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1. Introduction

Coccolithophores are marine planktonic calcifying algae that play a major role in the ocean carbon
cycle: as planktonic autotrophs they contribute to the drawdown of CO; from the surface ocean,
while as calcifiers, since their first occurrence in the late Triassic (Westbroek et al., 1993), they
affect the CO; equilibrium in surface waters and contribute to the sinking flux of calcium
carbonate to the ocean bottom. Coccolithophores thus play an important role in climate
regulation, also through the production of dimethyl sulphide (Malin and Steinke, 2004), a gas that
promotes cloud condensation.

Knowledge of the response of coccolithophores to ecological forcing is fundamental to understand
their response to and their feedback on climate change. Furthermore, biogeographic studies on
coccolithophores in the present ocean (e.g., Jordan and Chamberlain, 1997) provide the key to
interpreting the coccolith record of the past, thus allowing accurate reconstructions of past

oceanographic changes.

The Indian Ocean is a key area influenced by the monsoon system, with a seasonal reversal of
wind direction, precipitation regime and surface ocean currents (Schott and McCreary, 2001).
Coastal areas dominated by the monsoons are characterised by seasonal upwelling of nutrient-rich

waters that cause an increase of primary productivity (Rixen et al., 2000; Wyrtki, 1973), resulting
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in high export fluxes of organic matter and the development of an oxygen minimum zone at depth
(Schulz et al., 1996; Von Rad et al., 1990).

Upwelling areas close to oligotrophic settings in the Indian Ocean have been often used as key
areas to compare and contrast the distribution of phytoplankton and in particular of
coccolithophores (Andruleit and Rogalla, 2002; Andruleit et al., 2003; Schiebel et al., 2004), the
forcing of the monsoon system on calcification rates (Balch et al., 2000; Liu et al., 2020) and
related geochemical proxies (Stoll et al., 2007a; Stoll et al., 2007b). In upwelling-dominated areas,
coccolith fluxes define a seasonal pattern of monsoon and inter-monsoon variations (Broerse et
al., 2000; Mergulhao et al., 2013) and several studies used calcareous nannofossils as proxies to
understand the functioning of the monsoon system in the Quaternary (Andruleit et al., 2008;

Carbacos et al., 2014; Rogalla and Andruleit, 2005; Tangunan et al., 2020; Tangunan et al., 2017).

Many plankton studies of coccolithophores (Norris, 1971; Norris, 1983; Norris, 1984; Norris, 1985),
along longitudinal transects in the tropical-equatorial Indian Ocean (Kleijne, 1993; Kleijne et al.,
1989; Young et al., 2017), in the Arabian Sea (Andruleit et al., 2005; Andruleit et al., 2003; Guptha,
1985; Guptha et al., 2005; Guptha et al., 1995), eastern Indian Ocean (Guptha et al., 2005;
Hallegraeff, 1984; Takahashi and Okada, 2000) and along meridional transects in the Indian sector
of the Southern Ocean (Mohan et al., 2008; Patil et al., 2014; Patil et al., 2020) revealed a distinct
biogeography and a high biodiversity, often resulting in the description of new species (Andruleit
et al., 2016; Andruleit and Jordan, 2017; Aubry and Kahn, 2007; Kahn and Aubry, 2012; Kleijne and
Cros, 2009; Patil et al., 2019; Young and Andruleit, 2006). Coccolithophore populations have been
studied from water samples during drilling operations of the International Ocean Discovery
Program at different locations in the Inner Sea in the central Maldives (Young et al., 2017) but only

in surface ocean waters and not in the lagoons.
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The purpose of this study is to assess the distribution and species composition of coccolithophores
from the Faafu Atoll in the Maldives. The sampling strategy aimed at comparing and contrasting

the presence and biodiversity of coccolithophores from key areas of atoll, such as: a) from the reef
flat to the fore reef; b) from the lagoon through the pass to the open ocean; c¢) from surface water

to mid-photic depth.

