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Abstract

Net subdivision schemes recursively refine nets of univariate continuous functions defined on the
lines of planar grids, and generate as limits bivariate continuous functions. In this paper a family
of interpolatory net subdivision schemes related to the family of Dubuc-Deslauriers interpolatory
subdivision schemes is constructed and analyzed. The construction is based on Gordon blending
interpolants to nets of univariate functions, and on a particular class of blending functions with
properties related to the Dubuc-Deslauriers schemes. The general analysis tools for net subdivision
schemes, developed in a previous paper by the authors, together with the properties of the blending
functions, lead to the proof of the convergence of these schemes to limit functions having the same
integer smoothness as the limits of the corresponding Dubuc-Deslauriers schemes. These results are
proved for net subdivision schemes corresponding to the first 84 members of the Dubuc-Deslauriers
family, and conjectured for the rest. A concrete example of a family of piecewise polynomial
blending functions is considered, together with the corresponding family of net subdivision schemes.
The performance of the first two net subdivision schemes in this family is demonstrated by two
examples.

Key words: Interpolatory net subdivision, Dubuc-Deslauriers interpolatory subdivision, Blending,
Proximity, Controllability, Convergence, Smoothness, Z-splines.
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1 Introduction

A net subdivision scheme generates limit bivariate functions by repeated refinements of nets of univari-
ate functions defined on planar grids of lines [3, 4, 7]. In [3] a specific approximating net subdivision
scheme is constructed and analyzed, while in [7] a specific interpolatory net subdivision scheme is
investigated. (A net subdivision scheme is termed interpolatory if the refined net contains the coarser
net at all refinement levels, see Figure 1). A family of spline-like net subdivision schemes is pre-
sented in [4] and its properties are established by the general tools for the analysis of convergence and
smoothness of net subdivision schemes developed in that paper.

Here we present a general construction of families of interpolatory net subdivision schemes. (To
the best of our knowledge this is the first family of interpolatory net subdivision schemes to appear
in the literature). We analyze these schemes by the general tools in [4], which are based on two
important properties of the sequences of generated refined nets; controllability and proximity. In our
construction the refined nets are obtained by sampling on refined grids Gordon blending interpolants
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to the coarser nets. For a given scheme, the blending function in the Gordon interpolants is the
same at all refinement levels, and has properties which relate it to a corresponding Dubuc-Deslauriers
interpolatory scheme refining points [6]. The properties of the blending functions together with the
analysis tools of [4], allow us to prove that the so constructed schemes, corresponding to the first
84 members of the Dubuc-Deslauriers family, are convergent and have the integer smoothness of the
corresponding Dubuc-Deslauriers schemes. A specific family of blending net subdivision schemes of
Dubuc-Deslauriers type is presented, based on blending functions from a family of piecewise polynomial
functions known as Z-splines [2, 10].

Our general construction in this paper is limited to regular nets of functions. However, the final goal
of our research is the generalization of the proposed refinement algorithms to curve networks containing
extraordinary vertices, a setting in which our subdivision approach has significant advantages.

Here is the outline of the paper. In Section 2 net interpolatory subdivision schemes are defined
together with the related notions of convergence and smoothness. Also, the notion of controllability
and the notion of proximity to a linear, bivariate, interpolatory point subdivision scheme, are recalled
from [4]. The family of interpolatory blending net subdivision schemes of Dubuc-Deslauriers type built
upon Gordon blending interpolants is considered in Section 3, while the convergence and smoothness
analysis of these schemes is presented in Section 4. In Section 5 a specific example of a family
of interpolatory blending net subdivision schemes of Dubuc-Deslauriers type based on the Z-splines
blending functions is considered. In particular the schemes corresponding to the 4-point and the 6-
point Dubuc-Deslauriers schemes are presented in more details, and the performance of each scheme
is demonstrated by two examples.
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Figure 1: Example of application of an interpolatory net subdivision scheme.

2 Interpolatory net subdivision schemes and their analysis

In this section we give definitions and introduce some notation related to net subdivision schemes.
Many of them are taken from [4] which presents general analysis tools for such schemes. In particular,
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we formulate here the convergence and smoothness results of [4] for the case of interpolatory net
subdivision schemes. Also, we refer to [4, Section 5] for the definitions and the properties of subdivision
schemes refining points (point subdivision schemes) relevant to our analysis.

Definition 2.1. A net N is a continuous bivariate function defined on a grid of lines T

T = T (d, ℓ,m, (x0, y0)) = {si × [t0, tℓ], i = 0, · · · ,m} ∪ {[s0, sm]× tj , j = 0, · · · , ℓ} , (1)

with si = x0 + id, i = 0, · · · ,m and tj = y0 + jd, j = 0, · · · , ℓ, namely N consists of the continuous
univariate functions

N(s, tj), j = 0, · · · , ℓ, N(si, t), i = 0, · · · ,m , (2)

defined on [s0, sm] and [t0, tℓ], respectively. We call the functions in (2) the u-functions of N .
If all the u-functions of a net N are Cn, then the net N is called Cn. The point O = (x0, y0) is termed
the origin of T .

To stress the relation among a net of u-functions and the corresponding grid of lines we use the
notation N = N(T ).

Hereinafter we also use the following notation

• Ω(T ) is the convex hull of T ;

• E(T ) is the collection of intersection points of the grid lines of T

E(T ) := {(si, tj), i = 0, . . . ,m, j = 0, . . . , ℓ} ;

the points of E(T ) are termed grid points;

• E(N) = N |E(T ). (It follows from the continuity of N that these points are well defined);

• the symbol ∥ · ∥ stands for ∥ · ∥∞ for vectors and for functions on their domains of definition;

• N0 := {0, 1, 2, · · · };

• N := {1, 2, · · · }.

