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Applications of deep
 learning in dentistry
a,b,c d e
Stefano Corbella, PhD, DDS, Shanmukh Srinivas, BDS, MDS, and Federico Cabitza, PhD, BSc, MEng
Over the last few years, translational applications of so-called artificial intelligence in the field of medicine have garnered a signif-

icant amount of interest. The present article aims to review existing dental literature that has examined deep learning, a subset of

machine learning that has demonstrated the highest performance when applied to image processing and that has been tested as a

formidable diagnostic support tool through its automated analysis of radiographic/photographic images. Furthermore, the article

will critically evaluate the literature to describe potential methodological weaknesses of the studies and the need for further

development.

This review includes 28 studies that have described the applications of deep learning in various fields of dentistry. Research into

the applications of deep learning in dentistry contains claims of its high accuracy. Nonetheless, many of these studies have sub-

stantial limitations and methodological issues (e.g., examiner reliability, the number of images used for training/testing, the meth-

ods used for validation) that have significantly limited the external validity of their results. Therefore, future studies that

acknowledge the methodological limitations of existing literature will help to establish a better understanding of the usefulness of

applying deep learning in dentistry. (Oral Surg Oral Med Oral Pathol Oral Radiol 2021;132:225�238)
This article will focus on specific discriminative

computational models that have produced highly accu-

rate performance in tasks of medical and dental image

processing. These kinds of computational models,

which are also less accurately referred to as algorithms,

are often put under the much more evocative (and sug-

gestive) rubric of artificial intelligence (AI).

Interest in the medical application of AI has increased

recently due to the impact of this technology on the out-

come and quality of clinical practice in and after the

1980s, when applications known as “expert systems”

resulted in several expectations that were realized in the

following decades.1 This likely occurred for 2 reasons:

(1) the wide diffusion and use of diagnostic information

in medicine derived from medical imaging from various

sources, such as magnetic resonance imaging, computed

tomography (CT), positron emission tomography, cone

beam computed tomography (CBCT), and standard

radiographs, and (2) the growing visibility in medical lit-

erature of works dealing with the performance of AI sys-

tems. Both the selected studies and recently published

meta-analyses and literature reviews have acknowl-

edged the performances of these systems, noting that

they are on par with and even superior to the perfor-

mance of human specialists, especially in image-based

diagnostic tasks. Regardless, the validity of the
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presented results has been weakened by the paucity of

high-quality studies (just a few of the studies in the 2

cited papers fulfilled review requirements) and their

methodological limitations.2,3

These results are the final achievement of algorithms

that were first devised in the 1980s and only material-

ized after they could run on more efficient computers

equipped with faster processing power backed by much

larger data sets. In addition, the expert systems men-

tioned previously were based on a rigid framework of

rules and methods that aimed to make logical decisions

that mimic the ways in which clinicians and experts

think. Though purely computational in nature, the

results reported in recent literature have regarded this

technological advancement as a shift in the paradigm,

from the rule-based algorithms of expert systems, which

have rarely achieved optimal discriminative perfor-

mance, to data-driven models, which are capable of

achieving superhuman performance and are developed

using machine learning (ML).4 In general, ML was

developed in the quest to build an intelligent machine

that could construct accurate statistical models to clas-

sify cases and/or predict continuous outcomes through

the development of numerous methods (e.g., classifica-

tion trees, regression trees, bootstrap forest, boosted

tree, k-nearest neighbors, naı̈ve Bayes, multiple logistic

regression, and neural networks).
Statement of Clinical Relevance

Deep learning machines could be a viable and

extremely useful aid for dental diagnosis and, in

general, for the management of images in any field

of dentistry. The accuracy of such methods should

be improved in order to be considered for everyday

practice.
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In other words, ML represents a newer set of statisti-

cal techniques and computational methods through

which specific programs (suggestively called

“learners”) produce mathematical models that can clas-

sify input data based on a larger data set of available

data and feedback data. These models are mathemati-

cal functions built to accurately interpolate a set of

data points (called training data) in the belief that this

function can be used to approximate new data that

yield reliable predictions or produce new metadata (i.

e., data describing other data) and that is accurate in

the classification process. Methods of ML typically

iteratively and automatically build accurate interpolat-

ing functions by optimizing a given function (often

related to prediction errors). In other words, the above-

mentioned learners tune the parameters of the functions

through incremental trial and error by exploring the

space of possible parameter values to minimize the

loss function, which is usually represented by the dif-

ference between predicted values and actual values. To

clarify, neural nets often use activation functions that

result in equations that are similar to regression equa-

tions where the intercept is replaced with a bias term

and the coefficients are typically referred to as weights.

For image classification tasks, a particular subset of

ML can achieve higher performance. This specific

class of ML technique and architecture is called deep

learning (DL). This particular expression is used

among data scientists for a multilayer artificial neural

network (ANN) with a set of methods applied to opti-

mize the interpolating functions represented by their

means. DL can be viewed as an evolution of ML that

aims to automate data preprocessing to create features

that can optimize classification tasks (e.g., data cleans-

ing, missing imputation, feature selection, data normal-

ization, and standardization). If the expression

“learning” in ML is misleading, then through its very

designation DL acts as a source of further misunder-

standing. The word “deep” in DL does not represent

these techniques’ obscurity or power. Rather, it func-

tions as a primary reference to their architecture in

interpolating models, such as an ANN. These structures

partially resemble neuronal networks in the human

brain. They are computational structures where simple

computing nodes—which usually compute a simple

summation and nonlinear transformation functions (the

latter are functions that produce nonlinear transforma-

tions in the inputs, such as the hyperbolic tangent func-

tion, which is a sigmoid function)—are connected by

oriented and weighted links. Therefore, deep in DL

refers to the fact that these structures encompass many

layers of nodes between the input and output nodes. As

a result, the architecture of DL machines can be very

complex and include multiple layers and millions of

parameters.
As hinted above, convolutional (artificial) neural

networks (CNNs) frequently serve as the architecture

used to recognize and classify images. A CNN is a type

of ANN wherein many of the intermediate nodes apply

convolutional functions to their input data and a type

of filter functions them into isolate patterns, such as the

edges, vertices, and other higher-level elements of an

image. The hierarchical structure of a CNN is suitable

for processing features from raw images to more

abstract ones. The final nodes are classification nodes,

where the inputs coming from the preceding nodes are

interpreted in terms of generalized concepts, such as

dog, cat, gorilla, or, in the case of dental imaging, a

radiograph that positively identifies a specific patho-

logic condition. In DL, many other special, more effi-

cient, and task-oriented CNN architectures are

currently being employed, such as recursive and recur-

rent neural networks.

