A globally convergent descent method

for nonsmooth variational inequalities*

Barbara Panicuccif Massimo Pappalardof Mauro Passacantando!

Abstract. We propose a descent method via gap functions for solving nonsmooth variational inequalities
with a locally Lipschitz operator. Assuming monotone operator (not necessarily strongly monotone) and
bounded domain, we show that the method with an Armijo-type line search is globally convergent.
Finally, we report some numerical experiments.

Keywords. Nonsmooth variational inequality, monotone map, gap function, descent method.

AMS Subject classification. 90C30, 90C33, 65K10.

1 Introduction

Let X be a nonempty, closed and convex subset of R” and F': R® — R"™ a given map. The variational
inequality (VI) problem is to find a point * € X such that

(F(z*),x —2*) >0 VzelX, (1)

where (-,) denotes the inner product in R".

This problem, which includes nonlinear complementarity problems and systems of nonlinear equa-
tions, has many important applications in a wide variety of scientific and engineering fields including
network economics, transportation science, and game theory.

Various iterative methods have been developed for solving VI problems; see [2] and the references
therein for a survey of theory and algorithms. A very useful approach for solving a VI entails refor-
mulating it into an equivalent optimization problem through gap (or merit) functions (see e.g. [3, 7]).
Descent methods which utilize those functions have been studied in the case when F' is smooth. Re-
cently, two descent methods via gap functions for solving a VI with nonsmooth (locally Lipschitz) and
strongly monotone operator have been proposed in [5, 6]. In this paper, we present a modification, in the
spirit of [10], of the method described in [5] for solving a nonsmooth monotone (not necessarily strongly
monotone) VI with a bounded feasible set. Using nonsmooth analysis we prove global convergence of
the proposed method.

Nonsmooth analysis has also been used in [4], where the authors propose a locally superlinearly
convergent method for solving nonsmooth VI, which extends the classical Newton method for smooth
VI. To obtain the convergence result, the operator F' needs to be semismooth and locally strongly
monotone at the solution. In this paper, instead, we get the global convergence under the monotonicity
assumption only.

*This work has been supported by the National Research Program PRIN /2005017083 “Innovative Problems and Methods
in Nonlinear Optimization”. This paper has been published in Computational Optimization and Applications, vol. 43
(2009), pp. 197-211.

fDepartment of Applied Mathematics - University of Pisa, via Buonarroti 1/c, 56127 Pisa - Italy
(panicucc@mail.dm.unipi.it), (pappalardo@dma.unipi.it), (passacantando@dma.unipi.it).

For the sake of convenience, we first recall some definitions and notations which will be used in the
subsequent sections. Given a symmetric positive definite matrix G, we denote by | - ||¢ the norm in R™
defined by ||z|l¢ = +/{(z, G z). In particular, || - || denotes the classical Euclidean norm induced by unit
matrix I. The projection of a point = € R™ onto the closed convex set X with respect to || - ||, denoted
by IIx ¢(x), is defined as the unique solution of the problem

min —xl||q.
min ly -

It is well known that IIx ¢(x) is characterized by the following condition:
(x —xgx),Glz—Uxa)]) <0 VzelX.

We recall that z* is a solution of VI if and only if z* = Ilx ¢(z* — G~! F(z*)).
For a function f : R™ — R Lipschitz near x € R", the generalized directional derivative of f at z in
the direction d € R™ is defined as [1]:

f°(z;d) := lim sup fly+Ard) = fy)

y—T A ’
L0

and the generalized gradient of f at x is
Of(x) ={S €R": f(x;d) > (§,d), VdeR"}L
In the rest of the paper we utilize the following assumptions.
(A1) The set X CR™ is nonempty, closed, and convex.
(A2) The map F:Y — R"™ is locally Lipschitz at each point of an open convezx setY such that X C Y.
(A3) The map F:Y — R™ is monotone on X, i.e. (F(z)—F(y),x—y)>0 Va,yeX.

(A4) The set X is bounded.

2 Gap functions

Given a > 0 and the matrix G, we consider the following gap function introduced in [3]:

pa() = max (F(x).x —y) = Sz — 2] = ().~ ya(@) = Fllo — val@) 2, (2)

where y,(z) = lx g(z — (¢ G)"1F(x)) is the unique maximizer.
Thus

e v,(r)>0, VzelX,
e z* solves VI if and only if 2* € X and ¢, (z*) = 0;

hence VI can be reformulated as the following constrained minimization problem:

;réijrg ©a (). (3)

Under assumption assumptions (A1) — (A2), the gap function ¢, is locally Lipschitz at any point
x € X and its generalized gradient is given by the formula [9]:

Opa(w) = {F(z) = (VT —aG) (ya(z) —z), V€OF(2)}, (4)

where OF is the classical Clarke generalized Jacobian of F' [1].
In the following we generalize the Proposition 4.1 in [6] regarding strongly monotone maps to the
case where F' is monotone.

