
A globally convergent descent method

for nonsmooth variational inequalities∗

Barbara Panicucci† Massimo Pappalardo† Mauro Passacantando†

Abstract. We propose a descent method via gap functions for solving nonsmooth variational inequalities

with a locally Lipschitz operator. Assuming monotone operator (not necessarily strongly monotone) and

bounded domain, we show that the method with an Armijo-type line search is globally convergent.

Finally, we report some numerical experiments.

Keywords. Nonsmooth variational inequality, monotone map, gap function, descent method.

AMS Subject classification. 90C30, 90C33, 65K10.

1 Introduction

Let X be a nonempty, closed and convex subset of Rn and F : Rn → Rn a given map. The variational

inequality (VI) problem is to find a point x∗ ∈ X such that

〈F (x∗), x− x∗〉 ≥ 0 ∀ x ∈ X, (1)

where 〈·, ·〉 denotes the inner product in Rn.

This problem, which includes nonlinear complementarity problems and systems of nonlinear equa-

tions, has many important applications in a wide variety of scientific and engineering fields including

network economics, transportation science, and game theory.

Various iterative methods have been developed for solving VI problems; see [2] and the references

therein for a survey of theory and algorithms. A very useful approach for solving a VI entails refor-

mulating it into an equivalent optimization problem through gap (or merit) functions (see e.g. [3, 7]).

Descent methods which utilize those functions have been studied in the case when F is smooth. Re-

cently, two descent methods via gap functions for solving a VI with nonsmooth (locally Lipschitz) and

strongly monotone operator have been proposed in [5, 6]. In this paper, we present a modification, in the

spirit of [10], of the method described in [5] for solving a nonsmooth monotone (not necessarily strongly

monotone) VI with a bounded feasible set. Using nonsmooth analysis we prove global convergence of

the proposed method.

Nonsmooth analysis has also been used in [4], where the authors propose a locally superlinearly

convergent method for solving nonsmooth VI, which extends the classical Newton method for smooth

VI. To obtain the convergence result, the operator F needs to be semismooth and locally strongly

monotone at the solution. In this paper, instead, we get the global convergence under the monotonicity

assumption only.

∗This work has been supported by the National Research Program PRIN/2005017083 “Innovative Problems and Methods

in Nonlinear Optimization”. This paper has been published in Computational Optimization and Applications, vol. 43

(2009), pp. 197–211.
†Department of Applied Mathematics - University of Pisa, via Buonarroti 1/c, 56127 Pisa - Italy

(panicucc@mail.dm.unipi.it), (pappalardo@dma.unipi.it), (passacantando@dma.unipi.it).

1



For the sake of convenience, we first recall some definitions and notations which will be used in the

subsequent sections. Given a symmetric positive definite matrix G, we denote by ‖ · ‖G the norm in Rn

defined by ‖x‖G =
√
〈x,Gx〉. In particular, ‖ · ‖ denotes the classical Euclidean norm induced by unit

matrix I. The projection of a point x ∈ Rn onto the closed convex set X with respect to ‖ · ‖G, denoted

by ΠX,G(x), is defined as the unique solution of the problem

min
y∈X

‖y − x‖G.

It is well known that ΠX,G(x) is characterized by the following condition:

〈x−ΠX,G(x), G [z −ΠX,G(x)]〉 ≤ 0 ∀ z ∈ X.

We recall that x∗ is a solution of VI if and only if x∗ = ΠX,G(x∗ −G−1 F (x∗)).

For a function f : Rn → R Lipschitz near x ∈ Rn, the generalized directional derivative of f at x in

the direction d ∈ Rn is defined as [1]:

f◦(x; d) := lim sup
y→x
λ↓0

f(y + λ d)− f(y)

λ
,

and the generalized gradient of f at x is

∂f(x) = {ξ ∈ Rn : f◦(x; d) ≥ 〈ξ, d〉, ∀ d ∈ Rn}.

In the rest of the paper we utilize the following assumptions.

(A1) The set X ⊆ Rn is nonempty, closed, and convex.

(A2) The map F : Y → Rn is locally Lipschitz at each point of an open convex set Y such that X ⊂ Y .

(A3) The map F : Y → Rn is monotone on X, i.e. 〈F (x)− F (y), x− y〉 ≥ 0 ∀ x, y ∈ X.

(A4) The set X is bounded.

2 Gap functions

Given α > 0 and the matrix G, we consider the following gap function introduced in [3]:

ϕα(x) = max
y∈X

[
〈F (x), x− y〉 − α

2
‖x− y‖2G

]
= 〈F (x), x− yα(x)〉 − α

2
‖x− yα(x)‖2G, (2)

where yα(x) = ΠX,G(x− (αG)−1F (x)) is the unique maximizer.

Thus

• ϕα(x) ≥ 0, ∀ x ∈ X;

• x∗ solves VI if and only if x∗ ∈ X and ϕα(x∗) = 0;

hence VI can be reformulated as the following constrained minimization problem:

min
x∈X

ϕα(x). (3)

Under assumption assumptions (A1) − (A2), the gap function ϕα is locally Lipschitz at any point

x ∈ X and its generalized gradient is given by the formula [9]:

∂ϕα(x) =
{
F (x)− (V T − αG) (yα(x)− x), V ∈ ∂F (x)

}
, (4)

where ∂F is the classical Clarke generalized Jacobian of F [1].

