1	Testing an indirect palaeo-seagrass indicator: benthic foraminifera from the lower
2	Pleistocene Posidonia meadow of Fauglia (Tuscany, Italy)
3	Luca Mariani ^a *, Giovanni Coletti ^a , Guillem Mateu-Vicens ^b , Giulia Bosio ^a , Alberto Collareta ^c ,
4	Anna Khokhlova ^b , Andrea Di Cencio ^{d,e} , Simone Casati ^d and Elisa Malinverno ^a
5	
6	^a Dipartimento di Scienze dell'Ambiente e della Terra, Università degli Studi di Milano-Bicocca,
7	20126 Milano, Italy. l.mariani35@campus.unimib.it; giulia.bosio@unimib.it;
8	giovanni.coletti@unimib.it; elisa.malinverno@unimib.it
9	^b Interdisciplinary Ecology Group, Universitat de les Illes Balears, Cra. de Valldemossa, Km. 7.5,
10	07122 Palma de Mallorca, Spain. guillem.mateu@uib.es; anna.khokhlova@uib.es
11	° Dipartimento di Scienze della Terra, Università di Pisa, 56126 Pisa, Italy.
12	alberto.collareta@unipi.it
13	^d Gruppo Avis Mineralogia e Paleontologia Scandicci, 50018 Scandicci, Italy.
14	sim.casati@gmail.com
15	^e Studio Tecnico Geologia e Paleontologia, 50026 San Casciano Val di Pesa, Italy.
16	andrea.dicencio@gmail.com
17	*Corresponding author: l.mariani35@campus.unimib.it
18	
19	Abstract
20	Well-preserved remains of a Posidonia oceanica meadow have been found in a lower
21	Pleistocene (Calabrian) succession cropping out near Fauglia (Tuscany, Italy). This paper
22	analyses and describes the benthic foraminiferal community associated with this well-
23	preserved Pleistocene P. oceanica meadow, with the purpose of testing the usefulness of
24	foraminifera as an Indirect Palaeo-Seagrass Indicator (IPSI), providing both qualitative and
25	quantitative parameters to recognize other meadow-related environments where fossil
26	remains of seagrasses are not preserved. Despite being influenced by some diagenetic
27	processes that might have affected the foraminiferal assemblage, the Fauglia succession

28	represents a suitable setting for testing benthic foraminifera as IPSI in a temperate
29	environment. Considering this limitation, together with other ecological constraints such as
30	seawater temperature, this study provides evidence of the high potential of benthic
31	foraminifera as IPSI. Several parameters such as the modified Foraminifera Index (FI'), the
32	"long vs. short life-span index" (I_{LS}), and the presence of permanently attached, encrusting
33	foraminifera were tested. New indexes were also developed, namely the K/R ratio,
34	consisting of the ratio between keeled <i>Elphidium</i> and the sum of rounded elphidiids (e.g.,
35	Elphidium translucens, Cribroelphidium, Porosononion) and Haynesina, and the K/R _{EXT}
36	ratio, consisting of the ratio between keeled <i>Elphidium</i> and the sum of rounded elphidiids,
37	Haynesina and other related genera that display a rounded periphery (i.e., Astrononion,
38	Melonis, Nonion, Nonionella, Valvulineria). All these indexes were examined, suggesting
39	their potential use for recognizing seagrass-related palaeoenvironments. The K/R_{EXT} ratio
40	(and K/R) in association with the presence of permanently attached foraminifera revealed
41	to be the most reliable palaeo-seagrass indicators, suggesting that this combination could
42	be very useful also in other case studies where diagenesis altered the foraminiferal
43	association.
44	
45	Keywords: Posidonia oceanica; Elphidium; Quaternary; IPSI; paleoenvironmental
46	reconstructions; taphonomic biases
47	
48	
49	
50	
51	
52	

1. Introduction

Posidonia oceanica is a seagrass species endemic of the Mediterranean Sea. It dominates 55 56 infralittoral soft bottoms, developing one of the most biologically diverse and ecologically relevant marine ecosystems of the Mediterranean Sea (Duarte & Chiscano, 1999; Short et 57 al., 2007). Within the benthic zonation of the Mediterranean Sea (Pérès & Picard, 1964), P. 58 oceanica meadows constitute the climax stage of the soft-bottom ecosystem succession of 59 the infralittoral zone. Posidonia oceanica is an ecosystem engineer that stabilizes the 60 seafloor with its dense rhizome-meshwork, while the leaves favour local sedimentation by 61 baffling floating particles (Boudouresque & Jeudy de Grissac, 1983; Moriarty & Boon, 62 63 1989; De Falco et al., 2000; Gacia & Duarte, 2001; Sanchez-Vidal et al., 2021). By 64 creating a complex three-dimensional structure with separate foliar and rhizomatic strata, it provides the microhabitat for a wide variety of organisms, many of them with epiphytic 65 living modes, such as encrusting red algae, bryozoans, molluscs, hydrozoans, and 66 foraminifera (Chimenz et al., 1989; Langer, 1993; Murray, 2006; Pardi et al., 2006; Frezza 67 et al., 2011; Mateu-Vicens et al., 2014). Many of these epiphytes are characterized by a 68 mineralized skeleton, contributing to carbonate production within the meadow (Mazzella et 69 70 al., 1989; Langer, 1993; De Falco et al., 2008; Mateu-Vicens et al., 2014; Brandano et al., 71 2016). In addition to the epiphytic taxa, P. oceanica meadows also host abundant infaunal foraminifera that can proliferate in the sediment trapped among the rhizomes (Den Hartog, 72 1979; Langer, 1993). Indeed, the main carbonate-producing biota associated with the 73 74 meadow are calcareous algae and foraminifera, which allows to name the carbonate factories typical of seagrass meadows as GA-Foralgal (characterized by green calcareous 75 algae) and RA-Foralgal (characterized by red calcareous algae) (Brandano et al., 2019). 76 Whereas the epiphytic foraminiferal communities, meadow-related carbonate factories, and 77 other indirect evidence of fossil meadows, have been widely reported from the geological 78 record (e.g., Beavington-Penney et al., 2004; Reich, 2014; Vélez-Juarbe, 2014; Reich et 79

80	al., 2015; Forsey, 2016), the preservation of fossil seagrasses is an exceedingly rare event.
81	Seagrass leaves, roots and pollens decompose easily, making their preservation into the
82	geological record very rare, though not impossible (e.g., Brasier, 1975; Ivany et al., 1990;
83	Hesse et al., 1999; Moissette et al., 2007). Fossils of marine plants have been reported by
84	different authors, the oldest of which is a stem of <i>Thalassocharis muelleri</i> from the lower
85	Campanian of the Netherlands (Debey, 1848, 1851; Pomel, 1849). Other Upper Cretaceous
86	well-preserved seagrass remains were described from the Izumi Stone, in Japan (Koriba &
87	Miki, 1931; Oishi, 1931); from Westphalia, in Germany (Hosius & Von der Marck, 1880);
88	from the Coon Creek Formation of Tennessee, USA (Dilcher, 2016); and from the
89	Netherlands (Voigt & Domke, 1955; Voigt, 1981). An upper Paleocene fossil seagrass was
90	reported from Belgium (Da Saporta & Marion, 1878), while Posidonia and Cymodocea
91	remains are described from the lower Eocene of France (Den Hartog, 1970) and the middle
92	and upper Eocene of Southern England (Selsey Formation; Chandler, 1961; Curry, 1965;
93	Wright & Murray, 1972; Collinson, 1996). Other Eocene seagrasses are known from the
94	London Clay Formation (Herne Bay, England; Chandler, 1961; Collinson, 1983); from the
95	Brussels Sands Formation (Belgium; Stockmans, 1936); from the Avon Park Formation
96	(Florida, USA; Lumbert et al., 1984; Brack-Hanes & Greco, 1988; Ivany et al., 1990;
97	Benzecry & Brack-Hanes, 2008); and from the Birket Qarum and Qasr El Sagha
98	formations (Egypt; Zalmout & Gingerich, 2012). Additional Eocene fossil seagrasses were
99	found in France (Phillips & Meñez, 1988), northern Italy (Gregor, 1991) and southern
100	Germany (Gregor, 2003). Oligocene fossil seagrasses were described from the Isle of
101	Wight (UK; Chesters et al., 1967) and from the Guayanilla Formation of southwestern
102	Puerto Rico (Vélez-Juarbe & Santos, 2008). Several Cymodocea remains have been
103	reported from the Miocene of Sulawesi, Indonesia (Laurent & Laurent, 1926) and from the
104	Messinian of Guadalquivir Basin, in southern Spain (Braga et al., 2021). The most recent
105	examples of fossilized seagrass-meadows have been described by 1) Moisette et al. (2007),

106	who reported Posidonia leaves and rhizomes in the lower Pleistocene deposits of the
107	Kritika Member of the Rhodes Formation in Greece; 2) Brunetti and Vecchi (2005, 2012),
108	who reported well-preserved Posidonia oceanica specimens from the Pleistocene of the
109	Arda River (Emilia-Romagna, Italy); and 3) Raffi and Serpagli (2003), who reported
110	examples of seagrass rhizomes from the Pleistocene of the Stirone River (Parma, Italy). In
111	addition to these examples, the lower Pleistocene seagrass of Posidonia oceanica exposed
112	at the Fauglia Quarry has been recently reported by Bosio et al. (2021).
113	Therefore, excluding the aforementioned examples, the recognition of paleo-seagrass
114	meadows generally relies on indirect lines of evidence (Brasier, 1975; Eva, 1980;
115	Domming, 2001; Beavington-Penney et al., 2004; Leonard-Pingel, 2005; Reuter et al.,
116	2010; Vélez-Juarbe, 2014; Reich, 2014; Reich et al., 2015; Forsey, 2016). These indirect
117	palaeo-seagrass indicators (or IPSIs) have been recently reviewed by Reich et al. (2015),
118	who summarized different criteria for recognizing ancient seagrass occurrences: 1) the
119	fossil assemblages including benthic foraminiferal associations, coralline red algae,
120	hydroids, corals, bryozoans, molluscs (e.g., different bivalve taxa such as Pinnidae and
121	chemosymbiotic species, gastropods), ostracods, echinoderms, fish otoliths, dugongid
122	remains; 2) textural features such as the occurrence of unsorted sediments and fining-
123	upward sequences; 3) the abundance of "constructive" micrite envelops and taphonomic
124	signature of skeletal remains (e.g., root etchings on shells and root casts); 4) the carbon
125	isotopic signal of mollusc shells; and 5) seagrass biomarkers.
126	While several potential IPSIs have been investigated in the literature and several works
127	analysed the foraminiferal associations related to vegetated substrates (Colom, 1942;
128	Blanc-Vernet, 1969; Mateu, 1970; Blanc-Vernet et al., 1979; Langer, 1993; Ribes et al.,
129	2000; Mateu-Vicens et al., 2010, 2012, 2014; Frezza et al., 2011), only a few of these
130	indicators have been tested directly. With the purpose of evaluating the usefulness of
131	foraminifera as IPSI, this paper analyses and describes the benthic foraminiferal

community associated with a well-preserved Pleistocene *Posidonia oceanica* meadow.
This fossil meadow is recorded within a succession dated to the Calabrian that crops out in
a sand quarry near the Fauglia village, Tuscany, central Italy (Bosio et al., 2021). The
sedimentary succession exposed herein consists of silts and sands that also host a *Cladocora caespitosa* bank and an oyster reef at the top.
The aim of this paper is, thus, to provide a qualitative and quantitative description of the
foraminiferal assemblages associated with the fossil meadow through indices that might

prove useful for recognizing other meadow-related palaeoenvironments where seagrass remains are not preserved. Furthermore, these indices can be compared with those calculated for modern case studies, in order to create models that have the capability of providing us with more reliable and detailed palaeoenvironmental reconstructions.

143

144 **2.** Geological setting

The study site consists of an active quarry located at Podere Montalto, ca. 1.3 km ESE of 145 Fauglia (Pisa Province, Tuscany, Italy), along the Eastern side of the Isola stream 146 (geographic coordinates: 43°33'52" N, 10°31'53" E) (Fig. 1). Near the study 147 site, Pleistocene strata occur atop of Pliocene marine deposits (Marroni et al., 1990; Bossio 148 et al., 1999) and include, from bottom to top, the Morrona Formation (ART), the Sabbie di 149 Nugola Vecchia Fm (NUG) and the Casa Poggio ai Lecci Fm (QPL) (Mazzanti, 2016). 150 The ART consists of lower Calabrian (i.e., Santernian according to the 'Italian Marine 151 152 Stages' regional scheme; Gibbard & Cohen, 2008) sands and clays. ART strata are usually rich in macroscopic remains of marine molluscs (mostly bivalves and gastropods), 153 brachiopods, echinoids, corals, crustaceans and annelids. Boreal faunal elements (e.g., 154 Arctica islandica) typically occurs in the ART, representing the geologically oldest 155 occurrence of such taxa in this area. These records appear to be chronostratigraphically 156 consistent with observations of the "Northern guest" A. islandica in other coeval deposits 157

of Italy (e.g., Crippa et al., 2019). The ART reaches a maximum thickness of about 50 m
(Mazzanti, 2016).

