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alkaline phosphatase (ALP), alpha-
fetoprotein (AFP), and hemoglobin 
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Abstract
Liver cancer kills approximately 800 thousand people annually worldwide, and its most common subtype 
is hepatocellular carcinoma (HCC), which usually affects people with cirrhosis. Predicting survival of 
patients with HCC remains an important challenge, especially because technologies needed for this scope 
are not available in all hospitals. In this context, machine learning applied to medical records can be a 
fast, low-cost tool to predict survival and detect the most predictive features from health records. In this 
study, we analyzed medical data of 165 patients with HCC: we employed computational intelligence to 
predict their survival, and to detect the most relevant clinical factors able to discriminate survived from 
deceased cases. Afterwards, we compared our data mining results with those obtained through statistical 
tests and scientific literature findings. Our analysis revealed that blood levels of alkaline-phosphatase 
(ALP), alpha-fetoprotein (AFP), and hemoglobin are the most effective prognostic factors in this dataset. 
We found literature supporting association of these three factors with hepatoma, even though only AFP 
has been used in a prognostic index. Our results suggest that ALP and hemoglobin can be candidates 
for future HCC prognostic indexes, and that physicians could focus on ALP, AFP, and hemoglobin when 
studying HCC records.
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Introduction

Hepatocellular carcinoma (HCC), or hepatoma, is the most common liver cancer and affects mil-
lions of people worldwide (14 million just in 20121). Liver cancer kills approximately 800 thou-
sand individuals worldwide annually.2,3 HCC especially inflicts those with liver cirrhosis, which 
commonly can be caused by excessive alcohol consumption or viral hepatitis. This kind of cancer 
is more common among men, between 30 and 50 years of age, and is more frequent in mainland 
China, Mongolia, South-East Asia, and Sub-Saharan Western and Eastern Africa.4

Similar to the other types of cancer, hepatocellular carcinoma makes cells reproduce at a higher 
rate and can make the cells avoid apoptosis.5,6

HCC is usually diagnosed with computed tomography (CT) scan and magnetic resonance imag-
ing (MRI), and its treatment includes invasive procedures, such as surgical resection, liver trans-
plantation, radiofrequency ablation (RFA), arterial catheter-based treatment, systemic therapy, or 
radioembolization.7

Analysis of electronic health records of patients diagnosed with hepatoma has become an effec-
tive method to forecast prognosis and survival likelihood. Detecting which patients with hepatoma 
have a high risk of death can be extremely useful to arrange the proper therapy or treatment, and 
therefore to make more precise efforts to save their lives. However, it is also important to identify 
patients that have more chances to survive, to avoid them to have invasive treatments such as liver 
transplantation, surgical resection, or chemotheraphy.

From the 1980s, the scientific community started selecting some factors from these clinical 
records to generate liver cancer prognostic indexes, in order to classify the patients with HCC and 
to try to predict their prognosis: the Okuda system,8 the Cancer of Liver Italian Program (CLIP),9 
the Barcelona Clinic Liver Cancer (BCLC),10 the GRoupe d’Etude et de Traitement du Carcinoma 
Hépatocellulaire (GRETCH),11 tumour-node-metastasis classification scheme,12 the Chinese 
University Prognostic Index (CUPI),13 the Japanese Integrated System (JIS),14 the estrogen recep-
tor (ER) molecular staging system,15 and the TNM Classification of Malignant Tumors.16,17

Even if all useful, no consensus on a common, standard, and unified prognostic index has been 
reached among the medical community,18 leaving room for the design of alternative indices involv-
ing other risk factors and health record features, especially through computerized systems.

In this context, computational methods applied to clinical records of patients diagnosed with 
hepatocellular carcinoma can be useful in predicting the likelihood of patient survival and in detect-
ing the most relevant survival-related features. Machine learning, especially, is capable of identify-
ing hidden patterns in data, and can provide rankings of risk factors computed automatically.

For these reasons, researchers took advantage of data mining techniques applied to health 
records several times in the past, especially on data of patients with cancer.19–22

Regarding hepatocellular carcinoma, Tannus et  al.23 employed several traditional statistical 
methods to analyze data of 247 patients with HCC from Brazil, and compared several hepatocel-
lular carcinoma prognostic systems. Gui et al.24 applied data mining techniques to a gene expres-
sion of 95 samples to detect the genes most related to hepatocellular carcinoma. Also Ye et al.25 
used a similar approach on a gene expression of 67 samples, to predict hepatitis B virus–positive 
metastatic hepatocellular carcinomas. The study of Yim et al.26 shows an application of supervised 
machine learning techniques to radiology data of patients with HCC.
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In the present article, we analyze a dataset of 165 patients having HCC (Dataset). After data 
pre-processing and imputation, we apply several supervised machine learning methods to compu-
tationally predict their survival, as a classic binary classification task. Afterwards, we take advan-
tage of the top performing method (Random Forests) to rank the clinical features of the dataset on 
their predictive power. Finally, we use traditional univariate statistical methods to evaluate the 
association between each feature and survival, without employing machine learning.

Our survival prediction methods outperform the results obtained by the original dataset 
authors,27 and our feature ranking indicates alkaline phosphatase (ALP), α-fetoprotein (AFP), and 
hemoglobin levels as the most predictive survival factors.

We organized the rest of the article as follows. After this Introduction, we describe the dataset 
we analyzed (section “Dataset”) and the methods we used (section “Methods”); we then describe 
the survival prediction results and the medical feature rankings (section “Results”) and discuss 
their meanings and relevance (section “Discussion”). Finally, we draw some conclusions, describe 
the limitations and the future developments of the present study (section “Conclusion”).

Dataset

The analyzed dataset contains clinical records of 165 patients diagnosed with hepatocellular carci-
noma (HCC), collected at the Centro Hospitalar e Universitàrio de Coimbra in Portugal from 1st 
January 2008 to 31st December 2013.27,28 Each patient profile contains 50 features, including the 
1-year survival (class 0: deceased; class 1: survived) that we use as target in this study.

As mentioned by the original dataset curators,27 the variables of this dataset have been selected 
according to the guidelines of European Association for the Study of the Liver—European 
Organization for Research and Treatment of Cancer (EASL-EORTC).29

The dataset contains features related to blood tests (AFP, AHT, ALP, ALT, AST, Creatinine, 
Direct Bilirubin, Ferritin, GGT, Hemoglobin, Iron, Leucocytes, MCV, platelet count, Total 
Bilirubin, and Total Protein levels), presence of other diseases (Cirrhosis, Diabetes, and Obesity), 
and personal features, such as Age and Sex (Table 1). The patients include 32 women and 133 men. 
We report the complete meaning of the dataset features in Table 1. For clarification purposes, we 
slightly changed some of feature names (Supplemental Material Information).

A total of 24 clinical factors have binary values (Table 2), while 23 have real values or ordinal 
category values (Table 3). Most of the clinical features have missing values, with oxygen saturation 
(Sat) and Ferritin having the maximum percentage of 48.485% missingness (Table 3).

The dataset is slightly imbalanced toward the positive class: there are 102 survived patients and 
63 deceased patients, meaning 61.82% positive data instances and 38.18% negative data instances. 
The survival feature refers to 1 year after the hospital visit when the clinical data were recorded: if 
the patient profile has the positive survival label, it means she/he survived after 1 year; if the patient 
profile has a negative survival label, it means that she/he deceased within 1 year.

More information about this dataset can be found in the original publication by Santos et al.27 
and in the University of California Irvine Machine Learning Repository.28

Methods

In this section we describe both the methods we used for binary classification and for feature 
ranking.

