DEGLI STUDI

ONVTIN 1a

SCUOLA DI DOTTORATO

N

ICO0CCAUNIVERSITA DEGLI STUDI DI MILANO-BICOCCA

©3 UNIVERSITA

Department of
Informatics, Systems and Communication

PhD program in Computer Science, Cycle XXXV

On the Effectiveness of Automatic Test Case
Generation for Safety-Critical Software

Name: ELSON KURIAN
Registration number: 855363

Tutor: Prof. Davide Ciucci
Supervisor: Prof. Giovanni Denaro

Co-Supervisor: Prof. Daniela Briola

Coordinator: Prof. Leonardo Mariani

ACADEMIC YEAR: 2021-2022

Acknowledgments

The PhD journey has been a life-changing experience. It would not have
been possible without the support and guidance I received from countless
people.

First and foremost, [am incredibly grateful to my supervisor, Prof. Gio-
vanni Denaro, for his invaluable advice and for believing in me during my
PhD study. Also, I'd like to thank my co-supervisor, Prof. Daniela Briola,
for all the help, feedback, and patience she’s given me over the years.

I would like to thank Prof. Pietro Braione for his technical support and
for his valuable suggestions. In addition, I would like to acknowledge my
colleagues Andrea Riboni, Matteo Modonato, and Luca Guglielmo for the
friendly and stimulating environment in the Software Testing and Analysis
Laboratory.

I would like to acknowledge Dario D’Avino the industrial resource person
from the Rete Ferroviaria Italiana, Italy, for your support.

I would like to express my gratitude and love to my wife Tinu Beth
Thomas, my brothers Linson Kurian and Dinson Kurian, and my parents for
their support, without which it would not have been possible. I owe it to
you.

Finally, I would like to acknowledge all my friends who supported me on
the journey.

Abstract

Software systems for automating safety-critical tasks in application domains
like, avionics, railways, automotive, industry 4.0, and healthcare must be
highly reliable. In this thesis, we focus on safety-critical software written
in Scade, a model-based modelling language largely adopted in industry,
that we used for developing safety-critical Scade programs for the railway
domain. Automated test generation (state-of-the-art) based on symbolic
execution and bounded model checking can be beneficial for systematically
testing safety-critical software to facilitate test engineers in pursuing the
strict testing requirements mandated by the certification standards while
controlling the cost of the testing process. At the same time, the development
of safety-critical software is often constrained by programming languages
or coding conventions that ban linguistic features believed to downgrade
the safety of programs, e.g., they do not allow dynamic memory allocation
and variable-length arrays, limit the way in which loops are used, forbid
recursion, and limit the complexity of control conditions. We leverage state-
of-the-art test generators based on symbolic execution and bounded model
checking in order to define an original toolchain for generating test cases for
Scade programs. We evaluate the effectiveness of our toolchain for automatic
test generation with a benchmark of 37 Scade programs developed as part
of an onboard signalling unit for high-speed railway systems developed in
collaboration with an industrial partner.

i

Sommario

I sistemi software per 'automazione di attivita safety-critical in domini ap-
plicativi (ad esempio avionica, ferrovie, automotive, industria 4.0 e assistenza
sanitaria) devono essere altamente affidabili. In questa tesi, ci concentriamo
sul software safety-critical scritto in Scade, un linguaggio di programmazione
model-based ampiamente adottato nell’industria, da noi utilizzato per lo
sviluppo di programmi Scade safety-critical per il dominio ferroviario. La
generazione automatica di test (stato dell’arte) basata sull’esecuzione sim-
bolica e sul bounded model checking puo essere utile per testare sistematica-
mente il software safety-critical al fine di facilitare gli ingegneri nel rispettare
i severi requisiti di test imposti dagli standard di certificazione, controllando
al contempo il costo del processo di testing. Allo stesso tempo, lo sviluppo di
software safety-critical e spesso vincolato da linguaggi di programmazione o
convenzioni di codifica che vietano caratteristiche del codice che si ritiene rid-
ucano la sicurezza dei programmi, ad esempio, non consentono 1’allocazione
dinamica della memoria e array di lunghezza variabile, limitano il modo in
cui vengono utilizzati i cicli, proibiscono la ricorsione e limitano la comp-
lessita delle condizioni di controllo. Abbiamo sfruttato generatori di test allo
stato dell’arte basati sull’esecuzione simbolica e il bounded model checking
al fine di definire una toolchain originale per la generazione di casi test per
programmi Scade. Abbiamo valutato 'efficacia della nostra toolchain nel
generare i casi di test automaticamente con un benchmark di 37 programmi
Scade sviluppati come parte di un sistema di segnalazione di bordo per sis-
temi ferroviari ad alta velocita sviluppato in collaborazione con un partner
industriale.

il

Contents

[Acknowledgments|

[Abstractl

[Abstract (Italian)|

2.1.1 Random Testing|
[2.1.2 Search-Based Testing|
[2.1.3 Bounded Model Checkingl
[2.1.4 Symbolic Execution|.
2.2 KLEE a Symbolic Execution Enginel
221 Overviewl

[2.2.2 Key Features and Properties
2.3 CBMC (“C Bounded Model Checking”)|

3.1 Overviewl e
[2.3.2 Generating the Formulal
[2.3.3 Converting the Formula to CNF|[.
2.4 Related work on Test Generation for Scadel
[2.4.1 Automated model-based testingl
[2.4.2 Formal methods for safety-critical sottware]
[2.4.3 Automated test generation for Scade models

[3 Automated Test Generation for Scade programs|
[3.1 Safety-Critical Development with Scade|.
[3.2 A Sample Scade Program (Working Example)
(3.3 The TECS Toolchainl o000 ..

v

ii

iii

[3.3.2 Test Driver Synthesis| 45

[3.3.3 Test Input Generation| 48

[3.3.4 Test Synthesis| 52

[4 Experiments and Results| 56
[4.1 Experimental Assessment|. 56
[4.2 Subject programs| 57
[4.3 Research Questions and Metrics| 60
[4.4 Experiment setting] 62
E5 Resultd. 64
4.5.1 RQI: Effectiveness of automatic test case generation |

[for safety-critical software in Scade.| 65

4.5.2 RQ2: Efficiency of symbolic execution and bounded [
| model checking for generating test cases for safety- [

[critical programs in Scade| L. 74

[4.6 Threats to validity] 78
5 Conclusionl 80
82
(List of Publications| 84
[List of Abbreviations| 85

List of Figures

2.1 Warm-up C code for random testingl 9
[2.2 Warm-up C code for search-based testing/ 12
2.3 Warm-up C code for bounded model checkingl 14
2.4 Warm-up C code for symbolic execution| 18
2.5 C code for examplel| 19
2.6 Warm-up C code for KLEE|. 23
[2.7 KLEE outputs details|, 24
2.8 Ktest-tool format for test cases result| 26
[2.9 Sample program to illustrate the model checking code trans- [

formationl 29
[2.10 Sample program that uses dynamic memory allocation| 30
[2.11 Warm-up C code for CBMC, example 1| 31
[2.12 Unwound version of the warm-up C code tor CBMC, example |

1, with loop unwinding set to 4}, 31
[2.13 Warm-up C code for CBMC, example 2| 32
[2.14 Code Coverage results generated by CBMC for C program Fig- [

ure 2. 13lo 32
[3.1 A sample Scade model for a car wing mirror controller| 41
[3.2 Excerpt of the C program that KCG generates tor the Scade |

model in Figure|3.1{ 0oL 43
[3.3 Components and workflow of TECS| 45
[3.4 Algorithm of the analysis driver| 48
[3.5 KLEE representation for the inputs used in of the C program [

Figure[3.2] 51
[3.6 CBMC representation for the inputs used in of the C program |

Figure[3.2] 53
[3.7 A test case generated for the sample program of Figure[3.2[. . 54

vi

List of Tables

[2.1 'Test suite generated by KLEE for C program Figure[2.6/. . . . 23
[2.2 Test suite generated by CBMC tor C program Figure[2.13]. . . 31
[4.1 Subject programs|o 58
[4.2 Statistics of the subject programs| 59
[4.3 Number of test cases and O-MC/DC Coverage for TECSK and |

TECSCL. . . . 66
[4.4 Faults identified in the subject programs considered in our [

case study| 69
[4.5 'T'ECS comparison with search-based testingl 71
[4.6 Comparison between automatically (TECSK U TECsSC) and |

manually derived test suites| 73
[4.7 'TECS: execution time, number of paths and generated test cases| 75
[4.8 Data on the queries issued to the constraint solver|. 78

vil

Chapter 1

Introduction

Today, software is an essential and critical component of information tech-
nology’s all-encompassing impact. In particular, in this thesis, we focus
on safety-critical software, that is, software that must ensure highly reli-
able automation in areas like avionics, railways, automotive, industry 4.0,
and patient monitoring, where failures can have disastrous effects. Because
of these risks, the development process of safety-critical software typically
encompasses several quality-oriented requirements, driven by the goal of sat-
isfying the concerned certification authorities [I} 2]. Software testing is the
most extensively used method for hunting software bugs nowadays, a main
challenge being to generate sufficient test inputs. Indeed, when dealing with
large embedded system software, the activity of generating the test inputs
will often take a lot of time, and require an impractical amount of human
effort. Because of this, automating the process of generating test inputs has
been goal of many research efforts so far [3, 4, [[6, [7]. Moreover, in the
specific case of safety-critical software, automated test case generation can
also play a crucial role in achieving the testing objectives mandated by the
standards for safety-critical systems while keeping the associated costs under
control.

In this context, my research is focused on the development of an auto-
mated test generation tool for an industrially-relevant class of safety-critical
software, namely, safety-critical software developed in Scade. Scade is a syn-
chronous language designed for the development of embedded safety-critical
software. Using Scade fits a common tenet of many development processes
for safety-critical software, that is, to rely on programming languages that, by
their design choices and controlled semantics, may both decrease the chances
of introducing subtle faults in the programs and mitigate the hard work
required to satisfy the certification requirements [§]. Scade is a system mod-
elling language and a model-based development environment for embedded

software largely adopted in industryﬂ [9, [0} 1T, 12, [13], 14, 15] and certified
according to the CENELEC norms [2]. Scade allows specifying models with a
formalism based on finite state machines, that forbids constructs like dynamic
memory allocation, variable-length arrays, non-statically-in-bound accesses
to arrays, pointer arithmetic, recursion, and unbounded loops. Thanks to
these restrictions, Scade models can be automatically translated to equiva-
lent C programs that guarantee the certification standards [16, [I7] required
by ERA, the European Union Agency for RailwayP}

In particular, my research has been conducted in the context of a joint
research and development effort of Rete Ferroviaria Italiana (RFI, the public
company that manages the railway infrastructure in Italy) and the University
of Milano-Bicocca, aimed at developing an on-board signalling unit for high-
speed railway systems, compliant with the ERTMEﬂ standard specification.
This onboard unit is an embedded safety-critical component that shall handle
signals from several track-side devices, e.g., transponders deployed along the
railway and control units at the stations, and shall notify the driver or even
activate the braking devices of the train under some dangerous conditions.
With the aim of ensuring the highest degree of software integrity, RFT is
relying on the model-based Scade programming language for the development
of this safety-critical software.

Challenges of Automated Test Generation The mainstream test gen-
eration approaches are random testing, search-based testing, symbolic execu-
tion and bounded model checking. Random testing and search-based testing
randomly sample the input space of the target program, either in a purely
random fashion or guided by heuristics based on the improvement of a fitness
function that represents the extent to which the test cases fulfilled the test
objectives [18, 19, 20, 211 22]. Symbolic execution and bounded model check-
ing systematically explore the execution space of the program under test.
Symbolic execution computes the execution conditions of program paths as
sets of constraints over symbols that represent the possible program inputs,
and then solves these constraints to concrete test data with off-the-shelf con-
straints solvers [23], 24, 25 26l 27, 28, 29 30]. Bounded model checking

!Ansys, the company that commercializes Scade and the supporting SCADE Suite
model-based design environment, reports uses of Scade at Subaru for automotive ap-
plications, and for many other safety-critical, embedded applications, including, avionics
and flight control, autonomous vehicles and gas turbines. [www.ansys.com/products/
embedded-software/ansys-scade-suite|

“www .era.europa.eu

3https://www.era.europa.eu/domains/infrastructure/
european-rail-traffic-management-system—ertms_en

www.ansys.com/products/embedded-software/ansys-scade-suite
www.ansys.com/products/embedded-software/ansys-scade-suite
www.era.europa.eu
https://www.era.europa.eu/domains/infrastructure/european-rail-traffic-management-system-ertms_en
https://www.era.europa.eu/domains/infrastructure/european-rail-traffic-management-system-ertms_en

encodes the semantics of all execution paths (up to a bounded length) as a
boolean formula, and addresses a set of reachability properties of interest by
solving the formula in conjunction with the constraints that represent the
properties [31]. By encoding coverage objectives as a reachability property,
bounded model checking can be exploited to generate test cases.

In our research, we focus on symbolic execution and bounded model
checking. This choice is motivated by the importance of fulfilling the rel-
evant test objectives (e.g., the coverage targets required by the certification
standards) while testing safety-critical software. By exploring the program
paths systematically, symbolic execution and bounded model checking should
be in principle able to generate at least a test case for every reachable test ob-
jective, a goal that the random and search-based techniques cannot generally
guarantee. In fact, although the heuristics used in search-based testing are
mostly based on dynamic program analysis (which generally results in more
lightweight approaches than by using static analysis as in symbolic execution
and bounded model checking), nonetheless the strategies based on random
sampling notoriously have limited effectiveness when pursuing test objectives
that may depend on singular or quasi-singular inputs. In general, this hard-
to-randomly-hit test objectives there exist in the target programs, making
developers of safety-critical software often hesitant to accept the limitations
of search-based testing tout court.

While focusing on symbolic execution and bounded model checking, we
must face the major challenges that result from common limitations of these
techniques:

(i) Coping with the so-called path explosion problem: Since the number
of execution paths of a program grows exponentially with the amount
of decision logic in the program and is generally unbounded for pro-
grams that include recursive calls and loops governed with arbitrary
conditions, symbolic execution and bounded model checking seldom
succeed to analyze all execution paths in finite time. On the contrary,
the systematic exploration approach often engages symbolic execution
and bounded model checking in a very fine-grained analysis of some
specific parts of the program execution space, while leaving other parts
untested.

(ii) Suitably handling non-numeric inputs, i.e., pointers or references to dy-
namically allocated, possibly recursive data structures: For the analysis
to be precise, symbolic execution and bounded model checking shall
be able to discriminate the executions in which the references within
the input objects in the heap could be either assigned to null-values or

be an alias of each other, or yet correspond to distinct objects, respec-
tively [32]. This further exacerbates the computational requirements
for the analysis. The number of objects and object configurations to be
discriminated could even be unbounded for inputs defined as recursive
data structures.

(iii) Tolerating the limitations of SMT solvers in computing the solutions of
complex path constraints: Failing to solve the execution conditions of
a program path can depend on either the path being indeed infeasible,
i.e., not executable with any input, or the path constraints being too
hard for the current SMT solver to be decided within the allowed time
budget, or yet outside of the theories supported by the SMT solver.
In the latter cases, the solver is unable to either provide a solution or
prove that a solution does not exist. The inability of solving complex
path constraints can result in missed test cases, or waste large portions
of the test budget in the analysis of execution paths that depend on
unsatisfiable conditions that the constraint solver failed to pinpoint.

Our research hypothesis Our research is based on the main research
hypothesis that the above issues (hindering the practicality of symbolic ex-
ecution and bounded model checking) may hold for many general-purpose
programs, but they have reduced impact for a significant class of industrial
safety-critical systems, where symbolic execution and bounded model check-
ing can therefore work effectively. As we commented above, safety-critical
software often relies on programming languages or coding standards that
ban some linguistic features, based on the (empirically motivated) ground
that those features are common causes of subtle failures. For example, one
of the tenets of safety-critical software development is avoiding unbounded
consumption of time or space resources at runtime, to cope respectively with
divergence or crashes. For this reason, languages for safety-critical software
development like SAFERC [8] and Scadd] (used in the avionics and in the
railway domains, respectively), or coding standards like Misraﬂ (required in
the automotive industry) restrict what the programmers are allowed to do.
Relevant restrictions include: forbidding programmers from allocating mem-
ory dynamically, instead requiring all the memory to be allocated by local
or global variables with predictable size; statically bounding the maximum
number of iterations of loops; and avoiding recursion. Some consequences of
this regime are that in such applications the total number of execution paths

“https://www.ansys.com/it-it/products/embedded-software/
ansys—-scade-suite
®https://www.misra.org.uk/Publications/tabid/57/Default.aspx#label-dvg

4

https://www.ansys.com/it-it/products/embedded-software/ansys-scade-suite
https://www.ansys.com/it-it/products/embedded-software/ansys-scade-suite
https://www.misra.org.uk/Publications/tabid/57/Default.aspx#label-dvg

is finite, every execution path has a finite depth, and many programming
constructs that yield an explosion in the size of the execution state space are
not used.

Contributions To study the effectiveness of generating test cases with
symbolic execution and bounded model checking for Scade programs, we
first introduce a novel test generator for Scade programs. We refer to this
test generator as TECS (Test Engine for Critical software in Scade). TECS
renders a tools chain that (i) uses KcaG to render a Scade program as a C
program, (ii) exploits a mature, state-of-the-art symbolic executor for C and
a mature, state-of-the-art bounded model checker for C, in order to obtain
a suitable set of test inputs for the C program, and (iii) recasts the test
inputs as test scripts for the original Scade program under test. TECS is
specifically engineered with APIs that facilitate its integration with existing
test generators for the C program. The currently integrated test generators
are KLEE [33], which is based on symbolic execution, and CBMC [31], which
is based on bounded model checking. TECS makes several distinctive design
choices that explicitly exploit the programming constraints guaranteed for
programs in Scade.

Other than the relevance of the TECS prototype, our main contribution is
an industrial-scale case study on the practicality of symbolic execution and
bounded model checking, as embodied in our test generator TECS, to auto-
matically generate test cases for industrial safety-critical programs in Scade.
Our case study encompassed 37 Scade programs out of the implementation of
the on-board signalling unit for high-speed railway systems developed jointly
with RFI. The results of this thesis have been partially published at the In-
ternational Conference of Software Engineering [34] and in the Journal of
System and Software [35]. Our findings indicate that:

e Our approach enables test engineers to automatically synthesize test
cases that achieve high model coverage and can assist them to reveal
subtle program faults.

e We compared TECS with search-based testing by using the tool AFL [19],
a test generator that is very popular for security vulnerability testing
based on random and search-based input selection heuristics, as a pos-
sible replacement for the instantiation of our tool. The results clearly
indicate the weaknesses of the random selection approach, which missed
many test objectives that our approach allows for accomplishing.

e Yet, for some considered programs, we compared the test cases that
TECs produced with the ones that were already manually designed by

the developers. The comparison revealed the usefulness and effective-
ness of our test generator for Scade models.

Structure of the Dissertation : The thesis is divided into 5 Chapters,
and is organized as follows:

e Chapter [2| provides an overview of mainstream state-of-the-art ap-
proaches for automatic test generation and, in detail, two specific tech-
niques, KLEE and CBMC, that we define in this thesis.

e Chapter [3| discusses TECS our original approach for automatic test
generation for Scade programs.

e Chapter {] provides the main contribution of this thesis to evaluate
the effectiveness of our toolchain for automatic test generation with
a benchmark of 37 Scade programs developed as part of an onboard
signalling unit for high-speed railway systems.

e Finally, Chapter |5 presents the Conclusion and future work of my the-
sis.

Chapter 2

State-of-the-art

This chapter surveys the mainstream approaches to automatic test genera-
tion, i.e., as random testing, search-based testing, symbolic execution, and
bounded model checking. We survey the most relevant concepts and works
related to the contributions of this thesis. Finally, we go over the state-of-
the-art related to two specific techniques, one for symbolic execution (KLEE)
and the other for bounded model checking (CBMC), which are the ones used
for automatic test generation in the approach that we define in this thesis.

2.1 Automatic Test Generation

The idea behind automatic test generation is to generate software test cases
automatically and to validate the system under test with a set of test cases
that thoroughly exercise the functionality of the system being tested. It can
be used to quickly generate a large number of test cases, saving time and
effort compared to manually creating the same tests.

The first test generation technique was developed in the 1970s by re-
searchers at IBM’s Thomas J. Watson Research Center. They recognized
the need for a faster, more efficient way to generate software tests, and so
they searched for a way to automate the process. Over time, researchers have
expanded on the concept and improved upon it, making it more useful.

2.1.1 Random Testing

Random testing is a dynamic black-box software testing technique where the
inputs of the tests are generated randomly depending on the requirements,
specifications, or some test adequacy criteria [36]. The results of the executed
tests are compared with the software specifications to determine whether

the test passes or fails. In the absence of specifications, exceptions of the
programming language are employed to identify failures, that is, an exception
that occurs during the execution of a test indicates a bug of the program.
Notice however that this assumption can lead to false alarms, since there
can be many examples of useful scenarios in which an exception that occurs
during the execution of a test does not indicate bugs in the program.

Data generation is the most important phase of random testing and is
aimed to produce the test data set based on the input domain, without
regard to any test adequacy requirements. Uniform distribution and oper-
ational profile are the two most often employed strategies. With a uniform
distribution, the probability of selection for each input is equal. This ensures
that the test suite is unbiased and represents all possible scenarios. An op-
erational profile is a set of conditions used to define how inputs and outputs
should interact during testing. It involves defining the number of times an
operation should be executed and what the expected output of the operation
should be.

A generic random testing process can be summarized as a four-step pro-
cedure:

(i) Identification of the input domain.

)
(ii) Selection of test inputs based on the input domain.
(iii) The SUT is executed on these test inputs.

)

(iv) The results are compared to the system specifications. If any input
leads to incorrect results, the test fails; otherwise, it passes.

Step (ii) is the point where different testing techniques usually differ: random
testing allows us to generate a large number of test suites automatically in
a random fashion. It may be performed according to an operational profile,
where there are conditions typically involving boundary values, data ranges,
and functional specifications guiding the generation of random test inputs.
This approach may save some time and effort compared to more deliberate
input selection approaches.

Techniques for generating random test data are applicable to all projects.
If the input domain is evenly structured, random automated test generation
can be used to execute many more test cases than with a manual genera-
tion, and we can obtain unexpectedly good results by employing the proper
approach. However, if a fault is only revealed by a small portion of the pro-
gram’s input, random testing will generally fail to hit it. Considering the
code in Figure , it is clear that the probability of the first statement (line

O 3O Ul Wi

typedef enum { false , true } boolean;
boolean test (int x, int y) {

if (x ==1y)
return true;
else

return false;
}
int main(){
boolean result ;
int a = rand (); //some random wvalue
int b = rand(); //some random wvalue
result = test(a,b)
return 0;

Figure 2.1: Warm-up C code for random testing

4) being executed is substantially smaller than that of the second statement
(line 6). As the complexity of the structure increases, the chance of exe-
cution decreases proportionally. Some well-known approaches (and tools)
at the state-of-the-art adopting a random testing approach are QuickCheck
[37), Randoopf] [20] and Yeti-TESTP] [38].

Literature survey Random testing was first mentioned in the literature
in 1970 by Hanford, who described a tool that generates random data
for testing PL/I compilers [39]. Later in 1979, Glenford J. Myers men-
tioned random testing in his first edition of “The Art of Software Testing”
[40]. Bird and Munoz presented a technique for randomly generating self-
checking test cases in 1983 [41]. In [42] Richard mentioned that using a ran-
dom number generator the test data is generated randomly from the specified
input domain.

Recently, the effectiveness of random testing has been often debated.
For example, random testing was mentioned by Myers as one of the least
effective testing procedures [43]. However, Ciupa et al. [44] stated that
Myers’s statement is not based on any experimental evidence and, later on,
other experiments [45], [42] stated that random testing is an effective testing

"https://randoop.github.io/randoop/
Zhttps://github.com/yui/yeti

https://randoop.github.io/randoop/
https://github.com/yui/yeti

technique. It is reported [40] that, if a large number of test cases randomly
generated are exploited, it may be possible to find subtle faults in a SUT.

Another criticism is that random testing generates test data without
knowledge of which program states get executed, and thus it may end up
with generating numerous test cases with identical program states. It is
also argued that random testing may often happen to generate many test
inputs that violate the provided SUT’s preconditions, thereby reducing its
effectiveness [47].

With respect to other techniques, it can be observed that the simplicity
and relatively low cost of random testing make it more practical to generate
a large number of test cases than systematic testing techniques, which may
take significant time and resources to generate test cases [48]. However,
empirical comparisons show that partition testing and random testing are
not necessarily equally effective, because random testing may easily miss test
points in some subdomains, resulting in low coverage [49]. Nonetheless, the
analysis that Ntafos conducted on several comparisons found that random
testing is a good complementary strategy to use, especially in the latest
testing phases whereas partition testing may face cost-effectiveness issues
[50).

Random testing has also been used for vulnerability testing. For instance,
Miller et al. used a random testing approach to generate random ASCII
character streams to check abnormal terminations and non-terminating be-
haviours in Unix utilities, showing that it helped find security holes in the
Unix operating system [51]. Subsequently, their technique was extended,
for example, to generate random keystrokes, mouse movements and mouse
button clicks, to discover errors in the applications running on X Windows,
Windows NT and Mac OS X [52, 53].

2.1.2 Search-Based Testing

Search-based software testing (SBST') grounds on heuristics and optimization
techniques (e.g., Genetic Algorithms) to build effective tests. Technically,
search-based testing generates test data by pursuing the optimization of a
fitness function that represents the satisfaction of a set of test objectives that
comprise a test adequacy criterion, in order to maximise code coverage of the
software under test with respect to that adequacy criterion [54]. Thus, the
purpose of the fitness function is to identify the test objectives that, when
met, contribute to the intended test adequacy criterion. The search algo-
rithm finds test inputs that optimize the achievement of this test objective,
by using the fitness function as a guide. Different fitness functions can be de-
fined to capture various test objectives, allowing the same basic search-based

10

optimization strategy to be applied to a wide variety of test data generation
scenarios.

Once the fitness function is defined, it can be exploited with different
types of optimization algorithms, such as the Hill Climbing method or Ge-
netic Algorithms.

Hill Climbing begins its search at a random location. The present point’s
neighbours in the search space are examined for fitness. If a better candidate
solution is discovered, Hill Climbing relocates to the new location and exam-
ines the neighbourhood surrounding the candidate solution. This procedure
is repeated until there are no better candidate solutions in the neighbour-
hood of the present location in the search space, a so-called “local optimum”.
If the local optimum is not the global optimum, it may be advantageous to
“restart” the search and execute a climb from a different initial position in
the fitness landscape.

Genetic Algorithms are inspired to the Darwinian evolution concept of
“survival of the fittest”. Each candidate solution within the search space
under consideration is referred to as an “individual”. The current group
of individuals under consideration is referred to collectively as the “popu-
lation”. The initial population is formed at random, and each individual’s
fitness is assessed. A process that favours the best individuals determines
which individuals will serve as crossover parents. During crossover, compo-
nents of each individual are recombined to produce two offspring that share
characteristics with their parents. In the “reinsertion” phase, the next pop-
ulation generation is selected, and the new individuals’ fitness is assessed.
This cycle repeats until the Genetic Algorithm finds a solution (according to
the fitness function at hand) or the search resources are exhausted (e.g., a
time restriction or a particular number of fitness evaluations).

