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Abstract: We deal with a problem which combines storage location assignment with se-

quencing decisions about the assigned storage locations. Given a set of different product

types, with the corresponding storage demand, a set of capacitated storage locations has to

be assigned to each product type for the corresponding storing operations. In addition, a

suitable sequencing of the assigned storage locations must be devised for each product type,

i.e., it has to be decided the ordering with which the storage locations will be filled up during

the storing operations. A motivation is that a First-In First-Out (FIFO) picking criterion

among storage locations is required per product type. The sequencing established for the

assigned storage locations will therefore allow to easily implement the FIFO policy in the

successive order picking. Moreover, the selected sequencing also determines the availability

of extra storage per product type, on top of pairs of consecutive storage locations along the

sequence. The goal is to maximize the storage capacity which remains available after the

assignment of the storage locations.

We prove the NP-Hardness of the problem and we model it as a constrained multicom-

modity flow problem on an auxiliary graph. We then propose a Mixed-Integer Linear Pro-

gramming (MILP) model, with some valid inequalities, based on the multicommodity flow

formulation. Two relaxations are proposed as well to estimate the quality of the model solu-

tions. Two matheuristic approaches are then designed starting from the MILP model. The

proposed methodology is applied to a case study related to a large warehouse with a high

stock rotation index in tissue logistics, which motivated our study. Computational results on

a wide test bed related to such a real application context show the efficiency and the efficacy

of the presented approaches.
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1 Introduction

Warehouses are an essential component of any supply chain. Their operation systems are

configured through the following basic processes: reception and dispatch, order picking, stor-

age (Gu et al., 2007; Rouwenhorst et al., 2000). Reception and dispatch are the interface of

a warehouse for incoming and outgoing material flow, and concern the organization of all the

operations required to manage entering and exiting items, i.e., units of the managed product

types. Units of the managed product types are often referred to as Stock Keeping Units

(SKUs) in the related literature. Order picking is generally recognized as the most expensive

warehouse operation, as it tends to be either very labor intensive or very capital intensive.

It requires the organization of the orders to be picked up and of the resources needed for

picking. Storage is concerned with the organization of the products held in the warehouse in

order to achieve high space utilization and facilitate efficient material handling. The broad

organization of the products in a warehouse is normally a strategic/tactical decision made

on management (such as a dedicated storage area for a specific product type) or material

handling considerations (such as a forward area for fast picking). This process results into a

long-term storage assignment policy, which further defines the internal configuration of the

warehouse (such as dimension of specific storage areas and aisle configurations) and that fixes

the rules to follow when stocking of products is needed.

There are various storage assignment policies described in the literature (Gu et al., 2010;

Roodbergen and Vis, 2009). The most representatives are the random, the dedicated, and the

class-based allocation policies (see the pioneering studies of Hausman et al., 1976; Ashayeri

and Gelders, 1985). The random policy involves the random assignment of the incoming

items to any available and eligible location within the storage area, each location having an

equal probability of being selected. In the dedicated assignment policy, the warehouse is

divided into a number of zones, each of those dedicated to one product type. Replenishment

of items of a certain product type always occurs at the corresponding dedicated zone. In

the class-based policy, product types are classified into a number of classes based on their

properties (such as demand rate, order frequency, dimension, or product correlations), each

product class having a reserved zone within the warehouse. Accordingly, an incoming item

of a product class is stored at an arbitrary available location within its reserved zone.

Once a long-term storage assignment policy has been defined, it is necessary to assign

each incoming item to a storage location of the warehouse, possibly subject to additional rules

depending on the specific application context. Examples of storage locations are shelves, cells

or stacks. Thus, a storage location can store several items depending on its own capacity.

The associated problem is generally known as the Storage Location Assignment Problem

(SLAP). Specifically, given information on the availability, position and capacity of the storage

locations, and given information on the set of items to be stored (such as product type and

physical dimension), SLAP aims at determining the storage locations where items have to be
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allocated in the warehouse by optimizing criteria such as material handling cost or storage

space utilization, while respecting the storage assignment policy chosen at a strategic/tactical

level and specific assignment rules, if present. SLAP is an operational decision problem, having

a strong influence on other decisions within the warehouse, such as order picking and routing.

In this paper, we address a problem which combines storage location assignment with

sequencing decisions about the assigned storage locations, and which originates from a real-

world application context in tissue logistics. Specifically, given a set of different product types,

each with its own storage demand expressed in number of items to store, a set of storage

locations has to be assigned to each product type for the corresponding storing operations.

Each storage location has a capacity which depends on the product type, i.e., a maximum

number of items can be stored for that product type, and it can be assigned to at most one

product type, i.e., different types of products cannot share the same storage location. In

addition, a suitable sequencing of the assigned storage locations must be devised for each

product type, i.e., it has to be decided the ordering with which the storage locations will

be filled up during the storing operations. A motivation is that an order picking based on

the time of permanence of the items in the warehouse has to be pursued. More precisely,

a FIFO picking criterion among storage locations is required per product type. That is,

separately per product type, items stored in a certain storage location cannot be retrieved

if items in previously replenished storage locations have still to be picked up. Notice that

the FIFO picking criterion is not required inside storage locations: in that case, the order

of picking will depend on the specificity of the considered storage locations. The sequencing

established for the assigned storage locations will thus have an impact on the successive order

picking operations, by allowing to easily manage the required FIFO criterion. Moreover,

for each product type, the selected sequencing also determines the availability of additional

extra storage for that product type. Specifically, an additional amount of storage can be made

available on the top of pairs of consecutive storage locations along the sequence, provided that

they are fully replenished and physically contiguous. The amount of the available storage on

the top does depend on the two storage locations at the ground level and on the product

type to be stored. Notice that optimizing assignment and sequencing in such a way to be

able to exploit extra top storage is particularly relevant for a clever storage management,

especially in the case of warehouses usually near to their level of saturation, such as the ones

characterized by a high index of product rotation. Additional soft constraints are present

in the addressed problem, as better clarified next, with the goal of maximizing the storage

capacity which remains available after the assignment of the storage locations.

We prove the NP-Hardness of the considered problem. Moreover, after its formulation in

terms of constrained multicommodity flows on an auxiliary graph, we propose a Mixed-Integer

Linear Programming (MILP) model, with some valid inequalities, based on the suggested mul-

ticommodity flow formulation. A strengthening of the MILP model for the special case of
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acyclic auxiliary graph is also presented. Two alternative relaxations are then proposed to

estimate the quality of the model solutions, which are based on storage location assignment

and on aggregation of product types, respectively. Since the problem can be very hard to ad-

dress computationally, two matheuristic approaches are designed starting from the proposed

MILP model. The first approach rapidly constructs a solution of good quality via problem

decomposition, and then provides it to the MILP model as a starting solution, in order to

improve it. The second approach, instead, first assigns storage locations to the incoming

items via the proposed assignment based relaxation, and then determines a sequencing of the

assigned storage locations, solving a restricted version of the model itself. A case study is

then presented, which is related to the tissue logistics sector and which motivated our re-

search in this topic. The involved warehouse is larger than 10,000 m2 and is characterized

by a high product rotation index (specifically, more than 1,000 pallets are moved per day).

Its modernization is the goal of a big research project funded by Regione Toscana, in Italy,

and it includes the resolution of the considered combined assignment-sequencing storage lo-

cation problem via Operations Research techniques. Computational experiments on real data

provided by the company show the efficiency and the efficacy of the proposed approaches.

The paper is organized as follows. Section 2 reviews the main results from the literature.

Specifically, the main results in the area of SLAPs are presented in Section 2.1. Since storage

locations are stacks in the presented case study, storage systems based on stacks are reviewed

in Section 2.2, as well as near systems such as the deep-lane ones. Multi-level storage assign-

ment features are also discussed. Moreover, works taking into account picking aspects when

assigning storage locations are presented in Section 2.3, then positioning our contribution

with respect to the literature in Section 2.4. Section 3 describes the problem addressed in

this paper in more detail. Section 4 presents the proposed MILP formulation and provides

the corresponding NP-Hardness result. Valid inequalities, a strengthened model tailored to

the considered case study, and some model relaxations are also presented. The matheuristic

approaches built to tackle the problem are described in Section 5. Section 6 presents the

case study and describes the experimental plan, by reporting the results of the computational

experiments we performed. Finally, Section 7 concludes the paper and identifies some future

directions of research.

2 Literature review

Storage assignment problems, also referred to as loading problems in a broader perspective

(Lehnfeld and Knust, 2014), deal with the storage of incoming items. Each item reaching

the storage area, which can be a warehouse, but at a more general level could be a yard,

the bunt of a container ship or even a tram/bus depot, has to be assigned to a feasible lo-

cation and stored until it is required to be retrieved. A storage assignment plan decides on
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the exact storage position of each item in the storage system (Lehnfeld and Knust, 2014).

As indicated before, such decisions are made by considering some long-term storage assign-

ment policy (random, dedicated and class-based policy, previously mentioned, are the most

popular), that broadly prescribes the rules to follow when stocking is needed, and which

strictly depends on the considered application. An overview of container assignment policies

in terminals can be found in Dekker et al. (2007) and Stahlbock and Voß (2008). Focus-

ing on traditional (aisle-based) warehouses instead, an overview of warehouse management

policies can be found in Rouwenhorst et al. (2000); De Koster et al. (2007) and Gu et al.

(2007). Operationally, besides the chosen storage assignment policy, storage decisions are

made by considering criteria related to material handling costs, stocking/retrieving efforts,

time for order preparations, resource utilization for stocking/picking operations, warehouse

space utilization or even energy consumption.

Since storage assignment problems originate from a wide range of different applications,

a lot of scientific literature exists dealing with problems motivated from practice. These

problems are often described with different terms and notions depending on the characteristics

of the storage system and on the specific context, as overviewed next.

2.1 Storage Location Assignment

When items have to be stored on racks or shelves accessible from the side, then the problem

is commonly referred to as the Storage Location Assignment Problem, or SLAP, as previously

introduced (Rouwenhorst et al., 2000; De Koster et al., 2007; Gu et al., 2007). The SLAP

literature is quite diversified because of the variety of peculiar storage assignment policies,

(Li et al., 2016; Pang and Chan, 2017; Trindade et al., 2021), storage system customization

(Bortolini et al., 2015; Hübner and Schaal, 2017; Bianchi-Aguiar et al., 2018; Ostermeier

et al., 2021), product management rules (Zhang et al., 2017), internal layouts of warehouses

(Ramtin and Pazour, 2015; Foroughi et al., 2020) and optimization criteria (Ang et al., 2012;

Meneghetti and Monti, 2014; Yang et al., 2015; Battini et al., 2016; Ene et al., 2016; Larco

et al., 2017) requested in real situations. We mention here Quintanilla et al. (2015), who

consider a real problem raised by a Spanish company, where pallets of different weights need

to be stocked in a chaotic warehouse. The warehouse has a rectangular layout with a certain

number of racks on both sides of a set of parallel storage aisles. Racks may accommodate

items on a double-level (one on top of the other) and on double-depth (one behind another).