We continue by introducing the grid refinement operator

r(T ) := T

(
d

2
, 2ℓ, 2m, (x0, y0)

)
. (3)

In the terminology of [4], where “primal” and “dual” refinements are studied, this type of grid refine-
ment is termed “primal”.
We consider in this paper a net refinement operator which is interpolatory, local, uniform and sym-
metric. Since near the boundaries of a grid the refinement operator cannot be applied, due to the lack
of u-functions on the other side of the boundaries, such an operator when applied to N(T ) generates
a net defined on a refined grid which is a subset of r(T ), obtained by deleting a layer of boundary grid
lines from r(T ). This leads to the following definition, with ν an integer depending on the locality of
the net refinement operator.

Definition 2.2. The grid obtained from T = T (d, ℓ,m, (x0, y0)) after T is cropped from the outside
by deleting the outmost ν grid lines from its four sides is

cropν(T ) := T (d, ℓ− 2ν,m− 2ν, (x0 + dν, y0 + dν)) .

Remark 2.3. Note that the crop operator is not necessary if we introduce boundary refinement rules,
as shown in [3].
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Definition 2.4. For T0 = T (d0, ℓ0,m0, (x0, y0)) and an integer ν ≥ 0, we define the sequence of
ν-refined grids {Tk, k ∈ N0} inductively by

Tk+1 = cropν(r(Tk)), k ∈ N0 .

We can now introduce the interpolatory local net refinement operatorR and the notion of interpolatory
net subdivision scheme.

Definition 2.5. Given N(T ) with d the grid size of T , let r(T ) be a refinement of T as in (3). The
operator R is termed an interpolatory net refinement operator if it is a local, uniform, symmetric rule
for producing from a net N(T ) a refined net R(N), defined on cropν(r(T )) for some ν ∈ N0, such that

N |cropν(r(T ))
∩

T ⊂ R(N).

Definition 2.6. Let R and ν be as in Definition 2.5, and let {Tk, k ∈ N0} be a sequence of ν-refined
grids. The iterative process

Input: N0(T0)

For k = 0, 1, . . . ,

Tk+1 = cropν(r(Tk))

Nk+1(Tk+1) := R(Nk(Tk)) = Rk(N0(T0))

with Nk|Tk+1∩Tk
⊂ Nk+1, is called an interpolatory net subdivision scheme and is denoted also by R.

In the rest of the paper we assume without loss of generality that

T0 = T (d0, ℓ0,m0, O0) , with O0 = (0, 0), d0 = 1 (4)

and denote Tk = T (dk, ℓk,mk, Ok) for k ∈ N. Obviously dk = 2−k, Ok = Ok−1 + ν(dk−1, dk−1) and
ℓk = 2ℓk−1 − 2ν, mk = 2mk−1 − 2ν.

In the following we use the term “a sequence of refined grids” also for “a sequence of ν-refined grids”,
whenever ν is not relevant to the discussion. For a sequence of ν-refined grids {Tk}k∈N0 with T0 as in
(4) we denote by Ω∞ = Ω∞(T0, ν) := [2ν, ℓ0 − 2ν]× [2ν,m0 − 2ν] the limit of {Ω(Tk)}k∈N0 as k → ∞.
Also, we assume that ℓ0 and m0 are greater than 4ν + 1, so that Ω∞ is non-empty.

In contrast to interpolatory point subdivision schemes we cannot expect convergence of an interpola-
tory net subdivision scheme for any initial net. Since N0|Ω∞ is the limit function restricted to T0∩Ω∞,
the u-functions of N0 must be at least as smooth as the limit function. So we consider initial nets in
a smoothness class of nets. For m ∈ N0 we denote by Lm(T0) the class of nets with u-functions in Cm

having Lipschitz continuous m-th derivatives. (The last requirement is needed for the analysis). Note
that since Ω(T0) is finite, Lm+1(T0) ⊂ Lm(T0) for all m ∈ N0.

In the following R is an interpolatory net refinement operator or an interpolatory net subdivision
scheme.

Definition 2.7 (Convergence). R is termed convergent if, for any initial net N0 in a certain smooth-
ness class of nets contained in L0(T0), there exists a bivariate function F ∈ C(Ω∞) such that the
sequence of refined nets {Nk = Rk(N0), k ∈ N0} satisfies

F (β) = Nk(β), β ∈ Tk ∩ Ω∞ . (5)

The function F is called the limit of the subdivision scheme and is denoted by R∞(N0).
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Definition 2.8 (Cn-convergence). R is termed Cn-convergent if it is convergent and R∞(N0) ∈
Cn(Ω∞).

Now we introduce two important properties of sequences of refined nets generated by R, which are
central to the convergence analysis.

Definition 2.9 (Nets controlled of order 0). A sequence of refined nets {Rk(N0), k ∈ N0} is called
controlled of order 0, if either

i) for any k ∈ N0 the u-functions of Nk are Lipschitz continuous with a bound Lk on their Lipschitz
constants satisfying lim

k→∞
2−kLk = 0,

or

ii) for any k ∈ N0 the u-functions of Nk have Lipschitz continuous first derivatives with a bound Lk

on their Lipschitz constants satisfying lim
k→∞

2−2kLk = 0.