160	The NUG consists of fine, yellowish sands interbedded with lenses of conglomerates and
161	calcarenites that have been assigned by Mazzanti (2016) to the Emilian (i.e., mid-
162	Calabrian; Gibbard & Cohen, 2008). The NUG strata contain few remains of marine
163	macro-invertebrates, which are mainly represented by bivalves (mostly oysters and
164	pectinids). The maximum thickness of the NUG exceeds 100 m (Mazzanti, 2016).
165	The QPL consists of conglomerates with subordinate sands and silts, deposited in a
166	transitional environment (including riverine, deltaic and lagoonal settings; Barsotti et al.,
167	1984) during the Chibanian (middle Pleistocene). The strata of the QPL typically contain
168	very scarce remains of macro-invertebrates, including rare bivalves and gastropods. The
169	thickness of the QPL ranges between 1 and ca. 30 m (Mazzanti, 2016).
170	There is no consensus regarding the sequence stratigraphic interpretation of the ART and
171	NUG. Some authors (Bossio et al., 1993; Tani & Gazzerro, 1999; Mazzanti, 2016)
172	consider these formations to represent the transgressive and regressive tracts of a single
173	depositional cycle; other authors, in turn, regard them as corresponding to two distinct
174	depositional cycles (Sarti et al., 2007, 2008). Recent geological mapping of the Fauglia
175	area at the national (Mazzanti, 2016), regional (Regione Toscana, 2006-2009), and local
176	(Marroni et al., 1990) scales, concur in indicating that deposits belonging to the NUG crop
177	out at the study site. That said, the abundant fossil content of these deposits does not match
178	the palaeontological traits of the NUG as observed elsewhere (Mazzanti, 2016), resembling
179	instead some ART outcrops some tens of kilometres farther south. So far, published works
180	on the palaeontology of the Fauglia pit have attributed the stratigraphic succession revealed
181	by the quarrying surfaces to unnamed lower Pleistocene deposits (Brunetti et al., 2008;
182	Chirli & Forli, 2017; Cresti & Forli, 2020) or to the NUG (Berta et al., 2015; Bosio et al.,
183	2021), the latter view being embraced herein.

185

3. Material and methods

The Pleistocene deposits cropping out at the Podere Montalto quarry (Fig. 2A, B) were 186 investigated in detail by describing the lithology, sedimentary structures, and macrofossil 187 distribution. A stratigraphic log was built integrating that of Bosio et al. (2021) with a 188 description of the lower portion of the outcrop (Fig. 3; Table 1). A total of 9 samples were 189 collected at different stratigraphic heights, focusing mainly on the two Posidonia-bearing 190 strata - namely, the lower interval (samples P2, P4, P5, P7) and the upper interval (samples 191 F4, F5, P10, P11) (Figs. 2, 3) - to investigate both vertical and lateral variations. All 192 193 samples were obtained by collecting at least 20 g of sediment, after slightly digging inside 194 the deposits in order to remove the weathered surface. Four samples (P2, P5, P7, F5) were collected from different, very-fine-sandy to fine-silty layers featuring in situ Posidonia 195 oceanica rhizomes (Fig. 2C) and Pinna nobilis shells (Fig. 2D); two samples (P4, F4) from 196 two very-fine-sandy to very-coarse-silty layers occurring within the two Posidonia-bearing 197 strata (Fig 2E); two samples (P10, P11) from lenses of dark-coloured sediments within the 198 Posidonia-bearing layer in the upper interval (Fig. 2F; P11 was collected at the boundary 199 200 of the dark-coloured sediment lens, whereas P10 was collected from the core of the lens); 201 one sample (F7) from the Cladocora caespitosa bank, which lies above the meadow and 202 does not display remains of seagrass (Fig. 2G). Grain size analyses were performed on each sample with a Malvern Mastersizer 2000ETM 203 204 Laser Granulometer at the Università degli Studi di Milano-Bicocca (Table 1). Subsequently, the software GRADISTAT Version 4.0 (Blott and Pye, 2001) was employed 205 to analyse the grain size distribution and to perform statistics. 206 For the analysis of microfossils, a small amount of each sample (see Table 2 for the 207 detailed quantities) was weighted, treated with 30% hydrogen peroxide to remove organic 208 matter (Dimiza et al., 2016) and wet-sieved through a 125-µm-sized mesh, to separate the 209

210	fraction for the benthic foraminifera picking (> $125 \mu m$). Samples F4 and F5 were wet-
211	sieved trough 63-µm-sized mesh, in order to check for grain-size-based differences in the
212	composition of the foraminiferal assemblages (analysing the fraction > 63 μ m). After
213	sieving, the samples were oven-dried and divided into equal fractions using a microsplitter,
214	thus obtaining subsets containing at least 300 specimens each (Murray, 2006).
215	The picking and the identification of the foraminifera were performed under a ZEISS
216	Olympus SZ61 stereo microscope equipped with a high-resolution camera. The taxonomic
217	determination of the foraminifera was based on Cimerman and Langer (1991), Langer and
218	Schmidt-Sinns (2006), Milker and Schmiedl (2012), the Foraminifera.eu-Project
219	(Hesemann, 2020), and World Register of Marine Species (WoRMS Editorial Board,
220	2021). SEM imaging of epiphytic foraminifera and Posidonia oceanica leaves and
221	rhizomes was also performed using a FEG (SEM-FEG) Gemini 500 Zeiss scanning
222	electron microscope at the Università degli Studi di Milano-Bicocca.
223	The total amount of benthic foraminifera, the standardized quantity of benthic foraminifera
224	within 100g of sediment, the species richness (i.e., number of species) and the relative
225	frequency of each species, were calculated. To analyse the taxonomic structure of the fossil
226	assemblage, biodiversity was measured using the Shannon-Weaver index H' (Shannon &
227	Weaver, 1963; Mateu-Vicens et al., 2014):

$$\mathrm{H}' = -\sum_{i=0}^{R} p_i \ln(p_i)$$

229 where p_i is the relative abundance of each species (*i*) and R is the species richness (i.e., 230 number of species).

Since miliolid foraminifera can be easily altered, or even dissolved, due to their
porcelaneous test of high-Mg calcite (Budd & Hiatt, 1993), several parameters were also
calculated excluding miliolids to highlight the signal of the meadow while avoiding the
bias from miliolids dissolution.

235	The relative abundance of epiphytic foraminifera was calculated using the $Index_{EP}$ i.e., the
236	ratio between epiphytic foraminifera and the total of benthic foraminifera (Mateu-Vicens et
237	al., 2014). Index _{EP-M} , a variant of Index _{EP} that excludes miliolids, was also calculated.
238	According to Langer (1993) and Mateu-Vicens et al. (2014), epiphytic foraminifera can be
239	divided into five different groups based on their type of motility, life span, feeding mode,
240	and test morphology and structure. The recognized ecomorphological groups are: A*)
241	long-living (> 10 months), sessile species, permanently attached to the substrate (e.g.,
242	Nubecularia lucifuga, Planorbulina mediterranensis); SB) long-living (> 10 months),
243	symbiont-bearing taxa (e.g., Sorites, Peneroplis, Amphistegina); B) short-living (3-5
244	months), generally motile species that temporarily attach to the substrate using organic
245	materials (e.g., Rosalina spp., Cibicides spp., Ammonia spp.); C) short-living, motile,
246	suspension-feeding foraminifera (e.g., keeled elphidiids, Astrononion, Cribroelphidium);
247	and D*) short-living, permanently motile, grazing foraminifera (e.g., opportunistic species
248	living within rhizomes and sediment particles). Thus, epiphytic foraminifera specimens
249	were assigned to the different morphotypes (A* to D*). Another classification was
250	developed without including miliolids. Here, we refer to the traditional classification (i.e.,
251	that from Langer, 1993 and Mateu-Vicens et al., 2014) as "Mode-1", and to the
252	classification without miliolids as "Mode-2". Pie-plots showing the percentage of the
253	different morphotypes were compiled for both classifications and for each sample. The
254	modified FORAM Index (FI') developed by Mateu-Vicens et al. (2014) based on Hallock
255	et al. (2003) FORAM Index (FI), and the "long vs. short life-span" index (I_{LS} ; Mateu-
256	Vicens et al., 2014) were also tested. FI' is expressed as:
257	$FI' = 10 \times (P_{A*} + P_{SB}) \times P_{D*} + 2 \times (P_B + P_C)$

Values of FI' >4 indicate optimal environmental conditions, whereas values of FI' <2 are indicative of stressed conditions (Mateu-Vicens et al., 2014). I_{LS} , which consists of the ratio between longer-living and short-living forms, was built to highlight the differences between well-preserved and stressed *P.oceanica* meadows (Mateu-Vicens et al., 2014) and
is expressed as:

 $I_{LS} = (3.5 \times (P_{A*} + P_{SB}) + 0.01) / (P_{D*} + 0.01)$ 263 I_{LS} values range between 0 and 36. If D* is the dominant morphotype, the index is close to 264 0; if the dominant morphotypes are A* and SB, the index points towards 36. 265 A new index based on the ratio between keeled *Elphidium* and the sum of rounded 266 elphidiids (e.g., Elphidium translucens, Cribroelphidium, Porosononion) and Haynesina 267 was elaborated and defined as K/R index. An additional index, K/R_{EXT}, consisting of the 268 269 ratio between keeled Elphidium and the sum of rounded elphidiids (e.g., Elphidium translucens, Cribroelphidium, Porosononion), and other related genera that display a 270 rounded periphery, such as Haynesina, Astrononion, Melonis, Nonion, Nonionella and 271 272 Valvulineria, was also tested. Finally, a Q-mode cluster analysis, based on the similarity of species abundances across 273 the samples, was performed with the software Primer v.6. The Log (x+1) transformation 274

was applied to both indexes. Dendrograms were plotted using the Bray-Curtis similarityindex.

277

4. Results

279 4.1 Field observations and stratigraphic section

The measured stratigraphic section is an 8.5-m-thick mixed carbonate-siliciclastic
succession (Figs. 2A, B, 3) whose upper portion has been recently described by Bosio et al.

- 282 (2021). The base of the succession is characterized by the presence of two brownish, fine-
- to medium-grained, silty layers, about 1 m thick each, displaying well-preserved, reddish-
- to-brown coloured, in-situ rhizomes of *Posidonia oceanica* (lower interval; figs. 2C, 3, 4)
- associated with *Pinna nobilis* specimens preserved in life position (Fig. 2D). These

Posidonia-bearing layers are separated by a 50-cm-thick very fine-grained sandy to coarse
silty horizon (Fig. 2E), lacking macrofossils.

Upwards, a quarry road hides about 1 m of the succession. The overlying first interval 288 consists of an 80-cm-thick layer characterized by a fine- to medium-grained sand with silt 289 intercalations, shell lenses and internal molds of the bivalve Panopea. This layer is 290 followed by a 10-cm-thick silty layer and by a 30-cm-thick fine-grained sandy layer with 291 scattered specimens of the zooxanthellate coral Cladocora caespitosa, pectinid shells and 292 clay chips. Just above, a 150-cm-thick, brownish, coarse-grained silty layer, including a 293 very fine-grained sandy to coarse-grained silty interval, occurs (upper interval; Fig. 3). 294 295 Inside this layer, in situ rhizomes of *P. oceanica*, molluscs and invertebrate burrows occur. Laterally, these deposits pass into a large lens of dark-coloured material (Fig. 2F), with 296 leaves of P. oceanica preserved as peaty remains (Fig. 4) and aragonitic macrofossils, such 297 as gastropods and P. nobilis specimens. 298

The uppermost part of the section includes a 250-cm-thick coarse-grained silt layer. At the

base, the horizon displays fragments and scattered colonies of *Cladocora caespitosa* (Fig.

301 2G), together with bivalves featuring geopetal structures. At the top of this layer

302 *Cladocora caespitosa* colonies coalesce to form a decametric to metric *Cladocora* bank.

The bank is abruptly overlain by an oyster reef, rich in barnacles and included in a massivesandy deposit.

305

306

4.2 Foraminiferal analysis

Micropalaeontological analyses reveal that the Fauglia skeletal assemblages is constituted by a large variety of carbonate producers, including benthic foraminifera, planktic foraminifera, ostracods, bryozoans (for the most part belonging to "erect" forms), molluscs and echinoids. Among these, benthic foraminifera are the most abundant group.

311	A total of 97 benthic foraminiferal species were identified (see Table 2; Figs. 5, 6, 7, 8, 9,
312	10; Appendix 1). Foraminiferal density (i.e., the abundance of benthic foraminifera per 100
313	g of material) varies between 26 992 and 84 479 individuals throughout the samples, with
314	the exception of samples P4 and F4 in which this value is almost one order of magnitude
315	higher, between 200 810 and 258 535 individuals (Table 2; Fig. 3). The percentage of
316	broken tests displays no significant difference across the samples, exhibiting an average
317	value of 4% (Table 2). Only in sample F7 (the <i>Cladocora</i> -bearing layer; Fig. 3) broken
318	foraminiferal tests are one order of magnitude higher, displaying a value of 11.7% (Table
319	2). Species richness is relatively variable, showing the highest value in sample F4 (74) and
320	the lowest value in sample F7 (47) (Table 2). In contrast, diversity is more homogeneous in
321	all samples, as indicated by the Shannon-Weaver Index (H'), whose values are high and
322	range from 3.10 in P11 to 3.63 in P10 (Table 2). The relative abundances of the identified
323	benthic foraminifera species are presented in Appendix 1. The most common taxa (i.e.,
324	those with abundance higher than 5%) (Table 3) are: Ammonia group (except for F7);
325	Aubignyna perlucida (F7); Bolivina spp. (P5, F4, F7); Lobatula lobatula (except for F5 and
326	F7); Cibicides refulgens (all samples); Cribroelphidium cf. magellanicum (F7); keeled
327	elphidiids group (except for F7); Elphidium translucens (P4, P5, F5); Fissurina spp. (P2,
328	P5, P11, F7); Fursenkoina subacuta (P10); Haynesina spp. (F7); Reussella spinulosa
329	(except for P2); Neoconorbina terquemi (P4, P5, F4); Rosalina bradyi (P2, P7, P11, F5);
330	Rosalina globularis (P2, P7); miliolids (P10). Well-preserved miliolid tests actually occur
331	only in samples P10 and P11, corresponding to a dark-grey lens within the upper
332	Posidonia-bearing layer. In the remaining samples, miliolids are rare and usually display
333	altered and corroded tests.
334	The largest differences in the associations of common benthic foraminifera can be
335	observed between the samples from the Posidonia-bearing layers (P2, P4, P5, P7, P10,
336	P11, F4, F5) and the sample from the <i>Cladocora</i> bank (F7) (Table 3). In particular, the