However, heaviest pallets should be stored below a maximum level and the most fragile ones

cannot have another pallet on top of them. The crucial point to manage for the company

is the remaining available storage capacity after the allocation of the items. The authors

propose a MILP model with constraints on positions and level restrictions, whose objective

is maximizing the space available for future assignments after the current SLAP is solved.

Several heuristic algorithms and a local search procedure are presented.
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2.2 Stacking, Deep-Lane and Multi-level Storage Assignment

Some storage systems consist of multiple stacks where items are stored on top of (e.g., a

pile of containers) or back-to-back to (e.g., a queue of pallets) each other. These systems

are typically considered when dealing with the storage of high volumes of incoming items

having large inventory and high turnover (Accorsi et al., 2017). When items are piled one

on top of another on vertical stacks, and cranes are employed to move the items and can

only access the topmost ones, as in case of containers or steel slabs in yards, the problem is

usually referred to as a Stacking problem (Lehnfeld and Knust, 2014). On the other hand,

when items are stored on horizontal stacks on the ground, such as items stored back-to-back

of each other on queue accessible only frontally, then the problem is known as a Deep-Lane

Storage Assignment problem (Boysen et al., 2018). The two problems are extremely similar

since the horizontal height of stacks in the first problem corresponds to the vertical depth of

deep-lanes in the second one.

Considering the first kind of problems, container stacking problems have been widely

studied and reviews may be found in Vis and De Koster (2003); Dekker et al. (2007); Stahlbock

and Voß (2008) and Carlo et al. (2014). They may raise in storage yards, where containers

are stored temporarily after they are discharged from vessels or before they are loaded onto

vessels, or in vessels themselves, where containers are stowed and additional ship stability

constraints are imposed.

On the other hand, focusing on deep-lane storage systems, in different applications in-

coming items may be not only stored back-to-back of each other, but also one on top of each

other. The so-called stackability in a deep-lane context, defines the number of levels a deep-

lane may have to store items by still maintaining the storage safety (Accorsi et al., 2017). In

particular, Zaerpour et al. (2015) consider a multi-level deep-lane storage system where unit

loads are stored on deep-racks following a shared storage policy, i.e. different product types

share the same lane. Moreover, the assignment of items to a deep-lane belonging to a certain

level may be done no matter if the lower levels are already occupied.

The multi-level feature is particularly addressed in the steel industry, where coils can

usually be stored one on top of the others up to two levels for stability and safety. At the

ground level a coil may be stored at any available position in the storage area, while at

the upper level a coil can only be stored on top of two adjacent ground-level coils in the

same row. Thus, coils are triangularly related, while normally items on stacks are vertically

related (Tang et al., 2012). In Zäpfel and Wasner (2006) the storage assignment of steel

coils considering such a storage policy is accounted for. Coils are of different types and the

only restriction to exploit the triangular storage policy is that a coil can be positioned in an

upper storage location if the location is empty and both locations underneath contain coils, no

matter of the product type. A unique overhead traveling crane moves coils to perform storage

operations simultaneously with retrieval and reshuffling operations. The problem is compared
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to a job shop scheduling problem and formulated as a nonlinear integer programming model

aiming at minimizing the completion time for the last order during the planning period. A

local search based heuristic is proposed and tested through computation. Tang et al. (2015)

consider the storage assignment of coils onto the stowage of a ship. The authors formulate the

problem as a MILP aiming at minimizing a combination of ship instability throughout the

entire voyage, the shuffles needed for unloading at the destination ports, and the dispersion of

coils in the stowage destined to the same port. A construction heuristic coupled with a tabu

search algorithm is developed, and several valid inequalities are proposed to help reducing the

solution time. Other applications where this special stacking structure is considered are Tang

et al. (2012, 2014); Xie et al. (2014) and Maschietto et al. (2017), where the focus however is

the reassignment of locations for those coils blocking other ones targeted to retrieve.

2.3 Storage locations assignment addressing retrieval order aspects

Frequently, when stacks are filled up with not interchangeable items, some specific retrieval

orders, such as the Last-in First-Out (LIFO) or the FIFO one, are requested to be followed

when picking items to fulfill the orders requested (Gu et al., 2007). In particular, the FIFO

policy is often taken into account, especially for those products with a peculiar product life

(like fresh or frozen food). Even though this is a common practice in many real situations,

the required retrieval order is normally addressed only when picker routing is planned, and

often only approximations are used (Pang and Chan, 2017; Accorsi et al., 2017). Instead, no

specific actions are usually taken when storage locations are assigned to incoming items to

ease guiding retrieval operations later on, when orders are to be satisfied.

To the best of the author’s knowledge, very few contributions deal with this aspect. Some

of them have already been reviewed before, focusing however on the kind of storage system

used rather than on picking order considerations. These approaches address the problem of

storing items in such a way as not to block other retrieving items, or at least to minimize

blocking situations, where an item is said to be blocked if one or more items with later retrieval

times are stocked above/in front of it. To retrieve the current target item thus, other ones need

to be removed from the current stack and located into other positions through premashalling

and reshuffling operations (Carlo et al., 2014; Lehnfeld and Knust, 2014; Maniezzo et al.,

2021).

Revillot-Narváez et al. (2020) consider a compact storage system composed of multi-level

deep-racks accessible from the front, where items of different product types share the same

lane. When pallets are stored, an ascending ranking is reported on their tags, and their re-

trieval has to be performed by strictly following this FIFO order. The authors develop two

ILP models (with and without premarshalling) to assign locations to items aiming at mini-

mizing the number of reshuffles over the planning horizon. Two greedy-randomised heuristic
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approaches are proposed to solve large real-size instances, which are tested on realistic data

from a frozen food distribution centre in Chile.

Slightly different are the approaches of Zaerpour et al. (2015); Boysen et al. (2018) and

Boywitz and Boysen (2018), that consider a specific procedure to store items grouped in

orders into a set of deep lanes. In particular, to enable a smooth retrieval process, orders are

stored based on the arrival time (or time windows) of the truck in which they will be loaded.

No two pallets destined to different trucks with overlapping retrieval intervals are assigned to

the same lane. Zaerpour et al. (2015) consider multi-level deep-lane racks with frontal and

posterior access, where a FIFO retrieval policy is followed. Earlier orders are positioned first,

while later orders as last in the system. The authors propose a MILP formulation whose

objective is to minimize the total retrieval time, and a three step constructive heuristic to

solve real instances. Boysen et al. (2018) consider a problem in distribution centers handling

fresh produce. A deep-lane refrigerated storage system is considered, all lanes having identical

capacity and being initially empty. Pallets of food assembled during the day according to

the demands of supermarkets have to be intermediately stored until the next morning, when

trucks servicing the supermarkets have to be loaded. A storage assignment is sought such that

blockings are avoided and the minimum number of lanes is utilized. The authors investigate

the most usual case in which deep-lanes allow only a front access compared to a novel system

in which access is allowed from both sides. In the first case, a LIFO policy for retrieval needs

to be considered: later orders are positioned on the back while earlier ones at the front of

the system. In the second case, a FIFO policy for retrieval is applied. The authors propose

two MILP models and provide a simple yet effective solution procedure based on a problem

decomposition. The computation of robust solutions against unpunctual arrival times of

trucks is then addressed in Boywitz and Boysen (2018) for the front access deep-lane system.

2.4 Positioning our problem with respect to the literature

The problem presented in this paper shares some features with storage assignment problems

from the literature. Nevertheless, they have never been considered jointly in a unique setting.

Firstly, for each product type, storage location assignment decisions are taken simultaneously

with sequencing decisions about the order of using the assigned storage locations. The aim is

twofold: i) to enable a FIFO retrieval policy among storage locations later on, separately per

product type, and ii) to exploit additional storage availability on the top of pairs of consecutive

storage locations along each sequence. To the best of our knowledge, the combination of such

features has never been addressed before in the storage assignment literature.

Moreover, the considered two-level storage policy is different than others from the lit-

erature. By considering in particular the triangular policy addressed in Zäpfel and Wasner

(2006), reviewed in Section 2.2, there the only condition to locate an item at the upper level

is that the lower locations are already occupied. Consequently, the number of positions po-
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tentially available at the upper level is fixed and only depends on the number of locations on

the ground level. In our problem, instead, an additional condition has to be respected: both

the storage locations in each sequence (at the lower level) and the storage locations made

available on the top of consecutive storage locations along the sequence must be assigned to

the same product type. Therefore, the number of potentially available storage locations at

the upper level is not fixed, rather it may change depending on the amount of items to store

and their product type. This also affects the calculation of the storage remaining available

after the item allocation.

3 The Sequence-based 2-Level SLAP

The problem is defined in a warehouse composed of a set D of departments, each having

a given number of storage locations. Let K denote the set of the different product types

requiring storage, and let qk be the number of items of product type k that need storage,

for each k ∈ K. A storage location can store only items of the same product type, and the

number of items that can be stored, also referred to as the capacity of the storage location,

does depend on the product type. Precisely, if items of type k are assigned to a storage

location i, then its capacity is cki , meaning that at most cki items of type k can be stored in i.

The majority of the product types can be stored in any available storage location, i.e.,

a random storage policy is considered. However, special product types do exist, which have

to be preferably managed according to a dedicated storage policy. Precisely, we consider

n disjoint subsets Ks1, . . . ,Ksn of special product types, that should be preferably stored in

departments belonging to the subsets Ds1, . . . ,Dsn, respectively. Notice that Ds1, . . . ,Dsn are

not necessarily disjoint.