Let us consider the now-classical binary classification framework.30,31 Let   = 1× × f  be 
the input space, consisting of n f  features, and let ∈{0,1}  be the output space. Conventionally we 
will indicate with 1  a positive outcome and with 0 a negative outcome. Let n n nX Y X Y= ( , ), , ( , )1 1 { },  
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Table 1.  Meanings and measurement units of each feature of the dataset.

Feature Explanation Measurement

AFP Level of alpha-fetoprotein (AFP) in the blood ng/mL
Age Age of the patient at admission Years
AHT If the patient had arterial hypertension (AHT) or not Boolean
Albumin Level of albumin in the blood g/dL
Alcohol If the patient used to drink alcohol daily or not Boolean
ALP Level of alkaline phosphatase (ALP) in the blood U/L
ALT Level of alanine transaminase (ALT) in the blood U/L
Ascites Level of ascites in the abdomen Integer
AST Level of aspartate transaminase (AST) in the blood U/L
Cirrhosis If the patient had cirrhosis or not Boolean
Creatinine Level of serum creatinine in the blood mg/dL
CRI If the patient had chronic renal insufficiency (CRI) or not Boolean
Diabetes If the patient had diabetes or not Boolean
Direct bilirubin Level of direct bilirubin in the blood mg/dL
Encephalopathy Degree of hepatic encephalopathy Integer
Endemic If the patient visited endemic countries Boolean
Ferritin Level of ferritin in the blood ng/mL
GGT Level of gamma glutamyl transferase (GGT) in the blood U/L
Grams day Grams of alcohol taken by the patient per day Gram
Hallmark If an HCC radiological hallmark was found Boolean
HBcAb Hepatitis B core antibody test outcome Boolean
HBeAg Hepatitis B e-antigen test outcome Boolean
HBsAg Hepatitis B surface antigen test outcome Boolean
HCVAb Hepatitis C virus serologic test outcome Boolean
Hemochro If the patient had hemochromatosis or not Boolean
Hemoglobin Level of hemoglobin in the blood g/dL

If the patient had human immunodeficiency virus (HIV) or not Boolean
INR International normalized ratio (INR) of the patient’s 

prothrombin time
 

Iron Level of iron in the blood mcg/dL
Leucocytes Count of white blood cells in the blood 109/L
Major dim Major dimension of nodule cm
MCV Mean corpuscular volume (MCV) of red blood cells fL
Metastasis If the patient had a liver metastasis or not Boolean
NASH If the patient had non-alcoholic steatohepatitis (NASH) or not Boolean
Nodules Number of nodules Integer
Obesity If the patient is obese or not Boolean
Packs year Number of cigarette packs smoked by the patient every year Integer
PHT If the patient had portal hypertension (PHT) or not Boolean
Platelets Count of platelets in the blood 109/L
PS Performance status (PS), ability to perform certain activities 

of daily living
Integer

PVT If the patient has portal vein thrombosis (PVT) or not Boolean
Sat Oxygen saturation %
Sex Man: 1 and woman: 0 Binary

 (Continued)
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Feature Explanation Measurement

Smoking If the patient is a smoker or not Boolean
Spleno If the patient had splenomegaly or not Boolean
Symptoms If the patient had HCC symptoms or not Boolean
Total bil Level of total bilirubin in the blood mg/dL
Total proteins Level of total proteins in the blood g/dL
Varices If the patient had esophageal varices or not Boolean
(Target) survival If the patient survived or not Boolean

fL: femtolitres; g/dL: grams per decilitre; g/L: grams per litre; HCC: hepatocellular carcinoma; mcg/dL: micrograms per 
decilitre; mg/dL: milligrams per decilitre; ng/mL: nanograms per millilitre; U/L: units per liter.
Ascites degrees: 1 = none; 2 = mild; and 3 = moderate to severe. PS possible values: 0 = active; 1 = restricted; 2 = ambula-
tory; 3 = selfcare; and 4 = disabled. Encephalopathy degrees: 1 = none; 2 = grade I/II; and 3 = grade III/IV. The INR is a ratio 
and has no unit. Alpha-fetoprotein is also known as α-fetoprotein, alpha-1-fetoprotein, alpha-fetoglobulin, or alpha fetal 
protein. Alkaline phosphatase is also know as basic phosphatase. Aspartate transaminase is also known as aspartate 
aminotransferase.

Table 1.  (Continued)

 (Continued)

Table 2.  Statistical quantitative description of the binary features.

Binary 
feature

Value # % Category 
feature

Value # %

AHT 0 103 62.424 Metastasis 0 125 75.758
AHT 1 59 35.758 Metastasis 1 36 21.818
AHT Missing 3 1.818 Metastasis Missing 4 2.424
Alcohol 0 43 26.061 NASH 0 135 81.818
Alcohol 1 122 73.939 NASH 1 8 4.848
Alcohol Missing 0 0 NASH Missing 22 13.333
Cirrhosis 0 16 9.697 Obesity 0 135 81.818
Cirrhosis 1 149 90.303 Obesity 1 20 12.121
Cirrhosis Missing 0 0 Obesity Missing 10 6.061
CRI 0 143 86.667 PHT 0 44 26.667
CRI 1 20 12.121 PHT 1 110 66.667
CRI Missing 2 1.212 PHT Missing 11 6.667
Diabetes 0 106 64.242 PVT 0 126 76.364
Diabetes 1 56 33.939 PVT 1 36 21.818
Diabetes Missing 3 1.818 PVT Missing 3 1.818
Endemic 0 116 70.303 Sex 0 32 19.394
Endemic 1 10 6.061 Sex 1 133 80.606
Endemic Missing 39 23.636 Sex Missing 0 0
Hallmark 0 52 31.515 Smoking 0 61 36.97
Hallmark 1 111 67.273 Smoking 1 63 38.182
Hallmark Missing 2 1.212 Smoking Missing 41 24.848
HBcAb 0 103 62.424 Spleno 0 66 40
HBcAb 1 38 23.03 Spleno 1 84 50.909
HBcAb Missing 24 14.545 Spleno Missing 15 9.091
HBeAg 0 125 75.758 (Target) survival 0 63 38.182
HBeAg 1 1 0.606 (Target) survival 1 102 61.818
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Binary 
feature

Value # % Category 
feature

Value # %

HBeAg Missing 39 23.636 (Target) survival Missing 0 0
HBsAg 0 132 80 Symptoms 0 53 32.121
HBsAg 1 16 9.697 Symptoms 1 94 56.97
HBsAg Missing 17 10.303 Symptoms Missing 18 10.909
HCVAb 0 122 73.939 Varices 0 44 26.667
HCVAb 1 34 20.606 Varices 1 69 41.818
HCVAb Missing 9 5.455 Varices Missing 52 31.515
Hemochro 0 135 81.818  
Hemochro 1 7 4.242  
Hemochro Missing 23 13.939  
HIV 0 148 89.697  
HIV 1 3 1.818  
HIV Missing 14 8.485  

#: number of patients; %: percentage of patients.
Full sample: 165 individuals. All the features have boolean values (0: false and 1: true) except sex (0: female and 1: male).

Table 2.  (Continued)

where Xi ∈  and Yi ∈  ∀ ∈i n{1, , } , be a sequence of n∈*  samples drawn independently 
from an unknown probability distribution µ over X Y× .

Before applying the classification and feature ranking algorithms, data must be pre-processed to 
be able to handle it and extract useful and actionable information (Data pre-processing and imputa-
tion). Let us consider a model (function) f :X Y→  chosen from set F of possible hypotheses. An 
algorithm A D FH : n f× →  characterized by its hyper-parameters H selects a model inside a set 
of possible ones based on the available dataset, (section “Algorithms”). The error of f in approxi-
mating { }Y X|  is measured by a prescribed metric M :F → . There are many different metrics 
available in literature for binary classification32 (Supplemental Material Information).

