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ABSTRACT  

 

 

 

 

Tissues, organs and organisms are complex biological systems. They are objects of many 

studies aiming at characterizing their biological processes. Understanding how they 

work and how they interact in healthy and unhealthy samples gives the possibility to 

infer, correcting and preventing dysfunctions, possibly leading to diseases. 

Recent advances in single-cell technologies are expanding our capabilities to 

profile at single-cell resolution various molecular layers, by targeting the transcriptome, 

the genome, the epigenome and the proteome. The number of single-cell datasets, their 

size and the diverse modalities they describe are continuously increasing, prompting the 

need to develop robust methods to integrate multiomic datasets, whether paired from 

the same cells or, most challenging, from unpaired separate experiments. The 

integration of different sources of information results in a more comprehensive 

description of the whole system.  

Most published methods allow the integration of limited number of omics 

(generally two) and require assumptions about their inter-relationships. They often 

impose the conversion of a data modality into the other one (e.g., ATAC peaks converted 

in a gene activity matrix). This step introduces an important level of approximation, 

which could affect the following analysis. 

Here we propose MOWGAN (Multi Omic Wasserstein Generative Adversarial 

Network), a deep-learning based framework to integrate multimodal data supporting 

high number of modalities (more than two) which is also agnostic about their 

relationships (no assumption is imposed). 

We prototyped our approach on public data with available paired and unpaired 

RNA and ATAC experiments. Each modality is embedded into feature spaces with same 
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dimensionality across all modalities. This step prevents any conversion between data 

modalities. The embeddings are used to train a Wasserstein Generative Adversarial 

Network to understand the coupling between multiple modalities. The output of the 

generative model can be integrated with the original data and used to bridge 

information across omics.  

Particular attention is reserved to the organization of the input data to train the 

model in mini-batches. This allows MOWGAN to have a network architecture 

independent of the number of modalities evaluated. Indeed, the framework was also 

successfully applied to integrate three (e.g., RNA, ATAC and protein) and four modalities 

(e.g., RNA, ATAC, protein, histone modifications). 

MOWGAN’s performance was evaluated both in terms of both computational 

scalability and biological meaning, the latter being the most important to avoid 

erroneous conclusion. A comparison was conducted with published methods, 

concluding that MOWGAN performs better when looking at the ability to retrieve the 

correct biological identity (e.g., cell types) and associations.  

In conclusion, MOWGAN is a powerful tool for multi-omics data integration in 

single-cell, addressing most of the critical issues observed in the field.   
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CHAPTER 1  

 

 

 

 

SINGLE CELL TECHNOLOGIES 
 

All organisms, from bacteria to humans, are constituted of at least one cell. In the human 

body their number is estimated to be 3.72 × 10!" (Wang & Navin, 2015). For more than 

150 years biologists have tried to classify and characterize the cell types of different 

organisms by looking at their functions or at their molecular components (Regev et al., 

2017). This proved to be a very difficult task, made even worst by the absence of an 

agreement on the definition on what a “cell type” or a “cell state” is. 

Technological advancement had a great impact on the ability to identify cell 

types. Starting with the advent of next-generation sequencing (NGS) technologies in the 

early 2000s, genome-wide sequencing of DNA and RNA became a de-facto procedure to 

investigate biology. More recently, high-throughput single-cell molecular profiling 

approaches have been introduced. They were chosen as the “technology of the year” by 

“Nature Methods” in 2013 (Pennisi, 2012). This is a very active field where new methods 

are proposed every year and existing ones are improved (Regev et al., 2017).  

Single-cell profiling is not just a trend. The excitement for this technology is due 

to the knowledge that has been gained by investigating at such deep resolution. If the 

difficulties in cell characterization were previously due to analysis performed on bulk 

tissues samples (i.e., composed of millions of cells), now the tissue heterogeneity can be 

easily handled. Applications previously impossible to carry out can now be addressed: 

microorganisms that cannot be cultured can be researched on, as well as the 
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characterization of earliest differentiation events in human embryogenesis and the 

tumour microenvironment (Shapiro et al., 2013). This prompted investments in projects 

aiming at the description of cells in whole organisms. The Human Cell Atlas (Wang & 

Navin, 2015) initiative ambition is to come out with a map showing the relationships 

among molecular layers in a tissue/organ. This will work as a reference to study diseases 

but also to investigate the mechanisms that control cell types differentiation and 

behaviours.  

Most of the efforts were at first dedicated to the single-assay sequencing of the 

transcriptome at single-cell resolution, with the so called single-cell RNA sequencing 

(scRNA-seq) technologies. Nowadays, methods to profile the genome, epigenome, DNA 

methylation and 3D organization are also available (Kashima et al., 2020). The possibility 

to observe these molecular layers in detail boosted the understanding of the processes 

underling multiple phenomena, like development, aging and disease.  

An even more important step in this direction has been achieved through the 

development of multi-omics approaches, where more than one molecular layer can be 

evaluated in parallel for a single cell with multi-assays experiment. With these 

approaches, the relationship between layers (which otherwise would remain unknown) 

can be investigated, revealing regulatory and functional mechanisms in healthy and 

unhealthy samples (Ogbeide et al., 2022). Thereby, a cell’s identity can be truthfully 

understood. 

Different methods have been developed to perform the multi-omics analysis. A 

recent review (Ogbeide et al., 2022) focused on their categorization based on 

chronological release and profiled layers. Following the structure of that review, from 

here on some of the most interesting multi-assays methods are introduced. 

Understanding why they are applied and which layers they profile will be useful to follow 

this work discussion. 

 

GENOME AND TRANSCRIPTOME SEQUENCING 

The first attempts toward multi-omics approaches were dedicated to the joint analysis 

of the genome and the transcriptome. The interest in the combination of these two 

elements is motivated by the observation that modifications in the genome have 
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consequences only if they determine the transcriptome of a different gene. In that case, 

we observe a modification of the cell’s phenotype, leading to cells heterogeneity.  

In this category we find G&T-seq (Macaulay et al., 2015). Starting from a physical 

separation of the RNA from the DNA, the two molecules are first amplified and then 

sequenced. By analysing the obtained materials, the authors demonstrated for the first 

time the correlation between chromosomal copy number and gene expression. They 

were also able to identify the causative genomic modification of a breast cancer cell line, 

highlighting the potential of single-cell multi-omics analysis in tumour studies.  

G&T-seq has also some limitations: the amplification step introduces sequence 

errors and allelic and locus dropout. Obtaining high coverage data is also expensive, 

limiting the applications to 100s or 1000s of cells.  

 

EPIGENOME AND TRANSCRIPTOME SEQUENCING 

The epigenome is the record of chemical changes in the genome determining the 

functions and regulation of gene expression. Linking genome regulation and gene 

expression in the same cell can inform on the mechanisms leading to disease 

development but also on the lineage determination and developmental dynamics. 

Two are the approaches used to evaluate epigenetic influence in multi-omics 

single cell experiments: DNA methylation and chromatin accessibility measured by the 

assay for transposase-accessible chromatin using sequencing (ATAC-seq) (Buenrostro et 

al., 2013). Compared to DNA methylation, ATAC-seq is characterized by a higher 

throughput, that is increased even more with the implementation of ligation-based 

combinatorial indexing strategy enabling processing of millions of nuclei per experiment 

(Zhu et al., 2019). SHARE-seq (Ma et al., 2020) improved the sensibility of the 

combinatorial indexing to evaluate the chromatin potential to predict the gene 

expression in a cell. This approach was complemented by microfluidic platforms, first by 

SNARE-seq (S. Chen et al., 2019) and later with its adaptation to 10X Genomics 

Chromium platform.  
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EUCHROMATIN AND HETEROCHROMATIN SEQUENCING 

Open chromatin captured with ATAC-seq is just a small fraction of the chromatin in a 

cell. The majority is composed of heterochromatin, the compacted part responsible for 

the genome stability. Single-cell genome and epigenome by transposase sequencing 

(scGET-seq) (Tedesco et al., 2022) is a recently introduced assay enabling the analysis of 

both compact and accessible chromatin at single-cell resolution (Annex I). It is built on 

top of scATAC-seq microfluidic platform by engineering a hybrid transposase to link both 

open and compacted chromatin. The evaluation of the two chromatin’s stages allows to 

measure epigenetic plasticity in terms of chromatin dynamics (De Pretis & Cittaro, 

2022).  

 

PROTEIN AND TRANSCRIPTOME SEQUENCING 

Proteins determine cell’s behaviour but due to their biochemical characteristics their 

measurement is dependent on antibody-based protein detection or mass spectrometry. 

The antibody-based approach implies that protein detection is feasible only if a specific 

antibody is included in the panel, otherwise the protein will remain unseen. This 

represents a critical limitation for the application on these techniques. Nevertheless, 

simultaneous profiling of proteins and other assays is possible. Cellular indexing of 

transcriptomes and epitopes by sequencing (CITE-seq) (Stoeckius et al., 2017) is one of 

the first methods to evaluate RNA and proteins in the same cell. This result is obtained 

through cell’s labelling with antibody-specific oligonucleotide before the amplification 

step. 

 

SIMULTANEOUS PROFILING OF MORE THAN TWO ASSAYS 

The simultaneous profiling of two omics is only the first step for a knowledge that is 

omni-omics comprehensive. Even if technological limitations have already been 

observed (e.g., proteomic profiling), several techniques to profile more than two 

molecular layers have already been developed. Among them, ASAP-seq (Mimitou et al., 

2021) has been proposed for the concurrent analysis of ATAC, protein and mitochondrial 

DNA; TEA-Seq (Swanson et al., 2021) can be used for the evaluation of ATAC, RNA and 
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epitopes and scCUT&TAG-pro (B. Zhang et al., 2022) allows for the measurement of 

histone modifications and proteins abundances on whole cells. 
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CHAPTER 2  

 

 

 

 

SINGLE CELL INTEGRATION AND LABEL TRANSFERRING 
 

While technological advancement allows to profile multiple assays from the same cells, 

robust methodological analysis is needed to integrate their information. 

Integration of multi-omics data was indicated as one of the grand challenges in 

single-cell data analysis (Lähnemann et al., 2020).  

The problem is worsened by the necessity to face at the same time challenges 

related to each omic, for which a proper protocol may not have been established. 

Indeed, if a broad consensus has been reached for analysis of scRNA-seq data, this is not 

entirely true for modalities that can be considered younger. Analysis of scATAC-seq data 

is an example of this non-agreement (H. Chen et al., 2019). The community is still 

working to deliver efficient ways to extrapolate information from the peaks. They are 

generally converted into a gene activity score, a much-discussed approximation that 

differently weigh co-accessible elements to a gene’s promoter region (Cusanovich et al., 

2018). There are also suggestions to use reference set of regions instead of the whole-

genome to align the data (Giansanti et al., 2020) (Annex II), allowing for a faster 

execution of the pipeline without losing the ability to characterize cells. This procedure, 

called pseudo-alignment, was previously introduced for bulk and single-cell RNA-seq 

data (Bray et al., 2016; Patro et al., 2017). 

Why focusing on data integration when addressing single data analysis is already 

a complex problem? Data integration links different data sources to derive a more 

comprehensive and biologically meaningful description of the system under analysis. It 
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also helps to solve the interdependence and the causal relationship among modalities. 

Its importance is reflected by the number of tools developed and the initiatives arising 

to collect ideas and guidelines (e.g., the Multi-modal Single-Cell Data Integration 

Competition, denoted NeurIPS challenge (Lance et al., 2022)). 

Depending on the anchors used to combine the data sources, it is possible to 

distinguish three different integration tasks (Argelaguet et al., 2021) (Figure 1):  

 

1. Horizontal integration: the datasets represent one modality, observed in 

multiple samples, locations or time points. For example, the integration of 

scRNA-seq data collected from two or more subjects is a horizontal integration 

task. 

2. Vertical integration: multiple modalities are assayed from the same cells. The 

integration of data generated in a SNARE-seq experiment falls in this category. 

3. Diagonal integration: each dataset represents a different modality for a different 

sample, without any correspondence between cells and features. 

 

The diagonal integration scenario may be considered the hardest to solve and yet it is 

possibly the most common, given the pace at which single-cell datasets are produced 

(Svensson et al., 2018). In addition, many large datasets have been made available for 

single omic only (Bock et al., 2021; Regev et al., 2017; Schaum et al., 2018; K. Zhang et 

al., 2021). 

While horizontal integration can be treated as a problem of batch correction 

(Tran et al., 2020), vertical and diagonal settings concern with the multimodality 

integration field. To the best of our knowledge, a fully integrated and generalizable way 

to analyse such data is still missing.  

So far, two are the most suitable approaches for data integration in single-cell so 

far: Manifold Alignment (MA) and Deep Learning (DL). Both methods share the final goal 

of representing multiple feature sets in a common manifold embedding. While MA 

approaches try to find a common latent space (manifold) to describe the data, DL 

develops omic-specific networks to learn and combine a low-dimensional 

representation of the data.  
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Figure 1 Data integration in single-cell. (a) Horizontal integration, where one modality is observed in multiple samples. (b) Vertical 
integration, for the same cell more than one modality is collected. (c) Diagonal integration, both cells and features are unmatched 

between the datasets. Figure from (Argelaguet et al., 2021). 

 

Both MA and DL approaches depend on some constrains. Restrictive 

assumptions are generally applied to the data, like correspondences across the features 

(e.g., converting ATAC peaks in gene activity scores) and/or cells, or to the data 

distribution. The major drawback is that these requirements are usually difficult to 

generalize, making them unfit for datasets where no prior knowledge is available. 
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Furthermore, they are generally developed to address only two molecular layers (e.g., 

RNA and ATAC) and scaling to three or more omics could be impractical. 

From here on, integration tools are formally introduced. Given the broad 

literature, they were selected from the ones published on journals. They are divided by 

methodology (MA or DL), and particular attention is given to DL applications. The 

integration scenario is also highlighted. 

 

MANIFOLD ALIGNMENT INTEGRATION TOOLS 
 

MMD-MA – MAXIMUM MEAN DISCREPANCY MANIFOLD ALIGNMENT 

MMD-MA (J. Liu et al., 2019) is an unsupervised method to align single-cell data when 

no connection is known a priori. The only assumption is that the data points share a 

manifold structure that can be learned. The learning is made through the optimization 

of an objective function composed of three elements, designed to address specific tasks. 

The first term is the maximum mean discrepancy term that enforces the data points to 

have the same distribution in the latent space. A second term is involved to preserve the 

structure of the single data between the input and output space. The last term, a penalty 

term, prevents falling into a trivial solution.  

The algorithm was tested on three simulated datasets and one real dataset 

composed of 61 cells, where both gene expression and methylation where measured. 

The authors underlined a problem of scalability of their method, as the algorithm was 

developed to store kernel matrices in memory. 

 

MOFA+ - MULTI-OMICS FACTOR ANALYSIS 

MOFA+ (Argelaguet et al., 2020) is a stochastic variational inference framework for the 

vertical integration of single-cell datasets. Datasets are organized in views and groups, 

where views are non-overlapping sets of features and groups are non-overlapping sets 

of samples (e.g., different experimental conditions).  

MOFA+ learns a low-dimensional representation of the data where K latent 

factors explain the molecular variability. The K factors and the dataset features are 
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linked by a weight matrix that reveals the importance of each feature in the embedding, 

even though the model is not able to capture complex non-linearities. MOFA+ output 

can be used for downstream analysis, such as clustering and trajectory analysis.  

 

BINDSC – BI-ORDER INTEGRATION OF SINGLE-CELL DATA 

bindSC (Dou et al., 2020) generates a co-embedding for two unpaired datasets. The 

framework is based on the bi-order canonical correlation analysis (bi-CCA) algorithm. 

The inputs are the count matrices of the two modalities, linked by a gene score matrix 

evaluated by the bi-CCA algorithm. The matrix is optimized to maximize the correlation 

between the datasets and, for RNA and ATAC integration, it can be initialized as a gene 

activity matrix. Bi-CCA outputs canonical correlation vectors (CCA) to project cells in a 

common low-dimensional space.  

 

 

 
Figure 2 PAMONA overview. Starting from data matrices representing different single-cell layers (i.e., gene expression, chromatin 
accessibility, etc.), it first constructs the weighted k-NN graph for each modality to later minimize the geodesic distance between 

cells of different datasets. Figure adapted from (K. Cao et al., 2021). 
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PAMONA – A PARTIAL GROMOV-WASSERSTEIN-BASED MANIFOLD ALIGNMENT ALGORITHM 

Pamona (K. Cao et al., 2021) is a framework for the alignment of cells from different 

modalities that preserves the shared and dataset-specific structures. Inputs are the data 

matrices while outputs are the probabilistic coupling of cells and a common low-

dimensional space. To achieve these results, Pamona first computes weighted k-NN 

graphs for each modality and the geodesic distances between the cells in the datasets. 

The probabilistic coupling matrix is obtained as the result of a partial Gromov-

Wassertein optimal transport problem (Figure 2).  

The framework was tested on both synthetic and real datasets. The 

incorporation of cell annotation was proved to increase the performances and, in 

addition, the application is feasible for both paired and unpaired dataset. 

 

SCOT – SINGLE-CELL MULTI-OMICS ALIGNMENT WITH OPTIMAL TRANSPORT 

SCOT (Demetci et al., 2022) is an unsupervised alignment method based on Gromov-

Wasserstein optimal transport. It is proposed to address the diagonal integration 

problem but can be applied for horizontal integration too. SCOT’s aim is to find a 

probabilistic matrix enforcing the coupling between the different modalities. To this 

end, it preserves the local geometry of the data by computing a k-NN graph for each 

molecular layer. The intra-domain distances are evaluated by constructing a graph 

distance matrix for each k-NN. A probabilistic coupling matrix is later minimized to 

conserve the intra-domain distances. The same coupling matrix is also used to project 

one data onto the other, performing the alignment (Figure 3). This is the main design 

difference between SCOT and MMD-MA: the former projects one modality into the 

other one, the latter projects both modalities into a latent space. 

SCOT was tested on four synthetic datasets (three already used to test MMD-MA 

and one created with Splatter (Zappia et al., 2017) to simulate a scRNA dataset) and two 

real datasets. The latter were generated with multiple-assays techniques: SNARE-seq, 

to profile RNA and ATAC, and scGEM (Cheow et al., 2016), which profile both gene 

expression and DNA methylation. Results showed that SCOT performed better 

compared to MMD-MA. 
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Figure 3 SCOT graphical abstract. Cells are sampled from different datasets. A k-NN graph is constructed for each dataset as well 
as an intra-domain distance matrix. The distance between the two intra-domains distance matrices is minimized. One domain is 

finally projected into the other one. Figure from (Demetci et al., 2022). 

 

DEEP LEARNING INTEGRATION TOOLS 
 

MAGAN: MANIFOLD ALIGNMENT GENERATIVE ADVERSARIAL NETWORK 

MAGAN (Amodio & Krishnaswamy, 2018) is a manifold alignment algorithm developed 

for single and multi-assay experiments. It is one of the first examples of the application 

of Generative Adversarial Networks (GANs) for single-cell alignment task.  

The model is composed of two distinctive GANs, one for each modality. During 

the training, a loss function with a correspondence loss term is minimized. This term 

enforces the manifolds to be fully aligned and must be chosen accordingly to the specific 

application. This implies the possibility to modify the term when some correspondence 

between the data is known.  

The model was tested on synthetic data, on a subset of the MNIST dataset and 

on biological data. In details, it was tested on cells where both RNA and flow cytometry 

measurements were available.  

 

SCIM – SINGLE CELL DATA INTEGRATION VIA MATCHING 

SCIM (Stark et al., 2020) is a tool for integrating single cell datasets across technologies. 

It falls in the horizontal integration task. SCIM’s assumption is that the cell’s distributions 

remain the same, even when different technologies are used.  
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The model is based on autoencoders, one for each technology. They learn a 

technology-invariant latent space that is later aligned with a bipartite matching 

algorithm (a discriminator acting on the latent space). 

 

SCICAN – SINGLE CELL DATA INTEGRATION VIA CYCLE-CONSISTENT ADVERSARIAL NETWORK 

scRNA and scATAC integration can be performed also with sciCAN (Xu et al., 2021). This 

tool is based on cycle adversarial networks and was tested on both paired and unpaired 

datasets. When paired datasets were used, the training was agnostic to the true pairing. 

scATAC data were converted in a gene activity matrix.  

The model is proposed for both representation learning and modality alignment. 

An encoder projects RNA and ATAC data into a joint low dimensional embedding. The 

second task is addressed by two discriminators. One is linked to the encoder, and it is 

trained with adversarial domain adaptation loss. It learns to distinguish between the two 

modalities. The second discriminator links with a generator that generates chromatin 

accessibility data starting from RNA embedding.  

 

SCMVAE – SINGLE CELL MULTIMODAL VARIATIONAL AUTOENCODER 

scMVAE was proposed for the vertical integration of scRNA and scATAC data (Zuo & 

Chen, 2021). Here, to handle the different dimensionality of the two dataset, scATAC 

data are converted into a gene activity matrix. Data are modelled as a zero-inflated 

negative binomial (ZINB) distribution to learn a joint embedding. Cells of the two 

modalities are first clustered together and later passed through an omic-specific 

decoder. This step allows the reconstruction of the features, accounting for the different 

normalization processing but also returning denoised data.  

Three learning strategies are proposed. The first one, called PoE, aims to 

estimate the joint posterior by the product of posteriors of each omic data. The second 

one uses a neural network to embed together the latent representation of the 

modalities obtained by separate networks. The last one directly concatenates the 

features of both omics and pass them as input to a network.  
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PORTAL – ADVERSARIAL DOMAIN TRANSLATION 

Portal (Zhao et al., 2021) returns a harmonized representation of cells of different 

experiment in a shared latent space. It was applied to horizontal integration settings, 

but it was also tested in the diagonal context. In the latter case, RNA and ATAC data 

were used, with ATAC data converted in gene activity.  

Portal works on the first p principal components (PCs) of the data, used to 

characterize their embeddings. They are inputs to an adversarial domain translation 

framework composed of both encoders and generators for each dataset. While the 

encoders remove domain-specific properties of the data, the generators link one 

domain to the other, introducing in the data generation process the domain-specific 

effects characterizing the output domain.  

 

SCMM – MIXTURE-OF-EXPERTS DEEP GENERATIVE MODEL FOR INTEGRATED ANALYSIS OF 

SINGLE-CELL MULTIOMICS DATA  

scMM (Minoura et al., 2021) is a framework based on mixture-of-experts (MoE) 

multimodal deep generative models. It was developed to improve the interpretability of 

joint embeddings and the prediction between modalities. The input is composed of 

multimodal data, in paired measurement. Each modality is described by a characteristic 

distribution: ZINB distribution for ATAC-seq data, negative binomial (NB) for scRNA and 

protein data. The framework is composed by a variational autoencoder (VAE) for each 

modality. VAEs are trained to learn low-dimensional joint variational posterior 

factorized by a MoE. scMM was tested on datasets with up to two modalities (i.e., RNA 

and ATAC data or RNA and protein data). A trained scMM model can be used with just 

one modality data to infer the missing one, achieving cross-modal generation.  

 

COBOLT – MULTIMODAL VARIATIONAL AUTOENCODER BASED ON HIERARCHICAL BAYESIAN 

GENERATIVE MODEL 

Cobolt (Gong et al., 2021) is a framework proposed for the joint analysis of multi-assay 

and single-assay data (Figure 4). In the simplest formulation, it can also be used on 

paired cells only. The output of the model is a joint representation, in a low dimensional 

embedding, of the inputs. To this end, Cobolt models the data using the Latent Dirichlet 
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Allocation (LDA) model. A multimodal VAE is used on this representation of the data to 

transfer learning between the multi-assay and single-assay modalities.  

Cobolt assumes that cells can be categorized in K types. Each category is filled 

with the cells whose features contributed to the characterization or activation of that 

category. All cells will be represented by a vector of activation for category, that lies in 

a K-dimensional space that can be used for downstream analysis.  

 

 
Figure 4 Cobolt workflow. Inputs are datasets from two modalities, in single- and multi-assays. Cobolt learns a low-embedding 
where all datasets can be represented. This embedding can be used for visualization and clustering of all data together. Figure 

from (Gong et al., 2021). 

 

GLUE – GRAPH-LINKED UNIFIED EMBEDDING 

GLUE was one of the first tools implementing graph-based neural network in single-cell 

(Z. J. Cao & Gao, 2022). Autoencoders, which have modality-specific structure but equal 

outputs dimensions, are first used to learn a low-dimensional embedding for each 

modality. GLUE takes advantage of the biological knowledge about the relationship 

between modalities, and it uses a guidance graph to build a graph variational 

autoencoder to link the embeddings.  

The framework was also successfully tested on the alignment of three 

modalities: gene expression, chromatin accessibility and DNA methylation.  

 

 

 



 22 

SCMMGAN – SINGLE-CELL MULTI-MODAL GAN 

One of the most recent proposals for the integration of unpaired single cell datasets is 

scMMGAN (Amodio et al., 2022). The model architecture is based on GANs, one for each 

modality, with pairwise generators in each mapping direction (Figure 5). The number of 

generators increase quadratically with the number of modalities included in the analysis.  

The main contribution of this work is the introduction of a correspondence 

geometry loss term in the training phase. This term improves the ability of the network 

to align cells of the same cell type. This caution is introduced since the network could 

learn a mapping function between incoherent cell states. The correspondence loss is 

evaluated as the minimization of the difference between the eigenvectors of the 

diffusion maps of the datasets. 

 

 
Figure 5 scMMGAN overview. (A) scMMGAN maps data from one modality to another. To this end, the architecture is composed 

of as many generator-discriminator networks as the number of modalities to analyse. (B) For each domain the training is 
performed based on a cost function composed of multiple terms. The correspondence loss term is the novelty introduced in 

scMMGAN. Figure adapted from (Amodio et al., 2022). 

 

After this overview regarding the most recent published single cell data integration tool, 

the main points addressed by MA and DL can be recapitulated as: 

- MA tools aim to identify a low dimensional space where the datasets are 

projected together. To this end, they work on the optimization of a function 
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composed of multiple terms. Each term takes into accounts specific properties 

of the datasets and of the alignment problem. Most of the tools work on the 

integration of two omics. 

- In the DL field, autoencoders and GANs are implemented to extrapolate a 

common embedding for the data, or to achieve modality translation. Most of the 

tools require common features (e.g., by converting ATAC peaks to a gene activity 

matrix) or prior biological knowledge. Theoretically, these tools can be easily 

adapted for the integration of more than two datasets, with the risk of an 

exponential growth of the number of networks to train. 

 

LABEL TRANSFERRING 
 

As previously introduced, the purpose of integration between different datasets and 

modalities is to achieve a more comprehensive understanding of the biology. This aspect 

is translated into the possibility to characterize a sample through its transcriptome, 

genome, etc. In a multi-assays experiment, as in the 10X Multiome platform, a specific 

cell is concurrently pictured by gene expression and chromatin accessibility. Every 

annotation obtained from one modality can be directly transferred to the other, as the 

cell identities are known.  

For single-assay dataset, the cell-to-cell correspondence is not available, and 

label transferring approaches must be applied. This step is required every time the 

information should be passed from one dataset to another (i.e., for every integration 

setting). 

The transferring can be obtained with different approaches, and it is still an 

active research topic. It is out of the scope of this thesis to compare the available 

methods. An idea that is recently taking place is to use multi-modal data as a bridge to 

connect unpaired datasets (Hao et al., 2022). This is also the idea behind Cobolt, where 

the multiomic dataset is treated as an anchor.  

Four datasets are required for the bridge integration (Figure 6). Considering the 

transferring between RNA and ATAC data, the datasets needed are: one single-assay 

RNA dataset, one single-assay ATAC dataset, RNA and ATAC multimodal datasets. In this 
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way the problem is moved from a diagonal integration setting to a horizontal setting, 

which is much easier to be addressed. 

Of course, this approach cannot be applied when multi-omics data are not 

available. Hence, our idea for MOWGAN: if we can simulate multi-omics data for every 

combination of modalities we are interested in, we could use the bridge integration to 

transfer annotations between single-assay datasets. 