Summarizing, the main two requirements that need to be fulfilled in order
to apply a search-based optimization technique are the Representation and
Fitness functions. Representation means that the candidate solutions for
the problem at hand should be capable of being captured so they can be
handled by the search algorithm. The fitness function is then responsible for
evaluating the quality of a given solution, in order to assess whether a current
solution is an optimal solution according to certain criteria, or how far it is
from being optimal. By evaluating candidate solutions, the fitness function
steers the search to promising areas of the search space. Problem-specific
fitness functions must be defined for each new problem.

For instance, consider in Figure [2.2) a C code with a function called SUT
with two integer parameters. In a search-based test data generation tech-
nique using Hill climbing, we can start with a random candidate solution
represented as random values for the inputs, e.g., x= 1, y= 10, and then

11

N O Ul W N

typedef enum { false , true } boolean;
boolean SUT(int x, int y) {

if (x==2x1y)
return true;
else

return false;

Figure 2.2: Warm-up C code for search-based testing

explore the neighbourhood candidates, i.e.,
x=x+1l,z+2,x+3,z—3,z—2,x—1...

y=y+Ly+2,y+3,y—3,y—2,y—1..

by evaluating their fitness. A possible fitness function could address branch
testing, by defining the objectives of covering the branch at line 4 (when the
values of x and y are such that x == 2 %y, i.e., when they are solutions of
the equation x — 2%y == 0) and the branch at line 6 (when the values of
x and y are the solution of the inequality — 2 % y # 0). For example, the
fitness function based on the formula of the first branch (z—2xy == 0) would
evaluate that the initial solution z= 1, y= 10 is sub-optimal (x —2xy = —19,
where —19 can rate the amount of sub-optimality, i.e., it is sub-optimal with
score —19) and would help choose the best neighbour, until reaching an
optimum value z= 5, y= 10.

Literature survey Search-Based Software Testing was introduced by
Webb Miller and David Spooner [55] in 1976. Their approach was a sim-
ple technique for generating test data consisting of floating-point inputs and
was a completely different approach to the test data generation techniques
being developed at the time, which were based on symbolic execution and
constraint solving. In Miller and Spooner’s approach, test data were sought
by executing a version of the software under test, with these executions be-
ing guided toward the required test data through the use of a ‘cost function’
(what we referred to as a fitness function), coupled with a simple optimiza-
tion process. Inputs that were ‘closer’ to executing a desired path through
the program were rewarded with lower cost values, whilst inputs with higher
cost values were discarded. Miller and Spooner did not continue their work in
test data generation, and it was not until 1990 that their research directions
were continued by Korel [56, [57].

12

In 1992, Xanthakis applied Genetic Algorithms to the testing problem.
Since then there has been an explosion of work, applying meta-heuristics
more widely than just test data generation. Search-based optimization has
been used as an enabler to a plethora of testing problems, including functional
testing [58, [59], temporal testing [60, [61], integration testing [62], regression
testing [63], structural testing [64], stress testing [65], mutation testing [66],
test prioritisation [67], state machine testing [68] and exception testing [69].
Search-based approaches have also been applied to problems in the wider
area of software engineering, leading Harman and Jones to coin the phrase
‘Search-Based Software Engineering’ [70] in 2001. The term ‘Search-Based
Software Testing” began to be used to refer to a software testing approach
that used a metaheuristic algorithm, with the amount of work in Search-
Based Test Data Generation alone reaching a level that led to a survey of
the field by McMinn in 2004 [71].

2.1.3 Bounded Model Checking

Bounded Model Checking (BMC) is an efficient technique for program anal-
ysis. It reduces the program analysis problem to a boolean satisfiabil-
ity (SAT) or satisfiability Modulo Theory (SMT) problem. It is designed for
the formal verification of finite state transition systems. The program states
and the transition function defined by the statements in the program, as well
as the properties to be verified for the program, represented with Boolean
formulas, and conjunctive joined to represent the verification problem at
hand: the (joined) Boolean formula is true, if and only if the underlying
state transition system can make a finite sequence of state transitions that
leads to certain interesting states. The transformation of the program to a
Boolean formula operates on the source code directly, or on an Intermediate
Representation(IR) produced with a compiler, and is usually very accurate,
taking into account the semantics of the programming language, the memory
manipulations, how machines do arithmetic, and so forth.

The basic idea is to turn the verification problem into a propositional for-
mula that is satisfiable if and only if there exists some counterexample of the
property being verified, usually considering counterexamples of a maximum
length k, hence the name bound model checking [72].

Consider Figure [2.3| showing a C code to illustrate the use of bounded
model checking. Here we will use a model-checking tool called the C Bounded
Model Checker (CBMC) to verify the C code safety properties within fixed
execution depth and generate test cases for the code. For the verifica-
tion, the entry point resides in the main function on the C code. The
__CPOVER_input() function is used to provide the symbolic values for the

13

int main(int m,int n) {

X = n;
__CPROVER_input (”n” ;n);
__CPROVER_input ("m” ;m);
__CPROVER_assume(n >= 1 && n <= 100);
__.CPROVER_assume (m >= 1 && m <= 100);
while (0 <=m & m < n){

x =x — 1;

m=m + 1;

__.CPROVER._assert (0 <= x, "err”);

Figure 2.3: Warm-up C code for bounded model checking

variables. The __CPROVER_assume() function holds the Boolean condition
argument, and calls to this function that do not satisfy the condition are
discarded from the analysis. The __CPROVER_assert() function is a user-
defined specification supported by CBMC for code verification. When the
model checker is invoked, -_CPROVER_assert() will attempt to verify that
the condition given as the first argument holds on a path up to a specified
bound. The second argument is a diagnostic string that will be reported in
the results if it finds a counter-example for the assertion.

In this example, we use the command cbmc bmc_code.c —unwind 3 on
the command line, telling CBMC to unroll the loop at most three times. The
result says that CBMC instantiated the SAT problem as a formula over 1214
boolean variables and 4372 clauses, and found it to be unsatisfiable This
resulted in the message “verification successful” for the assertion at line 12,
which is the property we wish to check. If there would be a counterexample
for this property, we could pass the command line argument —trace to see
an execution trace that leads the program to violate the property.

The tool can be used to generate test cases according to a test criterion, by
using the non-reachability of the criterion’s test objectives as the verification
properties. Thus, if there is a counterexample, it is a test case that executes
the test objectives. For example, by adding the command — cover mcdc, the
tool is able to generate test cases that satisfy the MC/DC test criterion for
the C code in Figure As a result, CBMC generated two test cases for the
Figure , namely, T1 (n = 3, m = 8) which skips the while, and T2 (n =
4 and m = 3) which enters the while.

14

Literature survey Model Checking was introduced by Clarke and Emer-
son in 1981 [73]. It can be used when the design to be verified is modelled
as a finite state machine, and the specification is formalised by writing down
temporal logic properties. The design’s reachable states are then traversed to
verify the properties, and if a property fails, a counterexample in the form of
a sequence of states that lead to violating the property is generated [74]. The
initial model-checking algorithm directly enumerated the reachable states in
the system, in order to validate the given properties [75]. However, this
method can be burdensome, since the number of states can increase expo-
nentially with the number of variables in the model. In order to overcome this
situation, Burch et al. introduced the symbolic model checking technique in
1992 [76), [71].

In symbolic model checking, sets of states are implicitly represented by
Boolean functions and reduce the complexity. With Reduced Ordered Binary
Decision Diagrams [7§] (ROBDD, or BDD for short), it was possible to ma-
nipulate the boolean formulas effectively and pushed the barrier to systems
with 1020 states and more [76]. The memory requirement for storing and
processing BDDs was the limiting factor for these solutions due to a large
number of the required boolean function representations. Then, Biere et al.
introduced the next version called Bounded Model Checking (BMC) in 1999
[72] to handle this.

The main advantages of BMC are: (i) due to the depth-first nature of
the SAT search procedure is very fast to find counterexamples; (ii) it is
able to find counterexamples of minimal length, which leads the user to
understand counterexamples easily; (iii) it required less space than a BDD
(Binary Decision Diagrams) based approach; and finally, (iv) it does not need
a manually selected variable order or time-consuming dynamic reordering due
to default splitting heuristics [72].

BMC was originally based on a SAT solver, which can handle proposi-
tional satisfiability problems with many variables [74]. Nowadays, there are
many formal verification researches and developments happening in the area
due to the high relevance of modern model-checking approaches. Some ma-
jor tools from academia are SMACKP| and ESBM(, from industrial research
there are CorralP| and F- SOFT [79], and for the industry are CBM(f| and
QPR [80].

SMACK [81] is a modular software verification toolchain as well as a ver-
ifier used to verify the assertions in the programs. Assertions are tested up

3https://smackers.github.io/
‘http://www.esbmc.org/
Shttps://github.com/boogie-org/corral
Shttps://www.cprover.org/cbmc/

15

https://smackers.github.io/
http://www.esbmc.org/
https://github.com/boogie-org/corral
https://www.cprover.org/cbmc/

to a given bound on loop iterations and recursion depth in its default mode;
it also has experimental support for unbounded verification. SMACK is a
translator from the popular intermediate representation (IR) of the LLVM
[82] compiler into the Boogie intermediate verification language (IVL) [83].
Sourcing LLVM IR exploits an increasing number of compiler front-ends, op-
timizations, and analyses. Targeting Boogie takes use of a standard platform
that facilitates the construction of algorithms for verification, model check-
ing, and abstract interpretation due to Boogie’s minimal syntax and its easily
translation into the SMT format of automated theorem provers [84]. Due to
the use of modelling dynamically-allocated memory for generating quanti-
fied invariants over unbounded maps, SMACK is suitable for fully automatic
unbounded verification methods (e.g., based on computing fixed points) and
may require a powerful reasoning engine; whether such applications are fea-
sible remains to be seen [§1].

ESBMC is a context-bounded model checker based on SMT [84] for
C/C++ programs. It can provide APIs for C and Python languages to access
internal data structures and allows inspection and verification processes. It
can verify user-defined assertions and program safety properties. The main
features of ESBMC are (i) the clang front-end, (ii) the floating-point back-
end and (iii) the k-induction proof rule [85].

Corral is an SMT-based verifier inside the Microsoft Static Driver Verifier
(SDV) [86], accepting programs in Boogie. It can provide information when
it hit a user-supplied bound on the number of loop iterations along with ‘bug
found” and ‘verified’ [87].

F-SOFT is a verification tool for the C programs analysis which is a com-
bination of SAT-based verification, static analysis and predicate abstraction.
It translates the C program into the Boolean model represented by the con-
trol flow graph (CFG) of the program and is to be analyzed by the DiVer
verification engine [88], which includes BDD-based model checking and SAT-
based model checking [79).

CBMC is a bit-precise bounded model-checking implementation for C pro-
grams into a formula and if satisfied (satisfiability decided using MiniSat 2.2.0
[89]), it executes the programs under a specified loop unwinding bound, and
checks the absence of violated claims and memory safety properties. Its abil-
ity to detect counterexamples for relevant program faults has been empirically
demonstrated on many programs and fault of different types [31].

QPR Verify is an extensive version of the bounded model checking ap-
proach implemented in the tool LLBM(fL It is intended to verify industrial
embedded software written in C/C++ language and emphasise runtime er-

"https://1lbmc.org/

16

https://llbmc.org/

rors. Main features support both functional and usability checks, such as
providing code traces for each runtime error, improved efficiency and scala-
bility and GUI customization [80].

2.1.4 Symbolic Execution

Symbolic Execution [23, 24, 25, 26 27, 28 29| 30] is a program analyzing
technique introduced in the mid-70s to test and analyze software code with
certain properties that might be violated. In a concrete execution, a program
is executed with a concrete input, and a single control flow path is explored.
As a result, in most cases, concrete executions can only be analysed through
limited paths. However, the ultimate goal of code analysis is to inspect each
space of program inputs and understand how they behave. In contrast, sym-
bolic execution can simultaneously explore multiple paths that the program
could take under different inputs. As a result, this analysis can yield strong
guarantees on the checked property.

The core idea behind symbolic execution is to execute the program with
symbolic inputs (symbols that indicate arbitrary values) rather than concrete
inputs. Whenever the system finds a new branch point, it will generate a new
path condition that satisfies a set of constraints. As a result, every possible
path is analyzed and explored. During the analysis, symbolic execution ex-
plores the execution space in the form of a tree, with each node representing
a branch in the program.

A symbolic execution engine is responsible for carrying out the opera-
tions. It keeps two elements for each explored path: (i) a first-order boolean
formula that describes the execute-ability condition of the branches taken
along that path, and (ii) a symbolic memory store that associates variables
with symbolic expressions or values. Each branch execution updates the
formulas and symbolic store. The constraint is typically based on a Satisfi-
ability Modulo Theories (SMT) solver, which is used to determine whether
any property is violated in each explored path.

Consider the C code in Figure [2.4] where x, and y are user inputs, and we
would like to test whether the fault represented as the assert false statement
at line 8 could happen. A test entails concretely executing a program with
two specific inputs and verifying the results. Symbolic execution considers
how the program executes abstractly on a set of related inputs.

The state is fully characterized by three variables (x, y and z). If we
run this C code with user inputs (consider as concrete input) x, y with 2, 2
respectively, the branch condition x > y (line 3) becomes false and z = 2.
This causes the branch condition z < x (line 8) to fail, and thus the assertion
is not executed. Let’s re-consider: x = 2 and y = 1. Now, branch condition

17

1
1

1
2
3
4
)
6
7
8
9
0
1

void foo(int x, int y){

int z = 0;
if(x > y){
telse(

Z =Y,
}
if(z < x){

assert false;

}
}

Figure 2.4: Warm-up C code for symbolic execution

x >y (line 3) is true, and z = 2. Still, the branch condition z < x (line 8)
fails, leading to not executing the assertion. And so forth for other concrete
inputs.

Here, instead of executing the C code with concrete input values (like
x = 2, y = 1), symbolic execution can evaluate with symbolic input values
(like x = a, y = 3), and track execution paths with these symbolic inputs. If
branch conditions are dependent on unknown symbolic values, the symbolic
execution engine selects one of the paths to drive and records the condition on
the symbolic values that would lead to that particular path. After completing
that execution path, the symbolic execution engine will go back to the branch
condition and explore other possible paths throughout the program.

To get a better idea of how symbolic analysis works, consider the abstract
execution path in the previous C code (Figure . Initially the variables
values are x = «, y = and z = 0. After considering the first branch
condition, i.e., x > y (line 3), the symbolic value of z is (o« >) — « or («
< B) — B, according to the two possible path conditions, which are o >
g and a < f. In next branch condition z < x (line 8), which checks z< «.
The previous condition states that the value of z either be equal to o (and
the check a < « will always fail) or § (but the check 5 < « depends on the
path condition o < § and cannot thus be satisfied for any input). These two
constraints demonstrate that the program will never reach the assert false
statement.

Generalized Symbolic Execution (GSE)[90] enhances conventional sym-
bolic execution by allowing it to handle programs with pointers and recursive
data structures as inputs. GSE uses lazy initialization to handle inputs with
a recursive data structure. GSE begins the execution method with uninitial-

18

1
2
3

void examplel (int x, int y){
if (x == hash(y)) abort()
}

. //error()!

Figure 2.5: C code for examplel

ized variables, then non-deterministically initializes fields when they are first
accessed during the method’s symbolic execution.

Dynamic Symbolic Execution (DSE) or Dynamic test generation [91] for
automation test generation consists of instrumenting and running a program
while collecting execution path constraints on inputs from predicates encoun-
tered in branch instructions executed in the current execution path. Then,
it derives new inputs using an SMT solver to steer subsequent executions
towards new program execution paths. Because of its two inherent qualities,
DSE has become an interesting technique in software engineering research.
Firstly provided sufficient runtime information, DSE does not suffer from
substantial false positives. DSE tools generate alarms only when software
exceptions occur during runtime. Secondly, each new input generated by the
SMT solver may result in a new execution path.

Before DSE, static technique approaches and black-box fuzzing (i.e., ran-
dom testing) were conventionally used in many security tools, e.g., coverity
[92], appScan [93], weblnspect [94]. Now, DSE is a popular research area.
The rationale for this is that DSE is far more accurate than static analysis
and has higher code coverage than black-box fuzzing.

The example shown in Figure 2.5]is a function hash invoking an external
function that might be a complex arithmetic function. As a result, it is often
impossible to create input values to trigger the error statement in line 2. This
is a very common example due to complex statements in the program code
like arithmetic computations, pointer operations and calls to library functions
or operating systems. The runtime information of the program P can be
used to solve the problems brought by external calls and complex arithmetic
functions. With the reference of the example in Figure 2.5 typically we
cannot generate the inputs values for z and y to trigger the statement in
line 2 in the first run. Dynamic execution collects the calculation of hash(y)
and sets = the same as hash(y), to reach the statement line 2 and trigger the
abort() error.

Literature survey Many research efforts investigated test case generation
using dynamic symbolic execution like, Directed Automated Random Test-

19

ing (DART) [91], Execution Generated Executions(EGT/EXE) [95], 96] or
Concolic Testing (CUTE) [97]. They showed that this technique of imple-
mentation helps automatic test generation in various ways. In particular, it
improves scalability with respect to the exponential number of path condi-
tions that must be dealt with in the programs. Different approaches were
studied to further overcome this problem by employing heuristics to path
exploration [96] 26], interweaving symbolic execution with random testing
[98], caching function summaries for later use by higher-level functions [99],
or eliminating redundant paths by analyzing the values read and written by
the program [100].

We survey the most notable test generation approaches (and tools) based
on dynamic symbolic execution below.

CUTE (Concolic Unit Testing Engine) [97] was developed at the Univer-
sity of Illinois at Urbana-Champaign for C programs, extending DART to
support multi-threaded application programs that use pointer operations to
manage dynamic data structures. CUTE avoids pointer analysis imprecision
by representing and solving pointer constraints roughly. Note that concolic
execution is a synonym for dynamic symbolic execution.

CREST [I01] is an open-source tool for C program concolic testing.
CREST is an extendable framework for developing and experimenting with
heuristics for selecting paths to test the programs which have many execution
pathsﬂ CREST has been used by numerous research organizations since it
was published as an open-source program in 2008. For example, CREST has
been used for building tools for augmenting existing test suites to test the
updated code [102] and for identifying SQL injection vulnerabilities [103].
Also, CREST was modified to run on a cluster for testing a flash storage
platform[I04] and used to experiment with more sophisticated concolic test-
ing heuristics[105].

Pex [28] implements Dynamic Symbolic Execution to generate test inputs
for .NET code and also supports C+#, VisualBasic, and F#. Pex computes
models or generates test inputs for a satisfiable constraint system using SMT
solver Z3 [106]. It uses approximations for theories for which Z3 has no
precise decision procedures, e.g. for string [107] and floating point arithmetic
[108]. Pex combines many searching strategies which select the order in
which different execution paths are attempted, to achieve high code coverage
quickly [109]. In addition to the test case generation capabilities, it comes
with a mock and stub framework, which makes it easy to write and reuse
models for .NET libraries [I10]. Pex enables Parameterized Unit Testing
[I11], an extension of traditional unit testing. This tool is available as a

8 Available at http://code.google.com/p/crest

20

http://code.google.com/p/crest

Visual Studio 2010 Power Toolfl

EXE [96]is a symbolic execution tool for C developed comprehensively
for testing complex software, with a focus on systems code. EXE models
memory with bit-level accuracy to handle the complexity of system code. The
integration of low-level optimizations in the STP constraint solver [96], 112]
leads EXE to quickly solve many constraints. As a result, EXE was able
to generate high-coverage test suites automatically, and find out security
vulnerabilities and deep bugs in complex code, including file systems, packet
filters, device drivers and network servers and tools [96] [100], 05, [1T3].

KLEE [25] is a redesigned version of EXE, built on top of the LLVM
[82] compiler framework. Similar to EXE, it executes codes in a mixed
concrete/symbolic manner, models memory with bit-level accuracy, various
constraint-solving optimizations, and uses search heuristics to achieve high
code coverage. By utilizing state sharing at the object-level, rather than at
the page-level as in EXE, KLEE is able to store a significantly higher number
of concurrent states than EXE. Also, KLEE is able to handle external interac-
tion — e.g., offering models designed to explore all possible legal interactions
with the outside environment. KLEE has been open-sourced in June 2009/
Since then, numerous users from the academic community and the industry
have used it. These users have built upon KLEE in a variety of areas, ranging
from wireless sensor networks [114], to automated debugging [I15], reverse
engineering and testing of binary device drivers [116] [117], exploit generation
[118], online gaming [I19], and schedule memorization in multi-threaded code
[120].

Automated Whitebox Fuzzing (SAGE)[26] is used for security testing and
expands the wide scope of systematical dynamic test generation from unit
testing to whole-application testing. Whitebox fuzzing was first implemented
in SAGE [26] and then has been adopted in tools like CatchCony'"| and
Fuzzgrind Whitebox fuzzers have found many new security vulnerabilities
(buffer overflows) in Windows [26] and Linux applications [I121]. Notably,
SAGE found many bugs during the development of Microsoft’s Windows
7, which saved millions of money by avoiding extra expenses for security
patches. Since 2008, SAGE has been continuously fuzzing hundreds of ap-
plications in their security labs.

Yhttp://msdn.microsoft.com/en-us/vstudio/bb980963.aspx
0K LEE is available at http://klee.1llvm.org.
Hhttp: //www.sf.net/projects/catchconv
2https://github.com/dpc-grindland /Fuzzgrind

21

http://msdn.microsoft.com/en-us/vstudio/bb980963.aspx
http://klee.llvm.org.

2.2 KLEE a Symbolic Execution Engine

In this section, we introduce the symbolic execution tool KLEE in further de-
tail, as it is a tool that we used for the research work presented in this thesis.
In fact, as already motivated in the Chapter[I] our research on the suitability
of automated test generation for safety-critical programs in Scade focused on
symbolic execution and bounded model checking. In particular, while elabo-
rating our proposal, we exploited the fact that the Scade compiler translates
the programs to CF_EL and thus we could reuse leading-edge test generators
for C, as the technological ground to build our prototype. As for symbolic
execution, we relied on KLEE. As we commented above, KLEE is one of
the most relevant symbolic execution tools at the state-of-the-art, and it ad-
dresses programs in C. KLEE belongs to the category of Dynamic Symbolic
Execution (DSE) tools, which combine concrete and symbolic executions.

2.2.1 Overview

KLEE is a symbolic execution tool built on top of the LLVM platform [82]. Tt
executes LLVM bit-code and primarily targets programs written in C com-
plied with the CLANG compiler.

Executing KLEE on programs requires marking which inputs will be dealt
with symbolically. Consider an Integer variable a: to provide symbolic value
for the memory location, the program code must include a function call:
klee_make_symbolic(&a, sizeof(a),“a”) which notifies to KLEE the size of a
and its memory position, which will be later analysed symbolically.

KLEE solves the path conditions with the STP constraint solvell”] With
respect to its predecessor EXE [06], KLEE optimizes the queries to the con-
straint solver more aggressively by logic simplifications [122]. Also, to miti-
gate the cost of constraint solving, the tool attempts to prevent calls to the
STP, by reusing previously cached results.

Warm-up example for KLEE

Consider C program in Figure that aims to find out if the given
input is 10 or more than 10. To execute the program with KLEE, first,

the symbolic inputs are marked in the code and the program is compiled
into LLVM bitcode. Next, the file is executed by KLEE. Symbolic files and

13 As the most systems to build embedded programs, Scade exploits on cross-compilation:
It first translates the programs to C, and then relies on a C compiler to generate the binary
code for the target platform.

Mhttps://stp.github.io/

22

O O Ul Wi

#include <klee/klee.h>
int isTenOrMore(int x){

if(x == 10)
return 1;
if (x > 10)
return 0;
else
return —1;
}

int main(){
int a;

klee_make_symbolic(&a,sizeof(a),”a”);
return isTenOrMore(a);

}

Figure 2.6: Warm-up C code for KLEE

symbolic arguments can be introduced from the environment and different
options can be used to control some aspects of the execution as well as the

different outputs.

Table 2.1: Test suite generated by KLEE for C program Figure 2.6

test case | variable value
1 a 10
2 a 0
3 a 16777216

Figure shows the details of KLEE execution for the C program. KLEE
executed 31 instructions and generated 3 test cases, which satisfied all the
path conditions in the C program. Table shows the tabular represen-
tation of test data generated by KLEE for the warm-up C code Figure [2.6

KLEE output files

KLEE generates the following files as default:

(i) info: General information about the execution such as total completed
paths, the total number of instructions explored, the number of gener-
ated tests or the execution line among others.

23

Uk W N+~

KLEE: output directory is ”/home/klee—out—0”
KLEE: done: total instructions = 31

KLEE: done: completed paths = 3

KLEE: done: partially completed paths = 0
KLEE: done: generated tests = 3

(i)

(vi)

(vii)

(i)

Figure 2.7: KLEE outputs details

testN.ktest: This file contains the data of the symbolic variables, in-
cluding the arguments used in the execution of KLEE, the number of
objects that have been made symbolic, and for each one the name as-
sociated with the symbolic memory, the size and that data obtained by
KLEE.

test N.type.ktest: A file related to the ktest ordinary file is produced
to show the kind of error that has been found. The type is specified
depending on the kind of error.

messages.txt: This file provides information about execution issues,
such as the notification of external calls.

warnings.txt: Notification of errors and other warnings are shown in
this file.

run.istats: Statistics about the execution of each line are included in
this file and can be visualised via KCachegrind.

run.stast: Statistics about the execution are saved in this file. The
information can be visualised with the tool Klee-stats. The information
that will be displayed is the time spent in producing the test suite, the
branch coverage and the percentage of LLVM instructions that were
covered in the execution.

The following tools that allow carrying out a complete analysis are integrated
into KLEE:

Ktest — tool: This tool is used to visualize the test resulting from the
execution of KLEE. It will visualize the files with the extension “.ktest”
which contains the generated values. Figure|2.8|shows the visualization
for the 3 test cases generated by KLEE for the C program in Figure 2.6
This tool allows visualising the 4-byte data as integer representation
but it cannot differentiate the components of a structure displaying the
data as a buffer.

24

(i)

(iii)

ktest — replay: This tool is used to reproduce test cases generated by
KLEE.

klee — stats: This utility is used to display the statistical information
that KLEE is able to provide, as it was mentioned before. The most
significant information is: the number of executed instructions, total
wall time (s), total user time, instruction coverage in the LLVM bit-
code (%), branch coverage in the LLVM bitcode (%), time spent in
the constraint solver among others. All the options and details of the
information can be consulted by the help option in the command line.

2.2.2 Key Features and Properties

(1)

Bit-level correctness: KLEE uses bit-vectors to represent program vari-
ables which model integer operations with bit-level accuracy (overflow,
bitwise operations)

Compact state representation: Execution states are cloned with per-
object shared ownership when possible. Concrete objects are stored
with minimal memory overhead.