337	Ammonia group is less abundant in F7, whereas Aubignyna perlucida and Astrononion
338	stelligerum are more common. Bolivina spp. show higher abundances in F7, but also in P5
339	and F4 (i.e., samples that were sieved with 63 µm mesh size). On the contrary, Bulimina
340	spp. remain approximately constant among all the samples. Cibicididae (e.g., Lobatula
341	lobatula, Cibicides refulgens, Cibicidoides pachyderma and Cibicidoides
342	pseudoungerianus) display the lowest values in F7. Within this group, the species that
343	contributes more to the variation is Lobatula lobatula, whose abundance is considerably
344	lower in F7 with respect to the samples from Posidonia-bearing layers. Cibicides
345	refulgens, instead, is abundant also in F7. Cribroelphidium cf. magellanicum and
346	Haynesina spp. have the highest abundance in the Cladocora bank (F7). Keeled Elphidium
347	represent one of the most abundant group within all the samples from the Posidonia-
348	bearing layers. Among them, the most common species are E. aculeatum, E. advenum, E.
349	crispum, and E. fichtelianum; these species are almost absent in F7. Fissurina spp. are
350	abundant in every sample. Fursenkoina subacuta displays large frequency variations, but
351	no significant trends. Planorbulina mediterranensis exhibits almost constant values in all
352	the samples, except for F7, where it is absent. Elphidium translucens and Reussella
353	spinulosa do not show particular trends, being common in every sample. Rosalinidae (i.e.,
354	Gavelinopsis praegeri, Neoconorbina terquemi, Neoconorbina sp., Rosalina brady,
355	Rosalina globularis and Rosalina williamsoni) display the lowest abundance in F7,
356	whereas in the other samples they constitute one of the most populated groups.
357	Agglutinated foraminifera (the only species identified is Sahulia conica) are generally
358	scarce, except for P10. Miliolids occur in P10 and, to a lesser extent, in P11. In all the
359	other samples they are rare and poorly preserved. The well-preserved miliolids of P10
360	include the encrusting species Nubecularia lucifuga.
361	Index _{EP} displays its lowest value of 0.4 in correspondence of F7, while in the other samples
362	its average value is 0.6 (Table 2). Index _{EP-M} , calculated without considering miliolids,

363	shows a similar trend (Table 2). No remarkable differences in the abundances were
364	observed between samples sieved through 63- μ m and 125- μ m-sized meshes. The only
365	difference is the slightly higher abundance of some opportunistic species (e.g., Bolivina
366	spp.) in the finer fraction. The division of the epiphytic species into the different
367	morphotypes is visible in Table 4. No specimens belonging to the SB group was
368	recognized. Morphotype percentages for both study modes are shown in Table 5 and
369	Figure 11.
370	
371	4.2.1 Mode-1: classification with miliolids
372	In this classification, morphotype A* includes Planorbulina mediterranensis and
373	Nubecularia lucifuga. The relative frequency of this morphotype is low in all the samples,
374	and no members of this group were observed in F7. The highest value, 1.5%, was recorded
375	in sample P10, which was collected from the dark-coloured sediment within a Posidonia-
376	bearing layer (Table 5).
377	Morphotype B includes members of Ammonia (i.e., Ammonia beccarii, Ammonia
378	parkinsoniana, Ammonia tepida); Cibicididae (i.e., Lobatula lobatula, Cibicides refulgens,
379	Cibicidoides pachyderma, Cibicidoides pseudoumgerianus), Rosalinidae (i.e.,
380	Gavelinopsis praegeri, Neoconorbina terquemi, Neoconorbina sp., Rosalina bradyi,
381	Rosalina globularis), Asterigerinata mamilla, Eponides repandus, Discorbinella
382	bertheloti, Discorbis vilardeboanus, Planulina ariminensis, Planulina sp., Hanzawaia
383	boueana and Buccella aff. B. frigida. Morphotype B is predominant in all samples (44.1%
384	on average) with the lowest value in sample F7 (19.5%) (Table 5).
385	Morphotype C includes keeled Elphidium taxa (Elphidium aculeatum, Elphidium advenum,
386	Elphidium complanatum, Elphidium crispum, Elphidium fichtelianum, Elphidium
387	macellum, Elphidium maioricense, Elphidium aff. E. aculeatum, Elphidium sp., Elphidium
388	sp.1, Elphidium sp. 5; Cimerman & Langer, 1991), Cribroelphidium cf. magellanicum and

389	Astrononion stelligerum. The frequency of morphotype C does not show any particular
390	trend and its values range between 18.6% (F7) to 5.6 % (P10) (Table 5). However, even if
391	in F7 morphotype C displays its higher values, keeled <i>Elphidium</i> are almost absent,
392	whereas in the other samples they constitute the largest portion of this morphotype. Indeed,
393	in F7 the high frequency of morphotype C is related to the high abundance of
394	Cribroelphidium cf. magellanicum and Astrononion stelligerum, which are much less
395	abundant in the other samples.
396	Morphotype D* comprises Sahulia conica and small miliolids. It displays the highest
397	abundance in P10 (18.5%), i.e., the sample collected inside the dark-grey lens, whereas in
398	the other samples its contribution is always lower than 2.5% (Table 5).
399	FI' values remain almost constant in all the samples from the Posidonia-bearing layers,
400	with an average value of 1.24 (Table 2). Its lowest value (0.78) was observed in the
401	Cladocora bank sample F7 (Table 2). I_{LS} is rather constant, with the lowest value (0.31) in
402	sample P10. However, on average, <i>Posidonia</i> -bearing samples display higher (0.88) values
403	than F7 (0.36), the sample from the <i>Cladocora</i> bank (Table 2).
404	
405	4.2.2 Mode-2: classification without miliolids
406	In this case, Morphotype A* does not include Nubecularia lucifuga. Thus, the frequency of
407	morphotype A* is equal to the frequency of <i>Planorbulina mediterranensis</i> . Morphotypes B
408	and C are as in Mode-1. Morphotype D* is constituted just by agglutinated foraminifera.
409	Therefore, the frequency of morphotype D* is equal to that of Sahulia conica and the
410	highest value (3.5%) is still found in sample P10 (Table 5).
411	FI'-M displays the lowest value in F7 (0.78). In the other samples FI'-M remains almost
412	constant, with an average value of 1.20 (Table 2). I_{LS-M} shows almost constant values
413	within the different samples from the Posidonia-bearing layers, with an average value of

414	1.47. The lowest value occurs within the <i>Cladocora</i> bank sample, F7, and corresponds to
415	0.40 (Table 2).
416	
417	4.2.3 Keeled/rounded ratio
418	The keeled/rounded ratio (K/R) exhibits the lowest value in F7 (0.11), whereas in the other
419	samples it is higher, with an average value of 1.45 (Table 2). The K/R_{EXT} ratio shows the
420	same pattern as K/R, displaying the lowest values in F7 (0.08), whereas in all the other
421	samples it is at least one order of magnitude higher, with an average value of 0.99 (Table
422	2).
423	
424	4.2.4 Cluster analysis
425	The Q-mode cluster analysis (Fig. 12) produced a dendrogram with two clusters separated
426	at 60% similarity. The first cluster contains only sample F7 from the Cladocora caespitosa
427	bank, while the second cluster includes samples from all the Posidonia-bearing layers,
428	although the latter show an internal variability.
429	
430	5. Discussion
431	5.1 The exceptional preservation of <i>Posidonia oceanica</i> and the diagenetic imprint on
432	the foraminiferal association
433	Seagrass preservation within the fossil record is an exceedingly rare event (e.g., Ivany et
434	al., 1990; Moisette et al., 2007; Van der Ham et al., 2007; Reich et al., 2015; Dilcher,
435	2016; Van der Ham et al., 2017). Indeed, most of the unequivocal fossils of seagrasses are
436	clearly linked to cases of exceptional preservation (e.g., Ivany et al., 1990; Moisette et al.,
437	2007; Van der Ham et al., 2017). For instance, Maastrichtian seagrass from Belgium and
438	the Netherlands occur as silicified material or embedded in flint (Van der Ham et al.,
439	2017). The intact in situ rhizomes from the Eocene of Florida (Avon Park Formation) have

been related to the sudden burial by fine-grained sediments caused by a storm (Ivany et al., 440 1990). The spectacularly preserved lower Pleistocene seagrass of Rhodes also underwent 441 these particular conditions, having experienced a limited post-mortem transport before a 442 quick burial (Moissette et al., 2007). Consistently with this peculiar mode of preservation, 443 elements of the seagrass meadow and seagrass-associated communities are often finely 444 preserved (e.g., they display cell-level structures of the plant leaves, as well as epiphytes in 445 life position), and, in the Pleistocene example, carbonate shells highly susceptible to 446 diagenesis (e.g., gastropods) were also preserved (Moissette et al., 2007). The 447 palaeoenvironmental reconstruction of the Fauglia succession indicates a shallow-water, 448 449 low- to moderate-energy marine environment. This is supported by the presence of 450 Posidonia oceanica, that usually extend from 0 to 40 m water depth, with the upper and lower limits being controlled by hydrodynamic energy and light penetration, (Duarte, 451 452 1991; Piazzi et al., 2000; Infantes et al., 2009; Vacchi et al., 2017) and by the presence of a *Cladocora* bank above (close to the top of the section). This type of bioconstruction 453 generally occurs between 5 and 35 m water depth (Kružić & Požar-Domac, 2003; Kružić 454 & Benković, 2008; Kersting & Linares, 2012; El Kateb et al., 2016; Kersting et al., 2017; 455 Mačić et al., 2019) in sheltered areas (Kružić & Benković, 2008; Kersting & Linares, 456 457 2012; Chefaoui et al., 2017; Coletti et al., 2018). The presence of an oyster reef at the top of the succession also points towards a shallow (less than 10 m), low- to moderate-energy 458 setting as these bioconstructions usually develop along gently sloping complex coastlines 459 460 with hydrodynamic conditions favouring larval pooling (and thus clustering of various generations of individuals) (Puffer & Emerson, 1953; Haven & Whitcomb, 1983; 461 Luckenbach et al., 1995; Boudreaux et al., 2006; La Peyre et al., 2014; Gain et al., 2017; 462 Toscano et al., 2018; Kregting et al., 2020). The common presence of Ammonia is also 463 supportive of a coastal, shallow-water environment, possibly influenced by river discharge 464 (and thus high sedimentation rates) and significant salinity variations (Murray, 2006). The 465

466	foraminifera of the Ammonia group are tolerant to brackish conditions and dwell in
467	organic-matter-rich and oxygen-depleted sediments (Murray, 2006). Similar conditions,
468	where seagrass meadows coexist with cladocorian corals in riverine-influenced
469	environments, have been reported from the shallow-water deposits of the middle Eocene of
470	the Western Pyrenees (Baceta & Mateu-Vicens, 2022). In the inferred coastal setting,
471	Posidonia leaves and rhizomes were exceptionally preserved thanks to the low-to-
472	moderate hydrodynamic energy and to sedimentation rates sufficiently high to cover the
473	organic remains and inhibiting their decomposition.
474	In the Fauglia succession, Posidonia oceanica specimens consist of in-situ rhizomes (Fig.
475	4) that are either reddish, possibly fossilized through permineralization within brownish
476	sediments, or blackish, with a peaty consistence as typical of coalified compressions in
477	dark-grey sediments (Bosio et al., 2021), and finely preserved leaves (Fig. 4). The reddish
478	colour is most likely the result of iron oxides formation occurred during diagenesis,
479	whereas the dark grey colour of the sediments in which blackish rhizomes are preserved is
480	probably related to local enrichment in organic material, which in turn is likely linked to
481	oxygen deficiency at or just below the seafloor (Bosio et al., 2021).
482	The Posidonia-associated foraminiferal assemblage is also affected by diagenetic
483	processes, which have the potential to skew fossil associations by preferentially dissolving
484	aragonitic shells and subsequently high-Mg calcite shells like those of miliolids (Budd &
485	Hiatt, 1993; Cherns & Wright, 2000; Cherns et al., 2011). Well-preserved miliolids tests
486	were in fact recognized only within the dark-coloured sediments (P10, P11), where both
487	organic matter and aragonitic fossils are well preserved (Bosio et al., 2021). The
488	destructive effect of dissolution must thus be considered when calculating morphotype
489	frequencies and related parameters (i.e., FI', ILS) in fossil assemblages, differently from
490	recent environments, where diagenesis does not play a role (e.g., El Kateb et al., 2020).
491	Differing from what proposed by Reich et al. (2015), the fossilization potential of

miliolids, although not low, is lower than that of rotaliids. This means that, when 493 performing paleoenvironmental reconstructions, IPSIs and quantitative parameters based on porcelaneous foraminifera could be biased by diagenetic processes, and as such, 494 diagenesis should be considered for reliable interpretations. 495

496

497

5.2 Epiphytic foraminifera analysis

The composition and diversity of the epiphytic communities are influenced by ecological 498 parameters, structural features of the meadow and temporal persistence of the phytal 499 substrates (Langer, 1993; Mateu-Vicens et al., 2014). Symbiont-bearing taxa are typically 500 501 reported as a major component of the epiphytic foraminifera community (e.g., Murray, 502 2006; Langer, 1993; Mateu-Vicens et al., 2014). The lack of symbiont-bearing foraminifera (morphotype SB) in the Fauglia succession is most likely related to climatic 503 constraints (Hollaus & Hottinger 1997; Beavington-Penney & Racey, 2004; Murray 2006; 504 Langer 2008; El Kateb et al., 2018). Common Mediterranean symbiont-bearing taxa like 505 Amphistegina, Sorites and Peneroplis are in fact limited by temperature, being abundant in 506 the eastern Mediterranean and displaying a restricted distribution in the western part of the 507 basin (Mateu-Vicens et al., 2014). Amphistegina only occurs in the eastern Mediterranean 508 509 and is limited by the 14°C winter isotherm (Langer et al., 2012; El Kateb et al., 2018). It is common along the eastern and southern parts of the Mediterranean (Langer et al., 2012) 510 and its current distribution reaches the south of Sicily (Caruso & Cosentino, 2014), the 511 512 Maltese Islands (Yokes et al., 2007) and Crete (Hollaus & Hottinger, 1997). Sorites and Peneroplis are constrained by the 18°C isotherm (Beavington-Penney & Racey, 2004; 513 Murray, 2006). Currently, peneroplids and soritids are widely distributed over all the P. 514 oceanica meadows in the Mediterranean (Blanc-Vernet, 1969; Colom, 1974; Murray, 515 2006). Peneroplids, in particular, are common in the *Posidonia* meadows of northern 516 Sardinia (Benedetti & Frezza, 2016), which is located south of the study area. Soritids and 517

