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ABSTRACT 
 

My PhD dissertation deals with statistical methods for cut-point finding for continuous 

biomarkers. Categorization is often needed for clinical decision making when dealing with 

diagnostic (or prognostic) biomarkers and a dichotomous or censored failure time outcome. 

This allows the definition of two or more prognostic risk groups, or also patient’s 

stratifications for inclusion in randomized clinical trials (RCTs). 

We investigate the following cut-point finding methods: minimum P-value, Youden 

index, concordance probability and point closest to-(0,1) corner in the ROC plane. We 

compare them by assuming both Normal and Gamma biomarker distributions, showing 

whether they lead to the identification of the same true cut-point and further investigating 

their performance by simulation. Within the framework of censored survival data, we will 

consider here new estimation approaches of the optimal cut-point, which use a conditional 

weighting method to estimate the true positive and false positive fractions. Motivating 

examples on real datasets are discussed within the dissertation for both the dichotomous 

and censored failure time outcome. 

In all simulation scenarios, the point closest-to-(0,1) corner in the ROC plane and 

concordance probability approaches outperformed the other methods. Both these methods 

showed good performance in the estimation of the optimal cut-point of a biomarker. 

However, to improve results communicability, the Youden index or the concordance 

probability associated to the estimated cut-point could be reported to summarize the 
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associated classification accuracy. The use of the minimum P-value approach for cut-point 

finding is not recommended because its objective function is computed under the null 

hypothesis of absence of association between the true disease status and X. This is in 

contrast with the presence of some discrimination potential of the biomarker X that leads to 

the dichotomization issue. 

The investigated cut-point finding methods are based on measures, i.e. sensitivity and 

specificity, defined conditionally on the outcome. My PhD dissertation opens the question 

on whether these methods could be applied starting from predictive values, that typically 

represent the most useful information for clinical decisions on treatments. However, while 

sensitivity and specificity are invariant to disease prevalence, predictive values vary across 

populations with different disease prevalence. This is an important drawback of the use of 

predictive values for cut-point finding. 

More in general, great care should be taken when establishing a biomarker cut-point 

for clinical use. Methods for categorizing new biomarkers are often essential in clinical 

decision-making even if categorization of a continuous biomarker is gained at a considerable 

loss of power and information. In the future, new methods involving the study of the 

functional form between the biomarker and the outcome through regression techniques 

such as fractional polynomials or spline functions should be considered to alternatively 

define cut-points for clinical use. Moreover, in spite of the aforementioned drawback related 

to the use of predictive values, we also think that additional new methods for cut-point 

finding should be developed starting from predictive values.  
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CHAPTER 1 

INTRODUCTION 

  

1.1 BIOMARKERS IN CLINICAL RESEARCH 

 

A panel of experts of the National Institute of Health (NIH) defined a biomarker as “a 

characteristic that is objectively measured and evaluated as an indicator of normal biological 

processes, pathogenic processes, or pharmacological responses to a therapeutic 

intervention” [1]. The word “biomarker” covers a broad range of biochemical entities, such 

as nucleic acids and proteins, as well as cell lines or biophysical characteristics of tissues.  

The biomarker revolution started about 20 years ago and it is still growing [2]. 

Advances in experimental sciences have led scientists to discover a huge number of 

biomarkers, but only some of them have been validated and currently used in the standard 

medical practice. Exploring the relationship between new biomarkers and health outcomes 

can have potentially strong effects on the biomedical community, leading to new etiological 

discoveries, as well as increased diagnostic capabilities [2]. Biomarkers can be broadly 

classified into three categories: screening (hereafter also defined as diagnostic), prognostic 

and predictive [3].  

Screening (or diagnostic) biomarkers play an important role in cancer research [4], 

allowing to detect cancer at early stages, and helping to increase the chances of care. 

Classical examples of screening biomarkers are the prostate-specific antigen (PSA) test for 

1 
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the early detection of prostate cancer, or the fecal occult blood test (FOBT) for the early 

detection of colorectal cancer.  

Prognostic biomarkers identify patients with different risks of having a specific 

outcome, regardless of the type of treatment (Figure 1.1 Panel (a)). From Figure 1.1 Panel 

(a), we can see that the magnitude of the effect of a new treatment T versus a standard 

treatment S on the clinical response is not affected by the presence of a positive (or 

negative) value of the biomarker. Prognostic biomarkers have utility both in the 

management of patients, and within the early stages of pharmaceutical development, such 

as target discovery or target development [5], and also to define patients’ stratifications for 

inclusion in randomized clinical trials (RCTs). As an example, the Amyloid β peptide (AB) 1-42 

is a prognostic biomarker in patients diagnosed with amnestic Mild Cognitive Impairment 

(aMCI), predicting progression to Alzheimer’s disease [6].  

Predictive biomarkers identify patients likely to have a favorable outcome from a 

specific treatment (Figure 1.1 Panel (b)). From Figure 1.1 Panel (b), we can note that the 

magnitude of the effect of a new treatment T versus a standard treatment S on the clinical 

response depends upon the presence of a positive (or negative) value of the biomarker. For 

example, P450s enzymes - expressed at higher levels in the tumor cells than in the 

surrounding normal tissues - offer therapeutic options through the activation of prodrugs 

specifically in cancer cells, and avoiding undesirable systemic effects [7]. 

After this short introduction aimed to overview the basic concepts of biomarkers, we 

focus our attention to prognostic modeling from the biostatistics perspective in order to 

introduce the objective of this PhD dissertation. 
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Figure 1.1 Panel (a): Prognostic biomarker. Panel (b): Predictive biomarker. T and S denote, 

respectively, test and standard treatment [3]. 

 

1.2 PROGNOSTIC MODELING 
 

Prognosis simply means foreseeing, predicting, or estimating the probability of risk of 

future conditions [8]. Prognosis is central to medicine, and it is often used to direct 

diagnostic pathways, to inform patients and to predict outcome. The outcome can be 

identified as a specific event such as death, relapse or disease progression. However, 

prognostication in medicine is not limited to those who are ill. For example, the Apgar score 

is aimed to assess in a simply way the health of newborn children immediately after birth, or 

also cardiovascular risk profiles are aimed to predict heart diseases in general population. 

The biostatistician contribution is of primary importance in the conduction of 

prognostic researches [9]. A prognostic model is a statistical tool aimed to investigate the 

probability of development of a considered outcome in a given population composed by 

subjects with different demographic and clinical characteristics. We are in the era of the 

“Evidence-Based Medicine” (EBM) [10], defined as “the conscientious, explicit and judicious 
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use of current best evidence in making decisions about the care of individual patients”. As a 

consequence, more and more emphasis is placed on prognostic modeling. We could simply 

detect through a PubMed search an exponential growth of the number of articles published 

after 1970 dealing with prognostic modeling (Figure 1.2) [9]. 

 

Figure 1.2 Studies in PubMed with the term “prognostic model” in the title, from [9]. 

 

The biostatistician expertise in this area ranges widely, from study design to statistical 

analysis of data [11]. Within this macro area, one main challenge is the definition of 

threshold values, hereafter defined as cut-points, for new biomarkers or prognostic indexes. 

In the absence of an a priori clinical consensus, often the commonly used method for 

cut-point finding is to use a non-data (outcome) driven method [12], i.e. splitting the 

population into equal sizes groups based on the quartiles of the biomarker distribution. A 

recent review of 47 studies [12] found that risk groups were developed from prognostic 

models in 76% of the included studies, and 25% of these studies involved non-data 

(outcome) driven methods for cut-point finding. 

We are dealing with a continuous prognostic factor X and we want to define a data-

driven method for determining an optimal cut-point for X. This is essential for the
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clinical decision-making process, allowing the definition of two or more prognostic risk 

groups, or also patient’s stratifications for inclusion in randomized clinical trials (RCTs). 

 

1.3 RATIONALE 

 

This PhD dissertation is aimed to compare methods for cut-point finding in the 

presence of a dichotomous outcome (i.e., diseased/non-diseased or relapse/non-relapse and 

so on), and to define new methods for cut-point finding in a framework of possibly censored 

failure time data. 

Once a continuous variable has been identified as being related to the outcome by 

showing some association with the outcome in a regression framework, a first explorative 

graphical analysis is needed to examine the form of the relationship between the two 

variables. This can detect the presence of a potential cut-point or provide a range of values 

within of which the search should be restricted (Figure 1.3). 

 

Figure 1.3 Line (a): step function model with a single cut-point. Line (b): if the underlying 

relationship is non-monotonic, a single cut-point is not plausible. Line (c): no cut-point is 

apparent, and reducing X to a dichotomous variable could result in a loss of information.  
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Figure 1.3 lines (a) and (c) show monotonic functions; the former function represents an 

ideal situation where a cut-point is suggested, while the latter describes a common situation 

where a cut-point model does not provide the best fit. Figure 1.3 line (b) shows a non- 

monotonic function for which a single cut-point is not plausible. 

Whether or not the graphical examination suggests an ideal cut-point, a data-driven 

(outcome) method that allows to systematically search a cut-point is needed to define risk 

groups for the clinical decision making process. 

The thesis is mainly focused on the comparison of the performance of cut-point finding 

methods both in the framework of dichotomous and right censored survival outcome. 

Within the framework of dichotomous outcome, several methods are indistinctly used by 

researcher aimed to find cut-points: minimum P-value [13], Youden index [14], concordance 

probability [15] and point closest-to-(0,1) corner in the ROC plane approach [18]. So far 

these methods have not been compared theoretically in order to establish which one has 

the best performance, and thus there is a lack of evidence on which method should be 

preferred within the biostatistics community. Moreover, within the framework of censored 

survival data, we will consider here new estimation approaches of the optimal cut-point, 

which use a conditional weighting method to estimate the true positive and false positive 

fractions [17]. Motivating examples are discussed thorough the dissertation. 

The thesis is structured as follows. Chapter 2 describes the methodological work along 

with clinical applications related to the cut-point finding task for a dichotomous outcome, 

while Chapter 3 describes the analogous scenario and an application in the context of 

censored failure time data. Chapter 4 deals with conclusions and future research 

perspectives. Last, ad hoc software developed in this research is reported in appendices.  



CHAPTER 2 

CUT-POINT FINDING FOR A 

DICHOTOMOUS OUTCOME 

  

2.1 THE RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE 

 

In the presence of a continuous response test or a biomarker X, it is often necessary to 

identify a cut-point value to classify subjects as testing positive, considered at higher risk of 

being diseased, from those testing negative, considered at lower risk of being diseased 

(Figure 2.1). 

 

Figure 2.1 The optimal cut-point value copt for a biomarker X on a continuous scale. 

 

Let X denote a continuous biomarker which is supposed to be related to the binary 

outcome (true disease status), where D stands for the presence of disease and D  for the 

absence of disease. 

2 
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The true positive fraction TPF(c) and the false positive fraction FPF(c) are respectively 

defined, at any given possible cut-point c of X, as: 

(c)SD)|cP(XTPF(c) D  

(c))D|c>P(XFPF(c)
D
S  

In this setting, the receiver operating characteristic curve (ROC) is often the starting 

point for determining the optimal cut-point copt. The ROC curve is a plot of the TPF(c) (2.1) - 

or sensitivity (probability of correctly classifying diseased subjects) - and the FPF(c) (2.2) - or 

1-specificity (probability of incorrectly classifying non–diseased subjects) - for all possible 

cut-point values of X (Figure 2.2) [16]. 

The ROC curve is a monotone increasing function in the positive quadrant, lying 

between the corners (FPF(c)=0, TPF(c)=0) and (FPF(c)=1, TPF(c)=1), that could be 

mathematically expressed as follow: 

 

 

Figure 2.2 Examples of ROC curves with different classification accuracies. 

(2.2) 

(2.1) 

(2.3) 
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As the candidate cut-point c of X increases, both TPF(c) and FPF(c) decrease. In particular,   

 and . Conversely, as the candidate cut-point c of X 

decreases,  and . 

As you can see from Figure 2.2, the ROC curve of a biomarker with a good classification 

accuracy lyes near the left and upper border of the positive quadrant; conversely, the 

bisecting line represents a ROC curve of a uselss biomarker, i.e. a biomarker having 

TPF(c)=FPF(c) at any c of X, and thus a classification accuracy not better than a random 

guess. Better biomarkers have ROC curves closer to the upper left corner.  

The area under the ROC curve (AUC) is the most widely used summary measure of 

classification accuracy, and it is mathematically defined as follows: . So, 

the perfect biomarker has the value AUC=1.0, while the useless biomarker has AUC=0.5. The 

AUC is also equal to the probability that the biomarker results from a randomly selected pair 

of diseased and non-diseased are correctly ordered, namely P(X|D > X| ). 

This paragraph introduces the fundamental concepts of the ROC curve theory needed 

to start the core of this PhD dissertation. 

 

2.2 METHODS BACKGROUND AND AIMS 

 

Two methods based on the ROC curve are commonly used to determine the optimal 

cut-point for X: the Youden index [14] and the point closest-to-(0,1) corner in the ROC plane 

approach [18]. The Youden index method selects the optimal cut-point that maximizes the 

Youden function, defined as the difference between TPF(c) (2.1) and FPF(c) (2.2) over all 

possible cut-point values of X [14]. The point closest-to-(0,1) corner in the ROC plane 
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approach selects the optimal cut-point for X as the one minimizing the Euclidean distance 

between some point on the ROC curve and the (0,1) point, that represents the ideal 

situation with maximum sensitivity (TPF=1) and specificity (1-FPF=0) [18]. Perkins and 

Schisterman [18] showed that these ROC-based methods may not lead to the same optimal 

cut-point, and they advocated for the use of the Youden index method [14]. In fact, this 

latter is a commonly used measure of overall classification accuracy, while the point closest-

to-(0,1) corner in the ROC plane approach involves the minimization of a quadratic term that 

does not own a clinical meaning per se. 

A third approach to determine the optimal cut-point for X relies on the maximization 

of the diagnostic odds ratio (DOR) function [19], defined as the ratio between the odds of 

TPF and FPF over all possible cut-point values of X. Böhning et al. [20] have recently showed 

that the DOR strategy is no longer recommended since it might easily lead to the choice of 

cut-point values on the boundary of the parameter range of X. In fact, when considered 

within a parametric homoscedastic Normal distribution scenario, the log-DOR is a convex 

function (Figure 2.3). Conversely, this deficient behaviour is not present for the Youden 

index method, which should be preferred to the DOR approach [20]. 

 

Figure 2.3 The DOR function is convex if considered in a Normal distribution scenario [20]. 
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A more recent simulation study [15] compared the performance of the Youden index 

method and the point closest-to-(0,1) corner in the ROC plane approach with a new 

concordance probability criterion based on the choice of the optimal cut-point that achieves 

the maximum of the product of sensitivity (TPF) and specificity (1-FPF). This latter method 

performed well within the proposed scenarios of Normal and Gamma biomarker 

distributions [15].   

Indeed, within the class of ROC-based methods, the Youden index seems the most 

commonly used and sound intuitive criterion for cut-point finding [18, 20]. The recently 

proposed concordance probability [15] has a meaningful interpretation as well. It 

corresponds to the probability of being below or beyond the cut-point for any random pair 

of non-diseased and diseased subjects, respectively.  

However, none have so far compared the performance of the Youden index, the 

concordance probability and the point closest-to-(0,1) corner in the ROC plane methods with 

the minimum P-value approach [13]. This latter is based on the exploration of all observed 

values of X to identify the optimal cut-point that best separates the two risk groups (i.e., 

diseased and non-diseased) according to the maximum achievable value of the Chi-square 

statistic on the association between X and the binary outcome variable (true disease status).  

We aimed to compare theoretically the minimum P-value approach, the Youden index 

method, the concordance probability criterion and the point closest-to-(0,1) corner in the 

ROC plane approach in order to investigate whether they lead or not to the identification of 

the same optimal cut-point through a theoretical study aimed to investigate the relationship 

between these methods. Moreover, we further investigate the performance of these 

methods by a simulation study. 
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2.3 METHODS FOR CUT-POINT FINDING FOR A DICHOTOMOUS OUTCOME 

 

We review theoretically the minimum P-value approach [13], the Youden index 

method [14], the concordance probability criterion [15] and the point closest-to-(0,1) corner 

in the ROC plane approach [18]. 

Let us consider a sample of Dn  diseased subjects and 
D

n  non-diseased subjects, 

where 
DD nnN  . For any c of X, we can define the following classification matrix: 

 X ≤ c X > c  

D  n11 n12 D
n

 

D n21 n22 Dn  

 N 

The sample estimates of the classification probabilities (2.1) and (2.2) can be obtained 

from matrix (2.4) at a given c of X as D22D n/n=(c)Ŝ  and 
D12D

n/n=(c)Ŝ . 

