5 % 12.5 %

to efficiently search for the optimal bid combination given a certain budget (as
described in section 3.3.2) is crucial for the performance of the agent.

Moreover, higher percentages of noise in the extrapolation metric are associated
with a higher relative regret (especially at n = 100 days), as is to be expected from
the discussion of section 3.2. Other features do not show a clear link with relative
regret.

3.5 Real-world data

While the simulation enviroment described in section 3.4.1 has the benefit of giving
full control over the parameters of the simulation, it is at risk of being too idealised
and relying too heavily on assumptions, particularly with regard to probability
distributions and the presence of outliers. To counter this, I performed extensive
experiments over the Criteo Attribution Modeling for Bidding Dataset [16], which
contains one month worth of (subsampled) Criteo display advertising data. Dealing
with real data, as opposed to synthetic, means the problem is not shielded from
non-stationarity; moreover, the imposed 31-days time frame makes data efficiency
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(a) After n=10 days (b) After n=100 days

Figure 3.5: Distribution of the relative regret at n = 10 days and n = 100 days varying the
number of ad groups per campaign. The boxes show the first quartile, median
and third quartile.

all the more important.
The next subsection is devoted to describing the dataset and how it can be used

to evaluate bandit performances (section 3.5.1). The results of the experiments are
then analysed in section 3.5.2.

3.5.1 The Criteo dataset

Every line of the dataset contains contextual features regarding the user, the
website and the ad. These (anonymised) categorical features are used to feed a
supervised model that predicts the probability of conversion (see [16] for details).
This predicted probability is the analogue of the product of static and instantaneous
quality score described in section 3.4.1: it is multiplied by the bid to determine
the ad rank, and thus the right to be shown on page. The dataset was thus split
in two: one half was used to train the predictive model, while the other half was
used to test the bandit algorithms. The training set was also used to learn the
priors, both over the parameters of the proposed Bayesian model and over the
hyperparameters of the GPs.

The data points correspond to auctions that were won by the production policy;
in other words, the dataset is truncated, since lines corresponding to lost auctions
are absent. This selection bias means that the logged distribution of minimum
winning bids is not representative of the true one. More generally, to evaluate the
performance of competing bandit policies on logged data one would need a full
counterfactual analysis [43], which could be unfeasible if the production policy
is deterministic. In this case, however, it has become standard practice to tackle
the problem of selection bias by injecting noise into the distribution of competing
bids [16, 44], and I adopted this simple approach.
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It was thus possible to effectively replay the auctions. The bid chosen by
the agent for a given day and ad group is compared, after multiplication by the
predicted probability of conversion, with the best competing ad rank. If the auction
is won and the ad in the dataset received a click, then the click count for that day
is increased by one. The same holds for conversions.

As an ablation experiment, and to keep matters as close as possible to the
original dataset, I fed the GP model with the actual lost impression share, without
adding noise. This benefits the GP model, as one of the concerns raised in
section 3.1 was here removed.

Nevertheless, we will see in section 3.5.2 that the parametric Bayesian model
performs best on average in every examined setting.

Before delving into comparing the performances of the bandit algorithms on
this dataset, we can study the two regression models taken in isolation. First note
that the right hand side of formula (3.6) with k = 1 is the probability of winning
a single auction, as predicted by the parametric model. The actual probability of
winning is given here by the cumulative distribution of competing ad ranks (which
is unknown to the agent). A comparison of the two curves shows the expressive
power of the proposed model (see figure 3.6 for an example).

Switching to the number of clicks in a day, one can compare the proposed
parametric model with a GP trained on the same data (see figure 3.7). Here we
see that the fewer restrictions placed on the GP (as mentioned in section 3.1) mean
much slower convergence to sensible shapes.

3.5.2 Results on the Criteo data

In order to study how the main parameters of the experiment affect the regrets,
I varied them one at a time, keeping the others fixed: budget per ad group
(figure 3.8a), number of campaigns (figure 3.8b), and number of ad groups per
campaign (figure 3.8c).

For each parameter combination, I sampled 120 realisations from the Criteo
dataset, i.e., randomly extracting portfolios with the chosen number of campaigns
and ad groups, and replayed its auction as described in section 3.5.1. Since the
campaigns of the Criteo dataset present no substructure, to test multi-ad group
scenarios I treated them as ad groups, and randomly clustered them to form
campaigns.

The experiments letting budget and number of campaigns vary were conducted
with one ad group per campaign, to perform an ablation experiment and study
the effect of the parametric model alone, independently of the multi-ad group
generalisation introduced in section 3.2.

Overall, in every setting I studied, the average regret suffered by either the GP
method or Bootstrapped TS at the end of the simulation is positive. As shown
in figure 3.8, the average percentage of conversions lost due to not using the
parametric Bayesian method can reach in some settings 40% (figure 3.8c).

As can be seen from figure 3.8a, keeping the number of campaigns and ad
groups fixed and increasing daily budget, relative regret quite steadily decreases
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Figure 3.6: Predicted versus actual dependence of the probability of winning an auction
on the bid, for a campaign of the Criteo dataset.

Figure 3.7: Daily saturation number of clicks for a given bid with the prediction of the
parametric model and the GP, for a campaign of the Criteo dataset.
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(a) Varying budget

(b) Varying campaign number

(c) Varying ad groups per campaign

Figure 3.8: Behavior of the average relative regret on the Criteo dataset varying one
parameter at a time.
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both for GPs and Bootstrapped TS. This is to be expected, since increasing daily
budget means moving closer to saturation cost, which in turn means that

• errors in splitting budget have less impact,

• more budget is available for exploration, which means getting more accurate
data.

Put differently, while the proposed method gathers more conversions on average
for all the budgets we tested, its advantages are more clear cut when daily budget
is tight.

The relative order between the two curves in figure 3.8a is in turn an effect of
the relatively high number of campaigns involved, as can be seen in figure 3.8b:
while the regret for GP is somewhat independent by the number of campaigns,
Bootstrapped TS suffers from increasing this number, so that the two curves cross.

If we instead let the number of ad groups per campaign vary (figure 3.8c),
while both methods show increasing average relative regret with increasing num-
ber of ad groups, Bootstrapped TS suffers less: while the Bayesian posterior is
approximated, next action selection is the same as in the full-fledged parametric
Bayesian algorithm, and can thus benefit from the same local optimisation method.

The GP method and Bootstrapped TS show comparable performances across
the settings studied. One can interpret this as showing the separated effects of
both a more efficient model (shared by Bootstrapped TS and our method) and full
Bayesian inference (shared by GPs and our method): one needs both in order to
increase performance in this environment.



4
Approximate Thompson Sampling for

delayed feedback

As briefly touched upon in the Introduction, delayed feedback is an intrinsic prop-
erty of digital advertising: the metrics to be maximised are most-often measured
a non-negligible interval of time after the impression (i.e., after the instant when
the user first sees the advertisement). Delays cannot be ignored in the sense that,
during the aforementioned interval of time, the agent in charge of carrying out
the optimisation has to take a number of other actions, without being able to
benefit from the information about its past choices. In the language of Multi-armed
Bandits (MABs) introduced in chapter 2, the learner faces several rounds before
being able to update its strategy with the most recent feedback.

Delays are unavoidable both from the perspective of the advertiser and the
advertising platform (i.e., the platform that gets paid by the advertiser to show
advertisements to end-users). Starting from the latter perspective, assume an
algorithm is in charge of deciding which ads to serve to the users of a website.
This problem is very similar to the one of section 2.2. Even if the algorithm has the
goal of maximising the number of clicks, which usually happen within minutes
since impression, it needs to continue serving ads to other users in the meanwhile.

Going back to advertisers, the delay between impression and click is usually
not problematic if, as in chapter 3, one round corresponds to a calendar day: the
overwhelming majority of clicks happens within the same day as the impression,
so that we can simply ignore the small fraction that does not. However, as hinted
upon in chapter 3, clicks are a suboptimal proxy to optimise: advertisers are
interested in increasing the number of customer contacts or, if at all possible, sales
directly.

Depending on the business area, the delay between first click and contact
or sale (two events that can be collectively called conversions) can reach several
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weeks. In particular, we can expect this delay to be greater in high-ticket market
segments [45]. Waiting for a time-cohort of customers to close, i.e., waiting for the
feedback of all customers from a specific time period, means being unable to use
fresh data and adapt to market shifts [46].

Finally, both sides (advertisers and advertising platforms) often do not re-
train their algorithms online, i.e. at every user interaction. This is due both to
performance reasons (a re-train can take longer than the typical time separation
between consecutive rounds) and also safety reasons: the re-trained model often
needs to be tested before deployment, to avoid user-facing issues [40]. For this
reason, the learning algorithm usually receives data in batches.

Notwithstanding the above, in chapter 3 we have seen an idealised version of
the bid/budget optimisation problem, in which immediate feedback was assumed,
with the aim of tackling one facet of the problem at a time. Since MABs proved an
effective tool in carrying out the optimisation, I scanned the literature about MABs
with delayed rewards in search for indications on how to properly treat delayed
conversions: the next section is devoted to such literature review.

A setting emerged which, while simpler than the full problem of optimising
bids and budgets with delays, has several of its characteristic traits and showed
potential for improvement with respect to the state of the art, while potentially
paving the way for tackling the full bid/budget optimisation problem. Section 4.2
is devoted to introducing this setting. In the subsequent sections 4.3 and 4.4 we
will go through the model behind my approach and the comparison of results
with the state of the art.

4.1 Stochastic bandits with delayed feedback: a review

4.1.1 Early works

Insights about the problem of Multi-armed Bandits with delayed feedback go
back at least to the influential paper [32]. The authors empirically proved the
effectiveness of Thompson sampling (TS) in a manifold of bandit problems, thus
contributing greatly to the re-discovery of the technique by the bandit commu-
nity [29]. In particular, they compared TS to the UCB algorithm in the presence
of fixed, deterministic delays of varying entity via simulations. TS proved robust
to delays, while the performance of UCB matched that of TS only in the case of
immediate feedback. The reason is that, being UCB a deterministic algorithm,
the same action is played over and over while waiting for feedback, leading to
redundant exploration. The randomised nature of TS, on the other hand, makes it
explore much more effectively.

The first work that studied theoretically the effect of delays on bandits is [47].
In the contextual bandit setting, again with constant, deterministic delays, the
authors developed a proof-of-concept policy that showed it is possible to obtain
regret bounds that only increase additively with delay: this is desirable, as it means
that the penalty becomes negligible as the horizon T grows. However, their policy
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is computationally intractable, and requires exact knowledge of the probability
distribution of contexts.