Theorem 2.1. Let assumptions (A1) — (A3) be fulfilled. Then, for each x € X, the vector yo(z) — x
satisfies the following condition:

26 (@5 9a(@) = 2) < —pal@) + 5 [l = yal@) % < 0. (5)
Proof. Let g € 0p,(x). From (4) we have:

g=F(z)— (VT —aQ) (ya(z) — z), for some V' € OF (x).
Since F is monotone and (A1) — (A2) holds, each matrix V' € dF(z) is positive semidefinite [4], then:
(9.9a(2) —2) = (F(2),ya(@) = 2) + allz = ya(@)[E — (Yalz) — 2,V (ya(@) — 7))

< (F(2),ya(x) = 2) + allz = ya(2)[E

= —¢a(@) + 5 llz = va(@Il3
Moreover, we have [1]:

0o ya(z) —2) = max (g,ya(z) —),
g€ pa ()

thus
223 4a(@) = 2) £ —pal0) + 5 17— ya (@)l
It is also known [6] that
¢al@) > 5 o —pal@)|E, VaeX.
Hence
~pal@) + 5 7 = ya(@)|Z < 0.
d
This result will be exploited in Section 3 where we modify, in the spirit of [10], the descent method

for solving nonsmooth strongly monotone VI proposed in [5], in order to solve the nonsmooth monotone
VI

3 Descent method

The basic idea of the method is to use (5) to obtain a descent direction as follows: if z € X satisfies the
condition

fe!
~¢a(@) + 5 2 = ya(@)G < —n¢al@), (6)
where i € (0, 1), then from (5) and (6) we get
o a
Pa(@iya(?) = 2) < —pal@) + 5 2 = a(@)[& < —1¢a().

Thus d = yo(z) — = is a descent direction for ¢, and we can perform a line search with respect to d.
Otherwise, if z does not solve VI and does not satisfy (6), we reduce the parameter «. In the following,
we describe the descent method with an Armijo-type line search.

Algorithm

0. (Initial step)
Let G be a symmetric positive definite matrix, 1,7 € (0,1), and S8 € (0, 7).
Let {ay} be a sequence strictly decreasing to 0.
Choose any z° € X and set k = 0.

1. (Stopping criterion)
If o, (%) = 0
then STOP,
else set k =k + 1.
2. (Minimization of ¢,)
2a. (Initialization)
Set i =0 and 2° = 2" 1.
. @ .))
%~H—%J5H”§W“wwkmﬁ<ﬂW%@ﬁ
then (line search)
compute y* = x (2" — (. G) ' F(2))
set d' =gyt — 2°
compute the smallest nonnegative integer m such that:
o (2 + 7" d') = pa, (2') £ =B pay ()
set t; =™,
else (update of z¥)
set ¥ = 2* and return to step 1.

2c. (Update of 2%)
Set ziTt = 28 +¢;d%, i = ¢ + 1, and return to step 2b.

Theorem 3.1. (Global convergence)

If assumptions (Al) — (A4) are fulfilled, then the algorithm either stops at a solution of VI after a finite
number of iterations, or generates a bounded sequence {x*} such that any of its cluster points solves VI,
or generates a bounded sequence {z'}, for some fized oy, such that any of its cluster points solves VI.

Proof. First, we show that the algorithm is well defined, i.e. that the line search procedure is always
finite. Assume, by contradiction, that there are i,k > 0 such that the inequality

Py, (2 + 7" d') = 0y (27) > = B a, (27),
holds for all m € N. Then we have:

. o % mdi — 0, i
g2 (;d) > lim sup PoelZ 77 &) ~ ¢a ()

m——+oo 'Ym

2 - 6‘»0041@ (zl)

Combining (5) and step 2b, we get:
o (. i iy Gk gy i
P20 (25 0) < ~pay () + BN < — 1o, (1),

therefore
(= B) pa, (2") <0,

which is impossible because 7 > 3 and ¢,, (2*) > 0. So the line search procedure is always finite.
There are three possible cases.

Case 1. The algorithm stops at z* after a finite number of iterations. From the stopping criterion at
step 1 it follows that ¢q, (z¥) = 0, thus z* solves VL.

Case 2. The algorithm generates an infinite sequence {z*}. From step 2b we have that

o
Pay (27) < S0—n 2* = Yo, ()& VEEN.

Since ¥ and y,, (¥) belong to X which is bounded, the norm ||z* — y,, (z*)||% is bounded above.
Moreover lim «y = 0, thus
k—o0
lim @q, () = 0. (7

k—oc0

Since X is bounded, the sequence {x*} has cluster points. Let z* be any cluster point of {z*}.
From the definition of ¢,, it follows that

fou (@) 2 (Ft)at —y) = Fle* —yle VEENVyeX
Passing to the limit and taking a subsequence if necessary, we obtain
0> (F(z*),a" —y) VyeX,
on account of the continuity of F, kl;rr;o ag =0, and (7). It follows that =* solves VI.