One can distinguish a basic CNN architecture from

others according to the assigned task, the procedure by

which the networks’ weights are adjusted, the architec-

ture of the neurons, and the functions of the nodes. The

most commonly used architectures in image detection

include regional CNN, faster regional CNN, and you

only look once. Unlike image classification, wherein

only the contents of an object inside an image are

determined without specifying the location of an object

inside the image, the location of the image is deter-

mined with these architectures. Object detection archi-

tectures can classify, locate, and identify the targeted

contents from an image at a comparatively faster rate

than conventional CNNs by employing multiple

bounding boxes for object edge detection.

Image segmentation is a further variation of image

detection that is achieved by applying similar princi-

ples where the targeted object in an image is segregated

from its background. Image segmentation includes

semantic and instance segmentation. In semantic seg-

mentation, multiple objects belonging to the same cate-

gory (e.g., teeth) are considered as a single entity (e.g.,

all of the teeth segmented under the same mask). In the

case of instance segmentation, multiple objects of the

same category are considered to be distinct and indi-

vidual objects (e.g., every single tooth in an image is

segmented under a separate mask; Figure 1). Some fre-

quently used architectures for image segmentation

include fully convolutional networks and U-NET

(Figure 1).

Recognizing AI as a form of automation enables

commonalities and differences to be recognized

through regular automation. Applying autonomous

technologies to a set of human activities can either

replace humans or make them significantly more effec-

tive and efficient in their decision-making processes.

As recently suggested by the American Medical



Fig. 1. Image segmentation process.
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Association, the same acronym (AI) can be used to

denote the augmented intelligence of human beings.

Nonetheless, the automation of intellectual tasks and

the potential replacement of interpretative and cogni-

tive skills, especially in the case of medical diagnos-

tics, can also induce the phenomena of deskilling5 and

automation bias.6

The present article will report on the main studies

that have investigated DL and shed light on the level of

penetration that DL techniques can have in dental

research and clinical practice. Unlike other specialties,

such as ophthalmology,7 dermatology,8 and image-

intensive fields like radiology and pathology,9 DL has

the enormous potential to bring genuinely impactful

applications to the field of dentistry. Nonetheless,

except for the many studies that this article will review

in forthcoming sections, the benefits that this class of

computational methodology can bring to dental

research and practice have yet to be determined.

APPLICATIONS OF DEEP LEARNING IN
DENTISTRY
General considerations and methodological issues
For the present literature review, the PubMed/Medline,

EMBASE, and Cochrane Library electronic databases

were searched using a combination of keywords that

referred to the topic of DL in dentistry. The reference

lists of all pertinent articles were screened for poten-

tially relevant papers. Furthermore, we performed a

manual search of all issues from 2010 onward in the

following dentistry journals: Journal of Dental

Research, Journal of Dentistry, Oral Diseases, Journal
of Clinical Periodontology, Journal of Periodontology,

Journal of Endodontics, and International Endodontic

Journal. We decided to exclude congress abstracts and

nonindexed publications and to use only papers written

in English. In the collected CNN research, most studies

applied DL to analyze radiographic images (pan-

oramic, periapical, CBCT, etc.), some studies used DL

to assess photographs, and a single study used DL to

analyze data from the electronic databases of clinical

records. The results of this literature review are sum-

marized in Table I. The included papers were all pub-

lished recently, with 1 paper published in 2017, 7

papers published in 2018, 18 papers published in 2019,

and 2 papers published in 2020.

Deep learning as a diagnostic aid
Convolutional networks have been widely applied in

the studies listed in the literature review in the recogni-

tion and identification of particular regions within digi-

tal images.10 This specific ability has been

demonstrated to identify an application in every medi-

cal field that involves the management and use of digi-

tal images, such as photographs and, specifically,

radiographic images.11

In the field of dentistry, both photographic and radio-

graphic images are frequently used, and they often rep-

resent one of the first steps in the assessment and

diagnostic processes of patients. In particular, radio-

graphic images (e.g., periapical, panoramic, or CBCT

images) are widely used by both general practitioners

and specialists. In dentistry, CNNs are trained to recog-

nize, classify (Figure 1), and segment (Figures 1 and 2)



Table I. Characteristics of the included studies

Study Architecture Training/testing

modalities

Dental specialty Object Imaging

modalities

Reference

standard

esults Conclusions Limitations

Chen et al.14 R-CNN (Inception

Resnet v2)

Training set: 800

Validation set: 200

Testing set: 250

General/anatomy Tooth

classification

Periapical radio-

graphs (300 to

500 £ 300 to

400 pixels)

Expert dentist ean IOU (inter-

section over

union) = 0.91

The R-CNN has

the same perfor-

mance as a

junior dentist

Sensitivity/speci-

ficity not

reported; meth-

ods of sample

selection

Vinayahalingam

et al.18
CNN — Oral surgery,

anatomy

Third molars and

mandibular

nerve

identification

Panoramic

radiographs

Not reported ean Dice coeffi-

cient for third

molar = 0.947

(0.033); Mean

Dice coefficient

for mandibular

nerve = 0.847

(0.099)