In the non-contextual, finite-armed setting, the authors of [48] developed
a queue based wrapper algorithm which transforms, in a black-box fashion,
immediate-feedback bandit algorithms into algorithms capable of handling the
delayed case. In addition, they analyse the straightforward adaptation of the
UCB algorithm that just uses the available feedback, ignoring actions that did
not receive feedback yet (as was done empirically in [32]). For both proposals,
assuming that the distribution of delays has bounded expectation, they show that
the regret incurs an additive penalty. On the other hand, both proposed algorithms
act deterministically while waiting for feedback: this is true even if one uses the
first algorithm to wrap TS, which is random in nature. As noted above, this trait is
sub-optimal.

Also the authors of [49] provide a queue based wrapping algorithm, but
noting the harming nature of determinism in the presence of delays, they design
a balancing mechanism to avoid long queues (i.e., to avoid repeating the same
action for too long), and they also allow for the use of external heuristics. While
regret bounds are the same as in [48], via simulations they show that the practical
performance of their algorithms is significantly better. Moreover, in experiments
they note that pure TS performs as good as their proposed algorithm.

4.1.2 Gaussian Process bandits

The authors of [23] study delays in the context of Gaussian Process (GP) bandits.
They too note that UCB suffers from repeating the same action while waiting for
feedback, and introduce a technique to correct for this in the context of bounded
delays (which include batch re-training and deterministic delays as special cases).
The key observation is that, in GPs, the posterior variance depends only on where
observations are made, but not on which values of the function are observed: in
other words, even while waiting for delayed feedback, the agent is able to predict
by how much the uncertainty will reduce. A natural way to avoid redundant
exploration in GP-UCB is then to keep the mean of the posterior unaffected by
the unavailable observations, while updating the uncertainty estimate using all
observations (including those that still have to receive feedback). This is equivalent
to hallucinating the missing rewards, substituting them with the posterior mean:
in this form, the technique could actually be applied to MABs in general. The
authors of [23] note, however, that this brings to an overconfident posterior, which
does not contain the true reward function with high probability. To correct for
this and obtain low regret bounds, they inflate the multiplicative factor αt of the
uncertainty in the action choice rule (2.8). Interestingly, however, in experiments
they do not inflate αt, and indeed they introduce a small premultiplier (0.05 or 0.1),
which further reduces exploration. This signals some detachment between rigorous
bounds and practical purposes: while bounds are set on worst case scenarios, one
is usually interested in average performance in some sense. We will see further
signs of this when discussing [50] and in section 4.2.
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From [23] a whole stream ignited, aimed at studying GP bandits with delays.
The authors of [51] note that, in the case of batches of known size n, where
the agent can plan the whole set of actions in advance, the hallucination rule
introduced in [23] is ad hoc: a more principled strategy would be to collectively
plan the n actions to be played strategically. However, due to the combinatorial
nature of the problem, this planning task scales exponentially in n. If, for instance,
the batches originate from the parallelisation of function evaluations to speed up
the optimisation, the time saved could be offset by the time needed to calculate the
next n points to query. They thus propose an approximate technique that achieves
good performance, and the degree of approximation can be tuned with respect to
the cost of the single function evaluation.

The authors of [52] observe that the need for variance reduction via halluci-
nating rewards in UCB stems from the necessity to explicitly enforce diversity
of query points: ultimately, this is a consequence of the deterministic behavior
of UCB. On the other hand, the inherent randomness of GP-TS suffices to avoid
redundant function evaluations: they prove this for simple Bayesian regret. They
also prove empirically that the variant of GP-TS that employs the hallucination
diversity scheme performs either about the same as or slightly worse than pure GP-
TS. After [32], [49] and [52], we will encounter again proofs of the good practical
performance of TS in the presence of delays when commenting [50].

In the opposite direction, the authors of [53] modify the hallucinating algorithm
of [23], reducing the width of the confidence interval, possibly building upon the
observation that was made in [23], namely that in empirical tests they had to
make the algorithm exploit more aggressively. They also provide an hallucinating
version of GP-TS: besides feeding GP-TS with the expected reward while waiting
for feedback, also the related uncertainty gets shrunk, as in their GP-UCB based
algorithm. With these algorithms, they improve upon the bounds derived in [23]
in the frequentist setting.

Continuing in the GP-bandit stream, the authors of [54] concentrate on feedback
with stochastic delays, which contain batch updates of previous works as a special
case. Building upon a strategy contained in [18] (which we will consider later on in
the review), they modify the hallucination mechanism of [23] and [53]: unobserved
feedback gets substituted with the minimum for the function (assuming it is known)
rather than the posterior mean. Doing so, they foster exploration, even more so
than hallucinating the mean. They consider both a UCB-like and a TS-like variant.
In both cases, the posterior uncertainty is multiplied by a properly tuned factor.
Restricting to a large class of GP kernels, they prove tighter regret bounds with
respect to those in [53]. These bounds depend on quantiles of the distribution of
delays: in doing so they avoid placing assumptions on the shape of the distribution.
In experiments, however, they consider a Poisson distribution for delays, i.e., a
light-tailed one. Moreover, interestingly, they don’t explicitly compare UCB-like
algorithms to TS-like ones, and don’t compare their algorithms with the UCB-like
algorithm of [53]. Moreover, GP-TS with delays as introduced in [52] seems to
perform competitively to their TS-like algorithm, without the need for carefully
tuning the time-dependent uncertainty pre-factor αt.
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4.1.3 Partially observable rewards

Going back to finite-armed bandits, the authors of [55] focus on bandits to optimise
conversions in digital marketing, i.e., sales or customer contacts. They start from an
remark contained in [24], namely that conversions are only partially observable: after
a user has clicked on an advertisement, they may decide to buy the product after
some time, thus providing positive feedback; if they decide not to buy, on the other
hand, no explicit feedback is ever sent to the system. The author of [24] deals with
the Maximum Likelihood Estimation (MLE) of the conversion probability in such a
setting, assuming that the delay distribution is exponential, but without assuming
that the average delay is known: the distribution of delays is modelled together
with the conversion probability. The authors of [55], on the other hand, treat
this partially observable feedback in the bandit realm. They propose a UCB-like
algorithm, which however needs full knowledge of the delay distribution, in order
to re-weight observed feedback.

This strong (and oftentimes unrealistic) assumption is significantly relaxed
in [45]. The authors study again the finite-armed bandit problem with partially
observable feedback, but only assume that the Cumulative Density Function
(CDF) of the delay distribution is bounded from below by the CDF of a α-Pareto
distribution, thus allowing for infinite expected delays if α < 1. It is assumed that
the agent knows α. Moreover, they admit the case of arm-dependent distributions
(i.e., one value of α per arm). Besides the problem of censoring caused by partially
observable delays (due to which the learner has to deal with an unknown number
of missing rewards), they point out an identifiability issue: having two distributions
at play (the distribution on delays and the Bernoulli distribution on rewards), the
same observed data could be produced by pairs of distributions which differ in
their parameters. We will deal with this identifiability problem in section 4.3.

The authors propose a UCB-like algorithm. The empirical average in this
algorithm is biased, as all past actions are taken into account, even if some may be
waiting for positive feedback: all missing rewards are treated as zeroes. To deal
with this, they inflate the upper confidence bound with a term that handles the
extra bias due to delays.

The problem of partially observable rewards in the linear contextual bandit
setting has been tackled by the authors of [18] with a somewhat similar logic. They
employ a LinUCB-like algorithm that estimates the linear coefficient vector ϑ we
saw in section 2.2 using all played actions, and the confidence interval gets inflated
by a quantity that reflects the bias. To calculate this quantity, the algorithm takes as
input a window parameter m: if feedback has not been received within m rounds, the
algorithm labels it as a non-conversion. Though in some situations this window
parameter could be externally imposed to the algorithm due to memory constraints,
its presence is somewhat unfortunate, as in general it should be carefully tuned
depending on the delay distribution.

The authors do not place restrictions on the shape of the delay distribution,
as the regret bound depends on a quantile of the distribution (as in [54] that
we saw above, which was inspired by this work). On the other hand, the delay
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distribution does not depend on the action (contrary to [45]). They also provide a
LinTS-like heuristic, though theirs cannot be considered a pure TS approach, as it
does not sample from a posterior distribution: they obtain it heuristically from the
confidence region of their proposed LinUCB-like algorithm. Finally, they test their
algorithms on geometrically distributed delays and on an empirical distribution of
delays inferred from the real-world dataset of [16].

We will thoroughly analyse this linear contextual setting with partially observ-
able rewards in sections 4.3 and 4.4. We will see empirical proof on a host of delay
distributions that a TS approach, albeit approximated, yields at worst comparable
and at best significantly better regret. The TS algorithm I propose shares several
traits with [19], though the authors of the latter work analyse the finite-armed
bandit setting, rather than the linear contextual one. In this practitioners’ paper, the
authors move their steps from the MLE model in [24]: they generalise the deriva-
tion to generic delay distributions, though they then apply the model assuming
exponential delays. In this model, the distributions of delays and rewards decouple
and are learned separately. They propose a TS-like approach, which considers
only the uncertainty on the distribution of rewards: the delay model is assumed
to be precisely known, even if it is learned with the passing of rounds together
with the distribution of rewards. This strategy is practical because it permits using
a Beta-Bernoulli conjugate on rewards corrected using the distribution of delays;
on the other hand, ignoring uncertainty on the delay distribution could lead to
insufficient exploration, especially in the case of heavy-tailed delay distributions.

Rather than providing rigorous regret bounds, being interested in average-
case performance, they conduct a host of numerical experiments, comparing
their solution to the straightforward extension of TS which ignores the partial
observability problem and to the UCB-like algorithm of [55]. Since the latter model
needs the delay distribution (assumed to be known) as input, they provide it
with the learned distribution. In all reported experiments, their TS-like approach
outperforms the others. It must be noted, though, that they focus on light-tailed
distributions in experiments, and they don’t compare their method to the one
proposed in [45].

The last work we are going to cover in the partially observable setting is [56].
The authors study the problem of deciding how to allocate existing vaccines to
target new variants of an infectious disease. Feedback is partially observable,
because only negative rewards are observed (i.e., infections). Since the decision is
among a finite set of vaccines, they study the finite-armed bandit case, without
personalising vaccines (i.e., without contexts). This problem is interesting in
that the rate of infection depends on the ebb and flow of the pandemic: it is a
non-stationary problem. This model can also capture the evolution in time of
the prevalence of a specific variant, if only infections by the given variant are
treated as events. The authors model the problem as a proportional hazards
model: there is a baseline risk for an unvaccinated person to get infected, and
arms capture the protective effect of vaccines. Via a partial likelihood approach,
they are able to cancel out the non-stationary baseline risk. By then applying
TS, they are able to minimise infections over time, with better performances with
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respect to randomised control trials: they prove this performing simulations on
real COVID-19 data.

In their model, they assume that the vaccine efficacy does not wane with
time since vaccination: if the baseline risk were constant, this would correspond
to an exponential distribution of times between vaccination and infection. We
will see in section 4.2 that this setting is, in a sense, opposite to ours: we will
assume stationarity of the baseline risk, but general (in particular, not necessarily
exponential) delay distribution, modelled with a Kaplan-Meier estimator.