518	peneroplids are also known from Elba Island, which is located at about the same latitude as
519	the study area (Langer & Schmidt-Sinns, 2006). Although in most of the samples these
520	symbiont-bearing miliolids would have not been preserved due to diagenesis, their absence
521	from the miliolid-bearing samples P10 and P11 suggests that early Pleistocene
522	temperatures in northern-central Italy were probably lower than today. The high
523	terrigenous content of the Fauglia deposits is also consistent with low-light penetration that
524	hampers the occurrence of SB foraminifera, as also observed in modern Posidonia
525	oceanica meadows located close to river mouths, and thus influenced by sediment
526	discharge (e.g., the Santa Marinella Posidonia oceanica meadow, central Italy; Frezza et
527	al., 2011).
528	In general, the number of individuals and the species richness decrease with increasing
529	mesh size, but this is especially true for deep-sea environments (Schröder et al., 1987;
530	Rathburn & Corliss, 1994; Wollenburg & Mackensen, 1998a, b; Alve, 2003), in which
531	sieving through meshes larger than 63 μ m could provide misleading results (Murray,
532	2006). No remarkable differences in the benthic foraminiferal associations were found
533	between the analysed > 125 μ m and > 63 μ m sediment fractions. This quite homogeneous
534	distribution of the foraminiferal assemblages, regardless of the mesh size, is related to the
535	shallow-water character of the Fauglia succession. The only detectable trend is the slightly
536	higher abundance of some opportunistic genera (i.e., Bolivina and Bulimina) in the samples
537	sieved through the 63-µm-sized mesh.
538	Index $_{EP}$ and Index $_{EP-M}$ display a significant difference between the samples from the
539	Posidonia-bearing layers and the Cladocora bank, revealing a good potential in indicating
540	ancient seagrass meadows. FI' and FI'-M also display differences between the Posidonia-
541	bearing layers and the Cladocora bank, suggesting their potential usefulness as IPSIs.
542	However, a straightforward application of the FI might induce some interpretative
543	mistakes, for example when symbiont-bearing taxa are not present due to thermal

544	constraints (Mateu-Vicens et al., 2014) or when the fossil association has been altered
545	through diagenetic and/or transport processes (as in the case for the Fauglia outcrop). The
546	same applies for I_{LS} , which consists in the ratio between long and short life-span forms,
547	and whose values must be calibrated with observations on other independent variables (i.e.,
548	plant canopy, oxygen concentration, etc.) (Mateu-Vicens et al., 2014). The morphotype
549	analysis considering miliolids (Mode-1) shows that the morphotype distribution is similar
550	for all the samples except P10 (in which miliolids are abundantly present) and F7 (the
551	sample collected from the Cladocora bank), thus highlighting the significant difference
552	between the foraminiferal association of the Posidonia oceanica meadow and the
553	Cladocora bank (Fig. 11). The morphotype analysis excluding miliolids (Mode-2) allowed
554	to remove the bias produced by diagenesis. In Mode-2, sample P10 is more similar,
555	although not identical, to all the others from the Posidonia-bearing layers, whereas sample
556	F7 is still remarkably different (Fig.11). Sample P10 displays a higher frequency of
557	morphotype D* in comparison to the other samples, due to the larger abundance of
558	agglutinated foraminifera. This is probably related to dissolution processes having
559	occurred at a lesser extent within the dark-coloured sediments, in which organic matter is
560	still preserved, thus permitting a better preservation of agglutinated tests formed by
561	particles bound together by an organic or calcareous cement (Armstrong & Brasier, 2013).
562	The presence of permanently attached, encrusting foraminifera such as <i>Planorbulina</i>
563	mediterranensis and Nubecularia lucifuga (morphotype A*) confirms as one of the most
564	decisive tools to detect ancient Posidonia expanses and to distinguish them from other
565	phytal substrates (e.g., macroalgae; Mateu-Vicens et al., 2010). Indeed, the foraminiferal
566	assemblage typical of these seagrass meadows, the Planorbulinatum mediterranensae, was
567	formally described (Colom, 1942) based upon the abundance of this species. In the studied
568	outcrop, Planorbulina mediterranensis is present in all the samples from the Posidonia-
569	bearing layers and is absent from the Cladocora bank sample. The same applies for

Nubecularia lucifuga, whose occurrence as a fossil is however strongly controlled by 570 diagenetic processes (which explains why it only occurs in sample P10). However, since 571 these taxa can be rare (as in the Fauglia case), their use as a tool for detecting ancient 572 Posidonia meadows requires a detailed quantitative micropalaeontological analysis. 573 Furthermore, the low abundance of these taxa within the Fauglia meadow could be related 574 to the environmental stress that possibly influenced this site. Indeed, the stress produced by 575 riverine discharge (testified also by the high terrigenous content and the abundance of 576 organic matter) could deeply influence the development of seagrass leaves, which are the 577 preferred surface onto which morphotype A* taxa live. 578 579 The presence of other foraminifera with a curved basal surface such as Cibicididae (Fig. 13) indicates that these foraminifera lived attached onto a firm substrate, which in this case 580 likely consists of Posidonia leaves and/or rhizomes (Fig. 4). However, this observation is 581 not necessarily diagnostic of a vegetated substrate. While hooked morphologies in 582 relatively large carbonate producers, such as coralline algae and acervulinids, have been 583 used to infer the occurrence of seagrasses in the fossil record (Beavington-Penney et al. 584 2004; Tomás et al., 2016; Baceta & Mateu-Vicens, 2022), small benthic foraminifera like 585 Cibicididae could develop a curved attachment surface even when attached onto a non-586 phytal substrate. 587 Morphotype B epiphytic foraminifera, such as Rosalinidae, Asterigerinata mamilla and 588

Lobatula lobatula, are present within the Cladocora caespitosa bank sediments, although
scarcer than in the Posidonia-bearing layers. That can be explained by the occurrence of a
phytal substrate, with life-span shorter than one year, associated to this coral-dominated
environment. Indeed, morphotype B taxa are not exclusively related to seagrass meadows,
being indeed commonly reported attached to a broad diversity of macroalgae (Langer,
1993).

595	Within the context of the Fauglia succession the most reliable proxies for inferring the
596	presence of ancient seagrass meadows seem to be K/R and K/R _{EXT} indexes, whose
597	variations range across at least one order of magnitude between the Posidonia meadow
598	samples and the Cladocora bank sample. This suggests that, differing from what has been
599	proposed by Reich et al. (2015), the abundance of keeled elphidiids and in particular the
600	ratio between keeled Elphidium and rounded elphidiids (e.g., Elphidium translucens,
601	Cribroelphidium, Porosononion), combined with other related genera that display rounded
602	periphery (i.e., Astrononion, Haynesina, Melonis, Nonion, Nonionella and Valvulineria)
603	represent a useful IPSI. Keeled elphidiids are known as typically epiphytes (Langer, 1993;
604	Murray, 2006; Mateu-Vicens et al., 2014) whereas rounded ones are more commonly
605	infaunal organisms. Although elphidiids are not strictly related to seagrass, keeled
606	Elphidium spp. are more common in vegetated environments; thus, thanks also to their
607	high fossilization potential, they could be used as a proxy of a seagrass-related
608	palaeobiotope. The K/R ratio, being mostly based on morphology, could be calculated also
609	in more ancient successions, where species-level identification can be difficult and often
610	needs to rely on thin sections, thus providing a useful tool for palaeoenvironmental
611	reconstructions.
612	All the calculated indices were compared to those from a modern case study, the present-
613	day Santa Marinella Posidonia meadow, along the Tyrrhenian coast of Italy near Rome
614	(Frezza et al., 2011; Mateu-Vicens et al., 2014). This site is heavily affected by
615	anthropogenic activity and, most importantly, by river discharge. Furthermore, the Santa
616	Marinella Posidonia oceanica meadow is reportedly shallower than 15 m water depth. In
617	both meadows, stress-tolerant taxa, such as Ammonia and Haynesina, are abundant and
618	they are accompanied by the presence of taxa that tolerate high organic content within the
619	sediments of the seafloor (e.g., Bolivina and Bulimina). The values of the calculated
620	indices in both seagrass meadows are similar (see Mateu-Vicens et al., 2014 for the

detailed values of Santa Marinella). The Shannon-Weaver index (H') exhibits similar 621 622 values at both sites (3.12 and 3.3 on average at Santa Marinella and Fauglia, respectively). FI' presents an average value of 1.88 and 1.24 at Santa Marinella and Fauglia, respectively, 623 thus evoking stressed environmental conditions. ILS displays an average value of 0.24 and 624 0.89 at Santa Marinella and Fauglia, respectively, confirming the presence of 625 environmental stress that drove the development of the meadows, as highlighted also by 626 the abundance of low-oxygen tolerant, opportunistic forms, which are associated with 627 decaying seagrass in the sediment (Mateu-Vicens et al., 2014). K/REXT index was also 628 tested, including the data obtained by Frezza et al. (2011) for Santa Marinella site. Both 629 630 Posidonia meadows show similar values: 0.74 and 0.99 on average at Santa Marinella and 631 Fauglia, respectively, strengthening the similarities between the two meadows as well as the potential of the K/R_{EXT} index as IPSI. Thus, excluding the anthropogenic influence, the 632 environmental characteristics of these meadows are comparable: both meadows are located 633 in shallow water and in both the influence of riverine discharge most likely implicates their 634 growth under stressed condition. Furthermore, the morphotype analysis performed at the 635 two different meadows led to very similar results (see Mateu-Vicens et al., 2014 for 636 details). In particular, the presence of morphotype A*, which is regarded by the authors 637 among the most reliable IPSIs, is very scarce in the *Posidonia* meadows, with values $\leq 1\%$ 638 in both. This witnesses that the presence, rather than the abundance, of morphotype A* 639 foraminifera is the most characteristic feature of the foraminiferal assemblage of a seagrass 640 641 meadow (especially if the meadows grew under stressed condition). Finally, the cluster analysis (Fig. 12) clearly highlights the differences between the two 642 analysed palaeoenvironments preserved at Fauglia (i.e., the Posidonia meadow and the 643 Cladocora bank). Indeed, such a clustering is mainly related to the different abundance of 644 specific taxa within the two deposits: Cibicididae, Rosalinidae and keeled *Elphidium* 645 species are more abundant within the Posidonia-bearing layers (Table 3; Appendix 1), 646

648

649

whereas the abundance of *Cribroelphidium* and *Haynesina* (and generally that of infaunal taxa that display rounded peripheries) is higher within the sample from the *Cladocora* layer (Table 3; Appendix 1).

650

651 **6.** Conclusions

At the Fauglia quarry, two stratigraphic intervals are characterized by the occurrence of 652 remarkably well-preserved fossil remains of marine plants (leaves and in-situ rhizomes of 653 *P. oceanica*). Within this setting, we tested the potential of foraminiferal-based Indirect 654 Palaeo-Seagrass Indicators (IPSIs). The Fauglia succession formed in a shallow, low- to 655 656 moderate-energy, marginal-marine environment, as indicated by the presence of in situ 657 Posidonia oceanica rhizomes, a Cladocora caespitosa bank, an oyster reef and abundant foraminifera of the Ammonia group. Even if the Posidonia remains at Fauglia represent a 658 case of exceptional seagrass preservation, diagenetic processes such as dissolution have 659 modified the original composition of the seagrass-related communities. Such effect is 660 reflected by the reported foraminiferal assemblage that displays differences related to 661 diagenesis, e.g., the preferential loss of miliolids whose tests consist of high-Mg calcite. 662 The fossil assemblage is also influenced by environmental parameters, such as the 663 seawater temperature. The lack of symbiont-bearing foraminifera (e.g., Amphistegina, 664 Sorites, Peneroplis), which are common in seagrass-related environments, indicates that 665 early Pleistocene temperatures in northern Tuscany were probably too low for their 666 development. 667

668 Considering these constraints, we discussed the potential of benthic foraminifera and 669 foraminifera-based indices as indirect paleo-seagrass indicators. Although highly reliable 670 for the analysis of recent seagrass environments, FI' and I_{LS} display only slight differences 671 between the *Posidonia*-bearing strata and the *Cladocora* bank. However, these indexes 672 confirmed to be reliable for the environmental analysis of seagrass meadows: at Fauglia,

673	their values point to stressed environmental condition, similar to what has been observed at
674	a modern case study (e.g., the Santa Marinella Posidonia meadow). Based on our data, the
675	presence of permanently attached, encrusting foraminifera (e.g., Planorbulina
676	mediterranensis, Nubecularia lucifuga) is considered a highly reliable IPSI. The ratio
677	between keeled Elphidium and rounded elphidiids (e.g., Elphidium translucens,
678	Cribroelphidium, Porosononion) combined with other related genera that display rounded
679	periphery (i.e., Astrononion, Haynesina, Melonis, Nonion, Nonionella, Valvulineria), also
680	displays a significant role as IPSI. Since this latter index is based on rotaliids, which are
681	resistant to diagenetic dissolution, and on the general morphology rather than on species
682	identification, when combined with the presence of permanently attached encrusting taxa,
683	it could represent a precious tool in the analysis of sedimentary successions, where
684	seagrass remains have not been preserved. Further studies, based on both fossil and recent
685	seagrass-related environments, could allow to improve those indexes and estimate
686	threshold values useful for recognizing the presence of seagrasses in the fossil record.
687	
688	Declaration of Competing Interest
689	None.
690	
691	Acknowledgments
692	The authors wish to warmly thank Nicoletta Fusi for her help with grain-size analyses and
693	Valentina Beccari, for her help with benthic foraminifera identification. This research did
694	not receive any specific grant from funding agencies in the public, commercial, or not-for-
695	profit sectors. This article is also an outcome of Project MIUR-Dipartimenti di Eccellenza
696	2018-2022.
697	

Appendix 1. Supplementary Data

700	
701	References
702	Alve, E., 2003. A common opportunistic foraminiferal species as an indicator of rapidly
703	changing conditions in a range of environments. Estuarine, Coastal and Shelf Science, v.
704	57, p. 501–14.
705	
706	Armstrong, H. and Brasier, M., 2013. Microfossils, Second Edition.
707	10.1002/9781118685440.ch15.
708	
709	Baceta, J.I. and Mateu-Vicens, G., 2022. Seagrass development in terrigenous-influenced
710	inner ramp settings during the middle Eocene (Urbasa-Andia Plateau, Western Pyrenees,
711	North Spain). Sedimentology. In press.
712	
713	Barsotti, G., Federici, P.R., Granelli, L., Mazzanti, R. and Salvatorini, G., 1974. Studio del
714	Quaternario livornese, con particolare riferimento alla stratigrafia ed alle faune delle
715	formazioni del bacino di carenaggio della Torre del Fanale. Memorie della Società
716	Geologica Italiana, v. 13, p. 425-495.
717	
718	Beavington-Penney, S. J. and Racey, A., 2004. Ecology of extant nummulitids and other
719	larger benthic foraminifera; applications in palaeoenvironmental analysis. Earth Science
720	Reviews, v. 67 p.219-265.
721	
722	Beavington-Penney, S.J., Wright, V.P. and Woelkerling, W.J., 2004. Recognising
723	macrophytevegetated environments in the rock record: a new criterion using 'hooked'
724	forms of crustose coralline red algae. Sediment. Geol. 166, 1–9.
725	
726	Benedetti, A., and Frezza, V., 2016. Benthic foraminiferal assemblages from shallow-
727	water environments of northeastern Sardinia (Italy, Mediterranean Sea). Facies, v. 62(2), p.
728	14.
729	
730	Benzecry, A. and Brack-Hanes, S.D., 2008. A new hydrocharitacean seagrass from the
731	Eocene of Florida. Bot. J. Linn. Soc. v. 157, p. 19–30.