 

 2.3.1  MINIMUM P-VALUE APPROACH 

 

The minimum P-value approach [13] is based on a systematic search of the optimal 

cut-point that achieves the minimum of the P-value of the Chi-square test statistic on the 

absence of association between the resulting dichotomized biomarker and the binary 

outcome, or, in other words, the maximum of the associated Chi-square statistic on matrix 

(2.4) over all possible cut-point values c of X. 

(2) 

(2.4) 

[3] 
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Thus, according to this method, the optimal cut-point 2χ
ĉ  is the c of X maximizing the one 

degree of freedom Chi-square statistic computed from matrix (2.4) as: 

)n+)(nn+(nnn

)nn-nN(n
=(c)χ

22122111DD

2
211222112

1  

In practice, the search of the optimal cut-point 2χ
ĉ  excludes the boundary of X, where 

either 0n+n 2111   or 0n+n 2212  , in order to avoid an undefined Chi-square statistic 

(2.5). 

Yet the Chi-square statistic (2.5) can be expressed as a population quantity starting 

from its typical expression:  

 
 




2

1i

2

1j
ij

2

ijij2

1
)c(E

(c))E)c((O
)c(IHC  

by writing the observed classification matrix (2.4) in terms of classification probabilities (2.1) 

and (2.2).  

Here, Oij(c) and Eij(c) from (2.6) are random variables representing, respectively, the 

observed and expected population counts in a classification matrix of the type (2.4) (where i, 

j=1,2 are the row and column indexes), for a sampling design with Dn  diseased and 
D

n  non-

diseased subjects. 

Let us consider the counts Oij(c) from (2.6). The observed number of non-diseased 

subjects presenting X≤c (i.e., n11 in matrix (2.4)) is represented by the random count 

)D|cP(Xn
D

 , or from (2.2), )(c)S1(n
DD

 . A similar argument follows also for the other 

random counts Oij(c) from (2.6), leading to the following observed classification matrix: 

 

(2.5) 

(2.6) 
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 X ≤ c X > c  

D  )(c)S1(n
DD

  (c)Sn
DD

 
D

n  

D )(c)S1(n DD   (c)Sn DD  Dn  

 N 

In order to derive the expected counts Eij(c) from (2.6), we need to write the expected 

classification matrix under the assumption of absence of association between the resulting 

dichotomized biomarker X and the binary outcome. Under this assumption, the expected 

count of non-diseased subjects presenting X≤c is )cX(Pn
D

 , where P(X≤c) is the 

complement to one of the positive fraction (PF), that can be written as a weighted average 

of (c)SD  and (c)S
D

 as:  

DD

DDDD

nn

(c)Sn(c)Sn
)cX(P)c(PF




  

By arguing similarly, we obtain the following expected classification matrix: 

 X ≤ c X > c  

D  

DD

DDDDDD

D nn

(c)Sn(c)Snnn
n




 

DD

DDDD

D nn

(c)Sn(c)Sn
n




 D

n  

D 

DD

DDDDDD

D
nn

(c)Sn(c)Snnn
n




 

DD

DDDD

D
nn

(c)Sn(c)Sn
n




 Dn  

 N 
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Now, considering the single term 
)c(E

(c))E)c((O

ij

2

ijij 
 for i, j=1,2 from (2.6), and using a 

little algebra, we obtain: 

(c)Sn(c)Snnn

n

n

1

n

1

)(c)S-(c)S(

)c(E

))c(E)c(O(

DDDDDD

D

DD

2

DD

11

2

1111







 

(c)Sn(c)Sn

n

n

1

n

1

)(c)S-(c)S(

)c(E

))c(E)c(O(

DDDD

D

DD

2

DD

12

2

1212







 

(c)Sn(c)Snnn

n

n

1

n

1

)(c)S-(c)S(

)c(E

))c(E)c(O(

DDDDDD

D

DD

2

DD

21

2

2121







 

(c)Sn(c)Sn

n

n

1

n

1

)(c)S-(c)S(

)c(E

))c(E)c(O(

DDDD

D

DD

2

DD

22

2

2222







 

Since 

DD

2

DD

n

1

n

1

)(c)S-(c)S(



 is common to all the terms, we can write:  

)c(g

n

1

n

1

)(c)S-(c)S(

)c(E

(c))E)c((O
)c(IHC

DD

2

DD2

1i

2

1j
ij

2

ijij2

1






  
 

 

where: 

)c(Sn)c(Sn-nn

nn

)c(Sn)c(Sn

nn
g(c)

DDDDDD

DD

DDDD

DD









  
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Thus, we obtain the Chi-square function in population as: 
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and after some little algebra, we obtain: 
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Since we carried out a huge number of hypothesis tests, one for each potential cut-

point value c of X, the probability of obtaining a significant result is inflated. The minimum P-

value Pmin associated to the optimal cut-point 2χ
ĉ  determined through this method should 

be corrected by using the formulae developed by Miller and Siegmund [13]: 

z

φ(z)
4

)ε(1ε

)ε(1ε
)log

z

1
φ(z)(zP

highlow

lowhigh

ms 



  

where z is the /2)p(1 min standard Normal percentile, while εlow and εhigh represents the 

sample proportions of cut-point values less than or greater than the smallest and largest cut-

point considered in the analysis, respectively. It is worthwhile to state that the standard 

Bonferroni correction method is not appropriate in this setting since it does not hold the 

independence assumption between the (c)χ 2

1 test statistics. 

(2.7) 

(2.8) 
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2.3.2  YOUDEN INDEX METHOD 

 

The Youden index (J) [14] is the maximum achievable value of the Youden function J(c), 

defined as the difference between the population quantities TPF(c) (2.1) and the FPF(c) (2.2): 

(c)S-(c)SJ(c)
DD  

J(c) ranges between 0 if (c)S(c)S
DD  , and 1 in the ideal case where 1(c)SD   and 

0(c)S
D

 . J could also be seen as the maximum vertical distance between the ROC curve 

and the diagonal chance line representing a useless biomarker (Figure 2.4). It can be 

interpreted as the net gain of the true positive fraction with respect to the false positive 

fraction.  

 
Figure 2.4 The graphical interpretation of the Youden index J. 

 

Following this approach, the optimal cut-point Jĉ  is the c that achieves the maximum 

of the Youden function (c)Ŝ-(c)Ŝ)c(Ĵ
DD  over all possible cut-point values c of X. 

(2.9) 
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2.3.3 CONCORDANCE PROBABILITY METHOD 

 

The concordance probability [15] objective function could be defined as the product of 

the population quantities TPF(c) (2.1) and the complement to one of the FPF(c) (2.2): 

(c))S-(1(c)SCZ(c)
DD   

CZ(c) ranges between 0 if 0(c)SD   or 0(c)S-1
D

 , and 1 in the ideal case where 

1(c)SD   and 1(c)S-1
D

 , i.e. 0(c)S
D

 . CZ(c) could be also expressed as the area of a 

rectangle on the ROC curve of width (c)S-1
D

 and height (c)SD varying c (Figure 2.5, area of 

the dotted rectangle) and interpreted as the probability of being below or beyond the cut-

point for any random pair of non-diseased and diseased subjects. CZ(c) evaluates the 

classification accuracy of the dichotomous biomarker at cut-point c. 

Following this approach, the optimal cut-point CZĉ  is the c that achieves the maximum 

of the concordance probability function (c))Ŝ-(1(c)ŜZ(c)Ĉ
DD  over all possible cut-point 

values c of X. 

 

2.3.4 POINT CLOSEST-TO-(0,1) CORNER IN THE ROC PLANE 

APPROACH 

 

The objective function of this ROC-based method [18] could be easily defined by 

applying the Euclidean distance formulae between the point on the ROC plane defined by 

the population quantities (2.1) and (2.2) and the point (0,1): 

2

D

2
D (c))S(1)-(c)(SER(c)   

(2.10) 

(2.11) 



2.3   Methods for cut-point finding for a dichotomous outcome    19 
 

According to this method, the optimal cut-point ERĉ  is the c that achieves the 

minimum of the objective function 22 (c))Ŝ()1-(c)Ŝ(R(c)Ê
DD  over all possible cut-point 

values c of X (Figure 2.5, length of the thin line segment). 

 

Figure 2.5 Comparison of ROC-based methods for cut-point finding: the Youden index J [14], 

the concordance probability CZ [15] and the distance from the ideal biomarker ER [18].



20     Chapter 2   Cut-point finding for a dichotomous outcome 
 

2.4 THEORETICAL CONSIDERATIONS ON THE RELATIONSHIP BETWEEN 

DIFFERENT APPROACHES 

 

The minimum P-value approach and the Youden index method are mathematically 

related. In fact, from the population quantities (2.7) and (2.9), we can write 
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1
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1
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nn
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1

nn

(c)Sn(c)Sn
/J(c)(c)CHI . 

Thus, in other words, the Youden function (2.9) is the square root of the numerator of the 

Chi-square function (2.7).  

However, despite this mathematical similarity, we show here within a parametric 

scenario that the associated cut-point finding methods do not necessarily identify the same 

true cut-point. We describe the special Normal homoscedastic case where the three 

considered ROC-based methods (2.9), (2.10) and (2.11) identify the same true cut-point 

ROCc . Moreover, if the design is balanced ( Dn =
D

n ), this equality also holds for the 

minimum P-value approach (2.7), leading to a common cut-point optc . When Dn <
D

n , as 

often typical in clinical applications, the true cut-point 2χ
c  underlying the minimum P-value 

approach (2.7) is greater than the one associated to the ROC-based methods, being 

ROC2χ
cc  .  

 

2.4.1 THE GAUSSIAN PARAMETRIC SCENARIO 

 

Let us assume that X is normally distributed in the diseased and non-diseased 

populations, respectively as 1)σ,μN(~X DDD   and 1)σ0,μN(~X
DDD
 . This means 
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that )μ-Φ(c1(c)S DD   and Φ(c)1(c)S
D

 , where Φ denotes the standard Normal 

distribution function. If μD is set equal to {0.51, 1.05, 1.68, 2.56}, the corresponding 

maximum values of the Youden function (2.9) are J(cJ)={0.2, 0.4, 0.6, 0.8}, the corresponding 

maximum values of the concordance probability (2.10) are CZ(cCZ)={0.36, 0.49, 0.64, 0.81}, 

while the minimum values of the objective function (2.11) of the point closest-to-(0,1) 

corner in the ROC plane approach are ER(cER)={0.57, 0.42, 0.28, 0.14}. This set of values of μD 

ensures a wide variety of classification accuracies, ranging from a poor one (J=0.2 and 

CZ=0.36) to a high one (J=0.8 and CZ=0.81) [21]. Conversely, the maximum values of the Chi-

square function (2.7) of the minimum P-value approach depend on the size of the sample. 

For example, by considering Dn =
D

n =100, we obtain )c(CHI 2χ

2

1 ={8, 32, 72, 128}, and 

considering Dn =50, 
D

n =150, we obtain )c(CHI 2χ

2

1 ={6, 26, 64, 121}. 

 

Under the aforementioned Normal homoscedastic distribution scenario, we 

investigate whether the optimal cut-point cJ underlying the Youden index method (2.9) 

corresponds also to the true cut-points 2χ
c , CZc  and ERc  of the minimum P-value (2.7), 

concordance probability (2.10) and point closest-to-(0,1) corner in the ROC plane (2.11) 

methods, respectively. 

The distribution functions )c(S1)c(F DD   of DX  and )c(S1)c(F
DD

  of 
D

X   are 

indeed absolutely continuous. The cut-point optimizing (2.9) can be obtained by studying the 

first derivative of J(c), )c(f)c(f
c

)c(J
DD 




, where c(c)/F(c)f DD   and 
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c(c)/F(c)f
DD

  are the Normal probability density functions of diseased and non-diseased 

subjects, respectively. By a little algebra, it follows that /2μc DJ   is a root of 0
c

)c(J





. 

Moreover, it can be proven in case of a balanced design ( Dn =
D

n ) that Jc  is a 

maximum point of the Chi-square function (2.7), since the first derivative of )c(CHI2

1  

vanishes at Jcc  , arguing as follows. 

Let us consider the sign of the first derivative 
c

)c(CHI2

1




 at the maximum point cJ of 

the Youden function (2.9). Since the objective function (2.7) is a ratio, we just need to study 

the numerator of 
c

)c(CHI2

1




, that by some algebra can be written as: 
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We showed above that )(cf)(cf JDJD  , since 0)c(f)c(f|
c

)c(J
JDJDcc J





 . 

Consequently, the term    (c)Fn(c)Fn(c)Sn(c)Sn(c)f(c)f-2
DDDDDDDDDD   in (2.12) 

vanishes at Jcc  . Now, since (c)S-(c)S
DD  and (c)fn(c)fn

DDDD   are indeed positive at 

any c of X, we can conclude that the sign of (2.12) at Jcc   depends only on the term 

(c)Sn(c)Sn(c)Fn(c)Fn
DDDDDDDD  . Using the equalities demonstrated by Liu [15], i.e. 

)c(S)c(F JDJD   and )c(S)c(F JDJD
 , and by some algebra, the aforementioned term 

(2.12) can be written as: 

))(cS-)(c)(Sn-(n JDJDDD
 

(2.12) 

(2.13) 
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By considering that 0)(cS-)(cS JDJD  , the sign of expression (2.13) depends only on 

the values of )n-(n DD
. Thus, under a balanced scenario ( Dn =

D
n ), the true cut-point of the 

Youden index method /2μc DJ   also maximizes the objective function (c)HIC 2

1 (2.7) since 

the first derivative function vanishes. If we consider a non-balanced scenario with Dn <
D

n , 

we can observe that 0|c(c)/HIC
Jcc

2

1   , and thus J2χ
cc  . 

Furthermore, under the aforementioned Normal homoscedastic distribution scenario, 

it can be also easily proven that the true cut-point /2μc DJ   is also the maximum point 

underlying the concordance probability and the point closest-to-(0,1) corner in the ROC 

plane objective functions (2.10) and (2.11). In fact, it can be shown that 0|
c

)c(CZ
Jcc 




  

when 
)c(F

(c)S

)c(f

)c(f

D

D

D

D   and 0|
c

)c(ER
Jcc

2





  when 

)c(F

(c)S

)c(f

)c(f

D

D

D

D  .  

These equations are verified using the aforementioned equalities described by Liu [15]. 

 

Figure 2.6 shows the population objective functions (2.7), (2.9), (2.10) and (2.11) in 

case of homoscedastic Normal distributions, with μD=2.56, i.e. J=0.8 and CZ=0.81, for both a 

balanced ( Dn =
D

n =100, Panel A) and a non-balanced ( 50nD  < 150n
D
 , Panel B) design. 

In the balanced homoscedastic scenario, the objective functions (2.7), (2.9), (2.10) and (2.11) 

reach their maximum in correspondence of the same true cut-point, i.e. /2μc Dopt   (see 

above). Analytically, this common cut-point occurs at the intersection between the Normal 

probability density functions of diseased (i.e., (c)fD ) and non-diseased subjects (i.e., (c)f
D

). 

Conversely, in the non-balanced homoscedastic case, the three ROC-based methods lead to 
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the same true cut-point cROC, which differs from the one based on the minimum P-value 

approach method, being ROC2χ
cc  . In particular, the true cut-point 2χ

c  of the minimum P-

value approach increases with increasing prevalence of the disease in the sample as shown 

above. 

 

2.4.2 THE GAMMA PARAMETRIC SCENARIO 

 

Let us now assume that X is Gamma distributed in the diseased population as 

)β2.5,αG(~X DDD   and in the non-diseased population as 1)β1.5,αG(~X
DDD
 . This 

implies that 
  







c

x/β5.1

2.5

D

D dxex
β2.5Γ

1
(c)S D  and 

 
dxex

1.5Γ

1
(c)S

c

.