4.1.4 Aggregated anonymous feedback

With respect to the partially observable setting, the authors of [57] consider an even
more challenging setting, that of aggregated anonymous feedback. Namely, the learner
observes the sum of the rewards that arrive at the same round, without being
able to disentangle to which arms the single rewards correspond. The motivating
example is again related to online advertising: in practice, it is not always possible
to associate a conversion to the ad that produced it. To estimate the association
between arms and expected rewards, the authors group rounds into long stretches:
the agent consecutively plays the same action over these stretches. If the stretches
are sufficiently long compared to the mean delay, the rewards received during
one stretch will mostly come from the action played in that stretch. However, this
algorithm heavily relies on the precise knowledge of the expected delay.

The authors of [58] further generalise the problem. In the setting they consider,
the reward for pulling an arm can be spread over multiple time steps. This
would be the most natural way to introduce delays in the model considered
in chapter 3, if the advertiser is unable to identify incoming users and their
corresponding conversions. The authors of [58] tackle the simpler, non-contextual
setting. Moreover, as in [57], it is crucial for their algorithm that the expected delay
is precisely known to the agent.

With this limitation in mind, the authors of [59] modify the algorithm proposed
in [57] and [58]: the amount of rounds per stretch in which the same action is
repeated over and over is not fixed, but adaptively increases with time.

4.1.5 Contextual bandits

Turning again to fully observable rewards, the first work after [47] that deals with
(non-static) contextual bandits in the presence of delays is [60]. The authors con-
sider the setting of generalised-linear contextual bandits (which include linear and
logistic bandits as special cases). The authors significantly relax the assumptions
in [47] regarding knowledge of the distribution of incoming contexts and constant
delays: contexts are assumed sampled IID from a distribution which is unknown
to the learner, and delays are stochastic. They propose a UCB-like algorithm,
which depends only on those actions for which the feedback has already been
observed. To obtain their regret bound, they design a delay-adaptive confidence
parameter which depends on how many rewards are missing up to the current
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time step. Moreover, for their analysis they do not assume a finite number of
actions: their result can be extended to generalised-linear contextual bandits with
infinitely many arms. They go on proposing an algorithm designed specifically for
linear contextual bandits with delays, which attains a tighter regret bound, at the
price of being usable only with a finite number of arms.

In the same setting, the authors of [61] both relax assumptions contained in [60]
and obtain a tighter regret bound. Whereas in [60] the penalty due to delays
grows with the horizon T, we have seen in other settings that we can hope for
constant, additive penalties: the authors of [61] note, in this regard, that we can
expect delays to become irrelevant once the learner has obtained a good enough
estimate of the reward function. Indeed, they propose a UCB-like algorithm that
attains a constant regret penalty that depends on the expected value of the delay
distribution. Moreover, they are able to relax the assumptions on the tails of the
delay distribution to cover so-called sub-exponential delays (which include the
exponential distribution observed in [24]). The algorithm proposed in [60] both
places stronger assumptions on these tails and needs some prior knowledge of the
delay distribution, to calculate a number of rounds in which the agent explores
randomly. A regularisation term akin to the one we saw in section 2.2 grants the
authors of [61] the opportunity to avoid this costly exploration phase altogether.
They back up their theoretical results with experiments on linear and logistic
contextual bandits, with uniformly and exponentially distributed delays.

4.1.6 Intermediate observations

The authors of [42] consider the interesting case of non-stationary, delayed bandits
with intermediate observations. Namely, as we have seen in the introduction to the
present chapter, it is often the case that the agent has access to immediate proxies
(like, for instance, clicks) besides the delayed feedback it aims to optimise. These
intermediate signals are helpful if the environment is non-stationary, but we can
assume that the long-term behavior of the system given the intermediate signal is
stationary. This is the main assumption of [42]: the authors build upon a model
introduced in [62], according to which the final feedback is independent of the
agent’s action given the intermediate feedback. Although the motivating example
is again in the realm of digital advertising, this work does not consider partially
observable feedback. This is not inconsistent with [55], since the conversion signal
could be, for instance, usage of an advertised app after a given number of weeks
(see also [63] for another practical example). Indeed, this way of measuring reward
is similar to the approach used in [18] where, as we have seen above, the algorithm
employs a fixed windows after which observations are discarded. Hence, they
concentrate on fixed, deterministic delays. They deal with non-stationarity with
a sliding-window approach. The disentangling between action and final reward
given the intermediate signal is modelled via a Markov Decision Process (MDP),
for which they build a UCB-like algorithm.

The presence of intermediate signals is assumed also in [40], whose authors
tackle a somewhat simpler problem with respect to the one of chapter 3, namely,
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that of optimising the budgets (but not the bids) of a portfolio of marketing
campaigns (see subsection 3.3.2 for details). The problem of delayed conversions
is dealt with substituting the missing rewards with surrogate rewards, which are
produced as follows. A series of models are trained to predict the probability of
conversion before fixed time-horizons (one per model). A (properly re-scaled) lo-
gistic regression is then trained on the predictions of the sub-models, to extrapolate
to times other than the fixed time-horizons: the predictions of this meta-model are
the surrogate rewards that are fed to the agent of this bandit problem. Although
non-standard, this procedure effectively estimates the dependence on time of the
CDF of rewards. As was the case for [19] and as we will see in [46], the Bayesian
uncertainty on this estimated CDF is not taken into account when applying Thomp-
son sampling downstream. Moreover, the use of logistic regression places a strong
assumption on the distribution of delays (logistic distribution). Interestingly for
practitioners, they comment on the need for guardrails in Thompson sampling,
which restrict the exploration to the central quartiles of posterior distributions:
while this could be detrimental purely in terms of regret, this procedure gives more
stable next-action choices, which can be beneficial in a production environment
and to foster trust from marketing and operations teams. Moreover, they deal with
non-stationarity with an exponential penalty on old data, and they give estimates
for the typical timescales involved.

The authors of [46] consider a related setting (though in the stationary regime)
where the reward for the agent is a linear combination of intermediate, immediate
signals and long-term feedback. They consider two sources of delay: one is
natural (i.e., the time for the conversion to happen), and the other is due to batch
training. As in [42], they only consider fully observable feedback. When natural
delay places the feedback beyond the re-training time, the time for feedback is
considered censored, and modelled with Survival Analysis methods (assuming
an exponential distribution of delays). They then modify the UCB algorithm for
the batch setting, and use the fitted distribution of delays to re-weight observed
feedback. As in [19], they do not account for uncertainty on the distribution of
delays. Note that, assuming daily re-training and weeks-long feedback time, this
model cannot be applied to the setting we saw in chapter 3, as the overwhelming
majority of data would be censored.

The reward model of [46] is taken to the extremes in [63]: the authors of this
practitioners’ paper consider a setting in which the reward is a linear combination
of a number ∆ of signals, that become progressively available during ∆ rounds,
where ∆ is a fixed integer. As a motivating example, they consider maximising
user engagement with a recommended podcast after 60 days, measured as the
number of days in which users listen to said podcast. They model this progressive
feedback as sampled from a multivariate Gaussian distribution, and corrupted by
zero-mean Gaussian noise. After learning the hyperparameters for these Gaussian
distributions from past-data, they can thus update the Bayesian posterior upon the
long-term reward incorporating all information available to date. In this way, they
are able to leverage TS in this recommendation problem.
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4.1.7 Unrestricted delay distributions

With the exception of [45], [18] and [54], most of the works we have covered
assume well-behaved delay distributions (bounded or sub-Gaussian), with at most
sub-exponential tails [61] and well defined expected value; in some cases, delays
are even deterministic. The authors of [64], on the contrary, place no restrictions
on the shape of the distribution of delays: they do not assume it comes from any
parametric family of distributions, they allow for infinite expectation and also
infinite delays (i.e. the support of the distribution can be N∪ {+∞}). Moreover,
as in [45], they allow the delay distribution to be arm-dependent. They place their
work in the finite-armed, fully observable setting. Unlike most of the works above,
they don’t use a UCB-like algorithm: they use the straightforward extension of the
Successive Elimination (SE) algorithm to the delayed case, which only considers
observed feedback. SE, too, exploits the concept of confidence bounds we have
seen in section 2.1. It maintains a set of active arms, where initially all arms are
active. It pulls arms equally and, whenever there is a high confidence that an arm
is sub-optimal, it eliminates it from the set of active arms. Unlike UCB, SE samples
all active arms in a round-robin fashion, and not just the most promising arm: this
resolves the redundant exploration problem which, as we saw above, UCB suffers
in the presence of delays. Using SE, the authors obtain an additive penalty due
to delays that depends on a quantile of the distribution of delays, which can be
chosen at will (thus not assuming that the expectation value exists). Moreover,
they do so without the need of knowing parameters of the delay distribution
(as in [45]) or setting a window hyperparameter for discarding observations (as
in [18]). In simulations with fixed delays, the authors compare SE with the UCB
adaptation of [48]: as expected, SE is a clear winner. Interestingly, an approach
to UCB with hallucinated rewards (as the one we saw in [23, 53, 54]) does not
seem to exist in the literature for finite-armed bandits: we can only assume it
would be a fairer competitor of SE. The authors also compare SE with the approach
of [45] on α-Pareto distributions: they note that this competitor was designed for a
more challenging setting (i.e., partially observable rewards), but it was the only
algorithm with a regret bound on delay distributions with polynomial tail bounds
and infinite expectation.

The authors also consider the more challenging case in which the delay dis-
tribution depends on the reward, even for fixed arm. No restriction is placed on
the joint delay-reward distribution. In clinical trials this could happen if, given a
treatment, some side effects take longer than others to surface. They first note that,
if delays are not reward dependent, using only the observed rewards for inference
yields an unbiased estimate, and this translates in the added regret due to the time
to receive enough feedback. On the other hand, with reward-dependent delays,
the observed empirical mean is a biased estimator of the expected reward; in the
worst case, the direction of the bias can be opposite between different arms. To
deal with the reward-dependent case, they widen the confidence bound of SE to
account for this bias, and obtain an instance-dependent regret bound. As we will
see in detail in section 4.2, also in the partially observable setting the distribution
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of delays can be seen as reward-dependent; on the other hand, the authors of [64]
place themselves in the fully observable regime, so this example does not apply to
their work.

In view of the robust empirical performance of TS in the presence of delays [32,
52], the authors of [50] study its performance both theoretically and via simulation
in the reward-independent setting of [64], namely: arm-dependent delay distri-
butions with no restriction, for a finite-armed MAB. They derive for pure TS an
instance-dependent regret bound that is similar to that of [64]. On the practical
side, they test TS with a manifold of delay distributions.

• In the fixed delay setting, they compare it to the UCB adaptation of [48]
and to the SE adaptation of [64]: TS significantly outperforms both (and the
dominance of SE with respect to UCB asserted in [64] is confirmed).