732	
733	Berta, A., Kienle, S., Bianucci and G., Sorbi, S. 2015. A reevaluation of Pliophoca etrusca
734	(Pinnipedia, Phocidae) from the Pliocene of Italy: phylogenetic and biogeographic
735	implications. Journal of Vertebrate Paleontology, v. 35(1), e889144.
736	
737	Blanc-Vernet, L., 1969. Contribution a l'étude des foraminiféres de Méditerranée. Recueil
738	des travaux de la Station Marine d'Endoume, v. 64, p. 1–279.
739	
740	Blanc-Vernet, L., Clairefond, P. and Orsolini, P., 1979. La Mer pelagienne: les
741	foraminiféres. Géologie Méditerranéenne, v. 61, p. 171–209.
742	
743	Blott, S.J. and Pye, K., 2001. GRADISTAT: a grain size distribution and statistics package
744	for the analysis of unconsolidated sediments. Earth surface processes and Landforms, v.
745	26(11), p. 1237-1248.
746	
747	Bosio, G., Di Cencio, A., Coletti, G., Casati, S. and Collareta, A., 2021. Exceptionally
748	preserved coral bank and seagrass meadow from the lower Pleistocene of Fauglia
749	(Tuscany, Italy). Alpine and Mediterranean Quaternary, v. 34(2), pp. 237-256.
750	
751	Bossio A., Costantini A., Lazzarotto A., Liotta D. and Mazzanti, R., 1993. Rassegna delle
752	conoscenze sulla stratigrafa del Neoautoctono toscano. Memorie della Società Geologica
753	Italiana, v. 49, p. 17-98.
754	
755	Bossio, A., Foresi, L.M., Liotta, D., Mazzanti, R., Mazzei, R., Salvatorini, G. and Squarci,
756	P., 1999. Riordino delle conoscenze sul Bacino neogenico del Tora-Fine (Toscana-Italia).
757	Atti della Società Toscana di Scienze Naturali, Memorie, Serie A, v. 106, p. 1-16.
758	
759	Boudouresque, Charles and Grissac, A., 1983. L'herbier à Posidonia oceanica en
760	Méditerranée: Les interactions entre la plante et le sediment. Journal de Recherche
761	Océanographique, v. 8, p. 99-122.
762	
763	Boudreaux, M.L., Stiner, J.L. and Walters, L.J. 2006. Biodiversity of sessile and motile
764	macrofauna on intertidal oyster reefs in Mosquito Lagoon, Florida. Journal of Shellfish
765	Research, v. 25(3), p. 1079-1089.

766	
767	Brack-Hanes, S. and Greco, A., 1988. Biomineralization in Thalassia testudinum
768	(Liliopsida: Hydrocharitaceae) and an Eocene Seagrass. Transactions of the American
769	Microscopical Society, v. 107(3), p. 286-292.
770	
771	Braga, J. C., Bajo-Campos, I., and Cárdenas-Carretero, J., 2021. Late Miocene Cymodocea
772	seagrass in the Guadalquivir Basin (southern Spain). Review of Palaeobotany and
773	Palynology, 104485.
774	
775	Brandano, M., Cuffaro, M., Gaglianone, G., Petricca, P., Stagno, V. and Mateu-Vicens, G.,
776	2016. Evaluating the Role of Seagrass in Cenozoic CO2 Variations. Frontiers in
777	Environmental Science, v. 4, p. 72.
778	
779	Brandano, M., Tomassetti, L., Mateu-Vicens, G. and Gaglianone, G., 2019. The seagrass
780	skeletal assemblage from modern to fossil and from tropical to temperate: insight from
781	Maldivian and Mediterranean examples. Sedimentology, v. 66, p. 2268 - 2296.
782	
783	Brasier M.D., 1975. An outline history of seagrass communities. Palaeontology, 18, 681-
784	702.
785	
786	Brunetti, M.M., Forli, M. and Vecchi, G., 2008. Una nuova specie di Gibbula per il
787	Pleistocene italiano: Gibbula (Forskalena) sirigui n. sp. (Mollusca: Gastropoda). Bollettino
788	Malacologico, v. 44(7-11), p. 1-4.
789	
790	Brunetti, M.M. and Vecchi, G., 2005. Rissoa quarantelli, una nuova specie del Pleistocene
791	inferiore italiano. Bollettino Malacologico, v. 41, p. 60-65.
792	
793	Brunetti, M.M. and Vecchi, G., 2012. Nuove specie del genere Alvania (Caenogastropoda:
794	Rissoidae) nel Pleistocene dell'Emilia occidentale (Nord Italia Bollettino Malacologico, v.
795	48(1), p. 42-50.
796	
797	Budd, D. and Hiatt, E., 1993. Mineralogical Stabilization of High-magnesium Calcite:
798	Geochemical Evidence for Intracrystal Recrystallization Within Holocene Porcellaneous
799	Foraminifera. Journal of sedimentary petrology, v. 63, p. 261-274.

800	
801	Carnevale, G., Longinelli, A., Caputo, D., Barbieri, M. and Landini, W., 2008. Did the
802	Mediterranean marine reflooding precede the Mio-Pliocene boundary? Paleontological and
803	geochemical evidence from upper Messinian sequences of Tuscany, Italy.
804	Palaeogeography, Palaeoclimatology, Palaeoecology, v. 257(1-2), pp. 81-105.
805	
806	Caruso, A. and Cosentino, C., 2014. The first colonization of the Genus Amphistegina and
807	other exotic benthic foraminifera of the Pelagian Islands and south-eastern Sicily (central
808	Mediterranean Sea). Marine Micropaleontology, v. 111, p. 38-52, https://doi.org/10.
809	1016/j.marmicro.2014.05.002
810	
811	Chandler, M.E.J., 1961. The Lower Tertiary Floras of Southern England. I. Palaeocene
812	Floras, London Clay Flora (Supplement). British Museum of Natural History, London.
813	
814	Chefaoui, R. M., Casado-Amezúa, P., and Templado, J, 2017. Environmental drivers of
815	distribution and reef development of the Mediterranean coral Cladocora caespitosa. Coral
816	Reefs, v. 36(4), p. 1195-1209.
817	
818	Cherns, L. and Wright, V. P., 2000. Missing molluscs as evidence of large-scale, early
819	skeletal aragonite dissolution in a Silurian sea. Geology, v. 28(9), p. 791-794.
820	
821	Cherns, L., Wheeley, J.R. and Wright, V.P., 2011. Taphonomic Bias in Shelly Faunas
822	Through Time: Early Aragonitic Dissolution and Its Implications for the Fossil Record. In:
823	Allison, P.A. and Bottjer, D.J. (eds) Taphonomy. Aims & Scope Topics in Geobiology
824	Book Series, vol 32. Springer, Dordrecht. Doi: 10.1007/978-90-481-8643-3_3
825	
826	Chesters, K.I.M., Gnauck, F.R. and Hughes, N.F., 1967. Angiospermae. In: Harland, W.B.,
827	Holland, C.H., House, M.R., et al. (Eds.), The Fossil Record—A Symposium with
828	Documentation. Geol Soc Lond, pp. 269-389.
829	
830	Chimenz C., Taramelli, E., Cironi, R., Contessini, A., Gravina, F., Maggiore, F. R., Maj R.
831	L. C., Motta M. G. and Somaschini, A., 1989. Studies on animal populations of leaves and
832	rhizomes of Posidonia oceanica (L.) Delile on the rocky bottom of Torvaldaliga, in

833	Boudouresque, C. F., Meinesz, A., Fresi, E. and Gravez, V. (eds) International workshop
834	on Posidonia beds. Marseilles. GIS Posidonie, p. 145-155.
835	
836	Chirli, C. and Forli, M., 2017. Il Calabriano della Toscana. Gasteropodi vol. I.
837	L'Informatore Piceno, Ancona, pp. 90.
838	
839	Cimerman, F. and Langer, M. R., 1991, Mediterranean Foraminifera: Slovenska
840	Akademija Znanosti, Ljubljana, pp. 118.
841	
842	Coletti, G., Bracchi, V., Corselli, C., Marchese, F., Basso, D., Savini, A., and Vertino, A.,
843	2018b. Quaternary build-ups and rhodalgal carbonates along the Adriatic and Ionian coasts
844	of the Italian Peninsula: a review. Rivista Italiana di Paleontologia e Stratigrafia, v. 124(2),
845	p. 387-406.
846	
847	Collinson, M.E., 1983. Fossil Plants of the London Clay. Palaeontological Association
848	Field Guides No 1. Palaeontological Association, London.
849	
850	Collinson, M.E., 1996. Plant macrofossils from the Bracklesham Group (Early & Middle
851	Eocene), Bracklesham Bay, West Sussex, England: review and significance in the
852	context of coeval British Tertiary faunas. Tertiary Res., v. 16, p. 175-202.
853	
854	Colom, G., 1942. Una contribución al conocimiento de los foraminíferos de la bahía de
855	Palma de Mallorca. Notas y Resùmenes Ser. II, Instituto Español de Oceanografia, v. 108,
856	p. 1–53.
857	
858	Colom, G. 1974. Foraminíferos Ibéricos. Introducción al estudio de las especies bentónicas
859	recientes. Investigación Pesquera, t. 38, p. 1–245.
860	
861	Cresti M. and Forli M., 2020. New specimens of Tectura rubroradiata Chirli & Forli, 2017
862	(Gastropoda: Lottiidae), little known species from tuscan lower Pleistocene. Bollettino
863	Malacologico, v. 56, p. 107-110.
864	
865	Crippa, G., Azzarone, M., Bottini, C., Crespi, S., Felletti, F., Marini, M., Petrizzo, M.R.,
866	Scarponi, D., Raffi, S. and Raineri, G., 2019. Bio-and lithostratigraphy of lower

867	Pleistocene marine successions in western Emilia (Italy) and their implications for the first
868	occurrence of Arctica islandica in the Mediterranean Sea. Quaternary Research, v. 92(2),
869	p. 549-569.
870	
871	Curry, D., 1965. Palaeogene beds of south-east England. Proc. Geol. Assoc. v. 76, p. 151-
872	173.
873	
874	De Saporta, G. and Marion, A.F., 1878. Révision de la flore Heersienne de Gelinden
875	d'après une collectionappartenant au comte G. de Looz. Mém Acad R Belg, Cour Sav
876	Étrang, v.41,
877	p. 1–112.
878	
879	Debey, M.H., 1848. Übersicht der urweltlichen Pflanzen des Kreidegebirges überhaupt
880	und der Aachener Kreideschichten insbesondere. Verh. Nat. Hist. Ver. Preuss. Rheinl.
881	v. 5, p. 113–125.
882	
883	Debey, M.H., 1851. Beitrag zur fossilen Fauna der holländischen Kreide (Vaels bei
884	Aachen, Kunraed, Maastricht). Verh. Nat. Hist. Ver. Preuss. Rheinl. v. 8, p. 568–569.
885	
886	De Falco, G., Ferrari, S., Cancemi, G. and Baroli, M., 2000. Relationship between
887	sediment distribution and Posidonia oceanica seagrass. Geo-Marine Letters, v. 20, p. 50-
888	57.
889	
890	De Falco, G., Simeone, S. and Baroli, M., 2008. Management of Beach-Cast Posidonia
891	oceanica Seagrass on the Island of Sardinia (Italy, Western Mediterranean). Journal of
892	coastal research, v. 24, p. 69-75.
893	
894	Den Hartog, C., 1970. The seagrasses of the world. North Holland Publishing Co.,
895	Amsterdams.
896	
897	Den Hartog, C., 1979. Seagrasses and seagrass ecosystems, an appraisal of the research
898	approach. Aquatic Botany, v. 7, p. 105–107.
899	

