
Continuous defect prediction in CI/CD
pipelines: a machine learning-based framework ?

Lazzarinetti Giorgio1[0000−0003−0326−8742], Massarenti
Nicola1[0000−0002−8882−4252], Sgrò Fabio1[0000−0002−7684−3595], and Salafia

Andrea1[0000−0002−6539−5547]

Noovle S.p.A, Milan, Italy https://www.noovle.com/en/

Abstract. Recent advances in information technology has led to an in-
creasing number of applications to be developed and maintained daily
by product teams. Ensuring that a software application works as ex-
pected and that it is absent of bugs requires a lot of time and resources.
Thanks to the recent adoption of DevOps methodologies, it is often the
case where code commits and application builds are centralized and stan-
dardized. Thanks to this new approach, it is now possible to retrieve log
and build data to ease the development and management operations of
product teams. However, even if such approaches include code control
to detect unit or integration errors, they do not check for the presence
of logical bugs that can raise after code builds. For such reasons in this
work we propose a framework for continuous defect prediction based
on machine learning algorithms trained on a publicly available dataset.
The framework is composed of a machine learning model for detecting
the presence of logical bugs in code on the basis of the available data
generated by DevOps tools and a dashboard to monitor the software
projects status. We also describe the serverless architecture we designed
for hosting the aforementioned framework.

Keywords: Continuous Defect Prediction · Machine Learning · DevOps
· Continuous Integration

1 Overview

In the context of the italian Fondo per la Crescita Sostenibile, Bando “Agenda
Digitale”, D.M. Oct. 15th, 2014, funded by ”Ministero dello Sviluppo Eco-
nomico”, a lot of teams manage and contribute to different software projects
daily. Given the high number of activities that must be taken into account, such

? Activities were partially funded by Italian ”Ministero dello Sviluppo Economico”,
Fondo per la Crescita Sostenibile, Bando “Agenda Digitale”, D.M. Oct. 15th, 2014
- Project n. F/020012/02/X27 - “Smart District 4.0”.

Copyright ©2021 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



G. Lazzarinetti et al.

as managing branches (development, stage, production, features), architecting
software applications, coordinating the developers and interacting with project
managers, it’s useful to have some automatic tools that alert the developers in
case bugs are detected in code. For such a reason, we propose a framework that
aims at easing the management and development activities and that integrates
with DevOps methodologies, with a focus on Continuous Integration (CI) and
Continuous Delivery (CD) operations. With CI/CD operations, thanks to analy-
sis tools such as Jenkins [36], it is possible to detect and avoid unit or integration
errors before shipping applications to production environments. However, such
tools are not able to detect logical bugs and therefore to block builds triggered
from commits. For this reason we decided to develop a methodology based on
machine learning techniques to detect if a commit could contain a logical bug.
The final goal is that of using the proposed methodology to build a monitoring
framework integrated with CI/CD operations that allows a visual exploration of
the status of each software project, in order to evaluate the quality of the software
produced and, in case the machine learning model detects issues, automatically
raise alerts to fix the bug before it reaches production environments.

The rest of this paper is organized as follows: Chapter 2 describes the state of
the art for continuous defect prediction, whereas Chapter 3 describes the dataset,
the preprocessing operations, the models used and the developed dashboard. In
Chapter 4 some infrastructural considerations are described and, finally, Chapter
5 draws some conclusions and some future works.

2 State of the art

DevOps is a software development methodology used in computer science that
aims at enhancing communication, collaboration and integration between devel-
opers and information technology operations [1]. DevOps wants to respond to
the interdependence between software development and IT operations, aiming
to help an organization to develop software products and services more quickly
and efficiently [2]. DevOps automated analysis systems generate huge amounts of
data that can be used to detect unnecessary processes, monitor production and
predict bugs. Server logs can reach hundreds of megabytes in a short time while
additional monitoring tools, like Jenkins [36] or SonarQube [37] can generate
gigabytes of data. Quantities force developers to set up automatic checks with
the use of thresholds for identifying problems. However, the thresholds are not
optimal in this context, given the scarce generalization of the parameters and
the zero adaptation to the infrastructure over time [3]. Moreover, generally, the
systems used in projects that adopt DevOps are many and of different nature.
Each system monitors the health and performance of applications in different
ways. It is therefore difficult to find relationships between different data sources.
Thus, a better approach to analyze this data in real time is through the appli-
cation of machine learning techniques, which allow to give a new vision of the
metrics collected with the DevOps tools. Machine learning techniques applied
in this context allow to monitor the progress of deliveries and the presence of