As in other papers analyzing subdivision schemes which are not linear, point subdivision schemes, we
use the notion of proximity.

Definition 2.10 (Proximity of order p). R is in proximity of order p > 0 with a linear, bivariate,
interpolatory point refinement operator Sa, if for any initial net N0 in a certain smoothness class of
nets

i) SaE(Rk(N0)) is defined on E(Tk+1);

ii) ∥E
(
Rk+1(N0)

)
− SaE(Rk(N0))∥ ≤ Cdpk ,

with C a constant independent of k.

Theorem 2.11. Let Sa be a convergent, bivariate, interpolatory point subdivision scheme. If for any
N0 in a certain smoothness class of nets contained in L0(T0), R and Sa are in proximity of order
p > 0 and {Rk(N0), k ∈ N0} is controlled of order 0, then R is convergent for any such initial net.

Note that the basic limit function of Sa in Theorem 2.11 is L∞-stable since it interpolates the data
{δi,0 : i ∈ Z2}. So Theorem 2.11 is a direct conclusion from the convergence result in [4].

To apply the smoothness results in [4] we introduce more notions, in accordance with the fact that
the admissible class of initial nets is now restricted to smoother nets.

Definition 2.12 (Nets controlled of orderm ≥ 1). A sequence of refined nets {Nk = Rk(N0), k ∈ N0}
is called controlled of order m ≥ 1, if the u-functions of Nk have Lipschitz continuous rth derivatives
such that either

i) for orders r = 1, ...,m there exists a bound Lk on their Lipschitz constants, for any k ∈ N0,
satisfying

lim
k→∞

2−kLk = 0,

or

ii) for orders r = 1, ...,m+ 1 there exists a bound Lk on their Lipschitz constants, for any k ∈ N0,
satisfying

lim
k→∞

2−2kLk = 0.
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It is easy to see that controllability of order m ≥ 1 implies controllability of any order < m.

We continue by defining inductively the classes Sn for n ∈ N of point subdivision schemes used in the
smoothness analysis. S0 is the class of all convergent, bivariate, point subdivision schemes with basic
limit functions that are L∞-stable. (Sa in Theorem 2.11 belongs to S0). The class Sn is defined as
the subclass of Sn−1 consisting of schemes with factorizable symbols such that their divided difference
schemes are in Sn−1. Note that Sn ⊂ Sn−1 ⊂ ...S1 ⊂ S0.

Theorem 2.13. [4] Let Sa ∈ Sn. If for any N0 in a certain smoothness class of nets contained in
Lm(T0), R and Sa are in proximity of order p > n and {Rk(N0), k ∈ N0} is controlled of order
m ≥ n, then R is Cn-convergent for any such initial net.

3 Interpolatory blending net subdivision schemes of Dubuc-Deslauriers
type

Our idea is to construct an interpolatory net refinement operator R that at each step produces a finer
net of functions Nk+1 by evaluating a Gordon blending interpolant [8] to Nk at the refined grid Tk+1.
The Gordon blending interpolant we use has the form

(GϕNk)(s, t) := (G[s]
ϕ Nk)(s, t) + (G[t]

ϕ Nk)(s, t)− (G[st]
ϕ Nk)(s, t), (s, t) ∈ Ω(Tk) , (6)

where

(G[s]
ϕ Nk)(s, t) :=

ℓk∑
j=0

Nk(s, 2
−kj)ϕ(2kt− j) ,

(G[t]
ϕ Nk)(s, t) :=

mk∑
i=0

Nk(2
−ki, t)ϕ(2ks− i) , (7)

(G[st]
ϕ Nk)(s, t) :=

mk∑
i=0

ℓk∑
j=0

Nk(2
−ki, 2−kj)ϕ(2kt− j)ϕ(2ks− i) ,

with ϕ a univariate function satisfying ϕ(j) = δj,0, j ∈ Z. We term ϕ a blending function.
The refined net is Nk+1 = (GϕNk) |Tk+1

. Note that the regularity of Nk+1 is the smaller between the
regularity of ϕ and the regularity of Nk.
For our construction of the net analogue of the Dubuc-Deslauriers (2n + 2)-point interpolatory sub-
division scheme (hereinafter denoted by DDn with n ∈ N), we use in (6) a blending function ϕ[n]

satisfying the following properties:

• ϕ[n] is symmetric; (8)

• supp (ϕ[n]) = [−(n+ 1), (n+ 1)]; (9)

• ϕ[n] ∈ C ñ(R) with ñ-th derivative Lipschitz continuous. (10)

(We denote by Lϕ[n] the bound on all Lipschitz constants of

(ϕ[n])(ℓ), 0 ≤ ℓ ≤ ñ). Here ñ = min{n, σn + 1} where σn denotes the integer

smoothness of the DDn scheme (see Table 1);

• ϕ[n] is Πn reproducing, that is
∑
i∈Z

imϕ[n](x− i) = xm, m = 0, ..., n ; (11)

• ϕ[n](i) = δi,0, i ∈ Z; (12)

• ϕ[n]
(
1

2
− i

)
= a

[n]
2i−1, i = −n, · · · , n+ 1 ; (13)
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where {a[n]2i−1}
n+1
i=−n is the stencil of the insertion rule of the DDn subdivision scheme with mask

a[n] = {a[n]i }2n+1
i=−(2n+1), given explicitly in Remark 3.4.