Execution-Generated Testing: KLEE implements the Execution Gener-
ation Testing technique, which makes it possible to call external func-
tions that are outside of the executor’s control.

Solver optimization: The constraint solver is wrapped in multiple layers
that perform caching, simplifications and other optimizations of the
formulas.

Expression Language

KLEE is able to represent SM'T formulas with its own language called KQuery
and it logs solver queries . KLEE also has a standalone tool called KLEAVER
that will evaluate the KQuery queries. The in-memory representation is a
tree structure defined in the EXPR module. The Expression language is
closely related to the SMT-LIB format and can be translated into it.

Low-Level Virtual Machine (LLVM)

LLVM [82] is a compiler development framework. LLVM is a collection of
compilers and toolchain technologies that are designed to be modular and

25

$ ktest—tool klee—last/test000001.ktest
ktest file : ’klee—last/test000001.ktest’
args : [’isTenOrMore . bec |

num objects: 1
object 0: name: ’a

)

object 0: size: 4

object 0: data: b’\x00\x00\x00\x00’
object 0: hex : 0x0a000000

object 0: int : 10

object 0: uint: 10

object 0: text: .
$ ktest—tool klee—last/test000002.ktest
ktest file : ’klee—last/test000002.ktest’
args : [’isTenOrMore. bc |

num objects: 1
object 0: name: ’a

)

object 0: size: 4

object 0: data: b’\x00\x00\x00\x00"’
object 0: hex : 0x00000000

object 0: int : 0

object 0: uint: 0

object 0: text:
$ ktest—tool klee—last/test000003.ktest
ktest file : ’'klee—last/test000003.ktest’
args : [’isTenOrMore. bc |

num objects: 1

object 0: name: ’a’

object 0: size: 4

object 0: data: b’\x00\x00\x00\x01"’
object 0: hex : 0x00000001

object 0: int : 16777216

object 0: uint: 16777216

object 0: text:

Figure 2.8: Ktest-tool format for test cases result

reusable features. It can be used to optimise compilation time for any pro-
gramming language that the user wants to define. The successful results ob-
tained have generated a variety of front-ends, including C and C++. Nowa-
days, many projects build-on LLVM. Among all projects, KLEE comprises

26

a symbolic virtual machine built on top of the LLVM compiler for GNU C.
A C-code program is compiled into LLVM bitcode before is interpreted by
KLEE. Specifically, it is used the llvm-gce /llvm-clang that corresponds to
the LLVM front-end [82].

2.3 CBMC (“C Bounded Model Checking”)

As for the bounded model checking of the C versions of the Scade programs,
the research work presented in this thesis relied on CBMC. Thus, in this
section, we introduce the bounded model checking tool CBMC in further
detail.

Csmc [31] is a very well-known and widely adopted formal verification
tool for C and C++ programs exploiting Bounded Model Checking. It is
compatible with C8J"] C99' most of C11[7] and most of the compiler ex-
tensions provided by GCCEg] and Visual Studiﬂ. It is also compatible with
System(f_al with Scoot. It supports array bounds verification (buffer over-
flows), user-specified assertions, exceptions and pointer safety. Furthermore,
it can also verify C and C++ for consistency with other languages like Ver-
ilog?!] The verification is achieved by unwinding the loops in the program
and passing the resulting equation to a decision procedure.

2.3.1 Overview

CBMC is able to reason at low-level on ANSI-C programs. In CBMC, the
transition relation and specification of the complex state machine are jointly
unwound to provide a Boolean formula that is satisfied if an error trace exists.
A SAT procedure is then used to validate the Boolean formula and if satisfied,
a counterexample is derived from SAT procedure output. It also checks that
adequate unwinding is done to assure that no counterexample may exist by
using unwinding assertions. It comes with a graphical user interface (GUI)
with minimal information for the user and hides the implementation details.
If a counterexample is found, the GUI allows tracing the error. The following
sections explain the CBMC formula generation and conversion to CNF.

5https://pubs.opengroup.org/onlinepubs/7908799/xcu/c89.html
%https://en.cppreference.com/w/c/99
Thttps://en.cppreference.com/w/c/11

¥https://gcc.gnu.org/

Yhttps://github.com/microsoft/vscode

2Onttps://systemc.org/

2https://www.verilog.com/

27

https://pubs.opengroup.org/onlinepubs/7908799/xcu/c89.html
https://en.cppreference.com/w/c/99
https://en.cppreference.com/w/c/11
https://gcc.gnu.org/
https://github.com/microsoft/vscode
https://systemc.org/
https://www.verilog.com/

2.3.2 Generating the Formula

The Model Checking process performed by CBMC to determine the validity
of a bit vector equation has five steps:

e We assume that the ANSI-C program is already preprocessed, e.g., all
the #define directives are expanded. We then replace side effects by
equivalent assignments using auxiliary variables, break and continue by
equivalent goto statements, and for and do while loops by equivalent
while loops.

e The loop constructs are unwound. Loop constructs can be expressed
using while statements, (recursive) function calls, and goto statements.
Functions calls can complicate the analysis since they can bring more
variables into the loop that need to be bounded. To precisely analyze
loops with function calls, CBMC needs to identify all-recursive call sites,
gather all relevant variables, and estimate their values. With those val-
ues, CBMC will perform the loop bounding process and execute the loop
for the specified number of iterations. The while loops are unwound by
duplicating the loop body n times. Each copy is guarded using an if
statement that uses the same condition as the loop statement. The if
statement is added for the case that the loop requires less than n iter-
ations. After the last copy, an assertion is added that assures that the
program never requires more iterations. The assertion uses the negated
loop condition. We call this assertion an unwinding assertion. These
unwinding assertions are crucial for our approach: they assert that the
unwinding bound is actually large enough. If the unwinding assertion
of a loop fails for any possible execution, then we increase the bound
n for that particular loop until the bound is large enough.

e Backward goto statements are unwound in a manner similar to while
loops.

e Function calls are expanded. Recursive function calls are handled in a
manner similar to while loops: the recursion is unwound up to a bound.
It is then asserted that the recursion never goes deeper. The return
statement is replaced by an assignment (if the function returns a value)
and a goto statement at the end of the function.

e The program resulting from the preceding steps only consists of (pos-
sibly nested) if instructions, assignments, assertions, labels, and goto
instructions with branch targets that are defined after the goto instruc-
tion (forward jumps). This program is then transformed into a static

28

O W N~

else
a++;
assert (a <= 3);

Figure 2.9: Sample program to illustrate the model checking code transfor-
mation

single assignment (SSA) form, which requires a pointer analysis. We
omit the full details of this process.

Consider the Figure from this sample code, the above procedure can
produce two bit-vector equations: C (for the constraints) and P (for the
property). The results are, C - a3 = ag+bg Nay =2Naz=a;+1ANay =
ite(a; # 1,a9,a3) and P :- a4 < 3, where ite is the if-then-else operator.
To check the property, need to convert C' A—~ P into CNF by adding the
intermediate variable and passing it to an SAT solver.

2.3.3 Converting the Formula to CNF

Most operators are easily converted to CNF, and the process is similar to
that of generating suitable arithmetic circuits. For the advantage of circuit-
level SAT solvers, CBMC may also output the bit-vector equation before it
is flattened down to CNF. It supports programs that use dynamic memory
allocation, such as dynamically sized arrays or data structures like lists or
graphs. As an example, the fragment in Figure uses malloc to create
a variable number of integers, then inserts one value into the last array ele-
ment before deallocates the array: while the integer n remains bounded, its
maximum value requires the reservation of far too many literals in order to
construct a CNF for the shown in the above fragment. As a result, dynam-
ically created arrays are not converted to CNF by creating literals for each
possible array element. Instead, arrays with variable size are implemented
using uninterpreted functions.

Cbmc assertions and assumptions

Apart from automatically checking the properties of the program, CBMC
also provides helpers to specify assertions and assumptions in the programs.
They can be used to aid CBMC with more information about the program.

29

1
2
3
4
)
6

void foo (unsigned int n) {

int xp;

p = malloc(sizeof(int)*n);
p[n—1] = 0;

free(p);

}

Figure 2.10: Sample program that uses dynamic memory allocation

These keywords can be used for program instrumentation. Program instru-
mentation is a procedure that changes or adds part of codes to verify some
properties of the program.

e __CPROVER_assert(expr) can be used to assert a condition. It takes
a Boolean expression expr as an argument. When CBMC encounters
one of these assert statements, it tries to generate a formula to check
assertion failure. The generated formula is verified using SAT solvers.
If the formula is satisfied then the assertion fails and CBMC generates
an error and produces a counter-example showing the possible trace of
the error.

e __CPROVER_assume (expr) keyword reduces the number of considered
program traces and allows assume-guarantee reasoning. It takes a
Boolean expression expr as the argument.

Warm-up example for CBMC

The basic idea of CBMC is to model a program’s execution up to a bounded
number of steps. Technically, this is achieved by a process that essentially
amounts to “unwinding loops”. Loop unwinding, also called loop unrolling,
is the process of converting loops into sequential statements. Consider the
C program in Figure CBMC can execute up to a bounded number for
unwinding loops, say 4 times for this example. A BMC instance that will
find bugs with up to four iterations of the loop would contain four copies of
the loop body and essentially corresponds to checking the loop-free program
mentioned in Figure (generated if running CBMC with the following com-
mand line argument cbme BMC_Test.c —unwind 4 —bounds-check). If we
run CBMC for the Figure [2.11] without mentioning the flag —unwind, CBMC
does not stop on its own. The built-in simplifier is not able to determine a
run time bound for the loop.

30

void BMC_Test(int argc, char sxargv) {
while (cond) {
Body Code
}

}

Figure 2.11: Warm-up C code for CBMC, example 1

void BMC_Test(int argc, char xxargv) {
if (cond) {
Body Code Copy 1
if(cond) {
Body Code Copy 2
if (cond) {
Body Code Copy 3
if (cond) {
Body Code Copy 4

Figure 2.12: Unwound version of the warm-up C code for CBMC, example 1,
with loop unwinding set to 4

CBMC generates test cases which cover the MC/DC coverage. Consider
the C program in Figure [2.13] that aims to find out if the given input is 10 or
more than 10. Figure [2.14] shows the code coverage results from the CBMC
execution for the C program. CBMC is able to find 4 coverage goals and
generate 3 test suites to satisfy the goals (see Table 2.2).

Table 2.2: Test suite generated by CBMC for C program Figure [2.13

test case | variable | value
1 a 10
2 a 9
3 a 262153

The CBMC supports all ANSI-C operators and pointer constructs allowed
by the ANSI-C standard, including dynamic memory allocation, pointer

31

© 00 O Ul Wi

— = =
W N = O

O O 00U WN

=

int isTenOrMore(int x){
if(x == 10)
return 1;
if (x > 10)
return 0;
else
return —1;
}

int main(){
int a;
__CPROVER_input (”a” ;a);
return isTenOrMore(a);

¥
Figure 2.13: Warm-up C code for CBMC, example 2

** coverage results:

[isTenOrMore. coverage .1] file isTenOrMore_cbmc.c

line 3 function isTenOrMore decision/condition ’x==10" false: SATISFIED
[isTenOrMore. coverage .2] file isTenOrMore_cbmc.c

line 3 function isTenOrMore decision/condition ’'x==10" true: SATISFIED
[isTenOrMore. coverage .3] file isTenOrMore_cbmec.c

line 5 function isTenOrMore decision/condition ’x>10" false: SATISFIED
[isTenOrMore. coverage .4] file isTenOrMore_cbmec.c

line 5 function isTenOrMore decision/condition ’x>10’ true: SATISFIED

ok

Figure 2.14: Code Coverage results generated by CBMC for C program Figure
2.13

arithmetic, and pointer type casts. The user interface is meant to appeal
to system designers, software engineers, programmers and hardware design-
ers, offering an interface that resembles the interface of tools that the users
are familiar with.

2.4 Related work on Test Generation for
Scade

This thesis focuses on the capabilities of symbolic execution and bounded
model checking to generate test cases for Scade programs. In this section,
we survey the existing approaches that investigate test generation for Scade.

32

2.4.1 Automated model-based testing

Our approach can be seen as related to model-based testing, which derives test
cases by analyzing program specifications or program behaviours expressed
in suitable modelling languages, e.g., UML class diagrams, state machines
or sequence diagrams [123], 124]. Model-based testing consists of deriving
test data by analyzing either program specifications or program behaviours
expressed as models, e.g., with class diagrams, state machines or sequence
diagrams [123], [124]. Indeed Scade is a model-based programming language
that exploits state machines and data flow models for defining software be-
haviors [14, [I5]. Model-based testing has been successfully applied to com-
plement the verification of formal specifications expressed in languages such
as B, Z or VDM [125]. For a comprehensive survey of model-based testing,
we refer to the work of Utting et al. [126] and Dias Neto et al. [127].

Formica et al. propose ATheNA [128], a novel search-based software test-
ing framework that combines fitness functions to guide the search exploration
towards software failures that are automatically generated from the require-
ments specification and manually defined by engineers. They implement an
ATheNA-S instance of ATheNA that targets Simulink®. models. AtheNA-S
could generate failure-revealing test cases when applied to a large case study
from the automotive domain. The main difference from our approach is that
AtheNA generates test cases if and only if failure-revealing test cases are
found.

In particular, the approach that we investigate in this thesis shares simi-
larities with the ones of Polyglot [129] [130] and SAUML [131], which exploit
symbolic execution to generate test cases for systems modelled with stat-
echarts and UML-RT state machines, respectively[129, 130, 131]. Polyglot
translates statecharts to programs (specific programs in Java) and then ex-
ploits symbolic execution (by means of the symbolic executor SPF [132] that
addresses Java), to generate test cases that achieve path coverage up to some
specified depth. SAUML extends symbolic execution to directly analyze the
UML-RT models (i.e., it works without converting the models to programs)
to check properties like reachability and invariants, and to generate test cases.

As we will explain in detail in the next chapter, the work reported in this
thesis differs from both these approaches in the way we distinctively use sym-
bolic execution and bounded model checking within an analysis algorithm
tailored to the characteristics of the Scade models, which foster programs
with finite path spaces and input data structures comprised of finite sets of
distinct fields. The structural testing approach of TECS is naturally com-
plementary and could be profitably integrated with test cases generated by

33

exploiting functional model-based testing.

2.4.2 Formal methods for safety-critical software

Safety-critical systems need to strictly comply with their requirements as they
were elicited in the earliest phases of the development process. Formal meth-
ods [133] define one or more languages with mathematically precise semantics
that can be used to describe the requirements, the domain constraints and
the designs, and to prove or disprove relevant properties thereby, e.g., absence
of deadlock or unreachability of unsafe states. Most formal methods define
mathematically rigorous procedures to ensure that the artefacts produced at
every step of a development process refine the artefacts produced at earlier
steps, thus preserving all their relevant properties. The downside of these
approaches is the degree of mathematical sophistication that they demand
from software engineers and designers, who should be able to model a sys-
tem with a formal specification, prove (or disprove) its properties, refine an
abstract (not directly computable) specification progressively to a concrete
(computable) one, and translate a concrete specification to an executable
program in a given programming language. To this end, formal methods are
often accompanied by tools that assist in performing their tasks, with vari-
ous degrees of automation, which anyway hardly balance the aforementioned
complexity.

Formal methods differ in the breadth of their scope. At one end of the
spectrum, methods like B or its successor Event-B [134] aim at producing a
complete, correct-by-construction approach, encompassing all the phases of
the development lifecycle. These methods usually refrain from testing the
final implementation, in the assumption that having proved both a sufficient
set of correctness properties on the abstract designs, and their preservation
through the refinement steps may suffice to ensure that the final program
is correct by-construction. Other formal approaches do not have the gener-
ality of a full correct-by-construction method and focus only on assisting a
well-defined part of the software development process. This is the case of
Alloy [135], a language and a tool for modelling systems that are suited to
assist the specification and abstract design activities. Similarly, Z [136] is
customarily used as a system modelling language, although there also exists
a well-established theory of refinement for Z [137].

Formal approaches that do not have the generality of correct-by-
construction methods can benefit from software testing to provide some de-
gree of assurance that the derived implementations comply with the corre-
sponding requirement specifications. Anyway, even correct-by-construction
approaches might require testing, to cope with the weak (i.e., unproved)

34

points of the refinement and translation chain, or simply to comply with
certification requirements [125].

2.4.3 Automated test generation for Scade models

Scade can be regarded as a formal modelling approach focused on the de-
tailed design and implementation phases of the software lifecycle. The Scade
language is derived from the synchronous dataflow programming languages
LusTrE [138], with some programming constructs derived from the program-
ming language ESTEREL [139] and from the graphical, state-machine-based
language SyncCharts [140]. Scade has formally defined semantics. All its
constructs are computable, and therefore it is suited to express concrete de-
signs rather than requirements and high-level system models. The SCADE
Suite development environment provides a model-based test coverage mea-
surement tool that, from a Scade model and a test suite, calculates the
coverage of different categories of elements in the model (states, transitions,
conditions in transition guards, MC/DC coverage).

Lakehal and Parissis proposed research works that address automated
test generation for Scade or LUSTRE [I41]. This work introduces a set of
coverage criteria for LUSTRE and Scade programs, defined over the graph
of operators in the programs, and an automated tool that builds test suites
that maximize these coverage criteria. The performance of the test gen-
erator is assessed by measuring the mutation analysis [142]. Lutess [143]
generates test cases at random based on a description of the environment.
Lurette [144] and Gatel [145] focused on generating test cases for invariants
or safety properties described in Lustre. These approaches could be extended
for programs in Scade, but none of them deals with automatically generat-
ing test cases for achieving high structural coverage as we investigate in this
thesis. We aim to systematically analyze the C code that corresponds to the
Scade programs, while the approach of [141] does not consider the generated
C code. The authors of [I41] propose dedicated coverage measures, specific
for synchronous dataflow programming languages, while we aim at covering
all execution paths in the programs.

Wakankar et al. demonstrate an automated test generation for Scade
models based on model checking. Scade models are manually translated to
SAL [146] is a specification language that provides the way to represent the
specification of the system to transition system, and the SAL-ATG [147] tool
automatically generated test scripts for that SAL models and then translated
back into Scade simulation input file format[148]. This approach is different
from our approach due to manual translation from Scade to SAL model,
and SAL-ATG takes system requirements and the property as the input

35

and generates counter examples, and the test goals to be specified as trap
variables are also defined manually [148)].

Toennemann et al. introduce the code-to-model transformation concept
which manually creates the Scade model from equivalent C code and transfers
the existing test cases for the C Code to SCADE test format automatically
[149]. The motivation of this work is to enable original equipment manufac-
turers (OEMs) to further use and maintain legacy code in new development
environments. This approach differs from our work because, the core idea
behind this work is to transform of code-to-model concept and with the gen-
erated test cases, test the model automatically. But the main two parts such
as code to model conversion and test case extension are manual work [149)].

An interesting tool is RT-Tester [I50} [I51], which is used in industry to
perform V&V activities for avionic, automotive and railway systems: it starts
from a concrete test model describing the expected behaviour of the system
under test, renders the models into a set of expressions in propositional logic
and then solves the formulas with an SMT solver to generate test cases.
It works similarly to bounded model checking, representing the execution
semantics with propositional logic, and solving propositional formulas that
capture test cases built according to a given testing strategy. We found
very limited experimental data on the effectiveness of this approach in the
available papers.

36

Chapter 3

Automated Test Generation for
Scade programs

This chapter discusses TECS, our original approach to automatically gener-
ating test cases in a systematic fashion, based on symbolic execution and
model checking, for safety-critical programs in Scade. We first introduce
the distinctive characteristics of safety-critical programs developed in Scade,
which, as the research hypothesis of our work, should enable the effective-
ness of generating test cases with symbolic execution and bounded model
checking, and we present a simple Scade program that we use as a working
example while presenting our approach. We then introduce the approach
TECS, embodied in our original test generator (itself called TECS). TECS
built on the symbolic executor KLEE and the bounded model checker CBMC,
but it also makes several distinctive design choices that explicitly exploit the
programming constraints guaranteed for programs in Scade.

3.1 Safety-Critical Development with Scade

Scade is a system modelling language that allows the design, implementa-
tion and verification of reliable embedded software systems. Ansys Inc. de-
velops the language and commercializes the SCADE Suite development envi-
ronment, which allows the design of embedded cyber-physical systems based
on the Scade language, simulates their behaviour, and generates quantifi-
able/certifiable code from the models. Scade is customarily used to develop
high-assurance and safety-critical embedded systems in a wide range of ap-
plication domains such as, e.g., avionics, automotive and railway. The key
safety objectives are Synchronous, they are fully deterministic models, sim-
ple and steady, only safe constructs, modular, typed, good matching between

37

language and graphical diagrams (semantics and intuition), and runs in finite
memory.

The Scade modelling language belongs to the family of synchronous lan-
guages, such as LUSTRE [13§] and ESTEREL [139]. Synchronous languages
assume that all the communications and computations in the systems that
their models represent are performed instantaneously. A Scade model is re-
active and structured as a collection of communicating finite-state machines,
procedures and functions. States are the fundamental memory component
of state machines, and each state machine must start in a unique state and
can have one or more states. State transitions are the elements that connect
one state to another. When there is a strong transition, it deactivates the
source state and activates the target state, allowing it to begin its internal
activity. In cases of weak transition, it permits the source state to complete
its activity while delaying the start of the action of the destination state until
the following cycle. Each state may have a hierarchical structure, similar in
spirit to, but with richer semantics than, the Statecharts [I52] or UML state
machine languages [124]. The computation of a Scade model is performed as
a sequence of discrete steps referred to as execution cycles. At each execution
cycle, the outputs and the next state of the model are calculated from the
inputs and the current state. At the end of a cycle, the execution of the
model performs an instantaneous transition to the next state as it enters the
next cycle. A valid Scade model must enjoy the property of running each
execution cycle in bounded space and time, and Scade rejects models that
are not deterministic or not deadlock-free. Scade has both a textual and an
equivalent graphical syntax, and the SCADE Suite development environment
allows editing a model in either format.

Integrated into the SCADE Suite development environment, the automatic
code generator KCG translates the Scade models to semantically equivalent
programs in either the Ada or the C programming languagd’} The programs
generated by Kca are provably equivalent to the Scade models of which they
are a translation. By virtue of the aforementioned properties of the Scade
models, KcG is able to translate them to C programs that also are deter-
ministic, deadlock-free, and run in bounded space and time. Moreover, in
compliance with the Scade language, KCG aims to ensure that the gener-
ated programs are both embeddable, i.e., deployable in embedded, resource-
constrained environments, and compliant with the most demanding safety
levels of certification standards as, e.g., DO-178C [I], IEC 61508 [153], EN
50128 [2], and ISO 26262 [I54]. To this end, KcG translates a Scade model

1ScADE Suite invokes a third-party Ada or C cross-compiler to generate binary code
for the target platform of choice from the Kca translation of a model.

38

to a program expressed in a suitable subset of the C programming language
that does not contain programming constructs that are deemed intrinsically
unsafe or unfriendly with resource-constrained environments. A more pre-
cise characterization of the C language subset that KCG uses as a target for
the translation of Scade models follows: A Scade program is structured as a
collection of communicating components, each designed as a state machine
or as a pure dataflow component, where the outputs depend on the inputs
and an internal state, or stateless functions, where the outputs depend di-
rectly on the inputs. The computation of a Scade program proceeds as a
sequence of discrete steps referred to as execution cycles. At each execution
cycle the outputs and the next state of each component are calculated based
on the current inputs and the current state, and at the end of a cycle, all
components perform an instantaneous transition to the next state as they
enter the next cycle. Furthermore:

e Its semantics is unambiguous and precise (e.g., no undefined be-
haviours);

e [t is ISO C18 compliant;
e It conforms to the MISrRA C 2012 coding standard rules;

e All the memory objects have either static or automatic storage dura-
tion, i.e., there is no use of dynamic or thread-local memory; Moreover,
variable length array types are not used;

e It has no recursive function calls;

e All loops are statically bounded: Their number of iterations is deter-
mined by constant values known at code generation time;

e It uses as statements only selections (if), iterations (for, while, do
...while), function calls, non-compound assignments, returns, and
blocks; Moreover, the controlling or optional expressions in the selection
and iteration statements, the expressions denoting the called function
and the arguments in function calls, the left and right operands in
assignments, and the operand of return statements have no side effects;

e Array elements are always accessed by the declaration name of an array-
typed variable or field, via the array subscript operator with a numeric
index; There is no use of the array subscript operator with pointers
that are not explicitly declared as arrays;

39

e Except in the case of accessing array elements via the array subscript
operator with a numeric index, there is no dynamic address calculation
(“pointer arithmetic” expressions) and no casting of memory addresses
to/from other types; Pointer types are only used in the declarations of
formal parameters of functions, to implement “by pointer” parameter
passing, and enforcing that the formal and the actual parameters are
exactly of the same type for any calls;

e The indices of all array accesses vary in intervals whose left and right
bounds are constants known at code generation time, and always within
the range of the definition of the corresponding array; As a consequence,
all the array accesses are statically guaranteed to be in-bound w.r.t. the
corresponding array.

The restrictions over the C language adopted by KcaG are motivated by the
required compliance with the highest safety levels of the certification stan-
dards that the generated code must address. These standards discourage, or
utterly forbid, the use of dynamic memory, unrestricted aliasing, unbounded
iteration and recursion, to ensure that the program always runs in bounded
space and time. Furthermore, KcG does not ever produce recursive data
structures when translating Scade programs in C: indeed, the main purpose
of recursive data structures is implementing unbounded containers, but since
a well-formed Scade model always runs in bounded space there is no real need
for its C translation to use unbounded containers. Therefore, the nature of
Scade models— they are being deterministic, deadlock-free, and bounded in
space and in time—is precisely what allows such a limited fragment of the C
language to adequately express the full semantics of the Scade language.

In the target environment, the embedded software must interact with the
sensors and the actuators of the hardware platform. In order to link the Scade
programs to the hardware developers must implement suitable glue code, i.e.,
peripheral drivers, interfacing the KcaG code generated from a Scade model
and the external environment.

3.2 A Sample Scade Program (Working Ex-
ample)

We will use a simple Scade model to introduce the main concepts and ter-

minology about Scade, and to show how a Scade model is converted into C

code: this will help for better understanding how our approach described in
Section [3.3 works.

40

ctrl = UNLOCKED

o CAR_IS_LOCKED]
LOCKED |—> carState l/ 1
CAR_IS_UNLOCKED

mirrorData (| UNLOCKED |—> carState
-automaticControl

mirrorData >_ O _> mirrorCommand
7 mirrorState
CLOSED O

2
— > mirrorCommand
(]
-mirrorState

\. J ctrl = LOCKED

Figure 3.1: A sample Scade model for a car wing mirror controller

Figure [3.1| shows a Scade model that describes a simple controller for the
wing mirrors of a car, for which it is possible to activate the behaviour of
closing the wing mirrors automatically when the car gets locked. The state
machine has two states (the boxes in the left and right part of the figure,
respectively) that represent whether the car is either locked or unlocked,
respectively. The input signal ctrl governs the possible transitions between
these two states. The program starts in the state CAR_IS_LOCKED (the
state on the left of the figure) and then if ctrl gets set to UNLOCKED the
program changes state to CAR_IS UNLOCKED (the state on the right of
the figure). Conversely, if ctrl gets set to LOCKED the program returns
to CAR_IS_LOCKED. The signal ctrl can be thought of as the input that
the car receives from a remote controller.