A Framework for Continuous Defect Prediction

bugs using data collected by continuous integration systems. Machine learning
systems can also use input data of a different nature to produce a more robust
view of the applications on which they are used [4].

When it comes to software bugs, they usually appear during the software de-
velopment process and are difficult to detect or identify, thus developers spend
a large amount of time locating and fixing them. In order to detect them, many
machine learning algorithms have been developed and tested [12]. Indeed, ma-
chine learning algorithms can be applied to analyze data from different perspec-
tives and can benefit from the large amount of code production metrics that are
also used by developers to obtain useful information. Many examples of machine
learning solutions for detecting software bugs have been implemented. For ex-
ample in [14] a combination approach of contexts and Artificial Neural Network
(ANN) is proposed. In [15] three algorithms are compared, namely Naive Bayes
(NB), Decision Tree (DT) and ANN, showing that DT has the best results over
the others. In [16] Bayesian Network (BN) and Random Forest (RF) are com-
pared, showing that BN can outperform RF. Differently, in [17] NB, RF and
ANN are compared, showing that RF is better than the others. In [18] also deep
learning techniques are proposed, showing good performance.

From all these studies emerge that, apart from the choice of the algorithm
that varies according to the used dataset, software metrics are extremely im-
portant for fault prediction in quality assurance, hence, identification of proper
metrics is essential in all software projects [9]. D’Ambros et al. [5] proposed a
benchmark to compare prediction techniques on five publicly available datasets
focusing on the different metrics related to code production, such as line of code,
code complexity [6], number of changes [7] or previous fault [8].

In the context of DevOps CI builds, software bug detection plays an extremely
important role, particularly at change-level. Change-level defect prediction, also
known as just-in-time defect prediction, aims at predicting defective changes
(i.e. commits to a version control system) and is more practical because it can
not only ensure software quality in the development process, but also make
the developers check and fix the defects just at the time they are introduced.
There are a lot of studies about this. For example, in [13] the authors propose a
deep learning based approach over six different datasets, showing good results in
this kind of task. Indeed, their framework relies on a preprocessing and feature
engineering step and on the definition of the deep neural network classifier. The
chosen model differs from the proposal of [10], that relies on Logistic Regression
(LR), because LR considers the contribution of each feature independently and
performs well only when input features and output labels are linearly correlated.
For such reasons, in [13] the authors propose a Deep Belief Network (DBN) which
has the advantage of generating new non-linear combinations features given the
initial set of features.

Scientific community also proposed several datasets related to continuous
defect prediction. In [11] the authors make available 11 million data rows re-
trieved from CI builds that embrace 1265 software projects, 30022 distinct com-
mit authors and several software process metrics. Another well known dataset



G. Lazzarinetti et al.

for continuous defect prediction is the Technical Debt Dataset [19], a curated set
of project metrics data from 33 Java projects from the Apache Software Foun-
dation. It has been produced using four tools, i.e. PyDriller [25], Ptidej [38],
Refactoring Miner [26] and SonarQube. The Technical Debt Dataset includes
information at commit granularity, such as the commit hash, the date, the mes-
sage, on the refactoring list applied in each commit, on the code quality, such as
the list of detected issues related to a commit, the style violations, the detected
anti-patterns and the code smells. Other included information are the Jira [28]
issues retrieved from the project’s issue tracker as well as the fault-inducing
and the fault-fixing commits, that are the association for each fixed fault of the
commit where the fault was created and where the fault was fixed.

3 The Framework

The objective of this research is to develop a framework capable of identifying
bugs from committed code in order to provide from the one hand a synoptic
point of view of the status of software projects and from the other hand alerting
if some inconsistencies and logical bugs are detected.