One more topic that should be mentioned in multi-omics data analysis is the 

cross-modality translation. This task concerns the forecast of a modality from another 

one. From a technical point of view, it resembles a standard machine translation or 

prediction task, allowing non-biological technician to work on it (Lance et al., 2022). 

Deep learning is mostly applied in this field, with generative model and autoencoders 

being the most applied architectures.  

For more details on modality prediction, please refer to the specific literature 

(e.g., Martinez-De-Morentin et al., 2021; Wu et al., 2021). 

 

 

 
Figure 6 Bridge Integration schema. A and B are multiomic dataset (e.g., RNA and ATAC from 10x Multiome). Any label can be 

directly passed from A to B and vice versa as they represent the same cells (i.e., cell 1 in dataset A is cell 1 in dataset B). Dataset C 
is a single-modality dataset representing the same modality expressed by A. D is a single-modality dataset representing the same 

modality expressed by B. The bridge integration uses the multiomic dataset A and B as intermediary between C and D. Red arrows 
show the transferring from C to D, black arrows the path from D to C. The label transferring between C-A and D-B can be achieved 

with an appropriate method ℱ. 
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CHAPTER 3 
 

 

 

 

DEEP LEARNING, BEFORE BIOLOGY 

 

Most of the innovations introduced in Deep Learning are first developed and tested in 

applications completely different from single cell and, broadly speaking, from biology. 

One for all, computer vision is the field that benefits the most from Deep Learning 

advancements and, at the same time, it is the one that has contributed the most to its 

growth. 

 The methods and tasks described in the previous chapter have been widely 

studied in other fields, such as processing of audio and video signals. 

Ngiam (Ngiam et al., 2011) proposed a model for audio-visual bimodal feature 

learning. The model, represented in Figure 7, is composed of two autoencoders sharing 

a hidden layer. The autoencoders input are data from different modalities (audio and 

video) and outputs the reconstructed data. This kind of architecture is the same that can 

be applied for common representation learning and modality translation in single-cell.  

This example wants to demonstrate that architectures and solutions proposed 

for one application can be adapted to work in different contexts. The interoperability 

and adaptation of Deep Learning algorithms are the reasons why their application is 

increasing in biology and, especially, in the single-cell field, where the data availability is 

not an issue.  
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In this chapter, we will go into the details of generative adversarial networks 

(GANs) and their evolutions. They are among the most recent models and their use is 

increasing both in terms of application fields and tasks.  

Given their excellent results in generating synthetic data, they were chosen as 

the core of our framework, MOWGAN. 

 

 
Figure 7 Bimodal Deep Autoencoder. Two autoencoders are trained together on two data modalities (audio and video data). The 

autoencoders share a hidden layer where the features are concatenated. Figure from (Ngiam et al., 2011).   

 

GENERATIVE ADVERSARIAL NETWORKS 
 

Generative Adversarial Networks (GANs) were first introduced in 2014 (Goodfellow et 

al., 2014). They are a DL-based model to generate synthetic data when annotated 

datasets are not available. The framework is composed of two different networks, a 

generator 𝐺  and a discriminator 𝐷 , trained together in an adversarial process. The 

generator aims to produce data resembling the real ones. This concept is translated into 

the ability of the generator to produce synthetic data with the same distribution of the 

real data. This distribution is not known a priori, but during the training step the 

generator learns the parameters of the distribution best fitting the data. The 

discriminator takes in input both the real data and the data generated by 𝐺 and aims to 

correctly discriminate between true and fake (synthetic) data. When 𝐷 is no more able 

to make such distinction, it means that the data coming from 𝐺 are plausible examples. 
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Basically, the training procedure for 𝐺  is to maximise the probability of 𝐷  making a 

mistake. Based on the output of 𝐷, 𝐺 updates the parameters (Figure 8). 

In a more formal way, given the data 𝑥, we search for the generator’s distribution 

𝑝#. 𝑝$(𝑧) is an input noise variable and 𝐺(𝑧; 𝜃%) is the generator mapping from the data 

𝑧 to the distribution with parameters 𝜃%. 𝐷(𝑥; 𝜃%) is the discriminator that outputs a 

single scalar. 𝐷(𝑥) is the probability of the data 𝑥 to come from the real data rather than 

𝑝#. 𝐷 and 𝐺 are simultaneously trained to minimax the function 𝑉(𝐺, 𝐷): 

 

min
&

max
'
𝑉(𝐺, 𝐷) = 	𝔼(~*!"#"(()[log𝐷(𝑥)] + 𝔼$~*$($)9log1 − 𝐷;𝐺(𝑧)<= 

 

Goodfellow et al. show that, for a fixed 𝐺, there is a unique optimal 𝐷: 

 

𝐷∗&(𝑥) = 	
𝑝%./.(𝑥)

𝑝%./.(𝑥) + 𝑝#(𝑥)
 

 

In their work, it is also shown that 𝐺 is optimal when 𝑝#(𝑥) = 	𝑝%./.(𝑥), i.e., when 𝐷 is 

maximally confused. For optimal 𝐷 , training 𝐺  is also equivalent to minimizing the 

Jensen-Shannon divergence between 𝑝%./.(𝑥) and 𝑝#(𝑥). 

To avoid overfitting, the authors suggest updating 𝐺 only once every 𝑘 steps of 

optimization for 𝐷, where 𝑘 is a parameter to be set. Backpropagation is used to obtain 

the gradients.  

 

 

 
Figure 8 GAN model. 𝑝!(𝑧) is an input vector for the generator network G.	𝑥 represents the real data that, together with the 

output of G, is the input of a discriminative network D. D aims to understand if the input is true (coming from the real dataset) or 
fake (coming from G). Based on D output, the parameters of G and D are updated.  
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WASSERSTEIN GENERATIVE ADVERSARIAL NETWORKS 
 

Optimizing a GAN is notoriously difficult (Arjovsky & Bottou, 2017; Radford et al., 2015; 

Salimans et al., 2016). One of the most common problems encountered is the model 

collapse, with the generator being able to represent only a fraction of the data.  

To facilitate the training, it was suggested by many researchers to change the 

cost function, by replacing the Jensen-Shannon divergence. Arjovsky (Arjovsky et al., 

2017) proposed an approximation of the Earth-Mover (EM) distance, or Wasserstein 

distance, developing the so-called Wasserstein GANs (WGANs).  

In a WGAN, the discriminator is converted into a critic. The critic scores the 

realness or falseness of given data. The EM distance represents the cost to optimally 

transport mass γ(𝑥, 𝑦) from a distribution ℙ0  to ℙ#: 

 

𝑊;ℙ0 , ℙ#< = inf
1∈34ℙ%,ℙ&7

𝔼((,8)~1[‖𝑥 − 𝑦‖] 

 

where Π;ℙ0 , ℙ#< is the set of all joint distributions γ(𝑥, 𝑦) whose marginals are ℙ0  and 

ℙ#. The Kantorovich-Rubinstein duality (Villani, 2007) tells that: 

 

𝑊;ℙ0 , ℙ#< = 	 sup
‖:‖';!

𝔼(~ℙ%[𝑓(𝑥)] − 𝔼(~ℙ([𝑓(𝑥)] 

 

which is the 1-Lipschitz functions 𝑓:𝒳 → ℝ. To find the function 𝑓, we can train a neural 

network with weights 𝜔 ∈ 𝒲 and backpropagate through 𝔼$~*($)9∇<𝑓=;𝑔<(𝑧)<= as we 

would do in a normal GAN. To have the weights 𝜔 in a compact space 𝒲, it is suggested 

to clamp the weights into a restricted range after each iteration.  

 Compared to the standard GANs, the EM cost function is more likely to return 

terms useful to update the generator. The stability during the learning phase, as well as 

the problem of mode collapse, are improved. WGANs are also more robust to changes 

in the generator architecture. This is due to the critic being a k-Lipschitz continuous 

function.   
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WASSERSTEIN GENERATIVE ADVERSARIAL NETWORKS WITH 

GRADIENT PENALTY 
 

Problems with weight clipping were reported by Gulrajani and colleagues (Gulrajani et 

al., 2017b). They observed that this procedure can lead to undesired behaviours, like the 

generation of poor samples or the failure to converge. Analysing the problem, they 

found out that these behaviours were due to interactions between the weight constraint 

and the EM distance: if the clipping threshold is not well evaluated, it can lead to 

vanishing or exploding gradients. 

 In their paper, Gulrajani et al. proposed an alternative solution to weight clipping 

to help stabilize the training. They thought of penalizing the norm of gradient of the 

critic with respect to its input. This procedure is called gradient penalty. Their objective 

function is defined as: 

𝐿 = 𝔼
(>~ℙ&

[𝐷(𝑥V)] − 𝔼
(~ℙ%

[𝐷(𝑥)] + 𝜆 𝔼
(?~ℙ)*

[(‖∇(?𝐷(𝑥X)‖@ − 1)@] 

where ℙ0  is the data distribution, ℙ# is the model distribution and 𝑥V = 𝐺(𝑧), meaning 

the output of the generator 𝐺 given some input 𝑧 from the distribution 𝑝(𝑧).  
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CHAPTER 4 
 

 

 

 

MOWGAN 
 

MOWGAN is a tool for the synthetic generation of coupled, multiomic, single-cell 

dataset. The development started from the evaluation of scGAN (Marouf et al., 2020) 

and CoGAN (M.-Y. Liu & Tuzel, 2016). The former is a WGAN for the synthetic generation 

of scRNA data. scGAN demonstrated the suitability of the GANs class to learn scRNA data 

properties. CoGAN, instead, is a network to learn the joint distribution of multi-domain 

images.  

We hypothesized that networks in the GAN’s family could be applied to other 

single cell modalities with similar results and, moreover, that they could generate 

multimodal data if properly trained. 

We prototyped our approach on public scRNA and scATAC data from peripheral 

mononuclear cell (PBMC) for which paired and unpaired experiments exist (from here 

on, PBMC_1 and PBMC_2 dataset respectively).  

We applied MOWGAN also on PBMC_1 and PBMC_2 combined with other 

modalities to test a three- and four-layers integration. In this case, PBMC CITE-seq and 

CUT&Tag-pro data were used. 

When available, our tool can also take advantage of prior knowledge on the 

dataset, typically sample identity, to improve MOWGAN’s performance. For 

demonstration, we used a public dataset of patient derived organoids of Colorectal 

Cancer (CRC) with batch information. 
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 In this chapter the architectures, data, tests and validations performed during 

MOWGAN’s development until the definition of the final framework will be discussed. 

 

WGAN-GP: ARCHITECTURE 
 

The core component of the framework is a WGAN with gradient penalty (WGAN-GP). A 

WGAN-GP is a generative adversarial network that uses the Wasserstein (or Earth-

Mover) loss function and a gradient penalty to achieve Lipschitz continuity (Arjovsky et 

al., 2017, Gulrajani et al., 2017). Like all other GANs, the WGAN-GP is composed of two 

subnetworks, called generator and critic.  

In our idea, a single WGAN-GP is trained with all molecular layers together. After 

training, the generator outputs synthetic dataset where cells are paired, even when the 

training has been performed with unpaired single-cell data.  

The WGAN-GP training is performed in mini-batches, where cells are sampled 

from the whole dataset (i.e., from each molecular layer). The sampled data are 

combined in a vector of shape (𝑁,𝑀, 𝐶), where 𝑁 is the number of cells for modality in 

the mini-batch (generally 256), 𝑀 the number of modalities evaluated (2, in case of just 

the RNA and ATAC layers), and 𝐶 is the number of components in each embedding used 

for the analysis. 

The generator is designed with three convolutional 1D layers (Conv1D) and two 

batch normalization layers (BN). The critic is designed with two Conv1D layers and a 

Dense layer with 1 unit. All Conv1D layers are characterized by a kernel size of 𝑀, stride 

1 and the ReLU activation function.  

Finally, different optimizers are used for each component: Adam optimizer 

(Kingma & Ba, 2015) for the generator with learning	rate = 0.001 , beta_1 = 0.5 , 

beta_2 = 0.9 , epsilon = 1𝑒 − 07  and the AMSgrad option (Reddi et al., 2018); 

RMSprop optimizer with learning	rate = 0.0005 for the critic (Hinton et al., 2012). 

After the training, the generator returns a dataset still in the shape of (𝑁,𝑀, 𝐶). 

A k-NN regressor for each modality is used to reconstruct the count matrix.  
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DATASETS 
 

Public datasets were used to test and develop MOWGAN. They are introduced in the 

following.  

PBMC_1 AND PBMC_2* 

Public data for 10k PBMC were downloaded from 10x Genomics web site 

(https://www.10xgenomics.com/resources/datasets/pbmc-from-a-healthy-donor-

granulocytes-removed-through-cell-sorting-10-k-1-standard-2-0-0, 

https://www.10xgenomics.com/resources/datasets/10k-human-pbmcs-3-ht-v3-1-

chromium-x-3-1-high, https://www.10xgenomics.com/resources/datasets/10-k-

peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-1-standard-1-2-0). 

After the preprocessing, the RNA and ATAC paired layers were further reduced to 

include only the common cells. Table 1 summarizes the number of cells and features per 

dataset after preprocessing.  

 

 
Table 1 Dataset description.  PBMC_1 (paired dataset) and PBMC_2* (unpaired dataset). In the paired dataset, 8320 cells were 

analysed for RNA and ATAC, with respectively 4696 genes and 31048 regions. The RNA unpaired dataset is instead composed of 
9835 cells and 2657 genes. The ATAC unpaired dataset has 6989 cells for 30524 regions. 

 

 

A cell type annotation was defined on RNA PBMC_1 by evaluating cell markers, 

as illustrated in the Scanpy tutorial (https://scanpy-

tutorials.readthedocs.io/en/latest/pbmc3k.html). The annotation was directly 

transferred to ATAC PBMC_1 by cell identity. The intra-modal transition (i.e., from RNA 

PBMC_1 to RNA PBMC_2*, and from ATAC PBMC_1 to ATAC PBMC_2*) was performed 

 PBMC_1 PBMC_2* 

 RNA ATAC RNA ATAC 

Cells 8320 9835 6989 

Features 4696 31048 2657 30524 
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by Schist label transfer function (Morelli et al., 2021) (Annex III). Figure 9 shows the cell 

types on the dataset’s UMAP representation.  

 

 
Figure 9 Cell annotation. Cell type was defined on RNA PBMC_1 and transferred by cell ID to the ATAC PBMC_1 layer. Schist’s label 

transfer function was applied to transfer the annotation from RNA PBMC_1 to RNA PBMC_2* and from ATAC PBMC_1 to ATAC 
PBMC_2* (intra-modalities transfers).  

 

PBMC CITE-SEQ 

Public PBMC CITE-seq data were downloaded from the Scanpy tutorial (https://scanpy-

tutorials.readthedocs.io/en/latest/cite-seq/pbmc5k.html).  

The RNA processed dataset is made of 5076 cells for 3081 genes. In the protein layer, 

the same cells observed in RNA were selected, subsetting the dataset to 5076 cells for 

32 antibodies. 

 

PBMC CUT&TAG-PRO 

The scCUT&Tag-pro dataset (B. Zhang et al., 2022) is available at 

https://zenodo.org/record/5504061. It is composed by six histone modification coupled 

with the abundance of 173 surface proteins (Table 2). Cell type annotation was already 

available. H3K27me3 and H3K4me2 were selected to test MOWGAN as markers of 

silencing and activation. No filtering was applied.  
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Table 2 scCUT&Tag dataset description. 

 

CRC DATASET 

scRNA and scGET-seq data for three human-derived colorectal cancer organoids are 

available at E-MTAB-9659. The RNA layer is made of 6486 cells for 772 genes, while GET 

layer is made of 14308 cells and 57094 genomic regions. Details are available in Table 

3. 

 
Table 3 CRC dataset. Cells for batch. 

 

PREPROCESSING 

To ensure the benchmarks’ comparability, standard processing was applied to filter and 

normalized the PBMC data. For RNA, cells with 200 < expressed	genes < 20.000, less 

than 40%  of mitochondrial genes and genes present in more than 10  cells were 

selected. Counts per cell were normalized and log-transformed. Genes were selected to 

include only the highly variable ones.  

For the ATAC analysis, the genome was segmented in windows of 5000	bp. 

Count matrices were generated using peak_counts.py script from the scatACC 

repository (https://github.com/dawe/scatACC). Cells with more than 30% of captured 

regions and regions common to more than 80%  of cells were selected. Data were 

normalized and log transformed. Highly variable regions were selected.  

Proteins count matrices were normalized using Centered Log Ratio and log 

transformed. No filtering was applied, apart from the selection of cells common to the 

matched layers (i.e., RNA in CITE-seq dataset). 

 H3K27ac H3K27me3 H3K4me1 H3K4me2 H3K4me3 H3K9me3 

Cells 15609 8232 12770 9575 10386 8304 

Regions 52981 45383 37665 24707 21758 59416 

 

 CRC_6 CRC_17 CRC_39 

RNA 517 4864 1105 

GET 4310 4998 5000 
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Histone data were normalized and log transformed. No filtering was applied. 

CRC data were pre-processed as illustrated in the original paper (Tedesco et al., 

2022). 

 

BASELINE 
 

To estimate the shared information in real multiomic dataset, clusters were identified 

in PBMC_1 using the Leiden algorithm (Traag et al., 2019) with resolution 0.5 on both 

RNA and ATAC layers. We observed a slight discrepancy between the annotations. They 

have adjusted mutual information (𝐴𝑀𝐼 ), ranging between 0 and 1, equal to 0.68, 

marking the upper limit we may expect also for shared information in synthetic coupled 

data.  

 We also evaluated the bridge integration between our four datasets. To this end, 

annotations 𝐴 and 𝐵 (Leiden clusters with resolution 0.5) were defined in the PBMC_2* 

RNA and ATAC layers respectively. 𝐴  was transferred to ATAC PBMC_2* through 

PBMC_1. The 𝐴𝑀𝐼 between 𝐴 and 𝐵 is 0.61.  

 The same procedure was applied on the PBMC_1 dividing each layer into two 

sub-datasets. In this case, 𝐴𝑀𝐼 = 0.87. 

 Next, the Local Inverse Simpson’s Index (𝐿𝐼𝑆𝐼) score (Korsunsky et al., 2019) was 

evaluated. This index measures the integrability between multiple batches of the same 

modality and requires the application of Harmony (Korsunsky et al., 2019). The 𝐿𝐼𝑆𝐼 

score ranges between 1 and the number of batches considered, where 1 indicates a 

poor integration.  

Figure 10 shows first two Harmony’s principal components coloured by cell types 

(defined in each dataset) and batches. RNA layers have a good overlap (𝐿𝐼𝑆𝐼 = 1.2), 

which can be appreciated from the relative plots where cell types are also in line. The 

same is not entirely true for the ATAC counterpart. Even if the ATAC 𝐿𝐼𝑆𝐼 score is higher 

(𝐿𝐼𝑆𝐼 = 1.35) compared to RNA, the algorithm is not able to correctly integrate the B 

cells, which in case of PBMC_2* are mixed with other cell types, while in PBMC_1 form 

a separate cluster.   
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Figure 10 Real datasets integration. The first and second rows show the integration between two RNA batches and two ATAC 

batches respectively. Column one is coloured by the cell type annotation that was already defined in all datasets, while the second 
column is coloured by their batch name.  

 

   

 To check the biology shared between different batches, a Gene Set Enrichment 

Analysis (𝐺𝑆𝐸𝐴) (Subramanian et al., 2005) was performed. The 𝐺𝑆𝐸𝐴 is computed on 

PBMC_2*. For each cell type, the reference set of features (genes or regions) is defined 

in PBMC_1: selected features have adjusted	p-value < 0.005 and logfoldchange > 0. 

Cell type clusters in PBMC_2* were tested against all clusters in PBMC_1.  

As expected, cell types in RNA PBMC_2* are clearly enriched for the gene set 

characterizing the same cell type in RNA PBMC_1 (Table 4). This is not the case for ATAC 

(Table 5). For example, the NK ATAC PBMC_2* is especially enriched for regions 

describing the CD8 ATAC PBMC_1 cluster.  

From these observations, derived on real data, we can conclude that biological 

and topological properties are not entirely conserved even between batches of the same 

molecular layer.  
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Table 4 RNA GSEA analysis. The GSEA is performed on RNA PBMC_2* while taking as a reference the genes per cell type in RNA 
PBMC_1 with p-value < 0.005 and logfoldchange > 0. For each dataset/cell type comparison, the table reports the normalized 

enrichment score (NES), the p-value (Pval) and the dales discovery rate (FDR). 

 

 

 
Table 5 ATAC GSEA analysis. The GSEA is performed on ATAC PBMC_2* while taking as a reference the regions per cell type in 

ATAC PBMC_1 with p-value < 0.005 and logfoldchange > 0. For each dataset/cell type comparison, the table reports the 
normalized enrichment score (NES), the p-value (Pval) and the dales discovery rate (FDR). 
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TRAINING AND VALIDATION 
 

NAÏVE TRAINING 

MOWGAN was first applied to PBMC_2*. Given unpaired molecular dataset (e.g., RNA 

and ATAC single assays dataset), a naïve training is not sufficient for the WGAN-GP to 

induce the coupling. The WGAN-GP learns to reproduce the data in the order they are 

given in input. Therefore, if the mini-batch is composed of cells randomly sampled from 

the whole dataset, the WGAN-GP will learn the internal structure of the single layer but 

not how to match them. Indeed, if the Leiden clusters are transferred between data 

generated with this training strategy, the annotation is completely mixed in the 

receiving embedding (Figure 11). This is confirmed by 𝐴𝑀𝐼 = 0.05. 

 

 

Figure 11 MOWGAN naïve training. When the training is performed on data randomly sampled from the whole dataset, the 
network can learn only the structure of the molecular layers, but it does not induce the pairing. This is confirmed by the extremally 

low AMI score (AMI=0.05) between the Leiden clusters. In the picture, the PCs generated by MOWGAN for the RNA layer are 
coloured by the Leiden clusters identified on the RNA itself (first column), and by the clusters transferred from ATAC (Leiden 

ATAC). On RNA’s PCs, the transferred clusters are completely mixed, meaning the cells in the synthetic dataset don’t have the 
correct association. 

 

INFORMED TRAINING  

From these observations, we understood the mini-batches composition to be a critical 

aspect. Concerning this, our intuition was that the data, within and between datasets, 

should be organized to have cells representing the same biology in similar positions. 

 Our first attempt was to sort the data based on hierarchical clustering, obtained 

through the Ward’s linkage. During the checks on the generated data, a problem was 

noted with the cell type annotation on the ATAC layer. Indeed, the cell type transferred 
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from the original data and the one passed through the bridge integration (i.e., from RNA) 

were inverted (Figure 12). This means the hierarchical clustering returns a reverse order 

for the RNA and ATAC layers.  

 

 
Figure 12 Cell type inversion. (A) Cell type transferred with Schist from the true ATAC dataset to the synthetic ATAC. (B) Cell type 
transferred from the true RNA layer to the synthetic ATAC with the bridge integration. The two cell types are inverted, meaning 

the association induced between RNA and ATAC in the generated dataset is incorrectly done.  

 

 We moved on to test the Laplacian Eigenmaps (LE), a non-linear dimensionality 

reduction technique that preserves the local geometry of the data. We hypothesized 

that the local neighbourhood of each cell is roughly conserved across modalities. This 

property should be reflected in the structural properties of the underlying k-NN graphs, 

hence in the eigenvalues of the graph Laplacian. LE secures that cells close in the original 

space will be close also in the reduced space. By sorting each dataset by the first 

component of its LE, we aim to maximise the probability to have cells representing the 

same biology (e.g., cell type) in a similar order. Still, the ordering is not guaranteed to 

be conserved between datasets. Therefore, the selection of the (𝑁,𝑀) cells for the 

WGAN-GP’s training is done in an iterative way that include an additional control. 

 First, a mini-batch from one modality (generally RNA) is selected, and a Bayesian 

ridge regressor is trained on the mini-batch embedding and the corresponding 

eigenvectors. Following this step, 𝑛 mini-batches (𝑛 = 50) are selected from the second 

modality. The trained Bayesian ridge regressor is applied on all 𝑛 mini-batches and their 

eigenvectors. Based on the returned score, the 𝑛A  (with 1 < 𝑖 < 𝑛) mini-batch with the 

best score is selected, which represent the batch in the second modality (e.g., ATAC) 

with local characteristics more akin to what was already selected in the RNA mini-batch. 
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This should further maximise the probability of selecting cells from RNA and ATAC 

representing the same cell types. 

 Finally, the RNA mini-batch and the best-scored ATAC mini-batch are combined 

to form the vector of shape (𝑁,𝑀, 𝐶) used to train the WGAN-GP. 

 

AWARE TRAINING  

Prior information on the dataset can be used to guide the training. For example, if 

batches are shared (even partially) between the layers, batch-specific models can be 

trained. The final, synthetic, coupled dataset would be the concatenation of the data 

generated by all trained models.  

In addition, when the datasets are already annotated (by cell type or other 

characteristics), the initial sorting can be done directly on such annotation. In this way, 

we will skip all the iterative, inferring phase, also speeding up the training.  

 

HYPERPARAMETER TUNING 

A grid search policy was applied to test the dependency of the model from i) the filters 

𝑓  in the Conv1D layers and ii) the number of components 𝐶  characterizing the 

embeddings (here, PCs).  

To simplify our evaluation of the results, we decided to discard the ATAC 

PBMC_2* layer as it was difficult to integrate with ATAC PBMC_1. We defined another 

dataset, PBMC_2, made of RNA PBMC_2* and ATAC PBMC_1. Therefore, PBMC_2 is still 

an unpaired dataset. 

The grid search was performed on PBMC_1 and PBMC_2. We tested for filters 

𝑓 = {8,32,64,128,256,512}  and components 𝐶 = {5,10,15} . A total of 216  models 

were trained with the informed training policy. The training time for single model was 

~3ℎ every 100.000 epochs. 

 Within the trained models, 51  did not produced data due to NANs in the 

generative and critic loss function and 1 produced just a point in the embedding space. 

We believe the NANs to be the result of a bad initialization of the network’s weights and 

that they could disappear (at least in some models) if the training is re-initialized. We 

decided to not proceed with the re-training as we already collected enough models. 
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Therefore, qualitative metrics were evaluated for a total of 164 models. For them, the 

𝐿𝐼𝑆𝐼 and 𝐴𝑀𝐼 scores were calculated. 

Figure 13 and Figure 14 show the 𝐿𝐼𝑆𝐼 score for all the models in PBMC_1 and 

PBMC_2 respectively. Results are divided for molecular layer (ATAC or RNA). In each 

panel, scores are grouped based on the filters 𝑓 used in the first and second network’s 

layers. The colour identifies the number of components 𝐶 evaluated in the embedding, 

that is also the number of filters in the generator’s most internal layer.  

From these results, it appears that the training failures are most common for 

networks characterized by few filters in the first and/or second layer. Instead, there is 

not a clear dependency between the performance and the embedding’s components. 

This suggests that networks with limited number of filters are not powerful enough to 

learn the structure of the data. There is also no dependency of the 𝐿𝐼𝑆𝐼 score to the 

addressed molecular layer, implying that the model is not biased towards one data. 

As for the evaluation of 𝐴𝑀𝐼, we had to consider that the score could be high 

even for models where there is no resemblance with the original data. For this reason, 

Figure 15 shows the 𝐴𝑀𝐼 for trained models in PBMC_1 and PBMC_2 sorted by the ATAC 

𝐿𝐼𝑆𝐼 and with 𝐴𝑀𝐼 ≥ 0.4. We decided to evaluate ATAC’ and not RNA’s 𝐿𝐼𝑆𝐼, as ATAC 

seemed to be slightly more difficult to reproduce. On average, the best models have 

𝐴𝑀𝐼 = 0.45.  