Two examples of piecewise polynomial functions satisfying (8)-(13) for n = 1 can be found in [1] and
[7]. In Section 5 we present a whole family of piecewise polynomial functions ϕ[n], for n ∈ N, with
properties (8)-(13).

Among properties (8)-(13) the last property is less usual. It is interesting to note that property (13)
holds in many cases, as proved in the following proposition.

Proposition 3.1. Assume that a function ϕ is symmetric, has compact support and reproduces Π2n.
If in addition

ϕ

(
1

2
− i

)
= 0, i ∈ Z, i /∈ [−n, n+ 1], (14)

then ϕ satisfies

ϕ(
1

2
− i) = a

[n]
2i−1, i = −n, · · · , n+ 1 .

Proof. If ϕ reproduces Π2n, then it reproduces
(
1
2 − x

)ℓ
, ℓ = 0, 1, · · · , 2n, and at x = 1

2 the following
equations must hold, ∑

i∈Z

(
1

2
− i

)m

ϕ

(
1

2
− i

)
= δm,0, m = 0, 1, · · · , 2n. (15)

These conditions, in view of (14) become a system of 2n+1 equations in the 2n+2 unknowns ϕ
(
1
2 − i

)
,

i = −n,−n+ 1, · · · , n+ 1. In fact, by the symmetry of ϕ, there are in (15) only n+ 1 unknowns

ϕ

(
1

2
+ i

)
, i = 0, · · · , n, (16)

and all equations in (15) for odd m are satisfied since by the symmetry of ϕ both sides of these
equations equal zero.
To conclude, we have the following system of n+ 1 equations with the n+ 1 unknowns (16)

n∑
i=0

(
1

2
+ i

)2m

ϕ

(
1

2
+ i

)
=

1

2
δm,0, m = 0, · · · , n. (17)

Now, the determinant of the system (17) is the Vandermonde V = det(xji )i,j=0,··· ,n, with xi =
(
1
2 + i

)2
,

i = 0, · · · , n. This determinant is non-zero because x0 < x1 < · · · < xn. Thus the system (17) has a
unique solution, which is obtained from the values at 1

2 + i, i = 0, 1, · · · , n of the basic limit function

ψ[n] of the DDn scheme. Indeed ψ[n] satisfies all the conditions of the proposition; it is symmetric
with support [−(2n + 1), (2n + 1)], it vanishes at

{
±
(
n+ 1

2 + i
)
: i ≥ 1

}
, and it reproduces Π2n (by

the construction of the DDn scheme [6]). Since ψ[n] satisfies (13), so does any other function satisfying
the conditions of the proposition, due to the uniqueness of the solution of (17).

Remark 3.2. Note that ϕ satisfies (14) whenever supp(ϕ) = [−(n+ 1), (n+ 1)].

Definition 3.3. For ϕ[n] a blending function satisfying properties (8)-(13), the interpolatory net sub-
division scheme of DDn type is

Input: N0(T0) ∈ Lñ(T0)

For k = 0, 1, . . . ,

Tk+1 = cropn+1(r(Tk))

Nk+1 = Rϕ[n](Nk) :=
(
Gϕ[n]Nk

)
|Tk+1

. (18)
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It is easy to see that, due to the definition of the Gordon blending interpolant and due to the grid
refinements, the blending net subdivision scheme Rϕ[n] is interpolatory. We also observe that, if ϕ[n] is
a refinable function, then the limit of the interpolatory net subdivision scheme Rϕ[n] obviously exists
and is the Gordon interpolant Gϕ[n]N0. However, such a net subdivision scheme is not effective, and

the interesting blending functions are not refinable. Indeed, the function ϕ[n] of the family presented
in Section 5 is not refinable for all n ∈ N.

Remark 3.4. The forthcoming observations are of importance in the analysis of the schemes of
Definition 3.3. This analysis is presented in the next section.

i) For a piecewise polynomial ϕ[n], the second part of (10) follows from the first.

ii) The following explicit formulas for the Dubuc-Deslauriers masks are given in [5],

a
[n]
2i = δi,0, a

[n]
2i−1 =

n+ 1

24n+1

(
2n+ 1

n

)
(−1)i−1

2i− 1

(
2n+ 1

n+ i

)
i = −n, · · · , n+ 1.

iii) Denote An :=

n+1∑
i=−n

|a[n]2i−1|. We observed numerically that An < 2 for 1 ≤ n ≤ 18 and An < 2.5

for 19 ≤ n ≤ 84. We also conjecture that An < 4 for all n ∈ N (see Figure 2).
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Figure 2: Plot of An for 1 ≤ n ≤ 2000.

iv) From [9] we know that the Hölder regularity estimate sn of DDn increases very slowly with n,
as we can see from Table 1 (we recall that a function φ has Hölder regularity sn = σn + α,
0 < α ≤ 1, if it is Cσn and its σn-th derivative is Hölder with exponent α). Moreover we observe
that σn ≤ n for any n ∈ N, σn ≤ n− 1 for n ≥ 5, and σn ≤ n− 2 for n ≥ 7.

4 Convergence and smoothness analysis

This section is devoted to the convergence and smoothness analysis of the interpolatory blending net
subdivision schemes of Dubuc-Deslauriers type defined in the previous section.
For deriving convergence and smoothness we first prove that our Rϕ[n] generates controlled sequences
of refined nets which are in proximity with the tensor-product DDn scheme.

We start by proving an approximation order result for a quasi-interpolant based on a function satisfying
properties (8)-(13).