• With α-Pareto distributed delays, the authors compare TS to SE, UCB and the
algorithm of [45] (though the latter is designed for the partially observable
setting). While also in this case TS outperforms all competitors, SE outper-
forms the algorithm of [45] only for small α = 0.2 (the only setting that was
tested in [64]). Moreover, interestingly UCB stably outperforms SE and the
algorithm of [45] with this heavy-tailed distribution.

• Considering a packet-loss distribution (i.e. the feedback could be “lost” and
have infinite delay with some probability), TS slightly outperforms UCB, and
both outperform SE.

• Considering a geometric distribution, TS again outperforms all competitors.
Interestingly, UCB has in this case the worst performance, also with respect
to SE.

• A similar scenario happens for uniform delays.

All in all, the good performance of TS is confirmed in this variety of settings,
while the relative performance of SE and UCB seems to defy intuition, and might
warrant further in-depth analysis.

4.2 Goals and related work

As we have seen in the introduction to this chapter and in chapter 3, previous
state-of-the-art approaches to bid/budget optimisation in performance marketing
were grounded in the assumption of immediate rewards. While this assumption
is reasonably verified in scenarios where the goal is to maximise clicks, owing to
their occurrence within the same browsing session as the initial impression, it is
likely violated when the goal is to maximise conversions.

Violations can manifest to varying extents, depending on the nature of the
marketed product. For instance, experience suggests the majority of users deciding
on the purchase of a low-cost consumer item tend to act on the same day as the
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exposure to the advertisement and, in many cases, immediately thereafter. Con-
versely, this pattern does not hold true for higher-end goods such as automobiles
or real estate properties: in these cases, the decision on whether to proceed can
take several weeks.

As we have seen in section 4.1, there is a rich literature on delayed rewards in
stochastic bandits. As highlighted in [18, 19, 45, 55] and detailed in section 4.1,
the context of online marketing stands out, in that the feedback is only partially
observable: while positive feedback, represented by purchase decisions, becomes
accessible to the agent after a certain delay, negative feedback is never explicitly
observed; in other words, the agent cannot distinguish between users who do not
convert and those who have not converted yet, but will do so in the future.

The context of application of [40] is the closest to ours, since the authors deal
with the optimisation of digital marketing campaigns in the presence of delayed
rewards. However, some concerns limit its direct application. On the theoretical
side, it is unclear what justifies substituting missing rewards with the predictions
of a model (surrogate rewards), and what effect does this substitution have on the
Thompson sampling procedure. In addition, training several models for fixed
time-horizons, and then joining them with a scaled logistic regression seems ad
hoc: the estimation of the probability of conversion over time is properly modeled
as a Survival Analysis problem.

Crucially, as noted in section 4.1, this technique ignores the agent’s uncertainty
on the distribution of delays. If the experimenter has access to a rich dataset before
the optimisation starts (as seems to be the case for [40]), then the distribution
of delays can be assumed to be known precisely: this setting becomes similar
to the one of [55], albeit in the contextual bandit case. In other words, rather
than feeding surrogate rewards to the agent in place of missing ones, one can
re-weight observations as in [55]. If, on the other hand, the distribution has to be
estimated during the optimisation (as is the case for a pure bandit setting as the
one considered here), ignoring this uncertainty could hinder exploration.

Additionally, the use of a scaled logistic function to extrapolate the estimated
CDF of the distribution of rewards severely limits the shape this distribution
can take: the logistic function is the CDF of the logistic distribution, which has
exponential tails.

Finally, the technique proposed in [40] gets tested only on one setting (internal,
undisclosed data of one company) and compared with a previous, undisclosed,
algorithm in use in the same company. The figure of merit for comparison is non-
standard, since the authors use the percentage improvement in CPA (as defined in
section 3.1), rather than regret.

We will see in section 4.3.6, however, that surrogate rewards can be seen as a
special case of the approach hereby proposed, when the distribution of delays is
precisely known. Moreover, deriving this technique in a principled way shows
how the delay distribution modelling problem can be tackled with the tools of
Survival Analysis, without the need for ad hoc techniques or severe limitations on
the shape of the distribution [65].

The setting of [18] is very close to ours: besides taking explicitly into account the
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complex structure of partially observable rewards, the authors deal with contextual
bandits (which, in turn, can host a continuous set of actions, as we have seen in
section 2.3). However, some limitations hinder the direct application of this work
to our setting:

Linear bandit Their approach requires carefully deriving Upper Confidence Bounds,
and they do so in the linear case: it is nontrivial to extend their approach to
the non-linear functions that link bid and budget to the number of clicks.

UCB Their approach involves a version of UCB to solve the exploration-exploitation
dilemma, and it is nontrivial to integrate it with the Thompson sampling
treatment presented in chapter 3. While they also present a sampling ap-
proach, it is an ansatz that uses a heuristic.

Discarded information Their approach ignores data about the magnitude of the
delays. When available, this added information could increase performance.

Hyperparameter Their proposed method involves setting beforehand a number
of rounds m beyond which the feedback is considered zero by default. While
it is conceivable that such window parameter may be externally imposed
for memory reasons, in all other cases it is not clear how it could be tuned,
without previous knowledge of the distribution of delays.

Biased conversion rate Besides maximising the number of conversions, practi-
tioners are often interested in the estimate of conversion rate itself (i.e., the
probability of a conversion to happen). In [18], this estimate is biased by
design.

Among other settings, the context of [64] presents some similarities with
ours. The authors consider the case of reward-dependent delays, where realised
delays may depend on the stochastic rewards. The partially observable rewards of
online marketing can be in fact alternatively formulated in terms of a probability
distribution p(R, D) over rewards R and delays D. With a slight abuse of notation:

p(R, D) = p(D|R)p(R = 1) =

{
p(D|R = 1)p(R = 1), if R = 1

δ(D−∞)(1− p(R = 1)), if R = 0

where p(D|R = 1) is the distribution of delays for positive rewards, δ(D−∞) is
the Dirac delta concentrated at positive infinity, and p(R = 1) is the probability of
getting positive reward. However, as we have noted in section 4.1, they assume full
observability, i.e., they assume that the agent receives both positive and negative
feedback. If one tries and apply their proposed approach to this rather extreme
case of delay-reward dependence, one obtains a degenerate model: the empirical
mean of observed rewards is identically equal to one for all arms.

The authors of [64] and [50] stress the importance of being able to handle
unrestricted delay distributions (p(D|R = 1) in the above notation), meaning
in particular long-tailed distributions. On the other hand, also [50] cannot be
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readily applied to our setting, since the authors explicitly exclude reward-delay
dependence, and pure TS was empirically proven to be suboptimal in the partially
observable setting [19].

As we have seen in section 4.1, the authors of [56] investigate delayed rewards
for bandits in the setting of vaccine trials: the structure of the feedback is similar
to ours, since only negative feedback is observed (infections). However, they
concentrate on being able to handle time-dependent risk: they do so at the expense
of being able to model the dependence of risk on the time since exposure (to the
vaccine in their case, to the advertisement in ours). In other words, they restrict
the space of possible delay distributions. Moreover they too, as in [50, 64], work in
the discrete case (multi-armed bandit with finite number of arms).

Considering all the above, I developed an approximate Thompson sampling
approach to delayed partially observable rewards in contextual linear bandits. The
reasons for this choice are the following:

• As commented in [50], oftentimes bandit approaches to delays require either
modifying familiar MAB algorithms to account for delays or propose new
delay-robust algorithms that are likely unfamiliar to practitioners; on the
other hand, TS is popular among practitioners [19, 29, 40, 60, 63].

• As noted above, algorithms based on confidence bounds (either UCB or SE)
require complex derivations of the optimal form of the confidence bound
itself, while TS can work “out of the box”.

• TS has shown good practical performance in a number of delayed feedback
scenarios [32, 50, 52].

• TS is robust to non-standard information flows [50].

• As repeatedly noted in section 4.1, there is a sort of gap between theoret-
ical regret bounds and empirical performance. While worst case rigorous
bounds are useful, practitioners are often interested in average performance
in “typical” scenarios [32, 60].

The closest approach to the one here proposed is treated in [19], whose authors
propose a TS-like technique: starting from the MLE model of [24], they re-weight
observations in view of the learned distribution of delays. After this is done, the
problem is mapped to a standard Bernoulli bandit, and TS is carried out through
a Beta-Bernoulli conjugate pair, as seen in section 2.1.3. These results cannot,
however, be readily applied to the present setting:

• They consider finite-armed bandits with delays, while we aim to linear
contextual bandits as a first proxy for the more complex contextual setting of
chapter 3.

• While their model is derived for a general delay distribution, they then use
an exponential distribution for experiments; we aim at handling a generic
distribution, as in [50, 64], since in some practical cases the distribution of
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delays is far from exponential [16, 18]. This can be done via a standard
non-parametric estimator (the Kaplan-Meier estimator [34, 66]).

• As noted in section 4.1, they only consider (via a Beta posterior distribution)
uncertainty on the distribution of rewards, while they ignore uncertainty on
the learned distribution of delays. This could lead to insufficient exploration.

In the next section, we are going to cover the MLE model (first introduced
in [24]) which powers my TS technique and the one in [19]. We will remain agnostic
with respect to the space of actions, which means the model can be applied to
standard multi-armed bandits with a finite set of actions as well as to linear and
non-linear bandits.

4.3 Maximum Likelihood model for delayed conversions

The authors of [18] acknowledge that their proposed sampling approach does
not strictly adhere to a conventional Thompson sampling methodology. Indeed,
recall (section 2.2.2 and chapter 3) that TS involves sampling from a posterior
distribution on problem instances. In their and our setting, the environment is
described by two probability distributions (for delays and conversions respectively).
Thus, the posterior would be a distribution of distributions. Even if the prior over
delay distribution were independent from the prior over conversion distributions,
independence would be lost in the posterior. For instance, the same data could
be interpreted either as having already seen most conversions (belief peak on
relatively small delays and low conversion probability) or as still missing most
conversions (belief peak on high delays and conversion probability): the posterior
would not factorise. We thus share their reservations regarding the possibility of
efficiently computing such posterior distribution.

If we wanted to restrict ourselves to families of parametric distributions, we
could in fact resort to Markov chain Monte Carlo (MCMC): all that is needed
is a prior over parameters and a way of expressing the likelihood of data given
the parameters. However, as hinted upon below, evaluating such likelihood is a
nontrivial task for our problem, let alone feeding it to a MCMC algorithm. More-
over, as outlined in section 4.2, we need to be able to model general distributions,
possibly with long tails and without assuming belonging to any parametric family
of distributions. Furthermore, coupling such model with the MCMC model of [15]
could prove nontrivial. Finally, with an eye to applications, it would be beneficial
to leverage a more lightweight alternative to MCMC for carrying out posterior
sampling [19, 40].