The program has three further inputs and three outputs. The three inputs
are aggregated in the data structure mirrorData, which is referred in both
states of the Scade models in Figure|3.1. The data structure mirror Data con-
sists of two fields. Field mirror Data.automaticControl (dereferenced with
the Scade operator represented as a rectangle in the top part of state CAR_-
IS_LOCKED) controls whether or not the automatic-closing behaviour is
currently active. Field mirror Data.mirrorState (dereferenced in both pro-
gram states) is an array of two items, each defining the latest state (either
OPEN or CLOSED) that the driver has set for either wing mirror. The
three outputs are carState, which records the current state of the car, and
the two items of the array mirrorCommand, which indicate the commands
(either OPEN or CLOSED) sent to the wing mirrors. The carState out-
put is simply assigned as LOCKFED or UNLOCKED in the two states of
the program, respectively. Scade represents the assignment with an arrow
that connects a value to the receiving variable, e.g., LOCKFED — carState
represents the assignment of the output carState in the program state CAR_-
IS_.LOCKED.

41

The main behaviour of the program is to define the commands sent to
the wing mirrors when the control system is in each of the two program
states, respectively. If the automatic closing behaviour is active, the wing
mirrors shall close automatically upon locking the car. Otherwise, they
shall just remain as they are. Upon unlocking the car, the wing mir-
rors shall always return as they were when the car got locked. The pro-
gram encodes this behaviour as follows. When the car gets locked (state
CAR_IS_.LOCKED) the outputs mirrorCommand are assigned with the
if-then-else block represented as the white rectangle in the bottom-right part
of state CAR_IS_LOCKED in Figure 3.2l The if-then-else block takes
mirror Data.automaticControl as a condition (entering from the top of the
block): If the automatic control is active, the outputs mirrorCommand
are both assigned as the constant CLOSED (entering at the top-left cor-
ner of the block). Otherwise, if the automatic control is not active, they
are assigned to the values in the array mirror Data.mirrorState (entering
at the bottom-left corner of the block). When the car gets unlocked (state
CAR_IS.UNLOCK ED) the outputs mirrorCommand are always assigned
the values of mirror Data.marrorState.

Compiling the Scade program of Figure with KcaG yields the
C program excerpted in Figure [3.2L The program defines the en-
try function WingMirrorControl CarControl (excerpted at the bottom
of the figure) that encodes the behaviour of the system. This func-
tion will be continuously executed at each execution cycle on the tar-
get board. As parameters, the function takes pointers to two data
structures inC and outC of type inC WingMirrorControl CarControl and
outC_WingMirrorControl CarControl, respectively: inC wraps the inputs
that the state machine receives at the beginning of each execution cycle,
and outC wraps the outputs of the state machine, along with a special field
(WingMirrorFSM_state _nxt) that KCG generates to encode the next state of
the state machine after each execution cycle. The top part of the code lists
the type definitions for both inC and outC data structures, and their nested
types.

The body of the entry function consists of two switch statements
executed in sequence. The first switch statement calculates the next
state, and stores it in the temporary variable WingMirrorFSM state_act.
The second switch statement calculates the outputs and assigns the
fields of outC. For example, when the first switch statement com-
putes the next state SSM_st_CAR_IS_UNLOCKED_WingMirrorFSM, correspond-
ing to the model state CAR_IS_ UNLOCKUED, the second switch state-
ment assigns the outputs outC->mirrorCommand to the values of the
inputs inC->wingMirrorData.mirrorState, the output outC->carState

42

0O Uik WN =

typedef struct {
Lock ctrl;
MirrorData mirrorData;
} inC_WingMirrorControl_CarControl;
typedef struct {
MirrorStateArray mirrorCommand;
Lock carState;
SSM_ST_WingMirrorFSM WingMirrorFSM _state_nxt;
} outC_WingMirrorControl_-CarControl;
typedef struct {
kcg_-bool automaticControl;
MirrorStateArray mirrorState;
} MirrorData;

typedef MirrorState MirrorStateArray [2];
typedef enum {UNLOCKED, LOCKED} Lock;
typedef enum {OPEN, CLOSED} MirrorState;

void WingMirrorControl_CarControl (
inC_WingMirrorControl_CarControl *inC,
outC_WingMirrorControl_CarControl *outC) {
SSM_ST_WingMirrorFSM WingMirrorFSM_state_act;
kcg-size idx;
switch (outC—>WingMirrorFSM_state_nxt) {
case SSM_st_CAR_IS_.UNLOCKED_WingMirrorFSM :
if (inC—>ctrl = LOCKED) {
WingMirrorFSM _state_act = SSM_st_CAR_IS_.LOCKED_WingMirrorFSM ;

else {
WingMirrorFSM _state_act = SSM_st_CAR_IS_UNLOCKED _WingMirrorFSM ;
}

break;
case

}

switch (WingMirrorFSM_state_act) {
case SSM_st_CAR_IS_.UNLOCKED_WingMirrorFSM :
kcg_copy_-WingMirrorArray (outC—>mirrorCommand, inC—>mirrorData.mirrorState);
outC—>carState = UNLOCKED;
outC—>WingMirrorFSM_state_nxt = SSM_st_CAR_IS_.UNLOCKED_WingMirrorFSM ;
break;
case

Figure 3.2: Excerpt of the C program that KcaG generates for the Scade
model in Figure 3.1

43

to UNLOCKED, and the output outC->WingMirrorFSM_state nxt to
SSM_st_CAR_IS_UNLOCKED_WingMirrorFSM.

3.3 The TECS Toolchain

Our toolchain TECS, Test Engine for Critical software in Scade, aimed at
generating test cases for Scade programs. Figure illustrates the compo-
nents and the workflow of TECS: the input is a Scade program developed
with the SCADE Suite development environment (top left part of the figure),
and the output is a test suite that can be executed with SCADE Test, the
test execution environment of SCADE Suite (bottom left part of the figure).
Since we target unit-level testing, here on in this report we use the term
Scade program to generally refer to the Scade component under test, which
can be itself part of a larger Scade program.

TECS relies on the KcG compiler to convert the Scade program under test
into an equivalent C program. Then, TECS includes a Test driver synthesis
component that augments the obtained C program with an analysis driver
written itself in C. The analysis driver embodies the actual analysis algorithm
that TECS uses to explore the state space of the program under test: It
assigns the program inputs with symbolic values and bounded values, and
then calls the original program multiple times, aiming to trigger the possible
transitions of the state machine model that the Scade program represents.
Thus, by executing the analysis driver, TECS steers multiple analysis passes
of the execution paths in the program, with each new pass depending on the
results of the previous pass. As we explain in detail in Section [3.3.2] the Test
driver synthesizer tailors the analysis algorithm to the specific signature of
the program under test.

To accomplish symbolic execution and bounded model checking according
to the analysis algorithm provided with the analysis driver, TECS relies on
KLEE and CBMC, a well-known state-of-the-art symbolic executor for pro-
grams in C [25] and state-of-the-art bounded model checking for programs
in C [31], respectively.

As the final step, TECS constructs a SCADE test case (Figure , Test
synthesis) for each of the selected C tests. It thus obtains a test suite in
SCADE format, which can be executed within the SCADE test environment.
The Test synthesis is rather an engineering effort, though important to final-
ize the generated test suites.

Below we describe the components that comprise TECS in detail and its
workflow.

44

SCADE Environment TECS

S

SCADE program Cprogram| Test dri C program + | Test input generation
SCADE > KCG N Tes hr|v'er
synthesis test driver KLEE
+ FORM mpm s
ATTER
SCADE Test Test scripts ; /
< Test synthesis 14T

Environment | est Inputs

J

Figure 3.3: Components and workflow of TECS

3.3.1 KCG

TECS relies on the KcaG compiler, a cross-compilation utility that is part of
SCADE Suite, to convert the Scade program under test into a semantically
equivalent program in the C programming language (Figure , C program).
The C program encodes the execution cycle semantics of the corresponding
Scade program: Given current values for the inputs, the outputs and the
state, it computes the new values of the outputs and the next state at the
end of the execution cycle.

The C programs generated by KcaG are provably equivalent to the Scade
programs of which they are a translation. In particular, to comply with
the semantics of Scade, KcG produces C programs that are deterministic,
deadlock-free, and run in bounded space and timdﬂ. To this end, KcG gen-
erates C code that dismisses some constructs out of the expressive power of
the C language, as we already explained in Section [3.1]

3.3.2 Test Driver Synthesis

The C programs generated with KcG cannot be exploited as-they-are for
the sake of generating proper test cases for the corresponding Scade pro-
grams. In fact, a KcG-generated C program implements a single execution
cycle of the Scade program from which it was obtained. To exercise the
relevant behaviours of a Scade component, we aim at generating test cases
that run suitable sequences of execution cycles of the component. A proper

2This also ensures compliance with the most demanding safety levels of certification
standards (as, e.g., DO-178C [I], IEC 61508 [153], EN 50128 [2], and ISO 26262 [154]),
which require that the program always runs in bounded space and time.

45

SCADE test case shall start from an initial state in which all outputs and
the state of the Scade component under test are set to default values, and
then progress by running multiple execution cycles of the component, setting
suitable inputs at each cycle.

To steer the execution of test cases against the C programs generated
with Kca, TECS enriches each target C program with a test driver. The test
driver represents the execution of a test case that, as we described above,
first initializes all output and state variables to valid default values, and
then executes a sequence of calls of the target C program, by allowing test
generators to pass suitable input values at each call.

With reference to Figure [3.3] the task of generating the code of the test
driver is carried out in the Test driver synthesis step of the toolchain. This
step results in a C program inclusive of the test driver, which can be exploited
with test generators to explore the possible sequences of execution cycles of
the program under test.

TECS generates the test driver for a given program under test by cus-
tomizing the template code shown in Figure |3.4] Specifically, it will cus-
tomize the lines marked with the comment “Adapt wrt KCG code” in the
figure, by replacing the type and function names showed as italic text, with
the corresponding type and function names defined in the C program gen-
erated with Kca, as follows. Lines [2 and [3| declare program variables that
instantiate the inputs and the outputs of the program under test, respec-
tively, where the type names InputType and OutputType shall be replaced
with the specific types of the input and output data structures defined in
the C program. Line [calls the function init that sets the initial values of
the outputs: init shall be replaced with the specific init function that Kca
defined as part of the C program. Yet, line|10|calls the function program that
represents the execution cycle semantics of the component under test: pro-
gram shall be replaced with the specific name of the component, as defined
in the C program generated with Kca.

When executed, the test driver proceeds as follows. It relies on the init
function generated by Kca (Figure , line to initialize the values in
the output data structure. This structure includes a field for each program
output as well the field out.state that represents the current program state.
Then, the test driver iterates through the loop at lines[7}-[I2] where it executes
the function program multiple times (line . Each execution of program,
that is, each execution cycle of the Scade program under test, receives ded-
icated input values that the test driver sets by calling function takelnputs
(line E[) The loop iterates as long as the value of field out.state corresponds
to a program state not yet visited at a previous iteration. This allows for
exercising sequences of execution cycles in the scope of the single-state-path-

46

coverage (SSPC) testing criterion, i.e., execution sequences that traverse at
most once the states of the state machine that comprises the Scade program
under test.

The call to function takelnputs (Figure , line E[) encapsulates the logic
for the test driver to receive new input values at each execution cycle. As
explained in the next section, it also allows generators to exploit the test
driver for controlling the test generation process. Figure further specifies
the logic of function takelnputs at lines [[4HI7} It first enumerates all fields
at any nesting level of the input data structure (function enumerateFields,
line , allocating fresh memory to all pointer-typed fields and returning
the references to all leaf, non-pointer fields, and then assigns a new value to
each leaf field separately (function providelnputs, line .

To enumerate the fields of the input data structure, TECS (via the test
driver) exploits the knowledge that, based on the semantics of Scade and
the guarantees from Kca, all data structures are statically allocated and
not recursive, the size of all arrays is statically specified, and there is no
pointer aliasing. This implies that the input data structures are always made
of a finite set of statically identifiable fields, including the elements of the
array-typed fields. In this way, TECS induces a specialized, efficient input-
provision mechanism, which is specific for testing Scade programs and has
the advantage of not having to cope with null pointers or pointer aliasing.

Technically, the TECS generates the code of function enumerateFields
(Figure [3.4] line by relying on ANTLR4 [I55] to parse the type defi-
nitions of all fields of the input data structure, as given in the C program
generated by Kca. Each leaf field is then represented as a structure (de-
noted as LeafField at line that includes an identifier label for the field,
and a pointer to the memory allocated for containing the value of the field.
By naming convention, the identifier label of the leaf fields includes i) the
name of the field, ii) the primitive type of the field and iii) the number of
the execution cycle in which they will be used. For example, the identifier
in::a::b_int_1 would represent the int-typed field b of the sub-structure a
within the input structure in, as assigned at the first execution cycle.

Function providelnputs takes the responsibility to fill input values into
the fields of the input data structure. This function represents the API that
we must implement for integrating any given test generator in the toolchain,
in order to delegate the test generator to control the program inputs while
accomplishing the test generation tasks.

47

1: function TESTDRIVER

2 InputType in; > Adapt wrt KcaG code
3 Output Type out; > Adapt wrt KcG code
4: init(&out); > Adapt wrt Kca code
5: int cycle = 1;

6 Set visited = empty _set();

7 while (!contains(visited, out.state)) do

8 add(visited, out.state);

9 takeInputs(&in, cycle);

10: program(&in, &out); > Adapt wrt KcG code
11: cycle = cycle + 1;
12: end while

13: end function

14: function TAKEINPUTS(InputType *in, int cycle)

15: LeafField[] leafFields = enumerateFields(in, cycle);

16: providelnputs(leafFields); > Input provider API
17: end function

Figure 3.4: Algorithm of the analysis driver

3.3.3 Test Input Generation

Our toolchain TECS leverages state-of-the-art test generators for C programs
(Figure [3.3] step Test input generation), in order to produce test inputs for
exercising the Scade programs under test. This step consists in executing
the given test generator on the C program that contains the test driver, as
follows:

(i) we provide a test-generator-specific implementation of the API
provideInputs called by the test driver (Figure [3.4] line [16),

(ii) we compile the C program along with the test driver, the provided
implementation of providelnputs and a main function that calls the
test driver,

(iii) we execute the test generator on the program, and let the test generator
generate test data for the program.

(iv) we post-process the test data (that each given test generator produces
in its specific output format) to render them in a common format (Fig-

ure formatter).

48

Below we explain the implementations of provideInputs that allow TECS
to work with the test generators KLEE and CBMC.

Integrating TECS with KLEE

KLEE generates test cases based on symbolic execution. Working as a sym-
bolic executor, it models the input values as unconstrained symbols, inter-
prets the statements in the program in function of the input symbols, and
computes the execution conditions of the program paths as logic constraints
over the input symbols. Finally, KLEE solves the execution conditions of the
analyzed program paths with an SMT solver (e.g., STP [112] or Z3 [106]) to
obtain concrete inputs that make those program paths execute.

In our setting, KLEE executes the intermediate binary code of the pro-
gram compiled with LLVM.

To make TECS work with KLEE, we link the program to an implemen-
tation of the API providelnputs that assigns the relevant inputs with sym-
bolic values by using the primitive klee_make_symbolic provided from KLEE.
Specifically, the implementation of providelnputs calls klee_make_symbolic for
all primitive inputs enumerated in test driver at each execution cycle (Fig-

ure line [15)) as follows:
klee_make_symbolic(fields[i].r, sizeof (*fields[i].r), fields[i].l);

where fields[i] represents the i'" input field received as input of providelnputs,
and fields[i].r and fields[i].l represent the memory address and the identifier
label of that field, respectively.

Let us consider, for instance, the working example program that we in-
troduced in Figure Concerning the corresponding C program of Fig-
ure the analysis driver synthesis that the data structure of the type
inC_WingMirrorControl CarControl, which represents the program inputs,
includes a field ctrl and a field WingMirrorData, respectively. The for-
mer field is defined as an enumeration type, i.e., a primitive type, and the
latter field is an array, i.e., a non-primitive type. Thus the Driver syn-
thesis component (Figure , line 16) inspects the definition of the array,
revealing that it consists of two items of primitive types (again an enumer-
ation). For this program, the Driver synthesis component allows deriving
the C code for 2 cycles. The generated main function ultimately consists
of C code that initializes a new instance of the data structure in memory
for each state cycle and which relies on Input provider API to initialize
the primitive field inC_step_0__ctrl with a new fresh symbol (Figure
line 2), initializes the non-primitive field inC_step_0__wingMirrorData as a

49

new array instance with two items and initializes the two items in the ar-
ray with further fresh symbols (line 8). The operation klee_make_symbolic
for initializing the inputs with fresh symbols takes three parameters: one is
the input to be initialized passed by reference, the second is the size of the
variable and the other one is a name (a string of characters) to be associ-
ated to that symbolic values. For the enumeration type, the driver function
finds the range of the enum list and provides a klee_assume(), line 5 func-
tion to make fresh values within the range. Upon generating test inputs as
possible concrete values of the symbols, KLEE will use the provided name
"step:0,dataType:kcg_bool,parameter:inC_step_O__wingMirrorData__
automaticControl" (line 10) to indicate the input data to which those val-
ues refer. This kind of name conversion is foreseen to support the engineering
work of the Test Synthesis component. This process will repeat for all the
inputs up to n cycles for the target function.

In this way, running KLEE at step Test input generation, we obtain test
inputs for the program paths that traverse the program under test through

the test driver, i.e., the program paths visited when calling program (Fig-
ure line multiple times in the while loop of the test driver.

Integrating TECS with CBMC

CBMC generates test cases according to bounded model checking. It encodes
the semantics of the statement in the target C program as a boolean formula,
expresses a reachability problem for each branch in the program as a con-
straint to be evaluated in conjunction with the program formula, and then
computes test inputs for each branch by solving the reachability problems
with a constraint solver.

In our setting, CBMC works directly on the source code of the program,
targeting the main function that in turn calls the test driver.

Bounded model checking is a radically different type of static analysis with
respect to symbolic execution, however, CBMC and KLEE are similar in the
requirement of having to mark the inputs to be handled in their constraint-
solving problems. In CBMC the relevant inputs must be marked as non-
deterministic values by means of a group of API functions that begin with
the prefix nondet_. Thus, for CBMC, we provide an implementation of the
API providelnputs that suitably calls the nondet_ functions for each primitive
field of the input data structure of the program under test, at each execution
cycle.

For instance, the working example program (Figure concerning the
corresponding C program of Figure [3.2] the analysis driver synthesis inte-
grated with CBMC have the same engineering methods but few differences

30

© 00Uk WN

inC_MirrorChecker_StateMachines inC_step_0;

lock inC_step_-O__ctrl;

klee_make_symbolic(&inC_step-0O-_ctrl ,sizeof inC_step_-O__ctrl,
"{step:0,dataType:enum._kcg_tag_lock ,parameter:inC_step_0O__ctrl}”);
klee_assume (inC_step-0O__ctrl >= UNLOCKED & inC_step-0O__ctrl <= LOCKED);
inC_step-0.ctrl=inC_step_0__ctrl;

WingMirrors inC_step_0O__wingMirrorData;

kcg_bool inC_step_0O__wingMirrorData__automaticControl;
klee_make_symbolic(&inC_step_0__wingMirrorData__automaticControl ,
sizeof inC_step_O-_wingMirrorData__automaticControl,
"{step:0,dataType: kcg-bool,
parameter:inC_step_O__wingMirrorData__automaticControl}”);
inC_step_0__wingMirrorData.automaticControl=
inC_step_O__wingMirrorData__automaticControl;

WingMirrorState inC_step_O_-_wingMirrorData__mirrorState [2];
WingMirrorState inC_step_O__wingMirrorData__mirrorState____0;
klee_make_symbolic(&inC_step_O__wingMirrorData__mirrorState____0,

sizeof inC_step_O_-_wingMirrorData__mirrorState____0
"{step:0,dataType:enumkcg_tag_WingMirrorState ,
parameter:inC_step_O__wingMirrorData__mirrorState____[0]}”);

klee_assume (inC_step_-0__wingMirrorData__mirrorState.___0 >= OPEN &
inC_step_0O_-_wingMirrorData__mirrorState____0 <= CLOSED);
inC_step_0__wingMirrorData.mirrorState [0] =
inC_step_-0__wingMirrorData__mirrorState____0;

WingMirrorState inC_step_O__wingMirrorData__mirrorState____1;
klee_make_symbolic(&inC_step_0__wingMirrorData__mirrorState____1,
sizeof inC_step_O__wingMirrorData__mirrorState____1
”{step:0,dataType:enum_kcg_tag_WingMirrorState ,
parameter:inC_step-O__wingMirrorData__mirrorState____[1]}”);
klee_assume (inC_step_0__wingMirrorData__mirrorState____1 >=

OPEN & inC_step_O__wingMirrorData__mirrorState____1 <= CLOSED);
inC_step_0__wingMirrorData . mirrorState [1] =
inC_step_-0O__wingMirrorData__mirrorState____1;
inC_step-0.wingMirrorData=inC_step_-O_-_wingMirrorData

Figure 3.5: KLEE representation for the inputs used in of the C program

Figure [3.2]

o1

with KLEE. Figure shows the generated main function for TECS inte-
grated with CBMC. The two differences are __CPROVER_input() (Line 3),
which has two parameters: one is the name provided to the input data to
which those values refer, second is for the provide the fresh boundary val-
ues for the variable and then,_ CPROVER_assume()(Line 5) to control fresh
boundary values within the range.

CBMC requires some special care in the way we can associate the non-
deterministic inputs with corresponding identifier labels, which is needed for
being able to interpret the results from the test generator. As we already
explained, this task is carried out in the test driver in the code of function
enumerateFields (Figure , line by producing a string that concate-
nates the data about the field name, its type, and the number of the current
execution cycle. However, since CBMC does not interpret the string opera-
tors in its formulas, to work with CBMC, we cannot use string concatenation
in the code of the test driver. Conversely, we must produce the code of
function enumerateFields such that it looks up the identifier labels from a
statically unfolded list. This results in the additional requirement of stat-
ically specifying the maximum number of execution cycles to be handled.
This is arguably a limitation we incur with CBMC, but not with the other
approaches considered in this thesis.

3.3.4 Test Synthesis

The last step of the toolchain (Figure , Test synthesis) renders each gen-
erated test input as a test script for SCADE Test. This step exploits the
identifier labels that the test driver associated with the test inputs, in order
to map each input value with specific input fields, correct types and proper
execution cycles in the test scripts.

To synthesize the test cases in SCADE Test format, the TECS Test syn-
thesis renders the test inputs that TECS yielded for a given execution path in
the form of suitable SSM::set test statements and renders the regression ora-
cles that TECS yielded for that path in the form of suitable SSM::check test
statements. For the execution paths that TECS explored by issuing multiple
calls of the program under test, the corresponding test cases shall include a
separate test step (SSM::cycle) for each program call, and the Test synthesis
shall consistently map the test inputs that correspond to each program call
with the inputs of each step within the SCADE test cases.

The Test synthesis relies on a set of naming conventions that the analysis
driver enforces when defining the names for the fresh values. In detail, the
analysis driver makes sure that the name of each fresh symbol specifies (i)
the name of the input field initialized with the fresh symbol, (ii) the type of

92

© 00Uk WN

inC_MirrorChecker_StateMachines inC_step_0;

lock inC_step-0O__ctrl;

__CPROVER_input (” {step:0,dataType:enum.kcg_tag_lock ,
parameter:inC_step-0__ctrl}” ,inC_step_-0__ctrl);
__CPROVER_assume (inC_step_0__ctrl >= UNLOCKED &
inC_step_-0__ctrl <= LOCKED);
inC_step_0.ctrl=inC_step_0__ctrl;

WingMirrors inC_step_0O__wingMirrorData;

kcg_bool inC_step_0O__wingMirrorData__automaticControl;
__CPROVER.input (”{step:0,dataType: kcg_bool
parameter:inC_step_O__wingMirrorData__automaticControl}” ,
inC_step_-0O__wingMirrorData__automaticControl);
inC_step_0__wingMirrorData.automaticControl=
inC_step_0__wingMirrorData__automaticControl;

WingMirrorState inC_step_O__wingMirrorData__mirrorState [2];
WingMirrorState inC_step_O__wingMirrorData__mirrorState____0;
__CPROVER._input (” {step :0,dataType:enum_kcg_tag-WingMirrorState ,
parameter:inC_step_0O__wingMirrorData__mirrorState____0}”,
inC_step_O-_wingMirrorData__mirrorState____0);

__CPROVER_assume(inC_step_0__wingMirrorData__mirrorState____0 >= OPEN &

inC_step_O-_wingMirrorData__mirrorState____0 <= CLOSED);
inC_step_0__wingMirrorData.mirrorState [0] =
inC_step_-0__wingMirrorData__mirrorState____0;

WingMirrorState inC_step_O__wingMirrorData__mirrorState____1;
__.CPROVER_input (” {step:0,dataType:enum.kcg_tag-WingMirrorState ,
parameter:inC_step_O__wingMirrorData__mirrorState____1}”,
inC_step_0__wingMirrorData__mirrorState____1);
__CPROVER.assume(inC_step_-0__wingMirrorData__mirrorState____1 >=
OPEN & inC_step_-0__wingMirrorData__mirrorState____1 <= CLOSED);
inC_step_O__wingMirrorData.mirrorState [1] =
inC_step_0__wingMirrorData__mirrorState____1;
inC_step-0.wingMirrorData=inC_step_-0__wingMirrorData;

Figure 3.6: CBMC representation for the inputs used in of the

Figure [3.2]

33

C program

Name of the fresh symbol (field, type, sequence) Test enum
field type seq | input value
inC.ctrl enum Lock 1 0 UNLOCKED
inC.wingMirrorData.automaticControl ~ boolean 1 false -
inC.wingMirrorData.mirrorState|[0] enum MirrorState 1 0 OPEN
inC.wingMirrorData.mirrorState[1] enum MirrorState 1 0 OPEN
outC.carState enum Lock 1 0 UNLOCKED
outC.mirrorCommand[0] enum MirrorState 1 0 OPEN
outC.mirrorCommand|[1] enum MirrorState 1 0 OPEN
inC.ctrl enum Lock 2 1 LOCKED
inC.wingMirrorData.automaticControl ~ boolean 2 true -
inC.wingMirrorData.mirrorState|[0] enum MirrorState 2 0 OPEN
inC.wingMirrorData.mirrorState[1] enum MirrorState 2 0 OPEN
outC.carState enum Lock 2 1 LOCKED
outC.mirrorCommand[0] enum MirrorState 2 1 CLOSED
outC.mirrorCommand[1] enum MirrorState 2 1 CLOSED

(a) The test inputs that TECS generated for an execution path (through the analysis driver) for
the sample Scade program of Figure [3.2]

TN IR NN NIRRT NI N N N TN IR TR N NIRRT NI NI TN N RIR TR TR I TN N TR TR TRV NI NI TN TR TR TAT)
T A it 1 1 11 11 4 0 1 1 1 i i i 1 i i 1 11 1 1t 11 11

WingMirrorControl_WingMirrorFSM , Test case: 00002

LU g g g) g g g)) g]
T AT AT AT T AT 0 T 1 1 A 11 11 11 11 11 11 11 11 1 11 1 1 11 11 11 11 1 1 4 1 11 11 11 11 1111 11 11 11

#Test step 1

SSM::set ctrl UNLOCKED

SSM:: set wingMirrorData.automaticControl false
SSM:: set wingMirrorData.mirrorState {(OPEN,OPEN)}
SSM:: check carState UNLOCKED

SSM:: check mirrorCommand {(OPEN, OPEN)}

SSM:: cycle

#Test step 2

SSM::set ctrl LOCKED

SSM::set wingMirrorData.automaticControl true
SSM::set wingMirrorData.mirrorState {(OPEN, OPEN)}
SSM:: check carState LOCKED

SSM:: check mirrorCommand {(CLOSED, CLOSED)}

SSM:: cycle

(b) The SCADE test case synthesized out of the test inputs from TECS

Figure 3.7: A test case generated for the sample program of Figure [3.2

the input field, and (iii) the sequence number of the program call for which
the analysis driver instantiated the fresh symbol.