As previously described, in addition to assign a set of storage locations to each product

type k ∈ K, a suitable sequencing of the assigned storage locations must be devised for

each product type. That is, for each product type it has to be decided the ordering with

which the assigned storage locations will be filled up during the storing operations. The

motivation is twofold. Firstly, the selected sequencing enables a FIFO picking criterion among

storage locations, separately per product type, as required in the kind of warehouses under

consideration. Once a sequencing has been established, in fact, it will be sufficient to follow

the corresponding ordering among storage locations during the successive picking steps in

order to guarantee the satisfaction of the FIFO criterion. Notice that the satisfaction of

the FIFO picking criterion among items stored in the same storage location is not required

instead, the picking criterion in that case strongly depending on the characteristics of the

used storage locations. The FIFO retrieval policy is typical of warehouses in application

contexts such as the pharmaceutical and the tissue ones. The latter is the one addressed in

the presented case study, in Section 6.1.
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Figure 1: Sequence-based two-level storage policy representation.

Secondly, for each product type, the selected sequencing has an influence on the availability

of extra storage for that product type. Specifically, additional storage can be made available

on the top of each pair of consecutive storage locations along the sequence, provided that

they are physically contiguous. The requirement that the two storage locations must also

be consecutive along the sequence is due to the requested FIFO picking criterion among

storage locations: if two storage locations, say i and j, would not be consecutive along the

sequence selected for a certain product type k, and therefore would not be consecutively

replenished during the stocking operations of k, then the items put on their top could block

items having a very different time of permanence in the warehouse, by making difficult the

corresponding FIFO picking realization. On the contrary, the considered policy enables an

easy implementation of the FIFO picking criterion among storage locations, at least at the

ground level: if the storage location j immediately follows the storage location i along the

sequence of a certain product type k, and they are physically contiguous, during the storing

operations of k store items on top of i and j immediately after the full replenishment of i

(before) and of j (next); then, during the picking operations, firstly retrieve from the top of

i and j, so allowing to pick items, at the ground level, firstly from i and then from j, thus

guaranteeing the FIFO property among the storage locations at the ground level.

Hereafter this policy will be referred to as sequence-based two-level storage policy. An

example is shown in Figure 1. In the figure, three storage locations are assigned to a certain

product type at the ground level, and they are depicted from the front. The associated

number represents their ordering in the corresponding sequence: 1, 2 and 3. By assuming

that the storage location 1 is physically contiguous to the storage location 2, and 2 is physically

contiguous to 3, then an extra storage is made available on top of 1 and 2, denoted by (1,2) in

the figure. Similarly, an extra storage is made available on top of 2 and 3, denoted by (2,3).

Accordingly, storing operations will be performed by firstly replenishing storage location 1,

then storage location 2, and after storing on their top (i.e., at (1,2)). The storing operations

will proceed at storage location 3, then storing on the top of 2 and 3, i.e., at (2,3). In order

to guarantee the FIFO property at the ground level, picking operations will be performed

starting from the top storage (1,2), and then picking items at the ground level from storage

location 1. After, items from the top storage (2,3) will be retrieved, by thus allowing to

retrieve items before from storage location 2 and then from storage location 3.
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Indeed, the sequencing decisions rely on a set P, containing the pairs of storage locations

which can be consecutive in a sequence. P is usually defined according to some Quality of

Service considerations, and it expresses some logical conditions about the order of replenish-

ment of the storage locations. For example, if two storage locations, say i and j, are too far,

the management might not want that j be replenished immediately after i. According to this,

a storage location j can be the successor of a storage location i in a sequence if and only if

(i, j) ∈ P. For each (i, j) ∈ P and for each product type k, the amount of extra storage which

can be made available on the top of i and j will be denoted by bkij . Notice that this amount

generally does depend on the two storage locations at the ground level and on the product

type to be stored. In particular, bkij = 0 for each k if i and j are not physically contiguous.

By summarizing, the addressed problem consists in assigning a sequence of available stor-

age locations to each product type k ∈ K, by satisfying the following constraints:

• each storage location can be assigned to a unique product type,

• the sum of the capacities of the storage locations assigned to a product type k, plus the

extra storage made available on the top level thanks to the sequence-based two-level

storage policy, must be greater than or equal to the storage demand qk,

• the subsets Ks1, . . . ,Ksn of special product types should be preferably stored in depart-

ments belonging to the subsets Ds1, . . . ,Dsn, respectively,

while maximizing the residual storage capacity, i.e., the storage capacity which remains avail-

able in the warehouse after the assignment of the storage locations. This problem will be

named S2L-SLAP, which stands for Sequence-based 2-Level SLAP.

4 A multicommodity flow model

In this section, we propose a multicommodity flow formulation to S2L-SLAP, with some valid

inequalities. We also present two relaxations, and prove the NP-Hardness of S2L-SLAP.

4.1 The auxiliary graph

In order to formulate the problem, we introduce an auxiliary graph G = (N,A) describing

the availability of storage locations in the warehouse.

The set of nodes N consists of: (i) a set S containing one node for each storage location

available in the warehouse; (ii) a fictitious source node Σ; (iii) a fictitious sink node Θ. A

balance cki is associated with each node i ∈ S for each k ∈ K, which gives the capacity (i.e.,

the availability in terms of items) of the corresponding storage location for product type k.

The set of arcs A defines the pairs of storage locations which can be consecutive in a

sequence. As indicated before, the modeling idea is to associate a suitable sequence of available
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storage locations with each k ∈ K, thus specifying in which order the storage locations have

to be used when storing and, consequently, the order with which storage locations will be

emptied for shipping operations later on. Specifically, the set of arcs A consists of: (i) arcs

(Σ, j), with j ∈ S, to model the assignment of the first storage location to a product type;

(ii) arcs (i, j), with i, j ∈ S and (i, j) ∈ P, to model the assignment of the available storage

location j immediately after the available storage location i (recall that P defines the allowed

set of consecutive storage locations along a sequence); (iii) arcs (i,Θ), with i ∈ S, to model

the assignment of the last storage location to a product type. In particular, the subset of arcs

connecting two contiguous storage locations will be denoted by

Ac = {(i, j) ∈ A : storage locations i and j are contiguous} .

A weight bkij , associated with each arc (i, j) ∈ A for each product type k ∈ K, indicates the

amount of extra storage which can be made available on top of i and j for product type k.

Notice that bkij = 0 for each k ∈ K if (i, j) /∈ Ac.

Example 4.1 Consider the warehouse in Figure 2a. At the ground level there are six stor-

age locations on the left and eight storage locations on the right. Each storage location has

a capacity four, independently of the product type, and it is depicted as a row of four rect-

angles, one for each item that can be stored. The rectangles are full black colored to denote

unavailability (i.e., items of some product types have already been stored) or white to denote

availability for storage. The available storage locations in the warehouse are four and they are

outlined in the figure by an identifier inside a gray circle. Since storage locations 2 and 3 are

contiguous, an additional storage can be made available on top of them, say four additional

items. Figure 2b reports the auxiliary graph associated with the considered instance. As in

the presented case study, the set P contains each pair of available storage locations (i, j) with

i < j. The nodes other than Σ and Θ, one for each available storage location, are marked with

the same identifiers used in Figure 2a, and the corresponding balances, i.e., the capacities of

the available storage locations, are associated between brackets. Regarding the arc weights,

(a) Warehouse configuration (b) Graph representation

Figure 2: Warehouse configuration and related graph representation.
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a weight 4 is associated with the arc (2,3), to represent the additional storage that can be

exploited on top of the contiguous storage locations 2 and 3, while the weight is 0 for all the

other arcs (weights equal to 0 are omitted in the figure).

4.2 Sequence of assigned storage locations as a directed path

We model the sequence of storage locations to assign to each product type k ∈ K by means

of a directed path in the auxiliary graph from node Σ to node Θ, along which the quantity qk

to be stocked in the warehouse is sent, thus modeling the storing operations at the selected

storage locations. This is formulated in terms of a flow pushed along the path. However, this

is a non-traditional flow pushing. In fact, the amount of flow of product type k entering a

node j along the path is suitably decreased, according to the capacity of the involved storage

location, in order to model a storing operation at that storage location. Specifically, the flow

is decreased by ckj , unless the predecessor of j along the path, say i, represents a storage

location which is contiguous to j. In the latter case, the flow of product type k is decreased

by ckj + bkij , because of the sequence-based two-level storage policy previously described. A

progressive flow reduction so gives rise for each k ∈ K.

Example 4.1 (continued). Considering again the Example 4.1, suppose that 8 items of

product type 1 and 10 items of product type 2 need to be stored. A possible solution is given

in Figure 3. The two paths, corresponding to the product types 1 and 2, respectively, are drawn

with different dashed lines. The flow along each path is also reported, modeling the storing

operations along the corresponding storage locations. Considering the product type 1, a flow

of value 8 is pushed along the corresponding path, since 8 items need to be stored. The first

storing operation is performed at storage location 1. This storage location is saturated, i.e.,

4 items are stored, and the remaining 4 items move along the path to be stocked in storage

location 4, which is the second in the sequence. As for product type 2, a flow equal to 10 is

pushed along the corresponding path, due to its storage request. The first assigned storage

location is 2, where 4 items are stocked. The remaining 6 items are then moved to the second

Figure 3: Solution representation in terms of directed paths.
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assigned storage location, i.e., 3, in terms of a flow equal to 6. Since storage locations 2 and

3 are physically contiguous (see Figure 2a), the extra storage on their top can be exploited,

and the 6 items are stocked in storage location 3 (4 items) and on the top of storage locations

2 and 3 (2 items). Notice that a negative flow, equal to −2, is associated with the last arc

of the path. This value represents the opposite of the residual storage availability on top of

storage locations 2 and 3: that is, 4 (extra storage on top of 2 and 3) - 2 (number of items

stored on top of 2 and 3) = 2.

4.3 The objective function

The goal of S2L-SLAP is to maximize the storage capacity available after the assignment of

the storage locations, which may be a very critical objective in several application contexts.

Maximizing the available storage capacity is not equivalent to minimize the number of assigned

storage locations, due to the sequence-based two-level storage policy. Figure 4 highlights the

difference between the two objectives. Consider two consecutive days in which, respectively,

6 and 9 items of two different product types need to be stored, and the initial configuration

of the warehouse reported in Figure 4a. As in the previous example, black colored rectangles

denote unavailability, whereas white colored rectangles denote availability. Figure 4b shows

an optimal solution in case the minimization of the assigned storage locations is the objective

of the problem. The items needing storage in Day 1 are stocked into storage locations 1

(a) Items to store and ware-

house configuration.

(b) Minimizing assigned stor-

age locations.

(c) Maximizing storage capac-

ity available after assignment.