The goal is that of using such framework trained on a publicly available
dataset in a real case scenario.

The proposed framework consists of three main components: a data pro-
cessing pipeline, a machine learning model for classification and a monitoring
dashboard. In the following sections we will described all these components in
details, by focusing on the publicly available dataset used for training the model,
the preprocessing operations executed to make the dataset compliant with data
from the production environment (since data collected from the real case in-
frastructure has a different granularity with respect to those coming from the
publicly available dataset because of system constraints), the machine learning
models tested that follows the trend of the state of the art and the implemented
dashboard with the way of using and the kinds of analysis performed over it.

3.1 The Dataset

The dataset used for model training is the Technical Debt Dataset [19]. It con-
tains information at the granularity level of the commits organized in nine dif-
ferent tables:

– Projects: contains the links to the GitHub repository and the associated
Jira issue tracker.

– Sonar measures: contains the SonarQube measures such as number of code
lines in the commit, the code complexity and the number of functions.

– Commits: contains the information retrieved from the git log including the
commit hash, the message, the author, the date and timezone and the list
of branches.



A Framework for Continuous Defect Prediction

– Commit changes: contains the changes contained in each commit, includ-
ing the old path of the file, the new path, the type of change (added, deleted,
modified or renamed), the diff, the number of lines added.

– Jira issues: contains Jira issues for each project with information such that
the key, the creation and resolution dates and the priority.

– Fault inducing commits: reports the results from the execution of the
SZZ [21] algorithm.

– Refactoring miner: contains the list of refactoring activities applied in
the repository. The table contains the project, commit hash, the type of
refactoring applied and the associated details.

– Sonar issues: contains the list of SonarQube issues such that the anti-
patterns and the code smess.

– Sonar rules: contains the list of rules monitored by SonarQube.

3.2 Data Preparation

As mentioned, since the real case production environment slightly differs from the
aforementioned dataset due to some constraints imposed by the adopted CI/CD
tools, that imposes us to have data aggregated at push granularity instead of
commit granularity, the Technical Debt Dataset has first been processed and
synthetically modified to match the push granularity by aggregating subsequent
commits with windows of varying lengths. Aggregation of numerical features has
been executed in some cases by averaging the numerical values while in other
cases selecting only the min/max values, depending on the meaning of the feature
in the context of software development.

More precisely, in order to create the proper dataset to train machine learning
models, we consider only some of the available tables, namely GIT COMMITS,
GIT COMMITS CHANGES, SONAR ISSUES, SONAR MEASURES and
SZZ FAULT INDUCING COMMITS. The choice of using only some tables and,
consequently, sonly some features among those available has been done to match
the features actually collected in the real case infrastructure. Tables are related
as in the Entity Relation schema depicted in Figure 1. According to such schema,
data are prepared as follow.

Firstly, we join GIT COMMITS with SONAR MEASURES on projectID and
commitHash since they have the same granularity. Then, given that for each
commit hash in the GIT COMMITS table there are more commit changes in
the GIT COMMITS CHANGES table (one for each file changed), we aggregate
commit changes at commit hash level and compute sum and mean for commit
changes features linesAdded, linesRemoved, nloc, complexity and tokenCount
and count for changeType (Rename, Delete, Modify, Unknown, Add). Thus,
we merge GIT COMMITS CHANGES with the previously prepared dataset
aggregated at commit hash level and, then, merge the resulting dataset with
SONAR ISSUES by adding a label defining if the issues were created or closed
within each commit hash. Here, we consider only sonar issues associated with
commits that induced them and we aggregate only some relevant features, namely



G. Lazzarinetti et al.

Fig. 1. List of the features with their correlation with dataset label.

severity, startLine and effort. Finally, we merge the resulting dataset with
SONAR ISSUES at projectID.