D 


 x50 . If βD is set 

equal to {0.79, 1.22, 1.97, 3.82}, the corresponding maximum values of the Youden function 

(2.9) are J(cJ)={0.2, 0.4, 0.6, 0.8}, the corresponding maximum values of the concordance 

probability (2.10) are CZ(cCZ)={0.36, 0.49, 0.64, 0.81} while the minimum values of the 

objective function (2.11) of the point closest-to-(0,1) corner in the ROC plane approach are 

ER(cER)={0.57, 0.42, 0.28, 0.14}. As in the Normal distribution case, the corresponding 

maximum values of the Chi-square function (2.7) depend on the size of the sample; by 

considering Dn =
D

n =100, )c(CHI 2χ

2

1 ={9, 32, 72, 128}. We set the Gamma parameters to 

ensure a wide variety of classification accuracies, ranging from a poor one (J=0.2 and 

CZ=0.36) to a high one (J=0.8 and CZ=0.81) [21]. In these scenarios, the objective functions 

(2.7), (2.9), (2.10) and (2.11) do not reach the maximum in correspondence of the same true 

cut-point (Figure 2.7), and a closed form for the true cut-point cannot be derived for the 

investigated methods. 
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Figure 2.6 Population objective functions (c)HIC 2

1  (thin line), J(c) (dashed line), CZ(c) (thick dashed line) and ER(c) (thick line). The 

homoscedastic Normal distribution scenario with a balanced design ( Dn =
D

n =100) is represented in Panel A, the non-balanced 

( Dn =50<
D

n =150) design is represented in Panel B. In both cases the underlying distributions are  1σ,56.2μN~X DDD   and 

 1σ0,μN~X
DDD
 , leading to J=0.8, CZ=0.81. The heteroscedastic Normal distribution scenarios with a balanced design are 

represented in Panels C and D. In the first case  5.0σ2.56,μN~X DDD   and  1σ0,μN~X
DDD
 , leading to J=0.92 and CZ=0.92, 

while in the second case  5.1σ2.56,μN~X DDD  ,  1σ0,μN~X
DDD
 , leading to J=0.70, CZ=0.72. In all panels the values of the 

objective functions (c)HIC 2

1 , J(c) and ER(c) are multiplied by 100 whereas CZ(c) is multiplied by 110.
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Figure 2.7 Population objective functions (thin line), J(c) (dashed line), CZ(c) (thick dashed 

line) and ER(c) (thick line) for the Gamma distribution scenario with 

 3.82β2.5,αG~X DDD   and  1β1.5,αG~X
DDD
 , i.e. J=0.8 and CZ=0.81. 

 

2.5 SIMULATION PROTOCOL 

 

We compare the performance of the minimum P-value (2.7) and the three ROC-based 

methods, Youden index (2.9), concordance probability (2.10) and point closest-to-(0,1) 

corner in the ROC plane (2.11), in the estimation of the optimal cut-point. We consider first 

the Normal homoscedastic scenario with balanced design ( Dn =
D

n ), where all the 

investigated methods identify theoretically the same true cut-point copt. Second, we analyse 

the non-balanced (specifically, Dn <
D

n ) Normal case, where the ROC-based methods lead to 

the same true cut-point cROC, which differs from the true cut-point 2χ
c  underlying the 
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minimum P-value approach. Last, the Gamma case is also considered. All simulations are 

performed under the same parametric scenarios introduced in paragraph 2.4 (page 20). 

We generate 1000 samples of size Dn =
D

n =50, Dn =
D

n  =100 and Dn =
D

n =200. 

Moreover, in the non-balanced designs ( Dn <
D

n ), we generate 1000 samples of size Dn =50, 

D
n =100 and Dn =50, 

D
n =150 and Dn =50, 

D
n =200. For each sample, we determine by 

numerical maximization the optimal cut-points estimates 2χ
ĉ , Jĉ , CZĉ  and ERĉ  for the 

minimum P-value [13] and the three ROC-based methods, Youden index [14], concordance 

probability [15] and point closest-to-(0,1) corner in the ROC plane [18], respectively. The 

relative bias of each method is computed by ])/ccĉE[( ...  , while mean square error (MSE) 

is also determined as ])cĉ[(E 2

..  . R simulation code is reported in Appendix 1. 

 

2.5.1  BOOTSTRAP RESAMPLING TECHNIQUE 

 

We apply the bootstrap resampling technique [22] to estimate the standard deviation 

and the confidence interval (CI) for the optimal cut-point. Within each of the 1000 generated 

samples, random sampling with replacement is used to draw 200 bootstrap samples to 

calculate the bootstrap estimate Bĉ  (B=1, …, 200). Then, we apply the basic percentile 

method, taking the 0.025 and 0.975 percentiles of the Bĉ  bootstrap distribution in order to 

construct a 95% CI of the optimal cut-point for each simulated sample. 

The standard deviation SDB of the 200 bootstrap cut-point estimates is used as the 

estimator of the standard deviation for the cut-point for each simulated sample.  
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Within each of the aforementioned scenarios, the CI for the cut-point is subsequently 

evaluated by computing coverage probability and mean length. The coverage probability is 

the proportion of times that the bootstrap confidence interval contains the true cut-point, 

while the mean length is a measure of the precision of the confidence interval around the 

estimated cut-point. The wider is the confidence interval, the higher is the uncertainty 

related to the estimated cut-point. R code for bootstrap resampling is shown in Appendix 2. 

 

2.5.2 SIMULATION RESULTS 

The results of the balanced design under Normal homoscedastic distributions are 

shown in Table 2.1. The relative bias of the investigated methods is small on all levels of 

classification accuracy. While the minimum P-value [13], concordance probability [15] and 

point closest-to-(0,1) corner in the ROC plane [18] methods generally underestimate the true 

cut-point copt, the Youden index method [14] overestimates copt. By comparing the MSEs, it 

can be noticed that the point closest-to-(0,1) corner in the ROC plane and concordance 

probability methods have better performance than the other methods. Indeed, the MSE is 

inversely related to sample size. The performance of all methods improves with increasing 

classification accuracy. 

Table 2.2 shows the bootstrap standard deviation, coverage probability and mean 

length of the 95% bootstrap CI for the cut-point for the balanced design under Normal 

homoscedastic distributions. The SDB of the minimum P-value approach is systematically 

greater than the SDB of the three ROC-based methods. 95% bootstrap CIs are narrower when 

considering the scenarios with better classification accuracies, i.e. J of 0.6  



2.5   Simulation protocol    29 
 

Table 2.1  Relative Bias and Mean Square Error (MSE) of the minimum P-value *, Youden index, concordance probability and point 

closest-to-(0,1)-corner in the ROC plane estimators. The Normal homoscedastic balanced scenario†. 

 
Sample 

sizes 
Minimum P-value Youden Index 

Concordance 

probability 

Point closest-to-(0,1) 

corner 

J(copt)
 ‡ CZ(copt)

 ‡ copt Dn =
D

n  
Relative 

Bias 
MSE 

Relative 

Bias 
MSE 

Relative 

Bias 
MSE 

Relative 

Bias 
MSE 

0.2 0.36 0.25 

50 0.0582 0.4807 0.0826 0.2332 0.0230 0.0733 -0.0261 0.0510 

100 -0.1217 0.4399 0.0850 0.1647 0.0346 0.0418 0.0254 0.0285 

200 0.0328 0.3259 0.0252 0.1044 -0.0291 0.0264 -0.0050 0.0184 

0.4 0.49 0.52 

50 -0.0013 0.2590 0.0517 0.1254 0.0047 0.0683 -0.0201 0.0434 

100 0.0221 0.1845 0.0372 0.0812 -0.0047 0.0390 -0.0041 0.0221 

200 0.0210 0.1225 0.0138 0.0513 0.0001 0.0250 -0.0045 0.0144 

0.6 0.64 0.84 

50 -0.0030 0.1332 0.0416 0.0835 -0.0108 0.0559 -0.0214 0.0355 

100 0.0067 0.0876 0.0237 0.0508 -0.0042 0.0356 -0.0042 0.0219 

200 0.0072 0.0571 0.0222 0.0354 -0.0012 0.0242 -0.0040 0.0138 

0.8 0.81 1.28 

50 -0.0221 0.0893 0.0043 0.0645 -0.0183 0.0520 -0.0254 0.0404 

100 -0.0097 0.0558 0.0120 0.0408 -0.0104 0.0341 -0.0112 0.0248 

200 -0.0055 0.0354 0.0054 0.0268 -0.0098 0.0223 -0.0118 0.0137 

* The theoretical maximum values of the Chi-square statistic are not shown since they depend on the sample size.†  ,1μN~X DD , 

 0,1N~X
D

. ‡The levels of J and CZ are achieved by μD= 0.51, 1.05, 1.68, 2.56, respectively. 
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Table 2.2  Bootstrap standard deviation, coverage probability and mean length of the 95% confidence interval estimation of the 

minimum P-value *, Youden index, concordance probability and point closest-to-(0,1)-corner in the ROC plane estimators. The 

Normal homoscedastic balanced scenario†. 

 
Sample 

sizes 
Minimum P-value Youden Index Concordance probability Point closest-to-(0,1) corner 

J(copt)
 

‡ 

CZ(copt)
 

‡ 
Dn =

D
n  SDB Coverage Length SDB Coverage Length SDB Coverage Length SDB Coverage Length 

0.2 0.36 

50 0.6166 0.978 2.1259 0.4428 0.963 1.5435 0.2733 0.960 0.9705 0.2329 0.957 0.8260 

100 0.5802 0.979 2.0000 0.3888 0.965 1.3715 0.2156 0.954 0.7598 0.1819 0.949 0.6397 

200 0.5229 0.972 1.8157 0.3214 0.973 1.1441 0.1678 0.965 0.5981 0.1404 0.962 0.5004 

0.4 0.49 

50 0.4493 0.962 1.5668 0.3289 0.962 1.1573 0.2523 0.960 0.8878 0.2050 0.960 0.7185 

100 0.4082 0.962 1.4333 0.2759 0.954 0.9746 0.2016 0.951 0.7115 0.1597 0.945 0.5677 

200 0.3402 0.963 1.2038 0.2213 0.956 0.7880 0.1581 0.958 0.5624 0.1233 0.953 0.4393 

0.6 0.64 

50 0.3306 0.952 1.1468 0.2728 0.944 0.9381 0.2400 0.937 0.8331 0.1959 0.926 0.6854 

100 0.2852 0.960 0.9999 0.2226 0.955 0.7823 0.1898 0.950 0.6716 0.1483 0.943 0.5247 

200 0.2379 0.971 0.8315 0.1842 0.958 0.6494 0.1545 0.957 0.5440 0.1171 0.950 0.4127 

0.8 0.81 

50 0.2712 0.922 0.9088 0.2504 0.922 0.8480 0.2350 0.911 0.8036 0.2052 0.894 0.7020 

100 0.2234 0.950 0.7814 0.1996 0.946 0.7012 0.1874 0.938 0.6610 0.1537 0.919 0.5350 

200 0.1829 0.963 0.6411 0.1594 0.960 0.5636 0.1505 0.952 0.5339 0.1174 0.944 0.4165 

* The theoretical maximum values of the Chi-square statistic are not shown since they depend on the sample size.†  ,1μN~X DD , 

 0,1N~X
D

. ‡The levels of J and CZ are achieved by μD= 0.51, 1.05, 1.68, 2.56, respectively. 
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and 0.8, and CZ of 0.64 and 0.81. Moreover, the point closest-to-(0,1) corner in the ROC 

plane method achieves the narrowest CIs in all the analysed scenarios. Coverage 

probabilities are close to the nominal level. 

Table 2.3 shows the results of the unbalanced homoscedastic Normal case. It can be 

noticed that the true 2χ
c  depends on the prevalence of the disease in the sample, 

)nn/(n
DDD  . In particular, a reduction of the prevalence determines a systematic shift to 

the right of the true 2χ
c , while the three ROC-based methods lead to the same true cut-

point cROC, which differs from the one based on the minimum P-value approach method, 

being ROC2χ
cc  . The relative bias of the investigated methods is small on all levels of 

classification accuracy. The point closest-to-(0,1) corner in the ROC plane method achieves 

the lowest MSE of the estimates of the optimal cut-point, too.  

Table 2.4 shows the bootstrap standard deviation, coverage probability and mean 

length of the 95% bootstrap CI for the cut-point for the unbalanced design under Normal 

homoscedastic distributions. Even in this scenario, the point closest-to-(0,1) corner in the 

ROC plane method achieves the lowest SDB of the estimates of the optimal cut-point. 

Coverage probabilities are also close to the nominal level. 
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Table 2.3  Relative Bias and Mean Square Error (MSE) of the minimum P-value *, Youden index, concordance probability and point 

closest-to-(0,1)-corner in the ROC plane estimators. The Normal homoscedastic unbalanced scenario†. 

 
Sample 

sizes 
Minimum P-value Youden Index 

Concordance 

probability 

Point closest-to-

(0,1) corner 

J(copt) 
‡ 

CZ(copt)
 

‡ 
2χ

c  cROC Dn  
D

n  
Relative 

Bias 
MSE 

Relative 

Bias 
MSE 

Relative 

Bias 
MSE 

Relative 

Bias 
MSE 

0.2 0.36 

0.39 

0.25 

50 100 0.0371 0.4496 0.2420 0.1956 0.1248 0.0550 0.0967 0.0390 

0.46 50 150 -0.0108 0.4358 0.0609 0.1928 0.1426 0.0545 0.1303 0.0403 

0.51 50 200 -0.0079 0.4001 0.2237 0.1758 0.1760 0.0536 0.1513 0.0381 

0.4 0.49 

0.75 

0.52 

50 100 0.0566 0.2118 0.0895 0.0973 0.0559 0.0530 0.0354 0.0331 

0.87 50 150 0.0377 0.1915 0.0669 0.0908 0.0701 0.0538 0.0530 0.0328 

0.96 50 200 0.0336 0.1669 0.0852 0.0905 0.0573 0.0475 0.0555 0.0307 

0.6 0.64 

1.09 

0.84 

50 100 0.0074 0.1042 0.0352 0.0667 0.0166 0.0477 0.0093 0.0287 

1.23 50 150 0.0161 0.1063 0.0414 0.0613 0.0231 0.0440 0.0289 0.0288 

1.33 50 200 0.0165 0.0929 0.0428 0.0654 0.0378 0.0443 0.0452 0.0262 

0.8 0.81 

1.50 

1.28 

50 100 -0.0105 0.0650 0.0166 0.0546 0.0030 0.0488 0.0048 0.0335 

1.63 50 150 -0.0098 0.0588 0.0344 0.0508 0.0265 0.0443 0.0238 0.0310 

1.72 50 200 -0.0138 0.0576 0.0269 0.0474 0.0199 0.0404 0.0228 0.0271 

* The theoretical maximum values of the Chi-square statistic are not shown since they depend on the sample size. 
†  ,1μN~X DD ,  0,1N~X

D
. ‡The levels of J and CZ are achieved by μD= 0.51, 1.05, 1.68, 2.56, respectively. 
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Table 2.4  Bootstrap standard deviation, coverage probability and mean length of the 95% confidence interval estimation of the 

minimum P-value *, Youden index, concordance probability and point closest-to-(0,1)-corner in the ROC plane estimators. The 

Normal homoscedastic unbalanced scenario†. 

 Sample 

sizes 
Minimum P-value Youden Index Concordance probability 

Point closest-to-(0,1) 

corner 

J(copt)
 

‡ 

CZ(copt)
 

‡ 
Dn  

D
n  SDB Coverage 

Mean 

length 
SDB Coverage 

Mean 

length 
SDB Coverage 

Mean 

length 
SDB Coverage 

Mean 

length 

0.2 0.36 

50 100 0.6048 0.978 2.0550 0.4270 0.968 1.5055 0.2525 0.962 0.8875 0.2132 0.955 0.7544 

50 150 0.5808 0.971 1.9671 0.4149 0.955 1.4502 0.2378 0.948 0.8414 0.1999 0.944 0.7127 

50 200 0.5568 0.974 1.8945 0.4041 0.969 1.4227 0.2350 0.951 0.8229 0.1978 0.948 0.7010 

0.4 0.49 

50 100 0.4360 0.959 1.5255 0.3081 0.958 1.0866 0.2298 0.949 0.8073 0.1843 0.946 0.6547 

50 150 0.4116 0.950 1.4354 0.3012 0.959 1.0562 0.2234 0.952 0.7875 0.1782 0.945 0.6332 

50 200 0.3850 0.954 1.3330 0.2948 0.960 1.0353 0.2180 0.943 0.7661 0.1740 0.937 0.6136 

0.6 0.64 

50 100 0.3139 0.960 1.0980 0.2513 0.954 0.8852 0.2185 0.952 0.7725 0.1737 0.942 0.6130 

50 150 0.3055 0.947 1.0643 0.2424 0.953 0.8521 0.2107 0.943 0.7419 0.1671 0.929 0.5877 

50 200 0.2928 0.965 1.0214 0.2369 0.948 0.8303 0.2047 0.939 0.7159 0.1608 0.924 0.5649 

0.8 0.81 

50 100 0.2422 0.926 0.8437 0.2245 0.946 0.7757 0.2135 0.940 0.7364 0.1788 0.931 0.6220 

50 150 0.2336 0.929 0.8105 0.2187 0.929 0.7598 0.2083 0.928 0.7234 0.1740 0.914 0.6054 

50 200 0.2263 0.952 0.7889 0.2111 0.926 0.7354 0.2019 0.929 0.7035 0.1669 0.925 0.5879 

* The theoretical maximum values of the Chi-square statistic are not shown since they depend on the sample size. † 

 ,1μN~X DD ,  0,1N~X
D

. ‡The levels of J and CZ are achieved by μD= 0.51, 1.05, 1.68, 2.56, respectively. 
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Under a Gamma distribution assumption with a balanced design (Table 2.5), it can be 

noticed that the theoretical true cut-points 2χ
c , Jc , CZc  and ERc  are all different. However, 

we fail to recognize a systematic ordering between these theoretical cut-points. Concerning 

the relative performance of the investigated methods, we note a negligible relative bias in 

the estimate of the optimal cut-point, except for the minimum P-value approach in the 

scenario with poor classification accuracy, J=0.2. In all the analysed cases, the point closest-

to-(0,1) corner in the ROC plane method achieves the lowest SDB of the estimates of the 

optimal cut-point (Table 2.6). Coverage probabilities are also close to the nominal level. 