Case 3. The algorithm generates an infinite sequence {z‘} for a fixed a = «. Let us consider two

possible subcases: either limsupt; > 0, or limsupt; = 0.
1—00 i—00

Subcase 3a. If limsupt; > 0, then there exists t* > 0 and a subsequence {t;_} such that ¢;, >

1—00
t* > 0 for all s € N. Since the sequence {z'} is infinite, we have:

Pa(2") = palzth) = Bti, pa(z") = Bt pa(z") > 0. (8)
The sequence {¢,(2")} is monotone decreasing and bounded below, hence

lim (a(2) = @a(z'™1)) =0,

i—00

and in particular

lim (pa(=") = wa(zT1) = 0. 9)
Using (8) and (9), we obtain lim ¢p,(z%) = 0 and thus lim p,(z) = 0.
Ende el 71— 00

Let z* be any cluster point of {z'}. From the continuity of ¢, it follows that
lim ¢, (2%) = pa(z*), hence oo (2*) = 0, i.e. 2* is a solution of VL.

71— 00
Subcase 3b. If limsupt; = 0, then lim ¢; = 0. From the step length rule it follows that for all
i—00 t—>00
i €N,

ot . t; :
Pa zl+dz> —a(2") > =B — pa(z").
(s 2 (> = 6% pala)
By the mean value theorem we have
oo (4 2) - ol = (€. 5)
« ,y (o3 b ’y)

where £ € D, (2" + 6; % d?) for some 6; € (0,1). From (4) it follows that

§i:F<zi+0itidi) - (V" - a@) [ya (zi—k(‘)itidi) - <zi+9itidi>},
gl g g

for some V; € OF (2* + 0, % d"). Therefore, for all i € N, we have:

(F (zi+ 6; % di> —(VT —aG) [ya (z + 6, % di> _ (z + 6, % di)],di>>—,ﬁ%(zi).

The sequences {2} and {d’} are bounded thus, since F is continuous and 9F is upper semicon-
tinuous, the sequence {V;} is bounded. Let z* be any cluster point of {2*}. Since lim ¢; = 0,
71— 00

passing to the limit and taking a subsequence if necessary, we get:
(F(z") = (V] = aG) (ya(2") = 2),d") 2 = Bpalz"), (10)
where d* = y,(2*) — z* and V, € OF(2*). Since

° (2%;d") = ma ,d™),
P () 968%@*)@)

from (4) and (10) it follows that:
P (z5d") > (F(2") = (V] = aG) (ya(2%) = 2),d") > = Bpalz"). (11)
Moreover, for all i € N jwe have:
iy, Qi)12 i
= ?a(z) + 5 12 = wa()lle < —neal2),

hence passing to the limit and taking a subsequence if necessary, and using Theorem 2.1 we
obtain:

O [%, 7% * a * *
Pa(27d") < —pa(2") + 3 1d°1G < = ngal2"). (12)

From (11) and (12) we get
(n—B) ¢a(2) <0.
Since n > 8 and @, (2*) > 0, it follows that ¢, (z*) = 0. i.e. z* solves VL

O

Remark 3.1. In the algorithm we can choose the sequence {ay} adaptively, for example (see also [8])
such as:

1) < g,

ap = { ag—1 if Pay_, (T (13)

pag_1 otherwise,

where 0 < pu < 1 and {vi} is a sequence decreasing to 0. Indeed, if the algorithm generates an infinite

sequence {z*} with {ay} chosen by (13), then either klim ay = 0, which can be treated as in the Case 2
—00

of Theorem 3.1, or «y, is constant for every k greater than some k, i.e.
ap=a and goa(mk)guk Yk >k,

hence klim ¢a(z®) = 0. Then for each cluster point 2* of {z*} we have va(x*) = 0, that is x* solves
—00
VI

4 Numerical experiments

In this section we show some preliminary numerical results for the algorithm proposed in Section 3.
We implemented the algorithm in MATLAB 7.0.4 and we set the matrix G as the identity matrix. As
stopping criterion we used the natural residual: ||z — ILx ;(z — F(z))|| < 10~%. In the test problems we
chose the feasible set X = [1,7] x --- x [1,7] and the map F : R — R" as

F(z)=(A+ D)z + H(z),

where A is a skew-symmetric random matrix, D is a diagonal matrix with nonnegative entries, and H; is
a nonsmooth nondecreasing function of the only variable x;, for all i = 1,...,n. Under these conditions,
it is easy to show that F' is a nonsmooth monotone (but not strongly monotone) map.