As proven by means of simulation in [15], Bootstrapped Thompson Sam-
pling [17, 29] is a valid, albeit suboptimal, approximate alternative to exact poste-
rior sampling. At its core, it involves calculating a Maximum Likelihood estimate
of the parameters that describe the environment from randomly resampled data.
In this section, we will hence describe in detail the technique introduced in [24]
and [19] to derive a Maximum Likelihood Estimator for the coupled delay-reward
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distribution. Maintaining the treatment general with respect to delay distributions
and dependency on covariates, we will be able to encompass the results of both
works, and then extend them to include the non-parametric Kaplan-Meier estimator.

In order to derive a Maximum Likelihood Estimator, we must first model how
the dataset is generated. This is done in the next subsection.

4.3.1 Data generation model

Let us first describe the dataset that is fed to an agent that has to estimate the
distribution of delays and rewards during the course of a marketing campaign.
Each past interaction i with a user (i.e., each previous round) is associated to a
context xi that describes the action taken and, optionally, the user itself. Moreover,
we assume the agent has access to the elapsed time δi since click until current round
n. Finally, each past event is characterised by the following random quantities:

• A Boolean variable Ei, which indicates if a conversion was observed;

• A time Ti, which is the time between click and conversion if Ei = 1, and the
time between click and current round n otherwise;

• A Boolean Ri, that tells us whether the user i does convert or not (irrespective
of when);

• A time Di, the delay between click and conversion (undefined if Ri = 0).

The variables Ri and Di are latent variables: the agent observes only Ei and Ti. Only
if Ei = 1 the agent is able to infer with certainty the value of Ri and Di.

Given a context xi, we assume that the conversion variable Ri is drawn from
some distribution p(Ri|xi). If Ri = 1, then also the delay variable Di is generated,
according to p(Di|xi, Ri = 1). Finally, the variables Ei and Ti are just deterministic
functions of Ri, Di and of the elapsed time δi:

Ei =

{
0 if Ri = 0

1(δi ≥ Di) if Ri = 1
Ti =

{
δi if Ri = 0

min(Di, δi) if Ri = 1

Given this data generation model, if the agent were to know the actual value of
Ri for all i = 1, . . . , n, the estimation problem for the two distributions of conver-
sions and delays would decouple and be solvable with standard methods. Indeed,
the agent could estimate p(Ri|xi) with the methods outlined in section 2.2, and it
could estimate p(Di|xi, Ri = 1) applying standard Survival Analysis techniques
on those rows of the dataset such that Ri = 1.

Another point worth adding is that, even if the agent does not know the value
of Ri, if the delay distribution p(Di|xi, Ri = 1) is instead known it can be used to
calculate an unbiased estimator for p(Ri|xi) (and this is precisely what the authors
of [55] do in the finite-armed bandit setting). In turn, if the conversion probability
p(Ri|xi) is known, it can be used to estimate the delay distribution.

These observations point to the Expectation Maximisation technique as a
way to iteratively solve the estimation problem, refining the estimate of the two
distributions at each iteration. This is what we will do in the next subsection.
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4.3.2 Expectation-Maximisation technique

To fix the notation, let us collectively call ϑ the parameters that characterise the
distribution of rewards and delays p(Ri, Di|xi, ϑ). Our goal is estimating ϑ given
the available data.

Regarding the distribution of delays, we are not making here any assumption
about the shape of ϑ: it could be anything from the rate parameter of an exponential
distribution (as is done in [19, 24]) to the list of discrete hazards of a non parametric
Kaplan-Meier estimator: we leave it unspecified, as this technique can be used
“plug and play” with the estimator of choice, depending on the experimenter’s
belief (or lack thereof) on the shape of the delay distribution.

For brevity, given the n events up to the current round, we use the vector of
conversions

R = (R1, . . . , Rn)

and similarly for the other variables. Moreover, we define the log-likelihood of the
data (both observed and latent) given parameter ϑ:

l(E, T, R|x, ϑ) = log p(E, T, R|x, ϑ).

Here we did not consider also the vector of delays D because, as remarked
in the previous subsection, knowing R would be sufficient for our estimation
problem. The following derivation would also work considering D among the
latent variables, at the price of a more cumbersome notation.

The remark of the previous subsection can be thus formalised: if we had access
also to latent variables, to estimate ϑ we could simply maximise the likelihood,

ϑ̂ = argmax
ϑ

l(E, T, R|x, ϑ).

Since we do not know R, intuitively we can average the log-likelihood over its
possible values r, weighting each contribution by the posterior probability p(R =

r|x, ϑ, E, T) given the observed data: in a sense, we would be considering “all
possible worlds”, and each would contribute to the log-likelihood proportionally
to its posterior probability. However, calculating such posterior probabilities would
in turn require already knowing ϑ. The way out of this circle is starting from a
rough estimate ϑ0 of ϑ, and iteratively refine this estimate:

ϑ̂k+1 = argmax
ϑ

ER∼p(·|x,ϑk ,E,T) l(E, T, R|x, ϑ). (4.1)

The one described above is the Expectation-Maximisation (EM) technique [67],
and one can indeed prove that, as k grows, it converges to a local maximum of
the log-likelihood. In other words, if we are able to calculate the right hand side
of (4.1)

Qk(ϑ) = ER∼p(·|x,ϑk ,E,T) l(E, T, R|x, ϑ) (4.2)

we have gained a MLE, which we will later use in Bootstrapped Thompson
sampling.
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Derivation is traditionally divided in two parts: the expectation step, in which
we calculate p(·|x, ϑk, E, T) and the maximisation step, in which we calculate the
quantity Qk(ϑ) that gets maximised .

Before that, we show that we can work on single-round quantities separately,
rather than on vectors, owing to the fact that the random variables at play are IID.

4.3.3 Round decoupling

We will now show that, as in standard log-likelihood maximisation, also in EM we
can rewrite the quantity Qk(ϑ) we want to maximise as a sum of terms, each of
which refers to just one event.

Indeed, assuming IID observations, the full log-likelihood can be expanded as
a sum,

l(E, T, R|x, ϑ) =
n

∑
i=1

l(Ei, Ti, Ri|xi, ϑ),

while the posterior probability of the latent R factorises as follows:

p(R|x, ϑk, E, T) =
n

∏
i=1

p(Ri|xi, ϑk, Ei, Ti).

Dropping the dependency on xi, ϑ and ϑk for simplicity, (4.2) then becomes:

Qk = ∑
R1∈{0,1}

· · · ∑
Rn∈{0,1}

∑
i

l(Ei, Ti, Ri)∏
j

p(Rj|Ej, Tj).

Summing over the values of R1, . . . , RN means that, for every i = 1, . . . , n, only the
factor with j = i survives, while all the others get summed to one:

Qk =
n

∑
i=1

∑
Ri∈{0,1}

l(Ei, Ti, Ri) p(Ri|Ei, Ti) =
n

∑
i=1

Qki (4.3)

In other words, Qk can be expressed in terms of single-round quantities Qki: this is
actually a general property of EM for IID variables.

In the next subsection we will calculate p(R|x, ϑk, E, T), while in 4.3.5 we will
derive l(E, T, R|x, ϑ) and wrap up.

4.3.4 Expectation step

The problem of calculating the posterior probability p(R|x, ϑk, E, T) can be carried
out mechanically, splitting it into cases. Since x and ϑk are fixed throughout the
calculation, we will temporarily drop them for simplicity. We start from the case
R = 1, E = 1: in this scenario, the user has not converted yet (E = 0), but they
eventually will (R = 1). Using Bayes’ theorem, we can write:

p(R = 1|E = 0, T) =
p(E = 0, T|R = 1)p(R = 1)

p(E = 0, T)
.
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Not having observed yet the conversion of a user that will convert is equivalent to
stating that the conversion event will happen in the future of T, i.e.

p(E = 0, T|R = 1) = S(T),

where S is the survival function of the distribution of delays (i.e., the complement
to 1 of its CDF). For brevity we call p1 the probability of generating reward,

p1 = p(R = 1),

and we call Z(T) the normalisation factor

Z(T) = p(E = 0, T).

We now switch to the case R = 0 and E = 0. Again resorting to Bayes’ theorem,

p(R = 0|E = 0, T) =
p(E = 0, T|R = 0)p(R = 0)

p(E = 0, T)
.

Note that the probability of not having observed reward at time T for a user that
does not yield reward at all is simply 1:

p(E = 0, T|R = 0) = 1.

Moreover, the probability of not generating reward is the complement of p1:

p0 = p(R = 0) = 1− p1.

Finally, the denominator is Z(T) also in this case. We can then calculate Z(T)
requiring that probabilities sum to 1:

1 = p(R = 1|E = 0, T) + p(R = 0|E = 0, T) =
S(T)p1 + p0

Z(T)
,

so that
Z(T) = S(T)p1 + p0.

As a last case, we now need to consider E = 1. Since having observed a reward
naturally implies that the user yields one, we simply have:

p(R|E = 1, T) = δR,1 = R.

Summing up:

p(R|E, T) =


R if E = 1

p1S(T)
p0+p1S(T) if E = 0, R = 1

p0
p0+p1S(T) if E = 0, R = 0

This expression can be further simplified, using the Boolean variables R and E as
indicators:

p(R|E, T) = E R + (1− E)R
p1S(T)

p0 + p1S(T)
+ (1− E)(1− R)

p0

p0 + p1S(T)
.
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Note that in the right hand side of this expression, all probabilities depend on the
context x and on ϑk:

p1 = p1(x, ϑk), S(T) = S(T|x, ϑk).

We are here leaving open the possibility that also the distribution of delays is
context dependent (as in [19, 45, 50, 64]).

In the next subsection, we turn to calculating the log-likelihood factor l(E, T, R|x, ϑ)

of expansion (4.3).

4.3.5 Maximisation step

Again dropping x and ϑ for simplicity, to calculate l(E, T, R) we start from the
likelihood itself; proceeding along the same lines as above we find:

p(E, T, R) = p(E, T|R)p(R) =


p0(1− E) if R = 0, ∀T

S(T)p1 if R = 1, E = 0

f (T)p1 if R = 1, E = 1

,

where we denote by f the probability density function of delays, and S is again
the survival function of delays. Switching to logarithms, we get:

l(E, T, R) =


log p0 + log(1− E) if R = 0, ∀T

log p1 + log S(T) if R = 1, E = 0

log p1 + log f (T) if R = 1, E = 1.

Note that the term log(1− E) would be infinite for E = 1; however, since it appears
only for E = 0, we will never observe such case in actual data: with a slight abuse
of notation, we will drop this term from now on. In the same fashion as above, we
can then express the log-likelihoods as

l(E, T, R) = R log p1 + (1− R) log(1− p1) + R(1− E) log S(T) + RE log f (T).