CNN results are

encouraging,

though further

enhancement of

the algorithm is

advised to

improve the

accuracy

Reliability of the

examiners;

methods of sam-

ple selection

Miki et al.12 CNN (AlexNet) Training set: 42

Testing set: 10

Prosthodontics Tooth

classification

Cone beam CT

images

Not reported he average clas-

sification Ac

using the aug-

mented training

data was 88.8%

The proposed

method is

advantageous in

obtaining high

classification

accuracy with-

out the need for

precise tooth

segmentation

Low number of

images used for

training/testing;

images not stan-

dardized; reli-

ability of the

examiners

Tuzoff et al.15 CNN (VGG-16) Training set: 1352

Testing set: 222

Prosthodontics Tooth

classification

Panoramic

radiographs

Not specified

“expert”

or the tooth

detection task,

CNN achieved a

sensitivity of

99.41% and a

specificity of

99.45%. For

tooth number-

ing, its sensitiv-

ity and

specificity were

98.93% and

99.94%

respectively

The performance

of the proposed

computer-aided

diagnosis solu-

tion is compara-

ble to the level

of experts

Reliability of

examiners

(continued on next page)
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Table I. Continued

Study Architecture Training/testing

modalities

Dental specialty Object Imaging

modalities

Reference

standard

esults Conclusions Limitations

Xu et al.13 CNN Training set: 1000

Validation set: 50

Testing set: 150

Prosthodontics Tooth

classification

3D dental models Not specified

(professional

orthodontic

company)

ccuracy for

tooth segmenta-

tion and labeling

achieved for

maxillary dental

models was

99.06%; for

mandibular den-

tal models it was

98.79%

Optimal discrimi-

natory ability

Limitations

related to the

quality of the

boundaries

between 2 teeth;

methods of sam-

ple selection

Zhang et al.16 CNN (label tree

with cascade

network

structure)

Training set: 200

images with 639

teeth

General/anatomy Tooth

classification

Periapical

radiographs

Not specified ompared to the

state-of-the-art

convolutional

neural network

the precision

was 95.8%

Quite good perfor-

mance even

when dealing

with complex

cases such as

decayed tooth,

filled tooth, and

tooth loss

Limited training

data

Hiraiwa et al.17 CNN (AlexNet),

(GoogLeNet)

Training set: 608

Testing set: 152

Endodontics Distal root of

mandibular first

molars

Panoramic radio-

graphs/CT

images

Radiologist c for AlexNet

and GoogLeNet

was 87.4% and

85.4%,

respectively

High accuracy of

DL system

Sample selection;

reliability of the

examiners

Lee et al.34 CNN (VGG-19

modified)

Training set 1044

Validation set: 348

Testing set: 348

Periodontology Tooth prognosis Periapical radio-

graphs

(224 £ 224

pixels)

Three calibrated,

board-certified

periodontists

iagnostic accu-

racy for detect-

ing periodon-

tally compro-

mised teeth was

81.0% for pre-

molars and

76.7% for

molars and the

accuracy for

predicting

extraction was

82.8% for pre-

molars and

73.4% for

molars

CNN algorithm

was useful for

assessing the

diagnosis of

periodontally

compromised

teeth

The diagnosis of

periodontally

compromised

teeth is not

based only on

periapical radio-

graphs; low-res-

olution images;

reliability of

examiners

(continued on next page)
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Table I. Continued

Study Architecture Training/testing

modalities

Dental specialty Object Imaging

modalities

Reference

standard

esults Conclusions Limitations

Casalegno et al.19 CNN Trained on 185 sam-

ples and validated

on 32 samples

Restorative

dentistry

Caries diagnosis NILT pictures of

the occlusal sur-

face (256 £ 320

pixels) in

grayscale

Expert

identification

UC = 85.6% for

proximal

lesions;

AUC = 83.6%

for occlusal

lesions

DL approach for

the analysis of

dental images

could increase

speed and accu-

racy of caries

detection

Characteristics of

the pictures

could influence

the accuracy

(overexposed,

underexposed);

trained sample

is limited; reli-

ability of

examination

Lee et al.21 CNN (GoogLeNet

Inception v3)

Training set 2400

Testing set: 600

Restorative

dentistry

Caries diagnosis Periapical radio-

graphs

(299 £ 299

pixels)

Four calibrated

board-certified

dentists

iagnostic Ac for

premolar 89%,

molar: 88%,

premolar and

molar models:

82%, AUC

achieved by

CNN, premolar:

0.917, molar:

0.890, both

molar and pre-

molar: 0.845

CNN algorithms

demonstrated to

be the most

effective

method to detect

caries from peri-

apical

radiographs

Limited sample

size; low-resolu-

tion images

Schwendicke

et al.20
CNN (Resnet18,

Resnext50)

Trained on online

database. Test on

226 images

Restorative

dentistry

Caries NILT images

(224 £ 224)

Two experienced

dentists

esnet18: AUC:

0.73, Ac: 0.69,

Se: 0.46, Sp:

0.85, PPV: 0.71,

NPV: 0.69.

Resnext50:

AUC: 0.74, Ac:

0.68, Se: 0.59,

Sp: 0.76, PPV:

0.63, NPV: 0.73

CNNs may be

useful to assist

NILT-based car-

ies detection

Reliability of

examiners was

limited; larger

data sets for

training are

needed

(continued on next page)
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Table I. Continued

Study Architecture Training/testing

modalities

Dental specialty Object Imaging

modalities

Reference

standard

esults Conclusions Limitations

Ekert et al.22 CNN 2001 cropped image

segments, each rep-

resenting a tooth,

from 85 randomly

chosen digital pan-

oramic dental

radiographs

Endodontics Apical lesions Panoramic radio-

graphs (cropped

focusing on one

particular tooth)

Majority vote of 6

independent and

experienced

dentists

UC for CNN

was acceptable

at 0.85. Apical

lesion detection

sensitivity was

significantly

higher for

molars than in

other tooth

types, whereas

specificity was

lower

Satisfying dis-

criminatory

ability of CNN

in detecting api-

cal lesions on

panoramic

radiographs

Doubtful reliabil-

ity of exam-

iners; broad

inclusion

criteria

Kim et al.28 CNN (Residual

Net)