Figure 4: Difference between minimizing assigned storage locations (b) and maximizing avail-

able storage capacity after assignment (c).
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and 2; as a result, there is no enough space available for storing items of Day 2. Figure 4c

describes instead the unique optimal solution in case the available room in the warehouse

after the assignment is maximized, under the assumption that the extra storage available on

top of the contiguous storage locations 1 and 2 is equal to 3. The items needing storage in

Day 1 are stocked into the available storage locations 3 and 4. The available storage after this

assignment is thus 9, i.e., the two contiguous storage locations 1 and 2, each with capacity 3,

plus the extra storage equal to 3 on top of them. The 9 items needing storage in Day 2 can

then be stocked, i.e., no infeasibility is now achieved.

4.4 Model description

To formulate S2L-SLAP, we introduce three families of variables:

1. Assignment variables:

• zki ∈ {0, 1}, for any i ∈ S and k ∈ K, model the assignment of storage location i

to product type k;

• zai ∈ {0, 1}, for any i ∈ S, model the storage locations that are available after the

assignment;

• zaij ∈ {0, 1}, for any (i, j) ∈ Ac, model the extra storage, on top of the contiguous

storage locations i and j, which is available after the assignment;

2. Sequencing variables: xkij ∈ {0, 1}, for any (i, j) ∈ A and k ∈ K, model the directed

path selected for product type k in terms of a unitary flow from node Σ to node Θ;

3. Flow variables: fkij ∈ R, for any (i, j) ∈ A and k ∈ K, model the storing operations

along the sequence of storage locations assigned to k in terms of a suitable flow along

the corresponding path.

Using these variables, the proposed multicommodity flow model can be stated as follows:

max
∑
i∈S

cmaxi zai +
∑

(i,j)∈Ac

bmaxij zaij + w
∑

k∈
n⋃

p=1
Ks

p

∑
i∈S

δki z
k
i (1)

subject to:

zai +
∑
k∈K

zki = 1 ∀ i ∈ S, (2)

zaij ≤ zai ∀ (i, j) ∈ Ac, (3)

zaij ≤ zaj ∀ (i, j) ∈ Ac, (4)
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∑
j∈N−(i)

xkji −
∑

j∈N+(i)

xkij =


−1 if i = Σ

0 if i ∈ S

1 if i = Θ

∀ k ∈ K, ∀ i ∈ N, (5)

zki =
∑

j∈N−(i)

xkji ∀ k ∈ K, ∀ i ∈ S, (6)

∑
j∈N+(Σ)

fkΣj = qk ∀ k ∈ K, (7)

∑
j∈N−(i)

fkji −
∑

j∈N+(i)

fkij =
∑

j∈N−(i)

cki x
k
ji +

∑
j∈N−(i):
(j,i)∈Ac

bkjix
k
ji ∀ k ∈ K, ∀ i ∈ S, (8)

0 ≤ fkij ≤ qkxkij ∀ k ∈ K, ∀ (i, j) ∈ A : j 6= Θ, (9)

− 2cmax xkiΘ ≤ fkiΘ ≤ 0 ∀ k ∈ K, ∀ (i,Θ) ∈ A. (10)

The objective function (1) consists of two parts. The first two summations define the primary

optimization goal, i.e., the storage capacity available after the assignment, to be maximized,

while the last sum aims to satisfy the secondary optimization goal, i.e., the request that special

product types should be preferably stored in specific departments, which is thus pursued as

a soft constraint. Specifically, the first sum equals to the capacity of the storage locations

which are available after the assignment. Here cmaxi does denote the maximum among the cki

capacities of storage location i. The second sum counts the extra storage which is available

after the assignment on the top level, thanks to the sequence-based two-level storage policy.

Recall that Ac is the set of arcs connecting two contiguous storage locations and each of them

may contribute to the available storage capacity, via extra storage on their top level, whenever

both i and j are unassigned storage locations, as guaranteed by constraints (3) and (4). Here

bmaxij does denote the maximum among the bkij availabilities for the arc (i, j). The third sum

in (1) involves the control parameter w, which is set in such a way to weight the relative

relevance of the secondary optimization goal (i.e., the assignment of the storage locations

belonging to the department sets Ds1, . . . ,Dsn to the special product types in Ks1, . . . ,Ksn,

respectively) with respect to the primary optimization goal. In this sum, the parameter δki is

1 if the storage location i belongs to a preferable department for the special product type k,

and it is 0 otherwise.

Constraints (2) state that each available storage location will be either assigned to a

product type or will remain available after the assignment. Constraints (5) define a directed

path from Σ to Θ for each k ∈ K by means of the binary variables xkij , with the aim of

modeling the assignment of a sequence of storage locations to each k. In a standard way, each

path is modeled in terms of a unitary flow sent from the source node Σ to the destination

node Θ. N+(i) and N−(i) denote the sets of nodes linked to i via an exiting and an entering

arc, respectively, that is N+(i) = {j ∈ N : ∃ (i, j) ∈ A} and N−(i) = {j ∈ N : ∃ (j, i) ∈ A}.
Constraints (6) state that a node i can belong to the path designed for the product type k if
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and only if the corresponding storage location has been assigned to k. Constraints (7)-(8) are

the flow conservation constraints, related to the flow variables fkij , which are used to model

the storing operations along the sequence of storage locations assigned to each k ∈ K. Notice

that (8) also model the sequence-based two-level storage policy via the second addendum of

the right hand side. In fact, if j is the predecessor of i along the path, and it is physically

contiguous to i, i.e., (j, i) ∈ Ac, then an extra storage bkji can be exploited on the upper level,

above j and i, depending on k. Otherwise, only the capacity cki of the storage location i

can be exploited. Also observe that, in addition to model the storing operations along the

sequence of storage locations for each k, the flow variables and the related constraints prevent

subtours in the returned solutions. Constraints (9)-(10) link together sequencing and flow

variables. Specifically, a flow of type k can be sent along an arc (i, j) only if (i, j) belongs to

the path assigned to k. In that case, if (i, j) ∈ A with j 6= Θ, i.e., fkij represents the amount

of product k still to be stored after the storing operations at i, then such an amount must be

nonnegative and less than or equal to the total amount qk to be stored. As for the arcs of type

(i,Θ), since they model the end of the storing operations, their flow must be nonpositive and

bounded from below by −2cmax, where cmax denotes the maximum capacity of all storage

locations in the warehouse. Notice that, for each k, the opposite of the flow along (i,Θ),

i.e., −fkiΘ, indicates the number of items of product type k which can still be stored at i

and, possibly, on top of i and its predecessor along the sequence, thus providing an useful

additional information about the status of the warehouse in terms of storage availability.

The sets, the parameters and the variables related to the model are summarized in Table 1.

4.5 Valid inequalities

In order to enhance the multicommodity flow model (1)-(10), we have considered and exper-

imented the valid inequalities stated in Lemma 4.1.

Lemma 4.1 The following equalities and inequalities:

zki =
∑

j∈N+(i)

xkij ∀ k ∈ K, ∀ i ∈ S, (11)

∑
i∈S

cki z
k
i +

∑
(i,j)∈Ac

bkijx
k
ij ≥ qk ∀ k ∈ K, (12)

xkij ≤ zki ∀ k ∈ K, ∀ (i, j) ∈ Ac, (13)

xkij ≤ zkj ∀ k ∈ K, ∀ (i, j) ∈ Ac, (14)

are satisfied by any feasible solution of the multicommodity flow model (1)-(10).

Proof: Equalities (11) can be immediately obtained by combining constraints (5) and (6).
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Table 1: Sets, parameters and variables used in the model.

Sets

K set of different product types

Ks
1, . . . ,Ks

n subsets of special product types

Ds
1, . . . ,Ds

n subsets of departments where special product types have to be preferably stored

S set of available storage locations

Ac set of arcs connecting pairs of contiguous storage locations

Parameters

Σ fictitious source node

Θ fictitious sink node

cki capacity of storage location i for product type k

bkij capacity made available on top of i and j for product type k, if (i, j) ∈ Ac

δki indicate if storage location i is preferable for the special product type k

w relative relevance of the secondary optimization goal w.r.t. the primary goal

qk number of items to stock for product k ∈ K
cmax
i maximum capacity of storage location i

bmax
ij maximum availability of arc (i, j)

cmax maximum capacity of all storage locations in the warehouse

Variables

zki ∈ {0, 1} model the assignment of storage location i to product type k

zai ∈ {0, 1} model the availability of storage location i after the assignment

zaij ∈ {0, 1} model the extra storage on top of i and j available after the assignment

xkij ∈ {0, 1} model the directed path from node Σ to node Θ for product type k

fkij ∈ R model the storing operations along the sequence assigned to k in terms of a flow

Regarding (12), let us fix k ∈ K. From constraints (6) and (8) it follows that∑
j∈N−(i)

fkji −
∑

j∈N+(i)

fkij = cki z
k
i +

∑
j∈N−(i):
(j,i)∈Ac

bkjix
k
ji

holds for any i ∈ S. Then, by summing up these equalities over i we get∑
j∈N+(Σ)

fkΣj −
∑

i∈N−(Θ)

fkiΘ =
∑
i∈S

cki z
k
i +

∑
(i,j)∈Ac

bkijx
k
ij .

Moreover, constraints (7) and (10) guarantee that∑
j∈N+(Σ)

fkΣj −
∑

i∈N−(Θ)

fkiΘ ≥
∑

j∈N+(Σ)

fkΣj = qk,

thus implying inequalities (12).
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Finally, let k ∈ K and (i, j) ∈ Ac. Constraints (6) imply

zkj =
∑

p∈N−(j)

xkpj ≥ xkij ,

while equalities (11) imply

zki =
∑

p∈N+(i)

xkip ≥ xkij ,

i.e., inequalities (13) and (14) are satisfied. �

The multicommodity flow formulation has been tested with and without the additional

constraints (11)-(14). As reported in Section 6, the proposed valid inequalities allowed one to

enhance the formulation regarding the number of instances solved. Hereafter model (1)-(10)

and model (1)-(14) will be referred to as S2L and S2L-VI, respectively.

It is possible to observe that, if the auxiliary graph is acyclic or can be converted into an

acyclic structure, as in the addressed case study, then the flow variables fkij and the related

flow constraints (7)-(10) can be dropped by S2L-VI. In fact, constraints (12) ensure sufficient

capacity to each product type, also taking into account the two level storage policy, and no

cycle elimination is required. The resulting strengthened formulation will be referred to as

S2L-Acyclic, to emphasize its suitability for the special case of acyclic structured graphs.