In the following we generalize the Proposition 4.1 in [6] regarding strongly monotone maps to the

case where F is monotone.

2



Theorem 2.1. Let assumptions (A1) − (A3) be fulfilled. Then, for each x ∈ X, the vector yα(x) − x
satisfies the following condition:

ϕ◦α(x; yα(x)− x) ≤ −ϕα(x) +
α

2
‖x− yα(x)‖2G ≤ 0. (5)

Proof. Let g ∈ ∂ϕα(x). From (4) we have:

g = F (x)− (V T − αG) (yα(x)− x), for some V ∈ ∂F (x).

Since F is monotone and (A1)− (A2) holds, each matrix V ∈ ∂F (x) is positive semidefinite [4], then:

〈g, yα(x)− x〉 = 〈F (x), yα(x)− x〉+ α ‖x− yα(x)‖2G − 〈yα(x)− x, V (yα(x)− x)〉

≤ 〈F (x), yα(x)− x〉+ α ‖x− yα(x)‖2G

= −ϕα(x) +
α

2
‖x− yα(x)‖2G.

Moreover, we have [1]:

ϕ◦α(x; yα(x)− x) = max
g∈∂ϕα(x)

〈g, yα(x)− x〉,

thus

ϕ◦α(x; yα(x)− x) ≤ −ϕα(x) +
α

2
‖x− yα(x)‖2G .

It is also known [6] that

ϕα(x) ≥ α

2
‖x− yα(x)‖2G, ∀ x ∈ X.

Hence

−ϕα(x) +
α

2
‖x− yα(x)‖2G ≤ 0.

�

This result will be exploited in Section 3 where we modify, in the spirit of [10], the descent method

for solving nonsmooth strongly monotone VI proposed in [5], in order to solve the nonsmooth monotone

VI.

3 Descent method

The basic idea of the method is to use (5) to obtain a descent direction as follows: if x ∈ X satisfies the

condition

−ϕα(x) +
α

2
‖x− yα(x)‖2G < −η ϕα(x), (6)

where η ∈ (0, 1), then from (5) and (6) we get

ϕ◦α(x; yα(x)− x) ≤ −ϕα(x) +
α

2
‖x− yα(x)‖2G < −η ϕα(x).

Thus d = yα(x) − x is a descent direction for ϕα and we can perform a line search with respect to d.

Otherwise, if x does not solve VI and does not satisfy (6), we reduce the parameter α. In the following,

we describe the descent method with an Armijo-type line search.

3



Algorithm

0. (Initial step)

Let G be a symmetric positive definite matrix, η, γ ∈ (0, 1), and β ∈ (0, η).

Let {αk} be a sequence strictly decreasing to 0.

Choose any x0 ∈ X and set k = 0.

1. (Stopping criterion)

If ϕαk (xk) = 0

then STOP,

else set k = k + 1.

2. (Minimization of ϕαk )

2a. (Initialization)

Set i = 0 and z0 = xk−1.

2b. If −ϕαk (zi) +
αk
2
‖zi − yαk (zi)‖2G < −η ϕαk (zi)

then (line search)

compute yi = ΠX,G(zi − (αkG)−1F (zi))

set di = yi − zi

compute the smallest nonnegative integer m such that:

ϕαk (zi + γm di)− ϕαk (zi) ≤ −β γm ϕαk (zi)

set ti = γm,

else (update of xk)

set xk = zi and return to step 1.

2c. (Update of zi)

Set zi+1 = zi + ti d
i, i = i+ 1, and return to step 2b.

Theorem 3.1. (Global convergence)

If assumptions (A1)− (A4) are fulfilled, then the algorithm either stops at a solution of VI after a finite

number of iterations, or generates a bounded sequence {xk} such that any of its cluster points solves VI,

or generates a bounded sequence {zi}, for some fixed αk, such that any of its cluster points solves VI.

Proof. First, we show that the algorithm is well defined, i.e. that the line search procedure is always

finite. Assume, by contradiction, that there are i, k ≥ 0 such that the inequality

ϕαk(zi + γm di)− ϕαk(zi) > −β γm ϕαk(zi),

holds for all m ∈ N. Then we have:

ϕ◦αk(zi; di) ≥ lim sup
m→+∞

ϕαk(zi + γm di)− ϕαk(zi)

γm
≥ −β ϕαk(zi).

Combining (5) and step 2b, we get:

ϕ◦αk(zi; di) ≤ −ϕαk(zi) +
αk
2
‖di‖2G < − η ϕαk(zi),

therefore

(η − β)ϕαk(zi) < 0,

which is impossible because η > β and ϕαk(zi) ≥ 0. So the line search procedure is always finite.

There are three possible cases.

4



Case 1. The algorithm stops at xk after a finite number of iterations. From the stopping criterion at

step 1 it follows that ϕαk(xk) = 0, thus xk solves VI.

Case 2. The algorithm generates an infinite sequence {xk}. From step 2b we have that

ϕαk(xk) ≤ αk
2 (1− η)

‖xk − yαk(xk)‖2G ∀ k ∈ N.