As customary in Survival Analysis, we switch to the hazard rate λ(t) = f (t)
S(t) . In

this way, we can re-express the log-likelihood in a more familiar way:

l(E, T, R) = R log p1 + (1− R) log(1− p1)︸ ︷︷ ︸
classifier log-likelihood

+R (E log λ(T) + log S(T))︸ ︷︷ ︸
survival log-likelihood

. (4.4)

We have here highlighted a component which is simply a binary cross-entropy (i.e.,
the log-likelihood of a binary classifier), and another which is the log-likelihood of
a Survival Analysis problem [34], in which the task is to estimate the distribution
of delays and time data are subjected to censorship (for E = 0). This second
component is multiplied by a factor R, that effectively selects only those data-
points for which the notion of delay is meaningful (i.e., users that will convert).

Here, as in subsection 4.3.4, all probabilities on the right hand side of (4.4)
depend on the context x. Differently from subsection 4.3.4, however, they depend
also on ϑ, rather than the previous estimate ϑk.
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Inserting our results in (4.3), we come to:

Qki = ∑
Ri∈{0,1}

[Ri log p1 + (1− Ri) log(1− p1) + Ri(Ei log λ(Ti) + log S(Ti))]

×
[

EiRi + (1− Ei)Ri
pk

1Sk(Ti)

pk
0 + pk

1Sk(Ti)
+ (1− Ei)(1− Ri)

pk
0

pk
0 + pk

1Sk(Ti)

]
.

We have here denoted the quantities that depend on ϑk with a k superscript; the
dependency on xi is left implicit.

We are now able to carry out the summation over Ri: this is desirable, since
we want our summands to depend only on observed quantities. The expression
can be simplified isolating the probabilities that depend on the k-th estimate of ϑ,
defining

qk
1(T) =

pk
1Sk(T)

pk
0 + pk

1Sk(T)
, qk

0(T) = 1− qk
1(T). (4.5)

These are the probabilities (according to ϑk) that a user that has not yet converted
will do so in the future and that they will never convert, respectively. We then
come to:

Qki = log(1− p1)(1− Ei)qk
0(Ti)

+ [log p1 + (Ei log λ(Ti) + log S(Ti))]
[

Ei + (1− Ei)qk
1(Ti)

]
.

Finally, carrying out the product, we are able to re-express it as:

Qki = Ei log f (Ti) + (1− Ei)qk
1(Ti) log S(Ti)︸ ︷︷ ︸

weighted survival log-likelihood

+ log p1

[
Ei + (1− Ei)qk

1(Ti)
]
+ log(1− p1)(1− Ei)qk

0(Ti)︸ ︷︷ ︸
weighted classifier log-likelihood

. (4.6)

We have thus proven that the quantity we want to maximise at step k is
composed of two terms: one has the shape of a weighted classifier log-likelihood,
while the other is the weighted log-likelihood of a Survival Analysis problem.
Note that the two log-likelihoods are decoupled: we can maximise the former
with respect to p1 (our next estimate of the probability of conversion), and the
latter with respect to S(t) (our next estimate of the survival function of delays). In
other words, any software that is able to handle weighted data either for binary
classification or for Survival Analysis can be employed to solve the k-th step of the
Expectation Maximisation algorithm.

We also note that the two weighted log-likelihoods have a transparent interpre-
tation. In the survival one, users which still have to convert have a weight which
expresses our current (at k-th step) belief that they will convert in the future; on
the other hand, users that already converted enter fully in the estimation of the
distribution of delays. In a similar fashion, in the binary cross-entropy, users that



64 4.3. Maximum Likelihood model for delayed conversions

have not converted contribute partially to the component with positive label, and
partially to the component with zero label.

Finally, we again remark that we made no assumptions regarding the depen-
dency of p1 and S(t) on covariates x. As such, depending on the problem at hand,
this formulation can handle univariate models (i.e., no covariates are included),
the division of the population into groups (with multiple univariate models, one
for each group), and regression models, both linear and non-linear.

4.3.6 Fitting the model

In this subsection we are going to describe in detail how the two log-likelihoods
on the right hand side of (4.6) can be maximised given a dataset, hence showing
how the k-th step of EM can be carried out.

We start from the weighted classifier log-likelihood. First, we define the weight:

wi = Ei + (1− Ei)qk
1(Ti). (4.7)

Then, summing over the row index i, we get the familiar form

Lclass(p1) =
n

∑
i=1

{
wi log p1 + (1− wi) log(1− p1)

}
. (4.8)

If p1 does not depend on a context x (e.g., because we are calculating the probability
associated with a given arm in a vanilla MAB, as in [19]), this expression is simply
maximised by the average of weights:

p1 =
1
n

n

∑
i=1

wi. (4.9)

If, like in our case, p1 is a function of the context, p1 = p1(x), we need to solve
a supervised learning problem. For this, however, we can rely on any supervised
learning library that supports weighted samples, without the need of carrying
out the log-likelihood maximisation explicitly: we just need to build the dataset
appropriately. To see this, we rewrite the score Lclass = ∑i li:

li =

{
log p1(xi) if Ei = 1

qk
1(Ti) log p1(xi) + qk

0(Ti) log(1− p1(xi)) if Ei = 0
(4.10)

We then see that it is as if for every row such that Ei = 1 there is one row with label
1 and weight 1, and for every row such that Ei = 0 there are two rows: one with
label 1 and weight qk

1(Ti), and the other with label 0 and weight 1− qk
1(Ti). We thus

simply need to duplicate the unobserved rows and assign weights appropriately,
and then we can exploit the supervised learning algorithm of our choice.

Formulas (4.9) and (4.7) point us to a way to recover the surrogate rewards
technique of [40]. First note that, if the model for the distribution of delays is
trained previously on a separate dataset and is sufficiently reliable, the Expectation
Maximisation technique becomes trivial: assuming the distribution of delays is
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known, one can use it in place of qk=0
1 , and only one iteration would be needed to

estimate p1(x), maximising the classifier score Lclass defined in 4.8. If, in place of
the log-likelihood, one employs Brier score, which is another proper scoring rule,
to estimate p1, the quantity to be maximised becomes:

LBrier(p1) = −
n

∑
i=1

(wi − p1(xi))
2 .

This scoring rule avoids the need for duplicating some rows of the dataset, since
the problem is transformed from training a classifier to training a regressor: Brier
loss is nothing other than the well-known Mean Square Error loss. This means
that labels do not need to be restricted to 0 or 1, but can be continuous. Given the
definition (4.7), we see that wi can be seen as a surrogate reward in this case: if the
reward is known, the true value is used; if the reward is not known, the predicted
probability of conversion is used instead. Note, however, that the authors of [19]
assert that the approach of [55] is more stable than maximising the likelihood 4.8
in a similar setting.

We now turn to the weighted survival log-likelihood of (4.6). Here we do not
need to transform the dataset in any way: once we choose a Survival Analysis
model for S(T) we just need to feed it with the dataset as-is, with weights wi
defined in (4.7):

Lsurv =
n

∑
i=1

wi
(
Ei log f (Ti) + (1− Ei) log S(Ti)

)
. (4.11)

In particular, in section 4.4 we will use the Kaplan-Meier estimator which, being
nonparametric, is agnostic with respect to the shape of the delay distribution.

To wrap up, the whole Expectation Maximisation algorithm for delayed con-
versions is reported in Algorithm 3. The termination condition is not specified on
purpose: it can be set as reaching a pre-determined number of iterations, or it can
entail checking whether the change from ϑk to ϑk+1 is below some threshold.

4.4 Proposed algorithm and results

4.4.1 Bootstrapped Thompson Sampling for delayed conversions

After having introduced, in section 4.3, the data generating process and an ap-
propriate Maximum Likelihood method for handling partially observable delayed
rewards, we will now cover the bandit setting. First, we will briefly describe
how the MLE is applied to bandits, and then we will see the results of extensive
simulations, that show how this technique improves over the state of the art.

As we have seen in chapter 3, Bootstrapped Thompson Sampling (BTS) [68] is
an effective technique for approximating sampling from the posterior distribution,
as required by TS. A number of approaches to BTS exist (see for instance [29] and
the references therein). Again with an eye to practitioners, a version was chosen
for the present work, which does not require further calculations besides the MLE,
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Algorithm 3 Expectation Maximisation for delayed conversions
Input: Dataset of contexts xi, times Ti and observation variables Ei as in subsec-
tion 4.3.1, for i = 1, . . . , n. First guess ϑ0.

1: Iteration index k = 0
2: while True do
3: for i = 1, . . . , n do
4: Calculate survival function estimate Sk(Ti|xi) = S(Ti|xi, ϑk)

5: Calculate conversion rate pk
1(xi) = p1(xi, ϑk)

6: Calculate probability qk
1(T|xi) as in (4.5)

7: Calculate weights wi as in (4.7)
8: end for
9: Maximise weighted survival log-likelihood (4.11)

10: Duplicate un-observed rows of dataset as described in subsection 4.3.6
11: Maximise weighted classifier log-likelihood Lclass = ∑i li of (4.10)
12: k← k + 1
13: Concatenate estimated survival and classifier parameters into ϑk
14: if Termination condition is reached then
15: Break
16: end if
17: end while

and is closest in spirit to the well known Statistical Bootstrap method [69, 70]: the
approach we will follow is an extension to our setting of the one presented in [17]
for the Bernoulli bandit.

Given a Maximum Likelihood Estimator (like the one we saw in section 4.3)
and a dataset, the Statistical Bootstrap yields an estimate of the uncertainty on the
estimated quantities (in our case, the probability function p1(x) and the survival
function S(t)) by resampling the dataset with replacement many times, and apply-
ing the MLE to the resampled data. The main idea behind BTS is sampling from
the outcoming distribution of Maximum Likelihood estimates, as if they repre-
sented the posterior distribution. Indeed, one can show [70] that the bootstrapped
distribution approximates the posterior given a non-informative prior.

However, for this to work, the empirical distribution function of the observed
data should approximate reasonably well the population distribution: this assump-
tion breaks down when the size of the dataset is very small. The problem is that, in
a bandit problem, in the first rounds this is precisely what happens. Moreover, as
remarked in chapter 2, the learning agent is in charge of the exploration: underesti-
mating the uncertainty in the first few rounds could mean exploring insufficiently,
and exploiting suboptimal actions.

This was proven in [17] for the Bernoulli bandit: blindly applying the Statistical
Bootstrap to approximate the posterior of TS leads to a regret which, on average,
grows linearly with the horizon T. In essence, this means that the agents never
gets to learn the reward function well enough that it can safely choose the next
action.
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Luckily, in that work there is also a simple heuristic solution: enrich the history
of played arms and rewards with an artificial history, generated from a distribution
which can be thought of as a “prior” of sorts. The way these artificial data points
are generated is problem specific, so we will now go through the experimental
setting.

Since, as seen in section 4.2, the only state-of-the-art competitors for the pro-
posed algorithm are OTFLinUCB and OTFLinTS of [18], for a fair comparison
I adopted the same data generation mechanism. The environment is described
by a vector ϑ ∈ Rd, with ∥ϑ∥2 ≤ 1. At every round, the agent receives from the
environment a set of K contexts x1, . . . , xK. For each context index i = 1, . . . , K, the
scalar product with ϑ belongs to the unit interval: xi · ϑ ∈ [0, 1]. Moreover, also
the context norms are bounded: ∥xi∥2 ≤ 1. The reward is then sampled from a
Bernoulli distribution with mean xi · ϑ.