4.6 Relaxations

In order to evaluate the quality of the solutions found by the formulations, two relaxations

have been proposed starting from S2L-VI. The first one disregards the sequencing constraints,

just assigning a set of storage locations to each product type. Notice that the assignment

of special product types to preferable departments and the sequence-based two-level storage

policy are still managed, the latter although in a relaxed form. The resulting relaxation,

called REL-ASSIGN, can thus be stated as follows:

max
∑
i∈S

cmaxi zai +
∑

(i,j)∈Ac

bmaxij zaij + w
∑

k∈
n⋃

p=1
Ks

p

∑
i∈S

δki z
k
i (1)

subject to:

zai +
∑
k∈K

zki = 1 ∀ i ∈ S, (2)

zaij ≤ zai ∀ (i, j) ∈ Ac, (3)

zaij ≤ zaj ∀ (i, j) ∈ Ac, (4)∑
i∈S

cki z
k
i +

∑
(i,j)∈Ac

bkijx
k
ij ≥ qk ∀ k ∈ K, (12)

xkij ≤ zki ∀ k ∈ K, ∀ (i, j) ∈ Ac, (13)
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xkij ≤ zkj ∀ k ∈ K, ∀ (i, j) ∈ Ac. (14)

The second relaxation, instead, relies on the aggregation of the product types. Specifically,

we define a representative for each special product type, i.e., Ks1,. . . , Ksn, and a representative

for the set of the remaining product types, i.e., K\
n⋃
p=1
Ksp. The demand of each representative

is set equal to the total demand of the product types in the corresponding set. Model S2L-VI

is then modified accordingly. The resulting relaxation will be called REL-AGGR.

4.7 Computational complexity

We conclude this section with a proof of the time complexity of S2L-SLAP problem.

Theorem 4.2 S2L-SLAP is NP-Hard.

Proof: The proof is by reduction from the Maximum Fixed-Length Disjoint Paths Problem

(MFLDP), which is NP-complete in its decisional form (Garey and Johnson, 1979). Consider

an instance of MFLDP, say P1. Given a directed graph G = (V,E), vertices s and t, and

positive integers K,Q ≤ |V |, P1 asks to verify whether G contains K mutually vertex-disjoint

directed paths from s to t, each involving exactly Q arcs.

Given P1, define the following instance of S2L-SLAP, hereafter denoted as P2. In P2,

there are K product types requiring storage (i.e., |K| = K), none of them being special (i.e.,

Ks1 = · · · = Ksn = ∅). Regarding the available storage locations, in P2 there is an available

storage location for each node i ∈ V , with i 6= s, t, referred to as i, too. Moreover, there

are 2K additional storage locations, named s1, . . . , sK and t1, . . . , tK , which correspond to

K copies of node s in P1 and to K copies of node t in P1, respectively. The capacity of

each storage location is equal to 1 independently of the product type (i.e., cki = 1 for any

storage location i and k ∈ K). Regarding the set of pairs of storage locations that can be

consecutive in a sequence, in P2 the set P contains a pair for each (i, j) ∈ E such that both

i and j are different than s and t. In addition, P contains the pairs of storage locations

(sh, i), with h = 1, . . . ,K, for each arc (s, i) ∈ E, and the pairs of storage locations (i, th),

with h = 1, . . . ,K, for each arc (i, t) ∈ E. Parameters bkij are set in such a way that they

hold M , which is a very big value, for the pairs of storage locations (sh, i) and (i, th), for any

h = 1, . . . ,K and k ∈ K, and are 0 otherwise. Finally, the demand of a product type k is

qk = 2M +Q+ 1 for any k ∈ K.

By construction, G contains K mutually vertex-disjoint directed paths from s to t, each

involving exactly Q arcs, i.e., the instance P1 is feasible, if and only if in instance P2 it is

possible to assign a sequence of storage locations to each product type by exactly satisfying

its demand. Equivalently, P1 is feasible if and only if the residual capacity of the warehouse

after the assignment is |V − 2|+ 2K − (Q+ 1)K. The thesis follows1. �
1 MFLDP aims at defining K or more disjointed paths. Nevertheless, also the variant of this problem where

exactly K disjointed paths are sought is NP-complete.
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Notice that the sequence-based two-level storage policy comes into play in the presented

proof.

5 Matheuristic approaches

Two matheuristic approaches have been designed starting from S2L-VI. The first approach

rapidly constructs a solution of good quality via problem decomposition, and then provides

it to model S2L-VI as a starting solution, in order to improve it. The second approach,

instead, first assigns storage locations to the incoming items via the relaxation REL-ASSIGN

presented in Section 4.6, and then determines a sequencing of the assigned storage locations,

solving a restricted version of model S2L-VI itself.

5.1 A decomposition approach

Preliminary experiments using the state-of-the-art commercial solver CPLEX have shown

that a huge amount of time was spent sometimes by the solver to find a first feasible solution

to start the resolution process. In order to overcome this issue, we propose the following

two-phase approach:

Phase 1: generate an initial feasible solution to provide to the solver via problem decom-

position;

Phase 2: call CPLEX to solve S2L-VI (see Section 4.5), starting from the solution deter-

mined in Phase 1.

Phase 1 consists of the following steps:

1. The set K of the product types is partitioned into Λ subsets, where Λ is a parameter

of the approach, in such a way that the number of items to be stored for each subset

is about the same, i.e., approximately (
∑

k∈K q
k)/Λ. Let Kλ, with λ = 1, . . . ,Λ, denote

the resulting subsets.

2. Λ subproblems are generated and solved in cascade to stock the subsets of product types

in K1, . . .KΛ, respectively, each time removing those storage locations already assigned

in the previous solved subproblems. Specifically, by denoting by Φλ the set of storage

locations assigned to the product types in Kλ when solving the λ-th subproblem, then

Φ1 ∪ · · · ∪ Φλ−1 are removed from the set of storage locations S when determining Φλ.

So doing, it is not possible to assign the same storage location in different subproblems.

All the generated Λ subproblems are solved via model S2L-VI.
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3. The optimal solutions of the Λ subproblems are merged into a unique solution, which

is the initial feasible solution provided to the Branch and Bound algorithm of CPLEX

to solve the overall S2L-VI formulation.

The matheuristic approach is summarized in Algorithm 1. Hereafter it will be named MATD,

where D stands for decomposition.

Algorithm 1 The MATD approach

1: Partition K into Λ almost balanced groups with respect to the number of items to stock:

K1, . . . ,KΛ

2: Φ0 = ∅
3: for λ = 1, . . . ,Λ do

4: Remove Φλ−1 from S
5: Solve the λ-th subproblem on Kλ
6: Insert into Φλ the assigned storage locations

7: end for

8: Unify the subproblem solutions: Φ =
Λ⋃
λ=1

Φλ

9: Solve model S2L-VI starting from solution Φ

5.2 An assignment based approach

Also the second approach is composed of two phases. Firstly, an assignment of storage

locations to the incoming items is devised via the relaxation REL-ASSIGN (see Section 4.6).

Then, a sequencing of the assigned storage locations is looked for by solving a restricted

version of model S2L-VI, where the assignment variables are fixed according to the solution

found by REL-ASSIGN. Hereafter this approach will be denoted as EUR-RA.

Algorithm 2 The EUR-RA approach

1: Find an assignment ΦREL−ASSIGN of storage locations to incoming items via relaxation

REL-ASSIGN

2: Solve model S2L-VI by fixing the assignment variables according to ΦREL−ASSIGN

Notice that, whereas MATD returns a feasible solution at the end of the first phase, and

this can be relevant in case a problem solution needs to be rapidly designed, the solution

found in the first phase of EUR-RA is not feasible to S2L-VI. However, if an optimal solution

of REL-ASSIGN is determined in the first phase of EUR-RA, and a feasible solution for

S2L-VI is found in the second phase, then the solution returned by EUR-RA is provably

optimal to S2L-VI. The inconvenience is that, as reported in Section 6, REL-ASSIGN may be

computationally hard to solve to optimality. In our experimentation we thus set a time limit

to the REL-ASSIGN resolution. As a consequence, if the optimality of the solution computed
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by REL-ASSIGN in the first phase of the approach is not certified, then the solution returned

by EUR-RA is not necessarily optimal to S2L-VI. However, as shown in Section 6, EUR-RA

proved to be very efficient in determining solutions near to the optimal ones, in some cases

certifying their optimality.

6 Numerical experiments

6.1 The case study addressed

The production site of the considered company, leader in the tissue sector, is composed of a

production area, a warehouse, a sortation area and several shipping docks. The warehouse is

larger than 10,000 m2 and comprises four departments. Each department has a rectangular

internal layout composed of blocks of storage locations, which are stacks in the considered

application. Stacks are accessible only frontally, and they are framed by narrow storage

aisles and wide cross aisles. Different blocks may be composed of different number of stacks,

all having though the same capacity. However, stacks belonging to different blocks may have

different capacities. Specifically, the storage area is divided into 29 blocks, which are composed

of a variable number of stacks ranging from 15 to 65. Stacks have a capacity ranging from 8

to 17 items at the ground level, independently on the product type to store.

The sortation area is used as a collection area where items can be temporarily stocked,

once retrieved from their positions within the warehouse, waiting to be loaded on the trucks.

It can stock up to 1,000 items and is normally filled up as much as possible during the night to

quickly start the truck loading operations the next morning. The structure of the warehouse

is depicted in Figure 5a, while the internal structure of a department is depicted in Figure 5b.

The production site works daily on 3 shifts of 8 hours. More than 300 different product

types can be produced. Two sets of special product types are considered: high rotational and

perishable products. High rotational and perishable products have a favorite department.

(a) Warehouse representation (b) Department representation

Figure 5: Warehouse and department representations.
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Precisely, and referring to Figure 5a, Department 4, which is a kind of fast picking area since

it is located near the sortation area, should be preferable dedicated to high rotational products,

while Department 1 should be preferable dedicated to perishable products for its lower tax

of humidity. Hereafter high rotational products will be denoted by HR, while perishable

products, which are tissues in the considered context, will be denoted by P. Products are

released by the production area in small quantities and constantly during each shift, already

wrapped and arranged in so-called columns of pallets all having the same dimension. That

is, items are columns of equal size in the addressed case study, and therefore the inventory

will be expressed in terms of columns.