Since xk and yαk(xk) belong to X which is bounded, the norm ‖xk− yαk(xk)‖2G is bounded above.

Moreover lim
k→∞

αk = 0, thus

lim
k→∞

ϕαk(xk) = 0. (7)

Since X is bounded, the sequence {xk} has cluster points. Let x∗ be any cluster point of {xk}.
From the definition of ϕαk it follows that

ϕαk(xk) ≥ 〈F (xk), xk − y〉 − αk
2
‖xk − y‖2G ∀ k ∈ N, ∀ y ∈ X.

Passing to the limit and taking a subsequence if necessary, we obtain

0 ≥ 〈F (x∗), x∗ − y〉 ∀ y ∈ X,

on account of the continuity of F , lim
k→∞

αk = 0, and (7). It follows that x∗ solves VI.

Case 3. The algorithm generates an infinite sequence {zi} for a fixed αk = α. Let us consider two

possible subcases: either lim sup
i→∞

ti > 0, or lim sup
i→∞

ti = 0.

Subcase 3a. If lim sup
i→∞

ti > 0, then there exists t∗ > 0 and a subsequence {tis} such that tis ≥

t∗ > 0 for all s ∈ N. Since the sequence {zi} is infinite, we have:

ϕα(zis)− ϕα(zis+1) ≥ β tis ϕα(zis) ≥ β t∗ ϕα(zis) ≥ 0. (8)

The sequence {ϕα(zi)} is monotone decreasing and bounded below, hence

lim
i→∞

(ϕα(zi)− ϕα(zi+1)) = 0,

and in particular

lim
s→∞

(ϕα(zis)− ϕα(zis+1)) = 0. (9)

Using (8) and (9), we obtain lim
s→∞

ϕα(zis) = 0 and thus lim
i→∞

ϕα(zi) = 0.

Let z∗ be any cluster point of {zi}. From the continuity of ϕα it follows that

lim
i→∞

ϕα(zi) = ϕα(z∗), hence ϕα(z∗) = 0, i.e. z∗ is a solution of VI.

Subcase 3b. If lim sup
i→∞

ti = 0, then lim
i→∞

ti = 0. From the step length rule it follows that for all

i ∈ N,

ϕα

(
zi +

ti
γ
di
)
− ϕα(zi) > −β ti

γ
ϕα(zi).

By the mean value theorem we have

ϕα

(
zi +

ti
γ
di
)
− ϕα(zi) = 〈ξi, ti

γ
di〉,

where ξi ∈ ∂ϕα(zi + θi
ti
γ d

i) for some θi ∈ (0, 1). From (4) it follows that

ξi = F

(
zi + θi

ti
γ
di
)
−
(
V Ti − αG

) [
yα

(
zi + θi

ti
γ
di
)
−
(
zi + θi

ti
γ
di
)]

,

5



for some Vi ∈ ∂F (zi + θi
ti
γ d

i). Therefore, for all i ∈ N, we have:

〈F
(
zi+ θi

ti
γ
di
)
−(V Ti − αG)

[
yα

(
zi + θi

ti
γ
di
)
−
(
zi + θi

ti
γ
di
)]
, di〉>−β ϕα(zi).

The sequences {zi} and {di} are bounded thus, since F is continuous and ∂F is upper semicon-

tinuous, the sequence {Vi} is bounded. Let z∗ be any cluster point of {zi}. Since lim
i→∞

ti = 0,

passing to the limit and taking a subsequence if necessary, we get:

〈F (z∗)− (V T∗ − αG) (yα(z∗)− z∗), d∗〉 ≥ −β ϕα(z∗), (10)

where d∗ = yα(z∗)− z∗ and V∗ ∈ ∂F (z∗). Since

ϕ◦αk(z∗; d∗) = max
g∈∂ϕα(z∗)

〈g, d∗〉,

from (4) and (10) it follows that:

ϕ◦α(z∗; d∗) ≥ 〈F (z∗)− (V T∗ − αG) (yα(z∗)− z∗), d∗〉 ≥ −β ϕα(z∗). (11)

Moreover, for all i ∈ N ,we have:

−ϕα(zi) +
α

2
‖zi − yα(zi)‖2G < − η ϕα(zi),

hence passing to the limit and taking a subsequence if necessary, and using Theorem 2.1 we

obtain:

ϕ◦α(z∗; d∗) ≤ −ϕα(z∗) +
α

2
‖d∗‖2G ≤ − η ϕα(z∗). (12)

From (11) and (12) we get

(η − β)ϕα(z∗) ≤ 0.

Since η > β and ϕα(z∗) ≥ 0, it follows that ϕα(z∗) = 0. i.e. z∗ solves VI.

�

Remark 3.1. In the algorithm we can choose the sequence {αk} adaptively, for example (see also [8])

such as:

αk =

{
αk−1 if ϕαk−1

(xk−1) ≤ νk−1,

µαk−1 otherwise,
(13)

where 0 < µ < 1 and {νk} is a sequence decreasing to 0. Indeed, if the algorithm generates an infinite

sequence {xk} with {αk} chosen by (13), then either lim
k→∞

αk = 0, which can be treated as in the Case 2

of Theorem 3.1, or αk is constant for every k greater than some k̄, i.e.