Over these feature engineered dataset, we then add the label for the fi-
nal goal of detecting fault inducing commits. To this attempt, we use the
SZZ FAULT INDUCING COMMITS table, from which we extract all and only
those commits that induced a bug. The label is assigned by the author of the
dataset following their own implementation of the SZZ algorithm [19] (The Open-
SZZ [21]). The SZZ [22] algorithm tries to identify the fault-inducing commits
from a project’s version history. The algorithm was developed in 2005 and has
since been adopted in more than 200 empirical studies[23, 24]. The algorithm
is based on Git’s blame/annotate feature and assumes that the fault-inducing
commit of a fault is known. Usually this is done by combining data from an issue
tracker and from Git’s log command.

3.3 Feature Engineering and Selection

Once the dataset has been reduced to the required granularity and some prelim-
inary features have been computed as described, data are prepared for machine
learning models. First of all, in order to remove missing values, numerical and
categorical variable are imputed using respectively the median and the mode val-
ues. After imputation, categorical variable are converted into numerical with an
ordinal encoder. Variable with zero variance are removed and finally the dataset
is balanced with respect to the fault inducing class. Indeed, after data prepara-



A Framework for Continuous Defect Prediction

tion, there were 517 commits associated with the fault inducing class and 78341
commits non associated with the fault inducing class. Thus, data are subsampled
to match the dimensionality of the positive class.

In addition, dataset’s features have undergone a selection process that in-
volves studying the correlation between each feature with respect to the dataset
label, as shown in Figure 2. The process consisted of a Recursive Feature Elim-
ination (RFE) [20] technique that allows to select the best number of features
using as cutoff the F1-score drop. In particular, we train several RF classifiers
increasing number of feature by following the order of feature importance as
computed in Figure 2. For each classifier trained, we measure the F1-score and
then we plot the values of the F1-score registered with the varying number of
features. In Figure 3 we can see the result of such RFE process. It is possible
to see as the best performance are reached with 18 features, with an average
F1-score of 0.786. This allows us to reduce the dimensionality of data by only
keeping those features valuable to the model.

Feature name Description Aggregation Source

tokenCount Token count of functions sum, mean PyDriller

complexity Cyclomatic complexity sum PyDriller

nloc Lines of code of the file sum, mean PyDriller

linesAdded Number of lines added sum, mean PyDriller

linesRemoved Number of lines removed sum, mean PyDriller

modificationType Type of changed applied count PyDriller
(modify, delete, add, rename)

filesChanged Number of modified files count PyDriller

effort Time needed to solve the issues sum SonarQube

classComplexity Complexity of classes in commits count SonarQube

severity Severity level of the issues max SonarQube
Table 1. Detail of selected features

From hence, the final set of features selected for training is described in
Table 1. The RFE process allowed us to select only 18 features. in Table 1
we can see the feature name, the description, the aggregations and the source.
Each feature is considered once per each aggregation, thus, as an example, the
tokenCount feature is considered twice, both as sum of token count of each
commit and as mean of token count of each commit. Moreover, the feature
modificationType, given its categorical nature, is considered as a unique feature
for each category it can assume (modify, delete, unknown, add, rename).

It is interesting to notice as, among all the information available coming
from SonarQube and Git, the most important features are related to commit
size (e.g. number of lines added/removed, lines of code in files, number of token
in function, type of change applied) and to the type and the effort to restore
the sonar issue. This seems to be somehow intuitively explainable if we consider



G. Lazzarinetti et al.

Fig. 2. List of the features with their correlation with dataset label.



A Framework for Continuous Defect Prediction

Fig. 3. F1-score values per number of features used during training.

that it is more probable to insert logical bug in code when a lot of changes are
performed with respect to when very small changes are applied.

Finally, once features as been prepared and selected, as mentioned, since in
the real case scenario data are aggregated at push level, instead of commit level,
we aggregate subsequent commits to replicate the push granularity. To aggregate
the features we create a set of windows with lengths varying from 1 to 4 in a
random way. We choose to create the windows sizes randomly since, by analyzing
the real case scenario data, we discovered that data does not follow a particular
distribution. In Figure 4 we can see the distribution of the windows sizes used
to aggregate commits. After aggregation the number of element in the positive
class were 257, against 299 elements in the negative class.