Example 4.1. Consider the VI problem where the components of F(x) are given as follows:

Fi(z) = —2.3443 25 — 0.2079 23 — 3.4258 x4 — 1.4208 x5 + max{log(x1),1}
Fy(x) = 2.3443 21 4+ 22 + 4.5392 23 — 1.63211 24 + 1.3325 25 + max{log(z2), 1}
Fs5(x) = 0.2079 21 — 4.5392 25 + 3 — 1.0441 24 — 4.1165 25 + max{log(z3), 1}
Fi(x) = 3.4258 , + 1.6321 2 + 1.0441 23 + 2.5772 5 + max{log(z4), 1}

() =

Fy(x 1.4208 1 — 1.3325 x5 + 4.1165 x3 — 2.5772 4 + 5 + max{log(xs), 1}

Preliminary computational results show that setting aj, = 1/10%, v = 0.2, 8 = 0.2, and i = 0.5 provides
a good parameter choice. We applied the algorithm, with such choice of parameters, to solve this example
with several vertices of X as initial points. Numerical results are summarized in Table 1 containing seven
columns: starting point, number of outer iterations, number of inner iterations, number of projections,
number of evaluations of the operator, natural residual at x, and the found approximate solution z.

Table 1: Numerical results for Example 4.1 with a3, = 1/10%, v = 0.2, 8 = 0.2, n = 0.5.

starting outer | inner | proj. | eval. natural approximate
point iter. iter. of F' | residual solution
(1,1,1,1,1) 4 8 45 57 3.38E-05 | (7,1,6.389768,1,1)
(1,1,1,7,1) 4 10 50 64 3.38E-05 | (7,1,6.389768,1,1)
(1,1,7,1,1) 4 8 45 57 3.38E-05 | (7,1,6.389768,1,1)
(1,1,7,7,1) 4 8 45 57 3.38E-05 | (7,1,6.389768,1,1)
(1,7,1,1,1) 4 9 47 60 3.38E-05 | (7,1,6.389768,1,1)
(1,7,1,7,1) 4 9 47 60 3.38E-05 | (7,1,6.389768,1,1)
1,7,7,1,1) 4 8 45 57 3.38E-05 | (7,1,6.389768,1,1)
(1,7,7,7,1) 4 8 45 57 3.38E-05 | (7,1,6.389768,1,1)
(7,1,1,1,1) 4 8 45 57 3.38E-05 | (7,1,6.389768,1,1)
(7,1,1,7,1) 4 9 48 61 3.38E-05 | (7,1,6.389768,1,1)
(7,1,7,1,1) 4 7 43 54 3.38E-05 | (7,1,6.389768,1,1)
(7,1,7,7,1) 4 8 45 57 3.38E-05 | (7,1,6.389768,1,1)
(7,7,1,1,1) 4 8 45 57 3.38E-05 | (7,1,6.389768,1,1)
(7,7,1,7,1) 4 9 47 60 3.38E-05 | (7,1,6.389768,1,1)
(7,7,7,1,1) 4 8 45 57 3.38E-05 | (7,1,6.389768,1,1)
(7,7,7,7,1) 4 8 45 57 3.38E-05 | (7,1,6.389768,1,1)

Table 1 shows that the algorithm is quite robust with respect to the starting point, as it always
converges to the same solution. Besides, the number of outer iterations is always equal to 4 and the
number of inner iterations is always between 8 and 10. The number of projections and of evaluations is
stable as well, always between 43 and 50, and between 54 and 64, respectively.

Computational tests have been then carried out to show the behavior of the algorithm with different
parameter values. First, the behavior with respect to different choices of sequence oy, is shown in Table 2:
ar = 1/k, ag, = 1/k?, ap = 1/2F, and ap = 1/10*. The other parameters are set as in Table 1: v = 0.2,
£8=0.2,17=0.5.

Different choices of the sequence «y, are tested over the set of vertices as starting points. In Table 2,
for each choice of the sequence ay, the average and maximum number of outer iterations, inner iterations,
projections, and evaluations of F' are given. Computational results show that exponential sequences, such

as 1/2F or 1/10, seem to provide a good behavior while choosing polynomial sequences seems to lead
to a greater number of iterations.

In Table 3 results with different values of parameter v (from 0.1 to 0.9) are shown. Results are
obtained keeping values of other parameters as in Table 1. For each choice of v, the average and
maximum number of outer iterations, inner iterations, projections, and evaluation of F are given.

According to the results the algorithm seems to perform well for 0.2 <~ < 0.5, while the number of
needed iterations, projections, and evaluations increases for v = 0.1 and for v > 0.6.

Finally, keeping values of aj and v as in Table 1, we show in Table 4 results for different values of
parameters 5 and 7 between 0.1 and 0.9, with 5 < 7.

For the considered example the choice of 8 and 7 seems to be less important than the choice of ~:
in fact the average number of projections is between 45 and 50 for any chosen value, and the number of
needed evaluations is between 57 and 63.

For the first considered example the most important role seems to be played by «g, while # and
7 seem to be not so important. Although 7 does not influence as «y, its value has a quite significant
importance.