In their experiments, the authors of [18] choose d = 5 and K = 10. Moreover,
the environment vector ϑ is fixed at ϑ = (1/

√
d, . . . , 1/

√
d). Finally, the contexts

are sampled independently at each round from [0, 1]d and then normalised.
As for the delays, in [18] two distributions were tested: a geometric distri-

bution with varying mean, and an empirical distribution fitted with a Gaussian
kernel on the dataset released in [16]. Regarding these real data, in the code
accompanying [18] the authors concluded that the delay distribution does not
significantly depend on the context, and we will make the same assumption here
too. I extended this set of distributions to include the IID distributions considered
in [50] to test pure TS in the presence of (fully observable) delays, namely: constant,
deterministic delays, uniformly distributed delays over some interval, α-Pareto
distribution and packet-loss distribution.

In this setting, the following mechanism for generating the artificial history was
used across all experiments. For every round, nprior data points were generated.
Since these prior-like points have the only goal of making the learner aware that
the observed data may not represent the whole population, nprior was kept way
smaller than the horizon T, which is greater than 1000 rounds in all experiments: I
chose nprior = 10 across all experiments.

Given the assumptions on the environment ϑ and the contexts xi above, the
following artificial history generation process was deemed natural: for each round,
and for each j = 1, . . . , nprior, both a ϑj and a xj were generated uniformly over
[0, 1]d and then normalised. The reward was then drawn from a Bernoulli distribu-
tion with mean ϑj · xj. Finally, delays were sampled uniformly over [0, Dmax], for a
Dmax one order of magnitude smaller than the horizon. Since in all experiments
the BTS algorithm was compared with OTFLinUCB and OTFLinTS, both of which
require a time parameter m, it seemed natural to fix Dmax = m. It must be stressed,
however, that the parameter m for the OTFLinUCB and OTFLinTS is an integral
part of the algorithm and, if it is not externally imposed on the algorithm for
memory reasons, it should be tuned accurately depending on the expected delay
distribution: we will see below that the performance of these two algorithms is
heavily dependent on its value. On the other hand, BTS was found to be roughly
independent from the value of Dmax.
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We can thus recap the BTS algorithm at round n:

• The agent receives a dataset of n rows, where each row contains the observ-
able information explained in subsection 4.3.1;

• The agent draws nprior artificial data points, according to the procedure just
described;

• The artificial and real data points are merged to form a unique dataset of
size (n + nprior);

• The agent samples the entire dataset once with replacement;

• The model described in section 4.3 is fit on this sampled dataset, yielding an
estimate Ŝ(t) and p̂1(x);

• The agent plays the action k such that, among x1, . . . , xK, the context xk
maximises the estimated probability p̂1(x).

We must remark that the model described in 4.3 suffers from the identifiability
issue explained in [45]. Namely, two problem instances can produce the same data
but have strictly different parameters. As an example, consider problem instance
I1 with, at round t1, S(t1) = 80% (i.e., 80% of conversions happen after t1) and
p1 = 90%. Consider then problem instance I2 with S(t1) = 10% and p1 = 20%. At
t1, despite having very different parameters, these two instances produce exactly
the same data, as the probability of observing a reward before t1 is given by the
product between p1 and the CDF of delays (1− S(t1)).

Hence, the MLE estimator described above could either output I1, I2 or
any other instance which is compatible with the observed data. Nevertheless,
the product of the predicted conversion probability p̂1(x) and the predicted CDF
(1− Ŝ(t)) is the same for all these instances: the estimated probability of converting
before a certain time is well-identified. This means that

• The next action should be selected on the basis of this product of probabilities.
However, since we are dealing with distributions of delays which do not
depend on context, maximising the product or just p1(x) yields the same
result. Extra care should be taken if delays depend on the context.

• If one (as in [19]) is interested in the actual value of the conversion rate
(besides its use for the optimisation algorithm), this should be intended as
conversion probability before a given time.

The proposed algorithm is described in detail in Algorithm 4.

4.4.2 Simulation results

In what follows we will go through the results of the simulations. Two settings
have been treated separately. In one, the windowing parameter m is externally
imposed on the algorithm: if delay exceeds m rounds, the agent never receives
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Algorithm 4 Bootstrapped Thompson Sampling for delayed conversions
Input: nprior, Dmax, T, d, K.

1: Data D0 = ()

2: for n = 1, . . . , T do
3: Update data Dn with observed conversions
4: for j = 1, . . . , nprior do
5: Sample prior ϑj and xj uniformly over [0, 1]d and normalise them
6: Sample prior reward from Bernoulli(ϑj · xj)

7: Sample delays uniformly over [0, Dmax]

8: end for
9: Concatenate nprior times and rewards with dataset Dn

10: Sample with replacement n + nprior data points from concatenated dataset
11: Estimate Ŝ(t, x) and p̂1(x) from sampled dataset via Algorithm 4

12: Observe current contexts x1, . . . , xK

13: for i = 1, . . . , K do
14: Calculate probability Ŝ(T, xi) p̂1(xi)

15: end for
16: Select arm argmaxiŜ(T, xi) p̂1(xi)

17: end for

feedback; we call this setting censored. In the other setting, m is just a specific of the
algorithm for OTFLinUCB and OTFLinTS, and the proposed BTS is free to use all
past data: we call this setting uncensored. We will see that, as expected, censoring
damages the performance of BTS and, among censored variants, the lower m is,
the higher the regret. On the other hand, the effect of m on the algorithms of [18]
is harder to predict.

For every setting we will cover, BTS is among the best performing algorithms,
while OTFLinTS is among the worst. This is a reminder that it is not just the act of
sampling from a distribution, but also the details of how the distribution is built,
that make TS an effective technique. For this reason and to avoid clutter, OTFLinTS
will not be shown in the following, and BTS will be compared to OTFLinUCB
alone.

In the plots, we will show the average regret suffered by each algorithm over
the course of 20 simulations, together with the standard deviation of the mean.

Geometric distribution

The first distribution we will consider is the geometric distribution with varying
average delay. In all three cases, we see from figure 4.1 that BTS, either uncensored
or censored with m = 500, performs best. On the other hand, due to the heavy
censoring, BTS with m = 100 incurs higher regret. Nevertheless, when the average
delay equals 100 rounds, its regret is lower with respect to both instances of
OTFLinUCB for half of the rounds, and is comparable at the horizon T = 3000. In
the other two cases, it behaves significantly better than the instance of OTFLinUCB
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(a) Average delay = 100 rounds
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(b) Average delay = 500 rounds
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(c) Average delay = 1000 rounds

Figure 4.1: Average cumulative regret suffered by the examined algorithms when delays
distribute according to a geometric distribution.
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(a) Fixed delay = 100 rounds
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(b) Fixed delay = 500 rounds
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(c) Fixed delay = 1000 rounds

Figure 4.2: Average cumulative regret suffered by the examined algorithms when delays
are fixed.

that has access to the same amount of information. Oddly enough, OTFLinUCB
with m = 100 behaves better, when the average delay equals 100 rounds, with
respect to OTFLinUCB with m = 500, despite having access to less information:
this is due to the way m enters the algorithm. We can thus conclude that, if m
is not externally imposed, its choice is non trivial for OTFLinUCB. On the other
hand, it is straightforward for BTS: the higher, the better; if at all possible, it is
even better not to censor the feedback.

Fixed delays

Examining fixed delays in figure 4.2, we see that, whenever the censoring time is
lower than the delay, the regret grows linearly: this is of course expected, as the
agent is completely blind to feedback. Among the other algorithm instances, we
see that BTS reaches significantly lower regret.
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(a) α = 0.2

0 500 1000 1500 2000 2500
Round

0

20

40

60

80

100

Cu
m

ul
at

iv
e 

re
gr

et

Pareto, alpha=0.5
BootstrapLinTS cens. m=100
OTFLinUCB m=100
BootstrapLinTS cens. m=500
OTFLinUCB m=500
BootstrapLinTS uncens.

(b) α = 0.5
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(c) α = 1.0

Figure 4.3: Average cumulative regret suffered by the examined algorithms when delays
are distributed according to an α-Pareto distribution, with varying α.
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(a) plost = 0.25
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(b) plost = 0.50
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(c) plost = 0.75

Figure 4.4: Average cumulative regret suffered by the examined algorithms when delays
are distributed according to a packet loss distribution, with varying probability
p of losing the packet (i.e. of having infinite delay).

α-Pareto distribution

The α-Pareto distribution presents polynomial tails: the smaller the parameter α

is, the heavier is the tail. This is reflected in figure 4.3, where regret is generally
higher for α = 0.2: learning takes longer. Besides this, again we see that BTS
performs best for all the examined values of α. For α = 0.2 and α = 0.5, the heavily
censored instance of BTS is slightly worse than the others, as expected. On the
other hand, OTFLinUCB with m = 500 incurs much higher regret with respect to
the other algorithms (even if it suffers a lower degree of censorship with respect to
m = 100).

Packet loss

By “packet loss”, we refer to a scenario in which feedback can be either delivered
immediately (i.e., with zero delay) or “lost” (i.e., it has infinite delay). In particular,
it is lost with probability p (we employ a definition which is opposite to that in [50,
64], as our p is their 1− p). From figure 4.3, we see that again the instances of
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Figure 4.5: Average cumulative regret suffered by the examined algorithms when de-
lays are distributed according to a uniform distribution and according to the
dataset [16] of the Criteo advertising platform.

BTS behave generally better than OTFLinUCB, and in particular the instance of
OTFLinUCB with m = 500 performs significantly worse. We also note that, for
high probability p of lost packet, all algorithms are still learning upon reaching
the horizon T = 3000: at p = 0.75 only one in four events produce observable
feedback. Likely, in this setting a different data generating mechanism with respect
to that of section 4.3, that better captures this scenario, could be employed with
better results.

Uniform distribution

In figure 4.5a, we can see the effect of uniformly distributed delays: the result
is very similar to that of deterministic delays, as can be seen comparing it to
figure 4.2a.

Criteo data

As a final setting, I have tested the algorithms on delays distributed according
to the Criteo dataset [16], the same used in chapter 3 for testing the bid and
budget optimisation strategy. As explained in detail at the beginning of the present
chapter, in chapter 3 immediate reward was assumed. On the other hand, here the
recorded delays between click and conversion are used. In particular, to provide
a fair comparison, I used the same model for sampling these delays as in [18],
and also the same value of m and of the horizon T = 10000. Also in this realistic
setting, the result are strikingly in favour of the proposed BTS.



5
Conclusion and future directions

5.1 Summary of the contributions

This dissertation deals with the problem of maximising conversions in digital
marketing campaigns, and on how a Multi-armed Bandit formulation represents a
viable and efficient approach to this problem. In particular, it is focused on some
limitations that affect state-of-the-art proposals and hinder their application in
practical settings. We will here go through a summary of these limitations and the
related contributions.