Note also that n  may be imbalanced (namely the | |{( , ) : = 0}X Y Yn∈  may be ? or  = than the 
| |{( , ) : = 1}X Y Yn∈ ) and this may result in classifiers which produce unsatisfactory results on 
one of the two classes resulting in unsatisfactory metrics performance33; for this reason we discuss 
the problem and show how we tackle it in this work (section “Handling unbalanced classes”). To 
tune the performance of the AH , namely to select the best set of hyper-parameters, and to estimate 
the performance of the final model according to the desired metrics, a Model Selection (MS) and 
Error Estimation (EE) phase needs to be performed34 (section “Model selection and error estima-
tion”). Finally, we will also check for possible spurious correlations in the data by performing the 
Feature Ranking phase.35

In fact, once the model is built based on the different learning algorithms and has been con-
firmed to be a sufficiently accurate representation of the { }Y X|  during the EE phase, one has to 
investigate how and how much the model is affected by different features that have been exploited 
to build the model itself during the feature ranking procedure (section “Feature ranking”).

Data pre-processing and imputation

Before employing a machine learning algorithm, data needs to be pre-processed.36 In particular, 
i ,  with i n f∈{1, , } , can be a categorical feature space (the values of the features belong to a 
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finite unsorted set) or a numerical-valued feature space (the values of the features belong to a pos-
sibly infinite sorted set).

In the case of categorical feature space with more than two categories, if the algorithm is not 
able to handle multi-categorical features (for example, Support Vector Machines and Neural 
Networks), we will opt for the one hot encoding and we map it in a numerical feature space.32 Note 
also that some values of X  may be missing.37

In this case, if the missing value is in a categorical feature, we introduce an additional category for 
missing values for that feature. If, instead, the missing value is associated with a numerical feature, 
we replace the missing value with the mean value of that feature and we introduce an additional logi-
cal feature to indicate whether the value of that feature is missing or not for a particular sample.

Algorithms

In this section we briefly recall the four algorithms that we have exploited in this study by pointing 
out the idea behind them, how to use them, and their hyper-parameters. The selected algorithms 

Table 3.  Statistical quantitative description of the numeric features.

Numeric feature Median Mean Range σ Missing # Missing %

AFP 33.00 19,299.951 [1.2, 1,810,346] 149,098.336 8 4.848
Age 66.00 64.691 [20, 93] 13.320 0 0.000
Albumin 3.40 3.446 [1.9, 4.9] 0.685 6 3.636
ALP 162.00 212.212 [1.28, 98] 167.944 3 1.818
ALT 50.00 67.093 [11, 42] 57.540 4 2.424
Ascites 1.00 1.442 [1, 3] 0.686 2 1.212
AST 71.00 96.383 [17, 553] 87.484 3 1.818
Creatinine 0.850 1.127 [0.2, 7.6] 0.956 7 4.242
Dir bil 0.70 1.930 [0.1, 29.3] 4.210 44 26.667
Encephalopathy 1.000 1.159 [1, 3] 0.428 1 0.606
Ferritin 295.00 438.998 [0, 2230] 457.114 80 48.485
GGT 179.50 268.027 [23, 1575] 258.750 3 1.818
Grams day 75.00 71.009 [0, 500] 76.278 48 29.091
Hemoglobin 13.05 12.879 [5, 18.7] 2.145 3 1.818
INR 1.30 1.422 [0.84, 4.82] 0.478 4 2.424
Iron 83.00 85.599 [0, 224] 55.699 79 47.879
Leucocytes 7.20 1473.962 [2.2, 13,000] 2909.106 3 1.818
Major dim 5.00 6.851 [1.5, 22] 5.095 20 12.121
MCV 94.95 95.120 [69.5, 119.6] 8.406 3 1.818
Nodules 2.00 2.736 [0, 5] 1.798 2 1.212
Packs year 0.00 20.464 [0, 510] 51.565 53 32.121
Platelets 93,000.00 113,206.443 [1.71, 459,000] 107,118.632 3 1.818
PS 1.000 1.018 [0, 4] 1.182 0 0.000
Sat 27.000 37.029 [0, 126] 28.994 80 48.485
Total bil 1.400 3.088 [0.3, 40.5] 5.499 5 3.030
Total proteins 7.050 8.961 [3.9, 102] 11.729 11 6.667

#: number of patients; %: percentage of patients; σ: standard deviation.
Full sample: 165 individuals; deceased patients: 63 individuals; survived patients: 102 individuals. The median value for 
Ascites is 1 and means “none.” The median value for PS is 1 that means “restricted.” The median value for Encephalopa-
thy is 1 which means “none.”
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represent the most effective algorithms in four families of methods31: rule based methods, ensem-
ble methods, kernel methods, and neural networks.

Decision Tree.  A binary Decision Tree (DT)38 belongs to the family of the rule based methods. The 
DT is a flowchart-like structure in which each internal node represents a test of a feature, each 
branch represents the outcome of the test, and each leaf node represents an output of the tree. A 
path from the root to a leaf represents a model rule.

A DT is built with a recursive schema until it reaches its desired depth d, which is the DT hyper-
parameter that needs to be tuned during the MS phase. Each node of the DT, starting from the root 
node, is built by choosing the attribute and the cut that most effectively split the set of samples into 
two subsets based on the information gain.

The decision trees can handle categorical features, numerical features, and missing values well, 
and they do not suffer from numerical issues (no normalization of the data is needed).

Random Forests.  The Random Forests (RF)39 belong to the family of the ensemble methods. RF 
combine bagging to random subset feature selection. In bagging, each tree is independently con-
structed using a bootstrap sample of the dataset. RF add an additional layer of randomness to bag-
ging. In addition to constructing each tree using a different bootstrap sample of the data, RF change 
how the classification trees are constructed.

In standard trees, each node is split using the best division among all variables. In a RF, each 
node is split using the best among a subset of predictors randomly chosen at that node. Eventually, 
a simple majority vote is taken for prediction. The accuracy of the final model depends mainly on 
three different factors: how many trees compose the forest, the accuracy of each tree and the cor-
relation between them. The accuracy for RF converges to a limit as the number of trees nt  in the 
forest increases, while it rises as the accuracy of each tree increases and the correlation between 
them decreases.

There are several hyper-parameters which characterize the performance of the final model: the 
number of trees, the number of samples to extract during the bootstrap procedure, the depth of each 
tree, the number of predictors exploited in each subset during the growth of each tree, and finally 
the weights assigned to each tree. Nevertheless, in common applications, the RF stability to these 
factors is quite low.39

Since RF is basically a combination of many DTs, RF can handle categorical features, numeri-
cal features, and missing values well, and they do not suffer from numerical issues (no normaliza-
tion of the data is needed).

Support Vector Machines.  The Support Vector Machines (SVM)40 belong to the family of the kernel 
methods.

Kernel methods are a family of techniques which exploits the “kernel trick” for distances to 
extend linear techniques to the solution of non-linear problems.41 Kernel methods select the model 
which minimizes the trade-off between the performance, measured with a defined metric 
(Supplemental Material Information), over the data and the complexity of the solution, measured 
with different measures of complexities.31,40 Support Vector Machines (SVM), linear SVM (lin-
ear) and non-linear SVM (kernel), represent the most known and effective Kernel methods 
techniques.