αk = ᾱ and ϕᾱ(xk) ≤ νk ∀ k > k̄,

hence lim
k→∞

ϕᾱ(xk) = 0. Then for each cluster point x∗ of {xk} we have ϕᾱ(x∗) = 0, that is x∗ solves

VI.

4 Numerical experiments

In this section we show some preliminary numerical results for the algorithm proposed in Section 3.

We implemented the algorithm in MATLAB 7.0.4 and we set the matrix G as the identity matrix. As

stopping criterion we used the natural residual: ‖x−ΠX,I(x− F (x))‖ < 10−4. In the test problems we

chose the feasible set X = [1, 7]× · · · × [1, 7] and the map F : Rn → Rn as

F (x) = (A+D)x+H(x),

6



where A is a skew-symmetric random matrix, D is a diagonal matrix with nonnegative entries, and Hi is

a nonsmooth nondecreasing function of the only variable xi, for all i = 1, . . . , n. Under these conditions,

it is easy to show that F is a nonsmooth monotone (but not strongly monotone) map.

Example 4.1. Consider the VI problem where the components of F (x) are given as follows:

F1(x) = −2.3443x2 − 0.2079x3 − 3.4258x4 − 1.4208x5 + max{log(x1), 1}
F2(x) = 2.3443x1 + x2 + 4.5392x3 − 1.63211x4 + 1.3325x5 + max{log(x2), 1}
F3(x) = 0.2079x1 − 4.5392x2 + x3 − 1.0441x4 − 4.1165x5 + max{log(x3), 1}
F4(x) = 3.4258x1 + 1.6321x2 + 1.0441x3 + 2.5772x5 + max{log(x4), 1}
F5(x) = 1.4208x1 − 1.3325x2 + 4.1165x3 − 2.5772x4 + x5 + max{log(x5), 1}

Preliminary computational results show that setting αk = 1/10k, γ = 0.2, β = 0.2, and η = 0.5 provides

a good parameter choice. We applied the algorithm, with such choice of parameters, to solve this example

with several vertices of X as initial points. Numerical results are summarized in Table 1 containing seven

columns: starting point, number of outer iterations, number of inner iterations, number of projections,

number of evaluations of the operator, natural residual at x, and the found approximate solution x.

Table 1: Numerical results for Example 4.1 with αk = 1/10k, γ = 0.2, β = 0.2, η = 0.5.

starting outer inner proj. eval. natural approximate

point iter. iter. of F residual solution

(1, 1, 1, 1, 1) 4 8 45 57 3.38E-05 (7, 1, 6.389768, 1, 1)

(1, 1, 1, 7, 1) 4 10 50 64 3.38E-05 (7, 1, 6.389768, 1, 1)

(1, 1, 7, 1, 1) 4 8 45 57 3.38E-05 (7, 1, 6.389768, 1, 1)

(1, 1, 7, 7, 1) 4 8 45 57 3.38E-05 (7, 1, 6.389768, 1, 1)

(1, 7, 1, 1, 1) 4 9 47 60 3.38E-05 (7, 1, 6.389768, 1, 1)

(1, 7, 1, 7, 1) 4 9 47 60 3.38E-05 (7, 1, 6.389768, 1, 1)

(1, 7, 7, 1, 1) 4 8 45 57 3.38E-05 (7, 1, 6.389768, 1, 1)

(1, 7, 7, 7, 1) 4 8 45 57 3.38E-05 (7, 1, 6.389768, 1, 1)

(7, 1, 1, 1, 1) 4 8 45 57 3.38E-05 (7, 1, 6.389768, 1, 1)

(7, 1, 1, 7, 1) 4 9 48 61 3.38E-05 (7, 1, 6.389768, 1, 1)

(7, 1, 7, 1, 1) 4 7 43 54 3.38E-05 (7, 1, 6.389768, 1, 1)

(7, 1, 7, 7, 1) 4 8 45 57 3.38E-05 (7, 1, 6.389768, 1, 1)

(7, 7, 1, 1, 1) 4 8 45 57 3.38E-05 (7, 1, 6.389768, 1, 1)

(7, 7, 1, 7, 1) 4 9 47 60 3.38E-05 (7, 1, 6.389768, 1, 1)

(7, 7, 7, 1, 1) 4 8 45 57 3.38E-05 (7, 1, 6.389768, 1, 1)

(7, 7, 7, 7, 1) 4 8 45 57 3.38E-05 (7, 1, 6.389768, 1, 1)

Table 1 shows that the algorithm is quite robust with respect to the starting point, as it always

converges to the same solution. Besides, the number of outer iterations is always equal to 4 and the

number of inner iterations is always between 8 and 10. The number of projections and of evaluations is

stable as well, always between 43 and 50, and between 54 and 64, respectively.

Computational tests have been then carried out to show the behavior of the algorithm with different

parameter values. First, the behavior with respect to different choices of sequence αk is shown in Table 2:

αk = 1/k, αk = 1/k2, αk = 1/2k, and αk = 1/10k. The other parameters are set as in Table 1: γ = 0.2,

β = 0.2, η = 0.5.