 We also performed visual inspection of the embeddings and loss functions for all 

trained models. This was useful to confirm the relationship between metrics, returned 

embeddings and loss trend.  
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Figure 13 LISI score for PBMC_1. Results are divided between layers (ATAC and RNA). In each panel, scores are grouped for filters	

𝑓 used in the first two layers of the WGAN-GP. Colours represents the components 𝐶. 
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Figure 14 LISI score for PBMC_2. Results are divided between layers (ATAC and RNA). In each panel, scores are grouped for filters	
𝑓 used in the first two layers of the WGAN-GP. Colours represents the components 𝐶. 
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Figure 15 AMI score. For all trained models in PBMC_1 and PBMC_2, the scores were sorted for the LISI calculated on the ATAC 
layer. Here, the AMI is reported for the top 15 models per ATAC LISI. Darker colours indicate higher 𝐴𝑀𝐼. The results suggest that 

the models should not include convolutional layers with to limited number of filters. 
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VALIDATION 

Based on 𝐴𝑀𝐼 and 𝐿𝐼𝑆𝐼 scores, the best trained models for PBMC_1 and PBMC_2 are: 

- PBMC_1: 𝑓 = (512,256), 𝐶 = 10 

- PBMC_2: 𝑓 = (128,256), 𝐶 = 10 

From here on, they will be called respectively “PBMC_1 MOWGAN” and “PBMC_2 

MOWGAN”. We further analysed these data in terms of UMAP, loss functions and 

clusters concordance (Figure 16 and Figure 17), verifying the good quality of the data. 

We bridged the synthetic data with the original ones to transfer the cell types and 

confirmed the results with the GSEA (from Table 6 to Table 9). We found that RNA 

MOWGANs layers have much higher similarity with the original data compared to ATAC 

layers. However, this was expected also considering the difficulties in the association we 

encountered in the baseline analysis. Nevertheless, in ATAC MOWGANs we don’t have 

inverted association between the main cell types (e.g., CD14 and CD4). 

  

 

 
Figure 16 PBMC_1 MOWGAN. (A) RNA UMAP coloured by the cell type transferred from the original RNA data. (B) ATAC UMAP 
coloured by the cell type transferred from the synthetic RNA. (C) Critic and generator loss function during the training (100.000 

epochs). 
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Figure 17 PBMC_2 MOWGAN. (A) RNA UMAP coloured by the cell type transferred from the original RNA data. (B) ATAC UMAP 
coloured by the cell type transferred from the synthetic RNA. (C) Critic and generator loss function during the training (100.000 

epochs). 

 

 

 
Table 6 GSEA of RNA PBMC_1 MOWGAN.  
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Table 7 GSEA of ATAC PBMC_1 MOWGAN. 

 
 

 

 

 
Table 8 GSEA of RNA PBMC_2 MOWGAN. 
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Table 9 GSEA of ATAC PBMC_2 MOWGAN. 

 
 

 

EMBEDDING AND INVERSE TRANSFORMATION 

MOWGAN’s inputs are molecular layers embedded into a feature space having the same 

dimensionality 𝐶 . By transforming the data in an embedding, the problem of the 

different number of features per dataset is solved. In principle any dimensionality 

reduction technique for which an inverse transformation is defined could be used (e.g., 

PCA, UMAP). The inverse transformation is required to reconstruct the matrix 𝑁 × 𝐹, 

where 𝑁 is the number of cells and 𝐹 the number of features (genes or regions). 

Indeed, after training, MOWGAN’s first output is a new (coupled) dataset where 

the information is still expressed by a matrix 𝑁 × 𝐶 . To this matrix the inverse 

transformation can be applied. However, the definition of the inverse transformation 

limits MOWGAN’s applicability to only a bunch of embeddings. Moreover, the 

transformation introduces an error 𝐸  in the reconstructed matrix and could be 

computationally expensive to perform. For these reasons, we decided to quantify 𝐸 and 

implement an alternative solution for the matrix reconstruction.  

First, we applied the reduction techniques (i.e., PCA, NMF) on the count matrix 

𝑋 to compute 𝐶 components for all our data. Then, we used the already implemented 
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inverse transformation to reconstruct the count matrix 𝑋′. We defined 𝐸 as the mean 

squared error between 𝑋 and 𝑋′. 

The alternative solution proposed here is a k-NN regressor with k=2. The 

regressor is fit to learn the relationship between 𝑋 and 𝐶 in the selected embedding. 

The k-NN regressor is later applied on MOWGAN’s output to predict 𝑋′.  

Table 10 shows the errors introduced by the inverse transformations and the k-

NN regressor. For the k-NN regressor, 𝐸 is lower.  

 

 
Table 10 Mean squared error 𝐸. Dimensionality reductions techniques introduce an error	𝐸 in the reconstruction phase. If the 
reconstruction is performed by the defined inverse transformation (IT) of the specific technique, 𝐸 is higher compared to the 

reconstruction done by a k-NN regressor.  

 
 

BENCHMARKING 
 

We tested the performances of four tools on our reference datasets: Pamona, SCOT, 

COBOLT and scMMGAN (see Chapter 2).  

All selected tools return embeddings where cells are aligned between molecular 

layers. Like MOWGAN, Pamona, SCOT and scMMGAN inputs are single assay data. 

Pamona and SCOT implement a Gromov-Wasserstein optimal transport solution, while 

scMMGAN uses GANs. COBOLT is also a deep learning tool, but the inputs are both 

paired and unpaired dataset. For this reason, only in this case PBMC_1 and PBMC_2* 

were used.  

The tools were used with standard parameters, following the tutorials. Cell type 

annotations were evaluated on the aligned embeddings. This step did not require any 

  PBMC_1 PBMC_2* 

  RNA ATAC RNA ATAC 

PC
A IT 0.15 0.03 0.09 0.03 

k-NN 0.07 0.01 0.04 0.01 

NM
F IT 0.15 0.03 0.09 0.03 

k-NN 0.07 0.01 0.04 0.01 
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label transferring as the tools do not generate new datasets. In Figure 18 the originals, 

MOWGANs and the four tools’ embeddings are represented together, coloured by cell 

types. Panel A and B show the outcomes on PBMC_1 and PBMC_2 respectively. We can 

observe how PAMONA’s embeddings are entirely different from the others. Pamona 

stress the linear relationship between the cells returning an embedding that is hard to 

trust. SCOT and scMMGAN outputs are much more similar to the reference. 

Nevertheless, they introduce an incorrect association between cells of different layers.  

COBOLT outputs three embeddings: one for the unpaired RNA, one for the 

unpaired ATAC and one for the paired data. They are topologically similar between each 

other, but they do not relate with the reference. Moreover, the cell type annotation is 

completely mixed in the single-assays ATAC embedding, suggesting something went 

wrong during the training.  

For this benchmark, the 𝐿𝐼𝑆𝐼 score can be used as a measure of the distortion 

introduced in the dataset due to the alignment. For all four tools, the 𝐿𝐼𝑆𝐼 ≅ 1, meaning 

the returned embeddings are not integrable with the originals (i.e., they are distorted). 

  Performances were evaluated also in terms of homogeneity, completeness and 

V-measure between cell types (ground truth) and Leiden clusters calculated on the 

different embeddings (Table 11 and Table 12). 

Pamona has high scores, but we remark the unreliability of its outputs, at least 

on the tested datasets. COBOLT has good performances relatively to the paired and RNA 

unpaired layers. Its performances drastically drop on the unpaired ATAC layer. 

MOWGAN, SCOT and scMMGAN are in line, with SCOT slightly overtaking.  

Our benchmark indicates that the true discriminant between MOWGAN and the 

other tools is the ability to generate data with 1) minor distortion and 2) less 

mislabelling.  
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Figure 18 Tools benchmark on PBMC_1 (A), PBMC_2 (B) and PBMC_2* (C). In (A) and (B), the first column represents the 

embeddings for the RNA layer. The second column is the embeddings for ATAC. In (C) we have in order the embeddings for the 
unpaired RNA, for the paired dataset and for the unpaired ATAC. All embeddings are coloured for cell types. 
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Table 11 MOWGAN, PAMONA, SCOT and scMMGAN performances. All metrics are in line, with SCOT slightly surpassing the others.  

 

 

 

 

 

 

 

 

 

 

 

 

  PBMC_1 PBMC_2* 

  RNA ATAC RNA ATAC 

Re
f 

Homogeneity 1.00 0.81 0.94 0.81 

Completeness 0.62 0.54 0.62 0.54 

V measure 0.76 0.65 0.74 0.65 

M
O

W
GA

N
 Homogeneity 0.71 0.53 0.85 0.52 

Completeness 0.52 0.36 0.56 0.37 

V measure 0.60 0.43 0.68 0.44 

PA
M

O
N

A 

Homogeneity 0.89 0.82 0.94 0.79 

Completeness 0.38 0.35 0.40 0.33 

V measure 0.53 0.49 0.56 0.46 

SC
O

T 

Homogeneity 0.86 0.68 0.94 0.71 

Completeness 0.54 0.34 0.58 0.33 

V measure 0.66 0.46 0.72 0.45 

sc
M

M
GA

N
 Homogeneity 0.74 0.70 0.89 0.70 

Completeness 0.43 0.42 0.53 0.40 

V measure 0.54 0.53 0.67 0.51 
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Table 12 COBOLT performances. COBOLT was run on combination of paired and unpaired data. It returns three different 
embeddings: for the unpaired RNA and ATAC layers and one for the paired dataset. Performances on the unpaired ATAC layer are 

drastically low. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  PBMC_1 PBMC_2* 

  RNA ATAC RNA ATAC 

Re
f 

Homogeneity 1.00 0.81 0.94 0.74 

Completeness 0.62 0.54 0.62 0.41 

V measure 0.76 0.65 0.74 0.53 

Co
bo

lt 

Homogeneity 0.87 0.87 0.92 0.005 

Completeness 0.49 0.49 0.56 0.003 

V measure 0.63 0.63 0.70 0.003 
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CHAPTER 5 
 

 

 

 

ADVANCED APPLICATIONS 
 

MOWGAN allows to work on challenging settings. It accepts dataset with complex 

experimental design (e.g., multiple batches and/or conditions). It also allows the 

integration of more than two molecular layers.  

 

BATCH-INFORMED TRAINING 
 

The experimental design can be used to inform the training. In Chapter 4, this was called 

“aware training”. To summarize, the dataset is segmented with respect to a property 

(e.g., sample identity) shared across layers. Thus, subset-specific models are trained. A 

complete dataset is later reconstructed by merging all models’ outputs.  

The batch-aware training improves the quality of the synthetic data. In this 

setting, the proportion of each subset in the merged dataset can also be chosen.  

 To demonstrate the benefits of an aware training, MOWGAN was applied on a 

human-derived colorectal cancer organoids (CRC) dataset. The dataset is composed of 

three organoids/batches (CRC_6, CRC_17, CRC_39). scRNA and scGET data were 

collected.  

 MOWGAN was applied 1) on the whole dataset (not batch-informed training) 

and 2) on organoid-specific subsets (batch-informed training). In both scenarios, PCs and 

tensor train decomposition (TTD) components were used for RNA and GET data 
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respectively. For the sake of simplicity, we will call the generated dataset CRC_NB and 

CRC_B respectively.  

In the former case, the analysis we performed is the same as the PBMC datasets. 

Therefore, we trained a single WGAN-GP model and used Schist to transfer the batch 

annotation on the synthetic data (CRC_NB) (Figure 19).  

 

 

 
Figure 19 CRC_NB RNA and GET UMAP colored by batch transferred by Schist. 

  

In the latter case, three models were trained. On CRC_B the batch is derived 

directly from the trained model. This knowledge can be used to test the reliability of the 

label transfer system. To this end, we applied Schist to CRC_B, and we compared Schist 

annotation with the real one (Table 13 and Figure 20).  

 

 
Table 13 CRC _B performance metrics. The metrics were evaluated between the true batch name and the one transferred thought 

Schist. 

 

  RNA ATAC 

CR
C_

B 

Homogeneity 0.90 0.28 

Completeness 0.87 0.26 

V measure 0.88 0.27 

Accuracy 0.97 0.77 
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Figure 20 CRC_B dataset. UMAPs for the RNA and GET synthetic data colour by the true batch name, and the batch transferred 
through Schist from the original data. The two labels agree in the RNA layer. In GET, the label transfer in a bit more uncertain. 

 

 

On the RNA layer the two annotations are mostly in agreement. The 

performance decreases on the GET layer, even if the accuracy is still high. In this setting, 

the accuracy is an index of the quality of the transferring system. This means that in the 

CRC_B dataset we would trust more a transferring direction from RNAàGET compared 

to GETàRNA.  

To refine the dataset, we can subset CRC_B to include only cells with the same 

annotations. Moreover, given the model error: 

𝐸 = 1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

if 𝑁 are the observations we want in the synthetic dataset, the model could generate 𝑆 

samples, with: 

𝑆 = (1 + 𝐸)𝑁 

 To demonstrate the improved performances in CRC_B compared to CRC_NB, the 

two datasets were integrated, and Leiden clusters were evaluated. We computed the 

quality metrics between the batch transferred by Schist and the clusters computed in 
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the integrated objects (Table 14). CRC_B outperforms CRC_NB in the RNA layers. 

Between the GET layers no real difference is appreciated.  

 

 
Table 14 CRC_B vs CRC_NB. Metrics were calculated between Leiden clusters derived on the integrated object and the batch 

annotation transferred with Schist. 

 

 

CRC_B and CRC_NB are not integrable. Globally the 𝐿𝐼𝑆𝐼 scores are in line with 

what was already observed in the baseline analysis (𝐿𝐼𝑆𝐼0B.	 = 1.37, 𝐿𝐼𝑆𝐼#D/	 = 1.26). 

Nevertheless, when the 𝐿𝐼𝑆𝐼  is calculated on batch-subsets the performances drop 

especially for CRC_6 and CRC_17 (Table 15). Moreover, we observed a better integration 

between CRC_B ( 𝐿𝐼𝑆𝐼0B.	 = 1.55, 𝐿𝐼𝑆𝐼#D/	 = 1.33 ) and original data compared to 

CRC_NB (𝐿𝐼𝑆𝐼0B.	 = 1.42, 𝐿𝐼𝑆𝐼#D/	 = 1.25) and the originals. This is true also for 𝐿𝐼𝑆𝐼s 

evaluated on single batches (Table 16), where lower performances are registered 

especially in the RNA CRC_NB layer compared to the RNA CRC_B layer. 

 

Table 15 CRC_NB and CRC_B integration. The LISI scores evaluated for single batch.  

 

 

 CRC_B CRC_NB 

 RNA ATAC RNA ATAC 

Homogeneity 0.82 0.27 0.45 0.25 

Completeness 0.34 0.08 0.19 0.12 

V measure 0.48 0.14 0.26 0.16 

AMI 0.30 0.22 

 

 CRC_6 CRC_17 CRC_39 

RNA 1.14 1.13 1.24 

GET 1.15 1.21 1.31 
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Table 16 CRC_B and CRC_NB integration with the original data. The LISI scores are evaluated for single batch. 

 

 

THREE- AND FOUR-LAYERS INTEGRATION 
 

MOWGAN can integrate more than two molecular layers. For demonstration, we 

present four different case studies. PCs were used as embeddings. The WGAN-GP 

architecture was adjusted to match the kernel-size of the Conv1D layers to the number 

of modalities evaluated. 

CASE STUDY I 

First, the integration of RNA, ATAC and proteins abundance data was tested. The RNA 

and proteins layers derived from the CITE-Seq dataset. ATAC data were the same as in 

PBMC_1. MOWGAN was not informed of the coupling between RNA and proteins.  

 The results reported here were noteworthy. MOWGAN’s embeddings were 

extremely integrable with the originals (𝐿𝐼𝑆𝐼EFG = 1.7, 𝐿𝐼𝑆𝐼GHGI = 1.6, 𝐿𝐼𝑆𝐼*0J/DAB =

1.7). The Leiden clusters evaluated on each synthetic dataset had 𝐴𝑀𝐼 ≥ 0.46 with 

clusters evaluated in the other layers.  

Figure 21 shows the cell types transferred from the originals to MOWGAN’s data 

by Schist. Moreover, RNA annotation was also transferred to ATAC and protein layers by 

cell ID. The RNA annotation mostly agrees with the cell type defined by Schist on the 

ATAC and protein layers.  

Table 17 summarizes the quality metrics between cell types and Leiden clusters 

for the reference (real datasets) and MOWGAN’s data (cell type transferred by Schist). 

We observed a decrease in the performance compared to the baseline, especially in the 

RNA layer. Nevertheless, the overall performance is high. 

  CRC_6 CRC_17 CRC_39 

Original 
+ 

CRC_B 

RNA 1.86 1.47 1.74 

GET 1.19 1.40 1.26 

Original 
+ 

CRC_NB 

RNA 1.19 1.41 1.32 

GET 1.25 1.27 1.30 
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Table 17 Case study I: RNA, ATAC and protein abundance quality scores. Metrics are evaluated between cell types and Leiden 
clusters. 

 
 

 

 
Figure 21 Case study I: integration of RNA, ATAC and protein abundance. In the first row, MOWGAN’s embeddings are coloured by 

the cell type transferred by Schist from the original data. In the second row, the RNA annotation is transferred to ATAC and 
protein data by cell identity. Annotations are consistent with each other. 

 

 

 

CASE STUDY II 

The second case study was the integration of RNA and ATAC with a histone modification 

dataset. In details, we integrated PBMC_2 and H3K27me3 from the public scCUT&Tag-

pro dataset. Cell type annotation provided with scCUT&Tag-pro data is slightly different 

from the one used in PBMC. Therefore, we modified it accordingly (Table 18). 

  RNA ATAC Protein 

Re
f 

Homogeneity 0.85 0.82 0.74 

Completeness 0.73 0.55 0.61 

V measure 0.79 0. 66 0.67 

M
OW

GA
N 

Homogeneity 0.65 0.64 0.67 

Completeness 0.51 0.58 0.58 

V measure 0.57 0.61 0.62 
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Table 18 Cell type annotation. Cell types in 10x and scCUT&Tag-pro were renamed to “Common Annotation” to match them 
between the two datasets. 

 
 

 

 
Figure 22 Case study II: integration of RNA, ATAC and H3K27me3 histone modification. In the first row, MOWGAN’s embeddings 
are coloured by the cell type transferred by Schist from the original data. In the second row, the RNA annotation is transferred to 

ATAC and H3K27me3 data by cell identity. Annotations are consistent with each other. 

 

Compared to the first case study, MOWGAN’s results were here less integrable 

with the original data ( 𝐿𝐼𝑆𝐼EFG = 1.30, 𝐿𝐼𝑆𝐼GHGI = 1.66, 𝐿𝐼𝑆𝐼K"L@MND" = 1.37 ). 

Nevertheless, the cell type association between different layers was higher. Indeed, the 

accuracy between the cell type transferred by Schist and the one passed through cell 

identity from RNA to ATAC/H3K27me3 was higher than 60% (Figure 22). Moreover, the 

quality metrics in  

Table 19 show that MOWGANs data retain the properties of the reference. In 

the reference itself, H3K27me3 appears to be of poor quality. Indeed, clusters identified 

10x scCUT&Tag-pro Common Annotation 

CD4 T cells 
CD8 T cells 

CD4 T 
CD8 T 

other T 
T cells 

CD14+ Monocytes 
FCGR3A+ Monocytes 

Mono 
other Monocytes 

B cells B B cells 

NK cells NK NK cells 

Dendritic Cells DC Dendritic Cells 
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in this layer are not representative of biological properties (Table 19). This behaviour 

can also be observed in the synthetic H3K27me3 data. 
 

Table 19 Case study II: RNA, ATAC and H3K27me3 quality scores. Metrics are evaluated between cell types and Leiden clusters. 

 
 

 

CASE STUDY III 

Here, the integration of four molecular layers was tested for the first time. PBMC_1 was 

used in combination with the H3K27me3 histone modification and its protein 

abundance data. Also in this case, we used the redefined cell type annotation presented 

in Table 18.  

We observed high integrability between MOWGAN’s data and the originals, with 

the lowest performance registered once again by the histone layer ( 𝐿𝐼𝑆𝐼EFG =

1.67, 𝐿𝐼𝑆𝐼GHGI = 1.67, 𝐿𝐼𝑆𝐼*0J/DAB = 1.75, 𝐿𝐼𝑆𝐼K"L@MND" = 1.38). The same trend was 

observed in the other quality metrics (Table 20).  

The cell type annotations (Figure 23) mostly agree between layers.  We 

registered the highest accuracy between RNA and ATAC cell types (80%) and the lowest 

between RNA and the histone (55%). 

 

  RNA ATAC H3K27me3 
Re

f 

Homogeneity 0.95 0.84 0.55 

Completeness 0.49 0.45 0.27 

V measure 0.64 0.59 0.37 

M
OW

GA
N 

Homogeneity 0.83 0.70 0.34 

Completeness 0.49 0.46 0.21 

V measure 0.61 0.56 0.26 
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Figure 23 Case study III: integration of RNA, ATAC, H3K27me3 histone modification and protein abundance. In the first row, 
MOWGAN’s embeddings are coloured by the cell type transferred by Schist from the original data. In the second row, the RNA 

annotation is transferred to ATAC, H3K27me3 and protein data by cell identity. Annotations are consistent with each other. 

 

 

Table 20 Case study III: RNA, ATAC, H3K27me3 histone modification and protein abundance quality scores. Metrics are evaluated 
between cell types and Leiden clusters. 

 

 

CASE STUDY IV 

The last scenario we addressed is the integration of PBMC_1 with two histone 

modifications: H3K27me3 and H3K4me2. Integrability ( 𝐿𝐼𝑆𝐼EFG = 1.73, 𝐿𝐼𝑆𝐼GHGI =

1.66, 𝐿𝐼𝑆𝐼K"LOND@ = 1.65, 𝐿𝐼𝑆𝐼K"L@MND" = 1.41), cell type agreement between each 

molecular layer and RNA’s cell types (0.65 ≤ accuracy ≤ 0.77) (Figure 24), and quality 

metrics (Table 21) were all good. In the reference, H3K4me2 has higher association 

between clusters and cell types compared to H3K27me3 (Table 21). This is also verified 

in the synthetic data. 

 

  RNA ATAC Protein H3K27me3 

Re
f 

Homogeneity 0.99 0.84 0.81 0.55 

Completeness 0.49 0.45 0.41 0.29 

V measure 0.67 0.59 0.54 0.38 

M
O

W
GA

N
 Homogeneity 0.75 0.73 0.64 0.38 

Completeness 0.61 0.48 0.44 0.32 

V measure 0.67 0.58 0.53 0.35 
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Figure 24 Case study IV: integration of RNA, ATAC, H3K27me3 and H3K4me2 histone modifications integration. In the first row, 
MOWGAN’s embeddings are coloured by the cell type transferred by Schist from the original data. In the second row, the RNA 

annotation is transferred to ATAC, H3K27me3 and H3K4me2 data by cell identity. The annotations are consistent with each other. 

 

 

Table 21 Case study IV: RNA, ATAC, H3K27me3 and H3K4me2 histone modifications quality scores. Metrics are evaluated between 
cell types and Leiden clusters. 

 

 

 

 

 

 

  RNA ATAC H3K27me3 H3K4me2 

Re
f 

Homogeneity 0.99 0.84 0.55 0.65 

Completeness 0.49 0.45 0.27 0.45 

V measure 0.66 0.59 0.37 0.54 

M
OW

GA
N 

Homogeneity 0.70 0.76 0.46 0.65 

Completeness 0.58 0.52 0.32 0.56 

V measure 0.64 0.62 0.38 0.60 
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DISCUSSION 
 

 

 

 

The characterization of biological entities (e.g., cell type) requires studying the processes 

underlying cell ecosystem. To this end, single-cell sequencing technologies were 

introduced. However, they cannot guarantee the simultaneous observation of more 

than one molecular layer, essential to comprehensively depict cells. 

 The need of tools to integrate multiple single cell data, corroborated by the vast 

amount of software tools developed, prompted the development of MOWGAN, a 

machine learning framework for the generation of synthetic paired multi-omics single-

cell datasets. It should be underlined that integration methods could be extended to 

other, non-single cells, contexts such as the study of large bulk assays collections (e.g., 

The Cancer Genome Atlas data). 

To summarize, MOWGAN’s inputs are low-dimensional representation of 

unpaired multi-modal data. Cells in each dataset are sorted based on the first 

component of their Laplacian Eigenmap and later used to train a single WGAN-GP. The 

training is performed in mini-batches. A Bayesian ridge regressor is iteratively applied to 

guide the mini-batch construction.  

MOWGAN’s first output is a synthetic embedding for each input molecular layer. 

The embedding is converted into a matrix 𝑁 × 𝐹 (with 𝑁 the number of generated cells 

and 𝐹 the number of features available for each layer in the original dataset) by a k-NN 

regressor. 

MOWGAN’s outputs verify two main properties:  
 

1. Integrability between synthetic and original data 

2. Induced coupling between molecular layers in the synthetic data 
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The first property assess that the generated data maintain the structural 

characteristics of the original ones. The second measures the pairing introduced in the 

data. Moreover, it was demonstrated that the association established between the 

layers is respectful of the biology.  

Therefore, MOWGAN can be used to bridge real unpaired dataset. Annotations 

defined i) in the true unpaired data or ii) in the integrated object with MOWGAN’s data, 

can be transferred to every other modality for which coupled data were generated.  

To prototype MOWGAN, public data were used. First, PBMC dataset annotated 

with the same cell types were evaluated. 𝐴𝑀𝐼 was calculated between Leiden clusters 

in RNA and ATAC paired data to measure the share information between different 

modalities in the same cells. That is the upper limit of shared information that could be 

expected in simulated data. 

GSEA was performed between cell types in two RNA datasets and two ATAC 

datasets (i.e., intra-modality evaluation). These analyses demonstrated how the 

biological information between RNA datasets is more conserved compared to what can 

be seen between ATAC data.  

𝐴𝑀𝐼 and GSEA were performed also on MOWGAN synthetic data. As expected, 

the 𝐴𝑀𝐼 introduced in the data was lower to the one observed in the reference. The 

features expressed by RNA MOWGAN data for all cell types were consistent with the 

characterization of the cell type in the reference. For the ATAC counterpart, as in the 

reference, results were not so straightforward. Indeed, enrichments for the same 

regions of the reference were found only for few cell types (e.g., NK cells, CD8 cells, CD4 

cells).  

We reasoned that the different performance of the GSEA in RNA and ATAC, both 

real and synthetic data, could be due to the high number of features in ATAC, and the 

small contribution they have in the characterization of the cell type.  

MOWGAN was used on the CRC dataset to demonstrate the improved 

performance when the training is modified to include prior knowledge on the dataset, 

as for the batch’s origin. Indeed, MOWGAN was trained on CRC with and without the 

batch information. When the batch information was not used, the synthetic dataset was 

less integrable with the original one, affecting the ability to transfer annotation between 

the data.  
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Due to the model architecture, MOWGAN can be trained on more than two 

datasets without need to modify the networks. This is an important accomplishment. 

Many tools support the integration of more than two modalities, but generally require 

a drastic change in the model architecture. Moreover, MOWGAN is consistent to 

changes in the hyperparameters, meaning that results are generalizable, and fine-tuning 

is not strongly required. 

MOWGAN was first applied to integrate RNA, ATAC and protein data (case study 

I). RNA and protein were from the CITE-seq dataset, while ATAC was from 10x. 

MOWGAN was agnostic to the pairing in the CITE-seq part. Nevertheless, it was able to 

create association between RNA and proteins and, most importantly, with ATAC, a 

dataset generated using a different platform and derived from a different blood sample.  

To demonstrate again the ability of MOWGAN to integrate three datasets of 

different origins (i.e., platforms, aliquots and laboratories), RNA and ATAC unpaired data 

from 10x were integrated to the H3K27me3 histone modification from the scCUT&Tag-

pro dataset (case study II). The histone layer was not particularly clean, meaning that 

cell types were not clearly identified. Indeed, the association between clusters and cell 

types was lower compared to the other layers, as reported in Table 19. 

To conclude, a four layers integration was tested first between RNA and ATAC 

paired data with H3K27me3 histone modification and its protein abundance (case study 

III), and later with H3K27me3 and H3K4me2 histone modifications (case study IV). In 

both cases, MOWGAN was uninformed of the correct pairing between cells of different 

modalities. Results for H3K27me3 were always poorer compared to the other molecular 

layers it was integrated with, whereas H3K4me2 data had better performances. This was 

true also for the reference, and therefore it is reflected in MOWGAN performance. 