Fig. 4. Windows size distribution



G. Lazzarinetti et al.

3.4 The Models

The models chosen for continuous defect prediction are the ones mostly used in
scientific research, such as in [14, 17]. In particular, we tested RF and ANN. To
test the performance of the two models we split the dataset into train and test
sets, with the 80/20 ratio rule.

As far as RF is concerned, its hyperparameters have been identified by means
of grid search optimization over a 5-fold cross validation. The grid search has
been performed considering the combination of the following values:

– Criterion: entropy, gini
– Bootstrap: True, False
– Number of Estimators: 100, 250
– Maximum tree depth: 10, None
– Minimum number of samples per splitting: 2, 3

After the grid search optimization the following parameters has been selected:

– Criterion: gini
– Bootstrap: yes
– Number of Estimators: 250
– Maximum tree depth: None
– Minimum number of samples for splitting: 3

The overall performance on the test set are shown in Table 2.

Class Precision Recall F1-score support

0 0.92 0.91 0.91 76
1 0.89 0.90 0.90 63
Table 2. Performance of Random Forest

Where the True Negatives (TN) are 57 and the True Positives (TP) are 69
whereas the False Positives (FP) are 7 and the False Negatives (FN) are 6.

The other model tested is a Dense Neural Network (DNN), a particular case
of the ANN, trained for binary classification. Its hyperparameters have been
identified by means of grid search optimization over a 5-fold cross validation
that check a combination of the following parameters:

– Optimizer: AdaDelta, Adam
– Learning rate: 0.01, 0.1
– Maximum Number of epochs: 128
– BatchSize: 8, 16, 32

Early stopping criterion has been applied to avoid overfitting and select the
number of epochs. The optimization resulted in the following selection:

– Optimizer: Adam



A Framework for Continuous Defect Prediction

– Learning rate: 0.01
– Number of epochs: 5
– BatchSize: 8

The network architecture is composed of a dense layer with relu activation func-
tion and an output dimension equal to 64 and 1344 parameters, a dropout layer
with a 10% of dropout and a final dense layer with a softmax activation function
and an output dimension equal to 2 and 130 parameters. The network has been
trained with categorical cross entropy as loss function and accuracy as metric.
Performance of the DNN model on the test set is shown in Table 3.

Class Precision Recall F1-score support

0 0.90 0.71 0.79 76
1 0.72 0.91 0.81 63

Table 3. Performance of Dense Neural Network

Where the True Negatives (TN) are 53 and the True Positives (TP) are 58
whereas the False Positives (FP) are 22 and the False Negatives (FN) are 6.

As shown above, performance of the RF is better than the one of the DNN,
especially when comparing the precision and the recall metrics of the positive
class. Indeed, the RF model outperforms the DNN when considering all the
metrics.

3.5 The Monitoring Dashboard

According to the results of the trained classifiers, the RF model has been de-
ployed and used in a production environment. In order to visualize the predic-
tions of the model and keep track of all the operations performed in the different
software projects, each project has been connected to the model and results have
been recorded in a database to be visualized. Thus, a monitoring dashboard has
been designed to easily read the results of the analysis. Given the high number
of data collected daily, we include in the dashboard distributions and time series
charts, in order to give a synoptic point of view of the software projects’ status.
In Figure 5 there is an example of the dashboard developed.

In details, the dashboard firstly includes some global metrics that resume the
operations performed in the different code repositories over which the extraction
and prediction algorithms have been connected. In particular the global metrics
included are:

– Number of commits: total number of commits analyzed by the system.
– Lines added : number of code lines added in the analyzed commits.
– Lines removed: number of code lines removed in the analyzed commits.
– Files changed: number of files modified in the analyzed commits.
– Total bugs: number of bugs identified by the machine learning algorithm

in the analyzed commits.



G. Lazzarinetti et al.

Fig. 5. Example of dashboard’s plots and charts

The dashboard also includes a detailed tables that contains some references
useful to reconstruct the history of each commit, such as the username, the
branch name, the Jenkins job name, the commit hash, the critical violations and
the bugs detected by SonarQube. All these informations are correlated with the
model prediction, so that it is easy when the model detect a bug to identify the
project, the branch and the authors of the interested commit.