2. Oceanographic setting

The Maldives archipelago in the central Equatorial Indian Ocean is an isolated carbonate platform
that has grown on a lower Paleogene (60—-50 Ma) volcanic basement since the Eocene (Betzler et
al., 2017). A north-south—oriented double row of 1200 reef-rimmed atolls encloses the Inner Sea
of the Maldives, up to 550 m deep. The atolls are separated by channels that allow the transport

of equatorial waters and enclose 50-60 m deep lagoons, connected to the open ocean by passes.

The climate and ocean circulation of the tropical Indian Ocean is driven by the seasonally reversing
winds of the South Asian Monsoon (Tomczak and Godfrey, 2003; Wyrtki, 1973), due to the
differential heating of land and ocean that causes the seasonal migration of the Intertropical
Convergence Zone (Gadgil, 2003).

In the northern Indian Ocean, during the summer monsoon (SM, June to October), SW winds drive
the northward flowing East African Coastal Current close to the African coast, the southward
flowing West India Coastal Current along the western coast of India and the eastward flowing

Summer Monsoon Current in the central Indian Ocean. During the winter monsoon (WM,
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December-April), NE winds drive the southward flowing Somali current close to the African coast,
the northward flowing West India Coastal Current along the western coast of India and the
westward flowing Winter Monsoon Current in the central Indian Ocean (Schott and McCreary,
2001; Shankar et al., 2002). Intermonsoon periods occur in May and November and equatorial
westerly winds dominate, inducing strong and deep-reaching (up to 200 m) surface currents
(Tomczak and Godfrey, 2003).

Primary productivity is highly variable in both space and time in the Indian Ocean, with the highest
sea surface chlorophyll-a values observed in the upwelling regions of the western coast of the
Arabian Sea during the summer monsoon. In the equatorial region, chlorophyll-a values are below
0.1 mg/m?3in the intermonsoon periods and below 0.5 mg/m?3 during the SW monsoon. The
Maldives are crossed by the Monsoon Current, whose transport affects at least the upper 60 m of
the water column (Schott and McCreary, 2001) and reverses seasonally, causing a plume of
upwelling and higher chlorophyll concentration (>0.5 mg/m?3) in the down-current side offshore,
i.e., eastward during the SM and westward during the WM (de Vos et al., 2014; Strutton et al.,
2015). Chlorophyll-a concentration shows seasonal variations but is generally low in the atolls of

the Maldives, as observed from satellite (Sasamal, 2007) and our Supplementary Fig. A.1.

3. Methods

Three sets of water samples were collected from the lagoon and open ocean in the south-eastern
part of the Faafu Atoll from November 2" to 6%, 2018: surface, deep and reef-flat samples.

Sample position was measured with a Garmin etreck 30 hand GPS and the main parameters



119  (temperature, oxygen concentration) of the water column were measured with a multiparametric
£0  probe WTW © Multi 3430 (Fig. 1, Table 1).

B®1  Surface water samples (labelled MF) were collected with a bucket from the boat, or from the

B2  coast; vertical water samples (labelled MV) were collected at 0 m with a bucket and at 10, 25, 40
1»3  m depth with a hand held 5-litre Niskin bottle connected to a 50 m rope and triggered with a

1124  manual release; reef-flat samples (M 1 to 3 and Ad) were collected with a 2-litre water bottle

5  while walking from the coast across the reef-flat.

1®6  For each sample type, 2 litres of water were filtered on cellulose acetate filters (0.45 um pore size,
51127 47 mm diameter) through a vacuum system in the laboratory at the MAHRE facility on Magoodhoo
238  Island. All filters were oven-dried and stored in plastic petri dishes. A portion of filter was cut and
289  fixed with microscope immersion oil between a glass slide and a cover slip. All samples thus

%%0 prepared were analysed under an Olympus BX50 polarised light microscope at the University of
3B1  Milano-Bicocca at 1000X. A total of 55-434 (1-280) coccospheres were counted on the filter for
%2 each open-water (reef-flat) sample over an area of 4-11 mm?. These counts thus resulted in a

333  detectability of 55-155 coccospheres/litre.