Theorem 4.1. Let xi = x0+id, i ∈ N0 and let f have an ℓ-th derivative which is Lipschitz continuous
with Lipschitz constant Lf (ℓ). Then for ϕ satisfying properties (8)-(13) with some n satisfying n ≥ ℓ,
the error

Eϕ
f := f −

∑
i∈Z

f(xi)ϕ
( ·
d
− i

)
, (19)
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♯ of points Hölder regularity Smoothness
n ∈ N 2n+ 2 sn σn

1 4 2 1
2 6 2.8300 2
3 8 3.5511 3
4 10 4.1935 4
5 12 4.7767 4
6 14 5.3173 5
7 16 5.8294 5
8 18 6.3233 6
9 20 6.8054 6

Table 1: Regularity estimates of DDn for n = 1, · · · , 9.

satisfies |Eϕ
f (x)| ≤ CϕLf (ℓ)dℓ+1 for any x ∈ R, with Cϕ a positive constant depending only on ϕ.

For the proof of the theorem we need a local polynomial approximation different from the Taylor
polynomial.

Lemma 4.2. Under the assumptions and in the notation of Theorem 4.1, let P
[j,ℓ]
f be the polynomial

of degree ℓ interpolating f at the points xj , xj+1, xj+1/2, ..., xj+1/2︸ ︷︷ ︸
ℓ−1

where xj+1/2 :=
xj+xj+1

2 .

Then the error e
[j,ℓ]
f (x) := f(x)− P

[j,ℓ]
f (x) satisfies

|e[j,ℓ]f (x)| ≤
(
d

2

)ℓ+1 1

ℓ!
Lf (ℓ) , x ∈ [xj , xj+1],

and

|e[j,ℓ]f (x)| ≤ (|i− j|+ 1)2 |i− j|
(
|i− j|+ 1

2

)ℓ−1

dℓ+1 1

ℓ!
Lf (ℓ) , x ∈ [xi, xi+1], i ̸= j.

Proof. Let i be such that x ∈ [xi, xi+1] and let i∗ = min{i, j}. By the error in polynomial interpolation
and by the recurrence relations of divided differences,

e
[j,ℓ]
f (x) = (x− xj)(x− xj+1)(x− xj+1/2)

ℓ−1 [xj , xj+1, xj+1/2, ..., xj+1/2︸ ︷︷ ︸
ℓ−1

, x]f

= (x− xj)(x− xj+1)(x− xj+1/2)
ℓ−1 1

d([xj+1, xj+1/2, ..., xj+1/2︸ ︷︷ ︸
ℓ−1

, x]f − [xj , xj+1/2, ..., xj+1/2︸ ︷︷ ︸
ℓ−1

, x]f)

= (x− xj)(x− xj+1)(x− xj+1/2)
ℓ−1 1

d
1
ℓ! (f

(ℓ)(ξ)− f (ℓ)(η)), ξ, η ∈ [xi∗ , xi∗+|i−j|+1] .

Since x ∈ [xi, xi+1], we have for i = j

|x− xj | |x− xj+1| ≤
(
d

2

)2

, |x− xj+1/2| ≤
d

2

while for i ̸= j

|x− xj | |x− xj+1| ≤ (|i− j|+ 1)|i− j|d2, |x− xj+1/2| ≤
(
|i− j|+ 1

2

)
d.

Thus
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|e[j,ℓ]f (x)| ≤ dℓ

2ℓ+1

1

ℓ!
|f (ℓ)(ξ)− f (ℓ)(η)|, i = j,

and

|e[j,ℓ]f (x)| ≤ (|i− j|+ 1) |i− j|
(
|i− j|+ 1

2

)ℓ−1

dℓ
1

ℓ!
|f (ℓ)(ξ)− f (ℓ)(η)|, i ̸= j.

Now, since f (ℓ) is Lipschitz continuous, we get

|e[j,ℓ]f (x)| ≤ dℓ

2ℓ+1

1

ℓ!
Lf (ℓ) |ξ − η|︸ ︷︷ ︸

≤d

≤ dℓ+1

2ℓ+1

1

ℓ!
Lf (ℓ) , i = j,

and

|e[j,ℓ]f (x)| ≤ (|i− j|+ 1) |i− j|
(
|i− j|+ 1

2

)ℓ−1
dℓ 1

ℓ! Lf (ℓ) |ξ − η|︸ ︷︷ ︸
≤d (|i−j|+1)

≤ (|i− j|+ 1)2 |i− j|
(
|i− j|+ 1

2

)ℓ−1
dℓ+1 1

ℓ! Lf (ℓ) , i ̸= j.

This concludes the proof.

We can now prove Theorem 4.1.

Proof of Theorem 4.1. Let j be such that x ∈ [xj , xj+1]. Since P
[j,ℓ]
f is a polynomial of degree ≤ ℓ

then by (11) we have

Eϕ
f (x) = f(x)− P

[j,ℓ]
f (x)−

∑
i∈Z

(
f(xi)− P

[j,ℓ]
f (xi)

)
ϕ
(x
d
− i

)
. (20)

To bound the sum in (20) we observe that by (9) ϕ(xd − i) = 0, for |i− j| > n+ 1. Hence the number
of terms in this sum is finite, and for |i− j| ≤ n+ 1 we get from Lemma 4.2 that

|f(xi)− P
[j,ℓ]
f (xi)| ≤ C̃ϕLf (ℓ)dℓ+1 ,

with C̃ϕ a constant depending on the size of the support of ϕ. Moreover Lemma 4.2 implies that the

term outside the sum in (20) is bounded by
(
d
2

)ℓ+1 1
ℓ!Lf (ℓ) . With the last two observations the desired

bound is obtained from (20).