Table 2: Behavior of the algorithm with respect to different oy, choice.

outer iterations | inner iterations projections evaluations of F'
ag avg. max | avg. max avg. max avg. max
1/k 9741 9741 8.3 10 | 29256.7 29261 | 39006.0 39012
1/k* 99 99 8.3 10 330.7 335 438.0 444
1/2* 14 14| 83 10 75.6 80 97.9 104

1/10F 4 4 8.3 10 45.6 50 57.8 64

Table 3: Behavior of the algorithm with respect to different v choice.

outer iterations | inner iterations projections evaluations of F’
v | avg. max | avg. max avg. max avg. max
0.1 5 5| 253 27 135.6 140 165.8 172
0.2 4 4 8.3 10 45.6 50 57.8 64
0.3 4 4 | 10.3 12 66.6 72 80.8 88
0.4 3 3 9.3 11 58.6 64 70.8 78
0.5 4 4 7.3 9 55.6 61 66.8 74
0.6 5 5 | 13.3 15 139.6 146 157.9 166
0.7 4 4 7.3 9 91.7 99 102.9 112
0.8 4 4| 13.2 14 173.7 181 190.9 199
0.9 5 5 (373 39 | 1190.1 1206 | 1232.3 1250

Table 4: Behavior of the algorithm with respect to different 8 and 7 choice.

outer iterations | inner iterations | projections | evaluations of F’
B n | avg. max | avg. max | avg. max | avg. max
0.1 0.2 4 4 8.3 10 | 45.6 50 | 57.8 64
0.1 0.3 4 4 8.3 10 | 45.6 50 | 57.8 64
0.1 04 4 4 8.3 10 | 45.6 50 | 57.8 64
0.1 0.5 4 4 8.3 10 | 45.6 50 | 57.8 64
0.1 0.6 5 5 8.3 10 | 48.6 53 | 61.8 68
0.1 0.7 5 5 8.3 10 | 48.6 53 | 61.8 68
0.1 0.8 5 5 8.3 10 | 48.6 53 | 61.8 68
0.1 0.9 5 5 8.3 10 | 48.6 53 | 61.8 68
0.2 03 4 4 8.3 10 | 45.6 50 | 57.8 64
0.2 04 4 4 8.3 10 | 45.6 50 | 57.8 64
0.2 05 4 4 8.3 10 | 45.6 50 | 57.8 64
0.2 0.6 5 5 8.3 10 | 48.6 53 | 61.8 68
0.2 0.7 5 5 8.3 10 | 48.6 53 | 61.8 68
0.2 0.8 5 5 8.3 10 | 48.6 53 | 61.8 68
0.2 0.9 5 5 8.3 10 | 48.6 53 | 61.8 68
0.3 04 4 4 8.3 10 | 45.6 52 | 57.9 66
0.3 0.5 4 4 8.3 10 | 45.6 52 | 57.9 66
0.3 0.6 5 5 8.3 10 | 48.6 55 | 61.9 70
0.3 0.7 5 5 8.3 10 | 48.6 55 | 61.9 70
0.3 0.8 5 5 8.3 10 | 48.6 55 | 61.9 70
0.3 0.9 5 5 8.3 10 | 48.6 55 | 61.9 70
04 0.5 4 4 8.3 10 | 45.6 52 | 57.9 66
0.4 0.6 5 5 8.3 10 | 48.6 55 | 61.9 70
04 0.7 5 5 8.3 10 | 48.6 55 | 61.9 70
0.4 0.8 5 5 8.3 10 | 48.6 55 | 61.9 70
0.4 0.9 5 5 8.3 10 | 48.6 55 | 61.9 70
0.5 0.6 5 5 8.3 10 | 48.7 55 | 61.9 70
0.5 0.7 5 5 8.3 10 | 48.7 55 | 61.9 70
0.5 0.8 5 5 8.3 10 | 48.7 55 | 61.9 70
0.5 0.9 5 5 8.3 10 | 48.7 55 | 61.9 70
0.6 0.7 5 5 8.3 10 | 48.8 56 | 62.1 71
0.6 0.8 5 5 8.3 10 | 48.8 56 | 62.1 71
0.6 0.9 5 5 8.3 10 | 48.8 56 | 62.1 71
0.7 0.8 5 5 8.5 14 | 49.7 73 | 63.2 92
0.7 0.9 5 5 8.5 14 | 49.7 73 | 63.2 92
0.8 0.9 5 5 8.6 14 | 50.1 75 | 63.7 94

Example 4.2. Consider the VI problem where the components of F(x) are given as follows:

Fi(z) = —1.8897z9 — 1.8640 x5 + 0.9461 4 + 2.1910 x5

+1.9724 26 — 0.1430 27 — 2.2689 x5 + 3.3547 29 — 0.1707 210 + max{e” 4,4}
Fy(z) = 1.8897x1 + x5 — 0.3930 23 + 0.5227 24 — 0.1551 x5