900	Dilcher, D., 2016. Fossil plants from the Coon Creek Formation of Tennessee. In:
901	Paleontology of Cretaceous Coon Creek Formation (eds Ehret D, Jr. TLH, Ebersole S).
902	The Alabama Museum of Natural History, Tuscaloosa, Alabama, p. 118–121.
903	
904	Dimiza, M. D., Koukousioura, O., Triantaphyllou, M. V. and Dermitzakis, M. D., 2016.
905	Live and dead benthic foraminiferal assemblages from coastal environments of the Aegean
906	Sea (Greece): Distribution and diversity, Revue de Micropaléontologie, v. 59, p. 19-32.
907	
908	Domning, D.P., 2001. Sirenians, seagrasses, and Cenozoic ecological change in the
909	Caribbean. Palaeogeogr. Palaeoclimatol. Palaeoecol., v. 166, p. 27-50.
910	
911	Duarte, C.M., 1991. Seagrass depth limits. Aquatic botany, 40(4), 363-377.
912	
913	Duarte, C. M., and Chiscano, C. L., 1999. Seagrass biomass and production: a
914	reassessment. Aquatic Botany, v. 65, p. 159–174.
915	
916	El Kateb, A., Stalder, C., Neururer, C., Pisapia, C. and Spezzaferri, S., 2016. Correlation
917	between pollution and decline of Scleractinian Cladocora caespitosa (Linnaeus, 1758) in
918	the Gulf of Gabes. Heliyon, v. 2(11), e00195.
919	
920	El Kateb, A., Stalder, C., Stainbank, S., Fentimen, R. and Spezzaferri, S., 2018. The genus
921	Amphistegina (Benthic foraminifera): Distribution along the southern Tunisian coast.
922	BioInvasions Records, v. 7. 10.3391/bir.2018.7.4.06.
923	
924	El Kateb, A., Stalder, C., Martínez-Colón, M., Mateu-Vicens, G., Francescangeli, F.,
925	Coletti, G., Stainbank S. and Spezzaferri, S., 2020. Foraminiferal-based biotic indices to
926	assess the ecological quality status of the Gulf of Gabes (Tunisia): Present limitations and
927	future perspectives. Ecological Indicators, v. 111, 105962.
928	
929	Eva, A.N., 1980. Pre-Miocene seagrass communities in the Caribbean. Palaeontology, v.
930	23, p. 231–236.
931	
932	Forsey, G.F., 2016. Ostracods as proxies for past seagrass: A review. Palaeogeography,
933	Palaeoclimatology, Palaeoecology, v. 447, p. 22-28.

934	
935	Frezza, V., Mateu-Vicens, G., Gaglianone, G., Baldassarre, A. and Brandano, M., 2011.
936	Mixed carbonate-siliciclastic sediments and benthic foraminiferal assemblages from
937	Posidonia oceanica seagrass meadows of the central Tyrrhenian continental shelf (Latium,
938	Italy). Italian Journal of Geosciences, v. 130, p. 352-369.
939	
940	Gacia, E. and Duarte, C. M., 2001. Sediment retention by a Mediterranean Posidonia
941	oceanica meadow: the balance between deposition and resuspension. Estuarine, Coastal
942	and Shelf Science, v. 52, p. 505-514.
943	
944	Gain, I.E., Brewton, R.A., Robillard, M.M.R., Johnson, K.D., Smee, D.L. and Stunz, G.W.,
945	2017. Macrofauna using intertidal oyster reef varies in relation to position within the
946	estuarine habitat mosaic. Marine Biology, v. 164(1), p. 1-16.
947	
948	Gibbard, P. and Cohen, K.M, 2008. Global chronostratigraphical correlation table for the
949	last 2.7 million years. Episodes, 31, 243-247.
950	
951	Gregor, H. J., 1991. Ein neues fossiles Seegras-Posidocea frickhingeri nov. gen. et spec.
952	Im Paläogen Oberitaliens (Verona). Doc. Nat., v. 65, p. 1–11.
953	
954	Gregor, H. J., 2003. Erstnachweis von Seegras-Resten (Posidonia) im Oberen Eozän der
955	nördlichen Kalkalpen bei Hallthurm. Doc. Nat., v. 148, p. 1–19.
956	
957	Hallock, P., Lidz, B. H., Cockey-Burkhard, E. M., and Donnelly, K. B., 2003.
958	Foraminifera as bioindicators in coral reef assessment and monitoring: the FORAM Index:
959	Environmental Monitoring and Assessment, v. 81, p. 221-238.
960	
961	Haven, D.S. and Whitcomb, J.P., 1983. The origin and extent of oyster reefs in the James
962	River, Virginia. Journal of Shellfish Research, v. 3(2), p. 141.
963	
964	Hesemann, M., 2020. www.foraminifera.eu. 10.13140/RG.2.2.22727.11680/1.
965	
966	Hesse, M., Weber, M. and Halbritter, H.M., 1999. Pollen walls of Araceae, with special
967	reference to their fossilization potential. Grana 38, 203–209.

968	
969	Hollaus, S.S. and Hottinger, L., 1997. Temperature dependance of endosymbiontic
970	relationships? Evidence from the depth range of mediterranean Amphistegina lessonii
971	(Foraminiferida) truncated by the thermocline. Eclogae Geologicae Helvetiae, v. 90(3), p.
972	591–598
973	
974	Hosius, A. and Von der Marck, W., 1880. Die Flora der Westfälischen Kreideformation.
975	Palaeontographica 26, 125–236.
976	
977	Infantes, E., Terrados, J., Orfila, A., Canellas, B. and Alvarez-Ellacuria, A., 2009. Wave
978	energy and the upper depth limit distribution of Posidonia oceanica. Botanica Marina, v.
979	52, p. 419-427.
980	
981	Ivany, L.C., Portell, R.W. and Jones, D.S., 1990. Animal-plant relationships and
982	paleobiogeography of an Eocene seagrass community from Florida. Palaios, v. 5, p. 244-
983	258.
984	
985	Kersting, D. K. and Linares, C., 2012. Cladocora caespitosa bioconstructions in the
986	Columbretes Islands Marine Reserve (Spain, NW Mediterranean): distribution, size
987	structure and growth. Marine Ecology, v. 33(4), p. 427-436.
988	
989	Kersting, D., Cebrian, E., Verdura, J. and Ballesteros, E., 2017. A new Cladocora
990	caespitosa population with unique ecological traits. Mediterranean Marine Science, v.
991	18(1), p. 38-42
992	
993	Koriba, K. and Miki, S., 1931. On Archeozostera from the Izumi Sandstone. Chikyu (The
994	Globe), v. 15, p. 165–201 (in Japanese).
995	
996	Kregting, L. T., Hayden-Hughes, M., Millar, R. V., Joyce, P. W., and Smyth, D. M., 2020.
997	A first record of intertidal Ostrea edulis 3D structural matrices in Strangford Lough
998	Northern Ireland-An emergent reef?. Journal of Sea Research, v. 163, 101927.
999	

1000	Kružić, P. and Benković, L., 2008. Bioconstructional features of the coral Cladocora
1001	caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea (Croatia). Marine Ecology, v.
1002	29(1), p. 125-139.
1003	
1004	Kružić, P. and Požar-Domac, A., 2003. Banks of the coral Cladocora caespitosa
1005	(Anthozoa, 666 Scleractinia) in the Adriatic Sea. Coral reefs, v. 22(4), p. 536-536.
1006	
1007	La Peyre, M., Furlong, J., Brown, L.A., Piazza, B.P. and Brown, K., 2014. Oyster reef
1008	restoration in the northern Gulf of Mexico: extent, methods and outcomes. Ocean &
1009	Coastal Management, v. 89, p. 20-28.
1010	
1011	Langer, M. R., 1993. Epiphytic foraminifera. Marine Micropaleontology, v. 20, p. 235-
1012	265.
1013	
1014	Langer, M. and Schmidt-Sinns, J., 2006. The 100 most common Foraminifera from the
1015	Bay of Fetovaia, Elba Island (Mediterranean Sea). Monographie im Selbstverlag,
1016	Universität Bonn, v. 1, p. 1-37.
1017	
1018	Langer, M.R., 2008a. Assessing the contribution of foraminiferan protists to global ocean
1019	carbonate production. Journal of Eukaryotic Microbiology, v. 55, p. 163-169,
1020	https://doi.org/10.1111/j.15507408.2008.00321.x
1021	
1022	Langer, M. R., Weinmann, A. E., Lötters, S., and Rödder, D., 2012. "Strangers" in
1023	paradise: modeling the biogeographic range expansion of the foraminifera Amphistegina in
1024	the Mediterranean Sea. The Journal of Foraminiferal Research, v. 42(3), p. 234-244.
1025	
1026	Laurent, L. and Laurent, J., 1926. Étude sur une plante fossile des dépôts du Tertiaire
1027	marin du sud de Célèbes. Jaarb. Mijnwez. Ned. Oost-Indië, v. 54, p. 169–190.
1028	
1029	Leonard-Pingel, J.S., 2005. Molluscan Taphonomy as a Proxy for Recognyzing Fossil
1030	Seagrass Beds. M.S. Thesis. Louisina State University, Baton Rouge.
1031	
1032	Luckenbach, M., Mann, R.L. and Wesson, J.A., 1999. Oyster Reef Habitat Restoration: a
1033	synopsis and synthesis of approaches; proceedings from the symposium, Williamsburg,

1034	Virginia, April 1995. Virginia Institute of Marine Science, College of William and Mary,
1035	Williamsburg, Virginia, U.S.A., v. 673, pp. 373.
1036	
1037	Lumbert, S.H., den Hartog, C., Phillips, R.C. and Olsen, F.S., 1984. The occurrence of
1038	fossil seagrasses in the Avon Park Formation (late Middle Eocene), Levy County, Florida
1039	(U.S.A.). Aquat. Bot., v. 20, p. 121–129.
1040	
1041	Mačić, V., Dordević, N. and Petović, S., 2019. First monitoring of Cladocora caespitosa
1042	(Anthozoa, Scleractinia) in the Boka Kotorska Bay (Montenegro). Studia Marina, v. 32(1),
1043	p. 26-32.
1044	
1045	Marroni, M., Mazzanti, R. and Nencini, C., 1990. Nuovi elementi negli studi di scienze
1046	della terra nelle Colline Pisane. Quaderni del Museo di storia Naturale di Livorno, v.
1047	11(Supplement 1), p. 1-40.
1048	
1049	Mateu, G., 1970. Estudio sistemaàtico y bioecològico de los foraminìferos vivientes de los
1050	litorales de Cataluña y Baleares. Trabajos del Instituto Español de Oceanografia, v. 38, p.
1051	1–84.
1051 1052	1–84.
1051 1052 1053	1–84. Mateu-Vicens, G., Box, A., Deudero, S. and Rodriguez, B., 2010. Comparative analysis of
1051 1052 1053 1054	1–84. Mateu-Vicens, G., Box, A., Deudero, S. and Rodriguez, B., 2010. Comparative analysis of epiphytic foraminifera in sediments colonized by seagrass <i>Posidonia oceanica</i> and
1051 1052 1053 1054 1055	1–84. Mateu-Vicens, G., Box, A., Deudero, S. and Rodriguez, B., 2010. Comparative analysis of epiphytic foraminifera in sediments colonized by seagrass <i>Posidonia oceanica</i> and invasive macroalgae <i>Caulerpa</i> spp. Journal of Foraminiferal Research, v. 40, p. 134–147.
1051 1052 1053 1054 1055 1056	1–84. Mateu-Vicens, G., Box, A., Deudero, S. and Rodriguez, B., 2010. Comparative analysis of epiphytic foraminifera in sediments colonized by seagrass <i>Posidonia oceanica</i> and invasive macroalgae <i>Caulerpa</i> spp. Journal of Foraminiferal Research, v. 40, p. 134–147.
1051 1052 1053 1054 1055 1056 1057	 1–84. Mateu-Vicens, G., Box, A., Deudero, S. and Rodriguez, B., 2010. Comparative analysis of epiphytic foraminifera in sediments colonized by seagrass <i>Posidonia oceanica</i> and invasive macroalgae <i>Caulerpa</i> spp. Journal of Foraminiferal Research, v. 40, p. 134–147. Mateu-Vicens, G., Brandano, M., Gaglianone, G. and Baldassarre, A., 2012. Seagrass-
1051 1052 1053 1054 1055 1056 1057 1058	 1–84. Mateu-Vicens, G., Box, A., Deudero, S. and Rodriguez, B., 2010. Comparative analysis of epiphytic foraminifera in sediments colonized by seagrass <i>Posidonia oceanica</i> and invasive macroalgae <i>Caulerpa</i> spp. Journal of Foraminiferal Research, v. 40, p. 134–147. Mateu-Vicens, G., Brandano, M., Gaglianone, G. and Baldassarre, A., 2012. Seagrass-meadow sedimentary facies in a mixed siliciclastic-carbonate temperate system in the
1051 1052 1053 1054 1055 1056 1057 1058 1059	 I-84. Mateu-Vicens, G., Box, A., Deudero, S. and Rodriguez, B., 2010. Comparative analysis of epiphytic foraminifera in sediments colonized by seagrass <i>Posidonia oceanica</i> and invasive macroalgae <i>Caulerpa</i> spp. Journal of Foraminiferal Research, v. 40, p. 134–147. Mateu-Vicens, G., Brandano, M., Gaglianone, G. and Baldassarre, A., 2012. Seagrass-meadow sedimentary facies in a mixed siliciclastic-carbonate temperate system in the Tyrrhenian Sea (Pontinian Islands, western Mediterranean). Journal of Sedimentary
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060	 1–84. Mateu-Vicens, G., Box, A., Deudero, S. and Rodriguez, B., 2010. Comparative analysis of epiphytic foraminifera in sediments colonized by seagrass <i>Posidonia oceanica</i> and invasive macroalgae <i>Caulerpa</i> spp. Journal of Foraminiferal Research, v. 40, p. 134–147. Mateu-Vicens, G., Brandano, M., Gaglianone, G. and Baldassarre, A., 2012. Seagrassmeadow sedimentary facies in a mixed siliciclastic-carbonate temperate system in the Tyrrhenian Sea (Pontinian Islands, western Mediterranean). Journal of Sedimentary Research, v. 82, p. 451–463.
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061	 1–84. Mateu-Vicens, G., Box, A., Deudero, S. and Rodriguez, B., 2010. Comparative analysis of epiphytic foraminifera in sediments colonized by seagrass <i>Posidonia oceanica</i> and invasive macroalgae <i>Caulerpa</i> spp. Journal of Foraminiferal Research, v. 40, p. 134–147. Mateu-Vicens, G., Brandano, M., Gaglianone, G. and Baldassarre, A., 2012. Seagrass-meadow sedimentary facies in a mixed siliciclastic-carbonate temperate system in the Tyrrhenian Sea (Pontinian Islands, western Mediterranean). Journal of Sedimentary Research, v. 82, p. 451–463.
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062	 1–84. Mateu-Vicens, G., Box, A., Deudero, S. and Rodriguez, B., 2010. Comparative analysis of epiphytic foraminifera in sediments colonized by seagrass <i>Posidonia oceanica</i> and invasive macroalgae <i>Caulerpa</i> spp. Journal of Foraminiferal Research, v. 40, p. 134–147. Mateu-Vicens, G., Brandano, M., Gaglianone, G. and Baldassarre, A., 2012. Seagrass-meadow sedimentary facies in a mixed siliciclastic-carbonate temperate system in the Tyrrhenian Sea (Pontinian Islands, western Mediterranean). Journal of Sedimentary Research, v. 82, p. 451–463. Mateu-Vicens, G., Khokhlova, A. and Sebastián-Pastor, T., 2014. Epiphytic foraminiferal
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063	 I-84. Mateu-Vicens, G., Box, A., Deudero, S. and Rodriguez, B., 2010. Comparative analysis of epiphytic foraminifera in sediments colonized by seagrass <i>Posidonia oceanica</i> and invasive macroalgae <i>Caulerpa</i> spp. Journal of Foraminiferal Research, v. 40, p. 134–147. Mateu-Vicens, G., Brandano, M., Gaglianone, G. and Baldassarre, A., 2012. Seagrassmeadow sedimentary facies in a mixed siliciclastic-carbonate temperate system in the Tyrrhenian Sea (Pontinian Islands, western Mediterranean). Journal of Sedimentary Research, v. 82, p. 451–463. Mateu-Vicens, G., Khokhlova, A. and Sebastián-Pastor, T., 2014. Epiphytic foraminiferal indices as bioindicators in Mediterranean seagrass meadows. The Journal of Foraminiferal
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064	 I-84. Mateu-Vicens, G., Box, A., Deudero, S. and Rodriguez, B., 2010. Comparative analysis of epiphytic foraminifera in sediments colonized by seagrass <i>Posidonia oceanica</i> and invasive macroalgae <i>Caulerpa</i> spp. Journal of Foraminiferal Research, v. 40, p. 134–147. Mateu-Vicens, G., Brandano, M., Gaglianone, G. and Baldassarre, A., 2012. Seagrassmeadow sedimentary facies in a mixed siliciclastic-carbonate temperate system in the Tyrrhenian Sea (Pontinian Islands, western Mediterranean). Journal of Sedimentary Research, v. 82, p. 451–463. Mateu-Vicens, G., Khokhlova, A. and Sebastián-Pastor, T., 2014. Epiphytic foraminiferal indices as bioindicators in Mediterranean seagrass meadows. The Journal of Foraminiferal Research, v. 44, p. 325-339.
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065	 I-84. Mateu-Vicens, G., Box, A., Deudero, S. and Rodriguez, B., 2010. Comparative analysis of epiphytic foraminifera in sediments colonized by seagrass <i>Posidonia oceanica</i> and invasive macroalgae <i>Caulerpa</i> spp. Journal of Foraminiferal Research, v. 40, p. 134–147. Mateu-Vicens, G., Brandano, M., Gaglianone, G. and Baldassarre, A., 2012. Seagrassmeadow sedimentary facies in a mixed siliciclastic-carbonate temperate system in the Tyrrhenian Sea (Pontinian Islands, western Mediterranean). Journal of Sedimentary Research, v. 82, p. 451–463. Mateu-Vicens, G., Khokhlova, A. and Sebastián-Pastor, T., 2014. Epiphytic foraminiferal indices as bioindicators in Mediterranean seagrass meadows. The Journal of Foraminiferal Research, v. 44, p. 325-339.
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066	 1–84. Mateu-Vicens, G., Box, A., Deudero, S. and Rodriguez, B., 2010. Comparative analysis of epiphytic foraminifera in sediments colonized by seagrass <i>Posidonia oceanica</i> and invasive macroalgae <i>Caulerpa</i> spp. Journal of Foraminiferal Research, v. 40, p. 134–147. Mateu-Vicens, G., Brandano, M., Gaglianone, G. and Baldassarre, A., 2012. Seagrassmeadow sedimentary facies in a mixed siliciclastic-carbonate temperate system in the Tyrrhenian Sea (Pontinian Islands, western Mediterranean). Journal of Sedimentary Research, v. 82, p. 451–463. Mateu-Vicens, G., Khokhlova, A. and Sebastián-Pastor, T., 2014. Epiphytic foraminiferal indices as bioindicators in Mediterranean seagrass meadows. The Journal of Foraminiferal Research, v. 44, p. 325-339. Mazzanti R., 2016. Note illustrative della carta geologica d'Italia alla scala 1:50.000,