We now turn to the analysis of the net subdivision scheme Rϕ[n] . The next proposition is concerned
with the controllability of the generated refined nets.

Proposition 4.3. For a given ℓ ∈ {1, · · · , ñ}, assume that all u-functions of Nk = Rk
ϕ[n](N0) have

ℓ-th derivatives which are Lipschitz continuous with Lipschitz constants bounded by Lk. Then all
the u-functions of Nk+1 have ℓ-th derivatives which are Lipschitz continuous with Lipschitz constants
bounded by Lk+1 satisfying

Lk+1 ≤ Lk(An + Cϕ[n]dk) , (21)

with Cϕ[n] a positive constant depending only on ϕ[n], and with An as in Remark 3.4.

Proof. By the refinement rule (18)

Nk+1(s, t) =

ℓk∑
j=0

Nk(s, 2
−kj)ϕ[n](2kt−j)+

mk∑
i=0

Nk(2
−ki, t)−

ℓk∑
j=0

Nk(2
−ki, 2−kj)ϕ[n](2kt− j)

ϕ[n](2ks−i),
10



with (s, t) ∈ Tk+1. Substituting t = 2−k−1m, m ∈ Z, and differentiating ℓ times with respect to s we
get

∂ℓ

∂sℓ
Nk+1(s, 2

−k−1m) =

ℓk∑
j=0

∂ℓ

∂sℓ
Nk(s, 2

−kj)ϕ[n]
(m
2

− j
)

+2ℓk
mk∑
i=0

Nk(2
−ki, 2−k−1m)−

ℓk∑
j=0

Nk(2
−ki, 2−kj)ϕ[n]

(m
2

− j
) (ϕ[n])(ℓ)(2ks− i).

By hypothesis, ∂ℓ

∂sℓ
Nk(s, 2

−kj), j = 0, · · · , ℓk, are Lipschitz continuous with Lipschitz constants

bounded by Lk. Moreover, by (10), (ϕ[n])(ℓ) is Lipschitz continuous with Lipschitz constant bounded
by Lϕ[n] . Now, recall that for a function of the form f = αg + βh with g and h Lipschitz continuous
functions with Lipschitz constants Lg and Lh respectively, f is Lipschitz continuous with Lipschitz

constant Lf satisfying Lf ≤ |α|Lg + |β|Lh. Since by (9), (12) and (13)
∑ℓk

j=0

∣∣ϕ[n] (m2 − j
)∣∣ ≤ An

for all m ∈ Z, it follows that ∂ℓ

∂sℓ
Nk+1(s, 2

−k−1m) are Lipschitz continuous with Lipschitz constants
bounded by Lk+1 satisfying

Lk+1 ≤ An Lk + 2ℓkLϕ[n]

∑
i∈Is

|Eϕ[n]

Nk(2−ki,·)(2
−k−1m)| , (22)

where An is as in Remark 3.4, Is = {i = 0, · · · ,mk : 2ks− i ∈ supp(ϕ[n])} and Eϕ[n]

Nk(2−ki,·)(2
−k−1m) is

defined as in (19).
Since we assume that the u-functions of Nk have Lipschitz continuous ℓ-th derivatives with Lipschitz
constants bounded by Lk, in view of Theorem 4.1 we have

|Eϕ[n]

Nk(2−ki,·)(2
−k−1m)| ≤ Cϕ[n]Lkd

ℓ+1
k ∀i ∈ Is,

with Cϕ[n] a positive constant depending only on ϕ[n]. Thus by the compact support of ϕ[n] the number
of terms in the sum in (22) is bounded, and we get∑

i∈Is

|Eϕ[n]

Nk(2−ki,·)(2
−k−1m)| ≤ Cϕ[n]Lkd

ℓ+1
k ,

with Cϕ[n] a generic positive constant depending only on ϕ[n].

Recalling that dk = 2−k, we observe that the bound Lk+1 on the Lipschitz constants of the ℓ-th
derivatives of the net functions at level k + 1 is bounded as follows

Lk+1 ≤ AnLk + Cϕ[n]Lkdk = Lk(An + Cϕ[n]dk),

which asserts the claim of the proposition.

Proposition 4.4. Under the conditions of Proposition 4.3,

(i) if An ∈ [1, 2) then there exists β ∈ (0, 1) and M > 0 such that Lkd
β
k ≤M for k ∈ N0;

(ii) if An ∈ [2, 4) then there exists β ∈ (1, 2) and M > 0 such that Lkd
β
k ≤M for k ∈ N0.

Proof. Observe that in both cases (i) and (ii) β can be chosen such that 2β > An (more precisely, in
case (i) β is in (0, 1) while in case (ii) it is in (1, 2)).
Then, by Proposition 4.3 we have

Lk+1 ≤ Lk(An + Cϕ[n]dk).

11



Multiplying by dβk+1 = dβk2
−β, we get

Lk+1d
β
k+1 ≤ Lkd

β
k

(
An

2β
+ Cϕ[n]

dk
2β

)
.

By the choice of β, there exists k∗ large enough such that An

2β
+Cϕ[n]2−k∗−β = 1. Then, for all k > k∗,

An

2β
+ Cϕ[n]2−k−β < 1, and

Lk+1d
β
k+1 ≤ Lkd

β
k ≤ · · · ≤ Lk∗d

β
k∗ . (23)

The claim of the proposition follows by choosing M = max1≤j≤k∗ Ljd
β
j .