The main problem emerging from the literature about multi-omics data 

integration tools is the introduction of incorrect associations during the inference 

process. Indeed, four tools were here tested for the integration of RNA and ATAC PBMC 

data: Pamona, SCOT, COBOLT and scMMGAN. They were selected for benchmarking due 

to the similarity shared with MOWGAN in the data processing, allowing a direct 

comparison between the results. Tools as Seurat (Stuart et al., 2019) and scVI (Lopez et 

al., 2018), usually applied for data integration, were not evaluated as they require data 



 67 

transformation (i.e., calculation of gene activity matrix) or they work with paired assays 

only.  

Performances were evaluated in terms of homogeneity, completeness and V-

measure between cell types and Leiden clusters. The LISI score was also considered as a 

measure of distortion. Other metrics were investigated as potentially useful but later 

discarded, due to inapplicability and redundance of information. Among them, the 

Preserve Paired Jaccard Index (PPJI) introduced in (Martinez-De-Morentin et al., 2021). 

In the original paper, PPJI is calculated between labels (e.g., Leiden clusters or cell types) 

observed in the original embedding versus the ones in the embedding post alignment, 

to evaluate the conservation and/or improvement in the (cell types) definition in the 

integrated space. This imply a one-to-one relationship between old and new 

annotations, that is not present in MOWGAN, making the score not applicable in this 

context. 

Compared to MOWGAN, the results of benchmarking tools were severely 

affected by untrue associations between groups of different layers, like the coupling 

between CD4 cells and CD14 cells. While MOWGAN is also affected by similar problems, 

the iterative step performed during the mini-batch selection can mitigate the issue. 

Nevertheless, in the results showed so far it was evident that the pairing introduced in 

the generated data by MOWGAN was not fully accurate. The performance depends for 

the most part from the quality of the input data. Indeed, if the embeddings are not 

representative enough of the biological information, or cell entities (e.g., cell types) are 

not distinguishable, MOWGAN will be affected. This was already observed with the 

H3K27me3 analysis: from a poor-quality layer will be generated poor-quality synthetic 

data. Hence, the importance of preprocessing to bring out the information from the 

data. Clean, processed data are recommended as inputs for MOWGAN. Knowing these 

limitations, the usefulness of the data should be considered before the integration. On 

the other hand, MOWGAN is not affected by unbalanced dataset, as demonstrated with 

the CRC. Differential proportions within batches are overtaken by training the network 

in mini-batches. Nevertheless, a problem of resolution is observed: small cell types could 

be lost or incorrectly associated with cell types more represented. 
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Finally, we believe MOWGAN helps our understanding of the biological 

processes that take place inside cells. It is a strong framework, which output should be 

critically studied. In the end, a result should always be experimentally validated.  

We also think that there’s room for further improvement. First, the mini-batch 

selection strategy could be enhanced to include genetic information. To this end, if 

information about the genetic identities of cells is known, it could be used to tune the 

selection of mini-batches. Second, the introduction of weights to penalize the 

importance, in the training phase, of molecular layers we are not confident in is also 

planned. Last, model interpretability should be properly investigated: deeply looking 

into the training process of the WGAN-GP, such as the features that contribute the most 

to the characterization of the biological entities, could help unravelling the underlying 

biology side. 

Although these improvements can be made, we believe that the development of 

a tool suitable for all applications/datasets is not feasible. This is an outcome expected 

also considering the results of a Multi-modal Single-Cell Data Integration Competition 

denoted NeurIPS challenge (Lance et al., 2022): “no method works best for all”. This was 

also observed in relation to the datasets/omics already available, where tools successful 

in some settings don’t perform as well on others. 

Single cell data integration will still be an active field in the years to come, as long 

as new assays will be developed, but we anticipate that the new tools will lose versatility 

to be more case-specific. 

For the time being, the challenge would be also related to the number of omics 

a tool is able to manage. We believe that after a few attempts, the tough interpretability 

of the results and the redundance of information will lead people to care more about 

the quality of the data compared to their abundance.  
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ANNEX I: CHROMATIN VELOCITY REVEALS EPIGENETIC DYNAMICS BY SINGLE-CELL 

PROFILING OF HETEROCHROMATIN AND EUCHROMATIN. 
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Cancers are characterized by extensive interindividual and 
intratumor heterogeneity down to the single-cell level1. This 
fuels clonal evolution and treatment resistance2, the leading 

cause of death for individuals with cancer. The mechanisms underly-
ing such resistance are still largely unknown, especially for standard 
chemotherapeutic and immunotherapeutic regimens. Increasingly 
detailed analyses of cancer genomes before and after treatment 
have so far failed to identify genetic causes that could explain the 
ensuing refractoriness to therapy. Recently, epigenetic changes have 
emerged as key contributors of drug resistance in cancer3–8, suggest-
ing that only a comprehensive assessment of the genetic changes of 
the cancer genome, including somatic mutations and copy number 
changes, alongside a detailed description of the concomitant chro-
matin remodeling events that ensue after treatment could provide 
the insights required to tackle this pressing unmet clinical need.

As for single-cell epigenetics, the recent introduction of trans-
posases such as Tn5, which allow for the fragmenting and sequenc-
ing of native accessible chromatin in bulk (ATAC-seq9) as well as at 
the single-cell level (scATAC-seq10), is providing key insights into 
the cellular status of open chromatin. However, the epigenetic mod-
ifications of large portions of the genome that have essential roles in 

cellular physiology are excluded from this analysis. For instance, to 
our knowledge, there are no single-cell methods able to probe com-
pacted chromatin, that is, heterochromatin, which encompasses up 
to half of the entire genome11 and harbors and regulates a large array 
of transposable elements and non-coding RNAs (ncRNAs)11–13. 
Heterochromatin is assembled and maintained through H3K9me3 
(refs. 12,14), and its accurate regulation is essential for cells, for exam-
ple, contributing toward the definition of cell identity12,13 and the 
maintenance of genomic integrity15.

While single-cell transcriptomic analysis has fostered 
ground-breaking insights into the biology of healthy and diseased 
tissues, including cancer16,17, to our knowledge, a tool that compre-
hensively audits at the single-cell level both the genomic and the 
epigenetic landscape has not been reported.

Results
Tn5 is able to tagment compacted chromatin featuring 
H3K9me3. We first determined whether Tn5 is able to tag-
ment compacted chromatin if properly redirected. To this end, 
we exploited a transposase-assisted chromatin multiplex immu-
noprecipitation (TAM-ChIP) approach, which combines the 
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antibody-mediated targeting of chromatin immunoprecipitation 
with the ability of Tn5 to tagment DNA, leading to chromatin 
fragmentation and barcoding of the chromatin surrounding the 
antibody binding site (Extended Data Fig. 1a). We choose a pri-
mary antibody that recognizes the histone mark H3K9me3 (or 
H3K4me3 used as a control), in line with a recent report18, that 
was then bound by a secondary antibody conjugated to Tn5. 
H3K4me3 TAM-ChIP–seq profiles mirrored the correspond-
ing H3K4me3 chromatin immunoprecipitation sequencing 
(ChIP–seq) profiles. Instead, when a Tn5–secondary antibody 
complex that recognizes H3K9me3-specific primary antibody 
was used, Tn5 tagmented H3K9me3-enriched compacted chro-
matin regions (Extended Data Fig. 1b), which was confirmed by 
real-time quantitative PCR (RT–qPCR) (Extended Data Fig. 1c).

Together, these experiments demonstrate that Tn5, if properly 
redirected, is able to sever and tag H3K9me3-compacted chromatin.

Hybrid CD HP-1α–Tn5 targets H3K9me3 chromatin regions. 
TAM-ChIP towards H3K9me3 was only partially effective in guid-
ing Tn5 transposase toward closed chromatin. Additionally, this 
approach relies on immunoprecipitation, which poses techni-
cal challenges. We hence reasoned that the most straightforward 
approach to target compacted chromatin would entail the modifi-
cation of the natural tropism of Tn5. To this end, we extensively 
reviewed proteins and domains targeting H3K9me3. We then 
selected HP-1α, one of the hallmark proteins involved in het-
erochromatin assembly and maintenance that specifically binds 
H3K9me3 through its CD19–21.

We generated a hybrid protein whereby the HP-1α CD was 
cloned alongside Tn5 (Extended Data Fig. 2a). To link the CD with 
Tn5 transposase, we took advantage of the natural linker that con-
nects the CD and the chromoshadow domain of HP-1α, which we 
extended with two artificial linkers of different length (TnH 1–TnH 
4; Extended Data Fig. 2a). All four hybrid constructs were as effi-
cient as the native Tn5 (either the commercial Nextera enzyme or 
in-house produced enzyme (hereafter, Tn5)) to fragment and insert 
oligos into genomic DNA (gDNA; Extended Data Fig. 2b).

We then determined whether TnH 1–TnH 4 were able to tar-
get chromatin harboring H3K9me3 histone modifications by tag-
menting native chromatin on permeabilized nuclei (Extended Data 
Fig. 2c). Unlike Nextera and Tn5 enzymes, hybrid Tn5 constructs 
indeed cut and inserted oligos in regions enriched for H3K9me3 
while retaining affinity toward accessible sequences (Fig. 1a,b and 
Extended Data Fig. 2d,e). We identified the construct TnH 3 (here-
after referred to as TnH) as the most efficient (Fig. 1b and Extended 
Data Fig. 2d,e).

We next reasoned that combining Tn5 and TnH in a single 
experiment could provide a comprehensive perspective of both 
accessible and compacted chromatin (Fig. 1c). We thus loaded each 
of the two transposases with a set of specific barcoded oligos to dis-
criminate Tn5 from TnH tagmentation products (Fig. 1c). We then 
tested the effect of varying the Tn5-to-TnH ratio (Extended Data 
Fig. 3a) or adding the two enzymes sequentially (Extended Data Fig. 
3b) on the transposition reaction. The sequential use of native Tn5 
followed by TnH provided the most comprehensive mapping of the 
two chromatin profiles.

Together, these results demonstrate that a sequential combination 
of Tn5 and TnH is able to differentiate accessible versus compacted 
chromatin, thus defining the whole-genome epigenetic distribution 
of euchromatin and heterochromatin. We call this method GET-seq 
(genome and epigenome by transposases sequencing).

GET-seq at the single-cell level (scGET-seq). We then attempted 
to implement this method to single-cell analysis. To obtain 
droplet-based scGET-seq, we modified the Chromium Single Cell 
ATAC v1 protocol (10x Genomics) and replaced the provided ATAC 

transposition enzyme (10x Tn5, 10x Genomics) with Tn5 and TnH 
in appropriate enzyme proportions.

We first assessed the distribution of reads assigned to unique 
cell barcodes by using 10x Tn5, TnH, Tn5 or a combination of 
TnH and Tn5 (scGET-seq) in Caki-1 cells and found that the 
four profiles were overlapping (Extended Data Fig. 4a). We next 
explored the portion of the genome that was captured by each 
transposase. TnH had the higher mean distribution of cover-
age per cell with a smaller standard deviation than either Tn5 
or 10x Tn5 (Extended Data Fig. 4b), suggesting that, even at the 
single-cell level, TnH captures genome areas that are not targeted 
by conventional transposases. Indeed, when single-cell Tn5 and 
TnH data were each combined in pseudobulks and compared to 
the ChIP–seq data obtained in the same cells using H3K9me3 and 
H3K4me3 antibodies, TnH was able to target regions positive for 
H3K9me3 as well as H3K4me3 (Extended Data Fig. 4d), in line 
with the bulk TnH results (Fig. 1a).

We then determined whether scGET-seq was able to capture cell 
identity. To this end, we sequenced a mixture of HeLa (20%) and 
Caki-1 (80%) cancer cell lines, which originate from different tis-
sues (cervix and kidney, respectively). Cells were clearly separated 
in two clusters sized with the expected proportions (Fig. 2a).

To further confirm the identity of the clusters, we used avail-
able bulk ATAC-seq data for both cell lines and generated a score 
for each cell line. The respective scores clearly distinguished each 
cell line cluster (Fig. 2a), in accordance with standard scATAC-seq 
results (Fig. 2b).

Together, these data confirm that GET-seq can be applied to 
droplet-based single-cell approaches and is able to easily differenti-
ate cells derived from different genetic backgrounds.

Genomic copy number variants (CNVs) at the single-cell level. 
The definition of genomic CNVs using scATAC-seq remains impre-
cise because only accessible chromatin regions are surveyed by 
this approach, and the remaining genomic sequences can only be 
imputed from adjacent regions22.

As TnH also targets H3K9me3-enriched chromatin regions, 
we tested whether it could also be harnessed to define CNVs. 
Whole-genome sequencing (WGS) revealed several CNVs in 
both cell lines (fraction of genome altered, Caki-1 = 0.475 and 
HeLa = 0.508). The correlation between the genomic profiles 
obtained with WGS and the average pseudobulk profile obtained 
from single-cell data was much higher for the TnH signal than for 
the 10x Tn5 signal at various resolutions (Fig. 2c and Extended Data 
Fig. 5).

A closer inspection of the segmentation profiles at the single-cell 
level revealed that scATAC-seq is able to define CNVs at a coarse 
resolution (10 Mb), as previously determined22. Even at this reso-
lution, scGET-seq showed a much higher consistency for both cell 
lines than 10x Tn5 (Extended Data Fig. 5c). After increasing the res-
olution up to 500 kb, scGET-seq remained reliable while the ability 
of scATAC-seq to identify CNVs degraded, and large swaths of the 
genome were excluded from the analysis (Extended Data Fig. 5a,b). 
In fact, the signal emerging from scATAC-seq correlated closely 
with the location of regulatory elements throughout the genome, 
unlike scGET-seq (Fig. 2d).

We tested the ability of scGET and 10x to call CNV events using 
a machine learning approach. To this end, we called CNVs from 
bulk WGS data of Caki-1 and HeLa cells. We then split scGET-seq 
and scATAC-seq genomic bins into training and test sets (propor-
tion 70:30) and trained a logistic regression classifier and a sup-
port vector machine with linear kernel (SVM). We calculated their 
accuracy and F1 scores on the test set. scGET-seq performed better 
than scATAC-seq regardless of the classifier and the resolution, with 
the performance depending on the number of cells included in the 
analysis (Fig. 2e).
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Together, these data show the feasibility of single-cell profiling 
by GET-seq, which allows for a more precise description of genomic 
features than scATAC-seq.

scGET-seq identifies clonality in human-derived organoids. To 
ascertain the ability of GET-seq to define clonality, we decided to 
rely on a more physiological experimental setting than cell lines, 
human-derived organoids (PDOs). We thus used a tumor–normal 
matched design to generate whole-exome data derived from two 
hepatic metastases of primary colorectal tumors. The analysis of 
somatic single-nucleotide variants (SNVs) and allele-specific copy 
numbers showed high levels of aneuploidy for both samples (CRC6, 
triploid; CRC17, tetraploid). From the analysis of allele frequency 

spectra and cancer cell fractions, we found no evidence of ongoing 
subclonal expansions, concluding that CRC6 and CRC17 are mono-
clonal, a common characteristic of late-stage colorectal cancer23,24 
(Extended Data Fig. 6a). From these samples, we generated PDOs 
(Extended Data Fig. 6b), which we then profiled with scGET-seq. 
The CNV analysis confirmed the existence of two main cellular pop-
ulations with defining genomic features, closely mimicking the two 
CRC6 and CRC17 cancer populations (Fig. 3a and Extended Data 
Fig. 6c). To provide quantitative support to this observation, we also 
calculated the posterior marginal probability distribution of the num-
ber of observable clones. This analysis confirmed that scGET-seq 
could correctly identify two clusters, corresponding to CRC6 and 
CRC17. Notably, only a minority of the cells assessed were misclassi-
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fied (Supplementary Table 1). A similar analysis on Tn5-derived reads 
showed a tendency for overclustering and cell misclassification (Fig. 
3b and Supplementary Table 1). We finally explored the accuracy of 
variant calling (that is, presence/absence of a variant) by comparing 
genotyped clones with known variants profiled in the bulk samples. 
We found that the dependency of precision and sensitivity at different 
depth thresholds were in line with previous observations25, although 
values were slightly smaller and sample dependent (Fig. 3c).

Together, these results suggest that scGET-seq can be success-
fully used to concomitantly obtain detailed information on the 
single-cell epigenetic landscape as well on the underlying genomic 
structure.

Genomic and epigenetic landscape of resistant cancer clones. To 
exploit the ability of scGET-seq to capture the genomic and epigen-
etic landscape of single cells, we used PDX models of colon carci-
noma where we have shown that resistance to therapy may arise 

from the selection of clones endowed with specific genetic lesions 
along with features of plasticity that are not driven by genomic 
modifications but most likely by chromatin reshaping26,27. We 
therefore followed cancer evolution in one PDX model throughout 
several weeks of treatment with the clinically approved epidermal 
growth factor receptor (EGFR) antibody cetuximab (Extended Data 
Fig. 7a). Analysis of genomic segmentation by scGET-seq revealed 
two major clones in the absence of treatment (Fig. 3d and Extended 
Data Fig. 7b). Conversely, cells were separated into six different 
clones when assessing the pretreatment epigenetic landscape (Fig. 
3e). When the impact of treatment was assayed, clone A was pre-
dominant, while clone B was present at very low frequency (Fig. 3d). 
By contrast, the epigenetic landscape of cetuximab-treated PDX 
samples was more heterogenous, with epigenetic subclones embed-
ded within genetic clones (Fig. 3e).

We next sought to identify processes that might provide bio-
logical insights into epigenetic mechanisms of resistance to EGFR 
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blockade. To this end, we performed functional enrichment analy-
sis using the genes associated with the regions that were differen-
tially affected in the various clones (Supplementary Table 2). In the 
epigenetic clones most associated with resistance, there was a sig-
nificant enrichment of pathways linked to refractoriness to EGFR 
inhibitors, including the phospholipase C pathway28, transform-
ing growth factor-β (TGF-β) signaling29 and the WNT pathway30 
(Extended Data Fig. 7c). These results are in line with our previous 
observations that cancer cells exposed to targeted therapies do show 
resistance patterns related to genomic plasticity phenotypes, most 
likely driven by chromatin remodeling phenomena26,27.

As scGET-seq includes sequences for portions of the genome 
that are eluded by conventional ATAC-seq, we next sought to deter-
mine whether we could also define SNVs within single cells. Not all 
exome SNVs were captured by scGET-seq; nonetheless, there was 
a highly significant correlation between the mutations identified 
by bulk exome sequencing conducted on the primary tumor and 
the scGET-seq results (Fig. 3f). Notably, by virtue of the single-cell 
analysis, it was possible to ascribe the mutations to specific clones.

scGET-seq was also able to identify mutations not present in 
the initial bulk exome sequencing in the starting sample and muta-
tions that affected established cancer genes (tier 1, COSMIC Cancer 
Gene Census, version 92 (ref. 31); Supplementary Table 3), includ-
ing CDKN1B, KDM5A, CDH11, SRSF2, MSH2, SMO and NCOA2 
(Fig. 3g) (the enrichment for COSMIC mutations was significant 
for variants profiled at high depth, that is, higher than 15; odds 
ratio = 1.55; P = 3.57 × 10−3, Fisher’s exact test). At this stage, it 
remains to be ascertained whether the mutations that were found 
by single-cell analysis but not by bulk sequencing were developed 
de novo by the PDX or were already present in the original popula-
tion at frequencies too low to be detected by the limited coverage of 
exome sequencing.

Together, these results suggest that scGET-seq could be used to 
comprehensively assess the tumor genome (including both CNVs 

and SNVs) and the epigenome, illuminating paths of cancer evolu-
tion, clonality and drug resistance.

scGET-seq captures chromatin status at the single-cell level. We 
next determined whether scGET-seq might capture the dynamics 
between accessible and compacted chromatin at the single-cell level. 
We have recently demonstrated that ablation of the histone demeth-
ylase Kdm5c hampers H3K9me3 deposition, impairing heterochro-
matin assembly and maintenance in NIH-3T3 cells32. We performed 
scGET-seq in cells before and after Kdm5c knockdown. We identified 
two neatly distinguished cell groups, including short hairpin scramble 
(shScr) and shKdm5c cells, respectively (Fig. 4a). Seeking to find an 
explanation for this pattern, we discovered that this distinction was 
driven by the total number of reads per cell (Fig. 4b). We surmised 
that this pattern might be driven by the cell cycle status, namely, high 
coverage associated with cells in the S and G2/M cycle phases during 
or after DNA replication and low coverage linked to cells in the G1 
cycle phase before the replication of DNA. To test our hypothesis, we 
applied a strategy derived from ref. 10 where we analyzed the distribu-
tion of Repli-seq33–35 signal over differentially enriched DHS regions 
between high- and low-coverage cells. We found that high-coverage 
cells are characterized by a higher, less variable fraction of early repli-
cating regions (Extended Data Fig. 8a) in contrast to the highly vari-
able values characterizing the low-coverage cells. This pattern suggests 
that cells with high coverage are indeed in mitosis, as confirmed by 
the scores calculated on lamin B1-associated domain data33 (Extended 
Data Fig. 8b).

To decode the relationship between accessible and compacted 
chromatin as captured by scGET-seq, we focused our analysis on 
major repeats, regions of the genome that undergo compaction dur-
ing the cell cycle through the acquisition of H3K9me3 residues. As 
Kdm5c acts and heterochromatin assembly occurs during middle/
late S phase, we focused on the G1/S phase of the cell cycle32,36. The 
signal emerging from Tn5 was weaker in G1/S cells where Kdm5c 
expression was not knocked down (Fig. 4a,d, black arrow, compared 
to TnH in Fig. 4c, red arrow), likely because these cells present a 
normal assembly of H3K9me3 and heterochromatin, and therefore 
Tn5 would be unable to tag compacted DNA. Conversely, the signal 
from TnH showed a more even distribution in G1/S cells, irrespec-
tive of Kdm5c status, as TnH targets both accessible and compacted 
chromatin (Fig. 4c).

We tested whether our observation was statistically significant 
fitting a linear model that considers the enrichment over TnH and 
Tn5 as an interaction term when looking for groupwise specific 
markers. We found that TnH enrichment was significantly higher 
than Tn5 in groups 3 and 6 (Extended Data Fig. 8c,d), where indeed 
shScr cells are present at a higher percentage, suggesting that TnH is 
able to selectively capture regions of the genome, such as chromatin 
decorated with H3K9me3, which Tn5 is unable to reach.

Together, these data suggest that GET-seq pinpoints quantitative 
differences between the two enzymes arising from the local chro-
matin status.

scGET-seq defines cell identity and developmental paths. The 
modulation of H3K9 methylation and chromatin compaction 
are pivotal mechanisms underlying organismal development and 
cellular reprogramming. We thus explored the potential role of 
scGET-seq in illuminating these processes. To this end, we explored 
the single-cell profiles of cultured fibroblasts (FIBs) undergoing 
reprogramming into induced pluripotent stem cells (iPSCs) that 
were obtained from two unrelated healthy individuals and of iPSCs 
undergoing differentiation into neural progenitor cells (NPCs). In 
parallel, we performed single-cell RNA sequencing (scRNA-seq) 
analysis on cells from the same samples.

Low-dimensional representation of single-cell data from 
scGET-seq and scRNA-seq separated FIBs, iPSCs and NPCs into 
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three distinct populations (Fig. 5a,b). Notably, UMAP representa-
tions of both scGET-seq and scRNA-seq data showed that iPSCs 
and NPCs were in close proximity, while FIBs were isolated from 
the other two populations, with the exception of a small subset of 
FIBs and to a lesser extent NPCs clustering alongside iPSCs exclu-
sively in the scGET-seq data (Fig. 5a, black arrow).

We next explored the genomic regions more closely defining 
each population. Notably, the GET-seq sequences most significantly 
enriched in each cell type were in proximity of genes that are crucial 
for the biology of each population, such as COL5A2 for FIBs, L1TD1 
for iPSCs37 and PRTG for NPCs38 (Fig. 5c and Supplementary Table 
4), with concomitant expression in the corresponding populations.

We next sought to determine whether the epigenetic landscapes 
depicted by scGET-seq could be exploited to capture cell fate prob-
abilities. Indeed, it has been recently proposed that cell fate choices 
are driven by a continuum of epigenetic choices more than a series of 
discrete bifurcations alongside developmental paths39. To this end, 
a tool has been recently devised, Palantir39, that is able to capture 
these dynamics from scRNA-seq data. When we applied Palantir to 
the GET-seq dataset, we found three main fate branches (Extended 
Data Fig. 9a) defining a group of cells endowed with an intense dif-
ferentiation potential (Fig. 5d), which included iPSCs and the sub-
set of FIBs and NPCs clustering alongside iPSCs (Fig. 5a).

Intrigued by these results, we then explored the regions defining 
these cellular populations endowed with the highest differentiation 
potential (Fig. 5e). We found that these regions resided, for the most 
part, in pericentromeric regions (Supplementary Table 5), in line 

with recent reports supporting a crucial role for these genomic areas 
as drivers of pluripotency40–43. We hence used the genes associated 
with these regions to generate a differentiation signature, which we 
then applied to scRNA-seq data. This signature highlighted a subset 
of NPCs as well as FIBs sharing similar features in the scRNA-seq 
data (Fig. 5f, red arrows).

Together, these results suggest that GET-seq is able to capture 
the epigenetic diversity arising during developmental processes 
and identify key factors engaged in the process. Additionally, this 
approach may uncover epigenetic events arising before the appear-
ance of the concomitant transcriptomic events.

Chromatin Velocity to define epigenetic vectors. Prompted by the 
quantitative properties of scGET-seq highlighted in the shKdm5c 
experiment, we sought to investigate developmental dynamics in 
terms of differential unfolding of chromatin. RNA velocity is a tool 
recently introduced that uses scRNA-seq data to capture not only 
the overall developmental direction of each cell but also its kinetics, 
that is, the differential displacement by which various cells travel 
through states44. We hence explored whether it is feasible to obtain 
single-cell trajectories using scGET-seq data. Instead of using the 
ratio between unspliced and spliced mRNA, as in RNA velocity, 
we exploited the ratio between Tn5 and TnH signals at any given 
location under the assumption that an increase in this value points 
to a dynamic process leading to more relaxed chromatin, while the 
opposite is indicative of chromatin compaction (Extended Data 
Fig. 9b). We found that this approach, which we named Chromatin 

NPCs

a c d

fb

e

FIBs

iPSCs

NPCs

FIBs

iPSCs

0

1
FIBs

0

1
iPSCs

0

1
NPCs

0.8

0.4

0

0.30

0.15

COL5A2

2
1
0

2
0

L1TD1

PRTG

2
1
0

62,180

55,728 55,730 55,732 55,735 55,738 55,740 55,742 55,745 kb

Cluster
Cell type

D
H

S
 regions

62,185

189,100 189,120 189,140 189,160 189,180 kb

62,190

PIGPP2

AC133106.1 MIR3129

COL5A2

FIBs

iPSCs

NPCs

FIBs

iPSCs

NPCs

RPS15AP7

RF00019

PRTG

L1TD1

AL162739.1

62,195 62,200 62,205

Chromosome 1

Chromosome 15

Chromosome 2

62,210 62,215 62,220 kb

1

1
0

0
1

0

1

1
0

0
1

0

Fig. 5 | scGET-seq defines cell identity and developmental trajectories of FIBs, iPSCs and NPCs. a, UMAP embedding showing scGET-seq profiling of 
human FIBs, iPSCs and NPCs. The black arrow shows a small subset of FIBs and NPCs clustering alongside iPSCs. b, UMAP embedding showing scRNA-seq 
profiling of the same cell populations derived from the same samples as in a. c, Profiles show the pseudobulk Tn5 signal for three selected regions among 
the top differentially enriched in the three cell types; tracks are colored according to cell type as in a and b. A UMAP embedding colored by the level of 
expression of the corresponding gene is reported on the right of each profile. d, UMAP embedding of cells profiled by scGET-seq and colored by entropy 
(differentiation potential) as estimated by Palantir. e, Heat map showing the enrichment of Tn5 over the top 20 regions associated with a high entropy as 
result of a generalized linear model. The first annotation row is colored by cell cluster, and the second annotation row is colored by the cell type. f, UMAP 
embedding of cells profiled by scRNA-seq and colored by the expression signature derived from genes associated with regions depicted in e. The red 
arrows show the subsets of NPCs and FIBs that share similar features with iPSCs.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology




ArticlesNATuRE BIoTECHnoloGy

Discussion
In this study, we propose a new single-cell approach, scGET-seq, 
based on the engineering of a Tn5 transposase targeting H3K9me3, 
thus providing a comprehensive epigenetic assessment of hetero-
chromatin. Additionally, the sequencing of a much larger portion of 
the genome allows for the accurate and high-resolution identifica-
tion of CNVs as well as the detection of SNVs at the single-cell level. 
We have also harnessed epigenetic data to develop a computational 
approach, Chromatin Velocity, that defines vectors of cellular fate 
and predicts future cell states based on the ratio between open and 
closed chromatin.