Then, with a pie chart it is possible to easily understand the percentage of
commits with a possible bug and with a time series chart it is possible to see
the trend of detected bug together with some other important features, such as
number of lines added, number of files changed and number of lines removed.

Finally, the dashboard gives the user the possibility to filter the content in
order to reduce the number of visualized data and change the dimensions of the
analysis. The available filters are based on date range, name of the repository,
branch name, Jenkins job name, username and model prediction. In this way,
all the charts and metrics previously described can be recomputed with specific
filters, thus deeply exploring each project according to different dimensions.

The developed dashboard has not given only the possibility to detect bugs
in real time, but also the chance to evaluate the quality of the software projects.
Indeed, thanks to the different charts and filters, it has been possible to iden-
tify projects or branches with more bugs, which generally means that are more
complex projects/branches or projects/branches for which the requirements are
not well defined. Moreover, it has been possible to monitor also the resources
that contribute to software projects. As an example, it has been possible to iden-



A Framework for Continuous Defect Prediction

tify resources that usually do not commit RFEquently, but only in case of large
changes or improvements in team’s code quality.

4 Infrastructural considerations

To conclude, we present some considerations related to the infrastructure that
we set-up to serve the proposed framework.

Fig. 6. Architecture of the proposed framework.

We deployed the services using Google Cloud Platform [29] infrastructure. As
depicted in Figure 6, the proposed framework requires to retrieve data both from
GitHub and SonarQube. GitHub and SonarQube information are analyzed by
means of a Python [30] framework called PyDriller that aims at mining software
repositories by easily extracting information from any Git repository, such as
commits, developers, modification, diffs and source codes, and quickly export
CSV file. On a scheduled basis, we retrieved data from Git repositories by means
of such framework and we uploaded them on Google Cloud Storage [31], which is
a blob-based storage service. This action triggers a Google Cloud Function [32],
which is a scalable and serverless functions as a service that, in turn, invokes
Google Vertex AI Prediction [33] service for model predictions. Google Vertex
AI is Google’s unified platform for building, deploy and scale machine learning
models over which we deployed the RF models trained and fine tuned. The results
are then saved to Google BigQuery [34], a serverless, highly scalable multicloud
data warehouse, and made available for visualization by means of a Data Studio
[35] dashboard.



G. Lazzarinetti et al.

5 Conclusions

The goal of this research was that of defining a framework to detect bugs in soft-
ware projects’ commits in a change-level defect prediction scenario. In order to
define such framework, we firstly analyzed the state of the art for machine learn-
ing algorithms applied to support CI/CD operations, with a focus on continuous
defect prediction. The analysis of the state of the art allowed us to define the
main machine learning approach to defect prediction, the main publicly available
datasets and some related works. Thus, we selected an approach and a public
dataset that fit our needs to create the aforementioned framework. However,
differently from the related works that focus on processing the logs of CI tools,
given the constraints set by CI/CD tools used in our production environments,
we needed to preprocess the dataset to consider an agglomerations of record
based on subsequent commits. Thus, we preprocessed the dataset in order to
match real case scenario granularity. Once data has been prepared, they have
undergone a feature engineering step. From the state of the art, indeed, emerged
that properly collecting and selecting features is extremely important within this
context. Thus, we used a RFE process to give importance to features and select
them. Then, we designed and tested two models: a RF and a DNN both with
grid search over 5-fold cross validation for hyperparameters optimization and
early stopping for DNN. Experimental results showed that, on the preprocessed
dataset, RF outperformed DNN, with an average F1-score over the positive class
of 0.91 against 0.81. Thus, we define a Google Cloud based architecture to host
our framework for real time monitoring, that allowed to link different software
projects to the RF model and register all the logs produced in order to visualize
the results. We also design a monitoring dashboard, that allowed us to derive
important insights and evaluate software quality.