Figureshows the test inputs (Figure .a) that TECS generates for an
execution path through the analysis driver for the sample Scade program of
Figure [3.2] and the SCADE test case that TECS synthesizes correspondingly
(Figure[3.7]b). The figure indicates the test inputs in tabular form to improve
readability. Each row of the table corresponds to a test input provided by
TEcS for each of the fields. The first three columns represent the name that
the analysis driver associated with the fresh symbol. As we described above,
each symbol name is comprised of a field-, type- and sequence-specifier. The

o4

fourth column indicates the specific test input value that TECS returned.
The fifth column shows the matching enumeration value for test inputs of
enumeration types.

As the table indicates, TECS generated 14 inputs for the considered ex-
ecution path. These 14 inputs refer to two subsequent calls of the program
under test that occur within the execution path, as the value of the sequence-
specifier, either 1 or 2, indicates that the first 7 test inputs map to the first
program call, and the following 7 test inputs map to the second program call,
respectively.

Thus, TECS synthesizes a SCADE test case consisting of two test steps
(Figure[3.7b). The first test step sets (SSM::set) ctrl to UNLOCKED, autom-
aticControl to false and mirrorState to OPEN for both wing mirrors. This
results in unlocking the car and opening the wing mirrors, and in fact, the test
case defines the regression oracles (SSM::check) stating that this test step
shall lead to a state in which the carState is equal to UNLOCKED and the
outputs mirrorCommand are both set to OPEN. When the test case executes
the statement SSM::cycle, SCADE executes the test step and checks the values
of the outputs accordingly. The second test step switches ctrl to LOCKED,
and automaticControl to true, then expected in the assertions that the
carState becomes LOCKED while issuing CLOSED for both mirrorCommand
outputs.

We added an Appendix: How to use TECS [5| which guides in building the
tool from our repository for future studies and engineering works.

95

Chapter 4

Experiments and Results

This chapter provides the main contribution of this thesis, reporting and
analysing the experience in creating test suites with TECS on a real indus-
trial project for the development of on onboard signalling unit based on
the ERTMS/ETCS standard for high-speed railway systems, developed with
RFI. As a railway control and protection system, the ERTMS/ETCS system
is safety-critical and must be certified before being deployed: The EN 50128
standard provides the reference framework for the development of this cat-
egory of software systems. With the aim of ensuring the highest degree of
software integrity, RFI is relying on the model-based Scade programming lan-
guage for the development of this safety-critical software. A common tenet
is to rely on Scade programming language that, by its design choices and
controlled semantics, may both decrease the chances of introducing subtle
faults in the programs, and mitigate the hard work for satisfying the certi-
fication requirements. Out of many Scade programs, we selected 37 Scade
programs for the automated test generation approach. Here we are present-
ing a set of experiment results obtained by exploiting the TECS with the
selected programs.

4.1 Experimental Assessment

We performed our experimental assessment on a benchmark of 37 Scade pro-
grams that were already available for testing while doing these experiments,
belonging to the onboard signalling unit for high-speed railway systems de-
veloped at RFI. This system must comply with the ERTMS/ETCS standard,
the European standard aimed at harmonizing the management, control and
safety of the European high-speed railway traffic, prescribing how trains,
track-side devices (e.g., transponders and radio units) and control stations

56

must interoperate to ensure safety objectives like train separation, speed
control and automatic protection upon adverse events. The standard defines
functional safety in terms of a set of procedures that suitable ensembles of
ERTMS/ETCS subsystems must perform in reaction to specific events and
conditions that can be signalled to them during railway operations.

We executed these 37 Scade programs with our tool TECS and calculated
the metrics such as execution time, number of test cases etc. We used the
test cases generated by TECS in the SCADE test suite environment. From the
SCADE test suite results we found out the program faults and calculated the
model coverage for the Scade programs. This information is used to answer
the research questions in section [4.3]

4.2 Subject programs

We considered the 37 Scade programs listed in Table 4.1 The table defines
an identifier (first column) that we use to refer to each subject program used
in the report, and provides a short description (second column) of the task
that each program executes.

These programs are part of the onboard signalling unit for high-speed
rail that our industrial partner is currently developing. For example, the
first program, shunting, implements the Shunting procedure. In railway
terminology, shunting is the process of sorting railway vehicles into complete
trains. When a train is in shunting mode, the on-board unit is responsible
for the supervision of the speed limit that is allowed during the shunting
operations, and to stop the train when it passes the defined border of the
shunting area. The shunting procedure that we consider as a subject program
shall handle the messages that the train receives from both the driver and
the ground signalling equipment, to make decisions on when activating or
deactivating the shunting mode.

The other implement several control tasks, such as checking and veri-
fying the consistency of the data that the on-board unit receives from the
ground components, computations of information for monitoring and con-
trolling the train, rendering appropriate messages to the driver, and sending
commands to the actuators. Table [4.2] summarizes the main statistics on
the internal structure of the subject programs, i.e., the number of the states
(column #States) and state transitions (columns # Transitions) of the state
machine that corresponds to each Scade program, the number of inputs (col-
umn #Inputs) and outputs (column #Outputs) of each Scade program, and
the number of lines of C code that correspond to each program after export-
ing it with KcaG. For the state transitions, the table reports separately the

57

Table 4.1: Subject programs

Subject

‘ #Description

shunting

Sorts railway vehicles into a complete train

dc_1,dc2, ..., dc_14

Check data consistency of received messages

radiohole Deactivates radio connection supervision when the train
is in a radio hole area

crossnonlx Monitors a level crossing area that is not protected by
external authorities

baliseinfo Render’s messages from on-railway transporters to the

driver

emergency_1

Updates on-board data when receiving an emergency
message

emergency_2

Acknowledges radio control centre when receiving an
emergency message

mema Rejects movement authorities if there are emergency
messages

trackside Receives and stores values from trackside equipments

vbe Updates the list of known transponders

coordfromrbe Updates the coordinate system as specified by the

ground control

adfactordmi_1

Warns the driver if the railway adhesion factor is slip-
pery

adfactordmi_2

Renders the railway adhesion factor in the GUI

driveridins Updates the driver ID as indicated through the GUI

eirene Stores the EIRENE number as indicated through the
GUI

ertmslevel Updates the operating level as indicated through the
GUI

natvalues Verifies the national values of the currently traversed
region

networkidins Updates the identifier of the radio network

rbcidins Stores the ID of the radio control centre ID as indicated
through the GUI

trainDataUpdate Updates the train data stored on board

trainDatalnsertion | Inserts new train data among the ones stored on board

messagel29 Notifies changes of train data to the radio control centre

runnumber_1

Updates the train ID on board

runnumber_2

Notifies changes of the train ID to the radio control cen-
tre

38

Table 4.2: Statistics of the subject programs

Scade model C code

Subject #States | #Transitions | #Inputs | #Outputs | LOC®
weak strong

shunting) 2 8 12 14 646
de_1 1 1 - 13 7 175
dc_2 1 1 - 1 2 43
dc_3 1 1 - 5 3 95
dc_4 1 1 - 3 4 62
de.5 1 - 1 3 1 32
dc_6 1 1 - 3 4 67
dc 7 1 - 1 3 1 32
dc_8 1 - 1 2 1 30
dc 9 1 1 - 5 15 464
dc_10 1 1 - 3 9 239
de 11 1 1 - 1 3 69
dc_12 1 1 - 14 17 96
dc_13 1 1 - 3 7 67
dc_14 1 - 1 1 1 35
radiohole 3 2 1 2 2 361
crossnonlx 3 2 1 6 4 556
baliseinfo 1 1 0 1 2 147
emergency_1 1 1 0 9 4 865
emergency_2 1 1 0 9 6 711
mema 1 1 0 4 1 798
trackside 1 1 0 3 0 225
vbe 1 1 0 7 1 1,011
coordfromrbe 1 1 0 1 1 366
adfactordmi_1 1 1 0 3 1 125
adfactordmi_2 1 0 1 1 1 54
driveridins 1 1 0 1 1 262
eirene 1 0 1 3 1 124
ertmslevel 1 0 1 1 1 109
natvalues 1 0 1 1 1 265
networkidins 1 0 1 1 1 109
rbeidins 1 1 0 1 1 189
trainDataUpdate 1 1 0 2 19 136
trainDatalnsertion 1 0 1 2 1 291
messagel29 1 1 0 5 1 353
runnumber_1 1 1 0 1 1 154
runnumber_2 1 1 0 4 1 116

) C code LOC values refer to the lines of code in the C functions specific
to each Scade program, but each program includes more than 8,000
additional lines of code of data-type declarations, which define the data
structures that comprise the inputs and the outputs of the programs.

39

number of weak and strong (non-weak) transitions, since the weak transi-
tions count double in the sequences of transitions that TECS analyzes, as
we explained in Section (Algorithm . The lines of C code refer to
the code within the C functions that specifically correspond to each Scade
program, without counting the lines of code of the data-type definitions in
those programs. In fact, each program includes more than 8,000 further lines
of code that define the data types used in the C functions, and which TECS
parses with ANTLRA4 to instantiate the hook functions of the analysis driver.

For instance, the Scade implementation of shunting is a state machine
with 5 states, 2 weak transitions and 8 strong transitions, in which the states
and the transitions are based on computations and conditions that involve
12 input and 14 output variables, respectively, including the variables that
represent the messages received and sent from onboard unit. Many subjects
(all but shunting, radiohole and crossnonlx) implement computations
that the on-board unit shall keep on repeating at each execution cycle, and
thus they consist of a single state transition which represents the execution of
the computation, and which keeps the program always in the same state. For
instance, the dc_1. .14 programs implement data consistency checks that the
onboard unit shall perform at each execution cycle. These programs define
either a weak or a strong transition according to whether or not, respectively,
the check that they implement depends on feedback loops with their own
outputs.

At the level of the C code, the considered programs range between 30
and 1,011 lines of code (plus the code defining the data types, i.e., as said,
more than 8,000 additional lines of code) being program dc_8 and program
vbc the smallest and the largest program, respectively.

4.3 Research Questions and Metrics

Our experimental assessment was driven by two main research questions:

e RQ1: Effectiveness of automatic test case generation for safety-critical
software in Scade. Our work is based on the research hypothesis that
i) generating test cases that achieve high structural coverage of safety-
critical software requires systematic exploration of the execution space
of the program under test and that ii) in the specific case of safety-
critical software written in Scade, we can successfully generate test
cases that achieve high structural coverage by relying on symbolic ex-
ecution and bounded model checking for systematically exploring the
program execution space.

60

Thus, the (core) research question is whether and to what extent our
systematic test generation strategy, designed on top of symbolic execu-
tion and bounded model checking, is indeed effective for the considered
class of industrial programs.

We addressed this research question by experimentally quantifying the
following indicators:

a. Structural coverage. We aim at studying to what extent the test
cases automatically generated with our approach allow for achiev-
ing high structural coverage of the programs under test.

b. Number of generated test cases. To be practically effective, our
approach should result in test suites of manageable size, which
can be practically handled and maintained by test engineers.

c. Fault detection. We aim at collecting empirical evidence that the
generated test cases are useful to detect faults in the programs
under test.

d. Comparison with search-based testing. We aim at quantifying the
relative strength of the test cases that we generate with our ap-
proach, with respect to the test cases that could be generated with
a search-based approach. This allows us to validate the hypothe-
sis that a systematic exploration of the program execution space
is a necessary condition to generate effective test cases.

e. Comparison with manual testing. We aim at quantifying the rel-
ative contribution of automatically generating the test cases with
our approach, with respect to manually designing the test suites.

e RQ2: Efficiency of symbolic execution and bounded model checking for
generating test cases in a systematic fashion for the class of safety-
critical programs that we consider, i.e., safety-critical programs in
Scade. A technical research hypothesis of our work is that the pro-
gramming rules fostered by Scade enable the efficiency of symbolic ex-
ecution and bounded model checking, by mitigating the common issues
that these techniques suffer against arbitrary programs, that is, (as we
discussed in the introduction) execution space explosion, hardness of
handling pointer aliases, and complexity of the constraints to be solved.
In particular, while the mitigation of the issues with pointer aliases is
implicit since Scade guarantees the absence of pointer aliases, the mit-
igation of the issues with both the size of the execution space and the
complexity of the constraints shall be investigated.

61

We addressed this research question by experimentally quantifying the
following indicators:

a. Execution time. We aim at quantifying the efficiency of our tech-
nique in terms of the time needed to complete the test generation
process.

b. Size of the execution space. We aim at quantifying the size of
the execution space that must be explored to accomplish the test
generation process. In particular, we quantify the size of the ex-
ecution space with indicators that differ in the case of generating
test cases with either symbolic execution or bounded model check-
ing, respectively:

— symbolic execution: we quantify the size of the execution
space as the number of execution paths that must be sym-
bolically analyzed.

— bounded model checking: we quantify the size of the execu-
tion space as the loop unfolding bound that must be set for
allowing bounded model checking to complete the analysis of
the execution space.

c. Complexity of the constraints to be solved. We quantify the time
taken by the SMT constraint solver to provide the solutions for
the constraint-solving queries generated during the analysis.

4.4 Experiment setting

Our case study consisted of a set of experiments, one for each of the subject
programs listed in Table [£.2] in which we ran TECS to generate test cases
for the subject programs, executed the test cases in the SCADE Suite and
collected model coverage data.

We ran TECS on a cloud facility hosted at our university, using a vir-
tual machine equipped with Linux Ubuntu, 48 CPUs, and 150 GB of ram
memory, which allowed for running multiple instances of TECS in parallel.
We integrated TECS with version 2.3-pre of KLEE and version 5.6 of CBMC:
Hereon in this section, we refer to the configurations of TECS integrated
with the backend test generators KLEE or CBMC as TECSK and TEcSC,
respectively.

We handled the Scade programs with SCADE Suite Version 2020 R2,
which includes the corresponding version of the KcG compiler that we use to
obtain the C version of the subjects programs. We executed and measured

62

the O-MC/DC model coverage of the test cases with the tool SCADE Test
Version 2020 R2.

During the experiments, for each subject program, we tracked the num-
ber of paths that TECS identified during the symbolic execution phase as
well as bounded model checking phase, measured the time that it took to
complete the test generation process, counted the number of test cases that
it generated, and computed the model coverage that the test cases achieve
against the Scade programs.

For measuring the model coverage of the test cases we relied on the SCADE
Test tool, which automatically computes the model coverage while executing
the test cases. The coverage computed with SCADE Test refers cumulatively
to the portion of executed states, and the modified condition/decision cov-
erage of the transition guards.

We configured both test generators to address the code coverage of
the C programs according to the criterion that, among the ones that
they support, can work best to address the O-MC/DC model coverage
of the Scade programs under test. TECSK runs KLEE with the option
--only-output-states-covering-new that makes KLEE output only the
test inputs covering new statements. TECSC runs CBMC with the option
--cover mcdc that makes CBMC address MC/DC coverage on the target C
programs. We purposely aimed at the strongest coverage criterion address-
able with each tool, though acknowledging that both backend generators rely
on criteria of different strengths.

CBMC works by statically unrolling the loops in the programs up to a
maximum number of iterations. Yet, it is anyway possible to run CBMC
without explicitly specifying this maximum loop unrolling depth, letting it
unroll the loops up to the number of iterations defined in the code. We in-
deed followed this approach on the basis that Scade enforces statically known
iteration bounds for the loops in the programs. Nonetheless, on six of our
subjects (i.e., with reference to the first column of Table , the subjects
shunting, radiohole, crossnonlx, trackside, vbc and natvalues) exe-
cuting CBMC without specifying the maximum loop unrolling depth resulted
in exhausting the available memory, thus terminating with an error. We,
therefore, analyzed these subjects by setting the maximum loop unrolling
depth of CBMC to 1000, using the command line parameter ——unwind.

Also, In the case of programs shunting, radiohole and crossnonlx
we were able to compare the test cases generated with TECS with manually
selected test suites that were already available for those programs at the time
of our experiment. We compared the manual and the automatic test suites
with respect to their difference in model coverage, focusing on the items that
either test suite covers and the other one does not.

63

For all other subject programs, the engineers at our industrial partners
decided to rely directly on our tool (as TECS in fact became available while
these programs were being implemented), aiming to optimize their effort for
designing and implementing the test cases for these programs.

To this end, they augmented the test cases generated with TECS with
(manually defined) assertion-style test oracles, aiming to obtain test suites
that could be readily used for component-level testing of the considered pro-
grams (other than for future regression testing of those programs). This re-
sulted in a semi-automatic approach to component-level testing empowered
by our tool TECS, and allowed us to further validate the quality of the test
suites generated with TECS in terms of usefulness for detecting component-
level failures in the context of our industrial project.

We remark that, on one hand, this choice of our partner affected our abil-
ity to extensively crosscheck the differences in effectiveness of automatically
and manually generated test suites, respectively, since no manual test suite
existed to compare with for any subject program but shunting, radiohole
and crossnonlx. On the other hand, we believe that the choice of dismissing
fully manual testing in favour of working with semi-automatic test cases (ob-
tained by enriching with assertions the ones generated with TECS) supports
the positive perception of our industrial partner on the effectiveness of our
approach.

4.5 Results

In this section, we aim to answer the research questions by reporting the
experiment results. RQ1 seeks empirical evidence that we can effectively
exploit symbolic execution and bounded model checking to generate test
cases for safety-critical software in Scade. As we explained in Chapter
TECS concertizes this hypothesis by tailoring its implementation of symbolic
execution and bounded model checking on the restrictions by which Kca
fosters by design safety guarantees in the programs.

Thus, as RQ1 states, we aim to empirically study the output provided by
TECS by measuring the size and the structural thoroughness of the generated
test suites. We recall that O-MC/DC is the criterion that Scade advises for
software that shall work with a high integrity level. The certification objec-
tives are required by the highest integrity level of the safety standards. The
latter metric quantifies the efficiency of TECS to obtain the corresponding
degree of (RQl.a) structural coverage i.e., the O-MC/DC model coverage
that the generated test suites achieve for the Scade programs, within an
(RQ1.b) manageable size of test suites which can be handled and maintained

64

by test engineers. Also, we answer the usefulness of TECS to (RQ1.c) detect
program faults and quantify the relative strength of the test cases that we
generate with our approach with an (RQ1.d) search-based testing approach
and (RQl.e) comparing with the manually designed test suites that were
already available for three of the considered programs.

For the RQ2, we aim to experimentally quantify the efficiency of symbolic
execution and bounded model checking for generating test cases in a system-
atic fashion for the class of safety-critical programs by answering the com-
putational effort and (RQ2.a) time budget requirements that result from the
distinctive design of TECS and (RQ2.b) size of the execution space explored
to accomplish or how long it takes overall to complete the test generation
process either with symbolic execution or bounded model checking. Also, we
answer the (RQ2.c) complexity of the constraints to solve by evaluating the
time taken by the SMT constraint solver.

4.5.1 RQ1: Effectiveness of automatic test case gener-
ation for safety-critical software in Scade.

We report the experimental results that show the effectiveness of our tool
TECS for automatic test case generation for Scade programs by evaluating
the generated test cases by considering the achieved O-MC/DC coverage,
size of the generated test cases, the ability of reveal program faults and
comparison with search-based testing and manual testing.

RQ1.a Structural Coverage

We investigate the structural coverage for each subject program, the Table
reports the O-MC/DC coverage obtained with the test suite generated
with TECSK and TECSC, respectively (second and third columns) and the
coverage that we obtain by merging the test suites from the two TECS ver-
sions (fourth column). Here, the column titled by TECSK U TECSC reports
the coverage of the test suite obtained by merging the test suite that either
TeEcSK or TECSC generated for a program. We consider the coverage result
from TECSK U TECsC as the coverage result of TECS.

Table[4.3|(columns TEcsK, TEcsC, TEcsK U TEcsC) highlights in bold
typeface the data of the tools that reached the highest coverage for each pro-
gram, and underlines the cases in which a single tool achieved strictly higher
coverage than others. TECSK achieved the highest coverage for 26 programs
and TECSC achieved the highest coverage for 24 out of 37 programs. They
achieved strictly higher coverage than the other tool 12 times for TECSK
and 10 for TECSC. By merging test two suites, TECSK U TECSC achieved

65

the highest coverage (column TECSK U TECSC) for 15 out of 37 programs,
and this confirms our hypothesis that we can obtain a higher model coverage
exploiting together both TECSK and TECSC. Achieve a model coverage of
100% for 5 programs, at least 90% for 24 further programs and at least 80%
for 7 programs, and 73.50% in the only case of program dc_12.

Table 4.3: Number of test cases and O-MC/DC Coverage for TECSK and
TECcsC

Program TecsK TecsC TecsK U TecsC
#Tests %Cov | #Tests %Cov %Cov
shunting 21 86.60% 56 86.30% 92.10%
dc_1 8 90.60% 13 93.80% 95.00%
dc_2 2 100.00% 1 80.00% 100.00%
dc_3 6 100.00% 4 100.00% 100.00%
dc_4 2 92.40% 4 95.50% 95.50%
dc_5 2 89.30% 3 96.40% 96.40%
dc_6 2 89.70% 5 88.20% 95.60%
dc 7 2 80.00% 2 85.00% 90.00%
dc.8 3 83.30% 2 50.00% 83.30%
dc_9 9 100.00% 4 100.00% 100.00%
dc_10 9 93.00% 5 93.00% 93.00%
dec_11 2 100.00% 2 100.00% 100.00%
dc_12 3 72.10% 12 73.50% 73.50%
dc_13 4 98.20% 4 85.70% 100.00%
dc_14 2 81.80% 4 90.90% 90.90%
radiohole 6 94.90% 21 88.40% 97.50%
crossnonlx 13 84.50% 54 46.30% 86.80%
baliseinfo 2 95.80% 10 95.80% 95.80%
emergency_1 14 93.40% 25 87.40% 94.50%
emergency -2 6 82.10% 32 92.30% 92.70%
mema, 7 88.10% 24 82.60% 93.20%
trackside 3 98.60% 10 98.60% 98.60%
vbe 12 93.70% 18 56.30% 94.80%
coordfromrbc 5 82.60% 26 80.10% 86.20%
adfactordmi_1 3 84.60% 2 84.60% 84.60%
adfactordmi_2 2 96.20% 25 96.20% 96.20%
driveridins 10 89.20% 9 89.20% 89.20%
eirene 3 93.70% 14 95.80% 95.80%
ertmslevel 3 94.40% 9 94.40% 94.40%
natvalues 4 90.00% 7 90.00% 90.00%
networkidins 3 94.40% 4 94.40% 94.40%
rbcidins 4 94.50% 10 94.50% 94.50%
trainDataUpdate 1 89.00% 27 94.00% 95.00%
trainDatalnsertion 3 88.00% 39 90.90% 90.90%
messagel29 10 83.50% 7 57.90% 84.20%
runnumber_1 3 93.80% 9 93.80% 93.80%
runnumber_2 3 84.20% 1 83.20% 86.10%

We inspected the programs with uncovered items in further detail, to
investigate the reason why TECS missed the generation of test cases that

66

cover those items. TECSK scored more than 60% for all the subject programs.
TECSC scored less than 60% coverage for the program crossnonlx and vbc,
mostly due to the limit on the loop unwinding depth that was needed in
these cases, and for programs messagel129 dc_8, for which the inspection
of the data revealed that CBMC was not able to provide suitable solutions
for some reachability formulas. Then we tracked the uncovered items and
prepare four distinct motivations:

e Items that depend on infeasible program paths: In fact, many subject
programs include infeasible paths, the most frequent case being one of
the programs structured with some (sub-)procedures, where the pro-
cedures define general algorithms, but the program calls them only in
specialized contexts (e.g, with constant values, passed for some param-
eters) and thus inhibits the possibility of executing some branches (e.g.,
the branches that depend on parameter values different than the used
constants).

e Unreported coverage: The SCADE Test tool does not report the cover-
age of the items that, although executed during the test cases, do not
map to any observable output of the SCADE operators in the programs
under test. In the considered programs, this happens for a set of oper-
ators defined to update stored data: these operators take an input, and
use it to do the update, without producing any explicit output. This
leads to the SCADE test tool misleadingly classifying some items of our
subject programs as uncovered. As we are discussing with our partner,
this observation calls for some refactoring of the mentioned operators,
to improve the precision of the coverage measurements.

e Functional behaviours out of the scope of the single-state-path-coverage
testing criterion that TECS uses for steering the test generation process:
We observed uncovered functional behaviours in program shunting.
The SCADE model of this program includes two model states in which
the train expects a message from the ground equipment. These states
implement the degraded behaviour of assuming that the ground equip-
ment is not responding if the expected message is not received within
a specific number of execution cycles. As a matter of fact, these be-
haviours correspond to execution sequences that iterate in the same
state for multiple execution cycles and are thus out of the scope of
the single-state-path-coverage testing criterion that TECS is designed
to satisfy.

e Uncovered modified condition/decision targets: As we commented in
Section while discussing the loop unrolling of TECSC, this resulted

67

in a few uncovered modified condition/decision targets in the current
experiments, even if TECS analyzed all execution paths. As said, we
aim to overcome this limitation of TECS in future releases.

Out of the above cases, only the last two map to the limitations of our
approach: the former limitations suggest, for the programs with missing cov-
erage, the strategy of manually complementing the automatically generated
test cases by searching for functional behaviours requiring iterating multi-
ple times through the same state, while the latter could be mitigated by
improving the implementation of TECS.