The hyper-parameters of the SVM include the kernel, which is usually fixed and is the linear 
one for SVM (linear) and the Gaussian one for SVM (kernel),42 the kernel hyper-parameter γ  for 
SVM (kernel) and the regularization hyper-parameter C . C  and γ  need to be tuned during the MS 
phase.
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SVM cannot handle categorical features directly (therefore, the one hot encoding32 is needed) 
and they do suffer from numerical issues and consequently data must be re-scaled (in our case all 
the numerical features and targets have been scaled to have zero mean and variance equal to one).

Multi-Layer Perceptron Neural Network with Dropout.  The Multilayer Perceptron Network with 
Dropout (MLP)43,44 belongs to the family of the neural networks.

Neural networks are techniques which combine together many simple models of a human brain 
neuron, called perceptrons,45 to build a complex network. The neurons are organized into stacked layers, 
connected together by weights that are learned based on the available data via back-propagation.46

If the architecture of the neural network consists of only one hidden layer, it is called shallow, 
while, if multiple layers are staked together, the architecture is defined as deep. From a functional 
point of view both architectures have the same representation power47 but in practice, for some 
applications like natural language processing and image analysis, deep networks outperform the 
shallow ones.44,48

In our context, where the number of samples and features is limited, it is more reasonable to use 
a shallow network.43,44 In particular, in this study, we exploited a well known and effective archi-
tecture, the MLP, where a single hidden layer is present, we train it with adaptive subgradient 
methods, and we tuned the following hyper-parameters during the MS phase44: the number of 
neurons in the hidden layer nh, the dropout rate pd , the percentage of data to use as batch size pb ,  
the learning rate rl, the fraction of gradient to keep at each step ρ , the learning rate decay rd , and 
the activation function.

The MLP, like SVM, fails to handle categorical features directly (consequently, the one hot 
encoding32 is needed) and they do suffer from numerical issues and consequently the data must be 
re-scaled (in our case we exploited the same re-scaling method exploited for SVM).

Handling unbalanced classes

Data available in bioinformatics for binary classification are often strongly unbalanced.49–51 
However, most learning algorithms work badly with imbalanced datasets and tend to perform 
poorly on the minority class and for these reasons several techniques have been developed to 
address this issue.33

The first step toward the solution of this problem is to avoid applying the inappropriate evalua-
tion metrics for model generated using imbalanced data.52 For example, overall accuracy is a very 
dangerous metric in this context since the more unbalanced is the dataset the more this metric tends 
to promote models which poorly perform on the minority class. For this reason, in this study we 
also included other metrics like Matthews correlation coefficient (MCC),53 F 1  score, precision-
recall area under the curve (PR AUC),54 and receiver operating characteristic area under the curve 
(ROC AUC),55 which are more suited for the case of imbalanced data (Supplemental Material 
Information). Since the MCC produces a high score only if the classifier is able to correctly predict 
the majority of positives and negatives, we focused on this statistical indicator and ranked our 
method performances according to it.36,56 A high MCC, in fact, means high sensitivity, specificity, 
precision, and negative predictive value. A high value of other common rates such as F 1  score and 
accuracy, instead, do not guarantee them.

The second step toward the mitigation of the effects of having an unbalanced dataset is to 
modify the algorithm or the data, but currently the most practical and effective method involves the 
re-sampling of the data to synthesize a balanced dataset.33 For this purpose we can under- or over-
sample the dataset. Under-sampling balances the dataset by reducing the size of the abundant class. 
By keeping all samples in the rare class and randomly selecting an equal number of samples in the 
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abundant class, a new balanced dataset can be retrieved for further modeling. Note that this method 
wastes a great deal of information (many samples may not be used). For this reason the oversam-
pling strategy is more often exploited. It tries to balance the dataset by increasing the size of rare 
samples. Rather than removing abundant samples, artificial synthetized samples are generated (for 
example by repetition, by bootstrapping, or by synthetic minority). The latter method is the one 
that we exploited in this paper.

Model selection and error estimation

MS and EE deal with the problem of tuning and assessing the performance of a learning algo-
rithm.34 Resampling techniques like k-fold cross validation and non-parametric bootstrap are often 
used by practitioners because they work well in many situations.57 Other alternatives exist, which 
represent foundations in the Statistical Learning Theory and give more insight into the learning 
process. Examples of methods in this last category include the seminal work of the Vapnik-
Chervonenkis Dimension, its improvement with the Rademacher Complexity, the theory of com-
pression, the Algorithmic Stability breakthrough, the PAC-Bayes theory, and more recently the 
Differential Privacy theory.34

In this work we will exploit the resampling techniques which rely on a simple idea: the original 
dataset n  is resampled once or many (nr) times, with or without replacement, to build three inde-
pendent datasets called learning, validation and test sets, respectively l

r , v
r , and t

r , with 
r nr∈{1, , } . Note that L V �l

r
v
r∩ = , L T �l

r
t
r∩ = , V T �v

r
t
r∩ = , and L V T Dl

r
v
r

t
r

n∪ ∪ =  for all 
r nr∈{1, , }

.
Then, to select the best combination of the hyper-parameters H  in a set of possible ones 

H = { , , }1 2H H   for the algorithm AH  or, in other words, to perform the MS phase, we needed to 
apply the following procedure:

	 H A L V
H
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∑
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n
r

l
r
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rM 	 (1)

where A LH ( )l
r  is a model built with the algorithm   with its set of hyper-parameters H  and with 

the data l
r  and where M f v

r( , )  is a desired metric. Since the data in l
r  are independent from 

the ones in v
r, the idea is that H*  should be the set of hyper-parameters which allows to achieve 

a small error on a data set, that is, independent from the training set.
Then, to evaluate the performance of the optimal model which is f nA H

A D*
*= ( )  or, in other 

words, to perform the EE phase, the following procedure has to be applied:
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Since the data in L Vl
r

v
r∪  are independent from the ones in t

r, M f( )*
  is an unbiased estimator 

of the true performance, measured with the metric M , of the final model.34

If nr = 1, if l , v , and t  are aprioristically set such that n l v t= + + , and if the resample proce-
dure is performed without replacement, the hold out method is obtained.34 For implementing the 

complete nested k-fold cross validation, instead, it is needed to set n
n

k

n
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k
k
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v
n

k
= , and t

n

k
=  and the resampling must be done without replacement.57 Finally, for implement-

ing the nested non-parametric bootstrap, l n=  and l
r  must be sampled with replacement from 

n ,  while v
r  and t

r  are sampled without replacement from the sample of n  that have not been 

sampled in l
r.57 Note that for the bootstrap procedure n

n

nr ≤
−









2 1
. In this study, we exploited the 

complete nested k -fold cross validation because it represents the state-of-the-art approach.34

Feature ranking

Once we built the models and they showed their effectiveness in predicting the desired quantities, 
we decided to investigate how these models are affected by the different features used in the model 
identification phase. We performed this operation to understand if the models also have a foundation 
which relies on the underlying phenomena or if the model just captures spurious correlations.35

This procedure is called feature ranking (FR) and allows one to detect if the learned models 
appropriately take into account the relevant features. We consider relevant features the ones that 
are known to be important based on the literature or on the knowledge of the experts on the scien-
tific problem.

The failure of the computational model to properly account for the relevant features might indi-
cate poor quality in the measurements or spurious correlations. FR therefore represents an impor-
tant step of model verification, since it should generate consistent results with the available 
knowledge of the phenomena under examination.

Since Random Forests was the method which obtained the best results in binary classification 
(Table 4), we took advantage of this ensemble learning technique to perform the feature ranking.

Table 4.  Results of the survival prediction made with machine learning classifiers.