 

Summarizing, in all the analysed simulation scenarios, the point closest-to-(0,1) corner 

in the ROC plane and concordance probability approaches show a better performance in the 

estimation of the optimal cut-point than the minimum P-value and Youden index methods. 

This finding is also confirmed by the bootstrap standard deviation and mean length of the 

95% bootstrap CI. 
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Table 2.5  Relative Bias and Mean Square Error (MSE) of the minimum P-value *, Youden index, concordance probability and point 

closest-to-(0,1)-corner in the ROC plane estimators. The Gamma balanced scenario †. 

 
Sample 

sizes 
Minimum P-value Youden Index 

Concordance 

probability 

Point closest-to-(0,1) 

corner 

J(copt)
 ‡ CZ(copt)

 ‡ 2χ
c  cJ cCZ cER Dn =

D
n  

Relative 

Bias 
MSE 

Relative 

Bias 
MSE 

Relative 

Bias 
MSE 

Relative 

Bias 
MSE 

0.2 0.36 0.80 1.12 1.35 1.38 

50 0.3826 0.5237 0.1377 0.2329 0.0113 0.0741 -0.0009 0.0587 

100 0.2517 0.3075 0.0920 0.1502 0.0048 0.0460 -0.0025 0.0322 

200 0.1524 0.1624 0.0631 0.0978 0.0069 0.0299 0.0035 0.0230 

0.4 0.49 1.73 1.79 1.81 1.82 

50 0.0288 0.4599 0.0211 0.2158 -0.0004 0.1229 -0.0102 0.0760 

100 0.0411 0.3651 0.0255 0.1509 0.0091 0.0785 0.0038 0.0496 

200 0.0277 0.2429 0.0097 0.0961 0.0032 0.0445 0.0023 0.0291 

0.6 0.64 2.54 2.45 2.41 2.36 

50 0.0037 0.4681 0.0263 0.2905 -0.0027 0.1960 -0.0059 0.1245 

100 0.0151 0.3227 0.0229 0.1941 0.0030 0.1271 -0.0012 0.0712 

200 -0.0020 0.2135 0.0114 0.1185 -0.0067 0.0716 -0.0012 0.0434 

0.8 0.81 3.51 3.42 3.38 3.24 

50 -0.0114 0.5465 0.0082 0.4705 -0.0319 0.3629 -0.0167 0.2474 

100 -0.0067 0.3467 0.0065 0.2647 -0.0146 0.2259 -0.0031 0.1387 

200 -0.00004 0.2174 0.0023 0.1642 -0.0078 0.1388 -0.0050 0.0820 

* The theoretical maximum values of the Chi-square statistic are not shown since they depend on the sample size.† 

 DD β2.5,G~X ,  1.5,1G~X
D

. ‡The levels of J and CZ are achieved by βD= 0.79, 1.22, 1.97, 3.82, respectively. 
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Table 2.6  Bootstrap standard deviation, coverage probability and mean length of the 95% confidence interval estimation of the 

minimum P-value *, Youden index, concordance probability and point closest-to-(0,1)-corner in the ROC plane estimators. The 

Gamma balanced scenario †. 

 Sample 

sizes 
Minimum P-value Youden Index Concordance probability 

Point closest-to-(0,1) 

corner 

J(copt)
 

‡ 

CZ(copt)
 

‡ 
Dn =

D
n  SDB Coverage 

Mean 

length 
SDB Coverage 

Mean 

length 
SDB Coverage 

Mean 

length 
SDB Coverage 

Mean 

length 

0.2 0.36 

50 0.6808 0.942 2.3320 0.4722 0.959 1.6308 0.2956 0.954 1.0255 0.2545 0.946 0.8855 

100 0.5465 0.956 1.8764 0.3882 0.975 1.3572 0.2282 0.954 0.8054 0.1944 0.955 0.6811 

200 0.4216 0.964 1.4473 0.3166 0.973 1.1203 0.1812 0.965 0.6414 0.1537 0.967 0.5432 

0.4 0.49 

50 0.6553 0.963 2.2558 0.4730 0.954 1.6585 0.3494 0.942 1.2364 0.2821 0.934 1.0047 

100 0.5770 0.978 1.9986 0.3932 0.965 1.3847 0.2799 0.954 0.9906 0.2212 0.952 0.7882 

200 0.4931 0.965 1.7300 0.3159 0.960 1.1199 0.2206 0.955 0.7864 0.1717 0.943 0.6116 

0.6 0.64 

50 0.6177 0.944 2.1299 0.5072 0.947 1.7606 0.4347 0.940 1.5301 0.3484 0.924 1.2140 

100 0.5310 0.958 1.8537 0.4171 0.958 1.4667 0.3499 0.951 1.2320 0.2700 0.946 0.9504 

200 0.4537 0.965 1.5791 0.3402 0.968 1.1963 0.2784 0.957 0.9900 0.2069 0.949 0.7395 

0.8 0.81 

50 0.6548 0.885 2.1745 0.6133 0.891 2.0568 0.5611 0.894 1.9164 0.4839 0.880 1.6490 

100 0.5467 0.934 1.8958 0.4976 0.942 1.7317 0.4574 0.933 1.6032 0.3629 0.936 1.2554 

200 0.4442 0.947 1.5672 0.3946 0.946 1.3886 0.3651 0.945 1.2932 0.2801 0.943 0.9866 

* The theoretical maximum values of the Chi-square statistic are not shown since they depend on the sample size.†  DD β2.5,G~X , 

 1.5,1G~X
D

. ‡The levels of J and CZ are achieved by βD= 0.79, 1.22, 1.97, 3.82, respectively.
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2.6 APPLICATION EXAMPLES 

 

Two application examples of cut-point finding are discussed within this paragraph. The 

first one deals with the cut-point finding task for the continuous remodeling index (CRI), 

defined in electrocardiology as a function of signal-averaged P-wave duration and left atrial 

anteroposterior diameter at end-diastole [23]. Moreover, we use a subset of data from a 

nested case-control study on prostate cancer [24] aimed to find a cut-point value for the 

serum prostate specific antigen (PSA) velocity [25].  

 

2.6.1 THE CUT-POINT FINDING FOR THE CONTINUOUS 

REMODELING INDEX  

   

Atrial fibrillation (AF) is a frequent arrhythmia associated with almost all heart 

diseases. An AF episode is defined paroxysmal (ParAF) when it spontaneously stops within 7 

days from the onset and persistent (PerAF) when pharmacological or electrical interventions 

are needed for interruption. Atrial fibrillation episodes are often interrupted with electrical 

or pharmacologic cardioversion within 7 days from the onset. In such a case, it is not 

possible to know the natural history of the arrhythmia. This raises the question on whether 

the episode in patients who underwent intervention within 7 days from the onset would 

have resolved spontaneously. 

A continuous remodeling index (CRI) aimed to separate patients presenting ParAF from 

those with sustained PerAF (i.e., AF episodes interrupted 7 days or more after the onset) has 

been recently developed (Figure 2.8) [23]. Briefly, this index is computed for each AF patient 

using the individual values of the P-wave duration (SAPWd) and the left atrium diameter 
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(LADd) as CRI=-12+0.13·LADd (mm)+0.05·SAPWd (msec). SAPWd is an expression of the 

intra-atrial conduction time, while LADd is a measure of atrial dimension. The modifications 

of intra-atrial conduction time and of atrial dimensions are characteristics of atrial 

remodeling. 

 

Figure 2.8 Box-plot representation of the CRI. 

 

Table 2.7 reports some descriptive statistics of SAPWd and LADd for the ParAF and 

sustained PerAF groups. We can note that SAPWd is significantly longer in sustained PerAF 

than in ParAF patients (153 ± 15 vs. 142 ± 13 milliseconds, P = 0.004) while LADd is larger in 

sustained PerAF vs. ParAF patients (43 ± 6 vs 38 ± 5 mm, P = 0.002). 

Figure 2.9 Panel A shows the ROC curve of the continuous remodeling index, along 

with the indication of the Youden index J, the concordance probability CZ and the distance 

from the (0,1) corner ER. The points on the Normal QQ plot graphs of ParAF (Figure 2.9 Panel 

B) and sustained PerAF (Figure 2.9 Panel C) fall approximately on the straight diagonal line. 
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This index could be considered normally distributed; as a confirmation, the Shapiro-Wilk 

non-parametric Normal distribution test returns a P-value of 0.29 and 0.16, respectively for 

the ParAF and sustained PerAF groups. The theoretical distributional scenario of the CRI is 

shown in Figure 2.9 Panel D. We tested the homoscedasticity assumption through the 

Bartlett’s test, which returns a P of 0.26. 

 

Table 2.7 Descriptive statistics* of the application example of cut-point finding for the CRI, 

from [23]. 

 
ParAF 

(n=33) 

Sustained PerAF 

(n=26) 
P-value ** 

LADd (mm) 38 (5) 43 (6) 0.002 

SAPWd (msec) 142 (13) 153 (15) 0.004 

CRI *** -0.75 (0.93) 0.36 (1.15) 0.0001 

* Values are expressed as mean (standard deviation). 
** Computed from the t test for continuous variables 
*** CRI= -12+0.13·LADd (mm)+0.05·SAPWd (msec) 

 
 

A cut-point c is needed to dichotomize the CRI result to define a criterion to divide AF 

episodes into PerAF or ParAF, so that the criteria identifies a PerAF condition when CRI is 

greater than c, and a ParAF condition when the CRI is less or equal than c. Since we are 

analysing a relatively balanced design (33 vs. 26 patients) with Normal homoscedastic 

distributions, the investigated methods lead to the same cut-point optĉ = -0.9 (Table 2.8). We 

also estimate the 95% bootstrap CI estimate for the cut-point for each of the investigated 

methods (Table 2.8), finding respectively for the minimum P-value, Youden index, 
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concordance probability and point closest-to-(0,1) corner in the ROC plane methods the 

following 95% CI estimates: (-1.12, 2.34), (-1.18, 0.46), (-1.12, 0.46) and (-1.09, 0.24). Indeed, 

the point closest-to-(0,1) corner in the ROC plane method achieves the narrowest CI. This is 

consistent with the results of the Normal homoscedastic simulation study. 

 

Table 2.8 Estimated cut-point along with 95% bootstrap CI for the CRI [23]. 

Method of cut-point finding Estimated cut-point 
95% Bootstrap confidence 

interval 

Minimum P-value [13] -0.9 -1.12 - 2.34 

Youden index [14] -0.9 -1.18 - 0.46 

Concordance probability 

[15] 
-0.9 -1.12 - 0.46 

Point closest-to-(0,1) corner 

in the ROC plane [18] 
-0.9 -1.09 - 0.24 

 

The binary RI classifies subjects as at risk of being sustained PerAF of ParAF depending 

on whether CRI is greater than -0.9 or less or equal than -0.9. Subsequently, a multivariate 

prognostic model was built up by adjusting the aforementioned binary RI by sex and age 

[23]. The model AUC was equal to 0.81. The model predicted a probability of approximately 

85% (95% CI, 59%-96%) of having a sustained PerAF episode for males aged 69 years or older 

presenting CRI greater than −0.9 (RI = 1), whereas for females younger than 69 years 

presenting CRI less or equal than −0.9 (RI = 0), the predicted probability was 3% (95% CI, 

0.3%-18%) [23]. 
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Figure 2.9 Descriptive analysis of the continuous remodeling index (CRI). Panel A. ROC curve depicting the Youden index J, the 

concordance probability CZ and and the distance from the (0,1) corner ER. Panel B. Normal QQ-plot among paroxysmal atrial fibrillation 

patients (ParAF). Panel C. Normal QQ-plot among persistent atrial fibrillation patients (PerAF). Panel D. Density functions among ParAF 

(solid line) and PerAF (dashed line). 
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2.6.2 THE CUT-POINT FINDING FOR THE PSA VELOCITY 

 

We use data from a nested case-control study [24] (available for free download at 

http://labs.fhcrc.org/pepe/book/#datasets). This study aimed to analyse longitudinally the 

variation of total serum levels of PSA for 71 cases of prostate cancer and 70 controls 

matched to cases on date of birth and number of serum samples available for analysis. 

PSA velocity (PSAV) measures how quickly PSA levels increase over time before 

prostate cancer diagnosis and it may have advantages over a single PSA measurement in 

differentiating between men with prostate cancer and controls [25]. Several methods are 

available to compute PSAV [26]. Given that PSA measurements are separated by a sufficient 

long time period, in this case study we decide to compute PSAV through the rate of PSA 

change between the first and last PSA measurement. 

Table 2.9 shows some descriptive statistics of prostate cancer cases and controls. Our 

analyses are restricted to 57 prostate cancer cases and 60 controls reporting at least two 

PSA measurements. Mean ages are similar between men diagnosed with cancer compared 

with controls (62 vs. 60, P=0.07), while initial PSA levels (5.8 ng/ml vs. 1.2 ng/ml, P<0.0001), 

last PSA levels before diagnosis (18.1 ng/ml vs. 1.7 ng/ml, P<0.0001) and mean number of 

total PSA tests (4.4 vs. 4.8, P=0.0006) are different between cases and controls. PSAV is 

indeed higher in prostate cancer cases than in controls (3.7 ng/ml/year vs. 0.3 ng/ml/year, 

P<0.0001). 

Figure 2.10 Panel A shows the ROC curve of the PSA velocity, along with the indication 

of the Youden index J, the concordance probability CZ and the distance from the (0,1) corner 
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ER. The distributions of the PSAV within controls (Figure 2.10 Panel B) and within the 

prostate cancer group (Figure 2.10 Panel C) are positive skewed, with some overlapping. 

 

Table 2.9 Descriptive statistics * of the application example of cut-point finding for the PSAV, from 

[24]. 

 

Prostate cancer 
cases 

(n=57) 

Matched controls 

 

(n=60) 

P-value ** 

Age (yr) 62 (6) 60 (5) 0.07 

Initial PSA (ng/ml) 5.8 (7.8) 1.2 (0.6) <0.0001 

Last PSA before 
diagnosis (ng/ml) 

18.1 (30.0) 1.7 (1.3) <0.0001 

No. of PSA tests 4.4 (1.2) 4.8 (1.1) 0.0006 

PSAV (ng/ml/year) 3.7 (3.7) 0.3 (0.3) <0.0001 

* Values are expressed as mean (standard deviation). 

** Computed from the t test for continuous variables. 

 

A cut-point c for the PSAV is needed to discriminate suspicious prostate cancer. Here, 

the minimum p-value approach selects as cut-point 2χ
ĉ = 0.76 ng/ml/year, while the three 

ROC-based methods identifies the same cut-point ROCĉ = 0.63 ng/ml/year (Table 2.10). This 

finding is indeed consistent with the behaviour of the 2χ
c  with respect to the ROCc  observed 

theoretically within the Gamma distribution simulation scenario described in Table 2.5. 
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Figure 2.10 Descriptive analysis of the prostate specific antigen velocity (PSAV). Panel A. ROC curve depicting the Youden index J, the 

concordance probability CZ and the distance from the (0,1) corner ER. Panel B. Histogram of the PSAV within the control group. Panel C. 

Histogram of the PSAV within the prostate cancer group. 
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In fact, for relatively high values of classification accuracy, in this case J=0.7, 2χ
c  tends 

to be greater than ROCc .  

The bootstrap 95% CI estimates of the cut-point are (0.34, 1.04), (0.34, 0.94), (0.39, 

0.82) and (0.39, 0.76), respectively for the minimum P-value, Youden index, concordance 

probability and point closest-to-(0,1) corner in the ROC plane methods. This latter approach 

achieves the narrowest confidence interval (Table 2.10). This is consistent with the Gamma 

simulation results presented in Table 2.6. 

 

Table 2.10 Estimated cut-point along with 95% bootstrap CI for the PSAV [24]. 