Different choices of the sequence αk are tested over the set of vertices as starting points. In Table 2,

for each choice of the sequence αk, the average and maximum number of outer iterations, inner iterations,

projections, and evaluations of F are given. Computational results show that exponential sequences, such

7



as 1/2k or 1/10k, seem to provide a good behavior while choosing polynomial sequences seems to lead

to a greater number of iterations.

In Table 3 results with different values of parameter γ (from 0.1 to 0.9) are shown. Results are

obtained keeping values of other parameters as in Table 1. For each choice of γ, the average and

maximum number of outer iterations, inner iterations, projections, and evaluation of F are given.

According to the results the algorithm seems to perform well for 0.2 ≤ γ ≤ 0.5, while the number of

needed iterations, projections, and evaluations increases for γ = 0.1 and for γ ≥ 0.6.

Finally, keeping values of αk and γ as in Table 1, we show in Table 4 results for different values of

parameters β and η between 0.1 and 0.9, with β < η.

For the considered example the choice of β and η seems to be less important than the choice of γ:

in fact the average number of projections is between 45 and 50 for any chosen value, and the number of

needed evaluations is between 57 and 63.

For the first considered example the most important role seems to be played by αk, while β and

η seem to be not so important. Although γ does not influence as αk, its value has a quite significant

importance.

Table 2: Behavior of the algorithm with respect to different αk choice.

outer iterations inner iterations projections evaluations of F

αk avg. max avg. max avg. max avg. max

1/k 9741 9741 8.3 10 29256.7 29261 39006.0 39012

1/k2 99 99 8.3 10 330.7 335 438.0 444

1/2k 14 14 8.3 10 75.6 80 97.9 104

1/10k 4 4 8.3 10 45.6 50 57.8 64

Table 3: Behavior of the algorithm with respect to different γ choice.

outer iterations inner iterations projections evaluations of F

γ avg. max avg. max avg. max avg. max

0.1 5 5 25.3 27 135.6 140 165.8 172

0.2 4 4 8.3 10 45.6 50 57.8 64

0.3 4 4 10.3 12 66.6 72 80.8 88

0.4 3 3 9.3 11 58.6 64 70.8 78

0.5 4 4 7.3 9 55.6 61 66.8 74

0.6 5 5 13.3 15 139.6 146 157.9 166

0.7 4 4 7.3 9 91.7 99 102.9 112

0.8 4 4 13.2 14 173.7 181 190.9 199

0.9 5 5 37.3 39 1190.1 1206 1232.3 1250

8



Table 4: Behavior of the algorithm with respect to different β and η choice.

outer iterations inner iterations projections evaluations of F

β η avg. max avg. max avg. max avg. max

0.1 0.2 4 4 8.3 10 45.6 50 57.8 64

0.1 0.3 4 4 8.3 10 45.6 50 57.8 64

0.1 0.4 4 4 8.3 10 45.6 50 57.8 64

0.1 0.5 4 4 8.3 10 45.6 50 57.8 64

0.1 0.6 5 5 8.3 10 48.6 53 61.8 68

0.1 0.7 5 5 8.3 10 48.6 53 61.8 68

0.1 0.8 5 5 8.3 10 48.6 53 61.8 68

0.1 0.9 5 5 8.3 10 48.6 53 61.8 68

0.2 0.3 4 4 8.3 10 45.6 50 57.8 64

0.2 0.4 4 4 8.3 10 45.6 50 57.8 64

0.2 0.5 4 4 8.3 10 45.6 50 57.8 64

0.2 0.6 5 5 8.3 10 48.6 53 61.8 68

0.2 0.7 5 5 8.3 10 48.6 53 61.8 68

0.2 0.8 5 5 8.3 10 48.6 53 61.8 68

0.2 0.9 5 5 8.3 10 48.6 53 61.8 68

0.3 0.4 4 4 8.3 10 45.6 52 57.9 66

0.3 0.5 4 4 8.3 10 45.6 52 57.9 66

0.3 0.6 5 5 8.3 10 48.6 55 61.9 70

0.3 0.7 5 5 8.3 10 48.6 55 61.9 70

0.3 0.8 5 5 8.3 10 48.6 55 61.9 70

0.3 0.9 5 5 8.3 10 48.6 55 61.9 70

0.4 0.5 4 4 8.3 10 45.6 52 57.9 66

0.4 0.6 5 5 8.3 10 48.6 55 61.9 70

0.4 0.7 5 5 8.3 10 48.6 55 61.9 70

0.4 0.8 5 5 8.3 10 48.6 55 61.9 70

0.4 0.9 5 5 8.3 10 48.6 55 61.9 70

0.5 0.6 5 5 8.3 10 48.7 55 61.9 70

0.5 0.7 5 5 8.3 10 48.7 55 61.9 70

0.5 0.8 5 5 8.3 10 48.7 55 61.9 70

0.5 0.9 5 5 8.3 10 48.7 55 61.9 70

0.6 0.7 5 5 8.3 10 48.8 56 62.1 71

0.6 0.8 5 5 8.3 10 48.8 56 62.1 71

0.6 0.9 5 5 8.3 10 48.8 56 62.1 71

0.7 0.8 5 5 8.5 14 49.7 73 63.2 92

0.7 0.9 5 5 8.5 14 49.7 73 63.2 92

0.8 0.9 5 5 8.6 14 50.1 75 63.7 94

9



Example 4.2. Consider the VI problem where the components of F (x) are given as follows:

F1(x) = −1.8897x2 − 1.8640x3 + 0.9461x4 + 2.1910x5

+1.9724x6 − 0.1430x7 − 2.2689x8 + 3.3547x9 − 0.1707x10 + max{ex1−4, 4}
F2(x) = 1.8897x1 + x2 − 0.3930x3 + 0.5227x4 − 0.1551x5

−2.2249x6 − 0.9974x7 + 1.6434x8 + 0.0714x9 + 0.9947x10 + max{ex2−4, 4}
F3(x) = 1.8640x1 + 0.3930x2 + x3 − 0.6498x4 + 1.8380x5

−2.7493x6 − 2.5758x7 − 2.3058x8 + 2.9067x9 + 3.3159x10 + max{ex3−4, 4}
F4(x) = −0.9461x1 − 0.5227x2 + 0.6498x3 + x4 + 3.0704x5

+1.1716x6 − 1.5065x7 + 1.4465x8 + 1.6084x9 + 4.4847x10 + max{ex4−4, 4}
F5(x) = −2.1910x1 + 0.1551x2 − 1.8380x3 − 3.0704x4 + x5

−1.7578x6 + 0.1742x7 + 1.3372x8 + 1.0249x9 + 2.9095x10 + max{ex5−4, 4}
F6(x) = −1.9724x1 + 2.2249x2 + 2.7493x3 − 1.1716x4 + 1.7578x5

+x6 + 0.4999x7 − 0.3121x8 + 2.3238x9 + 1.5032x10 + max{ex6−4, 4}
F7(x) = 0.1430x1 + 0.9974x2 + 2.5758x3 + 1.5065x4 − 0.1742x5

−0.4999x6 + x7 − 0.7091x8 + 0.4407x9 − 0.6773x10 + max{ex7−4, 4}
F8(x) = 2.2689x1 − 1.6434x2 + 2.3058x3 − 1.4465x4 − 1.3372x5

+0.3121x6 + 0.7091x7 + x8 + 0.5291x9 − 2.1871x10 + max{ex8−4, 4}
F9(x) = −3.3547x1 − 0.0714x2 − 2.9067x3 − 1.6084x4 − 1.0249x5

−2.3238x6 − 0.4407x7 − 0.5291x8 + x9 − 1.1628x10 + max{ex9−4, 4}
F10(x) = 0.1707x1 − 0.9947x2 − 3.3159x3 − 4.4847x4 − 2.9095x5

−1.5032x6 + 0.6773x7 + 2.1871x8 + 1.1628x9 + x10 + max{ex10−4, 4}

Preliminary computational results show that a good choice of parameters for this example is given

by αk = 1/2k, γ = 0.4, β = 0.5, η = 0.6. Results for such parameters with several vertices of X as initial

points are shown in Table 5.

Table 5: Numerical results for Example 4.2 with αk = 1/2k, γ = 0.4, β = 0.5, η = 0.6.

starting outer inner proj. eval. natural approximate

point iter. iter. of F residual solution

(1, 1, 1, 7, 1, 1, 1, 7, 1, 1) 17 19 171 207 2.33E-05 (1, 1, 1, 1, 1, 1, 1, 1, 6.003977, 1)

(1, 1, 1, 7, 1, 1, 7, 7, 7, 1) 6 15 76 97 1.41E-05 (1, 1, 1, 1, 1, 1, 1, 1, 6.003981, 1)

(1, 1, 1, 7, 7, 1, 1, 7, 1, 1) 15 13 116 144 3.50E-05 (1, 1, 1, 1, 1, 1, 1, 1, 6.003984, 1)

(1, 1, 1, 7, 7, 1, 7, 7, 1, 1) 11 10 85 106 6.84E-05 (1, 1, 1, 1, 1, 1, 1, 1, 6.003971, 1)

(1, 1, 7, 7, 1, 1, 1, 7, 1, 1) 11 10 85 106 6.84E-05 (1, 1, 1, 1, 1, 1, 1, 1, 6.003971, 1)

(1, 1, 7, 7, 1, 1, 7, 7, 1, 1) 11 12 90 113 6.84E-05 (1, 1, 1, 1, 1, 1, 1, 1, 6.003971, 1)

(1, 1, 7, 7, 7, 1, 1, 7, 1, 1) 14 14 129 157 5.34E-05 (1, 1, 1, 1, 1, 1, 1, 1, 6.003973, 1)

(1, 1, 7, 7, 7, 1, 7, 7, 1, 1) 15 16 145 176 6.01E-05 (1, 1, 1, 1, 1, 1, 1, 1, 6.003972, 1)

(7, 1, 1, 7, 1, 1, 1, 7, 1, 1) 15 20 157 192 2.05E-06 (1, 1, 1, 1, 1, 1, 1, 1, 6.003979, 1)