—2.2249 26 — 0.9974 x7 + 1.6434 x5 + 0.0714 29 + 0.9947 219 + max{e®>~4 4}
F3(z) = 1.8640x1 + 0.3930 22 + x5 — 0.6498 224 + 1.8380 x5

—2.7493 26 — 2.5758 17 — 2.3058 x5 + 2.9067 g + 3.3159 19 + max{e®>~* 4}

Fy(x) = —0.946127 — 0.5227 25 + 0.6498 x3 + x4 + 3.0704 25
+1.1716 xg — 1.5065 x7 + 1.4465 x5 + 1.6084 g + 4.4847 19 + max{e“_‘l, 4}
Fs(z) = —2.1910x1 + 0.1551 25 — 1.8380 23 — 3.0704 4 + x5

—1.7578 2 + 0.1742 27 + 1.3372 x5 + 1.0249 29 + 2.9095 219 + max{e® 4 4}
—1.9724 21 + 2.2249 x5 + 2.7493 x3 — 1.1716 x4 + 1.7578 =5
+x¢ + 0.4999 7 — 0.3121 x5 + 2.3238 9 4+ 1.5032 19 + max{e“fﬁl, 4}
Fr;(z) = 0.1430x; 4+ 0.9974 5 + 2.5758 23 + 1.5065 x4 — 0.1742 x5
—0.4999 26 + 27 — 0.7091 25 + 0.4407 x9 — 0.6773 110 + max{e®~* 4}
Fg(x) = 2.2689x1 — 1.6434 x5 + 2.3058 x3 — 1.4465 x4 — 1.3372 x5
+0.3121 26 + 0.7091 27 + x5 + 0.5291 29 — 2.1871 21 + max{e*s~* 4}
Fo(x) = —3.3547z1 — 0.0714 25 — 2.9067 x5 — 1.6084 4 — 1.0249 x5
—2.3238 x¢ — 0.4407 x7 — 0.5291 xg + w9 — 1.1628 x1¢ + max{e“'g_‘*, 4}
Flo(ﬂl‘) = 0.1707 xrp — 09947.132 — 3.3159 Tr3 — 4.4847 Xrq4 — 2.9095 xIs
—1.5032 26 + 0.6773 27 + 2.1871 25 + 1.1628 g + w10 + max{e®0~4 4}

Preliminary computational results show that a good choice of parameters for this example is given
by ai, = 1/2%, v = 0.4, 3 = 0.5, = 0.6. Results for such parameters with several vertices of X as initial
points are shown in Table 5.

Table 5: Numerical results for Example 4.2 with oy, = 1/2%, v = 0.4, 8 = 0.5, = 0.6.

starting outer | inner | proj. | eval. natural approximate
point iter. iter. of F' | residual solution
(1,1,1,7,1,1,1,7,1,1) 17 19 171 207 | 2.33E-05 | (1,1,1,1,1,1,1,1,6.003977,1)
(1,1,1,7,1,1,7,7,7,1) 6 15 76 97 1.41E-05 | (1,1,1,1,1,1,1,1,6.003981, 1)
(1,1,1,7,7,1,1,7,1,1) 15 13 116 144 | 3.50E-05 | (1,1,1,1,1,1,1,1,6.003984,1)
(1,1,1,7,7,1,7,7,1,1) 11 10 85 106 | 6.84E-05 | (1,1,1,1,1,1,1,1,6.003971,1)
(1,1,7,7,1,1,1,7,1,1) 11 10 85 106 | 6.84E-05 | (1,1,1,1,1,1,1,1,6.003971,1)
(1,1,7,7,1,1,7,7,1,1) 11 12 90 113 | 6.84E-05 | (1,1,1,1,1,1,1,1,6.003971,1)
(1,1,7,7,7,1,1,7,1,1) 14 14 129 157 | 5.34E-05 | (1,1,1,1,1,1,1,1,6.003973,1)
(1,1,7,7,7,1,7,7,1,1) 15 16 145 176 | 6.01E-05 | (1,1,1,1,1,1,1,1,6.003972,1)
(7,1,1,7,1,1,1,7,1,1) 15 20 157 192 | 2.05E-06 | (1,1,1,1,1,1,1,1,6.003979,1)
() ()
() ()
() ()
() ()
() ()
() ()
() ()