The planning horizon to be considered in this application context is the day. On average,

about 900 columns are released per day (300 on average for each shift) and about the same

quantity is shipped. Departments and sortation area are thus steadily near to their saturation

level. The list of the product types released per day, together with the associated number

of columns to store, is known and will be referred to as the storage list in the following. As

described in Section 3, for each product type included in the daily storage list, a sequence of

empty stacks available in the warehouse must be assigned to the product type, which must

be suitable to guarantee the storage of all the columns of that product type. Regarding

the sequencing decisions, in the considered application any pair of available stacks can be

consecutive in a sequence. However, to break symmetries, the set P contains only arcs of

form (i, j) with i < j. The auxiliary graph is thus converted into an acyclic structure in the

considered case study. Moreover, due to the layout of the warehouse, the set Ac, defining the

subset of the arcs connecting contiguous storage locations, contains an arc (i, j) ∈ A only if

both i and j belong to the same block of the warehouse and they are physically contiguous.

Stack assignment and sequencing decisions must respect all the rules presented in Sec-

tion 3. In particular, whenever two contiguous stacks are occupied by columns of the same

product type at the ground level, an additional stack can be created on the top of the two

stacks, with the same capacity of each ground stack at the basis. Recall in fact that contiguous

stacks belong to the same block of the warehouse and therefore have equal capacity.

6.2 Plan of the experiments

Three types of experiments have been performed. The aim of the first set of experiments

is to compare the efficacy and the efficiency of the formulations presented in Sections 4.4

and 4.5. Specifically, S2L and S2L-VI are tested on a wide pool of real instances related to the

addressed case study. Moreover, given the acyclic structure characterizing the auxiliary graph

in such instances, as outlined in Section 6.1, the strengthened formulation S2L-Acyclic has

been tested as well. The set of instances is described in Section 6.3, while the computational

results are reported in Section 6.4. The same set of instances has been solved by considering
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both the relaxations proposed in Section 4.6 and the continuous relaxation. The obtained

results are reported in Section 6.5.

The second set of experiments aims at comparing the performance of the proposed math-

euristic approaches MATD and EUR-RA, presented in Sections 5.1 and 5.2, over the same

set of instances used in the first set of experiments. The results are reported in Section 6.6.

Finally, in Section 6.7 we assess the efficacy and the efficiency of EUR-RA, which has

shown a very good behavior in the second set of experiments, in a wider and more complete

setting, where assignment and sequencing storage location problems are consecutively solved,

on a daily basis, jointly with picking and housekeeping operations, by thus simulating the use

of this matheuristic approach on a 6-day week.

The mathematical formulations and the algorithms have been implemented using the

OPL language. The solver used is CPLEX 12.6 (IBM ILOG, 2016). All the experiments have

been conducted on an Intel Xeon 5120 computer with 2.20 GHz and 32 GB of RAM, with a

time limit of one hour for the experiments related to S2L, S2L-VI, S2L-Acyclic, MATD and

EUR-RA, and a time limit of two hours for the relaxation bound computation.

6.3 The instances

The data set provided by the company comprises the following daily information: the ware-

house configuration at the beginning of the considered day (i.e., product types and corre-

sponding number of columns inside the warehouse), the storage list of the day (i.e., product

types and corresponding number of columns needing storage that day) and the shipping list

of the day (i.e., product types and number of columns leaving the warehouse that day).

For the first and second set of experiments, we randomly selected 20 not consecutive days

from the data set, and partitioned them into two classes depending on the total amount of

columns to stock. The first class, called ClassLA, refers to 10 days where the number of

columns to stock is lower than the average number of columns to stock over the 20 selected

days. The second class, called ClassHA, refers to 10 days where the number of columns to

stock is higher than the average. More in detail, the instances in ClassLA have to assign 737

columns of 11 different product types on average: 39.7% are columns of type HR, whereas

1.6% are columns of type P. The instances in ClassHA have to assign 1098 columns of 14

different product types on average: 20.9% are columns of type HR, whereas 1.3% are columns

of type P. The features of the 20 instances are shown in Table 2, where the total number

of columns to assign and the number of columns of product type HR and P are reported.

Averages are put in the last line of the table.

The average number of empty stacks before the assignment is similar in the two classes:

147 in ClassLA and 139 in ClassHA. Therefore, the size of the auxiliary graph used to model

the problem is about the same on average for the two classes of instances. However, the

instances in ClassHA have more columns to assign, which are related to a greater number

25



Table 2: Features of the instance set.

ClassLA ClassHA

Total HR P Total HR P

ID (col.) (col.) (col.) ID (col.) (col.) (col.)

1 827 477 0 11 1062 328 16

2 872 364 17 12 1253 462 7

3 575 197 5 13 1050 588 6

4 781 640 6 14 966 419 13

5 973 199 14 15 1151 250 20

6 675 347 16 16 974 12 29

7 457 142 12 17 1019 12 10

8 656 351 21 18 1187 93 23

9 773 81 24 19 1125 0 19

10 784 129 5 20 1192 134 10

Avg. 737 293 12 Avg. 1098 230 15

of different product types. This implies more commodities to manage on average in the

corresponding MILP formulations, and so more paths to design. These characteristics render

the stack assignment and sequencing particularly heavy for ClassHA, as reported next. As an

additional information, the average number of variables over the 20 instances is 271,612, while

the average number of constraints is 411,742 for formulation S2L and 416,622 for formulation

S2L-VI. Instead, the average number of variables is 136,802, while the average number of

constraints is 10,465 for formulation S2L-Acyclic.

6.4 Efficacy and efficiency of S2L, S2L-VI and S2L-Acyclic

Formulations S2L, S2L-VI and S2L-Acyclic rely on the parameter w, which weights the rel-

ative relevance of the secondary optimization goal (i.e., the assignment of the preferable

departments to the special product types) with respect to the main goal for the company

(i.e., to maximize the total space available after the assignment). As outlined in the case

study description (Section 6.1), columns of product type HR should be preferably stored in

Department 4, whereas columns of product type P should be preferably stored in Department

1. Increasing the value of w would tend to enhance the assignment of these special products

to their target departments. We performed several preliminary tests with different values

of w, ranging from 1 to 50. Increasing the value of w generally makes the problem harder

to solve. This is reasonable since the solver has to maximize the total space available after

the assignment while trying to enhance the assignment of columns of types HR and P to

their target departments, an objective which may be in contrast with the first one. The two

objectives thus become more and more conflicting as w increases. We report here the results

related to w = 5, which proved to be a good compromise between the total space available af-
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Table 3: Comparison of percentage optimality gaps among S2L, S2L-VI and S2L-Acyclic.

ClassLA ClassHA

ID S2L S2L-VI S2L-Acyclic ID S2L S2L-VI S2L-Acyclic

1 2.30% 3.52% 1.30% 11 - - 2.32%

2 5.56% 5.66% 2.48% 12 6.95% 6.59% 3.18%

3 1.12% 1.45% 0% 13 3.36% 3.46% 1.22%

4 - 3.08% 1.05% 14 3.75% 2.54% 0%

5 5.28% 4.87% 1.77% 15 6.71% 9.88% 3.80%

6 1.35% 1.26% 0% 16 8.70% 5.61% 4.21%

7 1.03% 1.37% 0.37% 17 3.88% 6.65% 2.41%

8 0.91% 0.84% 0% 18 - - 2.25%

9 - 4.24% 1.79% 19 7.51% 5.37% 1.64%

10 - 3.06% 1.86% 20 3.77% 5.13% 2.47%

ter the assignment and the number of columns assigned to their target departments, without

excessively complicating the resolution process of the instances.

Table 3 shows, for S2L, S2L-VI and S2L-Acyclic and for each of the 20 instances belonging

to ClassLA or to CLassHA, the percentage optimality gap returned by the solver at the end

of the resolution process, which may occur either because the optimum is found or because

the total time limit (i.e., one hour) is reached. Notice that, for S2L-Acyclic, the resolution of

four instances stopped due to the first motivation. Sometimes CPLEX was not able to find a

feasible solution within the time limit imposed, in which case ‘-’ appears in the table for the

corresponding instance.

As reported in the table, the instances in ClassHA appear to be more difficult to address

computationally, according to their characteristics outlined in Section 6.3. Regarding the

tested formulations, results are pretty similar when considering S2L or S2L-VI on the instances

that both formulations are able to solve, sometimes achieving better results for the former

(e.g., Instance 1), sometimes being better for the latter (e.g., Instance 19). Nevertheless,

within the time limit imposed, CPLEX was not able to find a feasible solution for five instances

out of 20 when the formulation S2L is considered, whereas only two instances were not solved

when the formulation S2L-VI is taken into account. On the other hand, all the instances were

solved when using the strengthened formulation S2L-Acyclic. Indeed, S2L-Acyclic is able

to solve four instances to optimality, three belonging to ClassLA and one to ClassHA, and

overally returns lower percentage optimality gaps than the ones returned by S2L and S2L-VI.

Since S2L-Acyclic achieved better results compared to S2L and S2L-VI, it has been chosen

as the kernel formulation to implement the resolution approaches proposed in Sections 5.1

and 5.2.
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6.5 Comparison with relaxed problems

We consider three relaxations to assess the difficulties in solving the problem. The first one

is REL-AGGR, which relies on the aggregation of the product types into three categories:

HR, P and the remaining product types. Notice, however, that the number of columns to

assign is the same as in the not-relaxed case. The second relaxation is REL-ASSIGN, which

disregards the sequencing constraints, just assigning a set of storage locations to each product

type. Both relaxations have been described in Section 4.6. Given the acyclic structure of the

auxiliary graphs in the considered case study, we implemented REL-AGGR starting from

the strengthened formulation S2L-Acyclic. Finally, the third relaxation is the continuous

relaxation of S2L-Acyclic, named REL-C in the following.

The three relaxations have been solved with CPLEX with a time limit of two hours.

Table 4 reports, for REL-AGGR, REL-ASSIGN and REL-C, and for each of the 20 instances,

the solving time in seconds (time, in the table) required by CPLEX, which may stop either

by finding an optimum or by reaching the time limit imposed, the percentage optimality gap

(gap%, in the table) when CPLEX stops, and either the optimal objective value or the best

upper bound found by CPLEX, if the optimum is not reached (UB, in the table). The last

column (BB, in the table) reports the best upper bound found through the three relaxations.

As reported in Table 4, REL-AGGR and REL-C solve all the instances to optimality in

a few seconds, the latter being faster and overally providing better bounds. Regarding REL-

ASSIGN instead, in the majority of the cases CPLEX reaches the time limit of two hours.

However, 7 instances are solved to optimality. Moreover, REL-ASSIGN always returns the

best upper bound among the three relaxations (see column BB).