(7, 1, 1, 7, 1, 1, 7, 7, 1, 1) 15 15 122 152 3.50E-05 (1, 1, 1, 1, 1, 1, 1, 1, 6.003984, 1)

(7, 1, 1, 7, 7, 1, 1, 7, 1, 1) 16 23 210 249 6.02E-05 (1, 1, 1, 1, 1, 1, 1, 1, 6.003972, 1)

(7, 1, 1, 7, 7, 1, 7, 7, 1, 1) 15 14 118 147 3.50E-05 (1, 1, 1, 1, 1, 1, 1, 1, 6.003984, 1)

(7, 1, 7, 7, 1, 1, 1, 7, 1, 1) 11 11 87 109 6.84E-05 (1, 1, 1, 1, 1, 1, 1, 1, 6.003971, 1)

(7, 1, 7, 7, 1, 1, 7, 7, 1, 1) 15 22 186 223 8.57E-05 (1, 1, 1, 1, 1, 1, 1, 1, 6.003969, 1)

(7, 1, 7, 7, 7, 1, 1, 7, 1, 1) 11 11 87 109 6.84E-05 (1, 1, 1, 1, 1, 1, 1, 1, 6.003971, 1)

(7, 1, 7, 7, 7, 1, 7, 7, 1, 1) 11 11 87 109 6.84E-05 (1, 1, 1, 1, 1, 1, 1, 1, 6.003971, 1)

Although the number of iterations, projections, and evaluations changes starting from different initial

point, the algorithm seems to be robust also for the second example. In fact the number of outer iterations

is between 6 and 17 for any starting point, the number of inner iterations is between 10 and 23, the

number of projections is between 76 and 210, and the number of evaluations of F is between 97 and 249.

10



In Tables 6–8 the sensitivity of the algorithm to the parameter values is studied. Table 6 is devoted

to the αk sequence and shows results for αk = 1/k, αk = 1/k2, αk = 1/2k, and αk = 1/10k; Table 7 is

devoted to parameter γ which varies between 0.1 and 0.9; finally Table 8 gives results on parameters β

and η between 0.1 and 0.9 with β < η.

Table 6: Behavior of the algorithm with respect to different αk choice.

outer iterations inner iterations projections evaluations of F

αk avg. max avg. max avg. max avg. max

1/k 5902.0 28188 41.1 361 17931.4 84654 23874.5 112858

1/k2 63.2 242 42.1 361 417.0 2143 522.2 2507

1/2k 13.1 17 13.5 23 113.5 210 140.0 249

1/10k 3.3 5 156.0 391 935.3 2314 1094.5 2706

Table 7: Behavior of the algorithm with respect to different γ choice.

outer iterations inner iterations projections evaluations of F

γ avg. max avg. max avg. max avg. max

0.1 12.8 15 26.6 151 137.3 561 176.7 716

0.2 12.3 16 31.3 120 175.0 415 218.6 536

0.3 14.5 16 24.6 110 161.1 592 200.1 716

0.4 13.1 17 13.5 23 113.5 210 140.0 249

0.5 9.8 17 45.2 75 318.5 461 373.5 539

0.6 2.0 15 125.4 390 806.9 3425 934.3 3818

0.7 5.7 17 2525.5 12423 52952.3 314862 55483.5 327295

0.8 1.6 5 251.7 1333 4100.5 31704 4353.8 33042

0.9 6.2 17 4012.8 19411 276331.0 1577768 280350.0 1597189

According to the computational results on the sequence αk, the best behavior is obtained with

αk = 1/2k, while αk = 1/10k does not seem to perform well in the second example. As for Example 4.1,

αk = 1/k does not provide good results. The influence of γ is more relevant than for Example 4.1. A

good choice is to set 0.1 ≤ γ ≤ 0.4 while with γ ≥ 0.5 the number of projections and evaluations increases

significantly. The impact of β and η seems to be important, as well. Results show that setting β ≥ 0.6

and η ≥ 0.7 may cause a significant increase of the number of projections and evaluations. Although

there is not a clear rule, it seems that choosing β ≤ 0.5, η ≤ 0.6, and β and η quite close to each other

provides a quite good behavior.

Computational tests over the two considered examples show that the behavior of the algorithm is

sensitive to the choice of αk, γ, β, and η. The algorithm behaves differently for the two examples, however

some suggestions for the parameter setting can be derived. The most important choice seems to be the

choice of the sequence αk: according to the results exponential sequence is to be recommended. The

importance of γ is relevant too: small values of γ (between 0.2 and 0.4) seem to provide good behavior

for both examples. Although β and η seem to be less relevant, however they have an impact especially

for Example 4.2. Small and close values of β and η seem to perform well.