Method of cut-point finding Estimated cut-point 
95% Bootstrap confidence 

interval 

Minimum P-value [13] 0.76 0.34 - 1.04 

Youden index [14] 0.63 0.34 - 0.94 

Concordance probability 

[15] 
0.63 0.39 - 0.82 

Point closest-to-(0,1) corner 

in the ROC plane [18] 
0.63 0.39 - 0.76 

 



 

CHAPTER 3 

CUT-POINT FINDING FOR 

CENSORED FAILURE TIME 

OUTCOME 

  

3.1 BASIC CONCEPTS OF SURVIVAL ANALYSIS 

 

Classical survival analysis focuses on the time elapsed from an initiating event to an 

outcome event, or endpoint, of interest. Classical examples comprise time from disease 

diagnosis to death, or from an epidemiologic perspective, time from exposure to a risk factor 

to disease development. Generically, the time from the initiating event to the endpoint of 

interest is denoted as survival time, even when the endpoint is something different from 

death [27, 28]. 

Standard statistical methods such as ordinary linear regression are not applicable in a 

framework of survival data since when the study ends the endpoint of interest has occurred 

for some individuals, but not for others. Hence, there are some incomplete observations 

named as censored survival times [27, 28]. In fact, we can see from Figure 3.1 that subjects 1, 

2, 4 and 6 enter the study at different calendar times and are then followed until the event 

occurs. The survival time of subject 5 is censored due to loss to follow-up, while subject 3 is 

followed until the closure of the study without having the event of interest, i.e. 

3 
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administrative censoring. Notice that the censoring present in this framework occurs at the 

right-hand side, and so is called right-censoring. Moreover, in Figure 3.1 each subject enters 

the study at different calendar times, a phenomenon also known as staggered entry [27]. 

 

Figure 3.1 The Classical framework of survival data. 

 

Formally, we assign to each individual - i = 1, ... , N - a time to the event Zi, and a 

censoring time Ci. Both Zi and Ci are non-negative random variables. δ is a (0,1) random 

variable such that if δ=1 the event of interest occurs during the study period, while δ=0 

identifies one of the following situations: a person survives until the study ends 

(administrative censoring), a person is lost to follow-up or a person withdraws during the 

study period (censored survival time). The random variable Ti=min(Zi,Ci) is such that Ti=Zi 

when δi=1, while Ti=Ci when δi=0. We must be able to reasonably assume that the survival 

time Z is independent of the censoring time C. This is called non-informative (or random) 

censoring [27, 28]. 

The survival function S(t): 

 ( )   (   ) 

gives the proportion of individuals for which the event has not yet occurred by time t, or 

alternatively, the probability that a subject survives longer than the specified time t. S(t) is 

(3.1) 
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monotonically decreasing, with S(t=0)=1 and         ( )   , since as t increases over 

time, more and more individuals will experience the event of interest [27, 28]. 

By definition, the cumulative density function of the random variable Z evaluated at 

time t is  ( )   (   )     ( ) , while the probability density function of Z is 

 ( )  
 

  
 ( )         

 (        )

  
 [27, 28]. 

The hazard rate ʎ(t) is defined as: 

 ( )     
    

 (        |   )

  
 

and it represents the instantaneous probability of occurrence of the considered event at 

time t per unit time, given survival up to time t. The hazard function is always non-negative 

and it has no upper bound. The hazard function is sometimes called conditional failure rate.  

Following the Bayes’ rule, it could be derived after some algebra that  ( )  
 ( )

 ( )
 

 
 

  
   ( ( )). As a consequence, the survival function S(t) (3.1) could be written as 

 ( )    ∫  ( )  
 
 =   ( ), being  ( )  ∫  ( )

 

 
   the cumulative hazard function, i.e. the 

total hazard an individual is exposed to up to time t [27, 28]. 

To estimate the survival function (3.1), the non-parametric maximum likelihood, 

parametric and semi-parametric methods could be used. To the aim of this thesis, only the 

non-parametric Kaplan-Meier estimator [29] is shown. 

 

3.1.1   THE KAPLAN-MEIER ESTIMATOR 

 

The non-parametric Kaplan-Meier estimator [29] is the most widely used estimator for 

estimating the survival function (3.1). Let us consider a sample of N individual observations

(3.2) 
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for which we order the J distinct event times, t(1) < t(2) < … < … < t(j) < … < t(J), with J≤N. At the 

time t of each event, we denote the number of patients at risk by n1, n2, … , nj, … , nJ , and 

with d1, d2, … , dj, … , dJ the number of events among them. 

The Kaplan-Meier estimator  ̂( ) [29] of the survival time S(t) (3.1) is: 

 
 ̂( )  ∏

     

  
 | ( )  

 (3.3) 

   
where nj denotes the number of subjects still at risk at the beginning of the j-th time unit 

and dj the number of events during the j-th time unit.  ̂( ) is a non-increasing step function 

that changes only at event times, and it is a right continuous function. Moreover, censored 

subjects influence indirectly only the height of the steps by eroding the number of at risk 

patients. 

The variance of the Kaplan-Meier estimator (3.3) developed by Greenwood [30] is: 

   ( ̂( ))   ̂( ) ∑
  

  (     )

   

   

 

According to formula (3.4), the precision of the survival estimate tends to decrease as the 

number of at risk subjects decreases, and consequently the variance increases. 

 

3.2 CUT-POINT FINDING METHODS FOR CENSORED FAILURE TIME DATA 

 

Let X denotes a continuous biomarker which is supposed to be related to the binary 

outcome in time (true disease status). We consider that subjects are free of the event when 

the biomarker X is measured at baseline, i.e. time zero. The interest is on whether the event 

can occur within a predefined follow-up interval [0,τ], where τ is a meaningful time point for 

(3.4) 
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the clinical problem. The event (disease) indicator could be rewritten as D=I(Z≤τ), where Z is 

the survival time from the biomarker measurement to the development of the event. 

In this setting, the TPF and the FPF are: 

   ( )   (   |   )      ( ) 

   ( )   (   |   )      ( ) 

As described above, Zi denotes the time to development of the event (disease), Ci the 

censoring time, Ti=min(Zi,Ci) the observed time, with δi=1 if Ti=Zi and δi=0 if Ti=Ci. 

Independence between Z and C is assumed. The observed data in a sample of N subjects is 

{(Xi, Ti, δi, Di); i=1, …, N}, where: 

 Di is equal to 1 (hereafter denoted by D) if Ti ≤ τ and δi=1; 

 Di is equal to 0 (hereafter denoted by  ̅) if Ti > τ regardless of δi; 

 Di is missing if Ti ≤ τ and δi=0; i.e., censored subjects by τ, for whom it is not 

possible to know whether they would experience or not the disease within time τ. 

Let us consider a sample of N subjects. For any c of X, we can define the following 

classification matrix: 

 X ≤ c X > c  

D     ̅    ̅ D
n

 

D         Dn  

Missing            

 N 

(3.5) 

(3.6) 

(2) 

(3.7) 
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where     ∑  (    ) 
      (    ) ,     ∑  (    ) 

      (    ) ,    ̅  

∑  (    ) 
    (    ) ,    ̅  ∑  (    ) 

    (    ). Moreover, the disease status is 

missing for nC=n0C+n1C censored subjects, where     ∑  (    ) 
   (    ) (    ) and 

    ∑  (    ) 
   (    ) (    ). 

In this setting, the estimation of the TPF (3.5) and FPF (3.6) is not intuitive for the lack 

of information on the nC censored subjects on whom the disease status is unknown. Several 

methods could be applied to supply to the lack of information on the disease status for 

censored subjects: weighting by inverse probability, direct estimation by imputation, indirect 

estimation by conditional probability and indirect estimation by Bayes theorem. It has been 

shown in the recent work of Antolini and Valsecchi [17] that these four different estimators 

of the TPF (3.5) and FPF (3.6) are equivalent. So, within this thesis, we only theoretically 

show the indirect estimation of the TPF (3.5) and FPF (3.6) by means of the Bayes theorem 

[31]. 

 

3.2.1  INDIRECT ESTIMATION OF TPF AND FPF BY BAYES 

THEOREM 

 

Formally, starting from a partition {A1, …, Ak} of a given sample space S and considering 

a separate event B, the Bayes theorem [31] states that:  

 
 (  | )   

 (  ) ( |  )

∑  (  ) ( |  )
 
   

                     (3.8) 

   

By applying formula (3.8), the TPF (3.5) and the FPF (3.6) could be easily written as: 

   ( )      ( )  
(   (   |   )) (   )

(   (   |   )) (   )  (   (   |   )) (   )
 (3.9) 
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   ( )      ( )  

 (   |   ) (   )

 (   |   ) (   )   (   |   ) (   )
 

 
(3.10) 

  
 

Within formulae (3.9) and (3.10), two survival probabilities could be identified: 

    ( )   (   |   )  and     ( )   (   |   ) . These probabilities can be 

estimated through the non-parametric Kaplan-Meier estimator (3.3) separately in the 

sample of subjects who have the biomarker value X greater or less or equal than c, 

respectively. The two probabilities  (   ) and  (   )     (   ) could be easily 

estimated by   
∑  (    )
 
   

 
  and 1-p. 

Consequently, the TPF sample estimates of (3.9) is 

 ̂   ( )  
(   ̂   ( ))   

(   ̂   ( )) (   )  (   ̂   ( ))   
 

while the sample estimates of the FPF (3.10) is 

 ̂   ( )  
 ̂   ( )  

 ̂   ( ) (   )   ̂   ( )  
 

It could be observed that the two estimators (3.9) and (3.10) allows for the presence of 

biomarker-dependent censoring because the aforementioned survival functions     ( )  

and     ( ) are estimated conditional on the biomarker value. Moreover, it can be proven 

by a little algebra that the two estimators (3.9) and (3.10) corresponds to the estimators 

obtained using the nearest neighbor approach described by Haegerty et al. [32]. 

The Youden index [14], the concordance probability [15] and the point closest-to-(0,1) 

corner in the ROC plane [18] methods could be easily extended to the censored failure time 

scenario. Conversely, we do not extend the minimum P-value method [13] to the censored 
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failure time outcome scenario since we showed within the binary outcome scenario (Chapter 

2) a poor performance and a lack of clinical meaning of its objective function. 

 

3.2.2  YOUDEN INDEX METHOD FOR CENSORED FAILURE TIME 

DATA 

 

The Youden function J(c) [14] as a function of c of X is the difference between the 

population quantities     ( ) (3.9) and     ( ) (3.10): 

 ( )      ( )      ( ) 

J(c) takes values between 0 when     ( )      ( ) and 1 when     ( )    and 

    ( )     The Youden index J is defined as the maximum of the Youden function (3.11). 

Graphically, J represents the maximum vertical distance between the ROC curve and the 

diagonal chance line representing a useless biomarker. It can be interpreted as the net gain 

of the true positive fraction with respect to the false positive fraction (Figure 2.4 page 17). 

The optimal cut-point Jĉ  is the c maximizing the Youden function  ̂( )   ̂   ( )  

 ̂   ( ) over all possible cut-point values c of X.  

 

3.2.3  CONCORDANCE PROBABILITY METHOD FOR CENSORED 

FAILURE TIME DATA 

 

The concordance probability [15] function is the product of the population quantities 

    ( ) (3.9) and the complement to one of the     ( ) (3.10) over all possible cut-point 

values c of X: 

  ( )      ( )  (      ( )) 

(3.11) 

(3.12) 
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CZ(c) ranges between 0 if     ( )    or 
 
    ( )   , and 1 in the ideal case where 

 ̂   ( )    and     ( )   . CZ(c) could be also expressed as the area of a rectangle on the 

ROC curve of width       ( ) and height     ( ) varying c (Figure 2.5 page 19, area of the 

dotted rectangle) and interpreted as the probability of being below or beyond the cut-point 

for any random pair of non-diseased and diseased subjects.  

Following this approach, the optimal cut-point CZĉ  is the maximum point of the 

concordance probability function  ̂ ( )   ̂   ( )  (   ̂   ( )) over all possible cut-point 

values c of X. 

 

3.2.4 POINT CLOSEST-TO-(0,1) CORNER IN THE ROC PLANE 

APPROACH FOR CENSORED FAILURE TIME DATA 

 

The point closest-to-(0,1) corner in the ROC plane [18] objective function could be 

defined by applying the Euclidean distance between the point on the ROC curve defined by 

the population quantities     ( ) (3.9) and     ( ) (3.10) and the point (0,1) representing 

the perfect biomarker: 

  ( )  √(    ( )   )      ( )  

Following this approach, the optimal cut-point ERĉ  is the c that achieves the minimum 

of the objective function  ̂ ( )  √( ̂   ( )   )   ̂   ( )  over all possible cut-point 

values c of X (Figure 2.5 page 19, length of the thin line segment). 

 

(3.13) 
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3.3 SIMULATION STUDY PROTOCOL 

 

We conduct a simulation study within a censored failure time outcome scenario to 

compare the performance of the Youden index (3.11), concordance probability (3.12) and 

point closest-to-(0,1) corner in the ROC plane (3.13) methods in the estimation of the 

optimal cut-point. 

The time-to-event Z is generated according to a parametric exponential model. Z is an 

exponential distributed random variable with density function  ( )       , being ʎ a real 

number greater than zero. Consequently, the survival function S(t) (3.1) could be written as 

 ( )    ∫  ( )
 

 
       . So, it could be easily derived that we are dealing with a 

constant hazard parametric model [28], being  ( )  
 ( )

 ( )
 

     

    
  . For our simulation 

scenario, we set the constant hazard ʎ=2, so that the survival function (3.1) is parametrically 

modeled by  ( )      .  

To simulate independent censoring, the censoring time C is generated according to a 

uniform distribution in the interval [0,b]. When we consider the scenario with a true cases 

fraction of 50%, b is set equal to 2, 1 and 0.66 time units in order to achieve different 

censoring levels, i.e. 12%, 25% and 38%. Within the non-balanced scenario, b is set equal to 

0.67, 0.50 and 0.40 time units to achieve a censoring fraction of 25% when considering 

different cases fractions, i.e. 33%, 25% and 20%, respectively. For each subjects i=1, …, N, 

the observed time Ti=min(Zi,Ci) is then assigned, being δi=1 if Ti=Zi and δi=0 if Ti=Ci. 

The biomarker X is separately generated for diseased and non-diseased subjects from 

Gaussian and Gamma distributions as described below in paragraphs 3.3.1 and 3.3.2. 
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3.3.1  THE GAUSSIAN SCENARIO 

 

The biomarker X is generated from a Normal distribution       (           ) for 

diseased subjects - i.e. subjects with a true survival time Z from the biomarker measurement 

to the development of disease less or equal than τ - and from a standard Normal distribution 

      (             ) for non-diseased subjects - i.e. subjects with a true survival 

time Z from the biomarker measurement to the development of disease greater than τ. This 

means that     ( )     (      )  and     ( )     ( ) , where Φ denotes the 

standard Normal distribution function. 

As in the binary outcome scenario described in Chapter 2,      is set equal to {0.51, 

1.05, 1.68, 2.56} in order to achieve different values of the Youden function (3.11), i.e. 

J(cJ)={0.2, 0.4, 0.6, 0.8}, of the concordance probability function (3.12), i.e. CZ(cCZ)={0.36, 

0.49, 0.64, 0.81}, and of the objective function (3.13) of the point closest-to-(0,1) corner in 

the ROC plane approach, i.e. ER(cER)={0.57, 0.42, 0.28, 0.14}. This set of values of      

ensures a wide variety of classification accuracies, ranging from a poor one (J=0.2 and 

CZ=0.36) to a high one (J=0.8 and CZ=0.81) [21].  

Within this scenario, the objective functions (3.11), (3.12), (3.13) reach their maximum 

in correspondence of the same true cut-point, i.e.              (see paragraph 2.4.1 page 

20 for the formal derivation). Analytically, this common cut-point occurs at the intersection 

between the Normal probability density functions of diseased, i.e.     ( ), and non-diseased 

subjects, i.e.
 
    ( ). 

 

 



3.3   Simulation protocol     57 
 

3.3.2  THE GAMMA SCENARIO 

 

The biomarker X is generated from a Gamma distribution       (             ) 

for diseased subjects - i.e. subjects with a survival time Z from the biomarker measurement 

to the development of disease less or equal than τ - and       (               ) for 

non-diseased subjects – i.e. subjects with a survival time Z from the biomarker measurement 

to the development of disease greater than τ. This implies that 

    ( )  
 

 (   )(    )   
∫             
  

 
   and     ( )  

 

 (   )
∫             
  

 
  . If      

is set equal to {0.79, 1.22, 1.97, 3.82}, the corresponding maximum values of the Youden 

function (3.11) are J(cJ)={0.2, 0.4, 0.6, 0.8}, the corresponding maximum values of the 

concordance probability (3.12) are CZ(cCZ)={0.36, 0.49, 0.64, 0.81} while the minimum values 

of the objective function (3.13) of the point closest-to-(0,1) corner in the ROC plane 

approach are ER(cER)={0.57, 0.42, 0.28, 0.14}. We set the Gamma parameters to ensure a 

wide variety of classification accuracies, ranging from a poor one (J=0.2 and CZ=0.36) to a 

high one (J=0.8 and CZ=0.81) [21]. 