Training set: 8000

Validation set: 1000

Testing set: 540

Oral surgery,

ENT

Maxillary

sinusitis

Waters’ view

radiographs

Five radiologists UC = 0.93 and

0.88 for the tem-

poral and geo-

graphic external

test set

The CNN algo-

rithm could

diagnose sinusi-

tis with higher

AUC and sensi-

tivity and speci-

ficity compara-

ble to those of

radiologists

Use of CT to con-

firm sinusitis;

only maxillary

sinuses

Murata et al.29 CNN (AlexNet) Training set 400

healthy, 400

inflamed

Testing set: 60

healthy, 60 inflamed

Oral pathology Maxillary

sinusitis

Panoramic

radiographs

Premade diagnosis

(methods not

known)

c DL: 87.5%; Se

DL: 86.7%; Sp

DL: 88.3%;

PPV DL:

88.1%; NPV

DL: 86.9%

Comparable to

the results

obtained by spe-

cialists

AUC DL: 0.875

The diagnostic

performance of

the DL system

for maxillary

sinusitis on pan-

oramic radio-

graphs was

sufficiently high

Only single

sinuses were

considered; lim-

ited sample size

(continued on next page)
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Table I. Continued

Study Architecture Training/testing

modalities

Dental specialty Object Imaging

modalities

Reference

standard

esults Conclusions Limitations

Nakano et al.35 DL Testing set:

45 weak/no oral

malodor, 45 marked

oral malodor

Periodontology Salivary

microorganisms

Salivary samples

were collected

and 16 S rRNA

genes were

amplified fol-

lowed by gene

sequence analy-

sis to categorize

operational tax-

onomic units

Organoleptic test

and gas

chromatography

redictive Ac of

DL was 97%

High accuracy of

the algorithm

Limited sample

size

Ariji et al.26 CNN (DetectNet) Training set 210

Testing set: 50, 25

Oral medicine and

radiology

Mandibular radio-

lucent lesions

Panoramic radio-

graphs

(900 £ 900

pixels)

Histopathologic

verification of

the diagnosis

he detection and

classification Ac

achieved were

71% and 60% for

ameloblastomas,

100% and 13%

for odontogenic

keratocysts, 88%

and 82% for den-

tigerous cysts,

and 81% and

77% for radicular

cysts, respectively

CNN demon-

strated high

sensitivity in

detecting radio-

lucent lesions

Relatively limited

sample size

Lee et al.38 CNN (GoogLeNet

Inception v3)

Training set: 684 pan-

oramic images; 789

CBCT images

Validation set: 228

panoramic images;

197 CBCT images

Testing set: 228 pan-

oramic images; 197

CBCT images

Oral pathology Cystic lesion

(odontogenic

keratocysts,

dentigerous

cyst, periapical

cyst)

Panoramic

images; CBCT

images

(299 £ 299

pixels)

Histopathologic

examination

anoramic

images: AUC:

0.847, Se:

88.2%, Sp:

77.0%. CBCT

images: AUC:

0.914, Se:

96.1%, Sp:

77.1%

Using CBCT

images the CNN

demonstrates

higher diagnos-

tic performance

than using pan-

oramic images

The diagnostic

accuracy of

OCLs using

radiologic

assessment

alone is less

than that using

histologic exam-

ination, and

accurate diagno-

sis with radio-

logic images

only is still

challenging

(continued on next page)
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Table I. Continued

Study Architecture Training/testing

modalities

Dental specialty Object Imaging

modalities

Reference

standard

esults Conclusions Limitations

Poedjiastoeti and

Suebnukarn27
CNN (VGG-16) Training set 400

Testing set: 100

Oral pathology Ameloblastomas/

keratocystic

odontogenic

tumors

Panoramic

radiographs

Histopathologic

examination

e: 81.5%; Sp:

83.3%; Ac:

83.0% (38 s for

response)

Ac of CNN com-

parable to that

of manual diag-

nosis by oral

and maxillofa-

cial specialists

Only frontal

radiographs; no

use of medical

histories; no

information

about the char-

acteristics of the

images used

Ariji et al.31 CNN (AlexNet) Testing set: 127 pre-

diagnosed CT

images of positive

cervical lymph

nodes and 314 CT

images of prediag-

nosed negative

lymph nodes from

45 patients with oral

squamous cell

carcinoma

Oral medicine and

radiology

Cervical lymph

nodes

CT images Premade histo-

logic analysis

iagnostic Ac of

78.2%,

CNN may be

valuable for

diagnostic

support

Limited sample

size

Uthoff et al.24 CNN — Oral pathology Oral cancer

detection

Pictures taken

with smartphone

Oral oncology

specialist

e: 0.850; Sp:

0.887; PPV:

0.877;

NPV = 0.855

Initial feedback is

positive

No biopsies; data

set size

Yu et al.25 CNN 12 samples with

tumorous tissues; 12

samples with non-

tumorous tissue;

80% used for train-

ing, 20% for testing

Oral pathology Tongue squamous

cell carcinoma

Raman

spectroscopy

Premade

diagnosis

e: 99.31%; Sp:

94.40%; Preci-

sion: 94.70%;

Ac: 96.90%

The high sensitiv-

ity and specific-

ity of the CNN

would be help-

ful in obtaining

adequate resec-

tion margins

Small sample size

Kats et al.32 CNN (Region

based)

65 prediagnosed pan-

oramic images with

atherosclerotic

carotid plaques

(ACPs).

Oral medicine and

radiology

Carotid artery Panoramic

radiographs

Not specified e = 75%;

Sp = 80%;

Ac = 83%.

Further improve-

ments are

needed to apply

CNN

Relatively limited

sample size

(continued on next page)

O
O
O
O

R
EV

IEW
A
R
T
IC
LE

V
o
lu
m
e
1
3
2
,
N
u
m
b
er

2
C
o
rb
ella

et
a
l.