7,1,1,7,1,1,7,7,1,1 15 15 | 122 | 152 | 3.50E-05 | (1,1,1,1,1,1,1,1,6.003984, 1
7,1,1,7,7,1,1,7,1,1 16 23 | 210 | 249 | 6.02E-05 | (1,1,1,1,1,1,1,1,6.003972, 1
7,1,1,7,7,1,7,7,1,1 15 14 | 118 | 147 | 3.50E-05 | (1,1,1,1,1,1,1,1,6.003984, 1
7,1,7,7,1,1,1,7,1,1 11 11 87 | 109 | 6.84E-05 | (1,1,1,1,1,1,1,1,6.003971,1
7,1,7,7,1,1,7,7,1,1 15 22 | 186 | 223 | 8.57E-05 | (1,1,1,1,1,1,1,1,6.003969, 1
7,1,7,7,7,1,1,7,1,1 11 11 87 | 109 | 6.84E-05 | (1,1,1,1,1,1,1,1,6.003971,1
7,1,7,7,7,1,7,7,1,1 11 11 87 | 109 | 6.84E-05 | (1,1,1,1,1,1,1,1,6.003971,1

Although the number of iterations, projections, and evaluations changes starting from different initial
point, the algorithm seems to be robust also for the second example. In fact the number of outer iterations
is between 6 and 17 for any starting point, the number of inner iterations is between 10 and 23, the
number of projections is between 76 and 210, and the number of evaluations of F' is between 97 and 249.

10

In Tables 6-8 the sensitivity of the algorithm to the parameter values is studied. Table 6 is devoted
to the aj sequence and shows results for ap = 1/k, ag, = 1/k%, ap = 1/2%, and ap = 1/10%; Table 7 is
devoted to parameter v which varies between 0.1 and 0.9; finally Table 8 gives results on parameters
and 71 between 0.1 and 0.9 with 8 < 7.

Table 6: Behavior of the algorithm with respect to different oy choice.

outer iterations | inner iterations projections evaluations of F

Qg avg. max avg. max avg. max avg. max
1/k | 5902.0 28188 41.1 361 | 17931.4 84654 | 23874.5 112858
l/k2 63.2 242 42.1 361 417.0 2143 522.2 2507
1/2k 13.1 17 13.5 23 113.5 210 140.0 249
1/10* 3.3 5 | 156.0 391 935.3 2314 1094.5 2706

Table 7: Behavior of the algorithm with respect to different v choice.

outer iterations | inner iterations projections evaluations of F’
v | avg. max avg. max avg. max avg. max
0.1 | 12.8 15 26.6 151 137.3 561 176.7 716
0.2 | 12.3 16 31.3 120 175.0 415 218.6 536
0.3 | 145 16 24.6 110 161.1 592 200.1 716
0.4 | 131 17 13.5 23 113.5 210 140.0 249
0.5 9.8 17 45.2 75 318.5 461 373.5 539
0.6 2.0 15 125.4 390 806.9 3425 934.3 3818
0.7 5.7 17 | 2525.5 12423 52952.3 314862 55483.5 327295
0.8 1.6 5 251.7 1333 4100.5 31704 4353.8 33042
0.9 6.2 17 | 4012.8 19411 | 276331.0 1577768 | 280350.0 1597189

According to the computational results on the sequence «j, the best behavior is obtained with
ay = 1/2F while a;, = 1/10* does not seem to perform well in the second example. As for Example 4.1,
ay = 1/k does not provide good results. The influence of v is more relevant than for Example 4.1. A
good choice is to set 0.1 < v < 0.4 while with v > 0.5 the number of projections and evaluations increases
significantly. The impact of § and 7 seems to be important, as well. Results show that setting g > 0.6
and 17 > 0.7 may cause a significant increase of the number of projections and evaluations. Although
there is not a clear rule, it seems that choosing 5 < 0.5, n < 0.6, and 8 and 71 quite close to each other
provides a quite good behavior.

Computational tests over the two considered examples show that the behavior of the algorithm is
sensitive to the choice of oy, v, 5, and 1. The algorithm behaves differently for the two examples, however
some suggestions for the parameter setting can be derived. The most important choice seems to be the
choice of the sequence «y: according to the results exponential sequence is to be recommended. The
importance of 7 is relevant too: small values of v (between 0.2 and 0.4) seem to provide good behavior
for both examples. Although 8 and 7 seem to be less relevant, however they have an impact especially
for Example 4.2. Small and close values of § and 7 seem to perform well.

11

Table 8: Behavior of the algorithm with respect to different 8 and 7 choice.