334  Selected samples were also observed with a Zeiss FEG Gemini 500 Scanning Electron Microscope
435 (SEM), by attaching a small piece of filter to an aluminium stub with a graphite tape and Cr-

486  coating. SEM observations focused on assessing the full range of species composition, focusing in

21%7 particular on lightly-calcified species.

589 MV samples were also filtered with a vacuum filtration system using glass-fibre filters and these
S0 were analysed for chlorophyll concentration using spectrophotrometric analysis (Leoni et al.,

5@1 2007).
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MODIS-Aqua chlorophyll-a concentration data at 4 km resolution were plotted as a time-averaged
map and as a time series for year 2018 from NASA Giovanni

(https://giovanni.gsfc.nasa.gov/giovanni) and are shown in Supplementary Fig. 1.

4. Results

4. 1 Coccolithophore distribution and species composition

Coccolithophore density in the surface waters is typically around 0.1-4 x 10% coccospheres/litre in
1-2 m depth coastal waters and increases with increasing bottom depth, towards both the lagoon
and the open ocean. In these settings, coccolithophores are in the range of 10-44 x 103
coccospheres/litre, with no significant trend between the lagoon and the open ocean, but typically
showing higher values close to the passes (Fig. 2).

At vertical stations, ~1°C decrease in temperature is observed from the surface to 40 m depth in
the lagoon and is accompanied by a decrease in oxygen concentration and saturation. Sea surface
temperature is ~0.5°C lower in the open ocean stations, resulting in a less pronounced
temperature decrease with depth.

Chlorophyll concentration is low in the range of 0.13-0.65 pg/litre at all stations, showing a
slightly-increasing trend with depth (Fig. 3). Low-resolution (4kmx4km) monthly satellite data over
the area in November 2018 show values of 0.18 mg/m3 (= 0.18 pg/litre), indicating the overall
pattern of low chlorophyll concentration of the region of the atoll. No diatoms were observed in

the filter samples, and only a few specimens of silicoflagellates were recovered, indicating that


https://giovanni.gsfc.nasa.gov/giovanni

coccolithophores are the major mineralized phytoplankton group in the study area, at least in the
investigated period.

The vertical trend in coccolithophore density is not consistent among stations, showing either an
increase (MV3, MV5, V2), a decrease (MV1) or constant values (MV6) with increasing water depth.
In the open water, the coccolithophore assemblage composition is dominated by two main
species, Gephyrocapsa oceanica (34-64%) and Oolithotus antillarum (6-33%), followed by several
minor species, that represent on average 27% of the open water and coastal assemblages,
dropping to zero where coccolithophore density is below 100 coccospheres/litre. In coastal waters
close to the Magoodhoo coast, coccolithophore density is close to the detection limit and the
assemblage is usually represented by the two major species only.

Minor species are represented, in order of abundance (as detected by light microscopy, Plate 1) by
Calciosolenia spp., Calciopappus rigidus, Emiliania huxleyi, Umbilicosphaera spp., Umbellosphaera
spp., Ophiaster spp., Michaelsarsia adriaticus, Algirosphaera robusta, and rare Syracosphaera spp.,
Discosphaera tubifera, Acanthoica quattrospina, Rhabdosphaera clavigera, Calcidiscus leptoporus,
O. fragilis, Alisphaera spp., and holococcolithophores. Emiliania huxleyi, the most common species
in the global ocean, represents on average 5% (range 1.3-13%) of the total assemblage.
Florisphaera profunda was detected in two deeper samples. Only one specimen of H. carteri was
recovered in one sample. SEM observations documented the different species (Plate 2, 3), allowed
detecting rare small species like Palusphaera vandelii and Solisphaera galbula and detailing the
species of Syracosphaera, Alisphaera and holococcolithophores (Plate 4).