11



Table 8: Behavior of the algorithm with respect to different β and η choice.

outer iterations inner iterations projections evaluations of F

β η avg. max avg. max avg. max avg. max

0.1 0.2 14.7 16 20.6 29 162.4 220 197.8 265

0.1 0.3 14.7 16 20.4 29 160.3 220 195.3 265

0.1 0.4 8.5 16 203.2 343 1191.4 1966 1403.1 2312

0.1 0.5 8.5 16 203.2 343 1191.4 1966 1403.1 2312

0.1 0.6 8.5 16 203.2 343 1191.4 1966 1403.1 2312

0.1 0.7 4.8 16 555.3 1029 3941.6 8059 4501.8 9094

0.1 0.8 5.1 16 374.5 453 2434.7 2893 2814.3 3350

0.1 0.9 14.0 16 19.0 28 140.3 209 173.3 252

0.2 0.3 13.9 15 15.8 31 126.9 184 156.6 228

0.2 0.4 7.8 15 198.6 342 1157.9 1964 1364.3 2309

0.2 0.5 7.8 15 198.6 342 1158.0 1964 1364.4 2309

0.2 0.6 7.8 15 208.9 359 1217.2 2051 1433.8 2413

0.2 0.7 7.6 16 217.7 359 1276.0 2051 1501.2 2413

0.2 0.8 8.2 16 276.7 447 1779.5 2859 2064.4 3310

0.2 0.9 13.2 18 16.5 26 125.4 222 155.0 264

0.3 0.4 10.6 16 34.0 340 221.0 1959 265.6 2302

0.3 0.5 10.6 17 34.0 340 221.1 1959 265.8 2302

0.3 0.6 12.3 17 33.1 340 221.6 1959 267.0 2302

0.3 0.7 13.0 17 17.8 170 131.5 839 162.3 1011

0.3 0.8 13.1 17 18.6 170 136.4 839 168.1 1011

0.3 0.9 11.4 18 382.4 1191 3000.2 9329 3393.9 10526

0.4 0.5 10.4 15 23.8 340 160.8 1959 195.0 2302

0.4 0.6 12.3 15 22.8 340 161.1 1959 196.1 2302

0.4 0.7 12.8 16 17.6 173 129.7 853 160.1 1028

0.4 0.8 13.0 17 17.9 173 132.4 853 163.3 1028

0.4 0.9 12.8 18 186.2 3947 1559.9 34806 1758.9 38760

0.5 0.6 13.1 17 13.5 23 113.5 210 140.0 249

0.5 0.7 13.6 17 13.5 23 115.1 213 142.2 253

0.5 0.8 13.4 18 25.0 378 180.5 2179 218.9 2560

0.5 0.9 13.1 18 104.5 1071 779.7 8354 897.3 9431

0.6 0.7 11.1 17 121.3 356 732.9 2056 865.3 2415

0.6 0.8 11.1 18 155.3 1060 997.1 8311 1163.5 9377

0.6 0.9 10.5 18 367.4 3316 2760.4 29133 3138.4 32456

0.7 0.8 11.7 18 131.0 1103 869.4 8657 1012.1 9766

0.7 0.9 12.1 18 277.2 3152 2135.5 27650 2424.7 30809

0.8 0.9 14.5 18 424.3 5509 3953.7 54651 4392.5 60169

12



5 Conclusions

In this paper a modified descent method, with the use of Armijo-type line search, via gap functions

for solving nonsmooth variational inequalities is proposed and its global convergence, with less strict

assumptions as usual in literature, is proved. Moreover, preliminary computational tests are reported,

which provide useful considerations on the parameter settings. It would be very interesting to investigate

the convergence rate of the method and to extend it to generalized variational inequalities (i.e. with

multivalued operator). Much more examples could be tested to confirm its robustness.

References

[1] F. H. Clarke, Optimization and nonsmooth analysis, John Wiley and Sons: New York, 1983.

[2] F. Facchinei and J.-S. Pang, Finite-dimensional variational inequalities and complementarity prob-

lems, Springer: Berlin, 2003.

[3] M. Fukushima, “Equivalent differentiable optimization problems and descent methods for asymmet-

ric variational inequality problems”, Mathematical Programming, vol. 53, pp. 99–110, 1992.

[4] H. Jiang and L. Qi, “Local uniqueness and convergence of iterative methods for nonsmooth vari-

ational inequalities”, Journal of Mathematical Analysis and Applications, vol. 196, pp. 314–331,

1995.

[5] I. Konnov, “Descent methods for nonsmooth variational inequalities”, Computational Mathematics

and Mathematical Physics, vol. 46, pp. 1186–1192, 2006.

[6] I. Konnov, B. Panicucci, M. Passacantando, “A derivative-free descent method for nonsmooth vari-

ational inequalities”, Technical Report of the Department of Applied Mathematics, University of

Pisa, vol. 13, 2006.

[7] J.-M. Peng, “Equivalence of variational inequality problems to unconstrained minimization”, Math-

ematical Programming, vol. 78, pp. 347–355, 1997.

[8] M. V. Solodov and P. Tseng, “Some methods based on the D-gap function for solving monotone

variational inequalities”, Computational Optimization and Applications, vol. 17, pp. 255–277, 2000.

[9] H. Xu, “Regularized gap function and D-gap function for nonsmooth variational inequalities”, in

“Optimization and Related topics” edited by A. Rubinov and B. Glover, Kluwer Academic Publish-

ers: Dordrecht, pp. 153–176, 2001.

[10] D. L. Zhu and P. Marcotte, “Modified descent methods for solving the monotone variational in-

equality problem”, Operations Research Letters, vol. 14, pp. 111–120, 1993.

13