outer iterations | inner iterations projections evaluations of F
154 n | avg. max | avg. max avg. max avg. max
0.1 0.2 | 147 16 20.6 29 162.4 220 197.8 265
0.1 0.3 | 147 16 20.4 29 160.3 220 195.3 265
0.1 04 8.5 16 | 203.2 343 | 11914 1966 | 1403.1 2312
0.1 0.5 8.5 16 | 203.2 343 | 11914 1966 | 1403.1 2312
0.1 0.6 8.5 16 | 203.2 343 | 11914 1966 | 1403.1 2312
0.1 07| 438 16 | 555.3 1029 | 3941.6 8059 | 4501.8 9094
0.1 038 5.1 16 | 374.5 453 | 2434.7 2893 | 2814.3 3350
0.1 09 | 14.0 16 19.0 28 140.3 209 173.3 252
0.2 03| 139 15 15.8 31 126.9 184 156.6 228
02 04 7.8 15 | 198.6 342 | 1157.9 1964 | 1364.3 2309
0.2 0.5 7.8 15 | 198.6 342 | 1158.0 1964 | 1364.4 2309
0.2 0.6 7.8 15 | 208.9 359 | 1217.2 2051 | 1433.8 2413
02 07| 7.6 16 | 217.7 359 | 1276.0 2051 | 1501.2 2413
0.2 08 8.2 16 | 276.7 447 | 1779.5 2859 | 2064.4 3310
0.2 09| 132 18 16.5 26 125.4 222 155.0 264
0.3 04 | 10.6 16 34.0 340 221.0 1959 265.6 2302
0.3 0.5 | 10.6 17 | 34.0 340 221.1 1959 265.8 2302
0.3 0.6 | 123 17 | 331 340 221.6 1959 267.0 2302
0.3 0.7 | 13.0 17 17.8 170 131.5 839 162.3 1011
0.3 0.8] 131 17 18.6 170 136.4 839 168.1 1011
0.3 09| 114 18 | 3824 1191 | 3000.2 9329 | 3393.9 10526
0.4 0.5 | 104 15 23.8 340 160.8 1959 195.0 2302
0.4 06 | 123 15 22.8 340 161.1 1959 196.1 2302
0.4 0.7 | 128 16 17.6 173 129.7 853 160.1 1028
04 0.8] 13.0 17 17.9 173 132.4 853 163.3 1028
0.4 09| 128 18 | 186.2 3947 | 1559.9 34806 | 1758.9 38760
0.5 0.6 | 13.1 17 13.5 23 113.5 210 140.0 249
0.5 0.7 | 13.6 17 13.5 23 115.1 213 142.2 253
0.5 0.8 | 13.4 18 25.0 378 180.5 2179 218.9 2560
0.5 09| 131 18 | 104.5 1071 779.7 8354 897.3 9431
0.6 0.7] 11.1 17 | 121.3 356 732.9 2056 865.3 2415
0.6 08| 11.1 18 | 155.3 1060 997.1 8311 | 1163.5 9377
0.6 0.9 | 105 18 | 3674 3316 | 2760.4 29133 | 3138.4 32456
0.7 0.8 | 11.7 18 | 131.0 1103 869.4 8657 | 1012.1 9766
0.7 09| 121 18 | 277.2 3152 | 2135.5 27650 | 2424.7 30809
0.8 09 | 145 18 | 424.3 5509 | 3953.7 54651 | 4392.5 60169

12

5

Conclusions

In this paper a modified descent method, with the use of Armijo-type line search, via gap functions
for solving nonsmooth variational inequalities is proposed and its global convergence, with less strict
assumptions as usual in literature, is proved. Moreover, preliminary computational tests are reported,

which provide useful considerations on the parameter settings. It would be very interesting to investigate
the convergence rate of the method and to extend it to generalized variational inequalities (i.e. with
multivalued operator). Much more examples could be tested to confirm its robustness.

References

[1]
2]

3]

[10]

F. H. Clarke, Optimization and nonsmooth analysis, John Wiley and Sons: New York, 1983.

F. Facchinei and J.-S. Pang, Finite-dimensional variational inequalities and complementarity prob-
lems, Springer: Berlin, 2003.

M. Fukushima, “Equivalent differentiable optimization problems and descent methods for asymmet-
ric variational inequality problems”, Mathematical Programming, vol. 53, pp. 99-110, 1992.

H. Jiang and L. Qi, “Local uniqueness and convergence of iterative methods for nonsmooth vari-
ational inequalities”, Journal of Mathematical Analysis and Applications, vol. 196, pp. 314-331,
1995.

I. Konnov, “Descent methods for nonsmooth variational inequalities”, Computational Mathematics
and Mathematical Physics, vol. 46, pp. 1186-1192, 2006.

I. Konnov, B. Panicucci, M. Passacantando, “A derivative-free descent method for nonsmooth vari-
ational inequalities”, Technical Report of the Department of Applied Mathematics, University of
Pisa, vol. 13, 2006.

J.-M. Peng, “Equivalence of variational inequality problems to unconstrained minimization”, Math-
ematical Programming, vol. 78, pp. 347-355, 1997.

M. V. Solodov and P. Tseng, “Some methods based on the D-gap function for solving monotone
variational inequalities”, Computational Optimization and Applications, vol. 17, pp. 255-277, 2000.

H. Xu, “Regularized gap function and D-gap function for nonsmooth variational inequalities”, in
“Optimization and Related topics” edited by A. Rubinov and B. Glover, Kluwer Academic Publish-
ers: Dordrecht, pp. 153-176, 2001.

D. L. Zhu and P. Marcotte, “Modified descent methods for solving the monotone variational in-
equality problem”, Operations Research Letters, vol. 14, pp. 111-120, 1993.

13