RQ1.b Number of Generated Test Cases

We further investigated the quantity of the tests generated with TECS. The
safety-critical system required systematical testing and the number of gener-
ated test cases should be manageable in size. Table reports the number
of test cases automatically generated with TECSK and TECSC, respectively
(second and third columns). With reference to Table [.3] TECSK generated
test suites ranging between 1 for the program trainDataUpdate to 21 test
cases for shunting, while TECSC generated test suites ranging between 1
for the program dc_2, runnumber_2 to 56 test cases for shunting, which are
manageable in size. From the industrial experience with SCADE, up to 100
test cases are manageable for the test engineers and for the SCADE test tool
executing them.

RQ1.c Fault Detection

To further investigate the quality of the test suites generated with TECS,
we worked jointly with our industrial partner to exploit those test suites
for component-level testing of the considered programs. To this end, the
test suites generated with TECS were augmented with assertion-style test
oracles defined by test engineers based on the documented requirements,
thus resulting in a semi-automatic approach to generating the component-
level test cases. Manually adding the assertions took limited effort, a few
minutes per test case: It required the test engineers to crosscheck the concrete
inputs already provided in the test cases with the expectations defined in
the specification documents. This, we remark, is a radically simpler task
than the manual effort to design and implement the test cases from scratch,
which encompasses a very much larger set of time-consuming activities (such
as, identifying a functional partitioning out of the requirements, devising
suitable test steps and inputs, and implementing the SCADE test cases from
scratch).

68

Table describes the faults that we identified by executing the test
suites obtained in this way. Overall, we revealed 7 previously unknown faults
in four of the subject programs considered in our experiment. Out of seven
faults identified, two faults relate to algorithms that wrongly defined the
logic stated in the requirements (faults of type Wrongly defined algorithm),
a fault corresponds to an algorithm that missed part of the logic defined in
the requirements (fault of type Missing update of a state variable), a fault
corresponds to a wrongly implemented boundary case (fault of type Output
value out of expected range), a fault corresponds to wrong data updated
to a queue (fault of type Wrong amount of data written in a queue). The
identified bugs are mainly logic ones (that is, errors in the implementation
of an algorithm) or simple ones (for example, < instead of >, errors in the
initialization of a for a cycle, and so on).

These results support the usefulness of the test suites generated with
TEcs for component-level testing.

Table 4.4: Faults identified in the subject programs considered in our case
study

Program fault

dc-10 Wrong amount of data written in a queue
Wrongly defined algorithm

coordfromrbe | Missing update of a state variable

Array updated with the index starting at sec-
ond (instead of first) item

emergency_1 | Output value out of expected range

Wrongly defined algorithm

emergency_2 | Interrelated variables updated in the wrong se-
quence

total 7 faults

RQ1.d Comparison with Search-based Testing

We investigated whether our approach could also work by using search-based
random testing heuristics in place of symbolic execution and bounded model
checking. To this end, we replace the instantiation of our TECS that used the
test generator AFL [19] to produce the test inputs. AFL is a test generator
that is very popular for security vulnerability testing: it starts by perform-
ing random mutations on a set of (seed) inputs provided by developers and
then progresses in a search-based fashion by considering the newly generated
inputs that increase code coverage as additional seeds. In our setting, we

69

executed AFL on the analysis-driver programs generated by TECS, provid-
ing initial seeds that included an input value for each program input that
Tecs handled symbolically when using KLEE: For each subject program,
we seeded AFL with the input values from the first test case that we had
generated when using KLEE.

The task of AFL was then to discover (by means of its search-based heuris-
tics) further input values, as needed to cover the branches of the program
under test. Technically, we exploited the feature of AFL to feed back its own
test generation mechanism with the test cases that execute new branches.
Upon identifying test inputs that make the program execute new branches,
AFL saves those test cases in a queue, aiming to consider them as possible
seeds at the next steps. Thus, for each subject program, we proceeded as
follows: we executed AFL for 5 hours; We used our tool to translate the test
cases in the final queue into test cases in SCADE format; We executed the
test cases with SCADE Test to collect the corresponding coverage data. We
also repeated each test generation attempt 3 times to control for the random
characteristics of AFL.

The Table indicates the O-MC/DC coverage for the test cases gen-
erated with TECS when equipped with KLEE (columns TECSK) or CBMC
(columns TECSC), the coverage obtained when merging the test cases gen-
erated with TECSK and TECSC (columns TECSK U TEcSC), the coverage
obtained with AFL (columns TECSA), the difference between the coverage
of TEcsK U TEcSC and TECSA (column diff-1., the coverage obtained
when merging the test cases generated with TECSK, TEcSC and TECSA
(columns TECcSK U TEcSC U TECSA), and the difference between the cov-
erage of TECSK U TEcsC U TECSA and TECSK U TECSC respectively for
each subject program (column Program).

The data in the table (especially column TECSK,TECSC,TECSA) indi-
cate that the model coverage achieved with TECSA was often significantly
lower than the coverage achieved with TECSK and TECSC. The highlights in
bold typeface identify the data of the tools that reached the highest coverage
for each program, and the underlining identifies the cases in which a single
tool achieved strictly higher coverage than others. TECSA achieved the same
model coverage as TECSK and TECSC for 7 programs (namely, dc_2, dc_3,
dc 9, dc_10, dc_11, adfactordmi 2 and natvalues), achieved more cover-
age than TECSK and TEcsC only for 1 program (namely, runnumber 2),
and achieved less coverage than TECSK and TECSC for the remaining 28
programs. In these 28 cases in which TECSA is outperformed by TECSK U
TEcsC, the difference in coverage ranged between 2.40% and 88.30%, with
a median of 21.40%. By inspecting the coverage objectives that were missed
with AFL, we tracked most untested code to program branches that depend

70

Table 4.5: TECS comparison with search-based testing

Program TecsK TecsC | TecsK U TecsC | TecsA | diff_1. ‘ TecsK U TecsC U TecsA | diff_2.
shunting 86.60% 86.30% 92.10% 45.30% | 46.80% ‘ 92.10% 0.00%
de_1 90.60% 93.80% 95.00% 89.40% 5.60% 99.40% 4.40%
dc_2 100.00% | 80.00% 100.00% 100.00% | 0.00% 100.00% 0.00%
de3 100.00% | 100.00% 100.00% 100.00% | 0.00% 100.00% 0.00%
dc4 92.40% 95.50% 95.50% 86.40% 9.10% 98.50% 3.00%
de_b 89.30% 96.40% 96.40% 89.30% 7.10% 96.40% 0.00%
dc6 89.70% 88.20% 95.60% 83.80% 11.80% 95.60% 0.00%
de 7 80.00% 85.00% 90.00% 50.00% 40.00% 90.00% 0.00%
dc8 83.30% 50.00% 83.30% 41.70% 41.60% 91.70% 8.40%
dc9 100.00% | 100.00% 100.00% 100.00% | 0.00% 100.00% 0.00%
de_10 93.00% 93.00% 93.00% 93.00% 0.00% 93.00% 0.00%
de_11 100.00% | 100.00% 100.00% 100.00% | 0.00% 100.00% 0.00%
de_12 72.10% 73.50% 73.50% 60.30% | 13.20% 79.40% 5.90%
de_13 98.20% 85.70% 100.00% 82.10% | 17.90% 100.00% 0.00%
de_14 81.80% 90.90% 90.90% 63.60% | 27.30% 90.90% 0.00%
radiohole 94.90% 88.40% 97.50% 68.20% | 29.30% 97.50% 0.00%
crossnonlx 84.50% 46.30% 86.80% 19.10% 67.70% 87.00% 0.20%
baliseinfo 95.80% 95.80% 95.80% 44.80% 51.00% 95.80% 0.00%
emergency_1 93.40% | 87.40% 94.50% 6.20% 88.30% 94.50% 0.00%
emergency -2 82.10% 92.30% 92.70% 54.50% 38.20% 92.90% 0.20%
mema 88.10% 82.60% 93.20% 42.80% 50.40% 93.20% 0.00%
trackside 98.60% 98.60% 98.60% 19.60% 79.00% 98.60% 0.00%
vbe 93.70% 56.30% 94.80% 36.90% | 57.90% 94.80% 0.00%
coordfromrbc 82.60% | 80.10% 86.20% 56.50% | 29.70% 86.20% 0.00%
adfactordmi_1 84.60% | 84.60% 84.60% 71.20% | 13.40% 84.60% 0.00%
adfactordmi_2 96.20% | 96.20% 96.20% 96.20% | 0.00% 96.20% 0.00%
driveridins 89.20% 89.20% 89.20% 65.10% 24.10% 89.20% 0.00%
eirene 93.70% 95.80% 95.80% 66.30% 29.50% 95.80% 0.00%
ertmslevel 94.40% 94.40% 94.40% 87.50% 6.90% 94.40% 0.00%
natvalues 90.00% 90.00% 90.00% 90.00% 0.00% 90.00% 0.00%
networkidins 94.40% 94.40% 94.40% 75.00% 19.40% 94.40% 0.00%
rbeidins 94.50% 94.50% 94.50% 49.10% 45.40% 94.50% 0.00%
trainDataUpdate 89.00% | 94.00% 95.00% 60.00% | 35.00% 95.00% 0.00%
trainDatalnsertion | 88.00% | 90.90% 90.90% 88.50% 2.40% 91.40% 0.50%
messagel29 83.50% | 57.90% 84.20% 77.40% | 6.80% 84.20% 0.00%
runnumber_1 93.80% | 93.80% 93.80% 70.40% | 23.40% 93.80% 0.00%
runnumber_2 84.20% 83.20% 86.10% 92.10% | -6.00% 93.10% 7.00%

on singular inputs or very specific input ranges, which arguably are hard to
hit by random mutations. This is a well-known issue in search-based testing.

We further investigated the mutual strengths of the considered approaches
by measuring the coverage achieved with the merged test suites. As reported
in the Table [4.5| fourth column (TECsK U TECsC), 15 programs (out of 37)
achieved more coverage with TECSK U TEcSC, which are highlighted with
a shadowed background. Then, we compared the results of the TECSK U
TECSC with TECSA, (column diff-1.) and find out that there is only one
case (runnumber_2) in which TECSA outperformed TECSK U TEcSC, with
a difference in coverage rather limited (6.00%). In further investigation, we
realized that it is due to a single MC/DC objective that TEcSK U TECsC
did not cover because it missed a specific truth value for a condition that did
not belong to the path condition of the corresponding execution path, while
AFL could hit by mutating inputs at random.

Later on, we investigated the mutual strengths of three possible ap-

71

proaches which are TECSK, TECSC and TECSA and measured the coverage
achieved with the merged test suites, as reported in the seventh column
(TeECcsK U TECcSC U TECSA) of table We highlighted the 8 programs
(out of 37) were we achieved the maximum coverage only when merging
the test suites from all three tools. The column diff 2. results from the
model coverage difference between TECSK U TECSC U TECSA and TECSK
U TEcsC, and we achieve a delta between 0.20% and 8.40%. These results
are comparable apart from few differences, but still there is some comple-
mentarity that is important to understand. Moreover, a merged test suite
with strictly greater coverage than any contained test suite reveals that each
of those test suites hits unique test objectives.

The overall results from Table [4.5|clearly indicate weakness of the random
selection approach, which missed many test objectives, further underscoring
the beneficial impacts of systematic exploration of the program state space
as in symbolic execution and bounded model checking. Anyway, it can be
considered as a complementary to the others, so that the combination of
TecsK U TEcsC U TECSA can hit some unique test objectives. The point
to consider is that for the execution of AFL, we consider the time budget as
5 hours and due to the random testing approach, we repeated the execution
3 times. From Table [£.7] the time taken for the TECSK and TECsC is com-
paratively very low with respect to TECSA. This confirms that systematic
test-generation approaches based on either symbolic execution or bounded
model checking can effectively address automated test generation for Scade
programs, while a search-based approach does not appear per-se to offer com-
parable advantages. By considering all the points, we think that a tool like
AFL does not suit our goal of testing safety-critical software.

RQ1.e Comparison with Manual Testing

In the case of the subject programs shunting, radiohole and crossnonlx
we were able to compare the test cases generated with TECS with manually
selected test suites that were already available for those programs at the
time of our experiment. These test suites were designed in a functional
fashion based on the software requirements specified for the program, using
the model-based test criterion of executing at least once all non-cyclic paths
of the state machine and all conditions involved in the state transitions. The
engineer assigned to this work reported that the analysis of the requirements,
the selection of the test cases and their manual implementation in the test
suite took overall 16 man-hours (two days of work), 6 man-hours (about
half-day) and 9 man-hours (about one day) for shunting, radiohole and
crossnlnlx respectively. He tracked the main challenges to (i) devising

72

a suitable functional partitioning of the relevant cases to be tested (which
in turn required reiterating multiple times the study and the analysis of
the specification documents), (ii) analyzing the implementation to identify
suitable input and test step sequences for exercising the identified set of
relevant cases, and (iii) rendering the test cases in the specific language and
format required by the SCADE test tool (that we exemplified in Figure[3.7b).

Table 4.6: Comparison between automatically (TECSK U TECSC) and man-
ually derived test suites

Manual test suite Tecs
Program || time coverage time coverage
shunting 16 h 95% || 8 h 16 m 92.1%
radiohole 6 h 94% 8 m 97.5%
crossnonlx 9h 80% 37 m 86.8%

Table reports the main statistics of the manual test suites (columns
Manual test suite) for the three considered programs, sided to the statistics
of the test suites that TECS generated (columns TECS) for each of the pro-
grams. For each test suite, we report the time taken to generate the test suite
(column time) and the corresponding model coverage (column coverage).

The manually derived test suites pay higher costs in terms of working
effort (several hours) in comparison with the relatively shorter time that
developers must wait to obtain the test cases with TECS (total time re-
quired for TECSK and TECSC). In terms of coverage, the manual test suite
of shunting achieves higher model coverage than the test suite that TECS
generated for this program, but TECS achieved higher model coverage than
the manual test suites for radiohole and crossnonlx.

We analyzed the difference in the coverage data, focusing in particular
on the items of the coverage domain that either test suite hits and the other
one does not. In detail, for shunting, the manually designed test suite
successfully executed the “degraded behaviours” (since they correspond to
specific transitions indicated in the requirements) that TECS missed as we
already commented above. On the other hand, the manually designed test
suite missed some possible combinations of the conditions that participate
in the transition guards, some of which were hit with TECS thanks to the
systematic analysis of all execution paths in the program. Instead, we did not
find any manually tested behaviour that TECS did not cover in radiohole
and crossnonlx, where TECS was in fact able to cover some additional rare
combinations.

73

4.5.2 RQ2: Efficiency of symbolic execution and
bounded model checking for generating test
cases for safety-critical programs in Scade

Table [4.7| summarises the data on the execution of TECS in our experiments
and the test cases that it generated. For each subject program (column Pro-
gram), the table reports the time in seconds taken to complete the overall test
generation process (column Time) and the number of test cases generated (
column #7Tests) for TECSK and TECSC. For TECSK, it reports the number
of execution paths analysed with symbolic execution (column #Paths), and
for TECSC it reports if CBMC completed the analysis without specifying the
maximum loop unrolling (column Analysis Completed(Y/N)).

The technical research hypothesis of our work is that the programming
rules fostered by Scade enable the efficiency of symbolic execution and
bounded model checking. Hence, they can handle space exploration, the
hardness of handling pointer aliases, can solve complex constraints and can
systematically address all the test objectives without missing any relevant
test objective.

RQ2.a Execution Time

The data in Table 4.7 show that TECS completed in finite time in almost all
experiments, supporting our hypothesis that the language restrictions that
SCADE embraces to promote safe programs can mitigate the problems of
symbolic execution and bounded model checking.

Table shows the execution time (column Times) and the number
of test cases (column #7Tests) for each considered Scade program (column
Program) for the TECSK and TEcSC. We mark with shadowed background
the time data in which either TECSK exhausted the time budget before
completing the symbolic analysis of all program paths, or TECSC required
us to set the maximum loop unrolling depth of CBMC to 1000 for it to
work within the time budget. Without considering these shadowed cases,
the data indicate that TECSK is faster than TECSC on all subjects but
adfactordmi_1.

In detail, for most subject programs, TECSK took a few seconds for 29
programs to complete the test generation process. It took more than 1 minute
only for 8 out of 7 subject programs and more than 10 minutes only for
5 programs, namely, shunting, crossnonlx, trackside, adfactordmi 1,
natvalues, the maximum time being 300 minutes (18000 seconds) in the ex-
periment with program shunting. TECSC completed in less than a minute
for 20 programs, and in more than 10 minutes for 7 subject programs,

74

Table 4.7: TECS: execution time, number of paths and generated test cases

Program TecsK TecsC
Time(s) #Paths #Tests | Time(s) Analysis Completed(Y/N) #Tests

shunting 18000 15196 21 11400 no 56
dec-1 2 616 8 23 yes 13
dc_2 <1 2 2 12 yes 1
dc_3 <1 16 6 15 yes 4
dc 4 1 3 2 14 yes 4
dc b <1 4 2 13 yes 3
dc_6 <1 3 2 16 yes 5
de 7 <1 4 2 11 yes 2
dc_8 <1 4 3 12 yes 2
dc9 2 208 9 16 yes 4
de_10 1 64 9 15 yes 5
de_11 <1 3 2 11 yes 2
dc_12 <1 3 3 23 yes 12
de_13 <1 20 4 16 yes 4
dc_14 <1 4 2 14 yes 4
radiohole 117 45 6 358 no 21
crossnonlx 647 294 13 1618 no 54
baliseinfo 1 3 2 51 yes 10
emergency_1 15 28 14 146 yes 25
emergency_2 29 8 6 4T yes 32
mema 23 17 7 101 yes 24
trackside 1137 3 3 6960 no 10
vbe 164 7 12 2069 no 18
coordfromrbe 41 7 5 74 yes 26
adfactordmi_1 1860 3 3 278 yes 2
adfactordmi 2 1 2 2 34 yes 25
driveridins 5 10 10 60 yes 9
eirene 3 3 3 67 yes 14
ertmslevel 2 3 3 48 yes 9
natvalues 1230 4 4 908 no 7
networkidins 1 3 3 48 yes 4
rbcidins 3 4 4 52 yes 10
trainDataUpdate 47 2 1 68 yes 27
trainDatalnsertion 28 4 3 78 yes 39
messagel29 99 80 10 774 yes 7
runnumber_1 2 3 3 54 yes 9
runnumber_2 3 4 3 73 yes 1

namely shunting, crossnonlx, emergency_2, trackside, vbc, natvalues,
messagel29. Comparatively, TECSC executes better than TECSK only for
subject program adfactordmi_1. We investigated the execution time of
TEcsC and find out that CBMC takes more time for unwinding the maximum
loop and its formula generation when compared with symbolic execution.
In all experiments, TECSK used the most computation time to com-
plete the symbolic execution with KLEE and TECSC with CBMC under the
guidance of the TECS analysis driver, while the other phases of TECS, i.e.,

75

synthesizing the analysis driver, and synthesizing the test case in SCADE
format, took negligible time.

RQ2.b Size of the Execution Space

We investigated the size of the execution space for TECSK and TECSC ex-
plored to accomplish the test generation process. We report that (i) TECSK
efficiently explored the execution space of 36 programs (out of 37) under
test without the need of specifying custom bounds for the analysis and (ii)
TECSC required us to set maximum loop unrolling depth of CBMC to 1000
for its work within the time budget in only some cases.

With respect to symbolic execution, we compute the number of paths
for each subject program shown in Table (column #Paths for TECSK).
We analyse the number of execution paths that symbolic execution explores
for the subject programs and find out that for 36 programs (out of 37) we
are able to efficiently explore the execution space without any custom bound
limits, which provide a shred of clear evidence that the symbolic execution is
efficient for generating test cases for the Scade programs. We set a maximum
time budget of 5 hours for each TECS experiment. For this exceptional case,
namely shunting, symbolic execution was not able to explore all the paths
within the time budget. The reason we identified is that shunting is a state
machine with 5 states, 2 weak transitions, and 8 strong transitions, in which
the states and the transitions are based on computations and conditions that
involve 12 input and 14 output variables, respectively and the use of large
data structure and arrays. The possible way is to extend the time budget
and allow symbolic execution to explore all the path.

For the TECcSC, we investigated whether TECSC is able to complete
test generation without the need of specifying any loop unrolling bound /]
as Scade guarantees that all loops are bounded by design. We found that
this indeed holds for all subject programs but 6 programs out of 37, namely,
shunting, radiohole, crossnonlx, trackside, vbc and natvalues. For
these 6 programs executing CBMC without specifying the maximum loop
unrolling depth results in exhausting the available memory thus terminating
with an error, meaning that, even if the loops are bounded, the execution
space is anyway very large.

For these 6 programs, it was anyway possible for us to run CBMC, but
we analyzed these subjects by setting the maximum loop unrolling depth of
CBMC to 1000, using the command line parameter ——unwind. Since we had
these 6 programs exhausting the memory, we checked them to understand

'Recall that CBMC, which underlies TECSC, works by statically unrolling the loops in
the programs up to a maximum number of iterations.

76

why we got this result. We indeed found that these programs entail a very
large state space, since they use large data structures and arrays, involving
CBMC with unwinding all the items of the arrays.

RQ2.c Complexity of the Constraints to be Solved

We investigated the complexity of the constraints solver queries. In partic-
ular, we focused on the TECSK experiments from Table in which some
subject programs resulted in a (low) number of symbolically executed paths
with respect to their execution time, because in these experiments we thought
the high execution time could depend on the complexity of constraint solving.
For these cases, we investigated whether some complex execution conditions
that took a long time for the constraint solver to compute the solutions. To
this end, we logged the number of queries that the symbolic executor issued
to the constraint solver, and the queries for which the constraint solver took
more than a specified time.

Table shows these data in particular for the subject programs (col-
umn subject) for which TECSK executed for a number of seconds (column
time) higher than the number of symbolically analyzed execution paths (col-
umn #paths). The table reports the number of the queries issued in total
to the solver (column #queries) and is restricted to the ones that took more
than a millisecond to be solved (column >1). As the table shows, indeed
no query took more than a millisecond, confirming that the execution condi-
tions generated during the analysis of the SCADE programs result in simple
constraint-solving problems. For these programs, we were able to map the
execution time to the large data structures that comprise their inputs, which
required the initialization and the handling of many symbolic values during
symbolic execution. We also observe that some programs resulted in many
queries to the constraint solver, despite the low number of symbolically exe-
cuted program paths. This happens when the program paths traverse many
decision points where only one decision is indeed executable: each of those de-
cision points requires to evaluate of two queries (that is, whether the decision
can be true or false, respectively) but, once the constraint solver pinpoints
the unsatisfiable query, we interrupt the exploration of the non-executable
paths and, as a result, the number of symbolically executed program paths
does not increase.

77

Table 4.8: Data on the queries issued to the constraint solver

’ Program \ time (s) #paths #queries >1 ms ‘
radiohole 117 45 484 0
crossnonlx 647 294 502 0
emergency_-2 29 8 280 0
mema, 23 17 122 0
trackside 1137 3 1305 0
vbe 164 7 279 0
coordfromrbe 41 7 155 0
adfactordmi_1 1860 3 1256 0
natvalues 1230 4 1296 0
trainDataUpdate 47 2 215 0
trainDatalnsertion 28 4 121 0
messagel29 99 80 133 0

4.6 Threats to validity

Internal validity concerns whether our conclusions may be wrong due to
methodological errors. A possible issue is that we assessed the strengths of
symbolic execution and bounded model checking by integrating TECS with
one single test generator for each approach. We mitigated this issue by se-
lecting state-of-the-art test generators that have an acknowledged reputation
in the scientific communities of each reference approach. We aim to integrate
TEecs with additional test generators in the future. Furthermore, our find-
ings can be affected by the arbitrary choices of limiting the maximum time
budget of each experiment to 5 hours and, in the case of CBMC, of setting
the loop unrolling depth to 1000 in the experiments in which CBMC ran out
of memory otherwise. Most of the subject programs are single state so the
effectiveness of the SSPC criterion can be evaluated only in the case of three
subjects. Hence, in future, we need to do more experiments to evaluate the
SSPC criterion.

TECS generates test cases without oracles, which may limit the practical
usefulness of the test suites. In the experiments reported in the thesis, we
assessed the effectiveness of the generated test suites based on O-MC/DC
code coverage, because it is relevant for satisfying certification standards.
Besides, in our project, we found it beneficial to augment those test suites
with manually derived oracles, which cost acceptable effort as TECS produced
test suites of a manageable size.

External validity concerns the extent to which our results can generalize
to Scade programs other than the ones that we considered in the experiments.

78

In this respect, the main issue is that all our subject programs belong to the
same project. Nonetheless, on one hand, these programs are a representative
sample of the safety-critical software that our industrial partner typically
develops, following the most prominent certification standards in the railway
sector; On the other hand, the restrictions that SCADE embraces to promote
the safety of the programs are common to other programming languages
for developing safety critical software, e.g., SAFERC. Thus, we believe that
our result might in fact generalised. We could not mitigate this threat in
the current experiments, and we aim to collect further experimental data in
future work.

79

Chapter 5

Conclusion

The development of safety-critical software must ensure with a high degree
of confidence software programs that behave correctly in all operating con-
ditions. To this end, automated software testing can assist in verifying the
programs more thoroughly, more quickly, and at a lower cost than traditional,
manual testing techniques.

In this thesis, we studied the viability of an automated test generation ap-
proach based on symbolic execution and bounded model checking, specifically
tailored to the characteristics of a widely adopted programming language for
safety-critical software systems (Scade).

We demonstrated our prototype tool TECS to automated test generation
for Scade programs, which can be configured to generate test cases based
on symbolic execution and bounded model checking. We provided empirical
evidence of the suitability of TECS on a benchmark of 37 Scade programs
that belong to an industrial onboard train signalling system, and discussed
the generalized systematical approach for the test generation strategies and
the overall effectiveness of the approach as a whole.

In particular, we showed that the systematic test generation strategies of
TECS, based on symbolic execution and model checking, yielded higher struc-
tural coverage than the search-based technique. The successfully produced
test suites that achieved a high model coverage and that, once augmented
with suitable oracles, assist in identifying faults for the considered safety-
critical programs in Scade, while keeping the test generation effort under
control.

The results of this thesis have been partially published at the Interna-
tional Conference of Software Engineering [34] and in the Journal of System
and Software [35].

80

Future work

We envision many opportunities for future research on the topic.

We plan to extend the experimental assessment by considering further
case studies. On one hand, we aim at assessing the scalability of the proposed
approach through the analysis of components with growing complexity. So
that, we can extend TECS to be applied for integration testing.

On the other hand, we would like to investigate the possibility of ex-
tending our approach to safety-critical software developed in programming
languages other than Scade.

We also plan to extend the evaluation of TECS by assessing the fault
detection ability of the generated test suites, e.g. by exploiting a mutation
framework for Scade [142].

Lastly, the test cases generated by TECS currently may contain asser-
tion checks that are usable for regression testing only, but in the future, we
would like to integrate TECS with a component for generating general ora-
cles. Automatic oracle generation is an open research problem, and we are
currently studying how to extend techniques to automatically generate ora-
cles from software annotations [I56] so that the oracles are generated from
the software requirements specification documents.