For the next result we note that by its definition and by Table 1 ñ = min{n, σn+1} ≥ 1 for all n ∈ N.

Corollary 4.5. The net subdivision scheme Rϕ[n] when operating on N0 ∈ Lm(T0) with m ∈ [1, ñ]∩Z,
generates sequences of refined nets {Rk

ϕ[n](N0), k ∈ N0} which are controlled of order m if An ∈ [1, 2)

and controlled of order m− 1 if An ∈ [2, 4).

Proof. Denote by Lk the bound on the Lipschitz constants of the derivatives up to order m of all the
u-functions of Rk

ϕ[n](N0). If An ∈ [1, 2) then it follows from case (i) of Proposition 4.4 that β ∈ (0, 1)

and that limk→∞ Lkdk = 0. Therefore by the definition of controllability (Definition 2.12, case i))
Rϕ[n] generates sequences of refined nets which are controlled of order m, whenever N0 ∈ Lm(T0).

Analogously, if An ∈ [2, 4), β ∈ (1, 2) by case (ii) of Proposition 4.4 and limk→∞ Lkd
2
k = 0. Therefore

by the definition of controllability (Definition 2.12, case ii)) Rϕ[n] generates sequences of refined nets
which are controlled of order m− 1, whenever N0 ∈ Lm(T0).

Since controllability of order 1 implies controllability of order 0, we have

Corollary 4.6. The net subdivision scheme Rϕ[n], for any n ≤ 84, generates sequences of refined nets

{Rk
ϕ[n](N0), k ∈ N0} which are controlled of order 0, whenever N0 ∈ L1(T0).

We turn now to the proximity of Rϕ[n] with the tensor-product DDn-scheme.

Proposition 4.7. Rϕ[n] as in (18) with ϕ[n] satisfying (8)-(13), is in proximity of order p = ñ+1−β >
0 with the tensor-product DDn scheme, for any N0 ∈ Lñ(T0).

Proof. It is easy to see that for Sn -the tensor-product DDn scheme, SnE(Nk) is defined over E(Tk+1).
Now let Nk := Rk

ϕ[n](N0), and consider e(q) = Nk+1(2
−k−1q) − (SnE(Nk))(2

−k−1q) for any q =

(r,m) ∈ Z2. Since by (9), (12), (13) ϕ[n] coincides with the basic limit function of DDn at 1
2Z, and

since (SnE(Nk))|Tk+1
= (S∞

n E(Nk))|Tk+1
, we have

(SnE(Nk))(2
−k−1q) =

mk∑
i=0

ℓk∑
j=0

Nk(2
−ki, 2−kj)ϕ[n]

(m
2

− j
)
ϕ[n]

(r
2
− i

)
.

Thus

12



e(q) =

ℓk∑
j=0

Nk(2
−k−1r, 2−kj)ϕ[n]

(m
2

− j
)

+

mk∑
i=0

Nk(2
−ki, 2−k−1m)−

ℓk∑
j=0

Nk(2
−ki, 2−kj)ϕ[n]

(m
2

− j
)ϕ[n] (r

2
− i

)
−

mk∑
i=0

ℓk∑
j=0

Nk(2
−ki, 2−kj)ϕ[n]

(m
2

− j
)
ϕ[n]

(r
2
− i

)
=

ℓk∑
j=0

[
Nk(2

−k−1r, 2−kj)−
mk∑
i=0

Nk(2
−ki, 2−kj)ϕ[n]

(r
2
− i

)]
ϕ[n]

(m
2

− j
)

+

mk∑
i=0

Nk(2
−ki, 2−k−1m)−

ℓk∑
j=0

Nk(2
−ki, 2−kj)ϕ[n]

(m
2

− j
)ϕ[n] (r

2
− i

)
=

ℓk∑
j=0

Eϕ[n]

Nk(·,2−kj)
(2−k−1r) ϕ[n]

(m
2

− j
)
+

mk∑
i=0

Eϕ[n]

Nk(2−ki,·)(2
−k−1m) ϕ[n]

(r
2
− i

)
.

In view of Theorem 4.1, and since for N0 ∈ Lñ(T0) we have by Proposition 4.3 that the u-functions
of Nk have Lipschitz continuous ñ-th derivatives with Lipschitz constants bounded by Lk satisfying
(21), we get

|e(q)| ≤ Cϕ[n]Lkd
n+1
k

 ℓk∑
j=0

∣∣∣ϕ[n] (m
2

− j
)∣∣∣+ mk∑

i=0

∣∣∣ϕ[n] (r
2
− i

)∣∣∣
 .

Moreover, by Proposition 4.4 Lkd
β
k ≤M , and we have

|e(q)| ≤ Cϕ[n]Mdñ+1−β
k

 ℓk∑
j=0

∣∣∣ϕ[n] (m
2

− j
)∣∣∣+ mk∑

i=0

∣∣∣ϕ[n] (r
2
− i

)∣∣∣
 ≤ 2AnCϕ[n]Mdñ+1−β

k .

The claim is obtained by noting that 2AnCϕ[n]M is a constant independent of k.

By Proposition 4.7, Rϕ[n] for n ≤ 84 is in proximity of order p > 0 with Sn -the tensor-product DDn

scheme- whenever N0 ∈ Lñ(T0). Also, by Corollary 4.6 {Rk
ϕ[n](N0), k ∈ N0} for n ≤ 84 is controlled

of order 0 for any N0 ∈ L1(T0). Thus, we conclude from Theorem 2.11 that

Corollary 4.8. For any n ≤ 84 and for any initial net N0 ∈ Lñ(T0), the subdivision scheme Rϕ[n]

converges.