Method MCC F1 score Accuracy PR AUC ROC AUC

RF *+0.526 ± 0.011 *0.811 ± 0.005 *0.772 ± 0.005 0.149 ± 0.005 *0.766 ± 0.006
Linear SVM +0.522 ± 0.011 *0.811 ± 0.005 0.771 ± 0.005 0.143 ± 0.005 0.763 ± 0.006
MLP +0.456 ± 0.173 0.801 ± 0.090 0.727 ± 0.112 0.036 ± 0.044 0.695 ± 0.087
Radial SVM +0.318 ± 0.130 0.744 ± 0.062 0.680 ± 0.065 0.191 ± 0.061 0.663 ± 0.068
DT +0.295 ± 0.013 0.714 ± 0.006 0.659 ± 0.006 *0.211 ± 0.005 0.650 ± 0.006

Method TP rate TN rate PPV NPV  

RF 0.794 ± 0.007 *0.738 ± 0.009 *0.829 ± 0.006 0.692 ± 0.009  
Linear SVM 0.801 ± 0.007 0.724 ± 0.009 0.821 ± 0.006 0.697 ± 0.009  
MLP *0.950 ± 0.054 0.439 ± 0.174 0.705 ± 0.145 *0.836 ± 0.181  
Radial SVM 0.729 ± 0.087 0.597 ± 0.087 0.765 ± 0.071 0.547 ± 0.127  
DT 0.690 ± 0.008 0.610 ± 0.010 0.741 ± 0.007 0.549 ± 0.010  

AUC: area under the curve; DT: decision tree; MCC: Matthews correlation coefficient (worst value = −1 and best 
value = +1); MLP: multi-layer perceptron neural network; NPV: negative predictive value; PPV: positive predictive value, 
precision; PR: precision-recall curve; RF: Random Forests; ROC: receiver operating characteristic curve; SVM: support 
vector machine; TN rate: true negative rate, specificity; TP rate: true positive rate, sensitivity, recall.
Each result is the average value of nFR  executions ± standard deviation. Positive data instances: survived patients  
(class 1). Negative data instances: deceased patients (class 0). F1 score, accuracy, TP rate, TN rate, PPV, NPV, PR AUC, 
ROC AUC: worst value = 0 and best value = +1. Confusion matrix threshold for TP rate, TN rate, PPV, and NPV: 0.5. 
We highlighted with an asterisk * the top results for each score. We report the formulas of these rates in the Supple-
mental Material Information.
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Random Forests feature ranking.  In this context, feature rankings methods based on Random Forests 
are among the most effective machine learning techniques,58,59 particularly in the context of bioin-
formatics60,61 and health informatics.19 Several measures are available for feature importance in 
Random Forests.

One approach is based on the Gini Importance or Mean Decrease in Impurity (MDI) which calcu-
lates each feature importance as the sum over the number of splits (across all trees) that include the 
feature, proportionally to the number of samples it splits.62 Another powerful approach is the one based 
on the Permutation Importance or Mean Decrease in Accuracy (MDA), where the algorithm assesses 
the importance for each feature by removing the association between that feature and the target.62 This 
goal can be achieved by randomly permuting63 the values of the feature and measuring the resulting 
increase in error. The method also removes the influence of the correlated features.

In details, for every tree, two quantities are computed: the first one is the error on the out-of-bag 
samples as they are used during prediction, while the second one is the error on the out-of-bag 
samples after a random permutation of the values of a variable. These two values are then sub-
tracted and the average of the result over all the trees in the ensemble is the raw importance score 
for the variable under examination. Both MDI and MDA can be adopted since they can be easily 
carried out during the main prediction process inexpensively.

Despite the effectiveness of MDI and MDA, when the number of samples is small, these meth-
ods might be unstable.64–66 For this reason, in this study, instead of running the Feature Ranking 
(FR) procedure just once, analogously to what we have done for MS and EE, we sub-sample n  
such that S Dm n⊂  with m p nm= =| | FR , namely we randomly sample without replacement 
100 %⋅ pFR  of the data in n , we perform the FR  using m  and we repeat the procedure nFR  
times. The final rank of a feature will be the aggregation of the different ranking using the Borda’s 
method,67 where we summed the two positions of each feature in the two rankings, and sorted the 
ranking accordingly.

Computational pipeline for binary classification and feature ranking

We can recap here the computation pipeline of the analysis with the following steps:

1.	 Construction of the dataset described earlier (Data pre-processing and imputation) and pre-
process it;

2.	 We built a model with each of the algorithms described in Algorithms (DT, RF, SVM (lin-
ear), SVM (kernel), and NN). We will handle the unbalanced classes as described in 
Handling unbalanced classes. We will use the MS strategy described in Model selection 
and error estimation where we set the number of fold k = 10. During the MS we searched 
the hyper-parameters using the following ranges
(a)	 DT: H = { } {2,4,6,8,10,12,14}d ∈ ;
(b)	 RF: we set nt = 1000  since increasing it does not increases the accuracy;
(c)	 SVM (linear): H R= { }C ∈ ;
(d)	 SVM (kernel): H R R= { , }C γ ∈ × ;
(e)	 NN: H = { , , , , , } {5,10, 20, 40, 80,160} {0, 0.001, 0.01, 0.1n p p r rh d b l dρ ∈ × }}

{0.1,1} {0.001, 0.01, 0.1,1} {0.9, 0.09} {0.001, 0.01, 0.1, 1

×

× × × }}

  

and as activation function we used the rectified linear unit (ReLU)44;
	 where  = {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05,  0.1, 0.5, 1, 5,10, 50};
3.	 For each of the constructed models we reported the results using the EE strategy described 

in Model selection and error estimation and the confusion matrix metrics together with the 
standard deviation where we set nr = 100;
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4.	 We reported the ranking of the features selected by the two feature ranking procedures 
described in Feature ranking with pFR = 0.9  and nFR = 1000.

Biostatistics univariate tests

After using machine learning for feature ranking, we decided to rank the features by using the 
results of univariate traditional statistical tests which statistically express the relationship between 
each clinical factor and survival.

As done by Patrício et al.20 when analyzing health records of patients with breast cancer, we first 
applied the Shapiro–Wilk test68 to each feature to check their distribution. Since the normality 
assumptions were unmet, we then applied the Mann–Whitney U  test to the real-valued features, 
the Kruskal–Wallis test to the category features, the chi-squared (χ

2
) test to the binary features, and 

ranked their p-values.
The Mann–Whitney U  test (or Wilcoxon rank–sum test),69 applied to each feature in relation to 

the survival target, states whether we can reject the null hypothesis that the distributions of the each 
feature for the two groups of samples defined by survival are the same. The Kruskal–Wallis test70 
is a variant of the Mann–Whitney U  test to use for ordinal category features.

The chi-squared test71 between two variables checks how likely an observed distribution is due 
to chance. The Mann–Whitney U  test should be employed for features with real values, while the 
chi-squared test should be employed for non-ordinal category features.

A low p-value generated by these tests (close to 0) means that the analyzed feature strongly 
relates to survival, while a high p-value (close to 1) means the there is no significant relationship. 
Once we obtained a p-value for each feature, we ranked them from the lowest (highest correlation 
with survival) to the highest (lowest correlation with survival), generating a feature ranking for the 
real features and a feature ranking for the binary features.

Results

In this section, we first report and describe the binary classification results we obtained for the 
survival prediction (section “Survival prediction”), the feature ranking results we obtained through 
machine learning (section “Machine learning clinical feature ranking”), and the feature ranking 
results we obtained through traditional statistics tests (section “Biostatistics feature ranking”).