The developed framework is extremely useful, especially thanks to the synop-
tic point of view that provides, however some enhancements can be performed.
As an example, some future developments could involve the augmentation of
the features with user-specific information to make the model learning user-
patterns. Other future developments are related to a posterior analysis of the
machine learning models. Indeed, we couldn’t train a model on a real dataset and
a manual analysis of the results showed that this is the reason why the model
produces some false positive. Thus, validating the results of the models and re-
train the model with a real dataset could enhance the model’s performance and
allow for a better usage of the framework.

References

1. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Software, 33(3),
94–100 (2016)

2. Virmani, M.: Understanding DevOps & bridging the gap from continuous integra-
tion to continuous delivery. In: Fifth international conference on the innovative
computing technology (INTECH 2015), pp.78–82. IEEE, Galcia (2015)



A Framework for Continuous Defect Prediction

3. Madeyski, L., Kawalerowicz, M.: Continuous defect prediction: the idea and a related
dataset. In: 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), pp. 515-518. IEEE, Buenos Aires (2017)

4. Nogueira, A. F., Ribeiro, J. C., Zenha-Rela, M. A., Craske, A.: Improving la red-
oute’s ci/cd pipeline and devops processes by applying machine learning techniques.
In: 2018 11th international conference on the quality of information and communi-
cations technology (QUATIC), pp. 282–286. IEEE, Coimbra (2018)

5. D’Ambros, M., Lanza, M., Robbe, R.: An Extensive Comparison of Bug Prediction
Approaches. In: Proceedings of 7 th IEEE Working Conference on Mining Software
Repositories, pp. 31–41. IEEE, Cape Town (2010)

6. Gyimothy, T., Ferenc, R., Siket, I.: Empirical Validation Of Object-Oriented Met-
rics on Open Source Software for Fault Prediction. IEEE Transactions on Software
Engineering 31(10), 897–910 (2005)

7. Hassan, A.: Predicting Faults Using the Complexity of Code Changes. In: Proceed-
ings of the 31 st International Conference on Software Engineering, pp. 78–88. IEEE,
Vancouver (2009)

8. Hassan, A., Holt, R.: The Top Ten List: Dynamic Fault Prediction. In: Proceedings
of the 21st IEEE International Conference on Software Maintenance, pp. 263–272.
IEEE, Budapest (2005)

9. Madeyski, L., Jureczko M.: Which Process Metrics Can Significantly Improve Defect
Prediction Models? An Empirical Study. Software Quality Journal 23(3), 393–422
(2015)

10. Kamei, Y., Shihab,E., Adams, B., Hassan, A. E., Mockus, A., Sinha, A., Ubayashi,
N.: A large-scale empirical study of just-in-time quality assurance. TSE 39(6), 757–
773 (2013)

11. Madeyski, L., Kawalerowicz, M.: Continuous defect prediction: the idea and a re-
lated dataset. In: 2017 IEEE/ACM 14th International Conference on Mining Soft-
ware Repositories (MSR), pp. 515–518. IEEE, Buenos Aires (2017)

12. Alnor, N., Khleel, A., Nehéz, K.: Comprehensive Study on Machine Learning Tech-
niques for Software Bug Prediction. International Journal of Advanced Computer
Science and Applications 12(8), (2021)

13. Yang, X., Lo, D., Xia, X., Zhang, Y., Sun, J.: Deep learning for just-in-time defect
prediction. In: 2015 IEEE International Conference on Software Quality, Reliability
and Security, pp. 17–26. IEEE, Vancouver (2015)

14. Li, Y., Wang, S., Nguyen, T. N., Nguyen, S. V.: Improving bug detection via
context-based code representation learning and attentionbased neural networks. In:
Proceedings of the ACM on Programming Languages, pp. 1–30. Association for
Computing Machinery, New York (2019)

15. Hammouri, A., Hammad, M., Alnabhan, M., Alsarayrah, F.: Software bug predic-
tion using machine learning approach. International Journal of Advanced Computer
Science and Applications 9(2), 78–83 (2018)

16. Pandey, S. K., Mishra, R. B., Triphathi, A. K.: Software bug prediction proto-
type using Bayesian network classifier: A comprehensive model. Procedia Computer
Science 132, 1412–1421 (2018)