2
3
3

R

S

D

S

S

S



Table I. Continued

Study Architecture Training/testing

modalities

Dental specialty Object Imaging

modalities

Reference

standard

Results Conclusions Limitations

Kim et al.33 DL (DeepSurv) Training set: 179

patients

Testing set: 76

patients

Oral pathology Survival to oral

cancer

Data from one

database (sex,

age, site, histo-

logic grade,

TNM stage, T

stage, N stage,

others)

Clinical data C-index (training

set) = 0.810; C-

index (testing

set) = 0.781

Survival predic-

tion may be

improved by

using DL

Small data set of

one single

center

Krois et al.23 CNN Training set: 1456

Testing set: 200

Periodontology Periodontal bone

loss

Panoramic

radiographs

Three examiners Ac = 0.81 (0.02);

Se = 0.81 (0.04);

Sp = 0.81 (0.05)

A CNN showed

discrimination

ability at least

similar to that of

dentists

Small data set;

manually

cropped images

Lee et al.30 CNN (AlexNet) Training set: 535

healthy; 533 with

osteoporosis

Testing set: 200

Oral medicine and

radiology

Osteoporosis Panoramic

radiographs

The diagnosis was

made when 2

observers

agreed, and a

diagnosis of

osteoporosis

was made when

cortical erosion

was observed

AUC for different

approaches

ranged from

0.9763 to

0.9991

High agreement

with experi-

enced oral and

maxillofacial

radiologists in

detecting

osteoporosis

Reliability of

examiners

Park et al.36 CNN (YOLO;

SSD)

Training set: 1028

Testing set: 283

Orthodontics Cephalometric

landmarks

Lateral cephalo-

grams

(608 £ 608

pixels)

One single expert

examiner

5% higher accu-

racy than other

methods

YOLO presented

higher accuracy

and processing

speed compared

to SSD

Reliability of

examiners

Patcas et al.37 CNN Trained on

>0.5 million

images

Orthodontics, oral

surgery, maxil-

lofacial surgery

Facial attractive-

ness, estimated

age

Pictures

(256 £ 256

pixels)

Not reported — CNN might be

considered to

score facial

attractiveness

and apparent

age in orthog-

nathic patients

Reliability of the

standard

Shoukri et al.39 DL Trained on 259 con-

dyles (105 controls

and 154 with osteo-

arthritis); tested on

34 condyles

Oral medicine TMJ osteoarthritis High-resolution

CBCT scans

Dental specialist

through clinical

examination

Ac = 73.5% DL High degree of

conformity in

classifying and

categorizing

condyles

Reliability of

examiners

R-CNN, regional convolutional neural network; CNN, convolutional neural network; CT, computed tomography; Ac, accuracy; DL, deep learning; NILT, near-infrared light transillumination; AUC, area

under the curve; Se, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive value; ENT, ear-nose-throat specialist; CBCT, cone beam computed tomography; OCL, Oral cystic

lesion; TNM, tumor-node-metastasis; YOLO, you only look once; SSD, Single shot detector; TMJ, temporomandibular joint.
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Fig. 2. Architecture of artificial neural networks (ANNs). The feed-forward mechanism represents the flow of information from

input nodes toward output nodes through which an ANN is trained. The backdrop mechanism represents the flow of information

from output nodes toward the input nodes; in this regard, the ANN learns through feedback of the results. Designing an ANN

architecture demands consideration of various parameters such as the number of nodes in each layer, the value assigned to every

individual node, the corresponding weight on each edge (connection between 2 nodes), and the bias assigned to each node in sub-

sequent layers. To put the complexity of an ANN in perspective, the presented simple illustration of an ANN with an input layer

with 10 nodes, 2 hidden layers with 5 nodes each, and an output layer with 2 nodes has 85 weighted edges

{(10 £ 5) + (5 £ 5) + (5 £ 2)} and 12 biases {5 + 5 + 2} for a total of 97 parameters. In designing radiographic image recognition

software on a standard 1024 £ 768 pixel resolution image, where each pixel acts as an input node, the numbers of parameters in

the architecture will increase to 4,024,355.
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the anatomic structures or pathologic conditions of dif-

ferent points on images requiring analysis.

By examining radiographic images, it is relatively

easy for clinicians to recognize the positions and char-

acteristics of teeth as part of their preliminary examina-

tions. In general, CNNs have performed well in

recognizing and classifying teeth from both tridimen-

sional images (i.e., CBCT)12,13 and 2D panoramic and

periapical radiographs.14-16 In the same way, CNNs

have been applied in the field of endodontics to inter-

pret the anatomy of first molar roots and identify the

presence of abnormalities in panoramic radiographs.17

Two studies used CNNs to detect distal root abnormali-

ties from panoramic radiographs in mandibular first

molars. Although the accuracy of the tested systems

(GoogLeNet and AlexNet) was 85.4% and 87.4%,

respectively, both studies demonstrated a number of
methodological limitations including sample selection

and examiner reliability.

Identifying anatomic structures with the aid of CNNs is

important when imaging cardinal surgical structures dur-

ing surgical interventions. The potential to detect the

course of the inferior alveolar nerve and establish its spa-

tial relationship with the roots of third molars is funda-

mental to the preplanning process for surgical extraction

of third molars.18 Though most pathologic conditions that

affect the oral cavity are initially identified by clinicians

through visual assessment, certain cases that require fur-

ther confirmation can be assessed with clinical radio-

graphs and histopathologic examinations.