Survival prediction

We listed the survival prediction results in Table 4, by ranking them on the Matthews correlation 
coefficients.53 We chose the MCC because it is the only confusion matrix score that generates a 
high score only if the classifier obtained a high score on the sensitivity, specificity, precision, and 
negative predictive value.36,56

Our results show that all the methods were able to correctly predict most of the survived 
patients (positive data instances) and all the methods except MLP were capable of correctly pre-
cicting the majority of deceased patients (negative data instances), by obtaining MCC from 
+0.295 to +0.526 on average (Table 4). Random Forests outperformed all the other methods, by 
achieving the top MCC, F1  score, accuracy, ROC AUC, specificity, and positive predictive value. 
Decision Tree performed better than the other algorithms regarding the precision-recall area under 
the curve (PR AUC); while the multi-layer perceptron neural network achieved the top sensitivity 
and negative predictive value.
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All methods performed better on recall than on specificity, by obtaining an almost perfect true 
positive rate of 0.950 (MLP) as top recall and by attaining a top 0.738 true negative rate (RF). We 
believe this difference is caused by the dataset imbalance, since there are 38.18% negative data 
instances (deceased patients) and 61.82 positive data instances (survived patients). The high scores 
of precision and negative predictive value confirm the confidence of our survival prediction.72

Our results show that the classifiers perform more efficiently when used to predict patients with 
high chance to decease (TP rate) than patients with high chance to survive (TN rate). This condition 
results being more advisable to us because, as we mentioned earlier, predicting patients more at 
risk of death is more urgent.

Machine learning clinical feature ranking

Since Random Forests obtained the best results classifying the survival target (Survival predic-
tion), we decided to employ this method to detect the most predictive features, able to discriminate 
survived patients from deceased patients. We applied an ensemble learning feature ranking nFR  
times, each generating a ranking for the mean Gini purity decrease and a ranking for the mean 
accuracy decrease. We merged together the nFR  Gini rankings and the nFR  accuracy rankings 
through Borda’s method, and finally merged the two final rankings through the same technique.

The results showed ALP, AFP, Hemoglobin, Albumin, and Ferritin as top five clinical factors to 
distinguish survived patients from deceased patients in both the final Gini ranking and the final 
accuracy ranking. Regarding the features ranked in the last positions, instead, the two final rank-
ings were discordant. Alcohol, Cirrhosis, Sex, Hallmark, and Obesity resulted being the less rele-
vant factors in the merged ranking (Table 5).

As an example, we report a Gini ranking and an accuracy ranking generated by one of the appli-
cations of Random Forests out of nFR  executions (Figure 1).

Biostatistics feature ranking

The Shapiro–Wilk test (Supplemental Table S1) produced a p -values close to 0 for each feature, mean-
ing that the null hypothesis of normality is rejected, and each variable distribution is non-normal.

We applied the Mann–Whitney U  test to the real-valued features, the chi-squared test to the 
binary features, and the Kruskall-Wallis test to the ordinal category features, all paired with sur-
vival, and then ranked the features according to their p-values (Table 6). The tests’ results showed 
ALP, AFP, Hemoglobin, Direct Bilirubin (Dir Bil), AST, Ferritin, Symptoms, Metastasis, PS, 
Ascites as most significant features, having a p-value lower than 0.005 (Table 6).

Exection times

We executed our scripts on a Dell Latitude 3540 personal computer running a Linux CentOS 7.10 
operating system and R version 3.6. The execution of the binary classification methods took around 
45 minutes, the exection of the feature ranking techniques took around 45 min and 30 s, while the 
execution of the biostatistics tests took around 5 seconds.

Discussion

In this section, we first discuss the results achieved by our binary classification for the survival 
prediction, and then we discuss the top predictive features detected by our computational intelli-
gence approach, the top predictive features identified by our univariate statistical tests, and the top 
predictive features revealed by other studies.
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Table 5.  Clinical feature ranking results.

Merged 
ranking 
position

Borda 
score

Clinical feature Gini decrease 
final position

Gini decrease 
average 
position

Accuracy 
decrease final 
position

Accuracy 
decrease 
average position

1 2 ALP 1 1.3 1 1.5
2 4 AFP 2 1.7 2 1.9
3 6 Hemoglobin 3 3 3 3
4 8 Albumin 4 4.3 4 4.1
5 10 Ferritin 5 5.1 5 5
6 13 PS 7 7.6 6 6.4
7 14 AST 6 6 8 7.8
8 18 Symptoms 11 12 7 6.5
9 21 Platelets 10 10 11 11.2
10 22 Age 8 7.7 14 14.5
11 27 Total bil 14 14.8 13 14.1
12 28 Dir bil 19 17.6 9 9.3
13 29 GGT 9 9.3 20 20.5
14 33 Creatinine 15 15.5 18 20.3
15 34 INR 12 12.2 22 22.1
16 36 Ascites 26 25.3 10 10.9
17 37 Major dim 18 17.2 19 20.3
18 38 Iron 21 21.2 17 17.5
19 39 Hemochro 27 27.1 12 13.8
20 40 Leucocytes 13 13.1 27 26.4
21 41 Varices 25 24.9 16 15.4
22 43 MCV 17 16.4 26 25.9
23 43 Metastasis 28 28.1 15 14.6
24 44 Sat 23 22.7 21 20.7
25 44 Total proteins 16 15.6 28 26.9
26 46 Packs year 22 22.6 24 24.6
27 53 HBsAg 30 30.1 23 23.8
28 60 ALT 20 19.8 40 41
29 61 HCVAb 31 30.6 30 30.4
30 61 PVT 36 35.8 25 25.8
31 63 Nodules 29 29.5 34 34.3
32 64 Endemic 32 32.8 32 30.6
33 64 PHT 35 35.4 29 29.9
34 66 HBcAb 33 32.9 33 32.8
35 68 Grams day 24 24.5 44 42.3
36 70 Encephalopathy 39 39 31 30.4
37 73 Diabetes 38 37.8 35 37.5
38 77 AHT 40 40.5 37 38.7
39 77 HIV 41 41.1 36 37.5
40 81 Smoking 34 33.5 47 43.2
41 82 CRI 43 43.3 39 39.5
42 83 Spleno 37 36.5 46 42.5
43 84 HBeAg 46 45.5 38 39.5

 (Continued)
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Merged 
ranking 
position

Borda 
score

Clinical feature Gini decrease 
final position

Gini decrease 
average 
position

Accuracy 
decrease final 
position

Accuracy 
decrease 
average position

44 85 NASH 42 42 43 42.2
45 89 Alcohol 47 46.5 42 42.1
46 90 Cirrhosis 49 49 41 41.7
47 93 Sex 48 48 45 42.4
48 93 Hallmark 44 43.5 49 46.6
49 93 Obesity 45 45.3 48 45.1

We merged the ranking obtained by Random Forests with the Gini purity decrease and the ranking obtained by Ran-
dom Forests with the accuracy decrease, through Borda’s method.73 Accuracy decrease average position: rank obtained 
by applying Borda’s method to the accuracy decrease nFR  rankings. Accuracy decrease final position: ranking obtained 
from the accuracy decrease average position ranking. Gini decrease average position: rank obtained by applying Borda’s 
method to the Gini decrease nFR  rankings. Gini decrease final position: ranking obtained from the Gini decrease aver-
age position ranking. Borda score: score obtained by applying Borda’s method to the Gini decrease final position ranking 
and the accuracy decrease final position ranking. Merged ranking position: final ranking obtained through the Borda 
score ranking.