The results related to REL-AGGR suggest that one of the difficulties of the problem

addressed is the high number of product types to manage. In fact, all the instances of the

relaxed problem modelled by REL-AGGR, where only three product types are present, are

solved by CPLEX to optimality, and in a few seconds in the majority of the cases. As opposed,

when a realistic number of different product types is considered, as for the cases reported in

Section 6.3, the problem becomes more difficult to address computationally. Such an insight

has been exploited in designing the matheuristic approach based on decomposition.

On the other hand, the results related to REL-ASSIGN show that when the sequencing

aspect is disregarded, then the problem remains generally hard to solve. However, as outlined,

7 instances have been solved to optimality.

6.6 Efficacy and efficiency of matheuristics MATD and EUR-RA

We now compare the results obtained by the matheuristics MATD and EUR-RA on the same

set of instances used in the previous experimentation. Given the acyclic structure of the

auxiliary graphs, and given the best results achieved (see Section 6.4), the kernel formulation

used to implement MATD and the Phase 2 of EUR-RA is S2L-Acyclic.
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Table 4: Relaxation bounds.

REL-AGGR REL-ASSIGN REL-C

ID time gap % UB time gap % UB time gap % UB BB

1 7.94 0% 1929 2294.14 0% 1877 0.45 0% 1927.86 1877

2 2.68 0% 1091 3755.02 0% 975 0.49 0% 1061.13 975

3 1.34 0% 2068 480.20 0% 1984 0.41 0% 2041.72 1984

4 45.07 0% 3544 7200 0.87% 3494.00 3.59 0% 3533.50 3494.00

5 26.70 0% 2817 7200 1.11% 2734.14 2.26 0% 2776.35 2734.14

6 139.53 0% 3734 192.75 0% 3691 1.27 0% 3752.62 3691

7 33.90 0% 4435 2423.38 0% 4386 1.93 0% 4427.10 4386

8 5.35 0% 3730 183.35 0% 3674 1.83 0% 3709.16 3674

9 571.15 0% 3715 7200 2.48% 3673.81 3.26 0% 3693.01 3673.81

10 53.52 0% 3585 7200 1.07% 3511.08 4.90 0% 3544.57 3511.08

11 41.17 0% 2639 7200 2.66% 2587.02 4.12 0% 2606.69 2587.02

12 15.45 0% 2089 7200 2.52% 1994.00 1.80 0% 2017.93 1994.00

13 14.70 0% 3434 7200 1.47% 3258.17 5.85 0% 3298.13 3258.17

14 11.98 0% 1464 716 0% 1368 0.55 0% 1427.25 1368

15 6.78 0% 1486 7200 2.44% 1376.79 2.04 0% 1413.31 1376.79

16 0.84 0% 1247 7200 2.63% 1175.10 0.53 0% 1221.31 1175.10

17 2.26 0% 1889 7200 2.06% 1813.54 1.28 0% 1847.45 1813.54

18 26.35 0% 3431 7200 1.85% 3334.46 4.40 0% 3368.33 3334.46

19 7.53 0% 2889 7200 1.67% 2758.28 2.89 0% 2779.73 2758.28

20 37.67 0% 2661 7200 1.27% 2591.46 1.55 0% 2630.82 2591.46

In the following, we briefly discuss the parameter setting of the approaches, then reporting

the results for each approach, firstly in terms of efficiency and then in terms of solution quality.

As described in Section 5.1, MATD consists of two phases: Phase 1, devoted to the

construction of an initial feasible solution via problem decomposition, and Phase 2, where S2L-

Acyclic is solved starting from the feasible solution determined in Phase 1. We implemented

Phase 1 by matching large and small product types to get groups that have approximately

the same number of items to store. Moreover, we performed the following tests on the two

parameters of the approach, i.e., the number Λ of subproblems in which the original problem

is decomposed and the time dedicated to Phase 1 (recall that an overall time limit of 60

minutes has been established by the warehouse managers to solve the problem).

We experimented several values for Λ ranging from 2 to 7 (notice that Λ = 1 corresponds

to the original S2L-Acyclic formulation). Λ = 3 resulted a good compromise between the time

required by CPLEX to solve all the subproblems and the quality of the solutions obtained.

We also experimented two alternative ways to partition the time limit of 60 minutes

between the two phases of MATD. We considered a first setting where at most 20 minutes

are given to Phase 1 and 40 minutes are given to Phase 2, and a second setting where instead
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at most 40 minutes are given to Phase 1 and 20 minutes are given to Phase 2. In both

settings, we split the time allocated to Phase 1 among the Λ subproblems proportionally with

respect to the number of columns each subproblem has to handle. If a subproblem is solved

before reaching the assigned time limit, i.e., an optimum is found for the subproblem, then

the remaining amount of time is added to the one allocated to Phase 2. We solved the 20

instances by considering both time allocation settings. The obtained results showed that the

subproblems may either be very easy to tackle by CPLEX, in which case a few seconds are

needed to find the optimum, or, on the opposite, very tricky to solve. In the latter case,

assigning at most 20 minutes to Phase 1 brought some of the subproblems to stop their

resolution process too early, with high optimality gaps. This compromised the quality of the

solution provided to Phase 2 and, consequently, the quality of the final solution, especially

for the instances of ClassHA. As opposed, assigning at most 40 minutes to Phase 1 eliminates

this issue for the majority of the subproblems, and has a positive impact in terms of final

optimality gap and objective value. Therefore, we report here the results related to Λ = 3

and to the time setting where 40 minutes are dedicated to Phase 1 and 20 minutes to Phase

2. Moreover, parameter w is set to 5 as discussed in Section 6.4.

As described in Section 5.2, EUR-RA consists of two phases as well: Phase 1, devoted

to the definition of a storage location assignment to the incoming items via the relaxation

REL-ASSIGN, and Phase 2, where a sequencing of the assigned storage locations is looked

for by solving a restricted version of S2L-Acyclic. Several tests have been performed to define

the most suitable time setting to Phase 1. Preliminary results showed that devoting at most

20 minutes to Phase 1 leads to good results in terms of optimality gaps, available space and

special product types assignment for the considered instances. We thus report here the results

for EUR-RA related to the setting where 20 minutes are dedicated to Phase 1. Regarding

Phase 2, the best results in terms of computational time have been obtained by stopping the

execution as soon as a feasible sequencing is found. Finally, we set w = 5 as discussed before.

Table 5 reports the performance of MATD and EUR-RA, separately for the instances in

ClassLA and in ClassHA, in terms of solution time (in seconds) and percentage optimality

gap, which is calculated by considering the best upper bound reported in Table 4 (column

BB). The last row reports the average indicators for the two classes of instances.

As shown in the table, both MATD and EUR-RA achieve very good results in terms of

optimality gap for both classes of instances. In particular, both approaches find 7 optimal

solutions within the time limit imposed. At this regard notice that, in some cases, the time

required by MATD to compute an optimal solution is the maximum allowed: this is due to the

fact that the approach is not able to certify the optimality of the computed solution within

that time. That is, its best upper bound when the algorithm is stopped is greater than the

best upper bound in column BB of Table 4, i.e., the one used to calculate the optimality gap.
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Table 5: Performance of MATD and EUR-RA.

ClassLA ClassHA

MATD EUR-RA MATD EUR-RA

ID time gap% time gap% ID time gap% time gap%

1 3600 0.00% 1200 0.00% 11 3600 2.86% 1214 2.66%

2 3600 0.00% 1201 0.00% 12 3600 2.57% 1202 2.57%

3 1636 0.00% 395 0.00% 13 3600 1.47% 1205 1.47%

4 3600 1.01% 1203 0.87% 14 3533 0.00% 571 0.00%

5 3600 0.97% 1203 1.11% 15 3600 2.82% 1206 2.44%

6 3600 0.00% 139 0.00% 16 3600 3.08% 1203 3.08%

7 3600 0.00% 1202 0.00% 17 3600 2.17% 1202 2.63%

8 3330 0.00% 172 0.00% 18 3600 2.38% 1205 2.07%

9 3600 2.14% 1205 2.62% 19 3600 1.89% 1204 1.67%

10 3600 1.18% 1204 1.24% 20 3600 1.55% 1203 1.31%

Avg. 3377 0.53% 912 0.58% Avg. 3593 2.08% 1141 1.99%

More in detail, both approaches have pretty similar results in terms of average optimality

gap in solving the instances of ClassLA, sometimes MATD achieving a lower value (for In-

stances 5, 9 and 10), in one case instead being EUR-RA better (for Instance 4). Nevertheless,

EUR-RA is able to solve all the 10 instances in less time than MATD. Specifically, EUR-RA

requires on average about one third of the time needed by MATD. Regarding ClassHA, both

the optimality gap and the solution time increase on average for both MATD and EUR-RA

with respect to ClassLA. Additionally, only one instance is solved to optimality by both

approaches. On this class of instances, however, EUR-RA is generally more effective than

MATD, with a lower optimality gap for a half of the instances, and a computational time

which is again about one third, on average, than the one needed by MATD.

As remarked in Section 5.2, MATD returns a feasible solution also at the end of Phase 1,

feature which can be relevant in case the problem needs to be rapidly solved. As an additional

information, the average solving time required by the Phase 1 of MATD is 410.07 seconds

for ClassLA and 837.34 seconds for ClassHA, with an average optimality gap of 1.00% and

2.91%, respectively (again, the optimality gaps are calculated by considering the best upper

bounds reported in Table 4). Only two optima are found at the end of Phase 1. It is thus

evident the impact of Phase 2 to reduce the average optimality gaps obtained at the end of

Phase 1, and to increase the number of the optimal solutions found.

Regarding EUR-RA, we report that, for all the instances, Phase 2 was able to compute a

solution to S2L-Acyclic starting from the assignment devised in Phase 1. The average time

to find a feasible sequencing in Phase 2 is just 3 seconds, no matter if the instances belong to

ClassLA or to ClassHA.
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Table 6: Quality of the solutions of MATD and EUR-RA.