1068	
1069	Mazzella, L. and Russo, G. F., 1989. Grazing effect of two Gibbula species (Mollusca,
1070	Archaeogastropoda) on the epiphytic community of Posidonia oceanica leaves. Acquatic
1071	Botany, v. 35, p. 357-373.
1072	
1073	Milker, Y. and Schmiedl, G., 2012. A taxonomic guide to modern benthic shelf
1074	foraminifera of the western Mediterranean Sea. Palaeontologia Electronica, v. 15, p. 1-134.
1075	
1076	Moissette, P., Koskeridou, E., Corneé, J.J., Guillocheau, F. and Lécuyer, C., 2007.
1077	Spectacular preservation of seagrasses and seagrass-associated communities from the
1078	Pliocene of Rhodes, Greece. Palaios 22, 200–211.
1079	
1080	Moriarty, D. J. W., and Boon, P. I., 1989. Interactions of seagrass with sediment and
1081	water, in Larkum, A. W. D. and Sheppard, S. A. (eds.), Biology of Seagrasses. Elsevier,
1082	Amsterdam, p. 500–535.
1083	
1084	Murray, J. W., 2006. Ecology and Applications of Benthic Foraminifera. Cambridge
1085	University Press, Cambridge, 426 p.
1086	
1087	Oishi, S., 1931. Discovery of Archeozostera and Sigillaria-like impressions in Hokkaido.
1088	J. Geog. Tokyo, v. 43, p. 717-719 (in Japanese).
1089	
1090	Pardi, G., Piazzi, L., Balata, D., Papi, I., Cinelli, F. and Benedetti-Cecchi, L., 2006. Spatial
1091	variability of Posidonia oceanica (L.) Delile epiphytes around the mainland and the islands
1092	of Sicily (Mediterranean Sea). Marine Ecology, v. 27, p. 397–403.
1093	
1094	Pérès, J. M. and Picard, J. 1964. Nouveau manuel de bionomie benthique.
1095	Recueil des Travaux de la Station marine d'Endoume, 31 (47), p. 5-137.
1096	
1097	Phillips, R.C. and Meñez, E.G., 1988. Seagrasses. Smithson. Contrib. Mar. Sci., v. 34.
1098	
1099	Piazzi, L., Acunto, S. and Cinelli, F., 2000. Mapping of Posidonia oceanica beds around
1100	Elba Island (western Mediterranean) with integration of direct and indirect methods.
1101	Oceanologica acta, v. 23(3), p. 339-346.

1102	
1103	Pomel, A., 1849. Matériaux pour servir à la flore fossile des terrains jurassiques de la
1104	France. Amt Ber 25ste Versamm Deutsch Naturf Ärzte, Aaachenpp. 331–354.
1105	
1106	Puffer, E.L. and Emerson, W.K., 1953. The molluscan community of the oyster-reef
1107	biotope on the central Texas coast. Journal of Paleontology, v. 27, p. 537-544.
1108	
1109	Raffi, S. and Serpagli, E. 2003. Introduzione alla Paleontologia. Ed. UTET
1110	
1111	Rathburn, A. E. and Corliss, B. H., 1994. The ecology of living (stained) deep-sea
1112	benthic foraminifera from the Sulu Sea. Paleoceanography, v. 9, p. 87-150.
1113	
1114	Regione Toscana (2006-2009). Carta geologica regionale in scala 1:10.000. Available
1115	from: 738 http://www502.regione.toscana.it/geoscopio/cartoteca.html.
1116	
1117	Reich, S., 2014. Gastropod associations as a proxy for seagrass vegetation in a tropical,
1118	carbonate setting (San Salvador, Bahamas). Palaios 29, 467-482.
1119	
1120	Reich S., Di Martino E., Todd J.A., Wesselingh F.P. and Renema, W., 2015. Indirect
1121	paleo-seagrass indicators (IPSIs): a review. Earth-Science Reviews, 143, 161-186.
1122	
1123	Reuter, M., Piller, W.E., Harzhauser, M., Kroh, A., Roegl, F. and Coric, S., 2010. The
1124	Quilon Limestone, Kerala Basin, India: an archive for Miocene Indo-Pacific seagrass beds.
1125	Lethaia, v. 44, p. 76–86.
1126	
1127	Ribes, T., Salvadó, H., Romero, J. and Gracia, M. P., 2000. Foraminiferal colonization on
1128	artificial seagrass leaves. Journal of Foraminiferal Research, v. 30, p. 192-201.
1129	
1130	Sanchez-Vidal, A., Canals, M., de Haan, W.P., Romero, J. and Veny, M., 2021. Seagrasses
1131	provide a novel ecosystem service by trapping marine plastics. Sci Rep 11, 254.
1132	https://doi.org/10.1038/s41598-020-79370-3
1133	
1134	Sarti, G., Ciampalini, A., Consoloni, I. and Cerrina Feroni, A. 2007. I depositi del
1135	Pleistocene inferiore della bassa Val di Cecina (Toscana Italia): ricostruzione stratigrafico-

1136	deposizionale e proposta di suddivisione in unità allostratigrafiche. Il Quaternario, v. 20, p.
1137	151-162.
1138	
1139	Sarti, G., Testa, G. and Zanchetta, G., 2008. A new stratigraphic insight of the Upper
1140	Pliocene-Lower Pleistocene succession of Lower Valdarno (Tuscany, Italy). GeoActa, v. 7,
1141	p. 27-41.
1142	
1143	Schröder, C. J., Scott, D. B. and Medioli, F. S., 1987. Can smaller foraminifera be
1144	ignored in paleoenvironmental analyses? Journal of Foraminiferal Research, 17: 101-5.
1145	
1146	Shannon, C. E. and Weaver, W., 1963. The Mathematical Theory of Communication.
1147	University of Illinois Press, Urbana, p. 144.
1148	
1149	Short, F. T., Carruthers, T. J. B., Dennison, W. C., and Waycott, M., 2007. Global seagrass
1150	distribution and diversity: a bioregional model. Journal of Experimental Marine Biology
1151	and Ecology, v. 350, p. 3–20.
1152	
1153	Stockmans, F., 1936. Végètaux éocènes des environs de Bruxelles. Bull. Mus. R. Hist. Nat.
1154	Belg., p. 76, v. 1–56.
1155	
1156	Tani, F. and Gazzerro, M. 1999. Nuove osservazioni sui depositi plio- pleistocenici nel
1157	bacino del Torrente Cascina. Bollettino della Società Geologica Italiana, v. 118(2), p. 237-
1158	241.
1159	
1160	Tomás, S., Frijia, G., Bömelburg, E., Zamagni, J., Perrin, C. and Mutti, M., 2016. Evidence
1161	for seagrass meadows and their response to paleoenvironmental changes in the early
1162	Eocene (Jafnayn Formation, Wadi Bani Khalid, N Oman). Sed. Geol., v. 341, p. 189 - 202.
1163	
1164	Toscano, A.G., Lazo, D.G. and Luci, L., 2018. Taphonomy and paleoecology of lower
1165	cretaceous oyster mass occurrences from west-central Argentina and evolutionary
1166	paleoecology of gregariousness in oysters. Palaios, v. 33(6), p. 237-255.
1167	

1168	Vacchi, M., De Falco, G., Simeone, S., Montefalcone, M., Morri, C., Ferrari, M. and
1169	Bianchi C.N., 2017. Biogeomorphology of the Mediterranean Posidonia oceanica seagrass
1170	meadows. Earth Surface Processes and Landforms, v. 42(1), p. 42-54.
1171	
1172	Van der Ham, R.W.J.M., van Konijnenburg-van Cittert, J.H.A. and Indeherberge, L., 2007.
1173	Seagrass foliage from the Maastrichtian type areas (Maastrichtian, Danian, NE
1174	Belgium, SE Netherlands). Rev. Palaeobot. Palynol. 144, 301–321.
1175	
1176	Van der Ham, R.W.J.M., van Konijnenburg-van Cittert, J.H.A., Jagt, J.W.M.,
1177	Indeherberge, L., Meuris, R., Deckers, M.J.M., Renkens, S. and Laffineur, J., 2017.
1178	Seagrass stems with attached roots from the type area of the Maastrichtian Stage (NE
1179	Belgium, SE Netherlands): Morphology, anatomy, and ecological aspects. Review of
1180	Palaeobotany and Palynology, v. 241, p. 49-69.
1181	
1182	Vélez-Juarbe, J. and Santos, H., 2008. Fossil Echinodermata from Puerto Rico. In: Ausich,
1183	W.I., Webster, G.D. (Eds.), Echinoderm Paleobiology. Indiana University Press,
1184	Bloomington, pp. 369–395.
1185	
1186	Vélez-Juarbe, J., 2014. Ghost of seagrasses past: using sirenians as a proxy for historical
1187	distribution of seagrasses. Palaeogeogr. Palaeoclimatol. Palaeoecol. 400, 41-49.
1188	
1189	Voigt, E., 1981. Upper Cretaceous bryozoan-seagrass association in the Maastrichtian of
1190	the Netherlands. In: Larwood, G.P., Nielsen, C. (Eds.), Recent and Fossil Bryozoa.
1191	Olsen & Olsen, Fredensborg, pp. 281–298.
1192	
1193	Voigt, E. and Domke, W., 1955. Thalassocharis bosqueti Debey ex Miquel, ein strukturell
1194	erhaltenes Seegras aus der holländischen Kreide. Mitt. Geol. Staatsinst. Hambg. 24,
1195	87–102.
1196	
1197	Wollenburg, J. E. and Mackensen, A., 1998a. On the vertical distribution of the living
1198	(rose Bengal stained) benthic foraminifers in the Arctic Ocean. Journal of Foraminiferal
1199	Research, v. 28, p. 268–85.
1200	
1201	Wollenburg, J. E. and Mackensen, A., 1998b. Living benthic foraminifers from the