In these scenarios, the objective functions (3.11), (3.12), (3.13) do not reach the 

maximum in correspondence of the same true cut-point (Figure 2.7 page 26). Moreover, a 

closed form for the true cut-point cannot be derived for the investigated methods. 

 

We generate 1000 samples of size N=100, N=200 and N=400 with a cases fraction of 

50% and three different censoring levels, i.e. 12%., 25% and 38%. Moreover, in the non-

balanced design, we generate 1000 samples of size N=150, N=200 and N=250 with different 

cases fractions, i.e. 33%, 15% and 20%, and a censoring level of 25%. For each sample, we 
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determine by numerical maximization the optimal cut-points estimates Jĉ , CZĉ  and ERĉ  for 

the Youden index [14], concordance probability [15] and point closest-to-(0,1) corner in the 

ROC plane [18] methods, respectively. The relative bias of each method is computed by 

])/ccĉE[( ...  , while mean square error (MSE) is also determined as ])cĉ[(E 2

..  . R 

simulation code is reported in Appendix 3. 

 

3.3.3  BOOTSTRAP RESAMPLING TECHNIQUE 

 

We apply the bootstrap resampling technique to estimate the standard deviation and 

the confidence interval (CI) for the optimal cut-point [22]. Following the Efron and 

Tibshirani’s procedure [33], random sampling with replacement is used to draw 200 

bootstrap samples from the empirical distribution function of {(Xi, Ti, δi, Di); i=1, …, N} in 

order to calculate the bootstrap estimate Bĉ  (B=1, …, 200). Then, we apply the basic 

percentile method, taking the 0.025 and 0.975 percentiles of the Bĉ  bootstrap distribution 

in order to construct a 95% CI of the optimal cut-point within each of the 1000 generated 

samples. 

Each bootstrap sample contributes one cut-point estimate, so that the standard 

deviation of the 200 cut-point estimates is used as the bootstrap estimator of the standard 

deviation (SDB) for the estimated cut-point. Within each of the aforementioned scenarios, 

the CI for the cut-point for each of the investigated methods is subsequently evaluated by 

computing coverage probability and mean length. The coverage probability is the proportion 

of times that the bootstrap confidence interval contains the true cut-point, while the mean 

length is a measure of the precision of the confidence interval around the estimated cut-
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point. The wider is the confidence interval, the higher is the uncertainty related to the 

estimated cut-point. 

 

3.3.4  SIMULATION RESULTS 

 

We compare the performance of the Youden index (3.11), concordance probability 

(3.12) and point closest-to-(0,1) corner in the ROC plane (3.13) methods, in the estimation of 

the optimal cut-point. We consider the normal homoscedastic scenario with balanced and 

non-balanced designs, where all the investigated methods identify theoretically the same 

true cut-point copt. The Gamma case is also considered. All simulations are performed under 

the same parametric scenarios introduced above. 

The results of the design with a Gaussian biomarker with a cases and controls fraction 

of 50% are shown in Tables 3.1, 3.2 and 3.3 for different censoring levels, i.e. 12%, 25% and 

38%, respectively. The relative bias of the investigated methods is small on all levels of 

classification accuracy and it increases as the censoring level increases. By comparing the 

MSEs, it can be noticed that the point closest-to-(0,1) corner in the ROC plane and 

concordance probability methods have better performance than the Youden index method. 

Indeed, the MSE is inversely related to sample size and it increases as the censoring level 

increases. The performance of the investigated methods improves with increasing 

classification accuracy. 
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Table 3.1  Relative Bias and Mean Square Error (MSE) of the Youden index, concordance probability and point closest-to-(0,1)-corner in 

the ROC plane estimators. Normal scenario: cases and controls fraction of 50%, censoring level of 12%†. 

Cases fraction=Controls fraction=50%, 

Censoring level=12% 
Youden Index 

Concordance 

probability 

Point closest-to-(0,1) 

corner 

J(copt)
 ‡ CZ(copt)

 ‡ copt N 
Relative 

Bias 
MSE 

Relative 

Bias 
MSE 

Relative 

Bias 
MSE 

0.2 0.36 0.25 

100 0.1168 0.2226 0.0687 0.0719 0.0769 0.0513 

200 0.0696 0.1750 0.0546 0.0501 0.0589 0.0360 

400 0.0813 0.1137 0.0507 0.0273 0.0404 0.0199 

0.4 0.49 0.52 

100 0.0584 0.1295 0.0346 0.0724 0.0356 0.0462 

200 0.0038 0.0870 0.0009 0.0462 0.0032 0.0279 

400 0.0073 0.0536 0.0070 0.0270 0.0100 0.0147 

0.6 0.64 0.84 

100 0.0311 0.0884 0.0350 0.0675 0.0259 0.0421 

200 0.0147 0.0575 0.0201 0.0408 0.0152 0.0227 

400 0.0086 0.0332 0.0015 0.0240 -0.0009 0.0138 

0.8 0.81 1.28 

100 0.0399 0.0727 0.0379 0.0669 0.0291 0.0465 

200 0.0167 0.0435 0.0149 0.0383 0.0115 0.0241 

400 0.0033 0.0290 0.0021 0.0253 0.0027 0.0148 

†       (      ),       (   ). ‡The levels of J and CZ are achieved by     = 0.51, 1.05, 1.68, 2.56, respectively.  
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Table 3.2  Relative Bias and Mean Square Error (MSE) of the Youden index, concordance probability and point closest-to-(0,1)-corner in 

the ROC plane estimators. Normal scenario: cases and controls fraction of 50%, censoring level of 25%†. 

Cases fraction=Controls fraction=50%, 

Censoring level=25% 
Youden Index 

Concordance 

probability 

Point closest-to-(0,1) 

corner 

J(copt)
 ‡ CZ(copt)

 ‡ copt N 
Relative 

Bias 
MSE 

Relative 

Bias 
MSE 

Relative 

Bias 
MSE 

0.2 0.36 0.25 

100 0.1172 0.2448 0.1078 0.0798 0.1016 0.0565 

200 0.0777 0.1951 0.0796 0.0525 0.0561 0.0388 

400 0.1123 0.1196 0.0541 0.0304 0.0408 0.0214 

0.4 0.49 0.52 

100 0.0490 0.1332 0.0327 0.0771 0.0339 0.0489 

200 0.0200 0.0946 0.0101 0.0522 0.0031 0.0294 

400 0.0042 0.0573 0.0037 0.0274 0.0075 0.0157 

0.6 0.64 0.84 

100 0.0491 0.0947 0.0428 0.0428 0.0355 0.0355 

200 0.0185 0.0605 0.0237 0.0447 0.0192 0.0237 

400 0.0058 0.0367 0.0055 0.0255 0.0004 0.0148 

0.8 0.81 1.28 

100 0.0384 0.0786 0.0373 0.0722 0.0299 0.0505 

200 0.0149 0.0464 0.0140 0.0401 0.0081 0.0259 

400 0.0053 0.0314 0.0064 0.0271 0.0024 0.0158 

†       (      ),       (   ). ‡The levels of J and CZ are achieved by     = 0.51, 1.05, 1.68, 2.56, respectively.  
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Table 3.3  Relative Bias and Mean Square Error (MSE) of the Youden index, concordance probability and point closest-to-(0,1)-corner in 

the ROC plane estimators. Normal scenario: cases and controls fraction of 50%, censoring level of 38%†. 

Cases fraction=Controls fraction=50%, 

Censoring level=38% 
Youden Index 

Concordance 

probability 

Point closest-to-(0,1) 

corner 

J(copt)
 ‡ CZ(copt)

 ‡ copt N 
Relative 

Bias 
MSE 

Relative 

Bias 
MSE 

Relative 

Bias 
MSE 

0.2 0.36 0.25 

100 0.1347 0.2592 0.1042 0.0894 0.1225 0.0627 

200 0.0547 0.2084 0.0638 0.0572 0.0652 0.0413 

400 0.0932 0.1395 0.0177 0.0350 0.0200 0.0245 

0.4 0.49 0.52 

100 0.0595 0.1418 0.0460 0.0841 0.0438 0.0518 

200 0.0106 0.1039 0.0082 0.0541 0.0024 0.0339 

400 0.0085 0.0641 -0.0021 0.0314 0.0009 0.0173 

0.6 0.64 0.84 

100 0.0628 0.1094 0.0599 0.0794 0.0492 0.0494 

200 0.0258 0.0653 0.0256 0.0492 0.0212 0.0260 

400 0.0042 0.0408 0.0052 0.0287 0.0012 0.0160 

0.8 0.81 1.28 

100 0.0449 0.0883 0.0411 0.0792 0.0282 0.0587 

200 0.0132 0.0503 0.0108 0.0462 0.0073 0.0297 

400 0.0039 0.0367 0.0041 0.0323 0.0030 0.0185 

†       (      ),       (   ). ‡The levels of J and CZ are achieved by     = 0.51, 1.05, 1.68, 2.56, respectively.
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Table 3.4 shows the results of the Normal case when considering different cases fractions 

and a censoring level of 25%. The relative bias of the investigated methods is small on all levels 

of classification accuracy, except for the scenario with a low classification accuracy (J=0.2 and 

CZ=0.36). As above, the point closest-to-(0,1) corner in the ROC plane and concordance 

probability methods outperform the Youden index method. The MSE is lower for the point 

closest-to-(0,1) corner in the ROC plane method, too. 

Table 3.5 shows the bootstrap standard deviation, coverage probability and mean length 

of the 95% bootstrap CI for the cut-point for the Normal scenario considering different cases 

fractions and censoring levels. The SDB of the point closest-to-(0,1) corner in the ROC plane 

approach is lower than the SDB of the Youden index and concordance probability methods. 

Coverage probabilities are close to the nominal level. 95% bootstrap CIs are narrower when 

considering the scenarios with better classification accuracies, i.e. J of 0.6 and 0.8. 

 

The results of the Gamma distribution scenario considering a cases and controls fraction 

of 50% and a censoring level of 25% are shown in Table 3.6. It can be noticed that the 

theoretical true cut-points Jc , CZc  and ERc  are all different (please also see Figure 2.7 page 

26). For what regards the relative performance of the investigated methods, we note a 

negligible relative bias in the estimate of the optimal cut-point. As above, the concordance 

probability and the point closest-to-(0,1) corner in the ROC plane methods outperform the 

Youden index method. The MSE is inversely related to sample size and it is lower for the point 

closest-to-(0,1) corner in the ROC plane estimator. Moreover, it seems that the Youden index, 

concordance probability and point closest-to-(0,1) corner in the ROC plane methods perform 

better when considering low classification accuracy scenarios, i.e. J of 0.2 and 0.4. 



64     Chapter 3   Cut-point finding for censored failure time outcome 

 

Table 3.4  Relative Bias and Mean Square Error (MSE) of the Youden index, concordance probability and point closest-to-(0,1)-corner in 

the ROC plane estimators. Normal scenario: different cases fractions, censoring level of 25%†. 

Different cases fractions, Censoring level=25% Youden Index 
Concordance 

probability 

Point closest-to-(0,1) 

corner 

J(copt)
 ‡ CZ(copt)

 ‡ copt N 
Cases 

fraction 

Relative 

Bias 
MSE 

Relative 

Bias 
MSE 

Relative 

Bias 
MSE 

0.2 0.36 0.25 

150 33% 0.2188 0.2089 0.1921 0.0611 0.1749 0.0440 

200 25% 0.0973 0.2125 0.1758 0.0666 0.1822 0.0482 

250 20% 0.1872 0.1871 0.2246 0.0592 0.2164 0.0421 

0.4 0.49 0.52 

150 33% 0.0786 0.1048 0.0625 0.0575 0.0741 0.0370 

200 25% 0.0516 0.1147 0.0701 0.0606 0.0674 0.0381 

250 20% 0.0926 0.0990 0.0951 0.0528 0.0940 0.0346 

0.6 0.64 0.84 

150 33% 0.0522 0.0778 0.0547 0.0590 0.0453 0.0367 

200 25% 0.0500 0.0744 0.0516 0.0512 0.0515 0.0286 

250 20% 0.0543 0.0742 0.0585 0.0569 0.0596 0.0344 

0.8 0.81 1.28 

150 33% 0.0401 0.0702 0.0439 0.0645 0.0387 0.0432 

200 25% 0.0360 0.0568 0.0375 0.0513 0.0438 0.0364 

250 20% 0.0535 0.0641 0.0558 0.0585 0.0535 0.0390 

†       (      ),       (   ). ‡The levels of J and CZ are achieved by     = 0.51, 1.05, 1.68, 2.56, respectively.  
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Table 3.5  Bootstrap standard deviation, coverage probability and mean length of the 95% confidence interval estimation of the Youden 

index, concordance probability and point closest-to-(0,1)-corner in the ROC plane estimators. Normal scenario: different cases 

fractions and censoring levels†. 

 Youden Index Concordance probability Point closest-to-(0,1) corner 

J(copt)
 

‡ 

CZ(copt)
 

‡ 
N Cases 

fraction 

Censoring 

level 
SDB Coverage 

Mean 

Length 
SDB Coverage 

Mean 

Length 
SDB Coverage 

Mean 

Length 

0.2 0.36 

100 50% 12% 0.4606 0.968 1.6188 0.2844 0.964 1.0068 0.2409 0.960 0.8508 

100 50% 38% 0.4758 0.966 1.6586 0.3086 0.956 1.0881 0.2589 0.954 0.9158 

150 33% 25% 0.4330 0.961 1.5257 0.2609 0.930 0.9143 0.2188 0.923 0.7741 

0.4 0.49 

100 50% 12% 0.3504 0.961 1.2307 0.2677 0.956 0.9371 0.2158 0.943 0.7626 

100 50% 38% 0.3673 0.968 1.2888 0.2860 0.948 0.9917 0.2316 0.948 0.8178 

150 33% 25% 0.3235 0.954 1.1433 0.2448 0.938 0.8616 0.1961 0.927 0.6941 

0.6 0.64 

100 50% 12% 0.2876 0.958 0.9936 0.2552 0.954 0.8880 0.2064 0.938 0.7228 

100 50% 38% 0.3006 0.953 1.0473 0.2689 0.943 0.9386 0.2212 0.939 0.7712 

150 33% 25% 0.2699 0.939 0.9309 0.2371 0.928 0.8177 0.1876 0.917 0.6569 

0.8 0.81 

100 50% 12% 0.2565 0.920 0.8753 0.2469 0.918 0.8405 0.2110 0.905 0.7287 

100 50% 38% 0.2725 0.917 0.9324 0.2641 0.916 0.9024 0.2375 0.908 0.8307 

150 33% 25% 0.2461 0.878 0.8350 0.2362 0.880 0.8030 0.1967 0.864 0.6756 

†       (      ),       (   ). ‡The levels of J and CZ are achieved by     = 0.51, 1.05, 1.68, 2.56, respectively.  
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Table 3.6  Relative Bias and Mean Square Error (MSE) of the Youden index, concordance probability and point closest-to-(0,1)-corner in 

the ROC plane estimators. Gamma scenario: cases and controls fraction of 50%, censoring level of 25%†. 

Cases fraction=Controls fraction=50%,  

Censoring level=25% 

Sample 

sizes 
Youden Index 

Concordance 

probability 

Point closest-to-(0,1) 

corner 

J(copt)
 ‡ CZ(copt)

 ‡ cJ cCZ cER N 
Relative 

Bias 
MSE 

Relative 

Bias 
MSE 

Relative 

Bias 
MSE 

0.2 0.36 1.12 1.35 1.38 

100 0.1605 0.2987 0.0429 0.0975 0.0352 0.0712 

200 0.0840 0.1825 0.0138 0.0638 0.0087 0.0446 

400 0.0668 0.1156 0.0105 0.0348 0.0086 0.0261 

0.4 0.49 1.79 1.81 1.82 

100 0.0460 0.2585 0.0408 0.1529 0.0311 0.1001 

200 0.0267 0.1740 0.0136 0.0924 0.0059 0.0521 

400 0.0144 0.1183 0.0133 0.0571 0.0062 0.0346 

0.6 0.64 2.45 2.41 2.36 

100 0.0297 0.3288 0.0293 0.2380 0.0267 0.1536 

200 0.0186 0.2117 0.0170 0.1539 0.0138 0.0815 

400 0.0067 0.1433 0.0077 0.0941 0.0081 0.0445 

0.8 0.81 3.42 3.38 3.24 

100 0.0526 0.5678 0.0508 0.5156 0.0429 0.3593 

200 0.0210 0.3317 0.0241 0.3039 0.0166 0.1739 

400 0.0090 0.1929 0.0107 0.1693 0.0079 0.0885 

†       (        ),       (     ). 
‡The levels of J and CZ are achieved by     = 0.79, 1.22, 1.97, 3.82, respectively.
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3.4 THE CUT-POINT FINDING FOR THE CRLF2 IN ACUTE LYMPHOBLASTIC 

LEUKEMIA 

 

Acute lymphoblastic leukemia (ALL) is the most common malignancy in children in 

developed countries and it represents a highly aggressive disease in all age groups [34]. B-

cell precursor (BCP) ALL accounts for approximately 70% of childhood ALL. The cure rate of 

BCP-ALL is higher than 80% [35], but the probability of survival of patients who relapse is 

only 40%. 