At some stations and/or depths, in both the lagoon and the ocean, minor species make a higher
contribution, up to 56% of the total assemblage (where G. oceanica has low abundances): minor

species are represented in these cases mostly by Calciosolenia murrayi, C. rigidus and Ophiaster

Spp.
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4.2 Horizontal and vertical trends in coccolithophore assemblages

In surface water samples collected away from the coast, no significant trend in species assemblage
composition was observed (Fig. 2), as all species are present both in the lagoon and open sea. The
only exception is represented by C. brasiliensis, that shows a preference for the open ocean.
Along the vertical (0-40 m) transects, the contribution of major species to the total assemblage
composition changes slightly, with an increase in the relative abundance of O. antillarum with
depth but no clear trend for G. oceanica. As for the minor species, C. murrayi, C. rigidus, U.
irregularis, U. tenuis and D. tubifera show higher relative abundances in the upper 10 m,
decreasing with depth; holococcolithophores follow the same trend, as well as U. hulburtiana and
R. clavigera, whose presence is however scattered.

In contrast, A. robusta, M. adriaticus and Ophiaster spp., show increasing relative abundances with
depth and a similar trend is followed by U. foliosa, although its presence is scattered; F. profunda
was only detected below 25 m depth at two stations. No vertical trend was detected for the other

species.

4.3 A new Alisphaera species

The genus Alisphaera was rare in the analysed samples, with only a few coccospheres identified
both in light and electron microscope observations from a few samples (MF08, MV1-10m, MV5-
25). It was represented by rare specimens of A. gaudii and a species showing ultrastructural
characters that were not common to any known species. The latter is therefore described here as

a new species.



Family Alisphaeraceae

Genus: Alisphaera

Species: Alisphaera bidentata sp. nov. Malinverno

HOLOTYPE: Plate 3, fig. 9-10. SEM stub, stored at the Museum of Natural Sciences of Milan
(MSNM No. 51417)

TYPE LOCALITY: Faafu Atoll, Maldives, sample MV1 - 10 m

ETYMOLOGY: from the Latin bidentatus, bearing two teeth

Monothecate dimorphic coccosphere. Coccoliths elliptical in outline, proximal and distal flange
slightly more extended towards the apical pole of the coccosphere. A pointed protrusion is
present on the wide longer side of the distal flange in some coccoliths located at the antapical pole
and sparse in other parts of the coccosphere. Coccolith central area with a fissure; nodules along
the inner margin of the narrow longer side of the distal flange are the result of an asymmetrical
protrusion from each of the radial elements making the distal flange; a prominent tooth occurs at
each shorter side of the inner margin as a result of a protrusion from the radial element at that
position: such teeth are the most characteristic feature of this species.

Dimensions: coccosphere about 10 um (but both observed specimens were collapsed); coccoliths
1.3-2.0 um long, 0.8-1.1 um wide; nodules up to 0.1 um long, teeth 1.5 um long.

Remarks: the two illustrated specimens were recovered from two distinct samples but display very
consistent ultrastructural features. They show strong similarity to A. pinnigera, but the protrusion
of the distal flange resembles more a hook rather than a right-angle triangle. Furthermore, some
of the specimens of A. pinnigera illustrated on nannotax (JRSEM-193-44.JPG and 46.JPG;
Young_etal 2003 177-61.JPG) have a smaller central area and larger (and fewer) elements making

the wide longer side of the distal flange.

10



The presence of the two teeth on the shorter side of the inner margin has never been illustrated in
Alisphaera and is a typical character that allows the distinction of this species. Indeed, small
nodules in this position are illustrated from a few specimens of A. gaudii (Fig. 32 of Kleijne et al.,
2002; Fig. 76D of Cros and Fortuno, 2002; unpublished JRYSEM_126_58alisph of nannotax), A.
quadrilatera (fig. 75D of Cros and Fortuno, 2002) and A. pinnigera (fig. 75B of Cros and Fortuno,
2002), but they are small and only occur on a few coccoliths, while the teeth of A. bidentata occur

on all coccoliths of the coccosphere.