1202	central Arctic Ocean: faunal composition, standing stock and diversity. Marine
1203	Micropaleontology, v. 34, p. 153-85.
1204	
1205	WoRMS Editorial Board, 2021. World Register of Marine Species. Available from
1206	https://www.marinespecies.org at VLIZ. Accessed 2021-07-09. doi:10.14284/170
1207	
1208	Wright, C.A. and Murray, J.W., 1972. Comparisons of modern and Palaeogene
1209	foraminiferid distributions and their environmental implications: Colloque sur la
1210	Géologie de la Manche, Me'moires BRGM, v. 79, p. 87–95.
1211	
1212	Yokes, M.B., Meric, E. and Avsar, N., 2007. On the presence of alien foraminifera
1213	Amphistegina lobifera Larsen on the coasts of the Maltese Islands. Aquatic Invasions, v. 2,
1214	p. 439-441, https://doi.org/ 10.3391/ai.2007.2.4.15
1215	
1216	Zalmout, I.S. and Gingerich, P.D., 2012. Late Eocene sea cows (mammalia, sirenia) from
1217	Wadi al Hitan in the western desert of Fayum, Egypt. Papers on Paleontology., v. 37.
1218	University of Michigan 156
1219	
1220	Figure and table captions
1221	
1222	Figure 1. A. Simplified geological map of Tuscany, showing the areas of Mio-Pleistocene
1223	outcrops, and the location of the study area (modified from Carnevale et al., 2008). Azure:
1224	alluvial deposits; yellow: Neogene and Quaternary marine deposits; green: Quaternary
1225	continental deposits; brown: substratum. B. Satellite image of the Fauglia quarry (Google
1226	Earth), with the location of the sampling sites.
1227	
1228	Figure 2. Field views and photos of the lower Pleistocene deposits cropping out at the
1229	Fauglia quarry, with location of the collected samples. A, B. Overview of the outcrop. The
1230	base of the section corresponds to picture B (lower interval), whereas the top is shown in A
1231	(upper interval). C. Posidonia-bearing layer. The arrow indicates in situ Posidonia
1232	rhizomes; D. Pinna nobilis specimen (arrow), in-life position, within Posidonia bearing
1233	layer: F. I ower section of the Fauglia succession. The arrow indicates the sandy layer
	layer, E. Lower section of the raught succession. The arrow indicates the sundy layer
1234	interbedded between two <i>Posidonia</i> -bearing layers (lower interval); F. Dark coloured

sediments within the upper *Posidonia*-bearing layer (upper interval); G. Detail of the *Cladocora caespitosa* bank.

1237

1241

1251

Figure 3. Stratigraphic log of the Fauglia quarry outcrop with information on the fossil
content and average grain-size based on laser granulometer analyses. The stratigraphic
position of the collected samples is also indicated.

- Figure 4. A, B, C. Detail of the well-preserved Posidonia oceanica rhizomes collected 1242 1243 within the Posidonia-bearing layers of the Fauglia outcrop. D. Fossil Posidonia oceanica rhizome surface; E. Fossil Posidonia oceanica leaf; F. Fossil Posidonia oceanica leaf, 1244 1245 surface detail. Even if the single plant cells are not preserved, it is possible to appreciate the preferential orientation of the fibres that constitute the leaf. G. Recent Posidonia 1246 1247 oceanica rhizome surface, with a Planorbulina mediterranensis specimen attached to the surface. H. Recent *Posidonia oceanica* leaf. It is possible to appreciate the single cells that 1248 1249 constitute the leaf. I. Recent *Posidonia oceanica* leaf, surface detail. Images D, E, F, G, H, 1250 I were obtained with a scanning electron microscope (SEM).
- Figure 5. LM images of selected foraminifera species. A. Sahulia conica; B. Nubecularia 1252 1253 *lucifuga*; C. Adelosina sp.(juvenile specimens); D. Quinqueloculina irregularis; E. Spiroloculina excavata; F. Cycloforina sp.; G. Quinqueloculina seminulum; H. 1254 Quinqueloculina schlumbergeri; I Pyrgo subsphaerica; J. Triloculina sp.; K. Dentalina 1255 albatrossi; L. Lenticulina orbicularis; M. Amphicoryna scalaris; N. Hyalinonetrion 1256 gracillimum; O. Lagena doveyensis; P. Lagena striata; Q. Globulina gibba; R. Globulina 1257 punctata; S. Guttulina communis; T. Favulina hexagona; U, Fissurina orbignyana; V. 1258 Fissurina pseudoorbignyana; W. Bolivina alata; X. Bolivina dilatata; Y. Bolivina 1259 pseudoplicata; Z. Bolivina spathulata; AA. Bolivina striatula; AB. Bolivina subspinescens; 1260 AC. Bolivina variabilis; AD. Cassidulina carinata. The white bars correspond to 100 µm. 1261 1262
- Figure 6. LM images of selected foraminifera species. A. *Globocassidulina subglobosa*;
 B. *Evolvocassidulina bradyi*; C. *Bulimina aculeata*; D. *Bulimina elongata*; E. *Bulimina marginata*; F. *Bulimina striata*; G. *Globobulimina affinis*; H. *Uvigerina mediterranea*; I *Rectuvigerina siphogenerinoides*; J. *Trifarina angulosa*; K. *Reussella spinulosa*; L. *Fursenkoina subacuta*; M. *Sigmavirgulina tortuosa*; N. *Valvulineria bradyana*, spiral side;
 O. *Valvulineria bradyana*, umbilical side; P. *Eponides repandus*, spiral side; Q. *Eponides*

1269 repandus, umbilical side; R. Gavelinopsis praegeri, spiral side; S. Gavelinopsis praegeri,

1270 umbilical side; T. *Neoconorbina terquemi*, spiral side; U. *Neoconorbina terquemi*,

1271 umbilical side; V. *Rosalina bradyi*, spiral side; W. *Rosalina bradyi*, umbilical side; X.

1272 *Rosalina globularis*, spiral side; Y. *Rosalina globularis*, umbilical side; Z. *Rosalina*

1273 *williamsoni*, spiral side; AA. *Rosalina williamsoni*, umbilical side; AB. *Neoconorbina* sp.,

spiral side; AC. *Neoconorbina* sp., umbilical side; AD. *Siphonina reticulata*. The white

1275 bars correspond to $100 \ \mu m$.

1276

1291

1277 Figure 7. LM images of selected foraminifera species. A. Discorbis vilardeboanus, spiral side; B. Discorbis vilardeboanus, umbilical side; C. Cibicidoides pseudoungerianus, spiral 1278 1279 side; D. Cibicidoides pseudoungerianus, umbilical side; E. Cibicidoides pachyderma, spiral side; F. Cibicidoides pachyderma, umbilical side; G. Lobatula lobatula, spiral side; 1280 1281 H. Lobatula lobatula, umbilical side; I Cibicides refulgens, spiral side; J. Cibicides refulgens, umbilical side; K. Planorbulina mediterranensis, spiral side; L. Planorbulina 1282 1283 mediterranensis, umbilical side; M. Hanzawaia boueana, spiral side; N. Hanzawaia boueana, umbilical side; O. Planulina ariminensis; P. Planulina sp., spiral side; Q. 1284 Planulina sp., umbilical side; R. Asterigerinata mamilla, spiral side; S. Asterigerinata 1285 mamilla, umbilical side; T. Haynesina depressula; U. Haynesina germanica; V. Nonion 1286 boueanum; W. Nonion commune; X. Nonionella turgida; Y. Astrononion stelligerum; Z. 1287 Melonis affinis; AA. Gyroidina soldanii, spiral side; AB. Gyroidina soldanii, umbilical 1288 side; AC. Discorbinella bertheloti, spiral side; AD. Discorbinella bertheloti, umbilical 1289 side. The white bars correspond to 100 µm. 1290

Figure 8. LM images of selected foraminifera species. A. Cancris auricola, spiral side; B. 1292 Cancris auricola, umbilical side; C. Oridorsalis umbonatus; D. Pullenia bulloides; E. 1293 Pullenia quadriloba; F. Aubignyna perlucida, spiral side; G. Aubignyna perlucida, 1294 umbilical side; H. Buccella aff. B. frigida, spiral side; I Buccella aff. B. frigida, umbilical 1295 1296 side; J. Ammonia beccarii, spiral side; K. Ammonia beccarii, umbilical side; L. Ammonia parkinsoniana, spiral side; M. Ammonia parkinsoniana, umbilical side; N. Ammonia 1297 1298 tepida, spiral side; O. Ammonia tepida, umbilical side; P. Elphidium aculeatum; Q. 1299 Elphidium advenum; R. Elphidium complanatum; S. Elphidium crispum; T. Elphidium 1300 fichtelianum; U, Elphidium sp.; V. Elphidium incertum; W. Elphidium macellum; X. Elphidium sp.1; Y. Elphidium aff. E. aculeatum; Z. Elphidium sp.5 Cimerman & Langer, 1301 1302 1991; AA. Cribroelphidium cf. magellanicum; AB. Elphidium translucens.; AC.

Elphidium translucens, lateral; AD. Porosononion granosum. The white bars correspond to
1304 100 μm.

- Figure 9. SEM images of selected foraminifera species. A. Nubecularia lucifuga; B. 1306 Elphidium advenum; C. Elphidium complanatum; D. Elphidium fichtelianum; E. Elphidium 1307 crispum; F. Elphidium aculeatum; G. Elphidium sp.; H. Elphidium translucens; I. 1308 Porosononion granosum; J. Lobatula lobatula, spiral side; K. Lobatula lobatula, umbilical 1309 1310 side; L. Cibicidoides pseudoungerianus, spiral side; M. Cibicidoides pseudoungerianus, 1311 umbilical side; N. Cibicides refulgens, spiral side; O. Cibicides refulgens, umbilical side; P. Planorbulina mediterranensis, spiral side; Q. Planorbulina mediterranensis, umbilical 1312 1313 side; R. Ammonia beccarii, umbilical side; S. Ammonia parkinsoniana, umbilical side; T. Ammonia tepida, umbilical side. The white bars correspond to 100 µm. 1314 1315 Figure 10. SEM images of selected foraminifera species and fossil Posidonia. A. 1316 1317 Asterigerinata mamilla, spiral side; B. Asterigerinata mamilla, umbilical side; C. Rosalina bradyi, spiral side; D. Rosalina bradyi, umbilical side; E. Neoconorbina terquemi, spiral 1318 side; F. Neoconorbina terquemi, umbilical side; G. Reussella spinulosa; H. Fursenkoina 1319 subacuta; I. Fossil Posidonia rhizome fragment; J. Fossil Posidonia leave fragment. The 1320 white bars correspond to 100 µm. 1321 1322 Figure 11. Pie-plots representing morphotypes frequencies in the collected samples. A. 1323 Mode-1 analysis, with miliolids. B. Mode-2 analysis, without miliolids. 1324
- 1325

1327

1305

Figure 12. Q-mode cluster analysis.

Figure 13. Benthic foraminifera specimens with curved attaching surface, typical of
epiphytic forms. A. *Lobatula lobatula*; B, C. *Cibicides refulgens*. D. *Planorbulina mediterranensis*.

1331

1332**Table 1.** Grain-size analysis of the collected sample. The analysis and the results were1333obtained with software GRADISTAT version 4.0 (Blott and Pye, 2001).

1334

1335**Table 2.** Foraminifera data and parameters calculated from all the samples. Fraction: grain-1336size fraction considered within the analysis; Total weight: total amount of dry sediment

1337	before sieving; Tot. BF: number of benthic foraminifera within each sample; BF/100g:
1338	number of benthic foraminifera normalized within 100g of sediment; SR: Species
1339	Richness; Index _{BR} : proportion of broken tests (BR) within a sample, $BR/(Tot.BF+BR)$; H':
1340	Shannon-Weaver index; Index _{EP} : number of epiphytic specimens/total foraminifera
1341	(Mateu-Vicens et al., 2014); Index _{EP-M} : number of epiphytic specimens/total foraminifera
1342	without miliolids; FI': modified FORAM Index (Mateu-Vicens et al., 2014); ILS: long vs.
1343	short life-span index (Mateu-Vicens et al., 2014); FI'-M: FORAM Index modified without
1344	miliolids; I _{LS-M} : long vs. short life-span index without miliolids; K/R: ratio between keeled
1345	Elphidium and the sum of rounded elphidiids (e.g., Elphidium translucens,
1346	Cribroelphidium, Porosononion) and Haynesina; K/REXT: ratio between keeled Elphidium
1347	and the sum of rounded elphidiids (e.g., Elphidium translucens, Cribroelphidium,
1348	Porosononion) and associated taxa that display a rounded periphery (i.e., Astrononion,
1349	Haynesina, Melonis, Nonion, Nonionella, Valvulineria).
1350	
1351	Table 3. Relative frequency (%) of the most common species within all the samples. Raw
1352	data of all species are in Appendix 1.
1353	
1354	Table 4. Morphotype classification used in this study. Species were assigned to a specific
1355	morphotype as in literature (Langer, 1993; Mateu-Vicens et al., 2010; Mateu-Vicens et al.,
1356	2014).
1357	
1358	Table 5. Morphotypes abundances within the different samples. Mode-1 indicates the
1359	study considering miliolids. Mode-2 indicates the study without considering miliolids. For
1360	graphical representation see Fig. 11.