The identification of prognostic factors remains a formidable challenge in BCP-ALL. 

Recently, chromosomal translocations were identified as promising key factors in the 

pathogenesis of ALL. However, there is the real need to identify which of the recently 

discovered genetic alterations can improve patient’s stratification for the development of 

targeted therapeutic approaches [35]. 

Recently, two studies [36, 37] showed that the overexpression of the cytokine 

receptor-like factor 2 (CRLF2) gene was found to be correlated with poor prognosis in BCP-

ALL patients.  

Here, we discuss the cut-point finding task of the CRLF2 biomarker at diagnosis in 464 

Italian BCP-ALL children enrolled from February 2003 to July 2005 and treated according to 

the protocol “AIEOP-BFM ALL2000” of the “Associazione Italiana Ematologia Oncologia 

Pediatrica (AIEOP)” [35]. We aimed to find a cut-point for the CRLF2 above which children 

can be considered at higher risk of relapse, and thus candidates for treatment 

intensification.  

Briefly, within this cohort median age at diagnosis is 4.5 years (range, 1-17 years). Of 

the 464 enrolled children, 137 (28%) were at standard risk, 300 at intermediate risk (65%), 
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and the remaining 35 children (7%) were at higher risk according to the standard criteria 

defined in the protocol. Event free survival (EFS) was calculated from the date of diagnosis to 

the date of event, i.e. resistance, relapse, death or second malignant neoplasm, whichever 

occurred first. A total of 89 events were observed, of which 79 were relapses. Figure 3.2 

shows the overall EFS Kaplan-Meier curve.  Within this cohort [35], we can see that 5 years 

EFS is 81.6% (SE=1.8%). 

 

Figure 3.2 Kaplan-Meier EFS curve along with 95% confidence bands (dashed lines) of 464 

BCP-ALL children [35]. 

 

CRLF2 expression, evaluated by real-time quantitative (RQ)-PCR, ranged from 0.006 to 

810-fold change (Figure 3.3). The CRLF2 distribution is not Gaussian, and the Shapiro-Wilk 

non-parametric Normal distribution test returns a P-value less than 0.0001. The distribution 

of the CRLF2 is skewed to the right, and it can be approximated by a Gamma model. 

A cut-point c is needed to identify children who are more likely to relapse and for 

whom treatment is thus not regarded as sufficient to provide a good disease control and 
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needs to be optimized or intensified in future protocols. To this aim, the three investigated 

methods, i.e. Youden index (3.11), concordance probability (3.12) and point closest-to-(0,1) 

corner in the ROC plane (3.13), have been applied within this failure time outcome scenario 

by defining the meaningful time point for the clinical problem τ equal to 5 years from 

diagnosis. 

 

Figure 3.3 CRLF2 expression in 464 BCP-ALL patients [35]. 

 

The three investigated methods lead to the same estimated cut-point  ̂=1.46 (Table 

3.7). We also estimate the 95% bootstrap CI estimate for the cut-point (Table 3.7), finding 

for the Youden index, concordance probability and point closest-to-(0,1) corner in the ROC 

plane methods the following 95% CI estimates: (0.12, 21.61), (0.70, 1.98) and (0.70, 1.86), 

respectively. The Youden index method achieves the largest 95% bootstrap CI for the cut-

point estimate. However, this is consistent with the simulation results presented in 

paragraph 3.3.4 page 59, where we showed that the Youden index method achieves the 

largest confidence interval for the cut-point estimate. 
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Table 3.7 Estimated cut-point along with 95% bootstrap CI for the CRLF2 biomarker [35]. 

Method of cut-point finding Estimated cut-point 
95% Bootstrap confidence 

interval 

Youden index [14] 1.46 0.12 - 21.61 

Concordance probability [15] 1.46 0.70 - 1.98 

Point closest-to-(0,1) corner in the 
ROC plane [18] 

1.46 0.70 - 1.86 

 

It should be noted that the TPF (3.5) and the FPF (3.6) computed at the estimated cut-

point  ̂=1.46 are 0.47 and 0.37, respectively. Indeed, the classification accuracy of the CRLF2 

biomarker is not so high. In fact, it can be easily derived that the Youden index (3.11) is 

J( ̂=1.46)=0.47-0.37=0.10, while the concordance probability is equal to CZ( ̂=1.46)=0.47·(1-

0.37)=0.29. However, this low discrimination potential emerges even better from the ROC 

curve of that lies just above the bisecting line (Figure 3.4). 

 

Figure 3.4 ROC curve for the CRLF2 [35] with the three objective functions J, CZ and ER. 

 

The Kaplan-Meier EFS curves stratified according to the estimated CRLF2 cut-point 

 ̂=1.46 are shown in Figure 3.5. It can be noted that the 5 years EFS of 284 children 
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presenting with CRLF2 values greater than the estimated cut-point  ̂=1.46 is 79.2% 

(SE=3.1%), while the 5 years EFS of 180 children presenting with CRLF2 biomarker value 

lower than the estimated cut-point  ̂=1.46 is 83.2% (SE=2.2%). The two survival curves are 

not statistically significant different (Log-rank P=0.45). 

 

Figure 3.5 EFS curve stratified according to the estimated CRLF2 cut-point  ̂=1.46. 

 

3.4.1 THE CRLF2 CUT-POINT FROM THE PREDICTIVE VALUES 

PERSPECTIVE 

 

The cut-point for the CRLF2 biomarker identified above is not satisfactory since it does 

not discriminate the outcome as shown by the EFS curves in Figure 3.5. The investigated 

methods, i.e. Youden index [14], concordance probability [15] and point closest-to-(0,1) 

corner in the ROC plane [18], are based on measures defined conditionally on the true 

disease status, i.e. sensitivity and specificity. These measures of test performance provide 
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the type of information typically needed for health policy purposes, but are not the most 

useful information for clinical decisions on treatments [38]. In fact, clinicians have to 

interpret test results on the basis of tested people [39], and so they typically need to know 

the predictive values of the test. The positive predictive value (PPV) represents the 

proportion of diseased subjects having the biomarker value greater than c, i.e.    ( )  

 (   |   )        ( ), while the negative predictive value (NPV) represents the 

proportion of non-diseased subjects having the biomarker values less or equal than c, i.e. 

   ( )   (   |   )        ( ). 

For this reason, we explored the application of the Youden index [14], concordance 

probability [15] and point closest-to-(0,1) corner in the ROC plane [18] methods to the CRLF2 

cut-point finding task from the predictive values perspective. Briefly, within the three 

objective functions (3.11), (3.12) and (3.13), the two quantities     ( ) and     ( ) are 

replaced respectively by       ( ) and       ( ) (page 52). The estimated cut-points 

for the CRLF2 along with the 95% bootstrap CI computed by using the three investigated cut-

point finding methods from the predictive values perspective are shown in Table 3.8. The 

bootstrap 95% CI estimate for the cut-point for the Youden index, concordance probability 

and point closest-to-(0,1) corner in the ROC plane methods are (0.08, 26.09), (0.18, 26.09) 

and (0.21, 26.09), respectively. As previously noted, the Youden index method achieves the 

largest 95% bootstrap CI for the cut-point estimate.  

Moreover, the true positive fraction (3.5) and the false positive fraction (3.6) 

computed at the estimated cut-point  ̂    =17.89 are 0.10 and 0.04 (i.e. specificity equal to 

0.96), while the positive predictive and the negative predictive values are 0.35 and 0.84, 

respectively. 
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Table 3.8 The CRLF2 [35] estimated cut-point and 95% bootstrap CI computed from the 

predictive values perspective. 

Method of cut-point finding Estimated cut-point 
95% Bootstrap confidence 

interval 

Youden index [14] 17.89 0.08 – 26.09 

Concordance probability [15] 17.89 0.18 - 26.09 

Point closest-to-(0,1) corner in the 
ROC plane [18] 

17.89 0.21 – 26.09 

 

Figure 3.6 shows the Kaplan-Meier EFS curves stratified according to the estimated 

CRLF2 cut-point  ̂    =17.89. The 5 years EFS of 23 children presenting with CRLF2 values 

greater than the estimated cut-point  ̂    =17.89 is 64.6% (SE=10.1%), while the 5 years EFS 

of 441 children presenting with CRLF2 biomarker value lower than the estimated cut-point 

 ̂    =17.89 is 82.5% (SE=1.8%). The two survival curves are statistically significant different 

(Log-rank P=0.07). 

 

Figure 3.6 EFS curve stratified according to the estimated CRLF2 cut-point  ̂    =17.89. 
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Summarizing, in this clinical application, the use of cut-point finding methods based on 

predictive values allows to identify a small group of patients (n=23) with higher expression of 

the CRLF2 biomarker who have a significantly lower long term EFS. However, it may be 

discussed whether such a rare subgroup is of clinical relevance. 



 

CHAPTER 4 

DISCUSSION AND 

CONCLUSIONS 
 

 

4.1 DISCUSSION 

 

In this PhD dissertation, we presented a theoretical investigation and a simulation 

study aimed to compare four methods commonly used to define cut-points of continuous 

biomarkers: the minimum P-value [13], the Youden index [14], the concordance probability 

[15] and the point closest-to-(0,1) corner in the ROC plane [18]. We addressed both the 

binary (Chapter 2) and possibly censored failure time outcome (Chapter 3) scenarios. We 

also presented some original applications to real datasets. 

Here we are going to comment the theoretical results obtained. We proved that the 

considered methods are mathematically related, since the Youden function is the square 

root of the numerator of the Chi-square function of the minimum P-value approach. 

However, these methods do not necessarily identify the same optimal cut-point when 

considering the analysed scenarios of Gaussian and Gamma biomarker distributions. The 

equality between the underlying true cut-points is observed for the three ROC-based 

methods (i.e., Youden index, concordance probability and point closest-to-(0,1) corner) in 

the case of Gaussian homoscedastic distributions of the biomarker [15]. However, even 

4 
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under these conditions, the equality of these common true underlying cut-points to that of 

the minimum P-value approach is not guaranteed unless we are in a balanced design.  

We have shown that the point closest-to-(0,1) corner in the ROC plane [18] and 

concordance probability [15] approaches perform well and outperform both the minimum P-

value [13] and Youden index [14] methods in the estimation of the cut-point. In fact, while 

the relative bias is essentially zero for the investigated methods in all the considered 

scenarios, the MSEs of the point closest-to-(0,1) corner in the ROC plane and concordance 

probability approaches are similar, but lower than the MSEs of the minimum P-value [13] 

and Youden index [14] methods, considering all levels of classification accuracy. As expected, 

MSE is inversely related to sample size. Moreover, we also provided the estimate of the 

standard deviation and the 95% confidence interval for the cut-point through the bootstrap 

resampling technique. From this result, we can conclude that the bootstrap 95% confidence 

interval estimate of the cut-point for the point closest-to-(0,1) corner in the ROC plane 

method is systematically narrower than the bootstrap confidence interval estimate of the 

other methods. 

More in general, the observed difference in the MSE behaviour between the minimum 

P-value approach [13] and the three ROC-based methods [14] is due to the variance 

component included in the denominator of the Chi-square statistic of the minimum P-value 

approach. This variance component is computed under the null hypothesis of absence of 

association between the true disease status and the biomarker. However, the identification 

of a cut-point is based on the possible presence of a discrimination potential of the 

biomarker, i.e. the alternative hypothesis. For this reason, this variance component included 
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in the denominator of the Chi-square statistic does not provide an advantage for the 

performance of the minimum P-value approach. 

We also noted, within the Gaussian non-balanced scenario, that the true cut-point 

underlying the minimum P-value approach varies with the disease prevalence in the sample. 

In particular, a reduction of the sample disease prevalence determines a systematic shift of 

2χ
c  towards the distribution of disease subjects, while ROCc  is unaffected. This is a key 

limitation of the minimum P-value approach [13] in cut-point finding. 

It was noted in Böhning et al. [20] that the Youden function is invariant with respect to 

small changes in the cut-point. While this is a positive characteristic of the Youden index in a 

meta-analysis setting [40], this is not a good behaviour in a cut-point finding scenario. This 

additive invariance property does not hold for the concordance probability function, making 

this last criterion more suitable for cut-point finding. Perkins and Schisterman [18] 

advocated for the use of the Youden index method after comparison with the point closest-

to-(0,1) corner in the ROC plane criterion for its sound intuitive clinical meaning, while 

Böhning et al. [20] recently showed that the Youden index method should be preferred to 

the diagnostic odds ratio approach [19]. Our investigation completes these series of 

evidences [15, 21] by addressing the minimum P-value approach [13]. 

In light of our results, in both scenarios (dichotomous and failure time censored 

outcome), the point closest-to-(0,1) corner in the ROC plane and concordance probability 

methods could be considered the best criteria to estimate the cut-point of a biomarker from 

the performance point of view. However, since the ROC-based methods identify the same 

underlying true cut-point in the Gaussian homoscedastic scenario, the confidence interval 

estimation of the cut-point through the point closest-to-(0,1) corner method in the ROC 
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plane could be followed by the calculation of the associated value of the Youden function 

and/or concordance probability. This could improve communicability in the applied context. 

In fact, the Youden index has a simple interpretation as the net gain of the true positive 

fraction accounting for the false positive fraction, while the classification accuracy as the 

probability of being below or beyond the cut-point for any random pair of non-diseased and 

diseased subjects. This motivates an ever-increasing body of literature [21, 41], comprising 

methods for constructing the confidence interval of the Youden index and its corresponding 

optimal cut-point [42]. However, in light of these works, we believe that more emphasis 

should be given on methods showing improvements in the performance of the cut-point 

finding estimator, such as the point closest-to-(0,1) corner in the ROC plane. 

 

4.2  THE CUT-POINT FINDING FROM THE PREDICTIVE VALUES PERSPECTIVE 

 

Within this PhD dissertation, we dealt with cut-point finding methods on the basis of 

measures, i.e. sensitivity and specificity, defined conditionally on the true disease status. The 

Chi square statistic of the minimum P-value approach [13] is also a function of sensitivity and 

specificity since it is based on the null hypothesis of equality between sensitivity and 1 minus 

specificity (i.e. false positive fraction). These measures of test performance provide the type 

of information typically needed for health policy purposes, but are not necessarily the most 

useful information for clinical decisions on treatments [38]. In fact, clinicians have to 

interpret test results on the basis of tested people [39], and so they typically need to know 

the predictive values of the test. The positive predictive value (PPV) represents the 

proportion of diseased subjects having the biomarker value greater than c, while the
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negative predictive value (NPV) represents the proportion of non-diseased subjects having 

the biomarker values less or equal than c. 

The three investigated ROC-based methods, i.e. Youden index [14], concordance 

probability [15] and point closest-to-(0,1) corner in the ROC plane [18], could be applied 

starting from predictive values. The minimum P-value approach [13] can also be applied 

since it is based on the null hypothesis of equality between the PPV and 1-NPV. However, 

while sensitivity and specificity are invariant to disease prevalence, predictive values vary 

across populations with different disease prevalence. So, the PPV and NPV are functions of 

both the cut-point c and the disease prevalence. In particular, when used in low prevalence 

settings, even excellent diagnostic tests have poor PPV, while within high prevalence 

settings, the NPV is nearly perfect [39]. In a such way, the Youden index [14], the 

concordance probability [15] and the point closest-to-(0,1) corner in the ROC plane [18] 

methods depend also on disease prevalence. Moreover, the use of cut-point finding 

methods based on predictive values might easily lead to the choice of threshold values on 

the boundary of the parameter range of the biomarker [20], as previously shown for the 

diagnostic odds ratio approach in Figure 2.3, page 10. In fact, when we performed the cut-

point finding task of the CRLF2 in acute lymphoblastic leukemia by using the three 

investigated methods starting from the predictive values, we labelled as optimal a cut-point 

value corresponding to the 97th percentile of the biomarker distribution. Such cut-point 

identifies a very small group of patients who are at higher risk of relapse, and it may be 

discussed whether such a rare subgroup is of clinical relevance. 
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4.3  CONCLUSIONS 

 

More in general, great care should be taken when establishing a biomarker cut-point 

for clinical use. Methods for categorizing new biomarkers are often essential in clinical 

decision-making even if categorization of a continuous biomarker is gained at a considerable 

loss of power and information [43]. In the future, new methods involving the study of the 

functional form between the biomarker value and the outcome through regression 

techniques such as fractional polynomials or spline functions should be considered to 

alternatively define cut-points for clinical use. Moreover, in spite of the two aforementioned 

drawbacks related to the use of predictive values in cut-point finding, we also think that 

additional new methods for cut-point finding should be developed starting from predictive 

values.  