ClassLA ClassHA

MATD EUR-RA MATD EUR-RA

Av. HR in P in Av. HR in P in Av. HR in P in Av. HR in P in

ID space Dep.4 Dep.1 space Dep.4 Dep.1 ID space Dep.4 Dep.1 space Dep.4 Dep.1

1 1852 27% - 1852 27% - 11 2415 96% 100% 2410 96% 100%

2 895 97% 100% 895 97% 100% 12 1889 54% 100% 1889 50% 100%

3 1954 77% 100% 1954 77% 100% 13 3106 94% 100% 3106 94% 100%

4 3384 63% 100% 3389 63% 100% 14 1308 78% 0% 1308 78% 0%

5 2658 100% 100% 2654 96% 100% 15 1249 100% 100% 1254 100% 100%

6 3611 100% 100% 3611 100% 100% 16 1125 0% 100% 1125 0% 100%

7 4341 83% 100% 4341 83% 100% 17 1770 0% 100% 1762 0% 100%

8 3589 100% 100% 3589 100% 100% 18 3217 88% 100% 3227 88% 100%

9 3577 58% 33% 3550 58% 100% 19 2692 - 100% 2698 - 100%

10 3445 46% 100% 3443 50% 100% 20 2512 67% 100% 2528 37% 100%

Avg. 2931 75% 93% 2928 75% 100% Avg. 2128 64% 90% 2131 60% 90%

Table 6 reports, for MATD and EUR-RA, and for each of the 20 instances, qualitative

indications on the solutions found in terms of space available after the assignment and number

of columns of product types HR and P assigned to their target departments at the end of

Phase 2. The quality of the solutions computed by MATD and EUR-RA is quite similar.

Regarding the secondary objective, the percentage of columns of product types HR and P

assigned to their target departments is very high for both the approaches. In particular, both

MATD and EUR-RA are able to assign all the columns of product type P to Department 1

in 17 out of 19 instances (notice that there are no columns of product type P to manage in

Instance 1, see Table 2, and this is indicated by the symbol ‘-’ in Table 6; similarly, ‘-’ in the

row of Instance 19 is due to the fact that there are no columns of product type HR to manage

for that instance). By considering MATD, we report that the improvement of such quality

indicators from Phase 1 to Phase 2 is 0.33% (Av. space), 4.27% (HR in Dep.4) and 0% (P in

Dep.1) for the instances of ClassLA, and 0.57% (Av. space), 1.26% (HR in Dep.4) and 7.14%

(P in Dep.1) for the instances of ClassHA. This testifies the already very good quality results

obtained by MATD at the end of Phase 1, especially for ClassLA.

We finally report that, although S2L-Acyclic appears to be a very efficient formulation to

address S2L-SLAP when the auxiliary graph has an acyclic structure, the proposed matheuris-

tics allow one to improve, on average, all the indicators discussed above. In particular, the

average percentage gap over the 20 instances is 1.49% for S2L-Acyclic, while it is 1.30% for

MATD and 1.21% for EUR-RA. Notice that, to allow the comparison, the gaps for S2L-

Acyclic have been computed here by considering the best upper bounds in Table 4, as for

MATD and EUR-RA. Regarding the primary goal of the company, the improvement achieved

by MATD in terms of available space after the assignment is +0.14% for ClassLA and +2.84%
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for ClassHA, while it is +2.30% for ClassLA and +3.03% for ClassHA by considering EUR-

RA. Finally, regarding the secondary goal of the company, indeed S2L-Acyclic often equals the

results obtained with the matheuristics concerning the number of columns of special product

types assigned to their target departments, but generally MATD and EUR-RA return slight

better results, especially for the hardest instances and considering the number of columns

of product type HR assigned to Department 4. In particular, for ClassHA, MATD always

provides the best result in terms of this indicator.

Our conclusion is that both matheuristics appear to be valuable tools to tackle problem

S2L-SLAP within the time limit imposed.

By summarizing, the reported results suggest the following observations:

• ClassHA appears to be harder to address than ClassLA for all the approaches;

• The strengthened formulation S2L-Acyclic seems to be well able to exploit the graph

structure of the case study addressed, and it appears to be preferable to S2L and to

S2L-VI; in particular, it solves all the instances within the stated time limit, four of

them to optimality, and overally it returns lower percentage optimality gaps;

• S2L-Acyclic shows to be efficient, and it returns solutions of good quality in terms of

both the primary and the secondary goal of the company;

• Both matheuristics improve on average S2L-Acyclic regarding the percentage optimality

gap, as well as the available space after the assignment and the percentage of special

product types assigned to their target departments;

• Both matheuristics achieve very good results in terms of percentage optimality gap, and

they return solutions of similar quality regarding the primary and the secondary goal

for the company;

• EUR-RA is preferable to MATD in terms of solution time, being indeed very fast;

• MATD is able to construct a feasible solution of good quality during its Phase 1, in less

than 15 minutes, and sometimes it appears to be preferable in terms of the assignment

of the product type HR to its target department.

6.7 Simulating stack assignment and sequencing over a week

In order to assess the impact of the proposed methodology in a real logistic environment,

we have selected EUR-RA, which has shown very good results in the performed tests, and

have analyzed its behavior by simulating the typical warehouse operations in a weekly time

horizon. We simulated the logistic process as shown in Algorithm 3.

We start with a realistic configuration of the warehouse at Day 1 (i.e., the first day of

the considered week). The initial positions of the columns in the warehouse are randomly

generated by respecting some agreed industrial practice or insights given by the company. At

the beginning of each Day i, columns of product types specified in the shipping list are picked

one stack at a time, according to the FIFO retrieving order, and moved to the sortation

area until its saturation (see Line 2). The set S of the empty stacks is thus defined (Line
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Algorithm 3 One week simulation

Input data: Initial configuration for Day 1, shipping and storage lists for Days 1 to 6

1: for Day i = 1, . . . , 6 do

2: Fill the sortation area till saturation with products in the shipping list of Day i

3: Define the set of available storage locations S
4: Solve the assignment and sequencing problem for Day i with Algorithm 2

5: Fill the warehouse according to the algorithm solution

6: Perform some housekeeping operations

7: end for

3). We solve the S2L-SLAP related to Day i by means of EUR-RA (Line 4). Then, the

warehouse is updated by filling the assigned stacks in accordance with the solution found by

EUR-RA (Line 5). At the end of the day, some housekeeping operations are performed (Line

6), to enhance the space available in the warehouse before the next assignment. Specifically,

in order to exploit as much as possible the sequence-based two-level storage policy for next

assignments, the housekeeping operations consist in: (i) making empty stacks contiguous

within each block as much as possible; (ii) moving groups of occupied stacks from one block

to another one whenever possible (provided that stacks have the same capacity). The final

configuration obtained for Day i then becomes the initial configuration for Day i+ 1.

According to the results in Section 6.6, we used EUR-RA by allocating 20 minutes to Phase

1, stopping Phase 2 as soon as a feasible sequencing is found, and setting w = 5. Table 7

reports information on the storing and shipping lists for the considered week, composed of

three days in ClassLA and three days in ClassHA (shipping and storage operations are not

planned on Sunday).

We summarize in Table 8 the results related to the performance of EUR-RA and the

quality of the solutions obtained in terms of primary and secondary goals. Specifically, for each

day of the week we report the running time in seconds (second column), and the optimality

gap (third column), calculated by considering the best upper bound obtained from REL-

Table 7: Storing and shipping lists for the selected week.

Storage list Shipping list

Total HR P Total HR P

Day (col.) (col.) (col.) (col.) (col.) (col.)

1 856 328 16 1078 541 8

2 1120 359 20 1282 556 20

3 1069 533 25 1212 624 22

4 1012 737 59 1094 497 21

5 811 670 6 947 521 15

6 156 103 0 0 0 0
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Table 8: Simulation on a week: performance of EUR-RA algorithm.

Before assignment After assignment After housekeeping

HR in P in

Day time gap % Occup. Avail Occup. Avail Occup. Avail Dep.4 Dep.1

1 20 0% 16209 2789 17065 1887 15987 2270 96% 100%

2 1207 2.09% 15987 2815 17107 1620 15825 2261 85% 100%

3 114 0% 15825 2872 16894 1778 15682 2269 95% 100%

4 1209 2.64% 15682 2946 16694 1782 15600 2227 91% 84%

5 80 0% 15600 2328 16411 1513 15464 1863 82% 100%

6 0.29 0% 15464 1863 15620 1676 15620 1676 100% -

ASSIGN within two hours. Then, we report (in columns): the number of occupied and

available columns immediately before the storage location assignment (i.e., after Step 2 in

Algorithm 3); the number of occupied and available columns immediately after the storage

location assignment (i.e., after Step 4 in Algorithm 3); and the number of occupied and

available columns after the housekeeping operations (i.e., after Step 6 in Algorithm 3). The

number of the available columns, i.e., the indicator Avail., has been computed according to

the specification of the objective function of the proposed mathematical formulation, i.e., (1).

Finally (last two columns), we report the daily percentages of columns of product type HR

assigned to Department 4 and those of product type P assigned to Department 1.

EUR-RA seems to be successful in assigning and sequencing stacks also on a weekly basis.

It determines an optimal solution for four days out of six, and in the remaining two days it

achieves very good results in terms of optimality gap (being lower than 3%). Moreover, its

total solution time is small, much lower than the one hour time limit per day imposed.

Since at most 21,299 columns can be stocked in case a unique product type would be

present, in the considered week departments and sortation area are daily near to their satu-

ration level. This testifies the efficacy of the proposed matheuristic in computing solutions of

high quality regarding the space availability. By considering the secondary optimization goal,

a very high percentage of columns of product type HR is assigned daily to Department 4,

while all the columns of product type P are assigned to Department 1 in four out of five days

(no columns of type P have to be stored in Day 6). EUR-RA thus appears to be a valuable

tool to solve S2L-SLAP in a real application context, also on a weekly time horizon.

7 Conclusions

We address a problem which combines storage location assignment with sequencing decisions

about the assigned storage locations. We prove that the problem is NP-Hard, and we model

it as a constrained multicommodity flow problem on an auxiliary graph. We then propose a
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MILP model, with some valid inequalities, based on the suggested formulation. Two relax-

ations are presented to estimate the quality of the model solutions. Since the problem can be

very hard to address computationally, two matheuristic approaches are then designed starting

from the proposed MILP model. A case study is then presented, which is related to the tissue

logistics sector and which motivated our research in this topic. Computational experiments

on a wide real test bed show the efficiency and the efficacy of the proposed approaches.

We plan to extend the achieved results by studying an optimization problem which in-

tegrates the above described assignment and sequencing storage location decisions with a so

called pick up and put away problem where, given a fleet of vehicles, decisions related to how

and when to move incoming items to their assigned storage locations (put away) and to collect

outgoing items for shipping (pick up) need to be made. The assignment and sequencing of

storage locations, the scheduling of put away and pick up operations, and the routing of the

vehicles inside the warehouse define hard interdependent decisions which are very challenging

to address.
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