Several human diseases are the result of disrupted epigenetic 
processes, including cancer where the all-important relationship 
between genetic-driven events versus plasticity remains unclear. 
Indeed, the study of cancer evolution has relied on the definition of 
genetic lesions conferring selective advantage, such as the acquisi-
tion of somatic mutations or copy number aberrations. Yet, grow-
ing evidence points to epigenetic traits as crucially important in 
several cancer-related phenotypes, for instance the acquisition of 
drug resistance3–8. We envision that the engineering of additional 
hybrid transposases, including domains targeting other portions of 
the genome, could extend and integrate the information provided 
by TnH.

Recent enzyme-tethering strategies have been proposed for 
chromatin profiling, such as TAM-ChIP and most relevantly 
CUT&Tag56. Indeed, both GET-seq and CUT&Tag are applied on 
permeabilized live cells, exploit a streamlined Tn5-based library 
preparation and are suitable for low cell numbers and single cells57. 
However, CUT&Tag is based on antibody-guided tagmentation 
before chromatin tagmentation, while GET-seq directly targets 
chromatin through Tn5 tropism modification, therefore offering 
a more expedited procedure and removing limitations due to spe-
cific antibody availability and validation. Finally, to our knowledge, 
GET-seq is unique in its possibility of multiplexing analysis of dif-
ferent targets in the same reaction through specific barcodes in 
MEDS oligonucleotides.

RNA velocity adds the vector of time and direction to scRNA-seq 
one-dimensional data44. We propose here Chromatin Velocity, 
which provides multidimensional information at the epigenetic 
level. Bulk analysis has revealed that in development, cells undergo 
epigenetic changes, such as modulation in the opening and closing 
of chromatin, which precedes and prepares gene expression modi-
fications58–63. Therefore, it stands to reason that RNA velocity and 
Chromatin Velocity are going to capture non-superimposable bio-
logical processes.

Retracing the specific engagement of TFs from scRNA-seq 
experiments is challenging64. Leveraging the detailed description 
of epigenome analysis provides more robust data and reduces vari-
ability, allowing for the genome-wide identification of TFs and the 
epigenetic dynamics of processes such as development.

In summary, we propose a new method, scGET-seq, that cap-
tures genomic and chromatin landscapes and trajectories as well 
as key players, which could provide important insights in fields 
as diverse as development, regenerative medicine and the study of 
human diseases, including cancer.
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Methods
Cell culture. All established cell lines were purchased from American Type Culture 
Collection (ATCC), except for the HEK293T cell line, which was a kind gift from 
L. Naldini (San Raffaele Telethon Institute for Gene Therapy). Cells were cultured 
in DMEM (NIH-3T3, HeLa and HEK293T) or RPMI (Caki-1) supplemented 
with 10% fetal bovine serum (FA30WS1810500, Carlo Erba for HEK293T cells, 
and 10270-106, Gibco for all the other cell lines) and 1% penicillin-streptomycin 
(ECB3001D, Euroclone).

TAM-ChIP. TAM-ChIP (Active Motif) was performed following manufacturer’s 
instructions starting with 10,000,000 Caki-1 cells crosslinked with 38% 
formaldehyde; fixation was stopped with 0.125 M glycine. Sonication was then 
performed using a Covaris E220 with the following parameters: total time 6 min, 
175 peak incident power, 200 cycles per burst. Sonicated chromatin (8 μg) was used 
as input for each experimental condition. The following antibodies were used: no 
antibody (No Ab), anti-H3K9me3 (ab8898, Abcam) and anti-H3K4me3 (07-473, 
Millipore). ChIP–seq, performed as described in ref. 32, was used as a reference for 
TAM-ChIP–seq (anti-H3K9me3 (ab8898, Abcam) and anti-H3K4me3 (07-473, 
Millipore) were used).

TAM-ChIP–RT–qPCR. TAM-ChIP was performed on two biological replicates for 
each condition (H3K4me3, H3K9me3 and No Ab). For each biological replicate, 
three technical replicates were analyzed by RT–qPCR. In TAM-ChIP–RT–qPCR 
one of the two H3K4me3 biological replicates was excluded because no appreciable 
signal was detected for any condition. For each TAM-ChIP condition, 10 ng of final 
library was used as input. Water was used as a negative control. RT–qPCR analysis 
was performed using Sybr Green Master Mix (Applied Biosystems) on the Viia 
7 Real Time PCR System (Applied Biosystems). All primers used were designed 
on H3K9me3-enriched chromatin regions derived from reference ChIP–seq data 
(as previously described in ref. 32) and used at a final concentration of 400 nM. To 
determine the enrichment obtained, we normalized TAM-ChIP–RT–qPCR data to 
No Ab samples. Primers are listed below.

Primer Forward sequence Reverse sequence

BRINP2 GCGCCTTCCTTACTTCCATG AGTGGCCATCTCATTTCCCA
NTF3 AAAGGCCTTGGTCCCAGA ATTGAAGGAACGCAGCCC

CACNA1E GAGGGAGGAGAAAGCCGA TTGTCCAGACCAGCCCTT

Tn5 transposase production. Tn5 transposase was produced as previously 
described65 using pTXB1-Tn5 vector (Addgene, 60240). For hybrid transposases, 
the DNA fragment encoding human HP-1α was derived from the pET15b-HP1α 
(pHP1α-pre) vector66, kindly provided by H. Kurumizaka. According to 
the cloning strategy, two different lengths of HP-1α polypeptide (spanning 
amino acids 1–93 and 1–112) were linked to Tn5, using either a three or five 
poly-tyrosine-glycine-serine (TGS) linker, resulting in four hybrid constructs, TnH 
1–TnH 4: TnH 1, amino acids 1–93 (HP-1α)-3 × TGS-Tn5; TnH 2, amino acids 
1–93 (HP-1α)-5 × TGS-Tn5; TnH 3, amino acids 1–112 (HP-1α)-3 × TGS-Tn5; 
TnH 4, amino acids 1–112 (HP-1α)-5 × TGS-Tn5. The 1–93 or 1–112 amino acid 
spanning regions of HP-1α include 1–75 amino acids of CD followed by 18 or 37 
amino acids of natural linker, respectively. Construct amino acid sequences are 
detailed in Supplementary Data 1.

Transposon assembly. Assembly of standard and modified preannealed MEDS 
oligonucleotides, Tn5MEDS-A, Tn5MEDS-B and TnHMEDS-A was performed in 
solution following a published protocol67. For scGET-seq, standard ME-A oligo65 
was replaced by a combination of eight different sequences containing 8-nt tags 
before the 19-nt ME sequence to allow differentiation of fragments derived from 
either Tn5 or TnH tagmentation. Four sequences were used to replace standard 
Tn5ME-A (Tn5ME-A.1, Tn5ME-A.2, Tn5ME-A.7 and Tn5ME-A.8), and another 
four sequences were used to replace TnHME-A (TnHME-A.4, TnHME-A.5, 
TnHME-A.9 and TnHME-A.10). A read 1 primer binding site was reconstituted 
adding 8 nt (TCCGATCT) upstream of the Tn5/TnH tag. Modified Tn5ME-A 
sequences are reported in Supplementary Data 1.

Creation of functional transposon was performed following a previously 
published protocol65.

Bulk tagmentation reaction and ATAC-seq. Bulk tagmentation was performed 
on Caki-1 gDNA following a published protocol65. Specifically, 500 ng of gDNA 
was incubated for 7 min at 55 °C with 1 μl of functional transposon in 1× 
TAPS-PEG8000 buffer in a final 20-μl volume. As a control, a parallel reaction was 
performed on Caki-1 gDNA but using the Nextera DNA Library Prep kit according 
to the manufacturer’s protocol. Reactions were stopped by adding SDS at a final 
concentration of 0.05% and incubated for 5 min at room temperature. Then, 5 μl 
of this mixture was used as input for indexing PCR using standard Nextera N7xx 
and S5xx oligos and KAPA HiFi enzyme (Roche) using the following protocol: 
3 min at 72 °C, 30 s at 98 °C followed by 13 cycles of 45 s at 98 °C, 30 s at 55 °C 
and 30 s at 72 °C. Libraries were then purified using 1× volume of Ampure XP 

beads (Beckman Coulter) and checked for fragment distribution on a TapeStation 
(Agilent).

ATAC-seq was performed following published protocols9 with minor 
modifications. Briefly, 100,000 Caki-1 cells were pelleted and washed in 100 μl 
of cold 1× PBS, centrifuged for 10 min at 500g at 4 °C and permeabilized in 
100 μl of cold lysis buffer (10 mM TrisHCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 
0.1% (vol/vol) Igepal CA-630) then centrifuged again for 10 min at 500g at 4 °C. 
Tagmentation was performed on cell pellets, using either Tn5 or TnH, by adding 
100 μl of transposition mix (5× TAPS-PEG8000 buffer mixed with 10 μl of 1.39 μM 
functional transposon in a final volume of 100 μl). As a control, a parallel reaction 
was performed on 100,000 pelleted Caki-1 cells using the Nextera XT DNA Library 
Prep kit (Illumina) according to the manufacturer’s protocol. Reactions were 
performed at 37 °C for 30 min and stopped by adding SDS at a final concentration 
of 0.05%. After 5 min of incubation at room temperature, reactions were purified 
using a QIAquick Gel Extraction kit (Qiagen) and eluted in 15 μl of Elution 
Buffer. Five microliters of this reaction was used as input for indexing PCR as 
described before. Libraries were sequenced on Illumina platforms using a 2 × 50-bp 
sequencing protocol.

scATAC-seq and scGET-seq. scATAC-seq was performed on a Chromium 
platform (10x Genomics) using ‘Chromium Single Cell ATAC Reagent Kit’ V1 
chemistry (manual version CG000168 Rev C) and ‘Nuclei Isolation for Single 
Cell ATAC Sequencing’ (manual version CG000169 Rev B) protocols. Nuclei 
suspensions were prepared to get 10,000 nuclei as target nuclei recovery.

scGET-seq was performed as previously described, but the provided ATAC 
transposition enzyme (10x Tn5; 10x Genomics) was replaced with a sequential 
combination of Tn5 and TnH functional transposons in the transposition mix 
assembly step. Specifically, a transposition mix containing 1.5 μl of 1.39 μM Tn5 
was incubated for 30 min at 37 °C, then 1.5 μl of 1.39 μM TnH was added for a 1-h 
incubation.

When scGET-seq was performed using a 20:80 ratio of HeLa:Caki-1 cells, 
nuclei suspensions were prepared in duplicate to get 10,000 nuclei as target nuclei 
recovery for each replicate.

Final libraries were loaded on a Novaseq6000 platform (Illumina) 
to obtain 50,000 reads per nucleus with a read length of 2 × 50 bp. For 
GET-seq, the sequencing target was 100,000 reads per nucleus, and 
a custom read 1 primer was added to the standard Illumina mixture 
(5′-TCGTCGGCAGCGTCTCCGATCT-3′). Sequencing statistics for all scGET-seq 
experiments presented in the manuscript are reported in Supplementary Table 8.

scRNA-seq. scRNA-seq was performed on a Chromium platform (10x Genomics) 
using ‘Chromium Single Cell 3ʹ Reagent Kits v3’ kit manual version CG000183 
Rev C (10x Genomics). Final libraries were loaded on a Novaseq6000 platform 
(Illumina) to obtain 50,000 reads per cell.

Kdm5c knockdown experiment. Lentiviral vectors were produced by transfecting 
HEK293T cells (a kind gift from L. Naldini, San Raffaele Telethon Institute for 
Gene Therapy) with pLK0.1 plasmid containing shRNAs targeting Kdm5c (shKd
m5c, CCGGGCAGTGTAACACACGTCCATTCTCGAGAATGGACGTGTGTTA
CACTGCTTTT) or scramble (shScr)32.

A calcium chloride method was used for transfection. Specifically, a mix 
containing 30 μg of transfer vector, 12.5 μg of ∆r 8.74, 9 μg of Env vesicular 
stomatitis virus (VSV)-G, 6.25 μg of Rev and 15 μg of adenovirus (ADV) plasmid 
was prepared and filled up to 1,125 μl with 0.1× TE:deionized water (2:1). After 
30 min of incubation with rotation, 125 μl of 2.5 M CaCl2 was added to the mix 
and, after 15 min of incubation, the precipitate was formed by dropwise addition 
of 1,250 μl of 2× HBS to the mix while vortexing at full speed. Finally, 2.5 ml of 
precipitate was added drop by drop to 15-cm dishes with HEK293T cells at 50% 
confluency. After 12–14 h, the medium was replaced with 16 ml of fresh medium 
per dish supplemented with 16 μl of NAB per dish. After 30 h, the medium 
containing viral particles was collected, filtered with a 0.22-μm filter and stored at 
–80 °C in small aliquots to avoid freeze–thaw cycles.

NIH-3T3 cells were transduced using a six-well plate format. To this end, 
2 ml of shKdm5c/shScr lentiviral vector supplemented with polybrene (final 
concentration, 8 μg ml–1) was added to actively cycling (50% confluency) NIH-3T3 
cells; one well of untransduced cells was used as a negative control. After 24 h, 
transduced cells were passaged in a 10-cm dish, and puromycin selection (final 
concentration, 4 μg ml–1) was performed. Forty-eight hours after selection, half 
of the transduced cells were detached, washed twice with cold 1× PBS and tested 
for gene knockdown by RT–qPCR as described below. Following knockdown 
validation, 72 h after selection, all remaining cells were collected and subjected to 
scGET-seq as already described. Nuclei suspensions were prepared to get 10,000 
nuclei as target nuclei recovery.

Gene knockdown validation by RT–qPCR. Total RNA was isolated using Trizol 
(Invitrogen) and purified using an RNeasy mini kit (Qiagen). cDNA was generated 
using a First-Strand cDNA Synthesis ImpromII A3800 kit (Promega) with random 
primers. RT–qPCR was performed using Sybr Green Master Mix (Applied 
Biosystems) on the Viia 7 Real Time PCR System (Applied Biosystems). Ten 
nanograms of cDNA was used as input, and water was used as a negative control. 
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Amplification was performed using previously validated primers32 used at a final 
concentration of 400 nM except for primers for major ncRNA that were used at 
200 nM. Primers for minor ncRNA were taken from ref. 68 and were used at a final 
concentration of 400 nM.

Human-derived colorectal cancer organoids (PDOs). Samples from two 
individuals with liver metastatic gastrointestinal cancers were obtained following 
written informed consent, in line with protocols approved by the San Raffaele 
Hospital Institutional Review Board and following procedures in accordance 
with the Declaration of Helsinki of 1975, as revised in 2000. PDO cultures were 
established as previously reported69. Briefly, fresh tissues were minced immediately 
after surgery, conditioned in PBS/5 mM EDTA and digested for 1 h at 37 °C in a 
solution composed of 2× TrypLE Select Enzyme (Thermo Fisher) in PBS/1 mM 
EDTA with DNAse I (Merck). Release of cells was facilitated by pipetting. 
Dissociated cells were collected, suspended in 120 μl of growth factor-reduced 
Matrigel (Corning 356231, Fisher Scientific), seeded in single domes in a 24-well 
flat-bottom cell culture plate (Corning) and, after dome solidification, covered with 
1 ml of complete human organoid medium69; medium was replaced every 2–3 d. 
For scGET-seq analysis, after a 20-min incubation at 37 °C in a solution of 1× 
TrypLE Select Enzyme in PBS/1 mM EDTA, PDOs were dissociated to single cells 
by combining mechanical (pipetting) and enzymatic digestion, washing in 1× PBS 
and processing as previously described.

Human-derived colorectal cancer xenografts (PDXs). Specimen collection and 
annotation. EGFR blockade-responsive colorectal cancer and matched normal 
samples were obtained from one individual that underwent liver metastasectomy at 
the Azienda Ospedaliera Mauriziano Umberto I (Torino). The individual provided 
informed consent. Samples were procured, and the study was conducted under the 
approval of the Review Boards of the Institution.

PDX models and in vivo treatment. Tumor implantation and expansion were 
performed in 6-week-old male and female non-obese diabetic/severe combined 
immunodeficient (NOD/SCID) mice as previously described69. Once tumors 
reached an average volume of ~400 mm3, mice were randomized into the following 
four treatment arms that received either placebo or cetuximab (Merck; 20 mg 
kg–1 twice weekly, intraperitoneally): (1) untreated, (2) cetuximab for 72 h, (3) 
cetuximab for 4 weeks and (4) cetuximab for 7 weeks. To recover enough cells 
from tumors that had shrunk during cetuximab treatment, multiple xenografts 
were minced and mixed together to obtain the individual data points of treated 
arms (n = 1 in the case of untreated tumors; n = 2 for 72 h; n = 4 for 4 weeks; n = 5 
for 7 weeks). The whole experiment was performed twice to obtain independent 
biological duplicates for each experimental point. To reach the endpoint of all the 
experimental groups on the same day, treatments were started asynchronously. 
Tumor growth was monitored once weekly by caliper measurements, and 
approximate tumor volumes were calculated using the formula 4/3π × (d/2)2 × D/2, 
where d and D are the minor tumor axis and the major tumor axis, respectively. 
Operators were blinded during measurements. In vivo procedures and related 
biobanking data were managed using the Laboratory Assistant Suite (https://doi.
org/10.1007/s10916-012-9891-6). Animal procedures were approved by the Italian 
Ministry of Health (authorization 806/2016-PR).

scGET-seq on PDXA. At the end of treatments, mice were killed, and tumors were 
collected. All the tumors pertaining to each treatment arm were pooled together. 
The dissociation step was performed using the Human Tumor Dissociation kit 
(Miltenyi Biotec) with the gentleMACS Dissociator (Miltenyi Biotec) according 
to the manufacturer’s protocol. Single cells were then subjected to scGET-seq as 
already described. Nuclei suspensions were prepared to get 10,000 nuclei as target 
nuclei recovery for each replicate.

FIB reprogramming toward iPSCs and iPSC differentiation toward NPCs. 
Dermal FIBs obtained from skin biopsies of two different healthy individuals 
(A and B) were cultured in fibroblast medium and reprogrammed with Sendai 
virus technology (CytoTune-iPS Sendai Reprogramming kit, Thermo Fisher) to 
generate human iPSC clones. iPSC clones were individually picked, expanded 
and maintained in mTeSR1 on human ESC (hESC)-qualified Matrigel. Human 
iPSC-derived NPCs were generated following the standard protocol based on 
dual SMAD inhibition70. Briefly, iPSCs were differentiated to NPCs via human 
embryoid bodies. Neural induction was initiated through inhibition using the 
dual small inhibition molecules dorsomorphin, purmorphamine and SB43152. 
The small molecule CHIR99021, a GSK-3β inhibitor, was added to stimulate the 
canonical WNT signaling pathway. The study was approved by Comitato Etico 
Ospedale San Raffaele (BANCA-INSPE 09/03/2017). Human FIBs, iPSCs and 
NPCs derived from individuals A and B were collected, counted and subjected 
to GET-seq and scRNA-seq, as already described, starting from the same cell 
suspension. Target recovery was 5,000 cells for scRNA-seq and 5,000 nuclei for 
scGET-seq.

Bioinformatics analysis. Data preprocessing. Illumina sequencing data for 
bulk sequencing were demultiplexed using bcl2fastq using default parameters. 
Sequencing data for single-cell experiments were demultiplexed using 

cellranger-atac (v1.0.1). Identification of cell barcodes was performed using 
umitools (v1.0.1)71 using R2 as input.

Read tags for GET-seq and scGET-seq experiments, where TnH and Tn5 data 
are mixed, were processed with TagDust (v2.33)72, specifying transposase-specific 
barcodes as first block in the hidden Markov model (HMM) model. The data 
preprocessing pipeline is available at https://github.com/leomorelli/scGET.

Reads for ChIP–seq, GET-seq and scGET-seq experiments were aligned to the 
reference genome (hg38 or mm10) using BWA-MEM v0.7.12 (ref. 73).

Analysis of bulk sequencing data. Aligned reads were deduplicated using 
SAMBLASTER74. Genome bigwig tracks were generated using bamCoverage from 
the deepTools suite75 with bins per million mapped reads (BPM) normalization. 
H3K4me3-enriched regions were identified using MACS v2.2.7 (ref. 76), and 
H3K9me3-enriched regions were identified using SICER v2 (ref. 77) using default 
parameters.

Definition of epigenome reference sets. We segmented the genome according to 
DHSs, as previously described78. Briefly, we downloaded the index of DHSs for 
human79 and mouse genomes77; intervals closer than 500 bp were merged using 
bedtools80 to create the interval set for accessible chromatin (named ‘DHS’). We 
then took the complement of the set to create the interval set for compacted 
chromatin (named ‘complement’).

Analysis of scGET-seq data. Lists of accepted cellular barcodes were assigned to 
reads inside aligned BAM files using bc2rg.py script from scatACC (https://github.
com/dawe/scatACC). Duplicated reads were then identified at the cell level using 
cbdedup.py script from the same repository. For each scGET-seq experiment, 
we generated four count matrices, Tn5-dhs, Tn5-complement, Tnh-dhs and 
TnH-complement, profiling Tn5 and TnH over accessible and compacted 
chromatin, respectively. Count matrices were generated using peak_count.py 
script from the scatACC repository. Each count matrix was processed using scanpy 
v1.4.6 or v1.6.0 (ref. 81). After an initial filtering on shared regions and number 
of detected regions per cell, matrices were normalized and log transformed. The 
number of regions was used as a covariate for linear regression, and data were 
then scaled with a maximum value set to 10. Neighborhood was evaluated using 
batch-balanced KNN82, and cell groups were identified with the Leiden algorithm83 
for cell lines or schist84, choosing the hierarchy level that maximizes modularity. 
To extract a unique representation of four datasets, we applied graph fusion using 
scikit-fusion85. We first extracted a 20-component UMAP reduction of each view 
and built a relation graph where all views are connected to a 20-component latent 
space. Matrix factorization was run with 1,000 iterations five times. The resulting 
latent space was then added in each scanpy object as the basis for neighborhood 
evaluation and cell clustering.

Library saturation estimates. To estimate the library complexity, we first 
downsampled ten datasets (four depicted in Figs. 2a and 6, randomly chosen) at 
different proportions (0.1×, 0.2×, 0.5×) and calculated the number of genomic 
bins (5 kb) that could be found in each dataset. For each dataset, we fitted the shape 
parameter s of a lower incomplete gamma function. We then built a linear model 
fitting the number of cells and the number of duplicates to predict s (Extended 
Data Fig. 4c). We obtained the model s = 0.815 × Ncells + 0.406 × (1–d) + 0.2316, 
where Ncells is the number of cells divided by 1,000, and d is the fraction of 
duplicated reads.

Analysis of HeLa and Caki-1 cell identity. To identify cell identity in Caki-1/
HeLa mixtures, we downloaded publicly available bulk ATAC-seq data for HeLa 
cells (GSE106145)86 and preprocessed as described above. We then generated 
a count matrix for HeLa cells and our bulk ATAC-seq for Caki-1 cells over the 
DHS regions using bedtools. The resulting matrix was analyzed in edgeR87 using 
relative log expression (RLE) normalization and contrasting HeLa versus Caki-1 
cells by a Fisher’s exact test. We selected HeLa-specific regions by filtering for a 
false discovery rate (FDR) value of <1 × 10–3, log counts per million reads mapped 
(CPM) of >3 and log fold change of >0 (that is, regions enriched in HeLa cells 
with detectable read counts), and we took the top 200 regions that were present 
in scGET-seq data. We used this list to create a HeLa score using the score_genes 
function implemented in scanpy.

Cell cycle analysis. Identification of cell cycle phase using replication data was 
performed as follows. First, we identified high-coverage and low-coverage cells in 
each experiment by analyzing TnH-complement data. We then identified the top 
500 Tn5–DHS regions characterizing each cluster.

Two-stage Repli-seq data for NIH-3T3 cells were downloaded from the 
4DNucleome project (https://data.4dnucleome.org/experiment-set-replicates/4DN
ES7ZVDD5G/), replicated data were averaged and the log2 ratio between early stage 
(E) and late stage (L) was calculated. Entries in the Tn5–DHS list were assigned the 
average log2 (E/L) value over its interval.

Lamin B1 DamID data for NIH-3T3 cells were also downloaded from 
University of California Santa Cruz genome browser tables, converted to bigwig 
format and lifted over mm10 assembly coordinates using Crossmap88. The average 
value of lamin B1 data over Tn5–DHS regions was assigned as described above.
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Differences in distribution of log2 (E/L) and lamin B1 values were evaluated by 
Mann-Whitney U-test.

Analysis of copy number alterations. Copy number alterations were derived from 
TnH data quantified over the entire genome, binned at a 5-kb resolution. Counts 
were extracted using peak_count.py script from the scatACC repository. Data 
were then processed by collapsing values into larger bins at different resolutions 
(10 Mb, 1 Mb and 500 kb). The value of each bin is divided by the average per cell 
read count. We applied linear regression of per bin GC content and mappability89 
and finally expressed values as log2 of the scaled residuals. Cell clustering was 
performed using schist applied on the KNN graph built with bbknn and using 
correlation as a distance metric. The number of clusters is defined by the highest 
level of the hierarchy that splits more than one group. Evaluation of the posterior 
distribution of number of groups is performed by equilibration of a Markov Chain 
Monte Carlo model with at most 1,000,000 iterations.

Classification of CNVs in Caki-1 and HeLa cells. We created a ground truth dataset 
by calling copy number alterations in Caki-1 and HeLa cells with Control-FREEC89 
on WGS data. We binned the resulting segments according to the desired 
resolution in single-cell experiments (10 Mb, 1 Mb and 500 kb), retaining three 
classes (loss, gain and normal).

We subsampled scATAC-seq cells and scGET-seq cells to match cell numbers 
and coverage distributions to avoid biases due to different data sizes. We split 
log2 ratio matrices into a training and a test set in a 70:30 proportion. We trained 
a logistic regression classifier and an SVM with the one-versus-rest strategy and 
increased the number of iterations to ensure convergence. We recorded accuracy 
and F1 score on the test sets. This process was applied on each resolution, cell type 
and platform.

Bulk analysis of organoid whole-exome sequencing data. Reads were aligned to the 
hg38 reference genome using BWA, and reads were then processed using BWA. 
Alignments were processed using GATK MarkDuplicates and base quality score 
recalibration89. Somatic mutations and copy number segments were identified with 
Sequenza90 with default parameters. Evaluation of CNVs was performed using 
CNAqc91, and clonal deconvolution was performed using MOBSTER and BMix92 
with default parameters.

Analysis of mutations. Reads for Tn5 and TnH data were separated into individual 
BAM files using separate_bam.py script from the scatACC repository. Known 
somatic mutations were genotyped using freebayes v.1.3.2 (ref. 93) (parameters: -@ 
exome_somatic.vcf.gz -C 2 -F 0.01). Only variants with a depth of >1 were then 
considered for the analysis.

Variant calling without priors was performed using freebayes using the same 
thresholds. Variant call format (VCF) files were annotated using snpEff v4.3p94 
using the GRCh38.86 annotation model. Known cancer variants were annotated 
using COSMIC catalog95. Variants were then filtered for depth >10 and quality >5 
if unknown and quality >1 if profiled in COSMIC.