4.4 Malformed coccolithophores

A few specimens of G. oceanica showed evidences of malformation, consisting of: incompletely-
formed coccoliths lacking a bridge and central area, unconnected crystal elements, unconnected
portions of coccoliths, collapsed shields, or incompletely-formed elements.

Such specimens are rare and were only recovered in a few surface water samples from the lagoon
(MV3, MF08). Under the light microscope, they appear as irregular calcite spheres with no
diagnostic characters for the identification. SEM observations allowed attribution to G. oceanica

(Plate 3, fig. 23-24).

5. Discussion

5.1 Coccolithophore trends in the tropical-equatorial Indian Ocean and in the Maldives

Many studies focused on coccolithophores of the tropical equatorial Indian Ocean through water

sampling from extensive surveys (Kleijne, 1993; Kleijne et al., 1989; Liu et al., 2018; Schiebel et al.,

11



2004; Young et al., 2017) and/or specific locations (Andruleit et al., 2005; Andruleit et al., 2003;
Guptha et al., 2005; Guptha et al., 1995; Hallegraeff, 1984; Painter et al., 2021; Stolz et al., 2015;
Takahashi and Okada, 2000), and investigated their taxonomy (Kleijne, 1991; Kleijne, 1992; Norris,
1983; Norris, 1984; Norris, 1985), abundance, distribution and ecology of single species. These
studies show an overall consistent pattern of major species abundances. Upwelling areas and/or
periods are dominated by G. oceanica, with minor contribution by E. huxleyi, Umbilicosphaera spp.
and some species of the Syracosphaerales, notably A. robusta, C. rigidus, Calciosolenia spp. and M.
adriaticus. In contrast, stratified oligotrophic settings are dominated by U. irregularis, with minor
contribution by U. tenuis and other oligotrophic species like D. tubifera and some
holococcolithophores. Total coccosphere concentration in the Indian Ocean ranges from low (0-
10x103 coccospheres/litre) to moderate concentrations (20-100x10° coccospheres/litre) moving
from oligotrophic towards eutrophic settings (Kleijne et al., 1989; Young et al., 2017) even though

the opposite correlation is also documented (Schiebel et al., 2004).

Coccolithophore assemblages in the Faafu Atoll lagoon and surrounding ocean waters show
abundances in the range of 4-44x103 coccosphere/litre (much lower concentrations in samples
collected in 1-2 m deep stations), comparable to other settings of the region, and are dominated
by G. oceanica followed by a high number of species typical of the equatorial-tropical Indian
Ocean, as also observed from the Inner Sea around Maalhosmadulu and Goidhoo atolls further
north, which were sampled in the same season of a different year (Young et al., 2017).

Some differences can however be observed from the coccolithophores of the Inner Sea and will be
discussed in the context of the Indian Ocean coccolithophore ecology. In the Inner Sea, D. tubifera
was abundant but it is rare here, C. cristatus and H. hyalina made significant contributions there

but are notably absent from our samples. In contrast, O. antillarum was rare in the Inner Sea but is

12



the second most abundant species in the Faafu Atoll. Among Syracosphaera, S. exigua is the most
abundant species found by Young et al. (2017), but was not recorded here, where the most
abundant species of the genus, as identified by SEM observations, were S. halldalii, S. ossa and S.
prolongata. Among holococcolithophores, P. magnaghii and C. diconstricta were present in both
surveys, and P. maximus was likely identified in one of our samples.

As in Young et al. (2017), typical shallow water taxa like genera Cruciplacolithus, Pleurochrysis,

Braarudosphaera, were not observed, even from coastal samples in 1-2 m water depth.