17. Uqaili, I. U. N., Ahsan, S. N.: Machine learning based prediction of complex bugs
in source code. The International Arab Journal of Information Technology 17(1),
26–37 (2020)

18. Islam, M. J., Pan, P., Nguyen, G., Rajan, H.: A comprehensive study on deep
learning bug characteristics. In: Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations



G. Lazzarinetti et al.

of Software Engineering, pp. 1–11. Association for Computing Machinery, Tallin
(2019)

19. Lenarduzzi, V., Saarimaki, N., Taibi, D.: The Technical Debt Dataset. In: Pro-
ceedings of the Fifteenth International Conference on Predictive Models and Data
Analytics in Software Engineering, pp. 1–2. Association for Computing Machinery,
New York (2019)

20. Guyon, I., Weston, J., Barnhill, S.,Vapnik, V.: Gene Selection for Cancer Classifi-
cation using Support Vector Machines. Machine Learning 46, 389–422 (2002)

21. Pellegrini, L., Lenarduzzi, V., Taibi, D.: OpenSZZ: A Free, Open-Source, Web-
Accessible Implementation of the SZZ Algorithm. In: Proceedings of the 28th inter-
national conference on program comprehension, pp. 446–450. Association for Com-
puting Machinery, New York (2020)

22. Zeller, A., Sliwerski, J., Zimmermann, T.: When Do Changes Induce Fixes?. In:
proceedings of the 2005 International Workshop on Mining Software Repositories,
pp. 1–5. Association for Computing Machinery, St. lOUSI, mISSURI (2005)

23. Robles, G., Rodriguez-Perez, G., Gonzalez-Barahona, J.M.: Reproducibility and
credibility in empirical software engineering: A case study based on a systematic
literature review of the use of the SZZ algorithm. Information and Software Tech-
nology 99, 164–176 (2018).

24. da Costa, D. A., McIntosh, S., Shang, W., Kulesza, U., Coelho, R., Hassan, A. E.:
A Framework for Evaluating the Results of the SZZ Approach for Identifying Bug-
Introducing Changes. IEEE Transactions on Software Engineering 43(7), 641–657
(2017).

25. Spadini, D., Aniche, M., Bacchelli, A.: PyDriller: Python Framework for Mining
Software Repositories. In: Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE), pp. 908–
911. Association for Computing Machinery, New York (2018)

26. Tsantalis, N., Mansouri, M., Eshkevari, L. M., Mazinanian, D., Dig, D.: Accu-
rate and Efficient Refactoring Detection in Commit History. In: Proceedings of the
40th International Conference on Software Engineering (ICSE ’18), pp. 483–494.
Association of Computing Machinery, New York,(2018)

27. GitHub Homepage, https://github.com/. Last accessed 30 Sep 2021
28. Jira Homepage, https://www.atlassian.com/it/software/jira. Last accessed 30 Sep

2021
29. Google Cloud Platform Homepage, https://cloud.google.com. Last accessed 30 Sep

2021
30. Python Homepage, https://www.python.com. Last accessed 30 Sep 2021
31. Google Cloud Storage Homepage, https://cloud.google.com/storage. Last accessed

30 Sep 2021
32. Google Cloud Functions Homepage, https://cloud.google.com/functions. Last ac-

cessed 30 Sep 2021
33. Google Cloud Vertex AI Homepage, https://cloud.google.com/vertex-ai. Last ac-

cessed 30 Sep 2021
34. Google Cloud BigQuery Homepage, https://cloud.google.com/bigquery. Last ac-

cessed 30 Sep 2021
35. Data Studio Homepage, https://datastudio.google.com/. Last accessed 30 Sep 2021
36. Jenkins Homepage, https://www.jenkins.io/. Last accessed 30 Sep 2021
37. SonarQube Homepage, https://www.sonarqube.org/. Last accessed 30 Sep 2021
38. Ptidej GitHub Repository, https://github.com/ptidejteam/v5.2. Last accessed 30

Sep 2021