Table 5.  (Continued)

Smoking
Hallmark

ALT
Obesity

Grams day
Spleno

Cirrhosis
Alcohol

Sex
NASH

HBeAg
CRI

Diabetes
HIV

Nodules
AHT

Leucocytes
HCVAb

Crea�nine
Encephalopathy

Endemic
PHT

HBcAb
MCV
PVT

HBsAg
Packs year
Major Dim

Total Proteins
GGT

Metastasis
Age
Sat
INR
Iron

Varices
Total Bil
Platelets

Ascites
Hemochro

Dir Bil
AST

Symptoms
PS

Albumin
Ferri�n

AFP
ALP

Hemoglobin

0.000 0.004 0.008 0.012
mean accuracy decrease

fe
at

ur
e

Feature ranking as Random Forests mean accuracy decrease

Cirrhosis
Sex

Obesity
Alcohol
HBeAg

CRI
Hallmark

NASH
HIV

AHT
Encephalopathy

Diabetes
Spleno

PHT
PVT

HBcAb
Endemic
Smoking

HBsAg
Metastasis

Nodules
HCVAb

Hemochro
Grams day

Varices
Ascites

Packs year
Sat
Iron
ALT

Crea�nine
Major Dim

Dir Bil
Leucocytes

MCV
Total Proteins

Total Bil
Symptoms

INR
Platelets

GGT
Age
PS

AST
Ferri�n

Albumin
Hemoglobin

AFP
ALP

0 1 2 3 4
mean Gini purity decrease

fe
at

ur
e

Feature ranking as Random Forests mean Gini purity decrease

Figure 1.  Random Forests feature selection. Indicative example of Random Forests feature selection 
through accuracy reduction (left) and Random Forests feature selection through Gini impurity (right), 
obtained in one of the nFR  executions.

Survival prediction

Our survival prediction results show that computational intelligence can effectively predict sur-
vival of patients from their clinical records, in few minutes and with small computational resources.

Our methods achieved good prediction results on all the confusion matrix rates (Survival pre-
diction), and even outperformed the results obtained by the original dataset curators Santos et al.27 
which obtained a top performance score of ROC AUC = 0.700 through a neural network 
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augmented sets approach. Our Random Forests classifier, in fact, obtained an average ROC 
AUC = 0.766 (Table 5). We believe that our improvement on the results, compared to the original 
study27 is due mainly to the predictive power of Random Forests,39 that often outperforms artificial 
neural networks and all the other machine learning techniques in health informatics binary classi-
fication tasks.19,74–77

Other studies have applied machine learning methods to predict survival and rank the clinical 
features on this HCC dataset (Dataset), but they included methodological mistakes that led to 
inflated and overoptimistic results. Ksikazek et  al.78 obtained inflated prediction scores due to 
several wrong machine learning practices: they split the dataset into a training set and a test set, 
used the test set for the hyper-parameter optimization of their Genetic Algorithm, and then applied 
their trained model on the same test set, generating high predictive results. The correct practice 
necessitates to splitting the dataset into three separate subsets: training set, validation set, and test 
set.34,36,43 The validation set should be employed for the hyper-parameter optimization, and the test 
set should be left untouched as a “held-out set” until the end, and used for the final classification 
made with trained optimized model.79

Table 6.  Results of the Mann–Whitney U  test applied to the real features (left), chi-squared test applied 
to the binary features (center), and Kruskal-Wallis test applied to the ordinal category features (right).

Position Feature Mann–Whitney 
U  test

Feature Chi-squared 
test

Feature Kruskal–
Wallis test

p-value p-value p-value

1 *ALP 1.000 10 06× − *Symptoms 5.000 10 04× − *PS 2.000 10 06× −

2 *AFP 4.000 10 06× − *Metastasis 4.498 10 03× − *Ascites 1.050 10 03× −

3 *Hemoglobin 6.800 10 05× − PVT 1.050 10 02× − Encephalopathy 1.865 10 01× −

4 *Albumin 2.100 10 04× − HCVAb 1.749 10 01× − Nodules 2.269 10 01× −

5 *Dir bil 1.354 10 03× − Diabetes 1.769 10 01× −  
6 *AST 1.619 10 03× − Endemic 3.258 10 01× −  
7 *Ferritin 1.999 10 03× − CRI 3.283 10 01× −  
8 Iron 9.132 10 03× − HBeAg 3.818 10 01× −  
9 GGT 1.912 10 02× − AHT 4.138 10 01× −  
10 Major dim 2.816 10 02× − Smoking 4.543 10 01× −  
11 INR 3.298 10 02× − Varices 6.842 10 01× −  
12 Total bil 3.330 10 02× − HBcAb 6.867 10 01× −  
13 Age 3.568 10 02× − Sex 6.972 10 01× −  
14 Creatinine 9.698 10 02× − Hemochro 6.972 10 01× −

 
15 Platelets 1.213 10 01× − PHT 6.992 10 01× −  
16 Leucocytes 1.405 10 01× − NASH 7.176 10 01× −  
17 Total proteins 1.514 10 01× − Alcohol 7.201 10 01× −

 
18 Sat 3.319 10 01× − Spleno 7.421 10 01× −  
19 Packs year 3.940 10 01× − Cirrhosis 7.871 10 01× −  
20 Grams day 4.404 10 01× − HBsAg 7.906 10 01× −  
21 MCV 4.415 10 01× − Obesity 8.156 10 01× −  
22 ALT 6.641 10 01× − Hallmark 8.666 10 01× −  
23 HIV 1  

We highlight with an asterisk * the features having p-value lower than the significance threshold p = 0.005 = 5 10 3× − .
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In a parallel work, Sawhney et al.80 committed a similar mistake: they decided to reduce the num-
ber of features of the dataset to predict survival, but they did it on the same subset they employed for 
testing their classification method. Again, the correct practice would have necessitated to splitting the 
dataset into three independent subsets: training set, feature reduction set, and test set. The “held-out” 
test set should have been used only at the end, after the training phase and the feature reduction phase. 
Additionally, the authors did not provide enough details on their feature reduction procedure.

Because of these malpractices, from a data analytics point of view, we did not compare our 
predictions performance with the results achieved by Ksikazek et al.78 and Sawhney et al.80 because 
the latter are biased and optimistic due to several data snooping issues (for example, some of the 
training data instances were employed also in the test set).81

Clinical feature ranking obtained by our Random Forests approach

Regarding feature ranking, our machine learning approach identified clinical factors already 
known to be HCC predictive or prognostic factors in the gastroenterology community (Table 6).

Yu et al.82 and Parikh and Sawant83 for example, confirmed the predictive power of alkaline 
phosphatase (ALP) level for survival of patients having hepatocellular carcinoma. ALP is the top 
most predictive clinical factor found by our approach (Table 6). On the second position of our rank-
ing we found alpha-fetoprotein (AFP), which was found to be strongly correlated to survival of 
patients having HCC by Tangkijvanich et  al.,84 Johnson,85 Johnson and Williams,86 and Tyson 
et al.,87 in studies independent from each other. Finkelmeier et al.88 confirmed the predictive impor-
tance of Hemoglobin level, which is on the third position of our ranking. The fourth position of our 
ranking lists the Albumin level, which has been confirmed to be related conditions of patients hav-
ing hepatocellular carcinoma by Carr and Guerra89 and Tanriverdi.90

Regarding the Ferritin level found in the blood of patients, listed on fifth position of our rank-
ing, the scientific literature contains several studies confirming this association.91–93 However, 
since the Ferritin feature has almost half of its values missing in the the original dataset (Dataset), 
we have to warn that the data imputation technique we used might have influenced this outcome.

The fact that our approach ranked factors already known to the gastroenterology community as 
most predictive of survival for patients having HCC confirms the effectiveness of our feature rank-
ing approach. Interestingly, our approach listed ALP level, AFP level, Hemoglobin level, and 
Ferritin level in positions higher than other known HCC clinical factors.