Moreover, for n ≤ 84 the proximity of order ñ + 1 − β > 0 of Rϕ[n] with Sn for any N0 ∈ Lñ(T0),

proved in Proposition 4.7, and the controllability of order ñ or ñ− 1 of {Rk
ϕ[n](N0), k ∈ N0} for such

N0, proved in Corollary 4.5, together with Sn ∈ Sσn , and Theorem 2.13 lead to the following result.

Corollary 4.9. For any n ≤ 84 the smoothness of the refinement scheme Rϕ[n] is σn.

Proof. Recall that ñ = min{n, σn+1} with σn the integer smoothness of the DDn scheme. Let σR
ϕ[n]

denote the smoothness of Rϕ[n] . For 1 ≤ n ≤ 18, β ∈ (0, 1), and we have σR
ϕ[n]

= min{σn, ñ, ⌈ñ+ 1−
β⌉} = min{σn, ñ} = σn. In case 19 ≤ n ≤ 84, β ∈ (1, 2) and σR

ϕ[n]
= min{σn, ñ− 1, ⌈ñ+ 1− β⌉} =

min{σn, ñ− 1} = σn, since for n ≥ 7, σn ≤ n− 2 (see Table 1) and therefore ñ = σn + 1.

In view of part (iii) of Remark 3.4, we conjecture that Corollaries 4.8 and 4.9 hold for any n ∈ N.
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5 A family of interpolatory blending net subdivision schemes of
Dubuc-Deslauriers type

A specific example of a family of interpolatory blending net subdivision schemes of Dubuc-Deslauriers
type is considered in this section. It is based on a family of functions satisfying properties (8)-(13) of
Section 3, which is known in the literature under the name Z-splines [2, 10]. These are the cardinal
piecewise polynomial functions with integer knots presented in the next definition.

Definition 5.1 (Z-splines). Let n ∈ N. We denote by Z [n] the piecewise polynomial function of degree
2n+ 1 with integer break points, satisfying:

(i) Z [n] is symmetric;

(ii) supp(Z [n]) = [−(n+ 1), (n+ 1)];

(iii) Z [n] ∈ Cn(R);

(iv)
∑

i∈Z i
mZ [n](x− i) = xm, m = 0, 1, · · · , 2n;

(v) Z [n](i) = δi,0, i ∈ Z.

The existence and uniqueness of Z [n] is shown in [2, 10]. Definition 5.1 implies that properties (8)-(12)
are satisfied by Z [n]. Property (13) is obtained in view of (ii) and (iv) in Definition 5.1 and Proposi-
tion 3.1. Thus, since Z [n] has properties (8)-(13), the blending net subdivision scheme based on it is
convergent and its limit function has the same integer smoothness as that of the corresponding DDn

scheme.

In the following we show several numerical examples generated by the interpolatory net subdivision
schemes of Dubuc-Deslauriers type, based on Z [1] and Z [2]. The Z [1] spline has support [−2, 2] and is
given on [0, 2] by

Z [1](x) =

{
1− 5

2x
2 + 3

2x
3, 0 ≤ x < 1,

2− 4x+ 5
2x

2 − 1
2x

3, 1 ≤ x < 2.

It is defined on [−2, 0] by symmetry. Figure 3 left presents the graph of Z [1]. In view of Corollary 4.9 the
corresponding blending net subdivision scheme produces C1 limit functions whenever N0 ∈ L1(T0).
Since supp(Z [1]) = [−2, 2], we get for this scheme that Tk+1 = crop2(r(Tk)). The result of the
application of three iterations of the interpolatory net subdivision scheme based on Z [1] (the result is
defined on T3) is shown in Figure 4.

We continue with the Z [2] spline, supported on [−3, 3]. On [0, 3] it is given by

Z [2](x) =


1− 15

12x
2 − 35

12x
3 + 63

12x
4 − 25

12x
5, 0 ≤ x < 1,

−4 + 75
4 x− 245

8 x
2 + 545

24 x
3 − 63

8 x
4 + 25

24x
5, 1 ≤ x < 2,

18− 153
4 x+ 255

8 x
2 − 313

24 x
3 + 21

8 x
4 − 5

24x
5, 2 ≤ x < 3,

and on [−3, 0] it is defined by symmetry. Figure 3 right shows the graph of Z [2]. In view of Corollary
4.9, the blending net subdivision scheme based on Z [2] is C2 whenever N0 ∈ L2(T0). The result of the
application of three iterations of this net subdivision scheme is shown in Figure 5. Note that for this
scheme Tk+1 = crop3(r(Tk)), and therefore T3 in Figure 5 is smaller than T3 in Figure 4.
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Figure 3: Plot of the cardinal basis function Z [1] (left) and Z [2] (right).
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Figure 4: Three refinement steps of the net subdivision scheme based on Z [1]. The initial net of
u-functions is sampled from Franke’s test function (first row) and from Matlab Peaks function (second
row). First column: original net of u-functions; second column: net of u-functions defined on T3.
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Figure 5: Three refinement steps of the net subdivision scheme based on Z [2]. The initial net of
u-functions is sampled from Franke’s test function (first row) and from Matlab Peaks function (second
row). First column: original net of u-functions; second column: net of u-functions defined on T3.
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