Chromatin Velocity. Chromatin Velocity was calculated using scvelo96. Normalized 
count matrices over DHS regions for Tn5 and TnH were first filtered to include 
regions common to both. Then a proper object was created injecting Tn5 and TnH 
data in the unspliced and spliced layers, respectively. Moments were calculated on 
the KNN graph previously estimated. Dynamical modeling was then applied, and 
final velocity was calculated with regularization by latent time. Regions having a 
likelihood value higher than the 95th percentile were considered as marker regions.

Analysis of scRNA-seq data. Reads were demultiplexed using Cell Ranger (v4.0.0). 
Identification of valid cellular barcodes and unique molecular identifiers (UMIs) 
was performed using umitools with default parameters for 10x v3 chemistry. 
Reads were aligned to the hg38 reference genome using STARsolo (v2.7.7a)97. 
Quantification of spliced and unspliced reads on genes was performed by 
STARsolo itself on GENCODE v36 (ref. 98). Count matrices were imported into 
scanpy, and doublet rate was estimated using scrublet99. The count matrix was 
filtered (min_genes = 200, min_cells = 5, pct_mito < 20) before normalization 
and log transformation. A KNN graph was built using bbknn. RNA velocity was 
estimated using scvelo dynamical modeling with latent time regularization.

TBA analysis. For each DHS region selected for likelihood, we extracted the 500-bp 
sequence flanking summits there included, as annotated in the DHS index. We 
downloaded the HOCOMOCO v11 list of PWMs100 and calculated the TBA as 
defined in ref. 101 using tba_nu.py script from the scatACC repository. TBA values for 
multiple summits within a DHS region were summed. Final values were divided by 
the length of the corresponding DHS region. To obtain a cell-specific TBA value, the 
region-by-TBA matrix was multiplied by the cell-by-region velocity matrix.

PLS analysis was performed using the PLSCanonical function from the Python 
sklearn.cross_decomposition library using cell groups as targets for the matrix 
transformation.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Fastq files and raw count matrices have been deposited to the Array Express 
platform (https://www.ebi.ac.uk/arrayexpress/) with the following IDs: 
E-MTAB-9648, E-MTAB-10218, E-MTAB-2020, E-MTAB-10219, E-MTAB-9650, 
E-MTAB-9651 and E-MTAB-9659. Source data are provided with this paper.

Code availability
Code necessary to preprocess scGET-seq data is available at https://github.
com/leomorelli/scGET (ref. 102) and https://github.com/dawe/scatACC (ref. 103). 
Illustrative code snippets for postprocessing are reported in Supplementary Data 2.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Tn5 transposase is able to tagment compacted chromatin featuring H3K9me3. a, General scheme of TAM-ChIP technique 
(created with BioRender.com). A primary antibody (ChIP-validated antibody, dark grey) binds to a specific histone modification (light grey) over the 
genome (blue-red). A secondary antibody (TAM-ChIP conjugate, blue) is linked to the Tn5 transposon, which is made of Tn5 transposase (yellow) and 
the respective barcoded adapters (green). Upon the binding of the secondary antibody to the primary antibody, the linked Tn5 transposase targets and 
cuts the genomic regions flanking the histone modification, adding the barcoded adapters. TAM-ChIP was performed on two biological replicates for each 
condition (H3K4me3, H3K9me3 and NoAb). b, H3K4me3 (green) and H3K9me3 (red) enrichment profiles obtained either by ChIP-seq or TAM-ChIP-seq, 
compared with Input ChIP control (violet). c, Enrichment profile of heterochromatic genes FAM5B, NTF3, CACNA1E obtained from TAM-ChIP libraries 
assessed by Real Time-qPCR confirms Tn5 is able to target heterochromatic loci when redirected by H3K9me3 antibody. For each biological replicate three 
technical replicates were analyzed by Real-Time qPCR; one of the two H3K4me3 biological replicate was excluded because no appreciable signal was 
detected for any condition. Whiskers represent standard deviations (n = 3 technical replicates). Data shown in b and c refer to experiments performed on 
Caki-1 cell line.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Hybrid CD (HP1α)-Tn5 targets H3K9me3 chromatin regions. a, Two different lengths of HP1α polypeptide (spanning amino acids 
1-93 and 1-112) were linked to Tn5, using either a 3 or 5 poly-tyrosine–glycine–serine (TGS) linker, resulting in four hybrid construct, TnH#1-4. TnH#1 made 
of 1-93aa (HP1α) - 3x(TGS) - Tn5; TnH#2 made of 1-93aa (HP1α) - 5x(TGS) - Tn5; TnH#3 made of 1-112aa (HP1α) - 3x(TGS) - Tn5; TnH#4 made of 1-112aa 
(HP1α) - 5x(TGS) - Tn5. The 1-93 or 1-112aa spanning regions of HP1α include 1-75aa of CD followed by 18 or 37aa of natural linker, respectively (Created 
with BioRender.com). b-c, Tagmentation profiles relative to the four hybrid constructs (TnH#1-4) showing no difference in tagmentation efficiency relative 
to the native Tn5 enzyme (Nextera and Tn5 in-house produced) when targeting either genomic DNA, panel b, or native chromatin on permeabilized nuclei, 
panel c. d, Enrichment profiles relative to ATAC-seq performed with the four hybrid constructs (TnH#1-4, red) compared with native Tn5 enzyme (Nextera 
and Tn5 in-house produced) and with H3K4me3 and H3K9me3 ChIP-seq signals (green). e, Distribution of the enrichment of four TnH hybrid constructs 
(TnH#1-4) relative to genomic background in regions enriched for H3K4me3 (orange) or H3K9me3 (blue) expressed as log2(ratio) of the signal over the 
genomic Input. Enrichment over the same regions for native Tn5 enzyme (Nextera and Tn5 in-house produced), H3K4me3 and H3K9me3 ChIP-seq are 
reported as reference. Ec: global enrichment over H3K9me3-marked regions; Eo: global enrichment over H3K4me3-marked regions; Mc: modal enrichment 
over H3K9me3-marked regions; Mo: modal enrichment over H3K4me3-marked regions. Data shown in b, c and d refer to experiments performed on Caki-1 
cell line.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Optimization of ATAC-seq protocol introducing a combination of Tn5 and TnH transposases. a, Effect of altering Tn5 (green) to 
TnH (red) ratio on tagmentation profiles when adding both enzymes simultaneously at the beginning of the 60 minutes of the transposition reaction. b, 
Sequential addition of the same quantity of Tn5 and then TnH enzyme after 30 minutes of the transposition reaction results in a balanced distribution of 
enrichment signals between the two enzymes. Experiments performed on Caki-1 cell line.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Characteristic of scGET-seq data. a Abundance of unique cell barcodes retrieved by scATAC-seq performed on Caki-1 cells using 
the provided ATAC transposition enzyme (10X Tn5; 10X Genomics) (blue) compared to cell barcodes countable by TnH (orange) or Tn5 (green) alone. 
scGET-seq performance (Tn5 + TnH) is represented in red. The curves are largely overlapping, indicating no evident bias in single cell identification; b 
Distribution of per-cell normalized coverage over fixed-size genomic bins (5 kb) is reported for 10X Tn5 (blue) and for signal obtained by TnH (orange) and 
Tn5 (green). While Tn5 is comparable to 10X Tn5, TnH returns higher and less overdispersed per-bin coverages. White dot in boxplots reprents the median, 
boxes span between the 25th and 75th percentiles, whiskers extend 1.5 times the interquartile range. n = 3363, 1281 and 1537 cells in one experiment; c 
Saturation analysis for selected libraries. Dotted lines show the fitted incomplete Gamma functions on subsampled data; red solid lines show subsampling 
data from the same libraries; d Tn5 (green) and TnH (red) enrichment profiles obtained from scGET-seq (pseudo-bulk) or from ATAC-seq performed by 
using the two enzymes separately, compared with H3K4me3 (green) and H3K9me3 (red) ChIP-seq data. Data shown refer to experiments performed on 
Caki-1 cells.
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Extended Data Fig. 5 | Copy Number analysis at multiple resolutions. a, Segmentation profiles in individual cells profiled by 10X Tn5 (scATAC-seq) 
(left panel) or TnH scGET-seq (right panel) at 500 kb. b, Segmentation profiles in individual cells profiled by 10X Tn5 (scATAC-seq) (left panel) or TnH 
scGET-seq (right panel) at 1 Mb. c, Segmentation profiles in individual cells profiled by 10X Tn5 (scATAC-seq) (left panel) or TnH scGET-seq (right panel) 
at 10 Mb. On top of each heatmap the genome-wide coverage of bulk sequencing of corresponding cell lines is represented. Centromeric regions and gaps 
(in white) have been excluded from the analysis.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Characterization of Patient Derived Organoids. a, evaluation of clonal structure of two PDO (CRC6 and CRC17) by exome 
sequencing; the histogram show the distribution of the cancer cell fraction estimated from the analysis of somatic mutations; in both organoids we 
observe a monoclonal structure b, 5X (left panel) and 10X (right panel) magnification contrast phase images of PDO #CRC17 obtained from a liver 
metastasis of a CRC patient (n>5); c absolute copy number of CRC17 and CRC6 as revealed by whole exome sequencing; data in panel c are equivalent to 
barplots over heatmaps in Fig. 3a.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | scGET-seq analysis on PDX samples. a, UMAP embedding of individual cells as in Fig. 3, colored by the time PDX were harvested. 
b, Segmentation profiles in individual cells profiled by scGET-seq at 1 Mb resolution expressed as log2(ratio) over the median signal. Cells are clustered 
according to genetic clones. Red: positive values; Blue: negative values. Centromeric regions (white) have been excluded from the analysis because they 
correspond to low mapping and not fully characterized regions.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | scGET-seq profiling of NIH-3T3 cells knocked-down for Kdm5c. a, Distribution of early-to-late ratio of 2-stage Repli-seq data 
for NIH-3T3 cells. Violin plots represent the value of log2(E/L) values over DHS regions which are differential in the high-vs-low coverage cells in Fig. 4a 
(Mann-Whitney U = 36169.5, p = 1.403e-84). White dot in boxplots represents the median, boxes span between the 25th and 75th percentiles, whiskers 
extend 1.5 times the interquartile range. n = 35438 regions. b, Distribution of lamin-B1 DamID scores for NIH-3T3 cells. Violin plots represent the value of 
DamID scores over DHS regions which are differential in the high-vs-low coverage cells in Fig. 4a (Mann-Whitney U = 723.0, p = 4.621e-6). White dot in 
boxplots represents the median, boxes span between the 25th and 75th percentiles, whiskers extend 1.5 times the interquartile range. n = 35438 regions. 
c, UMAP embedding of individual cells coloured by cell groups, identified by Leiden algorithm with resolution parameter set to 0.2. d, Results of the linear 
model calculating the group-wise differences between TnH and Tn5 enrichment. For each group we reported the coefficient of the model, the p-value and 
the Benjamini-Hochberg corrected p-value. Values are reported for the two genomic regions including the Major primers (see text). Barplot indicates the 
proportion of shScr-treated for each cell group.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | scGET-seq profiling of a developmental model of iPSC. a, UMAP embedding of individual cells colored by the probability of being 
included in a trajectory branch estimated by Palantir. Three major branches have been identified, roughly corresponding to the three cell types profiled in 
this study. b, Schematic representation of the phase portraits underlying Chromatin Velocity. In RNA-velocity, the time derivative of the unspliced/spliced 
RNA is used to estimate synthesis or degradation of RNA; in Chromatin Velocity, the same procedure is applied on Tn5/TnH data to estimate chromatin 
relaxation or compaction. d, UMAP embedding of individual cells colored by cell clusters. e, Heatmap shows average expression profiles of TF with the top 
10 most negative on PLS2 during the early brain development. Darker color indicates higher expression. w.p.c.: weeks post conception.
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ANNEX II: FAST ANALYSIS OF SCATAC-SEQ DATA USING A PREDEFINED SET OF GENOMIC 

REGIONS. 
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Abstract 
Background: Analysis of scATAC-seq data has been recently scaled to 
thousands of cells. While processing of other types of single cell data 
was boosted by the implementation of alignment-free techniques, 
pipelines available to process scATAC-seq data still require large 
computational resources. We propose here an approach based on 
pseudoalignment, which reduces the execution times and hardware 
needs at little cost for precision. 
Methods: Public data for 10k PBMC were downloaded from 10x 
Genomics web site. Reads were aligned to various references derived 
from DNase I Hypersensitive Sites (DHS) using kallisto and quantified 
with bustools. We compared our results with the ones publicly 
available derived by cellranger-atac. We subsequently tested our 
approach on scATAC-seq data for K562 cell line. 
Results: We found that kallisto does not introduce biases in 
quantification of known peaks; cells groups identified are consistent 
with the ones identified from standard method. We also found that 
cell identification is robust when analysis is performed using DHS-
derived reference in place of de novo identification of ATAC peaks. 
Lastly, we found that our approach is suitable for reliable 
quantification of gene activity based on scATAC-seq signal, thus allows 
for efficient labelling of cell groups based on marker genes. 
Conclusions: Analysis of scATAC-seq data by means of kallisto 
produces results in line with standard pipelines while being 
considerably faster; using a set of known DHS sites as reference does 
not affect the ability to characterize the cell populations.
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Introduction
Recent technological advances in single-cell technologies 
resulted in a tremendous increase in the throughput in a relatively 
short span of time1. The increasing number of cells that could be 
analyzed prompted a better usage of computational resources. 
This has been especially true for the post-alignment and quan-
tification phases. As a consequence, it is today feasible to run 
the analysis of single cell data on commodity hardware with lim-
ited resources2, even when the number of observables is in the 
order of hundreds of thousands. Conversely, the analysis steps 
from raw sequences to count matrices lagged for some time. 
Alignment to the reference genome or transcriptome is largely 
dependent on classic aligners, without any specific option to 
handle single-cell data, with the notable exception of the latest 
implementation of STARsolo in the STAR aligner3.

More recently, analysis of Next generation sequencing (NGS) 
data benefits from technologies based on k-mer processing, 
allowing alignment-free sequence comparison4. Most of these 
technologies require a catalog of k-mers expected to be in the 
dataset and, hence, subject of quantification. RNA-seq analysis 
relies on the quantification of gene/transcript abundances and, 
while it is possible to perform de novo characterization of 
unknown species in every experiment, it is common practice5,6 to 
rely on a well-defined gene model such as GENCODE7 to 
quantify expressed species. It is then possible to efficiently  
perform alignment-free analysis on transcripts to quantify gene  
abundances. Tools implementing this approach such as kallisto8 or 
salmon9 have been quickly adopted on a wide scale. 
Moreover, a recent implementation of kallisto extended its capa-
bilities to the analysis of single cell RNA-seq data10 by direct 
handling of cell barcodes and UMIs, allowing the analysis 
of such data in a streamlined way. Of notice, a scRNA-seq 
oriented implementation of salmon has been recently developed11.

Analysis of epigenetic features by ATAC-seq requires the 
identification of enriched peaks along the genome sequence. 
This is typically achieved using peak callers such as MACS12, 
with tuned parameters. Since ATAC-seq signal mirrors DNA 
accessibility as mapped by DNase-seq assays13 and catalogs of 
DNase I Hypersensitive Sites (DHS) are available14,15, it should 
be possible to perform reference-based ATAC-seq analysis in 
a way much similar to what is performed for RNA-seq analysis. 
In this paper we show it is indeed possible to perform single- 
cell ATAC-seq analysis using kallisto and bustools, with minor 
tweaks, using an indexed reference of ~1 million known DHS 
sites on the human genome.

Methods
Single cell ATAC-seq data
Single cell ATAC-seq data for PBMC were downloaded from 
the 10x Genomics public datasets (https://support.10xgenomics. 
com/single-cell-atac/datasets/1.1.0/atac_v1_pbmc_10k) and include 
sequences for 10k PBMC from a healthy donor. We used the 
Peak by cell matrix HDF5 (filtered) object as our ground truth.

Raw sequences for single cell ATAC-seq data for K562 cell line 
were downloaded from Short Read Archive (GEO ID 
GSE112200).

Generation of kallisto index
We downloaded the DNase I Hypersensitive Sites (DHS) inter-
val list for hg19 genome from the Regulatory Elements DB16. 
Intervals closer than 500 bp were merged using bedtools17.

We extracted DNA sequences for DHS intervals and indexed 
corresponding fasta files using kallisto index (v0.46.0) with 
default parameters, resulting in an index for the full DHS set 
(iDHSfull) and an index for the merged set (iDHS500). The 
same procedure was performed for the peak set identified by 
cellranger-atac and distributed along with the data (iMACS).

Processing of Chromium 10x data
kallisto requires the definition of the unique molecular identifi-
ers (UMI) and cellular barcodes (CB) in a specific fastq file. For 
standard Chromium scRNA-seq data, these are substrings of 
R1 and RNA is sequenced in R2. Chromium scATAC-seq reads 
are not structured in the same way: paired end genomic reads 
are in R1 and R3, R2 includes only the 16 bp cellular barcode. 
In addition, kallisto bus expects only a single read with 
genomic information. Therefore we simulated appropriate struc-
tures in three different ways:

1.   �by adding 12 random nucleotides and mapping the R1 
file (forward read):
kallisto bus -x 10xV2 modified_R1.fastq.gz 
pbmc_10k_R1.fastq.gz

2.   �by extracting sequences of different length n (5, 10, 15, 
20) from the 5’ of R3 (reverse read) and mapping the R1 
file:
kallisto bus -x 1,0,16:2,0,n:0,0,0 
pbmc_10k_R1.fastq.gz 
pbmc_10k_R2.fastq.gz 
pbmc_10k_R3.fastq.gz

3.   �by extracting sequences of different length n (5, 10, 15, 
20) from the 5’ of R1 and then mapping the R3 file:
kallisto bus -x 1,0,16:2,0,n:0,0,0 
pbmc_10k_R3.fastq.gz 
pbmc_10k_R2.fastq.gz 
pbmc_10k_R1.fastq.gz

We will refer to the second set of simulation as n-fwd and to the  
third set as n-rev, where n is the number of nucleotides con-
sidered as UMI. We also applied two different summarization  
strategies for bustools count step. In the first approach,  
pseudocounts are not summarized, the number of features matches 
the size of the index; in the second approach, summarized, we 

            Amendments from Version 1

In order to show that reference-based analysis of scATAC-seq 
data is not suitable only for well defined cell groups, as in PBMC, 
this version of the manuscript extends the analysis to a sparser 
and more homogeneous dataset (K562 cells). In addition, we 
analyzed computational resources needed to run the exemplified 
processes.

Any further responses from the reviewers can be found at the 
end of the article
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let bustools map counts on iDHSfull to the merged intervals 
(Figure 1A).

Processing of Fluidigm C1 data
Reads were aligned to reference genome (hg19) using bwa 
mem (v0.7.12)18, deduplication was performed using samblaster 
(v0.1.21)19. Only R2 were aligned in bwa SE configuration.  
Individual BAM files were merged using samtools and peaks 
were called from the pseudo-bulk using MACS2 (v2.2.7.1)12 
(paired end options: -q 0.1 --nomodel --shift 0, single read 
options: -q 0.1 --nomodel --shift -100 --extsize 200). Quantification 
was performed using bedtools multicov (-q 15).

kallisto quant was run with default parameters for paired end 
data. Only R2 were processed in kallisto quant SE with specific 
options (--single -l 300 -s 20). Individual counts from abundance 
files were merged using tximport20.

In order to perform kallisto bus analysis we generated a set of 
288 random CB which were used to create 288 matched fastq 

files. Once all read pairs and cellular barcodes have been concate-
nated into R1, R2 and CB fastq files, we ran kallisto bus with the 
same strategy used for PBMC data (-x 1,0,16:2,0,10:0,0,0).

Analsyis of single-cell data
Counts matrices were analysed using Scanpy (v1.4.2)2 with 
standard parameters. In PBMC data, we filtered out cells that 
had less than 200 regions and regions that were not at least in 
10 cells. In K562 data we only excluded regions that were not 
shared by at least 20 cells. The count matrices were normal-
ized and log transformed. The highly variable regions were 
selected and the subsetted matrices processed to finally clus-
terized the data with the Leiden algorithm21, setting resolution  
parameter to 0.2. Marker peaks were selected using Wilcoxon 
rank-sum test. Adjusted Mutual Information (AMI) was used to 
evaluate the concordance between the 10x and matrices derived 
from kallisto.

Cellular barcodes were extracted using UMITools22, setting the 
expected number of cells to 10,000.

Figure 1.   (A) Graphical depiction of processing of pseudoalignment over DHS, based on three DHS derived indices. The first (DHS) 
generated by kallisto on ~3 M DNase I sites, the second (DHS500) by merging regions closer than 500 bp and the last (DHS500p) by 
projecting the result of DHS index to DHS500 using bustools capabilities. (B) Heatmaps representing MI scores for the DHS derived matrices. 
The heatmap on the left reports the pairwise MI values between DHS, DHS500 and DHS500p strategies. The heatmap on the right represents 
MI values comparing the DHS derived strategies to the cellranger-atac (10x) results or 10- rev strategy. DHS500 strategy achieves the highest 
scores. (C) AMI values comparing DHS (green line) and DHS500 (red line) strategies to cellranger-atac at different thresholds on the number 
of regions considered in the analysis. When approximately 50,000 regions are included, the AMI stabilizes at its maximum. Dashed lines 
represent the fit curves.
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The PBMC matrices derived from kallisto and cellranger-atac 
were also imported into Seurat V323. Gene activity score was 
calculated using the CreateGeneActivityMatrix function or 
directly summarized by kallisto. The annotated 10k PMBC 
scRNA-seq Seurat object was downloaded from the link available 
in their v3.1 ATAC-seq Integration Vignette (https://satijalab. 
org/seurat/v3.1/atacseq_integration_vignette.html).

Cell labels from the scRNA-seq data were transferred to scAT-
ACseq data using TransferData function based on the gene 
activity score. All the analyses were carried out using  
standard parameters. Jaccard similarities were evaluated using  
the scclusteval (v0.1.1) package24.

Results
Limitations of kallisto-based analysis
At time of writing, kallisto does not natively support scATAC-
seq analysis, though it can be applied to any scRNA-seq 
technology which supports CB and UMI. According to the kallisto 
manual, the technology needs to be specified with a tuple of indi-
ces indicating the read number, the start position and the end 
position of the CB, the UMI and the sequence respectively. In 
this sense, the technology specifier for standard 10x scRNA-seq 
with v2 chemistry is 0,0,16:0,16,26:1,0,0 (see kallisto manual 
for details). Using this logic, a single fastq file contains sequence 
information and UMI is always required. scATAC-seq from 
10x genomics is sequenced in paired-end mode and there is no 
definition of UMI, reads are deduplicated after genome 
alignment.

kallisto requires an index of predefined sequences to perform 
pseudoalignment, typically transcript. When applied to scATAC-
seq analysis, it does not allow for any epigenomic analysis, 
including the identification and quantification of enriched regions. 
Therefore, we computed an index on the genomic sequences for 
the 80,234 peaks identified by cellranger-atac and distributed 
along with fastq files. This ensures that the subsequent analysis 
were performed on the same regions and allowed us to quantify 
the bias, if any, introduced by kallisto.

kallisto primary analysis on PBMC data
We tested different strategies to overcome the technical lim-
its and the absence of UMI. We evaluated concordance of dif-
ferent approaches using AMI between cell groups identified 
with equal processing parameters. Analysis based on cellranger-
atac results is considered as ground truth. Results are reported 
in Table 1.

We tested two main strategies: first, the R1 is pseudoaligned 
and the initial nucleotides of R2, cut at different thresholds, are 
used as UMI (pseudoUMI hereafter). As UMI is needed for 
deduplication, we reasoned that a duplicate in scATAC-seq 
should be identified by the same nucleotides in the first por-
tion of the read, where quality is higher. We observed generally 
high values of AMI, with the notable exception of pseudoUMI 
5 nt long. Since basecall qualities are generally higher for R1 
and kallisto does not use qualities in pseudoalignment, we 
tested the strategy where R2 is mapped and R1 is used to derive 

pseudoUMI. Again, 5 nt pseudoUMI raised the worst results, 
while AMI values were slightly higher than the forward configu-
ration. In particular, we noticed the highest AMI values when R2 
is used and pseudoUMI is 10 nt long (AMI = 0.7625). Second, 
we tested a configuration using R1 as sequence and 10 nt UMI 
randomly generated. Interestingly, concordance remains in line 
with previous experiments (AMI = 0.7272).

These data indicate that kallisto is able to properly quan-
tify enrichments in scATAC-seq and does not introduce a 
considerable bias.

Analysis of DHS as reference
One major limitation of a kallisto-based approach to 
scATAC-seq is the lack of peak calling routines and the need of 
an index of sequences for pseudoalignments. Hence, we rea-
soned that we could use any collection of regions that putatively 
would be target of ATAC-seq experiments. Since ATAC-seq is 
largely overlapping DHS, we exploited regions defined in the 
ENCODE project25. The DHS data provided by ENCODE 
includes 2,888,417 sites. We generated an additional dataset 
by merging regions closer than 500 bp into 1,040,226 sites. We  
performed pseudoalignment on the full dataset, on the merged 
dataset and on the full dataset summarized by bustools (Figure 1A,  
see Methods). Pairwise comparison between performances of 
the three methods reveals lower values of AMI (Figure 1B). 
Comparison with 10x data and the configuration 10-rev previ-
ously performed shows high values of AMI when considering 
merged DHS intervals (AMI = 0.7164 and 0.743 respectively). 
When pseudoalignmets are performed on the full DHS set, per-
formance degrades to lower AMI values. Since the number of 
DHS intervals is considerably higher than the typical number 
of regions identifiable by ATAC-seq, we tested the trend of 
AMI at different cutoffs on the number of DHS included in the 
analysis (Figure 1C). AMI reaches a plateau when approxi-
mately 50,000 regions are included into the analysis. This 
defines a reasonable target for filtering during preprocessing 

Table 1. Comparision of cellranger-
atac and kallisto analysis. The table 
reports Adjusted Mutual Information 
between single cell cluster assignments 
on cellranger-atac data and kallisto 
analysis. Different strategies to evaluate 
pseudoUMI are reported. All simulations 
raised high AMI values, both in the 
forward and reverse approach, except 
for the pseudoUMI of length 5. The 
10-Reverse configuration reached the 
highest score.

Comparison Forward Reverse

10x vs 5nt 0.1854 0.1733

10x vs 10nt 0.7434 0.7625

10x vs 15nt 0.7571 0.7398

10x vs 20nt 0.7356 0.7520

10x vs Random 0.7272 None
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stages of scATAC-seq data. Taken together, these findings 
support the suitability of using kallisto for identification of cell 
identities in scATAC-seq without any prior knowledge of the 
epigenetic status of single cells.

Identification of marker regions
A crucial step in the analysis of scATAC-seq data is the iden-
tification of marker peaks which can be used to functionally 
characterize different clusters. We tested the ability of our  
reference-based approach to identify differential DNase I hyper-
sensitive sites that are overlapping or close to peaks identified 
with standard analysis. To this end, we first matched cell 
groups from DHS500 to groups identified after cellranger-atac. 
We selected the top 1,000 peaks marking each DHS500 group 
and evaluated the concordance by mutual distance to the top 
1,000 significant markers in the matched groups (p < 0.05), 
we could identify significant markers only in five matched  
clusters. We found that the large majority of peaks (>= 80%) were 
overlapping between the two strategies or closer than 20 kb 
(Figure 2). These results confirm the substantial equivalence 
between the standard strategy and the reference-based one.