• First, a state-of-the-art method for the bid/budget optimisation of Search
Engine Marketing campaigns was extended to the multi-ad group domain, so
that it can be applied to a widespread campaign format, and it can leverage
all the freedom digital service platforms provide, namely differentiating the
bids across the same marketing campaign.

• Exploiting domain knowledge, a parametric Bayesian regression model was
introduced, to reduce the amount of data needed with respect to GPs and
to naturally account for censoring, further freeing up resources for both
exploration and exploitation. Parameters are interpretable, hence allowing
for the easy elicitation of priors on them.

• Benefiting from the monotonicity properties of this model, the optimisation
step in Thompson sampling can be carried out by local (as opposed to global)
methods; the portion of the optimisation algorithm that cannot be performed
with standard optimisation libraries is explained in detail.

• To reduce the computational footprint of the algorithm and study the effect
of exact Bayesian inference on Thompson Sampling performance, a version
of Bootstrapped TS was adapted to static contextual bandits.
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• In order to test the performance of competing models, both a purpose built
simulation environment and a public digital advertising dataset were used.

• A host of simulations show a clear improvement over the state of the art,
especially over short times (implying a much faster convergence on average),
when the budget constraint is very tight or the number of ad groups increases.

The above work assumes that the reward is immediate, i.e. that the agent is
shown the reward of its past action before the next round occurs. In practical
settings, this hypothesis works for optimising clicks; on the other hand, further
steps of the marketing funnel (sales in particular) can occur many days after the
first interaction of the user with an ad.

These considerations motivated, first and foremost, the need for an extensive
review of the bandit literature in the presence of delays.

Rather than tackling the full bid/budget optimisation problem directly, from
this review a setting emerged, which presents two traits that make it worthy of
in depth study. On the one hand, this setting is interesting in itself, since it is
representative of real-world scenarios in the online advertising scope, and the
current state-of-the-art approach presented room for improvement. On the other,
effectively managing this problem can pave the way to solutions to the bid/budget
selection with delayed conversions, without having to deal with all its intricacies
at once.

The aforementioned setting is that of linear contextual bandits with partially
observable delayed rewards. The steps of the digital marketing funnel beyond
the click, i.e., the conversions, are partially observable because the agent observes
directly the conversions that do happen, but it cannot distinguish cases in which a
conversion will not happen from those in which it is only delayed.

A technique with overall good practical performance, Thompson sampling, has
thus been extended to effectively tackle this setting. This contribution is novel for
several reasons:

• The problem of performing Bayesian inference on a coupled distribution of
delays and rewards was circumvented without the need to be over-confident
over the distribution of delays, i.e., without hampering exploration, as in
current state-of-the-art approaches.

• The technique used, Bootstrapped Thompson Sampling, requires a Maxi-
mum Likelihood Estimator as input: the area of applicability was extended
to include an Expectation Maximisation estimator. In fact, Expectation Max-
imisation effectively performs MLE without the need to having a closed form
for the likelihood.

• In order to have a model of delays that is flexible enough to accommodate
heavy-tailed distributions, an Expectation Maximisation model for partially
observable rewards was extended to handle a widely adopted non-parametric
estimator of time distributions, namely the Kaplan-Meier estimator. This



Chapter 5. Conclusion and future directions 75

in turn means that this model can be used in conjunction with commonly
available Machine Learning libraries.

• The resulting algorithm was applied to linear contextual bandits with par-
tially observable rewards for the first time.

The proposed approach was compared to a state-of-the-art algorithm on a
manifold of families of delay distributions, letting the parameters that characterise
these distribution vary. These distributions cover a wide range of scenarios: some
are bounded (even deterministic), while others have infinite expectation and even
include +∞ among possible realised values. The proposed approach performs
significantly better than the competitor in the great majority of tested environments,
and comparably in the remaining minority. Moreover, the competing algorithm
requires some tuning of an hyperparameter, whose best value is affected by the
distribution of delays (which is, however, unknown to the agent): on the other hand,
the proposed approach was tested with the same configuration on all distributions,
without any tuning.

5.2 Limitations of the proposed approaches

Besides the need to properly treat delays, which is the theme of chapter 4, some
other limitations regarding the bid/budget optimisation algorithm of chapter 3

deserve being mentioned and refined in future work.
First, as noted in section 3.2, the ansatz formula (3.2) that simplifies learning is

exact only in the deterministic case. In particular, this formula implies that, for
a budget greater than the saturation cost of a campaign, the expected number of
clicks does not depend on budget at all. This originates the abrupt saturation in
figure 3.2b. The effect of this is especially visible when trying to split a total budget
which is greater than the sum of the saturation costs of all campaigns: strictly
speaking, all splittings which assure that every campaign reaches at least its satura-
tion cost look the same to the algorithm, and one must resort to heuristics to split
the remaining budget in a sensible way. At the cost of more involved calculations,
a more principled way to treat the problem could be writing formula 3.2, rather
than for expected values, for realisations of random variables: that formula would
then be exact. From there, one could express the expected values via integrals,
and then use techniques like perturbation theory to reach approximations that are
smoother and more precise than (3.2).

Moreover, this works assumes that the set of campaigns is stable across the
whole optimisation process, while it is often the case in practice that campaigns
get added to or removed from the set of active campaigns. To solve this cold start
problem, as seen in chapter 2, one could resort to associating campaigns with
contexts, drawing inspiration from [40]. For instance, the context could include
the features of the ad (derived from its text) and the demographic features of the
target.
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Finally, practitioners are often rightfully interested in leveraging the data of
past campaigns to lower the cost of exploration at the beginning of the optimisation
process. This task, however, is non-trivial: to learn from logged bandit feedback,
one needs to take into account the counterfactual nature of the problem [43]. Usu-
ally this is done through propensity scoring techniques. However, the bid/budget
problem is set apart by the continuous nature of bids and budget.

The approach proposed in this dissertation to treat delayed conversions is of
course no silver bullet either: in what follows, some limiting aspects are discussed.

First, while reaching significantly lower regret than the state of the art in most
studied settings, its execution is admittedly slower, as the Expectation Maximisation
algorithm requires fitting two Maximum Likelihood estimators for several iterations
before reaching convergence. Depending on the application, this may or may not
constitute a problem: if this or a similar algorithm is used once a day to set the
parameters of marketing campaigns for the following day, this increased execution
time should not hinder its application. Nevertheless, it would be interesting to
study an incremental variant of the proposed algorithm, adapting the Ensemble
sampling technique of [71].

Moreover, the model was tested assuming that delays are independent of the
context/arm. Note, however, that the derivation of the model itself makes no
restricting assumption on the dependence of delays on context: it is only when
specialising it to the Kaplan-Meier estimator that this choice is made. To take into
account linear dependence of hazard on context, it would suffice to substitute
the Kaplan-Meier estimator with the Cox proportional hazards model [34, 72],
which is a semiparametric model: it makes a linear assumption on the effect of the
features on the hazard function, but makes no assumption regarding the nature of
the hazard function itself, like the Kaplan-Meier estimator.

This agnostic aspect of the Kaplan-Meier estimator was leveraged to accom-
modate delay distributions that are very different among each other. However, as
seen above for Gaussian Processes, this expressiveness could prove detrimental
for performance if the experimenter can place strong assumptions on the delay
distribution. In these cases, using the given model with a parametric family of
distributions could be more rewarding. Again, due to the general nature of the Ex-
pectation Maximisation model, this should entail no additional effort. Another way
to incorporate stronger assumptions on the distributions involved is to increase
the number of prior-like points in Bootstrapped Thompson Sampling.

Finally, this approach makes heavy use of the times between action and ob-
served reward. If these times are not available, like in [18] and [64], this approach
would require major modifications. However, this scenario in which the time
between action and reward is unknown, but the reward can be linked to a specific
action, is somewhat midway between (and probably less frequent than) knowing
the delays as in the present work, and having aggregated, anonymous feedback as
touched upon in the following section.
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5.3 Future directions

Besides the extensions mentioned in the previous section, some promising avenues
of research emerged, which will be addressed in future work.

An interesting step on the path to adapting the proposed Bootstrapped Thomp-
son Sampling method for delayed conversions to the bid/budget optimisation
problem would be extending the model to accommodate aggregated, anonymous
feedback as in [57–59]. In a sense, this setting brings the partial observability of
conversions to the extreme: an Expectation Maximisation approach, using and
then eliminating unobserved variables, could prove beneficial also in this harder
setting.

As seen above, non-stationarity of the distribution of rewards can be retroac-
tively taken into account using a sliding window, beyond which old data points
are discarded. However, in the presence of delays, this would effectively induce
censoring on delays that exceed the window size, and as seen in simulations cen-
soring can be detrimental for performances, if the window size is too small. This
suggests several interesting streams of research. One is adapting to the partially
observable setting the techniques introduced in [42] and [63] that account for the
multiple touch points in the marketing funnel. Besides this, it would be interesting
to study if the approach of [56], which takes into account a non-stationary baseline
hazard, can be extended to the present setting. Moreover, as noted also in [42],
it would be interesting to explore non-stationary bandit techniques besides the
sliding window, like an adaptive window size, that takes into account how fast the
environment changes.

The need for continuous retraining of models that predict the probability of
conversion in the presence of delays has been studied also outside of the bandit
literature. In particular, a recent stream of practitioner papers [73–76] focuses
on conversion rate prediction for downstream tasks using so-called importance
sampling. Since the model in [74] presents striking similarities to the one used in
the present work, it would be interesting to study points of contact and whether
some of the proposed ideas could be applied to the linear bandit setting with
partially observable rewards.

As seen in the review of the literature, for the case finite-armed bandits with
partially observable rewards a number of different approaches exists [19, 45,
56]. It would thus be interesting to employ the proposed approach in the finite-
armed setting (rather than in the linear setting), as conduct extensive simulations
comparing it to the other available methods.

Besides the area of applications of delayed conversions in online marketing,
several research questions emerged from the review on bandits with delayed
rewards.

First, as noted in [51], in the batched setting it can prove beneficial for UCB-like
algorithms to plan actions in advance, rather than use heuristics to play each action
in isolation. A natural question is whether such planning can be carried out also
from the Bayesian point of view of Thompson sampling.

As noted commenting [64], the hallucination technique introduced in the
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context of GP-bandits could actually be used also for finite-armed bandits. It
would thus be interesting to compare it to available algorithms. Moreover, with a
specific choice of kernel, linear functions can be seen as Gaussian Processes [30],
so that GP-bandits become linear contextual bandits: it would be interesting
to compare techniques born in the GP-bandit setting to those crafted for linear
bandits.

Finally, as noted commenting [50], it would be interesting to examine in greater
depth what drives the relative performance of UCB and the Successive Elimination
algorithm for varying delay distributions.
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