81

Appendix: How to use TECS

Installing TECS

TECS can presently only be installed by building it from the GitHub source.
As TECS is more feature-ready and stable, formal releases will indeed be
available.

Dependencies

TECS has several dependencies. The current version of TECS support only
the Linux platform, Ubuntu [x86-64]. To build KLEE, follow the KLEE
GitHub instructiond]] The main point to consider while making KLEE for
TECS are,

e Install LLVM 9 or above.
e Install constraint solver, STP best option for TECS.
e Build uClibc and the POSIX environment model.
e Build KLEE.
To install CBMC, follow CBMC installation guidd?

e Install CBMC.

Building TECS

TECS is built with Maven, which is included in the repository. First, ensure
that all the dependencies are present like KLEE, CBMC (see section. Then,
clone the TECS GitHub repository.

thttp://klee.github.io/build-llvim11/
2http://www.cprover.org/cbme/

82

Usage

e Create a folder for each subject program, create an inner folder (called
org_files) and copy the KcaG code and its associated files from SCADE
suite.

e Run the bash code and follow the instructions in the terminal.

e Output scenario(.sss files) are generated in a folder in the same direc-
tory.

83

List of Publications and
Presentations

Publications

1. Kurian, Elson and Briola, Daniela and Braione, Pietro and Denaro,
Giovanni. Automatically Generating Test Cases for Safety-Critical
Software via Symbolic Execution, Journal of Systems and Software,
vol. 199, 2023. [35]

2. Kurian, Elson and Briola, Daniela and Braione, Pietro and Denaro,
Giovanni and Modonato, Matteo and D’Avino, Dario. Automated
Test Case Generation for Safety-Critical Software in Scade, ICSE,
IEEE/ACM International Conference on Software Engineering, 2023,
Paper accepted in ICSE SEIP 2023, to appear. [34]

3. Kurian, Elson and Varghese, Sherwin and Fiorini, Stefano. Towards an
innovative model in wearable expert system for skiing, Metadata and
Semantic Research, March 2021, vol.1355, 403—410.

4. Kurian, Elson and Varghese, Sherwin. Relevance of Bots in Software
and Their Impacts on Software Security, IJAENG Proceedings of the
World Congress on Engineering , July 2021, pages 207-212.

Conference/Presentations

1. Kurian, Elson, Effective Testing of Safety-Critical Software with KLEE,
2nd International KLEE Virtual Workshop on Symbolic Execution, Im-
perial College London, UK, 10-11 June 2021.

84

List of Abbreviations

AFL
API
ASCII
BDD
BMC
CBMC
CENELEC
CNF
ERA
ERTMS
ETCS
IR

IVL
LLVM
Misra
O-MC/DC
RFI
ROBDD
RQ
SBST
SCADE
SSPC
STM
SUT
TECS
UML

American Fuzzy Lop

Application Programming Interface

American Standard Code. for Information Interchange
Binary Decision Diagrams

Bounded Model Checking

C Bounded Model Checking

European Committee for Electrotechnical Standardization
Conjunctive Normal Form

European Union Agency for Railways

European Railway Traffic Management System
European Train Control System

Intermediate Representation

Intermediate Verification Language

Low-Level Virtual Machine

Motor Industry Software Reliability Association
Observable-Modified Condition Decision Coverage
Rete Ferroviaria Italiana

Reduced Ordered Binary Decision Diagrams

Research Question

Search-Based Software Testing

Safety Critical Application Development Environment
Single-State-Path-Coverage

Satisfiability Modulo Theories

System Under Test

Test Engine for Critical software in Scade

Unified Modeling Language

85

Bibliography

1]

2]

RTCA, EUROCAE, DO-178C, Software Considerations in Airborne
Systems and Equipment Certification (2012).

CEI, CEI EN 50128, Railway applications - Communication, signalling
and processing systems - Software for railway control and protection
systems (2020).

M. Brunetto, G. Denaro, L. Mariani, M. Pezze, On introducing
automatic test case generation in practice: A success story and
lessons learned, Journal of Systems and Software 176 (2021) 110933.
doi:https://doi.org/10.1016/j.jss.2021.110933.

URL https://www.sciencedirect.com/science/article/pii/
50164121221000303

S. Xia, B. Di Vito, C. Munoz, Automated test generation for engineer-
ing applications, in: Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’05, Association
for Computing Machinery, New York, NY, USA, 2005, p. 283-286.
doi:10.1145/1101908.1101951.

URL https://doi.org/10.1145/1101908.1101951

R. Singh, Test case generation for object-oriented systems: A review,
in: 2014 Fourth International Conference on Communication Systems
and Network Technologies, 2014, pp. 981-989. |doi:10.1109/CSNT.
2014.201.

G. Fraser, A. Arcuri, A large-scale evaluation of automated unit test
generation using evosuite, ACM Trans. Softw. Eng. Methodol. 24 (2)
(dec 2014). doi:10.1145/2685612.

URL https://doi.org/10.1145/2685612

I. Hooda, R. Chhillar, A review: study of test case generation tech-
niques, International Journal of Computer Applications 107 (16) (2014)
33-37.

86

https://www.sciencedirect.com/science/article/pii/S0164121221000303
https://www.sciencedirect.com/science/article/pii/S0164121221000303
https://www.sciencedirect.com/science/article/pii/S0164121221000303
https://doi.org/https://doi.org/10.1016/j.jss.2021.110933
https://www.sciencedirect.com/science/article/pii/S0164121221000303
https://www.sciencedirect.com/science/article/pii/S0164121221000303
https://doi.org/10.1145/1101908.1101951
https://doi.org/10.1145/1101908.1101951
https://doi.org/10.1145/1101908.1101951
https://doi.org/10.1145/1101908.1101951
https://doi.org/10.1109/CSNT.2014.201
https://doi.org/10.1109/CSNT.2014.201
https://doi.org/10.1145/2685612
https://doi.org/10.1145/2685612
https://doi.org/10.1145/2685612
https://doi.org/10.1145/2685612

8]

[10]

[12]

[13]

[14]

[15]

[16]

L. Hatton, Safer C: Developing Software for in High-integrity and
Safety-critical Systems, McGraw-Hill international series in software
engineering, McGraw-Hill, 1995.

URL https://books.google.it/books?id=fbBQAAAAMAAJ

J. Qian, J. Liu, X. Chen, J. Sun, Modeling and verification of zone con-
troller: The scade experience in china’s railway systems, in: Proceed-
ings of the First International Workshop on Complex FaUlts and Fail-
ures in LargE Software Systems, COUFLESS ’15, IEEE Press, 2015,
p. 48-54.

B. Beichler, T. Schulz, C. Haubelt, F. Golatowski, A parametric
dataflow model for the speed and—fdistance monitoring in novel train
control—-tsystems, in: M. R. Mousavi, C. Berger (Eds.), Cyber Physi-

cal Systems. Design, Modeling, and Evaluation, Springer International
Publishing, Cham, 2015, pp. 56-66.

M. Petit-Doche, N. Breton, R. Courbis, Y. Fonteneau, M. Giide-
mann, Formal verification of industrial critical software, in: M. Nunez,
M. Giidemann (Eds.), Formal Methods for Industrial Critical Systems,
Springer International Publishing, Cham, 2015, pp. 1-11.

S. Karg, A. Raschke, M. Tichy, G. Liebel, Model-driven software en-
gineering in the openetcs project: Project experiences and lessons
learned, in: Proceedings of the ACM/IEEE 19th International Confer-
ence on Model Driven Engineering Languages and Systems, MODELS
’16, Association for Computing Machinery, New York, NY, USA, 2016,
p. 238-248. doi:10.1145/2976767.2976811.

M. Gudemann, A. Angerer, F. Ortmeier, W. Reif, Modeling of self
adaptive systems with scade, in: 2007 IEEE International Symposium
on Circuits and Systems, 2007, pp. 2922-2925.

T. Le Sergent, Scade: A comprehensive framework for critical system
and software engineering, in: 1. Ober, 1. Ober (Eds.), SDL 2011: In-
tegrating System and Software Modeling, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012, pp. 2-3.

J.-L. Camus, Esterel scade approach to mbd, Digital Avionics Hand-
book. Taylor & Francis Group (2015).

X. Fornari, Understanding how SCADE suite KCG generates safe C
code, Esterel Technologies, 2010.

87

https://books.google.it/books?id=fbBQAAAAMAAJ
https://books.google.it/books?id=fbBQAAAAMAAJ
https://books.google.it/books?id=fbBQAAAAMAAJ
https://doi.org/10.1145/2976767.2976811

[17]

[21]

[22]

G. Berry, SCADE: Synchronous design and validation of embedded
control software, in: S. Ramesh, P. Sampath (Eds.), Next Generation
Design and Verification Methodologies for Distributed Embedded Con-
trol Systems, Springer Netherlands, Dordrecht, 2007, pp. 19-33.

J. W. Duran, S. C. Ntafos, An evaluation of random testing, IEEE
Transactions on Software Engineering 10 (4) (1984) 438-444.

American fuzzy lop. (Accessed January 2022).
URL https://lcamtuf.coredump.cx/afl/

C. Pacheco, S. K. Lahiri, M. D. Ernst, T. Ball, Feedback-directed ran-
dom test generation, in: Proceedings of the International Conference
on Software Engineering, ICSE ’07, ACM, 2007, pp. 75-84.

P. Tonella, Evolutionary testing of classes, in: Proceedings of the In-
ternational Symposium on Software Testing and Analysis, ISSTA 04,
ACM, 2004, pp. 119-128.

G. Fraser, A. Arcuri, Evosuite: Automatic test suite generation for
object-oriented software, in: Proceedings of the European Software
Engineering Conference held jointly with the ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, ESEC/FSE
11, ACM, 2011, pp. 416-419.

L. A. Clarke, A system to generate test data and symbolically execute
programs, IEEE Transactions on Software Engineering SE-2 (3) (1976)
215-222. |doi:10.1109/TSE.1976.233817.

J. C. King, Symbolic execution and program testing, Communications
of the ACM 19 (7) (1976) 385-394.

D. E. Cristian Cadar, Daniel Dunbar, Klee: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs,
USENIX Association (2008/12/8).

P. Godefroid, M. Y. Levin, D. A. Molnar, Automated whitebox fuzz
testing, in: Network Distributed Security Symposium (NDSS), Internet
Society, 2008.

URL http://www.truststc.org/pubs/499.html

V. Chipounov, V. Kuznetsov, G. Candea, The s2e platform: Design,
implementation, and applications, ACM Transactions on Computer
Systems (TOCS) 30 (1) (2012) 2.

88

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://doi.org/10.1109/TSE.1976.233817
http://www.truststc.org/pubs/499.html
http://www.truststc.org/pubs/499.html
http://www.truststc.org/pubs/499.html

[28]

[29]

[30]

[31]

[33]

[34]

[35]

[36]

N. Tillmann, J. de Halleux, Pex: White box test generation for .NET,
in: Proceedings of the International Conference on Tests and Proofs,
TAP ’08, Springer, 2008, pp. 134-153.

P. Braione, G. Denaro, M. Pezze, JBSE: A symbolic executor for Java
programs with complex heap inputs, in: Proceedings of the European
Software Engineering Conference held jointly with the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ES-
EC/FSE 16, ACM, 2016, pp. 1018-1022.

P. Braione, G. Denaro, A. Mattavelli, M. Pezze, Combining symbolic
execution and search-based testing for programs with complex heap
inputs, in: Proceedings of the International Symposium on Software
Testing and Analysis, ISSTA 17, ACM, 2017, pp. 90-101.

E. Clarke, D. Kroening, F. Lerda, A tool for checking ANSI-C pro-
grams, in: K. Jensen, A. Podelski (Eds.), Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2004), Vol. 2988 of
Lecture Notes in Computer Science, Springer, 2004, pp. 168-176.

S. Khurshid, C. S. Pasareanu, W. Visser, Generalized symbolic execu-
tion for model checking and testing, in: H. Garavel, J. Hatcliff (Eds.),
Tools and Algorithms for the Construction and Analysis of Systems,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 553-568.

C. Cadar, D. Dunbar, D. Engler, Klee: Unassisted and automatic gen-
eration of high-coverage tests for complex systems programs, in: Pro-
ceedings of the Symposium on Operating Systems Design and Imple-
mentation, OSDI "08, USENIX Association, 2008, pp. 209-224.

E. Kurian, D. Briola, P. Braione, G. Denaro, M. Modonato,
D. D’Avino, Automated test case generation for safety-critical soft-
ware in scade, in: Proceedings of the IEEE/ACM International Confer-
ence on Software Engineering (ICSE): Software Engineering in Practice
track, (To Appear), 2023.

E. Kurian, D. Briola, P. Braione, G. Denaro, Automatically generating
test cases for safety-critical software via symbolic execution, Journal of
Systems and Software 199 (2023) 111629. doi:https://doi.org/10.
1016/j.3jss.2023.111629.

K. P. Chan, T. Y. Chen, D. Towey, Normalized restricted random
testing, in: J.-P. Rosen, A. Strohmeier (Eds.), Reliable Software Tech-

89

https://doi.org/https://doi.org/10.1016/j.jss.2023.111629
https://doi.org/https://doi.org/10.1016/j.jss.2023.111629

[37]

[45]

nologies — Ada-Europe 2003, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2003, pp. 368-381.

K. Claessen, J. Hughes, Quickcheck: A lightweight tool for random
testing of haskell programs, in: Proceedings of the Fifth ACM SIG-
PLAN International Conference on Functional Programming, ICFP
’00, Association for Computing Machinery, New York, NY, USA, 2000,
p. 268-279. doi:10.1145/351240.351266.

URL https://doi.org/10.1145/351240.351266

M. Oriol, S. Tassis, Testing .net code with yeti, in: 2010 15th IEEE In-
ternational Conference on Engineering of Complex Computer Systems,
2010, pp. 264-265. ldoi:10.1109/ICECCS.2010.58.

K. V. Hanford, Automatic generation of test cases, IBM Systems Jour-
nal 9 (4) (1970) 242 257. |doi:10.1147/s].94.0242.

G. J. Myers, The Art Of Software Testing, John Wiley & Sons, 1979.

D. L. Bird, C. U. Munoz, Automatic generation of random self-checking
test cases, IBM Syst. J. 22 (1983) 229-245.

R. Hamlet, Random Testing, John Wiley and Sons, Ltd, 2002.
doi:https://doi.org/10.1002/0471028959.s0f268.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/
0471028959.s0£268

G. J. Myers, C. Sandler, T. Badgett, The art of software testing, John
Wiley and amp; Sons, 2012.

I. Ciupa, A. Leitner, M. Oriol, B. Meyer, Experimental assessment of
random testing for object-oriented software, in: Proceedings of the 2007
International Symposium on Software Testing and Analysis, ISSTA *07,
Association for Computing Machinery, New York, NY, USA, 2007, p.
84-94. doi:10.1145/1273463.1273476.

URL https://doi.org/10.1145/1273463.1273476

A. Leitner, M. Oriol, A. Zeller, I. Ciupa, B. Meyer, Efficient unit test
case minimization, in: Proceedings of the Twenty-Second IEEE/ACM
International Conference on Automated Software Engineering, ASE
'07, Association for Computing Machinery, New York, NY, USA, 2007,
p. 417-420. doi:10.1145/1321631.1321698.

URL https://doi.org/10.1145/1321631.1321698

90

https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1109/ICECCS.2010.58
https://doi.org/10.1147/sj.94.0242
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471028959.sof268
https://doi.org/https://doi.org/10.1002/0471028959.sof268
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471028959.sof268
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471028959.sof268
https://doi.org/10.1145/1273463.1273476
https://doi.org/10.1145/1273463.1273476
https://doi.org/10.1145/1273463.1273476
https://doi.org/10.1145/1273463.1273476
https://doi.org/10.1145/1321631.1321698
https://doi.org/10.1145/1321631.1321698
https://doi.org/10.1145/1321631.1321698
https://doi.org/10.1145/1321631.1321698

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

J. W. Duran, S. Ntafos, A report on random testing, in: Proceedings
of the Hth International Conference on Software Engineering, ICSE "81,
IEEE Press, 1981, p. 179-183.

K. Sen, Effective random testing of concurrent programs, in: Pro-
ceedings of the Twenty-Second IEEE/ACM International Conference
on Automated Software Engineering, ASE 07, Association for Com-
puting Machinery, New York, NY, USA, 2007, p. 323-332. doi:
10.1145/1321631.1321679.

URL https://doi.org/10.1145/1321631.1321679

I. Ciupa, A. Leitner, M. Oriol, B. Meyer, Artoo: Adaptive random
testing for object-oriented software, in: Proceedings of the 30th In-
ternational Conference on Software Engineering, ICSE 08, Associa-
tion for Computing Machinery, New York, NY, USA, 2008, p. 71-80.
doi:10.1145/1368088.1368099.

URL https://doi.org/10.1145/1368088.1368099

D. Hamlet, R. Taylor, Partition testing does not inspire confidence
(program testing), IEEE Transactions on Software Engineering 16 (12)
(1990) 1402-1411. doi:10.1109/32.62448.

S. Ntafos, On random and partition testing, SIGSOFT Softw. Eng.
Notes 23 (2) (1998) 42-48. doi:10.1145/271775.271788,
URL https://doi.org/10.1145/271775.271785

B. P. Miller, L. Fredriksen, B. So, An empirical study of the reliability
of unix utilities, Commun. ACM 33 (12) (1990) 32-44. doi:10.1145/
96267 .96279.

URL https://doi.org/10.1145/96267.96279

J. E. Forrester, B. P. Miller, An empirical study of the robustness of
windows nt applications using random testing, in: Proceedings of the
4th Conference on USENIX Windows Systems Symposium - Volume
4, WSS’00, USENIX Association, USA, 2000, p. 6.

B. P. Miller, G. Cooksey, F. Moore, An empirical study of the robust-
ness of macos applications using random testing, in: Proceedings of
the 1st International Workshop on Random Testing, RT 06, Associa-
tion for Computing Machinery, New York, NY, USA, 2006, p. 46-54.
doi:10.1145/1145735.1145743,

URL https://doi.org/10.1145/1145735.1145743

91

https://doi.org/10.1145/1321631.1321679
https://doi.org/10.1145/1321631.1321679
https://doi.org/10.1145/1321631.1321679
https://doi.org/10.1145/1321631.1321679
https://doi.org/10.1145/1368088.1368099
https://doi.org/10.1145/1368088.1368099
https://doi.org/10.1145/1368088.1368099
https://doi.org/10.1145/1368088.1368099
https://doi.org/10.1109/32.62448
https://doi.org/10.1145/271775.271785
https://doi.org/10.1145/271775.271785
https://doi.org/10.1145/271775.271785
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/1145735.1145743
https://doi.org/10.1145/1145735.1145743
https://doi.org/10.1145/1145735.1145743
https://doi.org/10.1145/1145735.1145743

[54]

[55]

[56]

[57]

[61]

[62]

P. McMinn, Search-based software test data generation: a survey, Soft-
ware Testing, Verification and Reliability 14 (2004) 105-156.

W. Miller, D. Spooner, Automatic generation of floating-point test
data, IEEE Transactions on Software Engineering SE-2 (3) (1976) 223—
226. |doi:10.1109/TSE.1976.233818.

B. Korel, Automated software test data generation, IEEE Transactions
on Software Engineering 16 (8) (1990) 870-879.

B. Korel, Dynamic method for software test data generation, Software
Testing, Verification and Reliability 2 (4) (1992) 203-213. arXiv:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.
4370020405, doi:https://doi.org/10.1002/stvr.4370020405.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.
4370020405

O. BUEHLER, J. Wegener, Evolutionary functional testing of an au-
tomated parking system (01 2003).

O. Biihler, J. Wegener, Evolutionary functional testing,
Computers and Operations Research 35 (10) (2008) 3144-
3160, part Special Issue: Search-based Software Engineering.
doi:https://doi.org/10.1016/j.cor.2007.01.015.

URL https://www.sciencedirect.com/science/article/pii/
S50305054807000329

P. Puschner, R. Nossal, Testing the results of static worst-case
execution-time analysis, in: Proceedings 19th I[EEE Real-Time Sys-
tems Symposium (Cat. No.98CB36279), 1998, pp. 134-143. doi:
10.1109/REAL.1998.739738.

J. Wegener, H. Sthamer, B. Jones, D. Eyres, Testing real-time systems
using genetic algorithms, Software Quality Journal 6 (1997) 127-135.
doi:10.1023/a:1018551716639.

L. C. Briand, J. Feng, Y. Labiche, Using genetic algorithms and cou-
pling measures to devise optimal integration test orders, in: Proceed-
ings of the 14th International Conference on Software Engineering and
Knowledge Engineering, SEKE 02, Association for Computing Ma-
chinery, New York, NY, USA, 2002, p. 43-50. doi:10.1145/568760.
568769.

URL https://doi.org/10.1145/568760.568769

92

https://doi.org/10.1109/TSE.1976.233818
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.4370020405
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.4370020405
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.4370020405
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.4370020405
https://doi.org/https://doi.org/10.1002/stvr.4370020405
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.4370020405
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.4370020405
https://www.sciencedirect.com/science/article/pii/S0305054807000329
https://doi.org/https://doi.org/10.1016/j.cor.2007.01.015
https://www.sciencedirect.com/science/article/pii/S0305054807000329
https://www.sciencedirect.com/science/article/pii/S0305054807000329
https://doi.org/10.1109/REAL.1998.739738
https://doi.org/10.1109/REAL.1998.739738
https://doi.org/10.1023/a:1018551716639
https://doi.org/10.1145/568760.568769
https://doi.org/10.1145/568760.568769
https://doi.org/10.1145/568760.568769
https://doi.org/10.1145/568760.568769
https://doi.org/10.1145/568760.568769

[63]

[64]

[68]

[69]

[70]

Z. Li, M. Harman, R. M. Hierons, Search algorithms for regression test
case prioritization, IEEE Transactions on Software Engineering 33 (4)
(2007) 225-237. doi:10.1109/TSE.2007.38.

J. Wegener, A. Baresel, H. Sthamer, Evolutionary test environment
for automatic structural testing, Information and Software Technology
43 (14) (2001) 841-854.

L. C. Briand, Y. Labiche, M. Shousha, Stress testing real-time systems
with genetic algorithms, in: Proceedings of the 7th Annual Conference
on Genetic and Evolutionary Computation, GECCO ’05, Association
for Computing Machinery, New York, NY, USA, 2005, p. 1021-1028.
doi:10.1145/1068009.1068183.

URL https://doi.org/10.1145/1068009.1068183

Y. Jia, M. Harman, An analysis and survey of the development of
mutation testing, IEEE Transactions on Software Engineering 37 (5)
(2011) 649-678.

K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, R. S. Roos, Timeaware
test suite prioritization, in: Proceedings of the 2006 International
Symposium on Software Testing and Analysis, ISSTA ’06, Associa-
tion for Computing Machinery, New York, NY, USA, 2006, p. 1-12.
doi:10.1145/1146238.1146240.

URL https://doi.org/10.1145/1146238.1146240

K. Derderian, R. Hierons, M. Harman, G. Qiang, Automated unique in-
put output sequence generation for conformance testing of fsms, Com-
puter Journal 49 (05 2006). doi:10.1093/comjnl/bx1003.

N. Tracey, J. Clark, K. Mander, J. McDermid, |Automated test-data
generation for exception conditions, Softw. Pract. Exper. 30 (1) (2000)
61-79. doi:10.1002/(SICI)1097-024X(200001)30:1\%3C61::
ATD-SPE292\}3E3.0.C0;2-9.

URL https://doi.org/10.1002/(SICI)1097-024X(200001)30:
1%3C61: :AID-SPE292}3E3.0.C0;2-9

M. Harman, B. F. Jones, Search-based software engineering,
Information and Software Technology 43 (14) (2001) 833-839.
doi:https://doi.org/10.1016/S0950-5849(01)00189-6.

URL https://www.sciencedirect.com/science/article/pii/
509505684901001896

93

https://doi.org/10.1109/TSE.2007.38
https://doi.org/10.1145/1068009.1068183
https://doi.org/10.1145/1068009.1068183
https://doi.org/10.1145/1068009.1068183
https://doi.org/10.1145/1068009.1068183
https://doi.org/10.1145/1146238.1146240
https://doi.org/10.1145/1146238.1146240
https://doi.org/10.1145/1146238.1146240
https://doi.org/10.1145/1146238.1146240
https://doi.org/10.1093/comjnl/bxl003
https://doi.org/10.1002/(SICI)1097-024X(200001)30:1%3C61::AID-SPE292%3E3.0.CO;2-9
https://doi.org/10.1002/(SICI)1097-024X(200001)30:1%3C61::AID-SPE292%3E3.0.CO;2-9
https://doi.org/10.1002/(SICI)1097-024X(200001)30:1%3C61::AID-SPE292%3E3.0.CO;2-9
https://doi.org/10.1002/(SICI)1097-024X(200001)30:1%3C61::AID-SPE292%3E3.0.CO;2-9
https://doi.org/10.1002/(SICI)1097-024X(200001)30:1%3C61::AID-SPE292%3E3.0.CO;2-9
https://doi.org/10.1002/(SICI)1097-024X(200001)30:1%3C61::AID-SPE292%3E3.0.CO;2-9
https://www.sciencedirect.com/science/article/pii/S0950584901001896
https://doi.org/https://doi.org/10.1016/S0950-5849(01)00189-6
https://www.sciencedirect.com/science/article/pii/S0950584901001896
https://www.sciencedirect.com/science/article/pii/S0950584901001896

[71]

[72]

[75]

[77]

[78]

[79]

P. McMinn, Search-based software test data generation: a survey: Re-
search articles, Softw. Test., Verif. Reliab. 14 (2004) 105-156. doi:
10.1002/stvr.294.

B. Armin, C. Alessandro, M. C. Edmund, Y. Yunshan, Symbolic model
checking without bdds, in: Proceedings of the International Conference
on Tools and Algorithms for Construction and Analysis of Systems,
Springer, 1999, pp. 193-207.

E. M. Clarke, E. A. Emerson, Design and synthesis of synchronization
skeletons using branching time temporal logic, in: Workshop on logic
of programs, Springer, 1981, pp. 52-71.

A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu, Bounded
model checking), Vol. 58 of Advances in Computers, Elsevier, 2003, pp.
117-148. doi:https://doi.org/10.1016/S0065-2458(03)58003-2.
URL https://www.sciencedirect.com/science/article/pii/
50065245803580032

E. Emerson, E. M. Clarke, Using branching time tempo-
ral logic to synthesize synchronization skeletons, Science of
Computer Programming 2 (3) (1982) 241-266. doi:https:
//doi.org/10.1016/0167-6423(83)90017-5.

URL https://www.sciencedirect.com/science/article/pii/
0167642383900175

J. Burch, E. Clarke, K. McMillan, D. Dill, L. Hwang, [Sym-
bolic model checking: 1020 states and beyond, Informa-
tion and Computation 98 (2) (1992) 142-170. doi:https:
//doi.org/10.1016/0890-5401(92)90017-A.

URL https://www.sciencedirect.com/science/article/pii/
089054019290017A

O. Coudert, J. Madre, A unified framework for the formal verification
of sequential circuits, 1990, pp. 126 — 129. doi:10.1109/ICCAD.1990.
129859.