Integration with scRNA-Seq data and cluster labeling
In addition to the analysis of technical suitability of kallisto 
for the analysis of scATAC-seq data, we investigated its valid-
ity in extracting biological insight. To this end, we performed 
a more detailed analysis of PBMC data by label transferring 
using Seurat V323, with the hypothesis that different approaches 
could lead to mislabeling of cells clusters. Matching is performed  
with the help of Gene Activity Scores calculated as sum 
of scATAC-seq counts over gene bodies extended 2 kb upstream 
the TSS, Seurat’s default approach. We applied the same 
transferring protocol on data derived from cellranger-atac 
counts and from the DHS500 approach (Figure 3), finding no 
relevant differences in the UMAP embeddings. A detailed quan-
tification of cluster matches reveals a slight deviance in the 
characterization of NK subpopulations (Figure 4A). In addi-
tion to scores calculated by Seurat, we tested the ability of 
bustools summarization step to project and sum scATAC-seq 
values into Gene Activity using the identical mapping to 
extended gene bodies. We found that gene activity score obtained 
by kallisto is similar to Seurat’s CreateGeneActivityMatrix 
(Figure 4B) in terms of cell labeling, with the additional 
advantage of reduced run time.

Analysis of K562 cell lines
PBMC mixtures among the de facto standards in single cell 
benchmarks; it may be argued that the heterogeneity of the 
mixture can be easily revealed, implying that the differences 
between cell populations are large enough to be spotted also 
with suboptimal approaches. We analyzed scATAC-seq data for 
288 K562 cells26, profiled on a Fluidigm C1 apparatus, to test 
the consistency of our approach on a supposedly homogene-
ous population. Since sequences are available for each cell 
separately, we could extend our tests to the standard kallisto 
quantification procedure (kallisto quant), performing sepa-
rated cell-based pseudoalignments. We explored seven different 
strategies, either based on paired-end reads (bwa PE + MACS, 
bwa PE + DHS, kallisto quant PE) or single reads (bwa SE + 
MACS, bwa SE + DHS, kallisto bus and kallisto quant SE). We 
tested single read modality to accomplish a fair comparisions with 
kallisto bus. In our tests, bwa PE + MACS resembles a typical 
approach for the analysis of such data (as in 26). Strategies based 
on kallisto and strategies named with DHS make use of the 
DHS500 set of regions.

Overall, we found a high concordance among all strategies. 
Two major cell groups could be identified using the equal 
processing parameters (Figure 5A) and cells were found gener-
ally classified into consistent groups (Figure 5B), with the notable 
exception of bwa SE + MACS. Excluding the latter, AMI ranges 
between 0.69 and 0.97. Interestingly, the comparison between 
bwa PE + MACS and bwa PE + DHS (AMI=0.74) suggests 
that the major source of differences is the set of regions, not the 
alignment and quantification method. The concordance between 
marker regions, measured by Jaccard’s coefficient, reveals 

Figure 2. Analysis of peak concordance. The bars represent the 
proportion of marker peaks that are in common between DHS500 and 
cellranger-atac-based strategies at different distance thresholds. 
Only the top 1,000 significant peaks (p < 0.05) were included in the 
analysis; the graph reports results for the 5 cell clusters (A–E) that 
contain the required amount of significant markers. The chart also 
reports the proportion of peaks without any match (None).
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Figure 3. Results of label transfer from reference populations. The UMAP plot on the left represents scRNA-seq data of 10k PBMC as 
returned by Seurat vignette. The UMAP plots in the middle and on the right represent scATAC-seq analysis on cellranger-atac or kallisto 
analysis respectively. Cell clusters are consistent in their topology in the three plots, indicating the validity of kallisto for this kind of analysis.

Figure 4. Analysis of Gene Activity Scores. (A) Pairwise Jaccard similarity between cell annotations as a result of label transfer from RNA-
seq data using Gene Activity Score evaluated by Seurat. Concordance between results after cellranger-atac (rows) and DHS500 (columns) 
are largely comparable, with the notable exception of NK subpopulations. (B) Pairwise Jaccard similarity between cell annotations on 
DHS500 when Gene Activity Score is computed by Seurat (rows) or by bustools summarization step (columns).
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a similar configuration, again with the notable exception of bwa 
SE + MACS (Figure 1C). This last approach is possibly biased 
by spurious ATAC peaks identified when only single reads are 
used: in this case MACS2 identified 17,125 peaks (average score 
46.079), while in paired end configuration it identified 5,120 
peaks (average score 65.919). Peaks shared by both the analyses 
have high quality (average score 86.104) while peaks specific of 
peaks identified after bwa SE + MACS are indeed low quality 
(average score 31.039). These findings indicate that single read 
mode is not suitable for de novo identification of ATAC peaks.

In all, analysis on less heterogeneous data confirm the suitability 
of kallisto-based and, more in general, reference-based approaches 
for the analysis of scATAC-seq experiments.

Computational resources
One of the most obvious advantages in using kallisto in place 
of alignment-based methods is the reduction of resources 
required to process raw sequences into a count matrix. We com-
pared runtimes of the various approaches used through this 
work. First, we compared cellranger-atac pipeline and kallisto 
on a machine equipped with 12 CPU (Intel X5650@)2.67GHz) 
and 72 Gb RAM using the PBMC dataset. While it took 
46:49:57 hours for cellranger-atac to complete the analysis, its 
total runtime includes several post-processing and analysis 
steps. To make a fair comparison, we focused on pipeline steps 
that are mirrored in both the approaches (alignment, barcode 
assignment and counting) and the steps that are prerequisites to 
them (Figure 6A). To this end, we also considered in the kallisto 

Figure 5. Analysis of K562 cell lines. Comparison of multiple standard- and reference-based approaches on scATAC-seq of K562 cell line. 
(A) UMAP embeddings for the multiple approaches described in the text. All cases identify two major subpopulations. (B) Pairwise Adjusted 
Mutual Information between all the approaches described in the main text. High AMI values indicate that all the approaches are consistent 
in identifying cell propertis. (C) Pairwise Jaccard’s coefficients between marker peaks identified in each analysis. All approaches are able to 
identify a similar set of regions marking cell groups, with the exception of bwa SE + MACS which relies on a larger set of spurious regions.
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runtime an external application to identify valid cellular barcodes 
(UMITools). This step can be replaced by any tool capable to 
return a list of valid cellular barcodes. The total effective time of 
kallisto is approximately 17x shorter, also because many 
processing steps are not required (initial trimming and BAM 
processing) or missing by design (peak calling). Our results are 
consistent with previous estimates on scRNA-seq data27. In 
addition to reduced runtimes and pipeline simplicity, usage of 
kallisto implies reduced disk usage (12 Gb vs 40 Gb).

Analysis of the K562 datasets show reduced runtimes due to 
the smaller number of cells and sequences. Comparisons have 
been performed on the same 12 CPU platform, running 3 cells 
in parallel, 4 threads each, for kallisto quant and bwa-based 
pipelines. Coherently with the PBMC dataset, kallisto bus 
analysis is approximately 7x shorter than the default approach 
(Figure 6B). Note, however, that raw sequences are generated 
for separate cells: alignment could be performed on as many 
computing units as the number of cells themselves. As an exam-
ple, one could run 288 parallel alignments, reducing the total 
alignment step by a factor 96x (5.8s), assuming no impact 
on the I/O subsystem. The quantification step of bwa-based 
approach is impacted by the size of the peak list, which was three 
orders of magnitude smaller for bwa PE + MACS (5,120). A  
special case is the kallisto quant approach: we found the pseu-
doalignment step being much slower than the bwa counterpart. 

By looking at execution logs, we noticed that kallisto spends 
a large time in loading the reference in memory, this is repeated 
for each cell separately. kallisto bus loads the reference one 
time only, with beneficial impact on speed. As for disk usage, 
kallisto bus requires less space than bwa PE + MACS (393 Mb vs 
1.2 Gb), while kallisto quant needs considerably more space 
(14 Gb), due to the ‘abundance.tsv’ text files produced by default 
during processing.

Lastly, it should be noticed that kallisto memory requirements 
in building the index are proportional to the number of k-mers 
found. The DHS500 database is composed by 682,100,489 
k-mers and RAM allocation peaks at 37 Gb during indexing. The 
process itself takes 37.5 hours to complete.

Discussion/conclusions
Analysis of differential chromatin properties, through 
ATAC-seq and other quantitative approaches, relies on the iden-
tification of peaks or enriched regions, It is often achieved with 
the same statistical framework used in analysis of differential 
gene expression28,29. Identification of peaks is a key difference 
between the two approaches. De novo discovery of unanno-
tated transcripts has been shown to be possible in early times 
of NGS30, but the large majority of analysis is performed on 
gene models. Conversely, analysis of epigenomes involves 
identification of regions of interest, although a large catalogues 

Figure 6. Runtime analysis. Graphical representation of runtimes for the datasets processed in this paper. Each box represents a separate 
step in a pipeline, box size is proportional to runtime in logarithmic scale. Colors in each box maps logically equivalent steps mirrored 
in different pipelines. (A) Runtimes of cellranger-atac and kallisto bus on the PBMC 10k dataset. White boxes indicate steps that are not 
mirrored in both the analysis. (B) Runtimes of all the approaches used in the analysis of K562 data. The gradient in kallisto quant indicates a 
hybrid step, which performs mapping and quantification. bwa SE pipelines have been excluded from the chart.
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of such regions have been provided by several projects, such 
as the ENCODE project31, the BluePrint project32 or the 
GeneHancer database33. In single cell analysis, for both 
scRNA-seq and scATAC-seq, identification of novel features 
may be an issue, especially because of the low coverage at 
which single cells are profiled. To our knowledge, this work 
is the first to test the feasibility of a reference-based approach 
to ATAC-seq analysis, with a special focus on single cell  
ATAC-seq. In combination, we tested the suitability of kallisto to  
quantify scATAC-seq, which maximizes the performances of 
the whole process. Our results suggest that identification of cell 
groups using a reference-based approach is not different from a 
standard pipeline. Not only cells could be classified in a nearly 
identical way, but also differential features are largely matched 
between the analysis. The most obvious advantage is the gain 
in speed and efficiency: once reads have been demultiplexed, 
kallisto analysis requires short execution times, in the order of 
minutes, with limited hardware resources. This advantage has 
been known for a while and, in fact, it has been demonstrated 
that it can be used on Rock64 hardware34. We also anticipate that 
adoption of a reference-based strategy comes with additional 
advantages: in particular, functional annotations and gene asso-
ciations are available for known regulatory regions25 and, more 
recently, for DNase I Hypersensitive Sites15. In the analysis 
of K562 cells, we highlighted a degradation of performances 
when a spurious region list is used, in our case peaks identified by 
MACS using single reads only. While best practices for 
ATAC-seq analysis are available35, adoption of a reference- 
based approach could improve stability of results and their 
reproducibility.

Of course, our strategy has limitations that come from the una-
vailability of read positioning on the genome: in addition to the 
impossibility of identifying novel peaks, it is not possible to 
perform some ATAC-specific analysis, such as nucleosome 
positioning or footprinting of transcription factors in acces-
sible regions. Indeed, these two can be overcome if standard 
alignment is used in place of pseudoalignment. Another  

limitation is the large amount of memory needed to index the DHS 
reference. Although indexing cannot be performed on less per-
forming hardware, prebuilt indexes can be distributed as it is 
currently done for many aligners. As concluding remark we would 
like to underline that, although we showed that kallisto can be 
effectively used for analysis of scATAC-seq data, we are aware 
that it has not been conceived for that purposes; its interface 
needs some tweaks to work. For this reason, we advocate the 
development of tools which support scATAC-seq natively and 
other tools for postprocessing and data visualization.

Data availability
Source data
Single cell ATAC-seq data for 10k PBMCs dataset were  
downloaded from the 10x Genomics public datasets  
(https://support.10xgenomics.com/single-cell-atac/datasets/1.1.0/
atac_v1_pbmc_10k). Access to the data is free but requires regis-
tration. Raw sequences for K562 cells were downloaded from the 
Gene Expression Omnibus under the accession ID GSE112200  
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112200).

Extended data
Zenodo: vgiansanti/Kallisto-scATAC v1.1. https://doi.org/10.5281/
zenodo.383476736.

This project contains a detailed explanation of the procedures 
described in this work and the list of DHS sites; this is also 
available at https://github.com/vgiansanti/Kallisto-scATAC.

Extended data are available under the terms of the Creative 
Commons Attribution 4.0 International license (CC- BY 4.0).
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biomedicine.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 06 May 2020

https://doi.org/10.5256/f1000research.25099.r62150

© 2020 Zhang Q. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.
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China 

Comments: 
The work by Giansanti et al. presents a novel and smart idea for scATAC-seq data analysis. It 
demonstrates the possibility of using a reference-based, pseudo-alignment method to reduce the 
computational requirement for scATAC-seq data analysis, with only a little sacrifice on precision. 
The idea is inspired by the using of pesudoalignment for bulk and single-cell RNA-seq 
quantification. Here they showed that with some tweaking of the input sequencing reads, they 
could use kallisto to analyze scATAC-seq data on a pre-defined set of DNase hypersensitive sites. 
They compared their results with the standard protocol (e.g. cellranger-atac) for peak 
quantification, single cell clustering, marker peaks identification, and gene activity score 
calculation. 
  
The results very nicely revealed the consistency on peak quantification between kallisto-based 
method and cellranger-atac. The cell clusterings were almost identical between the new reference-
based method and canonical mapping strategy. And the gene activity scores by two different 
methods also agreed well with each other. The approach presented in this study thus could be a 
very efficient way for scATAC-seq data analysis. 
  
The following are a few comments/questions:

The method was only tested with one dataset - PMBC. In fact, single cell ATAC-seq data is 
usually very sparse. The PMBC dataset used in this study is of relatively high quality. The 
method remains to be tested on more datasets, especially on those of more sparse, lower-
quality. 
 

1. 

The key advantage of the method is presumably the much improved computational 
efficiency – there may be other advantages brought by the reference-based method. 
However, there is no results/statistics on the running time and memory usage in the 
manuscript. From the description, the improvement should be dramatic. I think it would be 
very nice to include a table or a figure to demonstrate the increase of computational 
efficiency. This could be a very helpful way to convince potential users.  
 

2. 

As in the above, this whole strategy is so different. It is thus possible for the method to be 
used for some other scATAC-seq data analysis with advantages not only in computational 
efficiency. It would be good for the authors to explore. 
 

3. 

The manuscript is well organized with the core ideas clearly described. But the presentation 
could be improved - there are a lot of very long sentences unnecessarily connected by 
“and”, “while”, etc.  
 

4. 

The legend for Fig 1A says “The first (DHS) generated by kallisto on ~2M DNase I sites … ”, 
but according to the figure and the main text, it should be“~3M”?

5. 

 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
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Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics, genomics, RNA structure, Genome structure, AI algorithms in 
biomedicine.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 20 May 2020
Davide Cittaro, IRCCS San Raffaele Institute, Milan, Italy 

Thank you for reviewing our manuscript and for the helpful comments. We have addressed 
major and minor points as detailed in the point-by-point response: 
 
The method was only tested with one dataset - PMBC. In fact, single cell ATAC-seq data is usually 
very sparse. The PMBC dataset used in this study is of relatively high quality. The method remains 
to be tested on more datasets, especially on those of more sparse, lower-quality. 
  
We agree that the PBMC dataset is of high quality. It was used as it could be considered a de 
facto standard in single cell analysis as it includes several populations at different degrees of 
separations (i.e. B-cells and T-Cells are well separated, while NK and CD8 are less clearly 
distinguished). We also would like to point out that it is difficult to identify low quality 
scATAC-seq datasets for two reasons: one is the relative novelty of this technique and the 
other is the positive bias in publications, which generally lack of negative or low-quality 
results. Nevertheless, we tried to address this question analyzing data for K562 cell line. Cell 
lines are supposedly more homogeneous, data were obtained on a low-throughput 
platform (Fluidigm C1). We believe that it could be considered a good example of “lower 
quality” dataset, compared to the PBMC, at least considering the information content. We 
show that our strategy is consistent with standard approaches based on alignment and 
peak identification, we can identify the same level of residual heterogeneity. 
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The key advantage of the method is presumably the much improved computational efficiency – 
there may be other advantages brought by the reference-based method. However, there is no 
results/statistics on the running time and memory usage in the manuscript. From the description, 
the improvement should be dramatic. I think it would be very nice to include a table or a figure to 
demonstrate the increase of computational efficiency. This could be a very helpful way to 
convince potential users.  
  
Thank you for this comment. We benchmarked kallisto+bustools and compared it to 
cellranger-atac, the default application for 10x data. We added a dedicated section in the 
main text, which shows the large reduction in required resources. Note that the cellranger-
atac pipeline includes several steps that are common in downstream analysis (such as 
Seurat or Scanpy).  In order to make it fair, as explained in the text, we did not consider 
these steps in the comparison. In addition, we added runtime analysis for the approaches 
used in the analysis of K562 data. 
  
As in the above, this whole strategy is so different. It is thus possible for the method to be used for 
some other scATAC-seq data analysis with advantages not only in computational efficiency. It 
would be good for the authors to explore. 
  
Our work has been mainly motivated by the reduced resources that are needed by a 
kallisto-based approach, as we predict the number of scATAC-seq experiments will increase 
as well as the number of cells profiled. We anticipated additional advantages of a reference-
based strategy in the first version of our manuscript, e.g. the availability of promoter-
enhancer/gene interactions which could be readily applied to scATAC-seq data. During the 
revision process we had the opportunity to perform the analysis with non-optimal 
conditions (i.e. peak identification from single end reads instead of paired end), which led to 
slightly different results. This serendipitous finding suggests that our strategy, not relying 
on de novo identification, improves the stability of cell characterization and, therefore, the 
reproducibility of results. We added these observations in the discussion.  
Of course, the usage of standardized reference could pave the way to a new class of 
processing steps not currently performed. As an example, one could identify a set of 
regions known to be generally accessible (or not) to perform standardized QC. Another 
example could be the identification of regions that could be used to score the cell cycle 
phases in scATAC-seq data, much like what is normally done with scRNA-seq data. We feel 
that all these examples require a deeper analysis, which is beyond the scope of this work, 
and any undemonstrated procedure would be, at best, greatly speculative. Our aim was to 
show general consistence between diverse approaches, which we believe has been 
demonstrated. 
  
The manuscript is well organized with the core ideas clearly described. But the presentation could 
be improved - there are a lot of very long sentences unnecessarily connected by “and”, “while”, 
etc.  
  
Thank you for this comment, we modified the text to increase readability.  
  
The legend for Fig 1A says “The first (DHS) generated by kallisto on ~2M DNase I sites … ”, but 
according to the figure and the main text, it should be“~3M”? 
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Thank you for spotting the typo in the figure legend. We corrected accordingly.  

Competing Interests: Nothing to disclose

Reviewer Report 30 March 2020

https://doi.org/10.5256/f1000research.25099.r61566

© 2020 Barozzi I. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Iros Barozzi  
Department of Surgery and Cancer, Imperial College London, London, UK 

In their paper “Fast analysis of scATAC-seq data using a predefined set of genomic regions” 
Giansanti et al. suggest an efficient strategy to analyse scATAC-seq data using kallisto and bustools. 
  
The paper is clearly written, the proposed strategy is well conceived and tested, and it will be 
useful for many researchers in the field of regulatory genomics. Clear advantages of this strategy 
are the reduced requirements in terms of computational resources and shorter execution times, 
when compared to other pipelines such as cellranger-atac. This comes at a cost, most notably the 
chance of missing signals at regions that are not present in the reference set. Nevertheless, in my 
opinion evaluations about this being a limitation has to be made on a case-by-case basis, and the 
authors clearly pointed this out (among other limitations) in the discussion. The authors also 
provide access to the full code, datasets and documentation to reproduce the analyses. 
  
A wide range of parameters was tested, both in terms of handling and modifying the input 
sequences to make them suitable for kallisto, and in terms of pre- vs post- processing the genomic 
partition considered for indexing. Combinations that return results that are highly concordant 
with those obtained with cellranger-atac were highlighted. The authors then demonstrated the 
robustness of the biological inferences made using their strategy by showing a very large overlap 
with the results achieved by cellranger-atac (in terms of different groups of regions marking 
distinct clusters and clusters annotation based on label transferring from scRNA-seq data). 
  
I am wondering if a natural application of this strategy would simplify the characterization of 
chromatin state at highly repetitive regions of mammalian genomes (e.g. indexing a database of 
transposable elements). This task would otherwise be quite difficult to handle explicitly with 
pipelines such as cellranger-atac. 
  
I only have two minor comments:

Can the authors provide more details about the analysis described in the paragraph 
“Identification of marker regions”? How were the cell groups defined? How were the top 
1,000 peaks for each group selected/identified? 

○
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Fig. 1C: description of the blue curve seems to be missing.○

 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Genomics; Transcriptional Regulation; Single-cell Transcriptomics.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 20 May 2020
Davide Cittaro, IRCCS San Raffaele Institute, Milan, Italy 

Thank you for reviewing our work and for the comments. We have addressed your minor 
concerns as follows. 
 
Can the authors provide more details about the analysis described in the paragraph 
“Identification of marker regions”? How were the cell groups defined? How were the top 1,000 
peaks for each group selected/identified? 
  
We apologize for lack of clarity in the manuscript. Cell groups were identified with the 
Leiden method, while markers were identified with Wilcoxon rank-sum test. The complete 
list of instructions used in the analysis is part of the repository linked in the main text, 
nevertheless we modified the text adding these specific details. 
  
Fig. 1C: description of the blue curve seems to be missing. 
  
Thank you for pointing this out. The blue line represented the fit of the DHS data. We 
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acknowledge colouring scheme was not appropriate and, moreover, the fit DHS500 data 
was missing. In the revised manuscript we modified the figure accordingly.  

Competing Interests: Nothing to disclose

Comments on this article
Version 2

Reader Comment 15 Jun 2020
Charles Warden, City of Hope National Medical Center, Duarte, CA, USA 

Hi, 
 
Thank you for posting this article. 
 
However, I think there is still at least 1 typo: 
 
"Analsyis of single-cell data" --> "Analysis of single-cell data" 
 
Hopefully, I believe that the F1000 system provides a good way to revise the paper without a 
formal correction. 
 
Best Wishes, 
Charles

Competing Interests: I do not disclose any conflicts of interest.
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Nested Stochastic Block Models applied 
to the analysis of single cell data
Leonardo Morelli1,2, Valentina Giansanti1,3 and Davide Cittaro1* 

Background
Transcriptome analysis at single cell level by RNA sequencing (scRNA-seq) is a technol-
ogy growing in popularity and applications [1]. It has been applied to study the biol-
ogy of complex tissues [2, 3], tumor dynamics [4–7], development [8, 9] and to describe 
whole organisms [10, 11].

A key step in the analysis of scRNA-seq data and, more in general, of single cell data, 
is the identification of cell populations, that is groups of cells sharing similar properties. 
Several approaches have been proposed to achieve this task, based on well established 
clustering techniques [12, 13], consensus clustering [14–16] and deep learning [17]; 
many more have been recently reviewed [18, 19] and benchmarked [20]. As the popu-
larity of single cell analysis frameworks Seurat [21] and scanpy [22] raised, meth-
ods based instead on graph partitioning became the de facto standards. Such methods 
require the construction of a cell neighbourhood graph (e.g. by k Nearest Neighbours, 
kNN, or shared Nearest Neighbours, sNN). Encoding cell-to-cell similarities into graphs 
has practical advantages beyond clustering, as many algorithms for graph analysis can 
be applied and interpreted in a biological way. A notable example is the analysis of cell 
trajectories which can be derived from the analysis of Markov processes traversing the 

Abstract 

Single cell profiling has been proven to be a powerful tool in molecular biology to 
understand the complex behaviours of heterogeneous system. The definition of the 
properties of single cells is the primary endpoint of such analysis, cells are typically 
clustered to underpin the common determinants that can be used to describe func-
tional properties of the cell mixture under investigation. Several approaches have been 
proposed to identify cell clusters; while this is matter of active research, one popular 
approach is based on community detection in neighbourhood graphs by optimisation 
of modularity. In this paper we propose an alternative and principled solution to this 
problem, based on Stochastic Block Models. We show that such approach not only is 
suitable for identification of cell groups, it also provides a solid framework to perform 
other relevant tasks in single cell analysis, such as label transfer. To encourage the use 
of Stochastic Block Models, we developed a python library, schist, that is compatible 
with the popular scanpy framework.
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NN graph [23, 24]. In another context, computation of RNA moments in scRNA velocity 
is also based on the NN graph structure [25]. Arguably, the biggest utility of NN struc-
ture is the possibility to identify cell groups by partitioning the graph into communities; 
this is typically achieved using the Louvain method [26], a fast algorithm for optimisa-
tion of graph modularity. While fast, this method does not guarantee the identification 
of internally connected communities. To overcome its limits, a more recent approach, 
the Leiden algorithm [27], has been implemented and it has been quickly adopted in the 
analysis of single cell data, for example by scanpy [22] and PhenoGraph [28]. In addi-
tion to Newman’s modularity [29], other definitions currently used in single cell analysis 
make use of a resolution parameter [30, 31]. In lay terms, resolution works as a threshold 
on the density within communities: lowering the resolution results in less and sparser 
communities and vice versa. Identification of an appropriate resolution has been rec-
ognised as a major issue [32], also because it requires the definition of a mathematical 
property (clusters) over biological entities (the cell groups), with little formal description 
of the latter. In addition, the larger the dataset, the harder is to identify small cell groups, 
as a consequence of the well-known resolution limit [33]. Moreover, it has been demon-
strated that random networks can have modularity [34] and its optimisation is incapable 
of separating actual structure from those arising simply of statistical fluctuations of the 
null model. Lastly, it is a common error to assume that the resolution parameter reflects 
a hierarchical structure of the communities in the graph when, in general, this is not rig-
orously true. Additional solutions to cell group identification from NN graphs have been 
proposed, introducing resampling techniques [35, 36] or clique analysis [37]. It has been 
proposed that high resolution clustering, e.g. obtained with Leiden or Louvain methods, 
can be refined in agglomerative way using machine learning techniques [38].

An alternative solution to community detection is the Stochastic Block Model, a gen-
erative model for graphs organised into communities [39]. In this scenario, identification 
of cell groups requires the estimation of the proper parameters underlying the observed 
NN graph. According to the microcanonical formulation [40], the parameters are parti-
tions and the matrix of edge counts between them. Under this model, nodes belong-
ing to the same group have the same probability to be connected together. It is possible 
to include node degree among the model parameters [41], to account for heterogene-
ity of degree distribution of real-world graphs. A Bayesian approach to infer param-
eters has been developed [42] and implemented in the graph-tool python library 
(https://​graph-​tool.​skewed.​de). There, a generative model of network A has a probability 
P(A|θ , b) where θ is the set of parameters and b is the set of partitions. The likelihood 
of the network being generated by a given partition can be measured by the posterior 
probability

and inference is performed by maximising the posterior probability. The numerator in 
Eq. 1 can be rewritten exponentiating the description length

(1)P(b|A) =
P(A|θ , b)P(θ , b)

P(A)

(2)� = − ln P(A|θ , b) − ln P(θ , b)

https://graph-tool.skewed.de
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so that inference is performed by minimising the information required to describe the 
data (Occam’s razor); graph-tool is able to efficiently do this by a Markov Chain 
Monte Carlo approach [43]. SBM itself may fail to identify small groups in large graphs, 
hence hierarchical formulation has been proposed [44]. Under this model, communities 
are agglomerated at a higher level in a block multigraph, also modelled using SBM. This 
process is repeated recursively until a graph with a single block is reached, creating a 
nested Stochastic Block Model (nSBM).

In this work we propose nSBM for the analysis of single cell data, in particular scRNA-
seq data. This approach identifies cell groups in a statistical robust way and, moreover, 
it is able to determine the likelihood of the grouping, thus allowing model selection. In 
addition, it is possible to measure the confidence of assignment to groups, a measure 
that can be exploited in various analysis tasks.

We developed schist (https://​github.​com/​dawe/​schist), a python library compat-
ible with scanpy, to facilitate the adoption of Stochastic Block Models in single-cell 
analysis.