In general, CNNs and DL have been studied as

adjuncts in the identification of dental caries, periapical

lesions, and periodontal bone resorption from digital

radiographs and other digital images.
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In clinical practice, the diagnosis of caries is per-

formed through visual observation and radiographs to

identify alterations in the appearance of teeth after the

loss of enamel and dentin. Near-infrared transillumina-

tion images are produced to help clinicians diagnose

the presence of dental caries without the aid of radio-

graphs. CNNs have been demonstrated to correctly

detect the presence of caries in approximately 4 out of

5 cases from these types of imaging data.19,20 When

evaluating the potential presence of caries using CNNs

and periapical radiographs, research has identified

them as the most effective methods for detecting caries

in experimental settings, with a diagnostic accuracy of

89% in premolars and 88% in molars.21

In the case of dental pathoses, evidence of the pres-

ence of a periapical radiolucency may be important in

the detection of chronic inflammatory processes

involving teeth. Periapical radiolucencies can be

detected through the presence and interpretation of spe-

cific radiographic signs. One study used images

cropped from panoramic radiographs to test CNNs for

the detection of apical lesions, concluding that the dis-

criminatory ability of CNNs was satisfactory and

highly sensitive in the imaging of molars, likely

because of the reduced distortion of the images in the

posterior areas of the jaw.22

Periodontal bone loss can be evaluated with dental

radiographs and is one of the parameters for classifying

periodontal health and diseases. In a study comparing

the ability to detect periodontal bone loss in panoramic

radiographs, no differences were determined between

the discriminatory ability of CNNs and specialists.23 In

other examples, ML has been applied to identify

cancerous or precancerous lesions of the tongue and

oral mucosa.24,25 Though the results of studies in this

field are preliminary and based on a few cases, the

authors have stressed the potential advantages of using

diagnostic support to make timely diagnoses of malig-

nant lesions in regions with scarce medical coverage.

Potentially malignant lesions can also be detected as

radiolucent areas in panoramic radiographs by using

CNNs.26,27

Several studies have evaluated the use of CNNs in

detecting pathologic conditions outside the oral cavity

by analyzing radiographs that are typically used and

prescribed in dental settings. Existing research has

tested CNNs for the detection of radiographic signs of

maxillary sinusitis in panoramic radiographs and other

types of radiographs that are commonly used or pre-

scribed in dental diagnosis and treatment.28,29

Dental radiographs (both bidimensional and tridi-

mensional) can provide information about pathologic

processes and anatomic landmarks that are not strictly

related to dentistry. In this regard, CNNs have been

applied to aid in the diagnosis of osteoporosis from
panoramic radiographs,30 detect the presence of reac-

tive lymph nodes in patients with oral squamous cell

carcinomas in sections of CT,31 and determine the pres-

ence of atherosclerotic plaques in carotid arteries in

panoramic radiographs.32 Although most authors have

admitted that improvements are needed to increase the

efficacy of CNNs in the field of dentistry, with time,

DL that is applied to dental diagnostic imagery analysis

may also provide support for other medical specialists

in the diagnoses of lesions and diseases.

Other applications of deep learning in dentistry
In addition to investigations of DL as a diagnostic aid,

CNNs have been studied for their benefits in assessing

prognosis, diagnostic imaging segmentation, and other

applications. As an example, to test the potential to

estimate the prognoses of individuals with oral cancer,

a single cohort was submitted to CNNs with informa-

tion derived from numerous large subject databases.33

Similarly, CNNs were studied to evaluate whether the

prognoses of periodontally compromised teeth could

be predicted through analyses of periapical radio-

graphs.34 Forthcoming research may use the scenario

of large patient databases to enhance the potential

application of CNNs.

In periodontology, DL has been applied in the profil-

ing of periodontal microbial patterns related to the pres-

ence of oral malodor.35 Moreover, CNNs have been

applied to help in the detection of landmarks on lateral

cephalometric radiographs in the field of orthodontics.36

CNNs have also been used to determine increases in

attractiveness after orthodontic treatment.37

CONCLUSIONS AND FUTURE APPLICATIONS
The present review explored the existing literature on

the applications of DL in dentistry. The main application

included the use of CNN techniques (CNNs are a type of

DL) to analyze images predominantly collected with

radiographs (periapical, panoramic, and CT scans) that

were cropped and processed using these methods. In

most of the studies, the results of the CNNs were com-

pared with expert opinions during specific clinical sce-

narios, from tooth classification and numbering to

periodontal diagnosis, and included evaluations for the

presence of radiolucent lesions and other anatomic signs

and features.15,22,23,26-30,38 Although the reliability—or

ability to provide consistent and correct measurements

and diagnoses—of human (reference) examiners was

questionable or potentially inaccurate,22,26,36 the CNN

methods appeared to demonstrate comparable accuracy,

specificity, or sensitivity under most of the experimental

conditions.23,27,28,30

One diagnostic limitation of CNNs was represented

by the size and characteristics of the images used as

input data. In most of the studies,14,21,34,37,38 radiographs
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and photographs were cropped and analyzed in low res-

olution because the calculations needed to be made less

complex, reducing the time needed to obtain a response

through analysis. Although many of the authors reported

significantly high reliability in CNNs when they were

tested as supportive tools for diagnosis, it is likely that

an increase in image resolution would result in improved

diagnostic accuracy. The use of CNNs can also lead to

the overfitting of data, thus limiting the external validity

of results. This issue is strictly related to how the train-

ing sets were selected or inadequately considered within

the reviewed studies.

We can hypothesize that AI may provide adjunct

support in the diagnoses of lesions and conditions from

radiographs in dental settings and may prove particu-

larly useful for dental students, junior dentists, general

practitioners, and specialists. This is because the direct

adoption of ML methods may lead to an ethical debate

on the diagnostic credibility of the techniques, which

ought to be thoroughly investigated. Such a hypothesis

found significant support in the papers included in the

present review. Increasing the diagnostic accuracy of

CNNs could also prove vital to the early diagnosis of

oral cancer with intraoral photographs.24 Although

these methods have yet to be validated, research in this

field should be encouraged because early diagnosis of

oral ailments, such as cancer, can drastically affect the

prognosis and global outcome of a disease.

According to the existing literature, CNNs have

proven useful when applied to the discrimination and

classification of teeth and anatomic structures.12-15,17

Future developments may indicate that integrating dis-

criminating and classifying tools with commonly used

software for surgical preplanning may benefit in the

discrimination of liable anatomic structures that require

assessment during technique-sensitive procedures.