 

Papers specifically related to the work done within my PhD program are an applicative 

contribution in the electrocardiology field [23] and two methodological papers, one of which 

submitted to Computational Statistics and Data Analysis dealing with cut-point finding for a 

dichotomous outcome (“Finding the Optimal Cut-Point of a Continuous Biomarker: which 

method is better?”) and one currently under preparation dealing with the cut-point finding 

for censored failure time data. 

 

This PhD dissertation was discussed on 28 January 2013 at Milano-Bicocca University. 

The author detects the copyright of this work. No parts of this work can be copied or 

reproduced without his permission. 



 

APPENDIX 1 
 

R code for simulation: dichotomous outcome scenario 

 

set.seed(5091985) 

samples<-1000 

nd<-50 

nnd<-50 

N<-nd+nnd 

ud<-0.51 # ud values determine different classification accuracy values 

und<-0 

truec<-(ud+und)/2 

CHIhat<-matrix(nrow=N-0.20*N,ncol=2) 

Jhat<-matrix(nrow=N-0.20*N,ncol=2) 

CZhat<-matrix(nrow=N-0.20*N,ncol=2) 

ERhat<-matrix(nrow=N-0.20*N,ncol=2) 

cutpoints<-matrix(nrow=samples,ncol=9) 

 

for (ns in 1:samples) { 

 

# Biomarker data generation 

Xd<-rnorm(nd,mean=ud,sd=1) 

Xnd<-rnorm(nnd,mean=und,sd=1) 

data<-data.frame(rbind(cbind(Xd, rep(1,nd)),cbind(Xnd, rep(0,nnd)))) 

names(data)[names(data)=="Xd"] = "x" 
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names(data)[names(data)=="V2"] = "d" 

data<-data[order(data[,1],data[,1]),] 

 

# Cut-points finding process for the ns-th sample 

index<-1 

for(j in (N*0.10+1):(N-N*0.10)) { 

 

c<-data[j,1] 

n11<-sum(data$x<=c & data$d==0) 

n12<-sum(data$x>c & data$d==0) 

n21<-sum(data$x<=c & data$d==1) 

n22<-sum(data$x>c & data$d==1) 

 

# Estimation of the Chi-square objective  function (2.5) at cut-point c 

CHIhat[index,1]<-c 

CHIhat[index,2]<-(N*(n11*n22-

n12*n21)^2)/(sum(data$d==0)*sum(data$d==1)*(n11+n21)*(n12+n22)) 

 

# Estimation of the Youden objective function (2.8) at cut-point c 

Jhat[index,1]<-c 

Jhat[index,2]<-n22/sum(data$d==1)-n12/sum(data$d==0) 

 

# Estimation of the concordance probability objective function (2.9) at cut-point c 

CZhat[index,1]<-c 

CZhat[index,2]<-(n22/sum(data$d==1))*(1-(n12/sum(data$d==0))) 
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# Estimation of the distance to the ideal marker objective function (2.10) at cut-point c 

ERhat[index,1]<-c 

ERhat[index,2]<-sqrt(((n12/sum(data$d==0))-0)^2+((n22/sum(data$d==1))-1)^2) 

 

index<-index+1 

} 

 

CHIhat<-CHIhat[order(CHIhat[,2]),] 

Jhat<-Jhat[order(Jhat[,2]),] 

CZhat<-CZhat[order(CZhat[,2]),] 

ERhat<-ERhat[order(ERhat[,2]),] 

 

# Selection of the optimal cut-point for the ns-th sample 

cutpoints[ns,1]<-ns 

cutpoints[ns,2]<-CHIhat[nrow(CHIhat),1] 

cutpoints[ns,3]<-CHIhat[nrow(CHIhat),2] 

cutpoints[ns,4]<-Jhat[nrow(Jhat),1] 

cutpoints[ns,5]<-Jhat[nrow(Jhat),2] 

cutpoints[ns,6]<-CZhat[nrow(CZhat),1] 

cutpoints[ns,7]<-CZhat[nrow(CZhat),2] 

cutpoints[ns,8]<-ERhat[1,1] 

cutpoints[ns,9]<-ERhat[1,2] 

} 

 

#Relative bias calculation 

BiasCHI<-mean((cutpoints[,2]-truec)/truec) 
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BiasJ<-mean((cutpoints[,4]-truec)/truec) 

BiasCZ<-mean((cutpoints[,6]-truec)/truec) 

BiasER<-mean((cutpoints[,8]-truec)/truec) 

 

#Mean Square Error calculation 

MSECHI<-mean((cutpoints[,2]-truec)^2) 

MSEJ<-mean((cutpoints[,4]-truec)^2) 

MSECZ<-mean((cutpoints[,6]-truec)^2) 

MSEER<-mean((cutpoints[,8]-truec)^2) 

 



 

APPENDIX 2 
 

R code for bootstrap resampling 

 

set.seed(5091985) 

samples<-1000 

nd<-50 

nnd<-50 

N<-nd+nnd 

B<-200 

ud<-0.51 # ud values determine different classification accuracy values 

und<-0 

truec<-(ud+und)/2 

CHIhat<-matrix(nrow=N-0.20*N,ncol=2) 

Jhat<-matrix(nrow=N-0.20*N,ncol=2) 

CZhat<-matrix(nrow=N-0.20*N,ncol=2) 

ERhat<-matrix(nrow=N-0.20*N,ncol=2) 

cutpointsboot<-matrix(nrow=B,ncol=4) 

cutpoints<-matrix(nrow=samples,ncol=8) 

BDevst<-matrix(nrow=samples,ncol=4) 

 

for (ns in 1:samples) { 

 

# Biomarker data generation 
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Xd<-rnorm(nd,mean=ud,sd=1) 

Xnd<-rnorm(nnd,mean=und,sd=1) 

 

# Bootstrap resampling technique for the ns-th sample 

for (b in 1:B) { 

resample_Xd <- sample(Xd, size=nd,replace=T) 

resample_Xnd<- sample(Xnd, size=nnd,replace=T) 

data<-data.frame(rbind(cbind(resample_Xd,rep(1,nd)),cbind(resample_Xnd,rep(0,nnd)))) 

names(data)[names(data)=="resample_Xd"] = "x" 

names(data)[names(data)=="V2"] = "d" 

data<-data[order(data[,1],data[,1]),] 

 

# Cut-points finding process for the b-th bootstrap replication of the ns-th sample 

index<-1 

for(j in (N*0.10+1):(N-N*0.10)) { 

 

c<-data[j,1] 

n11<-sum(data$x<=c & data$d==0) 

n12<-sum(data$x>c & data$d==0) 

n21<-sum(data$x<=c & data$d==1) 

n22<-sum(data$x>c & data$d==1) 

 

# Estimation of the Chi-square function (2.5) at cut-point c 

CHIhat[index,1]<-c 

CHIhat[index,2]<-(N*(n11*n22-

n12*n21)^2)/(sum(data$d==0)*sum(data$d==1)*(n11+n21)*(n12+n22)) 
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# Estimation of the Youden function (2.8) at cut-point c 

Jhat[index,1]<-c 

Jhat[index,2]<-n22/sum(data$d==1)-n12/sum(data$d==0) 

 

# Estimation of the concordance probability function (2.9) at cut-point c 

CZhat[index,1]<-c 

CZhat[index,2]<-(n22/sum(data$d==1))*(1-(n12/sum(data$d==0))) 

 

# Estimation of the distance to the ideal marker (2.10) at cut-point c 

ERhat[index,1]<-c 

ERhat[index,2]<-sqrt(((n12/sum(data$d==0))-0)^2+((n22/sum(data$d==1))-1)^2) 

 

index<-index+1 

} 

CHIhat<-CHIhat[order(CHIhat[,2]),] 

Jhat<-Jhat[order(Jhat[,2]),] 

CZhat<-CZhat[order(CZhat[,2]),] 

ERhat<-ERhat[order(ERhat[,2]),] 

 

cutpointsboot[b,1]<-CHIhat[nrow(CHIhat),1] 

cutpointsboot[b,2]<-Jhat[nrow(Jhat),1] 

cutpointsboot[b,3]<-CZhat[nrow(CZhat),1] 

cutpointsboot[b,4]<-ERhat[1,1] 

} 
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# Selection of the inferior/superior limit of the bootstrap confidence interval for the ns-th sample 

cutpoints[ns,1]<-quantile(cutpointsboot[,1],0.025) 

cutpoints [ns,2]<-quantile(cutpointsboot[,1],0.975) 

cutpoints [ns,3]<-quantile(cutpointsboot[,2],0.025) 

cutpoints [ns,4]<-quantile(cutpointsboot[,2],0.975) 

cutpoints [ns,5]<-quantile(cutpointsboot[,3],0.025) 

cutpoints [ns,6]<-quantile(cutpointsboot[,3],0.975) 

cutpoints [ns,7]<-quantile(cutpointsboot[,4],0.025) 

cutpoints [ns,8]<-quantile(cutpointsboot[,4],0.975) 

 

# Bootstrap standard deviation’s calculation for the ns-th sample 

BDevst[ns,1]<-sd(cutpointsboot[,1]) 

BDevst[ns,2]<-sd(cutpointsboot[,2]) 

BDevst[ns,3]<-sd(cutpointsboot[,3]) 

BDevst[ns,4]<-sd(cutpointsboot[,4]) 

} 

 

# Bootstrap confidence interval’s coverage calculation 

CoverageCHI<-sum(ifelse(truec>cutpoints[,1] & truec< cutpoints [,2],1,0))/samples 

CoverageJ<-sum(ifelse(truec> cutpoints [,3] & truec< cutpoints [,4],1,0))/samples 

CoverageCZ<-sum(ifelse(truec> cutpoints [,5] & truec< cutpoints [,6],1,0))/samples 

CoverageER<-sum(ifelse(truec> cutpoints [,7] & truec< cutpoints [,8],1,0))/samples 

 

# Bootstrap confidence interval’s length calculation 

LengthCHI<-mean(cutpoints [,2]- cutpoints [,1]) 

LengthJ<-mean(cutpoints [,4]- cutpoints [,3]) 
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LengthCZ<-mean(cutpoints [,6]- cutpoints [,5]) 

LengthER<-mean(cutpoints [,8]- cutpoints [,7]) 

 

# Bootstrap standard deviation’s calculation 

DevstCHI<-mean(BDevst[,1]) 

DevstJ<-mean(BDevst[,2]) 

DevstCZ<-mean(BDevst[,3]) 

DevstER<-mean(BDevst[,4]) 

 



 

APPENDIX 3 
 

R code for simulation: censored failure time outcome scenario 

 

library(survival) 

# Kaplan Meier estimation of            and            

SurvCalculation<-function(Xgreaterc,Xlessc){ 

     SZlesstau<- survfit(Surv(Xgreaterc[,2], Xgreaterc [,3]) ~1, error=c("greenwood")) 

     position<-which(SZlesstau$time>=tau)[1] 

     if (is.na(position)==TRUE) ShatZlesstau <- SZlesstau $surv[NROW(SZlesstau $surv)] else if 

(position==1 & Xgreaterc [Xgreaterc $t==SZlesstau$time[position],]$delta ==1  ) ShatZlesstau <-1 else 

if (Xgreaterc [Xgreaterc $t==SZlesstau$time[position],]$delta ==1 ) ShatZlesstau <- SZlesstau 

$surv[position-1] else  ShatZlesstau <- SZlesstau $surv[position] 

     SZgreatertau<- survfit(Surv(Xlessc[,2],Xlessc[,3]) ~1, error=c("greenwood")) 

      position<-which(SZgreatertau$time>=tau)[1] 

      if (is.na(position)==TRUE) ShatZgreatertau<- SZgreatertau $surv[NROW(SZgreatertau $surv)] else 

if (position==1 & Xlessc [Xlessc$t==SZgreatertau$time[position],]$delta ==1) ShatZgreatertau<-1 else 

if ( Xlessc [Xlessc$t==SZgreatertau$time[position],]$delta ==1) ShatZgreatertau<- SZgreatertau 

$surv[position-1]  else ShatZgreatertau<-SZgreatertau$surv[position] 

     output<-list(ShatZlesstau,ShatZgreatertau) 

     return(output) 

} 

 

set.seed(5091985) 

samples<-1000 

N<-100 

ud<-0.51 # ud values determine different classification accuracy values 
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und<-0 

truec<-(ud+und)/2 

lambda<-2 

tau<-(-1/lambda)*log(0.50) 

mincenslim<-0 

maxcenslim<-1  # maxcenslim values determine different censoring percentages 

X<-c(N,1) 

TPF<-matrix(nrow=N-0.20*N,ncol=1) 

FPF<-matrix(nrow=N-0.20*N,ncol=1) 

S<-matrix(nrow=1,ncol=2) 

Jhat<-matrix(nrow=N-0.20*N,ncol=2) 

CZhat<-matrix(nrow=N-0.20*N,ncol=2) 

ERhat<-matrix(nrow=N-0.20*N,ncol=2) 

cutpoints<-matrix(nrow=samples,ncol=7) 

 

# Data generation 

for (ns in 1:samples) { 

u<-runif(N, min=0, max=1) 

z<-(-1/lambda)*log(1-u) 

 

# Biomarker data generation 

for (i in 1:N) { 

if (z[i] <=tau) 

  X[i]<-rnorm(n=1,mean=ud,sd=1) 

else 

  X[i]<-rnorm(n=1,mean=und,sd=1) 
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} 

# Survival times data generation 

c<-runif(N, min=mincenslim, max=maxcenslim) 

t<-ifelse(c<=z, c, z) 

delta<-ifelse(c<=z,0,1) 

data<-data.frame(cbind(X,t,delta)) 

data<-data[order(data[,1],data[,1]),] 

 

# Cut-points finding process for the ns-th sample 

index<-1 

for(j in (N*0.10+1):(N-N*0.10)) { 

c<-data$X[j] 

p<-sum(ifelse(data[,1]>=c,1,0))/N 

S<- SurvCalculation(data[data$X>=c,],data[data$X<c,]) 

TPF[index]<-((1-S[[1]])*p)/((1-S[[2]])*(1-p) +(1- S[[1]])*p) 

FPF[index]<- (S[[1]]*p)/(S[[2]]*(1-p)+ S[[1]]*p) 

index<-index+1 

} 

 

# Estimation of the Youden objective function (3.11) for censored data  

Jhat[,1]<-data$X[(N*0.10+1): (N-N*0.10)] 

Jhat[,2]<-TPF[,1]-FPF[,1] 

 

# Estimation of the concordance probability objective function (3.12) for censored data  

CZhat[,1]<- data$X[(N*0.10+1): (N-N*0.10)] 

CZhat[,2]<-TPF[,1]*(1-FPF[,1]) 
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# Estimation of the point closest-to-(0,1) corner in the ROC plane objective function (3.12) for 

censored data  

ERhat[,1]<- data$X[(N*0.10+1): (N-N*0.10)] 

ERhat[,2]<-sqrt((TPF[,1]-1)^2+(FPF[,1])^2) 

 

Jhat<-Jhat[order(Jhat[,2]),] 

CZhat<-CZhat[order(CZhat[,2]),] 

ERhat<-ERhat[order(ERhat[,2]),] 

 

# Selection of the optimal cut-point for the ns-th sample 

cutpoints[ns,1]<-ns 

cutpoints[ns,2]<-Jhat[nrow(Jhat),1] 

cutpoints[ns,3]<-Jhat[nrow(Jhat),2] 

cutpoints[ns,4]<-CZhat[nrow(CZhat),1] 

cutpoints[ns,5]<-CZhat[nrow(CZhat),2] 

cutpoints[ns,6]<-ERhat[1,1] 

cutpoints[ns,7]<-ERhat[1,2] 

} 

 

#Relative Bias calculation 

BiasJ<-mean((cutpoints[,2]-truec)/truec) 

BiasCZ<-mean((cutpoints[,4]-truec)/truec) 

BiasER<-mean((cutpoints[,6]-truec)/truec) 

 

#Mean Square Error calculation 

MSEJ<-mean((cutpoints[,2]-truec)^2) 

MSECZ<-mean((cutpoints[,4]-truec)^2) 
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MSEER<-mean((cutpoints[,6]-truec)^2) 
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