The last five positions of our ranking, in fact, list Alcohol consumption, Cirrhosis, Sex, 
Radiological Hallmark, and Obesity as least predictive features for HCC patient survival. Even if 
the daily consumption of alcohol is known to be related to to hepatocellular carcinoma,94 our analy-
sis suggests it is unrelated to survival. Regarding Cirrhosis, even if often present in patients with 
hepatocellular carcinoma,95 our ranking recommends it as non-predictive of survival. A study by 
Sangiovanni et al.96 confirms the increased chances of survival for patients with HCC and cirrho-
sis. Our analysis suggests that the patient’s sex is not prognostic of survival, even if HCC is more 
common among men. Even if the hepatocellular carcinoma diagnosis is confirmed by the 
Radiological Hallmark, our study states that this aspect cannot say anything about possible sur-
vival or decease of the patient. Obesity is a known risk factor for HCC,97 but our study suggests, 
that is, independent from the survival of the patient.

Clinical feature ranking obtained by our univariate statistical tests

Regarding biostastistics univariate tests, we noticed these techniques identified as most relevant 
clinical factors the same top eight features found by Random Forests (ALP, AFP, Hemoglobin, 
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Albumin, Ferritin, PS, AST, Symptoms), plus other ones that were on lowest Random Forests 
ranks. Our ensemble learning technique, in fact, put Direct Bilirubin on 12th position, Ascites on 
16th position, and Metastasis on 23rd position out of 49.

Platelet count, Age, and Total Bilirubin result being more relevant than Direct Bilirubin in our 
machine learning ranking, confirming the effectiveness of Random Forests in this task. Platelet 
count, in fact, is a known prognostic factor in hepatocellular carcinoma,98 but it was undetected as 
relevant feature by the univariate statistical tests (Table 6). Age is another important factor: older 
patients have less chance to survive HCC,99 but Age was unseen as a key factor by the univariate 
statistical tests (Table 6).

Ascites is a prognostic factor employed by the Okuda HCC staging definition8 that was intro-
duced in 1985 and by the Chinese University Prognostic Index13 in 2002, but was excluded from 
more common staging systems such as the TNM Classification of Malignant Tumors.16,17

Metastasis was detected as a significant factor by the univariate statistical tests, but not by our 
Random Forests ranking.

HCC most predictive clinical features according to other studies

In the scientific literature, other papers claim alternative survival or mortality factors for HCC 
patients, which we compare with our top ranked features.

Cai et al.100 listed tumor size and vascular invasion as the most relevant clinical features for 
survival of patients with hepatocellular carcinoma. The study of El-Fattah et al.101 instead, stated 
that age, race, tumor size, AFP level, the American Joint Committee on Cancer (AJCC) stage, and 
the year of diagnosis were the most relevant factors for survival in the medical records of HCC-
diagnosed patients. Falkson et al.102 identified impaired performance status, male sex, older age, 
and disease symptoms (jaundice and reduced appetite) as factors most mortality-related. The 
research study of Vauthey et  al.103 identified cirrhosis and vascular invasion as clinical aspects 
more correlated to mortality.

Treatment for HCC, albumin level, and TNM stage were the most predictive survival features 
found by Kawaguchi et al.104 in a recent article. Singal et al.105 listed AFP and being a male as two 
relevant signs of potential survival from HCC. The article of Chaudhari et al.106 instead, listed age, 
stage of disease, multiplicity, tumor thrombosis, lymphovascular invasion, nodal and distant 
metastases and completeness of resection as relevant factors for patients survival from HCC.

Two of these studies confirmed the relevance of AFP level,101,105 which we ranked 2nd  in our 
analysis (Table 5), endorsing the predictive power of the α -fetoprotein level in blood, that now can 
be considered a strong biomarker of survival from HCC.

Two studies listed male sex as a top predictive factor,101,106 which we listed in the last positions 
of our ranking (Table 5): this discordance leaves room for further analysis about this aspect.

Conclusion

Hepatocellular carcinoma is a type of liver cancer that affects tens of millions of people worldwide 
(14 million in 20121) and kills approximately 800 thousand individuals worldwide every year.2,3 
Predicting survival and detecting the most relevant clinical features for patient survival can be 
extremely useful to better understand this disease and its medical markers.

In this context, machine learning can provide methods to analyze clinical records in a few 
minutes and suggest the most relevant clinical factors for survival. In this study, we analyzed 
a public dataset of medical data of 165 patients recorded in Coimbra (Portugal), which contain 
50 features for each patient. We first applied a data imputation and oversampling approach to 
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take care of the missing values and of the dataset imbalance. We then employed several data 
mining methods to discriminate the survived patients from the deceased patients, outperform-
ing the classification results obtained by the original dataset curators Santos et al.27 Afterwards, 
we took advantage of our top performing method (Random Forests) to rank all the clinical 
features based on their relevance in predicting survival, discovering that the most important 
features resulted were alkaline phosphatase, alpha-fetoprotein, Hemoglobin, Albumin, and 
Ferritin levels.

We found scientific publications confirming the association between these features and 
hepatocellular carcinoma, which confirmed the soundness of our approach. We also compared 
our top features with other prognostic factor combinations we found in the medical literature, 
and we noticed some studies which endorsed the role of alpha-fetoprotein. Our analysis there-
fore suggests the inclusion of alkaline phosphatase and Hemoglobin in any future HCC prog-
nostic indexes.

Even if other studies confirmed the relevance of ALT and AFP in hepatocellular carcinoma 
survival our study lists them as the two most important variables for the first time. This discovery 
can have impact on clinical practice, suggesting physicians and medical doctors to focus on these 
two clinical factors of the blood tests.

Our methods can result particularly useful if employed in small hospitals or clinics where medi-
cal imaging techninques for CT scan or MRI are unavailable.

As a limitation, we admit that employing a single dataset from a single hospital has been a 
drawback in our study: if we had an alternative dataset from another site as a validation cohort, we 
could have used it to confirm our findings. Our results might not generalize well to other clinical 
records. We searched online for public alternative datasets of patients having hepatocellular carci-
noma, but unfortunately we found none.

Another limitation of this study has been the absence of survival time in the dataset. If this fea-
ture were present in the dataset, we could have framed our analysis to understand how long a 
patient would have survived, through methods such as a stratified logistic regression.107

In the future, we plan to expand our analysis by making a comparison between the speed, the 
resources employed, and the cost of making the decision employed by our computational intelli-
gence approach and the same elements employed by medical doctors in a hospital settings. 
Unfortunately we did not have this information to perform this comparison in this study, but we 
hope to obtain it for the future.

Regarding future developments, we also plan to apply our approach to hepatocellular carcinoma 
data derived from high throughput sequencing technologies, such as transcriptomics data.108

We also aim at applying our approach to datasets of patients having other diseases such as neu-
roblastoma,109 breast cancer,20 amyotrophic lateral sclerosis,110 and heart failure.107
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Abbreviations

Notation

AUC	 area under the curve
DT	 decision tree
EE	 error estimation
EHR	 electronic health records
FN	 false negatives
FP	 false positives
FR	 Feature Ranking
HCC	 hepatocellular carcinoma
MCC	 Matthews correlation coefficient
MDI	 Mean Decrease in Impurity
MDA	 Mean Decrease in Accuracy
MS	 model selection
p -value:	 probability value
PR:	 precision-recall
RF:	 Random Forests
ROC	 receiver operating characteristic
SVM	 support vector machine
TN rate	 true negative rate
TNM	 Tumor, lymph nodes, metastasis staging system.
TP rate	 true positive rate.