However, more research in this field is required so that

the current processing prowess of CNNs results in

accurate analysis or interpretation.

One model demonstrated limitations in using DL to

predict tooth prognoses with periapical radiographs,

because the periodontal evaluation consisted of param-

eters that are more commonly derived from clinical

procedures than radiographs.34 By comparison, another

study demonstrated that DL can be used to improve the

predictability of survival in a subject with oral cancer

after analyzing data about the subject and pathology

from a singular source database.33

In brief, future studies should apply sound methodol-

ogy by using rigorous internal and external validation

to account for the biases that may arise from their sam-

ple selections. Specifically, randomly selected samples

in diagnostic studies should be representative of the

cases and controls and should be of sufficient size to

account for differences in population. Measurements of
the outcomes should be standardized and accurate, pre-

senting both sensitivity and specificity in diagnostic

studies, and the statistical analyses should be clearly

described. Finally, even when specialists are involved,

cases and controls should be defined according to the

parameters of the studies’ objectives rather than to the

human examiners’ opinions. The examiners’ selections

should only be adopted when more objective methods

are infeasible.

In conclusion, there exists no sufficient evidence to

support the routine use of CNNs as diagnostic support

tools within clinical practice, because existing literature

on the subject is sparse. In addition, some criticism can

be raised about examiner reliability and the number of

images that CNNs can process. Nonetheless, because

the results from existing research are encouraging, and

the number of papers pertaining to the topic are growing

year by year, it is likely that scientific evidence on the

use of CNNs in dentistry will gradually increase with

time. Therefore, more studies are needed to confirm the

results presented in this narrative review.
REFERENCES
1. Greenhill DAT, Edmunds DBR. A primer of AI in medicine.

Tech Gastrointest Endosc. 2020;22(2):85-89.

2. Liu X, Faes L, Kale AU, et al. A comparison of deep learning

performance against health-care professionals in detecting dis-

eases from medical imaging: a systematic review and meta-anal-

ysis. Lancet Digit Health. 2019;1:e271-e297.

3. Shen J, Zhang CJP, Jiang B, et al. Artificial intelligence versus

clinicians in disease diagnosis: systematic review. JMIR Med

Inform. 2019;7(3):e10010.

4. Topol EJ. High-performance medicine: the convergence of

human and artificial intelligence. Nat Med. 2019;25:44-56.

5. Cabitza F, Rasoini R, Gensini GF. Unintended consequences of

machine learning in medicine. JAMA. 2017;318:517-518.

6. Bahner JE, H€uper A-D, Manzey D. Misuse of automated deci-

sion aids: complacency, automation bias and the impact of train-

ing experience. Int J Human Comput Stud. 2008;66:688-699.

7. Abramoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial

of an autonomous AI-based diagnostic system for detection of

diabetic retinopathy in primary care offices. NPJ Digit Med.

2018;1:39. https://doi.org/10.1038/s41746-018-0040-6.

8. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classi-

fication of skin cancer with deep neural networks. Nature.

2017;542:115-118.

9. Jha S, Topol EJ. Adapting to artificial intelligence: radiologists

and pathologists as information specialists. JAMA. 2016;316:

2353-2354.

10. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature.

2015;521:436-444.

11. Kulkarni S, Seneviratne N, Baig MS, Khan AHA. Artificial

intelligence in medicine: where are we now? Acad Radiol.

2020;27:62-70.

12. Miki Y, Muramatsu C, Hayashi T, et al. Classification of teeth in

cone-beam CT using deep convolutional neural network. Com-

put Biol Med. 2017;80:24-29.

13. Xu X, Liu C, Zheng Y. 3 D tooth segmentation and labeling

using deep convolutional neural networks. IEEE Trans Vis Com-

put Graph. 2019;25:2336-2348.

http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0001
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0001
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0002
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0002
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0002
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0002
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0003
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0003
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0003
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0004
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0004
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0005
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0005
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0006
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0006
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0006
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0006
https://doi.org/10.1038/s41746-018-0040-6
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0008
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0008
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0008
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0009
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0009
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0009
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0010
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0010
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0011
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0011
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0011
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0012
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0012
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0012
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0013
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0013
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0013


ORAL ANDMAXILLOFACIAL RADIOLOGY OOOO

238 Corbella et al. August 2021
14. Chen H, Zhang K, Lyu P, et al. A deep learning approach to

automatic teeth detection and numbering based on object detec-

tion in dental periapical films. Sci Rep. 2019;9(1):3840. https://

doi.org/10.1038/s41598-019-40414-y.

15. Tuzoff DV, Tuzova LN, Bornstein MM, et al. Tooth detection

and numbering in panoramic radiographs using convolutional

neural networks. Dentomaxillofac Radiol. 2019;48(4):20180051.

16. Zhang K, Wu J, Chen H, Lyu P. An effective teeth recognition

method using label tree with cascade network structure. Comput

Med Imaging Graph. 2018;68:61-70.

17. Hiraiwa T, Ariji Y, Fukuda M, et al. A deep-learning artificial

intelligence system for assessment of root morphology of the

mandibular first molar on panoramic radiography. Dentomaxillo-

fac Radiol. 2019;48(3):20180218.

18. Vinayahalingam S, Xi T, Berge S, Maal T, de Jong G. Auto-

mated detection of third molars and mandibular nerve by deep

learning. Sci Rep. 2019;9(1):9007.

19. Casalegno F, Newton T, Daher R, et al. Caries detection with

near-infrared transillumination using deep learning. J Dent Res.

2019;98:1227-1233.

20. Schwendicke F, Elhennawy K, Paris S, Friebertshauser P, Krois

J. Deep learning for caries lesion detection in near-infrared

light transillumination images: a pilot study. J Dent.

2020;92:103260.

21. Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis

of dental caries using a deep learning-based convolutional neural

network algorithm. J Dent. 2018;77:106-111.