R. E. Bryant, Graph-based algorithms for boolean function manip-
ulation, IEEE Transactions on Computers C-35 (8) (1986) 677—691.
doi:10.1109/tc.1986.1676819.

F. Ivanci¢, Z. Yang, M. K. Ganai, A. Gupta, I. Shlyakhter, P. Ashar,
F-soft: Software verification platform, in: K. Etessami, S. K. Raja-

94

https://doi.org/10.1002/stvr.294
https://doi.org/10.1002/stvr.294
https://www.sciencedirect.com/science/article/pii/S0065245803580032
https://www.sciencedirect.com/science/article/pii/S0065245803580032
https://doi.org/https://doi.org/10.1016/S0065-2458(03)58003-2
https://www.sciencedirect.com/science/article/pii/S0065245803580032
https://www.sciencedirect.com/science/article/pii/S0065245803580032
https://www.sciencedirect.com/science/article/pii/0167642383900175
https://www.sciencedirect.com/science/article/pii/0167642383900175
https://doi.org/https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/https://doi.org/10.1016/0167-6423(83)90017-5
https://www.sciencedirect.com/science/article/pii/0167642383900175
https://www.sciencedirect.com/science/article/pii/0167642383900175
https://www.sciencedirect.com/science/article/pii/089054019290017A
https://www.sciencedirect.com/science/article/pii/089054019290017A
https://doi.org/https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/https://doi.org/10.1016/0890-5401(92)90017-A
https://www.sciencedirect.com/science/article/pii/089054019290017A
https://www.sciencedirect.com/science/article/pii/089054019290017A
https://doi.org/10.1109/ICCAD.1990.129859
https://doi.org/10.1109/ICCAD.1990.129859
https://doi.org/10.1109/tc.1986.1676819

[80]

[36]

[87]

mani (Eds.), Computer Aided Verification, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005, pp. 301-306.

M. Kleine Biining, C. Sinz, D. Faragd, Qpr verify: A static analy-
sis tool for embedded software based on bounded model checking, in:
M. Christakis, N. Polikarpova, P. S. Duggirala, P. Schrammel (Eds.),
Software Verification, Springer International Publishing, Cham, 2020,
pp. 21-32.

Z. Rakamaric, M. Emmi, Smack: Decoupling source language details
from verifier implementations, Vol. 8559, 2014, pp. 106-113. doi:10.
1007/978-3-319-08867-9_7.

C. Lattner, V. Adve, Llvim: a compilation framework for lifelong pro-
gram analysis and transformation, in: International Symposium on
Code Generation and Optimization, 2004. CGO 2004., 2004, pp. 75—
86. doi:10.1109/CG0.2004.1281665.

R. DeLIne, R. Leino, Boogiepl: A typed procedural language for
checking object-oriented programs, Tech. Rep. MSR-TR-2005-70
(March 2005).

URL https://www.microsoft.com/en-us/research/wp-content/
uploads/2016/02/tr-2005-70.pdf

C. Barrett, A. Stump, C. Tinelli, The smt-lib standard - version 2.0, in:
Proceedings of the 8th international workshop on satisfiability modulo
theories, Edinburgh, Scotland,(SMT ’10), 2010.

M. R. Gadelha, F. R. Monteiro, J. Morse, L. C. Cordeiro, B. Fis-
cher, D. A. Nicole, Esbmc 5.0: An industrial-strength ¢ model checker,
in: Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, Association for Com-
puting Machinery, New York, NY, USA, 2018, p. 888-891. doi:
10.1145/3238147.3240481.

URL https://doi.org/10.1145/3238147.3240481

Domars, Static driver verifier - windows drivers.
URL https://learn.microsoft.com/en-us/windows-hardware/
drivers/devtest/static-driver-verifier

A. Lal, S. Qadeer, Powering the static driver verifier using corral,
in: Proceedings of the 22nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, FSE 2014, Association

95

https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1109/CGO.2004.1281665
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2005-70.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2005-70.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2005-70.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2005-70.pdf
https://doi.org/10.1145/3238147.3240481
https://doi.org/10.1145/3238147.3240481
https://doi.org/10.1145/3238147.3240481
https://doi.org/10.1145/3238147.3240481
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/static-driver-verifier
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/static-driver-verifier
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/static-driver-verifier
https://doi.org/10.1145/2635868.2635894

[89]

[90]

[92]

93]

for Computing Machinery, New York, NY, USA, 2014, p. 202-212.
doi:10.1145/2635868.2635894.
URL https://doi.org/10.1145/2635868.2635894

M. K. Ganai, A. Gupta, P. Ashar, Diver: Sat-based model checking
platform for verifying large scale systems, in: N. Halbwachs, L. D.
Zuck (Eds.), Tools and Algorithms for the Construction and Analysis

of Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp.
575-580.

N. Eén, N. Sorensson, An extensible sat-solver, in: E. Giunchiglia,
A. Tacchella (Eds.), Theory and Applications of Satisfiability Testing,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 502-518.

S. Khurshid, C. S. Pasareanu, W. Visser, Generalized symbolic exe-
cution for model checking and testing, in: Proceedings of the Inter-
national Conference on Tools and Algorithms for Construction and
Analysis of Systems, TACAS ’03, Springer, 2003.

P. Godefroid, N. Klarlund, K. Sen, Dart: directed automated random
testing, in: Proceedings of the Conference on Programming Language
Design and Implementation, PLDI "05, ACM, 2005, pp. 213-223.

Coverity.
URL http://www.coverity.com/

Appscan.
URL http://www-01.ibm.com/software/awdtools/appscan/

94] [Webuspect

[95]

[96]

[97]

URL www.hp.com/go/appsec/

C. Cadar, D. R. Engler, Execution generated test cases: How to make
systems code crash itself, in: Proceedings of the International SPIN
Workshop on SPIN Model Checking and Software Verification, SPIN
'05, Springer, 2005, pp. 245-264.

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, D. R. Engler, Exe:
Automatically generating inputs of death, CCS ’06, ACM, 2006, pp.
322-335.

K. Sen, D. Marinov, G. Agha, Cute: A concolic unit testing engine for
¢, SIGSOFT Softw. Eng. Notes 30 (5) (2005) 263-272. doi:10.1145/
1095430.1081750.

URL https://doi.org/10.1145/1095430.1081750

96

https://doi.org/10.1145/2635868.2635894
https://doi.org/10.1145/2635868.2635894
http://www.coverity.com/
http://www.coverity.com/
http://www-01.ibm.com/software/awdtools/appscan/
http://www-01.ibm.com/software/awdtools/appscan/
www.hp.com/go/appsec/
https://doi.org/10.1145/1095430.1081750
https://doi.org/10.1145/1095430.1081750
https://doi.org/10.1145/1095430.1081750
https://doi.org/10.1145/1095430.1081750
https://doi.org/10.1145/1095430.1081750

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

107]

R. Majumdar, K. Sen, Hybrid concolic testing, in: Proceedings of the
International Conference on Software Engineering, ICSE '07, IEEE
Computer Society, 2007, pp. 416-426.

P. Godefroid, Compositional dynamic test generation, in: Proceedings
of the Symposium on Principles of Programming Languages, POPL’07,
ACM, 2007, pp. 256-267.

P. Boonstoppel, C. Cadar, D. Engler, Rwset: Attacking path ex-
plosion in constraint-based test generation, in: Proceedings of the
Theory and Practice of Software, 14th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg, 2008, p.
351-366.

J. Burnim, K. Sen, Heuristics for scalable dynamic test generation, in:
Proceedings of the International Conference on Automated Software
Engineering, IEEE Computer Society, 2008, pp. 443-446.

G.-C. Roman, A. van der Hoek, A. Sigsoft., A. for Computing Ma-
chinery., Directed Test Suite Augmentation Techniques and Tradeoffs,
ACM, 2010.

M. Ruse, T. Sarkar, S. Basu, Analysis & detection of sql injection
vulnerabilities via automatic test case generation of programs, 2010,
pp. 31-37. |doi:10.1109/SAINT.2010.60.

Y. Kim, M. Kim, N. Dang, Scalable distributed concolic testing: A case
study on a flash storage platform, in: Proceedings of the 7th Interna-

tional Colloquium Conference on Theoretical Aspects of Computing,
ICTAC’10, Springer-Verlag, Berlin, Heidelberg, 2010, p. 199-213.

M. Baluda, P. Braione, G. Denaro, M. Pezze, Structural coverage of
feasible code, in: Proceedings of 5th Workshop on Automation of Soft-
ware Testing (AST 2010), 2010, pp. 59-66.

L. De Moura, N. Bjgrner, Z3: An efficient SMT solver, in: Proceedings
of the International Conference on Tools and Algorithms for Construc-
tion and Analysis of Systems, TACAS/ETAPS ’08, Springer, 2008, pp.
337-340.

N. Bjgrner, N. Tillmann, A. Voronkov, Path feasibility analysis for
string-manipulating programs, in: Proceedings of the 15th Interna-
tional Conference on Tools and Algorithms for the Construction and

97

https://doi.org/10.1109/SAINT.2010.60

108

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Analysis of Systems: Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2009,, TACAS ’09, Springer-
Verlag, Berlin, Heidelberg, 2009, p. 307-321.

K. Lakhotia, N. Tillmann, M. Harman, J. De Halleux, Flopsy: Search-
based floating point constraint solving for symbolic execution, in: Pro-
ceedings of the International Conference on Testing Software and Sys-
tems, ICTSS 10, Springer, 2010, pp. 142-157.

T. Xie, N. Tillmann, P. de Halleux, W. Schulte, Fitness-guided path
exploration in dynamic symbolic execution, in: Proceedings of the In-
ternational Conference on Dependable Systems and Networks, DSN
'09, 2009, pp. 359-368.

J. D. Halleux, N. Tillmann, Moles: Tool-assisted environment isolation
with closures, in: In TOOLS’10, June-July, 2010.

N. Tillmann, W. Schulte, Parameterized unit tests, Vol. 30, 2005, pp.
253-262. |doi:10.1145/1095430.1081749.

V. Ganesh, D. L. Dill, A decision procedure for bit-vectors and arrays,
in: W. Damm, H. Hermanns (Eds.), Computer Aided Verification,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 519-531.

J. Yang, C. Sar, P. Twohey, C. Cadar, D. Engler, Automatically
generating malicious disks using symbolic execution, in: 2006 [EEE
Symposium on Security and Privacy, 2006, pp. 15 pp.—257. doi:
10.1109/SP.2006.7.

R. Sasnauskas, J. A. B. Link, M. H. Alizai, K. Wehrle, Kleenet: Auto-
matic bug hunting in sensor network applications, in: Proceedings of
the 6th ACM Conference on Embedded Network Sensor Systems, Sen-
Sys ’08, Association for Computing Machinery, New York, NY, USA,
2008, p. 425-426. doi:10.1145/1460412.1460485.

URL https://doi.org/10.1145/1460412.1460485

C. Zamfir, G. Candea, Execution synthesis: A technique for automated
software debugging, in: Proceedings of the ACM SIGOPS EuroSys
European Conference on Computer Systems, EuroSys "10, ACM, 2010,
pp. 321-334.

V. Chipounov, G. Candea, Reverse engineering of binary device drivers
with revnic, in: Proceedings of the 5th European Conference on Com-
puter Systems, EuroSys ’10, Association for Computing Machinery,

98

https://doi.org/10.1145/1095430.1081749
https://doi.org/10.1109/SP.2006.7
https://doi.org/10.1109/SP.2006.7
https://doi.org/10.1145/1460412.1460485
https://doi.org/10.1145/1460412.1460485
https://doi.org/10.1145/1460412.1460485
https://doi.org/10.1145/1460412.1460485
https://doi.org/10.1145/1755913.1755932
https://doi.org/10.1145/1755913.1755932

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

New York, NY, USA, 2010, p. 167-180. |doi:10.1145/1755913.
1755932.
URL https://doi.org/10.1145/1755913.1755932

V. Kuznetsov, V. Chipounov, G. Candea, Testing Closed-Source
binary device drivers with DDT, in: 2010 USENIX Annual Technical
Conference (USENIX ATC 10), USENIX Association, 2010.

URL https://www.usenix.org/conference/usenix-atc-10/
testing-closed-source-binary-device-drivers—-ddt

T. Avgerinos, S. K. Cha, B. L. T. Hao, D. Brumley, Aeg: Automatic
exploit generation, in: NDSS, 2011.

D. Bethea, R. A. Cochran, M. K. Reiter, Server-side verification of
client behavior in online games, ACM Trans. Inf. Syst. Secur. 14 (4)
(dec 2008). [doi:10.1145/2043628 . 2043633,

URL https://doi.org/10.1145/2043628.2043633

H. Cui, Stable deterministic multithreading through schedule mem-
oization, in: 9th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 10), USENIX Association, Vancouver,
BC, 2010.

URL https://www.usenix.org/legacy/events/osdil0/tech/
full_papers/Cui.pdf

Dynamic test generation to find integer bugs in x86 binary linux
programs, in: 18th USENIX Security Symposium (USENIX Security
09), USENIX Association, Montreal, Quebec, 2009.

URL https://www.usenix.org/conference/
usenixsecurity09/technical-sessions/presentation/
dynamic-test-generation-find-integer

A. Ermedahl, J. Engblom, Execution time analysis for embedded real-
time systems, International Journal on Software Tools for Technology
Transfer 4 (2007) 437-455.

M. Utting, B. Legeard, Practical Model-Based Testing: A Tools Ap-
proach, Morgan Kaufmann, 2010.

Object Management Group, OMG®) Unified Modeling Language(®)
(OMG UML®) (2017).

R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick,
J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Liittgen,

99

https://doi.org/10.1145/1755913.1755932
https://doi.org/10.1145/1755913.1755932
https://doi.org/10.1145/1755913.1755932
https://www.usenix.org/conference/usenix-atc-10/testing-closed-source-binary-device-drivers-ddt
https://www.usenix.org/conference/usenix-atc-10/testing-closed-source-binary-device-drivers-ddt
https://www.usenix.org/conference/usenix-atc-10/testing-closed-source-binary-device-drivers-ddt
https://www.usenix.org/conference/usenix-atc-10/testing-closed-source-binary-device-drivers-ddt
https://doi.org/10.1145/2043628.2043633
https://doi.org/10.1145/2043628.2043633
https://doi.org/10.1145/2043628.2043633
https://doi.org/10.1145/2043628.2043633
https://www.usenix.org/legacy/events/osdi10/tech/full_papers/Cui.pdf
https://www.usenix.org/legacy/events/osdi10/tech/full_papers/Cui.pdf
https://www.usenix.org/legacy/events/osdi10/tech/full_papers/Cui.pdf
https://www.usenix.org/legacy/events/osdi10/tech/full_papers/Cui.pdf
https://www.usenix.org/conference/usenixsecurity09/technical-sessions/presentation/dynamic-test-generation-find-integer
https://www.usenix.org/conference/usenixsecurity09/technical-sessions/presentation/dynamic-test-generation-find-integer
https://www.usenix.org/conference/usenixsecurity09/technical-sessions/presentation/dynamic-test-generation-find-integer
https://www.usenix.org/conference/usenixsecurity09/technical-sessions/presentation/dynamic-test-generation-find-integer
https://www.usenix.org/conference/usenixsecurity09/technical-sessions/presentation/dynamic-test-generation-find-integer

[126]

127]

[128]

[129]

[130]

[131]

A. J. H. Simons, S. Vilkomir, M. R. Woodward, H. Zedan, Using for-
mal specifications to support testing, ACM Computing Surveys 41 (2)
(2015) 18:1-18:41.

M. Utting, A. Pretschner, B. Legeard, A taxonomy of model-based test-
ing approaches, Software: Testing, Verification and Reliability 22 (5)
(2012) 297-312.

A. C. Dias Neto, R. Subramanyan, M. Vieira, G. H. Travassos, A
survey on model-based testing approaches: A systematic review, in:
Proceedings of the 1st ACM International Workshop on Empirical As-
sessment, of Software Engineering Languages and Technologies: Held
in Conjunction with the 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE) 2007, WEASELTech 07,
Association for Computing Machinery, New York, NY, USA, 2007, p.
31-36. doi:10.1145/1353673.1353681.

URL https://doi.org/10.1145/1353673.1353681

F. Formica, M. Askarpour, C. Menghi, Search-based software testing
driven by automatically generated and manually defined fitness func-
tions (2022). arXiv:2207.11016.

D. Balasubramanian, C. S. Pasareanu, M. W. Whalen, G. Karsai,
M. Lowry, Polyglot: Modeling and analysis for multiple statechart
formalisms, in: Proceedings of the 2011 International Symposium on
Software Testing and Analysis, ISSTA 11, Association for Comput-
ing Machinery, New York, NY, USA, 2011, p. 45-55. doi:10.1145/
2001420.2001427.

URL https://dl.acm.org/doi/10.1145/2001420.2001427

D. Balasubramanian, C. Pasareanu, M. W. Whalen, G. Karasi,
M. Lowry, Improving symbolic execution for statechart formalisms), in:
Proceedings of the Workshop on Model-Driven Engineering, Verifica-
tion and Validation, MoDeVVa 12, Association for Computing Ma-
chinery, New York, NY, USA, 2012, p. 47-52. doi:10.1145/2427376.
2427385

URL https://dl.acm.org/doi/10.1145/2427376.2427385

K. Zurowska, J. Dingel, Sauml: A tool for symbolic analysis of uml-
rt models, in: 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011), 2011, pp. 604-607.
doi:10.1109/ASE.2011.6100136.

100

https://doi.org/10.1145/1353673.1353681
https://doi.org/10.1145/1353673.1353681
https://doi.org/10.1145/1353673.1353681
https://doi.org/10.1145/1353673.1353681
http://arxiv.org/abs/2207.11016
https://dl.acm.org/doi/10.1145/2001420.2001427
https://dl.acm.org/doi/10.1145/2001420.2001427
https://doi.org/10.1145/2001420.2001427
https://doi.org/10.1145/2001420.2001427
https://dl.acm.org/doi/10.1145/2001420.2001427
https://dl.acm.org/doi/10.1145/2427376.2427385
https://doi.org/10.1145/2427376.2427385
https://doi.org/10.1145/2427376.2427385
https://dl.acm.org/doi/10.1145/2427376.2427385
https://doi.org/10.1109/ASE.2011.6100136

[132]

[133]

[134]

[135]

[136]

[137]

138

[139]

[140]

141]

C. S. Pasareanu, N. Rungta, Symbolic pathfinder: Symbolic execu-
tion of java bytecode, in: Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ASE "10, Association
for Computing Machinery, New York, NY, USA, 2010, p. 179-180.
doi:10.1145/1858996.1859035.

URL https://dl.acm.org/doi/10.1145/1858996.1859035

J.-R. Abrial, Formal methods in industry: Achievements, problems, fu-
ture, in: Proceedings of the 28th International Conference on Software
Engineering, ICSE ’06, Association for Computing Machinery, New
York, NY, USA, 2006, p. 761-768. [doi:10.1145/1134285.1134406.
URL https://doi.org/10.1145/1134285.1134406

J.-R. Abrial, Modeling in Event-B: System and Software Engineering,
Cambridge University Press, 2010.

D. Jackson, Software Abstractions: Logic, Language, and Analysis,
MIT Press, 2012.

J. M. Spivey, The Z Notation: A Reference Manual, Prentice Hall
International Series in Computer Science, Prentice Hall, 1989.

J. Woodcock, J. Davies, Using Z: Specification, Refinement and Proof,
Prentice Hall International Series in Computer Science, Prentice Hall,
1996.

N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud, The synchronous data
flow programming language lustre, Proceedings of the IEEE 79 (9)
(1991) 1305-1320. doi:10.1109/5.97300!

G. Berry, G. Gonthier, The esterel synchronous programming language:
design, semantics, implementation, Science of Computer Programming
19 (2) (1992) 87-152. [doi:10.1016/0167-6423(92) 90005-V.

C. André, Representation and analysis of reactive behaviors: A syn-

chronous approach, in: Proceedings of Computational Engineering in
Systems Applications (CESA’96), IEEE SMC, 1996, p. 19-29.

A. Lakehal, I. Parissis, Lustructu: a tool for the automatic coverage
assessment of LUSTRE programs, in: 16th IEEE International Sympo-
sium on Software Reliability Engineering (ISSRE’05), 2005, pp. 301
310. doi:10.1109/ISSRE. 2005.26.

101

https://dl.acm.org/doi/10.1145/1858996.1859035
https://dl.acm.org/doi/10.1145/1858996.1859035
https://doi.org/10.1145/1858996.1859035
https://dl.acm.org/doi/10.1145/1858996.1859035
https://doi.org/10.1145/1134285.1134406
https://doi.org/10.1145/1134285.1134406
https://doi.org/10.1145/1134285.1134406
https://doi.org/10.1145/1134285.1134406
https://doi.org/10.1109/5.97300
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1109/ISSRE.2005.26

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

L. V. Phol, N. T. Binh, I. Parissis, Mutants generation for testing LLUS-
TRE programs, in: Proceedings of the Eighth International Symposium
on Information and Communication Technology, SoICT 2017, Associa-
tion for Computing Machinery, New York, NY, USA, 2017, p. 425-430.
doi:10.1145/3155133.3155155.

URL https://doi.org/10.1145/3155133.3155155

V. Papailiopoulou, Automatic test generation for lustre/scade pro-
grams, in: 2008 23rd IEEE/ACM International Conference on Au-
tomated Software Engineering, 2008, pp. 517-520. doi:10.1109/ASE.
2008.96.

P. Raymond, X. Nicollin, N. Halbwachs, D. Weber, Automatic testing
of reactive systems, in: Proceedings 19th IEEE Real-Time Systems
Symposium (Cat. No.98CB36279), 1998, pp. 200-209. doi:10.1109/
REAL.1998.739746.

B. Marre, A. Arnould, Test sequences generation from lustre descrip-
tions: Gatel, in: Proceedings ASE 2000. Fifteenth IEEE International
Conference on Automated Software Engineering, 2000, pp. 229-237.
doi:10.1109/ASE.2000.873667.

L. M. de Moura, S. Owre, N. Shankar, The sal language manual, in:
CSL Technical Report SRI-CSL-OI-02, 2003.

G. Hamon, L. M. de Moura, Automated test generation with sal, in:
CSL Technical Note, 2005.

A. Wakankar, A. Bhattacharjee, S. Dhodapkar, P. Pandya, K. Arya,
Automatic test case generation in model based software design to
achieve higher reliability, in: 2010 2nd International Conference on Re-
liability, Safety and Hazard - Risk-Based Technologies and Physics-of-
Failure Methods (ICRESH), 2010, pp. 493-499. doi:10.1109/ICRESH.
2010.5779600.

J. Toennemann, A. Aniculaesei, A. Rausch, Asserting functional equiv-
alence between ¢ code and scade models in code-to-model transfor-
mations, in: Proceedings of the 5th Brazilian Symposium on Sys-
tematic and Automated Software Testing, SAST 20, Association for
Computing Machinery, New York, NY, USA, 2020, p. 60-68. doi:
10.1145/3425174.3425213.

URL https://doi.org/10.1145/3425174.3425213

102

https://doi.org/10.1145/3155133.3155155
https://doi.org/10.1145/3155133.3155155
https://doi.org/10.1145/3155133.3155155
https://doi.org/10.1145/3155133.3155155
https://doi.org/10.1109/ASE.2008.96
https://doi.org/10.1109/ASE.2008.96
https://doi.org/10.1109/REAL.1998.739746
https://doi.org/10.1109/REAL.1998.739746
https://doi.org/10.1109/ASE.2000.873667
https://doi.org/10.1109/ICRESH.2010.5779600
https://doi.org/10.1109/ICRESH.2010.5779600
https://doi.org/10.1145/3425174.3425213
https://doi.org/10.1145/3425174.3425213
https://doi.org/10.1145/3425174.3425213
https://doi.org/10.1145/3425174.3425213
https://doi.org/10.1145/3425174.3425213
https://doi.org/10.1145/3425174.3425213

[150]

[151]

[152]

[153]

[154]

[155]

[156]

C. Braunstein, A. E. Haxthausen, W.-1. Huang, F. Hiibner, J. Peleska,
U. Schulze, L. Vu Hong, Complete model-based equivalence class test-
ing for the etcs ceiling speed monitor, in: S. Merz, J. Pang (Eds.), For-

mal Methods and Software Engineering, Springer International Pub-
lishing, Cham, 2014, pp. 380-395.

L. Vu, A. Haxthausen, J. Peleska, A domain-specific language for rail-
way interlocking systems, in: E. Schnieder, G. Tarnai (Eds.), Proceed-
ings of the 10th Symposium on Formal Methods for Automation and
Safety in Railway and Automotive Systems, FORMS/FORMAT 2014,
Technische Universitat Braunschweig, 2014, pp. 200-209, 10th Sym-
posium on Formal Methods for Automation and Safety i Railway and
Automotive Systems, FORMS/FORMAT 2014, FORMS/FORMAT ;
Conference date: 10-09-2014 Through 02-10-2014.

URL http://www.forms-format.de/index.html

D. Harel, Statecharts: a visual formalism for complex systems, Sci-
ence of Computer Programming 8 (3) (1987) 231-274. doi:10.1016/
0167-6423(87)90035-9.

IEC, IEC 61508: Functional safety of electrical/electronic/pro-
grammable electronic safety-related systems (2010).

ISO, ISO 26262: Road vehicles — Functional safety (2010).

T. Parr, The Definitive ANTLR 4 Reference, 2nd Edition, Pragmatic
Bookshelf, 2013.

A. Goffi, A. Gorla, M. D. Ernst, M. Pezze, Automatic generation of
oracles for exceptional behaviors, in: Proceedings of the International
Symposium on Software Testing and Analysis, ISSTA ’16, ACM, 2016,
pp. 213-224.

103

http://www.forms-format.de/index.html
http://www.forms-format.de/index.html
http://www.forms-format.de/index.html
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9

	Acknowledgments
	Abstract
	Abstract (Italian)
	Introduction
	State-of-the-art
	Automatic Test Generation
	Random Testing
	Search-Based Testing
	Bounded Model Checking
	Symbolic Execution

	KLEE a Symbolic Execution Engine
	Overview
	Key Features and Properties

	CBMC ("C Bounded Model Checking")
	Overview
	Generating the Formula
	Converting the Formula to CNF

	Related work on Test Generation for Scade
	Automated model-based testing
	Formal methods for safety-critical software
	Automated test generation for Scade models

	Automated Test Generation for Scade programs
	Safety-Critical Development with Scade
	A Sample Scade Program (Working Example)
	The TECS Toolchain
	KCG
	Test Driver Synthesis
	Test Input Generation
	Test Synthesis

	Experiments and Results
	Experimental Assessment
	Subject programs
	Research Questions and Metrics
	Experiment setting
	Results
	RQ1: Effectiveness of automatic test case generation for safety-critical software in Scade.
	RQ2: Efficiency of symbolic execution and bounded model checking for generating test cases for safety-critical programs in Scade

	Threats to validity

	Conclusion
	How to use TECS
	List of Publications
	List of Abbreviations