Results
Overview of schist

schist is a convenient wrapper to the graph-tool python library, written in python 
and designed to be used with scanpy. The most prominent function is schist.
inference.nested_model() which takes a AnnData object as input and fits 
a nested Stochastic Block Model on the kNN graph built with scanpy functions (e.g. 
scanpy.tools.neighbors()). When launched with default parameters, schist 
fits a model which maximises the posterior probability of having a set of cell groups (or 
blocks) given a graph. schist then annotates cells in the data object with all the groups 
found at each level of a hierarchy. Given the large size of the NN graph in real-world 
experiments, it is possible that a single solution represents local minima of the fitting 
process. In addition, it is possible that multiple solutions are equally acceptable to repre-
sent the graph partitioning and a better description is given by the consensus over such 
solutions [45]. To overcome these issues, schist fits multiple instances in parallel and 
returns the inferred consensus model, alongside the marginal probabilities for each cell 
to belong to a specific group (cell marginals). Moreover, the Stochastic Block Model 
has no constraints on what type of modular structure is fitted, meaning that groups are 
not necessarily identified only by assortativity (i.e. cells are mostly connected within the 
same group). When assortativity is thought to be the dominant pattern another model 
(the Planted Partition Block Model, PPBM [46]), also implemented in schist, is better 
suited to find statistically significant assortative communities, also eliminating the need 
to set a resolution parameter as required in standard community detection by maximisa-
tion of modularity.

Analysis of the impact of noise

One of the most relevant difference between the SBM and other methods to cluster 
single cells is that it relies on robust statistical modelling. In this sense, the number of 
groups identified strictly mirrors the amount of information contained in the data. An 
important consequence is that absence of information (i.e. maximal entropy) can be 

https://github.com/dawe/schist
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properly handled. To show this property we performed a simple experiment on a ran-
domised kNN graph. We collected data for 3k PBMC (available as preprocessed data in 
scanpy, Fig. 1A) and shuffled the edges of the prebuilt kNN graph, this to keep the gen-
eral graph properties unchanged. We tested that the degree distribution does not change 
after randomisation (Kolmogorov-Smirnov D = 0.0733 , p = 0.703 ). We found that the 
default strategy, based on maximisation of modularity, identifies 24 cell groups at default 
resolution, whereas schist does not identify any cell group, at level 0 (Fig. 1B).

Only by reducing resolution to γ < 0.6 we were able to obtain a single partition by 
modularity (Additional file 1: Fig. S1). Of course, this experiment is a deliberate extreme 
case. The quality of grouping proposed by a standard approach can be disputed in many 
ways, and the UMAP embedding indeed reflects the absence of any information. Nev-
ertheless, real-world data may include an unknown amount of random noise. Hence, it 
is important to identify cell groups that are not artefacts arising from processing and 
that do reflect the information contained in the dataset. To understand the impact of 
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Fig. 1  Modeling randomised data. A UMAP embedding of 3k PBMC after standard processing with Leiden 
approach (left) or nSBM (right). Cell grouping is consistent for both the approaches (Adjusted Rand Index 
ARI = 0.869 ). B UMAP embedding of the same data after randomisation of kNN graph edges. In this case 
schist does not return any cell grouping, while optimisation of modularity finds up to 24 different cell 
groups
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random noise on structured data, we considered the same PBMC dataset and added 
white noise to the normalised counts at increasing levels of σ , ensuring that the noise 
level is modelled after the feature-wise distribution of detected genes. We then com-
pared partitions to the original annotation by Adjusted Rand Index (ARI), we found 
that schist is more robust to perturbations and that, again, optimising the modularity 
results in overestimation of the number of communities at high noise levels (Additional 
file 1: Table S1). Of note, the concordance with original annotations drops at σ ≥ 1.5 for 
both the approaches.

schist correctly identifies cell populations

To benchmark schist, we tested it on scRNA-seq mixology data [47], a dataset explic-
itly developed to benchmark single cell analysis tools without the need to simulate data. 
In particular, we used the mixture of 5 cell lines profiled with Chromium 10x platform. 
At a first evaluation of the UMAP embedding, all lines appear well separated. Only the 
lung cancer line H1975 shows a considerable degree of heterogeneity and appears to be 
split into two cell groups (Fig. 2A). Using default parameters, schist is able to iden-
tify correct cell groups ( ARI = 0.829 ), with a further split in H2228 cell line (Fig. 2B), 
whereas Leiden method clusters the dataset into 10 groups ( ARI = 0.549 , Fig.  2C). 
schist correctly identifies H1975 groups as a single entity at level 1 of the nSBM hier-
archy. We then sought to check if an independent agglomerative method, SCCAF [38], 
was able to recover cell line groupings starting from both partition schemes. Given the 
ground truth, the cell lines, SCCAF is able to assess the maximal accuracy that can be 
achieved in the dataset (0.992). When trained with this target accuracy, SCCAF precisely 
reconstructs the original cell line annotations starting from schist partitions with high 
accuracy (Fig. 2D). When Leiden partitions are set as input, SCCAF merges H2228 and 
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Fig. 2  Analysis of a mixture of 5 known cell lines. A UMAP embedding coloured and labeled by cell line 
identity. H1975 cells (orange) show two distinct groups reflecting an internal heterogeneity. B UMAP 
embedding showing cells coloured by level 1 of the hierarchy proposed by the nested Stochastic Block 
Model. C UMAP embedding showing cells coloured according to the Leiden method at resolution γ = 1 . D 
UMAP embedding coloured by the classification made by SCCAF when partitions in (B) are used. E UMAP 
embedding coloured by the classification made by SCCAF when partitions in (C) are used
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HCC827 cells into a single cluster and keeps H1975 cells split into two groups (Fig. 2E), 
highlighting potential limitations of this approach.

In another experiment, we analysed data from the Tabula Muris project [48] mixing 
four different tissues as previously performed [49] (i.e. skin, spleen, large intestine and 
brain, Additional file  1: Fig. S2A). In this experiment we expect higher heterogeneity 
than controlled cell lines, however schist is able to correctly identify the original tis-
sues (Additional file 1: Fig. S2C), which are again almost perfectly classified after SCCAF 
is applied (Additional file 1: Fig. S2D). Similarly to the cell line experiment, optimisa-
tion of modularity isolates cell clumps evident in UMAP embedding (Additional file 1: 
Fig. S2E) which could not be correctly merged after SCCAF iteration (Additional file 1: 
Fig.S2F). In all, these data support the suitability of schist, hence of nested Stochastic 
Block Models, for cell group identification in single cell studies.

Hierarchy modelling complies with biological properties

When grouping is performed by optimisation of modularity, there is often the implicit 
assumption that the resolution parameter reflects a hierarchical structure of the graph, 
i.e. communities are consistently grouped at lower resolutions. Not only this assump-
tion is wrong, but it may also lead to spurious groupings in real experiments, whereas a 
nSBM inherently encodes hierarchies by merging communities in a tree. The improper 
use of resolution parameter may lead to two types of errors: grouping of cells that are in 
fact distinct and creating an inconsistent hierarchy.

To show this we took advantage of public spatial RNA dataset of a coronal section 
of murine brain tissue profiled with 10X Visium H&E technology [50], as provided by 
the recently introduced package SquidPy [51]. We chose to stick to the given tissue 
annotation by the package authors. At default resolution, Leiden clustering resolves the 
tissue structure, as does the first level of the nSBM hierarchy (Fig. 3). When resolution 
is decreased (e.g. γ = 0.5 ), the dentate gyrus is incorrectly merged to the hippocampus, 
whereas schist correctly identifies the pyramidal layer.

In another context, we tested the effect on the interpretation of the hierarchy vary-
ing the resolution parameter. We analysed data for hematopoietic differentiation [52], 
previously used to benchmark the consistency of cell grouping with differentiation tra-
jectories by graph abstraction [53] (Additional file 1: Fig. S3A). Data show three major 
branchings (Erythroids, Neutrophils and Monocytes) stemming from the progenitor 
cells, mostly recapitulated by level 2 of the hierarchy computed by schist (Fig. 4). Not 
only the hierarchic model recapitulates the branching trajectories, also the cell groups 
appear to be consistent with the estimated pseudotime (Additional file 1: Fig. S3B). Con-
versely, the Leiden method at default resolution identified 24 groups. By lowering the γ 
parameter we observed cell groups that merge and split at different resolutions disrupt-
ing the hierarchy (Additional file 1: Fig. S4).

In all, these data show that the common intuition that γ parameter acts as a threshold-
ing factor over a hierarchy is wrong. Not only the hierarchy is not conserved, but also 
very different cell types may be mixed in spurious clusters. By using nSBM, schist 
is able to represent hierarchical relations in appropriate way. Moreover, the hierarchy 
appears to be more robust in aggregating different cell types at coarser scales.
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Fig. 3  Analysis of spatial transcriptomics of a coronal section of mouse brain by Visium H&E. In the first panel, 
original tissue annotation is given. Tissues are well defined at default resolution for the standard approach. 
When resolution is decreased to γ = 0.5 , cells are aggregated breaking the histological types, e.g. cells from 
the dentate gyrus are merged to the hippocampus. When a nSBM is applied, the structure of the pyramidal 
layer is maintained at different levels of the hierarchy
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Fig. 4  Analysis of hematopoietic differentiation. Each panel presents a low dimensional embedding of single 
cells next to a radial tree representation of the nSBM hierarchy. Cells are coloured according to groupings 
at level 2 of the hierarchy, group 0 marks the most primitive population (A). In subsequent panels, cells are 
coloured using a signature of Erythroid lineage (B), Monocytes (C) or Neutrophils (D)



Page 9 of 19Morelli et al. BMC Bioinformatics          (2021) 22:576 	

Cell marginals can be used to assess the data quality

By computing the consensus among multiple models, schist returns the marginal 
probability for each cell to belong to a specific cluster at each level of the hierarchy. Ide-
ally, all cells should always be assigned with p = 1 to a cluster. When the uncertainty is 
maximal, cells are assigned to clusters randomly with p = 1/Bi , where Bi is the number 
of groups for the i-th level in the hierarchy. We sought to check if these probabilities 
could be interpreted in terms of data quality.

We devised a simple metric, cell stability, that is defined by the fraction of levels for 
which the marginal probability is higher than 1 − 1/Bi . To do so, we only consider lev-
els with at least two groups, hence excluding the root of the tree. We tested this metric 
on four datasets from [54] with different quality levels (iCELL8, MARS-seq, 10XV3 and 
Quartsz-seq2) (Additional file 1: Fig. S5). By taking a summary metric, e.g. the mean S 
or the fraction of cells with S > 0.5 , we observed that it correlates with the data quality 
(Table 1).

These data suggest that measures of uncertainty of cell clustering can be useful for 
general quality control assessment. In addition to this, we foresee they could be used to 
isolate cells with specific patterns.

Cell affinities can be used for label transfer

The modelling approach we adopted allows the estimation of the information required 
to describe a graph given any partitioning scheme, not limited to the solution given by 
the model itself. Differences in entropy can be used to perform model selection, hence 
we can choose which model better describes the data. We sought to exploit this property 
to address the task of annotating cells according to a reference sample. To this end we 
analysed datasets from [54], which includes mixtures of human PBMC and HEK293T 
cells profiled with various technologies. We chose cells profiled with 10X V3 platform 
as reference dataset and performed annotation on cells profiled with Quartz-seq2 or 
MARS-seq. These are at the extremes of the capability to distinguish cell types, so they 
provide good benchmark configurations for this task.

After preprocessing raw data according to the parameters given in [54], we inte-
grated each dataset with 10XV3 into a unified representation using Harmony [55], 
and computed the kNN graph. In each merged dataset, we retained cell type annota-
tions for 10X cells, while we assigned a “Unknown” label to all cells derived from the 
other technology (i.e. MARS-seq or Quartz-seq2). We then calculated the cell affinity 
matrix, that is we computed the difference in entropy that can be observed by assign-
ing each cell to each annotation cluster, this being either one of the original cell types 

Table 1  Cell stability as indicator of data quality

Table shows summary metrics derived from the Cell Stability calculated for various datasets. S is the average Cell Stability 
over all cells, S > .5 indicates the fraction of cells with Cell Stability higher than 0.5

Dataset S S > .5

iCELL8 [54] 0.368 0.312

MARS-seq [54] 0.579 0.536

Chromium 10x [54] 0.716 0.728

Quartz-seq2 [54] 0.705 0.739
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or “Unknown”. Once the matrix has been computed, each cell from the query data is 
assigned to the group with the highest likelihood. The rationale behind this approach 
is that if cells belong to the same annotation group, then more information is required 
to describe the graph if they were annotated as different cell types; hence, cells from 
the query datasets should retain their “Unknown” label if and only if there is not 
enough evidence to associate them to another group. We compared the accuracy 
of the outcome to kNN classification, given by the closest entry in the kNN graph, 
and to ingest, a tool included in scanpy based on kNN classification of UMAP 
embeddings. Analysis of a well defined dataset, such as Quartz-seq2, reveals that the 
three approaches are equally good in classifying unknown cells (Fig.  5, central col-
umn), with accuracies ranging from .870 to .927. When data are noisy, instead, kNN-
based methods show low accuracy and a tendency to assign the most represented cell 
group (HEK293T) to the unlabelled cells. This misannotation is particular evident 
for ingest, in which only CD4 T cells and HEK cells are transferred, resulting in 
the lowest accuracy (0.243). Conversely, schist is able to assign correct labels with 
higher accuracy (0.641). Moreover, kNN methods assign a label to each cell, whereas 
schist does not relabel cells if there are no sufficient evidence (e.g. the “Unknown” 
state is the most likely). Interestingly, we found that for the largest part of cells with-
out assigned label, the second choice by affinity ranking was indeed the appropriate 
one (Additional file 1: Fig. S6).

Choice of an optimal hierarchy level

schist fits a hierarchical model of communities into a graph. When it comes to 
analysis of single cell data, it means that the cells are best described by the hierarchy 
itself and that cells can be grouped consistently at each level of the tree. In addition, 
the size of groups at the deepest level scales as O(N/ logN ) [44], where N is the num-
ber of cells. Given the current throughput in single cell experiments ( ∼10k cells), the 
number of groups is difficult to handle. For this reason, in most of single cell experi-
ments, it is preferable to identify an optimal level of the hierarchy that best resembles 
the cell properties at the scale they can be validated.

A possible strategy is based on Random Matrix Theory, as suggested by the authors 
of the SC3 package [15], for which a suitable number of clusters, k̂ , is determined 
by the number of eigenvalues of the Z⊤

Z matrix (where Z is the normalised count 
matrix) significantly different at p < .001 from the appropriate Tracy-Widom distri-
bution. According to this strategy, the optimal level ik is the one that minimises the 
number of partitions and k̂:

where Bx is the number of non empty partitions at level x.
An alternative strategy is to evaluate the behaviour of modularity at different hier-

archy levels. While schist does not optimise the graph modularity Q, we observed 
that this tends to be maximal for the level better describing known cell populations, 
so the optimal level iQ is

(3)ik = argmin
x

|Bx − k̂|
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Where Qx is modularity at level x. We collected values arising from both the approaches 
for some datasets used in this work (Table 2 and Additional file 1: Fig. S7)

As expected, the larger the network, the higher the optimal level. For relatively small 
datasets (i.e. less than 10k cells), the first level of the hierarchy contains a number of 
groups in line with how many observable populations are. Notwithstanding, cell groups 

(4)iQ = argmax
x

|Qx|

Fig. 5  Label transfer using SBM. The first line reports UMAP embeddings for datasets profiled with Chromium 
10X V3, Quartz-seq2 and MARS-seq, each annotated by known cell types. Quartz-seq2 and MARS-seq were 
reannotated using kNN method, scanpy.tools.ingest() or schist. The accuracy of each label 
transfer task is reported above the corresponding UMAP
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identified at leach level may have a biological interpretation. In particular, groups at 
deepest levels (0 or 1) may be relevant when studying rare populations. For example, 
in the hematopoiesis dataset shown in Additional file 1: Fig. S3A, groups 11 (DC) and 
19 (Lymph) cannot be distinguished from nSBM level 1 and up; a closer investigation 
to level 0, however, revealed that these cells are clearly separated (Additional file 1: Fig. 
S3D). To better understand the role of deepest levels, we performed an additional analy-
sis of a single cell dataset of mouse crypt cells [56], which was also covered in a recent 
paper proposing GapClust as an optimal approach to identify rare cell populations [57]. 
We sought to identify the four rare populations identified by GapClust. We could distin-
guish all but the erythrocyte group (R3) at level 1 of the hierarchy (Fig. 6 and S8), sug-
gesting that exploring nSBM levels with appropriate community size is a valid method to 
spot rare populations. Of note, modularity optimisation could not pinpoint Tuft cells in 
appropriate way (Additional file 1: Fig. S8C), not even at high resolution, hence prompt-
ing the development of specific approaches such as GapClust.

As the size and number of communities is strictly dependent on the kNN graph gen-
eration, we investigated how different parameters (i.e. number of principal components 
and number of neighbors) affect the partition structure (Additional file 1: Fig. S9). We 
found, as a general pattern, that increasing the number of neighbors results in more 
granular structure at level 0, with different solutions being consistent (Additional file 1: 
Fig. S10), suggesting that higher number of neighbors provides richer description of the 
dataset. The number of PCs used to evaluate cell-to-cell distance influences the variabil-
ity of community sizes; the consistency among different solutions is high when a suf-
ficient number of PCs is chosen, data suggest that for large datasets more PCs should be 
included to include adequate fraction of overall variability.

Analysis of runtimes

Minimisation of a nSBM is a process that requires a large amount of computational 
resources. While the underlying graph-tool library is efficient in exploring the solu-
tion space using a multiflip MCMC sampling strategy, the number of required iterations 
before convergence is considerable and the running time scales linearly with the num-
ber of edges. Moreover, to collect a consensus partition, we minimise multiple models 
(default: 100) that need to be averaged. To give a reference, we report runtimes for some 

Table 2  Selection of the optimal level in the nSBM hierarchy

For each dataset we report the number of groups D that were given by the authors. The optimal level selection should 
recover a number of groups in the order of magnitude of D. Value of D in Planaria dataset is derived from manual curation 
of Louvain clustering. k̂ : number of groups according to RMT, ik : level selected according to RMT criterion, Bk : number of 
partitions at level ik , iQ : level at which modularity is maximal, BQ : number of groups at level iQ

Dataset Cells D k̂ ik Bk iQ BQ

sc-mixology [47] 860 5 21 1 6 1 6

Chromium 10x [54] 1523 8 43 0 58 1 13

Quartz-seq2 [54] 1266 8 37 0 62 1 12

MARS-seq [54] 1401 9 9 1 16 1 16

iCELL8 [54] 1830 9 20 1 21 2 6

Mouse brain [50] 2688 15 8 2 8 1 23

Planaria [10] 21,612 51
∗ 34 2 22 3 10
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example datasets in Table 3 on a commodity hardware (Intel i7@2.8 GHz, 32 GB RAM). 
Compared to Leiden approach, nSBM requires at best ∼ 6× times more, and ∼ 30× at 
worst. A reasonably fast alternative to the nSBM is the Planted Partition Block Model 
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Fig. 6  Identification of rare populations. UMAP embeddings of mouse crypt cells highlighting the groups 
found at level 1 of nSBM hierarchy corresponding to rare populations identified by GapClust [57]. Each rare 
population is colored by a signature calculated from published gene lists (see methods)

Table 3  Time required to run different partitioning strategies implemented in schist on various 
datasets

All approaches fit 100 models. Number of nodes and edges refer to the structure of the kNN graph as built by scanpy. 
Times are expressed in MM:SS

Dataset Cells Edges Leiden PPBM nSBM

sc-mixology [47] 860 9186 00:06 00:13 00:36

Quartz-seq2 [54] 1266 14,603 00:10 00:19 00:45

MARS-seq [54] 1401 21,756 00:20 00:34 02:14

iCELL8 [54] 1830 30,636 00:23 00:40 03:02

Chromium 10x [54] 1523 21,447 00:14 00:26 01:07

Hematopoiesis [52] 2730 15,444 00:37 01:27 05:52

Mouse Cortex [58] 3005 54,460 00:59 00:53 07:32

Endocrinogenesis [59] 3696 74,670 01:15 01:29 10:56

Baron Pancreas [60] 8569 294,480 03:51 07:35 1:33:40

Airzani Liver [61] 10,368 354,440 04:13 09:47 1:42:23

Tabula Muris [48] 12,434 265,610 03:07 10:00 1:23:35

Planaria [10] 21,612 173,667 05:41 13:52 1:20:40
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(PPBM), for which we also report runtimes. The PPBM [46] is able to find statistically 
significant assortative modules and eliminates the resolution parameter; differently from 
nSBM, PPBM is not hierarchic.

Conclusions
Identification of cells sharing similar properties in single cell experiments is of para-
mount importance. A large number of approaches have been described, although the 
standardisation of analysis pipelines converged to methods that are based on modular-
ity optimisation. We tackled the biological problem using a different approach, nSBM, 
which has several advantages over existing techniques. As random data may have modu-
lar structure [34], an important property of our approach is that it does not overfit data 
by finding partitions when, in fact, there are not. Another important advantage is that 
the hierarchical definition of cell groups eliminates the choice of an arbitrary threshold 
on clustering resolution. In addition, we showed that the hierarchy itself could have a 
biological interpretation, implying that the hierarchical model is a valid representation 
of the cell ensemble. We performed experiments to evaluated the impact of parameters 
to build the kNN graph on the final partitions. We found that our solutions were con-
sistent across parameters; we also found that the more information is included during 
graph generation, the more granular the final description. Our results suggest that the 
number of principal components used to evaluate the cell-to-cell distance may have an 
impact on the final results and that the number of components to include depends on 
the data size and heterogeneity; while intuitive, this finding is in contrast with what has 
been observed for other PCA-based methods [18], whereas has an impact on probabilis-
tic methods [49].

The Bayesian formulation of Stochastic Block Models provides the possibility to per-
form inference on a graph for any partition configuration, thus allowing reliable model 
selection using an interpretable measure, entropy. We exploited this property to perform 
label transfer with high accuracy and with the possibility to discard cells with unreli-
able assignments. In all, schist facilitates the adoption of nSBM by the bioinformatics 
community and exposes a robust framework to perform tasks that go beyond the princi-
pled identification of cell clusters.

The major drawback of adopting this strategy is the substantial increase of runtimes. 
As observed, model minimisation is many times slower than the extremely fast Leiden 
approach. It should be noted that schist initialises multiple models that are treated by 
multiple concurrent processes. graph-tool itself supports CPU-level parallelisation 
for some of its tasks. These optimisations are well suited for clustered computing infra-
structure. Further development, possibly including GPU-level parallelisation, is surely 
required to accomodate the large size of datasets that are being produced.

Materials and methods
Unless differently stated, all the analysis were produced using scanpy v1.7.1 [22] and 
schist v0.7.6 and the corresponding dependencies. All models were initialised 100 
times, herein including Leiden partitioning for which we also calculated the consensus 
partition.
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Analysis of randomized data

Data were retrieved in scanpy environment using scanpy.datasets.pbmc3k_
processed() function. The random kNN graph was obtained shuffling the node labels 
of each edge. UMAP embedding was recomputed after randomisation using the shuffled 
graph. To generate data with white noise we computed the genewise means ( µg ) and 
standard deviations ( σg ) of log-normalized counts excluding 0 values. We generated ran-
dom values using µg and kσg , k ∈ {0.5, 1, 1.5, 2} , and added to original expression values.

Analysis of cell mixtures

Data and metadata for five cell mixture profiled by Chromium 10x were downloaded 
from the sc-mixology repository (https://​github.​com/​LuyiT​ian/​sc_​mixol​ogy). Cells with 
less than 200 genes were excluded, as genes detected in less than 3 cells. Cells with less 
than 5% of mitochondrial genes were retained for subsequent analysis. Data were nor-
malised and log-transformed; number of genes and percentage of mitochondrial genes 
were regressed out. kNN graph was built with default parameters (50 components and 
15 nearest neighbours). Data were assessed by SCCAF using cell line annotation. Mean 
cross-validated accuracy was set as target for all the models.

Analysis of Tabula Muris data

Data for FACS isolated cells sequenced with Smart-seq2 were downloaded from the 
Tabula Muris consortium [49] (https://​doi.​org/​10.​6084/​m9.​figsh​are.​59753​92), analysis 
was restricted to Skin, Spleen, Large Intestine and Brain-Myeloid count matrices. Cells 
with less than 200 genes were excluded, as genes detected in less than 3 cells. Data were 
normalised and log-transformed. Merged data were then processed using Harmony 
[55] by the scanpy.external.pp.harmony_integrate() function with default 
parameters. kNN graph was built on integrated data using 50 components and 30 near-
est neighbours. Data were assessed by SCCAF using tissue annotation. Mean cross-vali-
dated accuracy was set as target for all the models.

Analysis of visium H&E data

Data were retrieved using squidpy.datasets.visium_hne_adata() built-in 
function, without further processing. Leiden clustering was performed using schist.
inference.leiden() function, allowing for 100 initialisations, with resolutions 
γ = 1 and γ = 0.5.

Analysis of hematopoietic differentiation

Data were retrieved using scanpy’s built-in functions and were processed as in [53], 
except for kNN graph built using 30 principal components, 30 neighbours and diff-
map as embedding. Gene signatures were calculated with scanpy.tools.score_
genes() using the following gene lists

https://github.com/LuyiTian/sc_mixology
https://doi.org/10.6084/m9.figshare.5975392
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•	 Erythroids: Gata1, Klf1, Epor, Gypa, Hba-a2, Hba-a1, Spi1
•	 Neutrophils, Elane, Cebpe, Ctsg, Mpo, Gfi1
•	 Monocytes, Irf8, Csf1r, Ctsg, Mpo

Processing of PBMC data from various platforms

Count matrices were downloaded from GEO using the following accession numbers: 
GSE133535 (Chromium 10Xv3), GSE133543 (Quartz-seq2), GSE133542 (MARS-seq) 
and GSE133541 (iCELL8). Data were processed according to the methods in the original 
paper [54]. Briefly, cells with less than 10,000 total number of reads as well as the cells 
having less than 65% of the reads mapped to their reference genome were discarded. 
Cells in the 95th percentile of the number of genes/cell and those having less than 25% 
mitochondrial gene content were included in the downstream analyses. Genes that were 
expressed in less than five cells were removed. Data were normalised and log-trans-
formed, highly variable genes were detected at minimal dispersion equal to 0.5. Neigh-
bourhood graph was built using 30 principal components and 20 neighbours.

Analysis of crypt cells data

Count matrix for untreated crypt cells (GSM3308718) was downloaded from GEO. 
Cells with less than 200 genes and genes detected in less than 2 cells were excluded from 
the analysis. After normalization and log-transformation, highly variable genes were 
selected with a cutoff on the mean expression equal to 0.05. Rare subpopulations were 
first highlighted with scanpy.tools.score_genes() using signatures published 
in [57]:

•	 R1_1: Cd8a, Cd3g, Ccl5, Gzma, Gzmb, RGs1, Nkg7, Cd7, Fcer1g
•	 R1_2: H2-Aa, H2-Ab1, H2-Eb1, Cd74, Ly6d, Ebf1, Cd79a, Mef2c
•	 R2: Krt18, Cd24a, Adh1, Cystm1, Aldh2, Dclk1, Sh2d6, Rgs13, Hck, Trpm5
•	 R3: Alas2, Hbb-bs, Hba-a1, Hbb-bt

Label transfer

Processed data for MARS-seq or Quart-seq2 platforms were merged to data for 10X V3. 
Merged data were then processed using Harmony [55] by the scanpy.external.
pp.harmony_integrate() function with default parameters. Cells not belonging 
to the 10X data were assigned an “Unknown” label. We calculated cell affinity to each 
annotation label using schist.tl.calculate_affinity() function. We assigned 
the most affine annotation only to “Unknown” cells. For kNN-based procedure, we built 
a kNN graph on the merged data using pynndescent library on the 10XV3 subset 
of cells in the merged data, then we assigned “Unknown” cells to the closest entry in 
the graph. Assignment by scanpy.tools.ingest() was performed using default 
parameters.
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CODE AVAILABILITY 
 

 

 

 

MOWGAN is available at https://github.com/vgiansanti/MOWGAN. Tutorials for the 

different application can be found in the same repository. 

 

 

Figure 25 MOWGAN logo. 
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