22. Ekert T, Krois J, Meinhold L, et al. Deep learning for the radio-

graphic detection of apical lesions. J Endod. 2019;45. 917-922.

e915.

23. Krois J, Ekert T, Meinhold L, et al. Deep learning for the radio-

graphic detection of periodontal bone loss. Sci Rep. 2019;9

(1):8495.

24. Uthoff RD, Song B, Sunny S, et al. Point-of-care, smartphone-

based, dual-modality, dual-view, oral cancer screening device

with neural network classification for low-resource communities.

PLoS One. 2018;13(12):e0207493.

25. Yu M, Yan H, Xia J, et al. Deep convolutional neural networks

for tongue squamous cell carcinoma classification using

Raman spectroscopy. Photodiagnosis Photodyn Ther.

2019;26:430-435.

26. Ariji Y, Yanashita Y, Kutsuna S, et al. Automatic detection and

classification of radiolucent lesions in the mandible on pan-

oramic radiographs using a deep learning object detection tech-

nique. Oral Surg Oral Med Oral Pathol Oral Radiol.

2019;128:424-430.

27. Poedjiastoeti W, Suebnukarn S. Application of convolutional

neural network in the diagnosis of jaw tumors. Healthc Inform

Res. 2018;24:236-241.

28. Kim Y, Lee KJ, Sunwoo L, et al. Deep learning in diagnosis of

maxillary sinusitis using conventional radiography. Invest

Radiol. 2019;54:7-15.
29. Murata M, Ariji Y, Ohashi Y, et al. Deep-learning classification

using convolutional neural network for evaluation of maxillary

sinusitis on panoramic radiography. Oral Radiol. 2019;35:301-307.

30. Lee JS, Adhikari S, Liu L, Jeong HG, Kim H, Yoon SJ. Osteopo-

rosis detection in panoramic radiographs using a deep convolu-

tional neural network–based computer-assisted diagnosis

system: a preliminary study. Dentomaxillofac Radiol. 2019;48

(1):20170344. https://doi.org/10.1259/dmfr.20170344.

31. Ariji Y, Fukuda M, Kise Y, et al. Contrast-enhanced computed

tomography image assessment of cervical lymph node metastasis

in patients with oral cancer by using a deep learning system of

artificial intelligence. Oral Surg Oral Med Oral Pathol Oral

Radiol. 2019;127:458-463.

32. Kats L, Vered M, Zlotogorski-Hurvitz A, Harpaz I. Atheroscle-

rotic carotid plaque on panoramic radiographs: neural network

detection. Int J Comput Dent. 2019;22:163-169.

33. Kim DW, Lee S, Kwon S, Nam W, Cha IH, Kim HJ. Deep lear-

ning�based survival prediction of oral cancer patients. Sci Rep.

2019;9(1):6994.

34. Lee JH, Kim DH, Jeong SN, Choi SH. Diagnosis and prediction

of periodontally compromised teeth using a deep lear-

ning�based convolutional neural network algorithm. J Peri-

odontal Implant Sci. 2018;48:114-123.

35. Nakano Y, Suzuki N, Kuwata F. Predicting oral malodour based

on the microbiota in saliva samples using a deep learning

approach. BMC Oral Health. 2018;18(1):128.

36. Park JH, Hwang HW, Moon JH, et al. Automated identification of

cephalometric landmarks: part 1—comparisons between the latest

deep-learning methods YOLOV3 and SSD. Angle Orthod.

2019;89(6):903-909.

37. Patcas R, Bernini DAJ, Volokitin A, Agustsson E, Rothe R, Tim-

ofte R. Applying artificial intelligence to assess the impact of

orthognathic treatment on facial attractiveness and estimated

age. Int J Oral Maxillofac Surg. 2019;48:77-83.

38. Lee JH, Kim DH, Jeong SN. Diagnosis of cystic lesions using

panoramic and cone beam computed tomographic images based

on deep learning neural network. Oral Dis. 2020;26:152-158.

39. Prieto JC, Ruellas A, Yatabe M, Sugai J, Styner M, Zhu H, Huang

C, Paniagua B, Aronovich S, Ashman L, Benavides E, de Dumast

P, Ribera NT, Mirabel C, Michoud L, Allohaibi Z, Ioshida M, Bit-

tencourt L, Fattori L, Gomes LR, Cevidanes L. Minimally Invasive

Approach for Diagnosing TMJ Osteoarthritis. J Dent Res. 2019;98

(10):1103-1111. https://doi.org/10.1177/0022034519865187.

Reprint requests:

Dr. Stefano Corbella

IRCCS Istituto Ortopedico Galeazzi

via R. Galeazzi

4, 20161 Milan

Italy

Stefano.corbella@gmail.com

https://doi.org/10.1038/s41598-019-40414-y
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0015
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0015
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0015
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0016
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0016
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0016
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0017
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0017
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0017
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0017
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0018
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0018
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0018
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0019
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0019
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0019
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0020
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0020
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0020
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0020
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0021
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0021
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0021
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0022
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0022
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0022
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0023
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0023
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0023
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0024
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0024
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0024
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0024
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0025
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0025
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0025
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0025
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0026
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0026
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0026
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0026
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0026
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0027
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0027
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0027
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0028
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0028
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0028
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0029
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0029
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0029
https://doi.org/10.1259/dmfr.20170344
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0031
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0031
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0031
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0031
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0031
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0032
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0032
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0032
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0033
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0033
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0033
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0033
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0034
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0034
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0034
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0034
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0034
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0035
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0035
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0035
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0036
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0036
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0036
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0036
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0037
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0037
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0037
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0037
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0038
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0038
http://refhub.elsevier.com/S2212-4403(20)31321-3/sbref0038
https://doi.org/10.1177/0022034519865187
mailto:Stefano.corbella@gmail.com 

	Applications of deep learning in dentistry
	Applications of Deep Learning in Dentistry
	General considerations and methodological issues
	Deep learning as a diagnostic aid
	Other applications of deep learning in dentistry

	Conclusions and Future Applications
	References