5.2 Ecological implications of the main and upper photic zone (UPZ) species

Gephyrocapsa oceanica is the most abundant coccolithophore species in the Indian Ocean and
makes a significant contribution in present-day fluxes (Andruleit et al., 2000; Broerse et al., 2000;
Mergulhao et al., 2006) from the upwelling-dominated settings of the Arabian Sea and the Bay of
Bengal. It is the dominant species in bottom sediments of the Arabian Sea (Andruleit and Rogalla,
2002; Dmitrenko, 1985; Guptha, 1985; Guptha, 1986; Houghton and Guptha, 1991; Martini and
Muller, 1972; Mojtahein et al., 2015; Stolz et al., 2015) showing a clear positive response to
increased nutrient conditions in monsoon-dominated settings.

In our samples, G. oceanica typically occurs in clusters (Plate 2 fig. 1) and is often bilayered (Plate 2
fig. 2). Its coccoliths show high (>56°) bridge angle, as typical in the tropics (Bollmann, 1997;
Bollmann and Klaas, 2008) and variable size, corresponding to G. oceanica Equatorial and G.
oceanica Larger of Bollmann (1997) as measured in Holocene coccoliths. In plankton samples,
these two morphotypes are correlated with open ocean warm conditions and upwelling-neritic
settings, respectively (Schiebel et al., 2004) and with warmer and colder SST, respectively

(Bollmann and Klaas, 2008). We did not make morphometric measurements to assess the

13



proportions, but qualitative microscope observations indicate a predominance of the larger
morphotype (Plate 2 fig. 1, 2) which is well explained by the neritic setting.

Our G. oceanica specimens have a large central area, similar to Type 1 of Hagino et al. (2000) that
is typical of high SST (>20°C) and low nutrients. However, only a few of our specimens (Plate 2, fig.
3) can be assigned to Type 1, while the majority of specimens (Plate 2, fig. 1, 2) differ from Type 1
in having a well developed inner tube cycle that forms a distinct collar, like in the specimens from
upwelling settings (e.g. Andruleit et al., 2007, Fig. 5f).

A few individuals were malformed, showing incomplete crystals and coccoliths, but these were
very rare among the individuals of the species and occurred in samples where no malformation
was observed in other species. Although malformed specimens are reported from other surveys
(Kleijne, 1990), these could also be interpreted as the result of partial corrosion, as the
morphological evidences are uncertain.

Emiliania huxleyi is a ubiquitous species (Mcintyre and Bé, 1967; Winter et al., 1994) and usually
dominates in upwelling settings of tropical to arctic waters, but it is outnumbered by G. oceanica
in tropical waters (Hagino, 2000). Data from the Indian Ocean indicate that E. huxleyi is abundant
in the western Arabian Sea and Suez Gulf (Kleijne et al., 1989) as well as in the eastern Indian
Ocean (Liu et al., 2021; Liu et al., 2018; Takahashi and Okada, 2000), while G. oceanica dominates
in the area South of India at higher temperature and lower salinity. Such trend is also observed by
Young et al. (2017) who found that E. huxleyi was more abundant than G. oceanica in the eastern
Indian Ocean and decreased significantly towards the central Indian Ocean. In the Maldives, E.
huxleyi was present in the Inner Sea only during part of their survey but was always present during
our sampling in the area of Magoodhoo. Although we did not analyse specifically the

morphotypes, all the observed E. huxleyi specimens belonged to type A, as also observed for the

14



Inner Sea further north (Young et al., 2017), while type C is reported as the dominant type in the
equatorial upwelling as well as in the southern Indian sector of the southern Ocean.
Umbellosphaera irregularis is a typical upper photic zone species of tropical-subtropical stratified
oligotrophic settings (Hagino et al., 2000; Haidar and Thierstein, 2001; Mclntyre and B¢, 1967,
Okada and Honjo, 1973; Okada and Mclintyre, 1977; Reid, 1980). In the NE Indian Ocean it is the
dominant species along with U. tenuis in oligotrophic environments (Takahashi and Okada, 2000),
it is common in open ocean stratified waters off Tanzania (Stolz et al., 2015), the dominant species
in the eastern equatorial Indian Ocean under stratified conditions (Guptha et al., 2005) and it is
typically associated with warm stratified oligotrophic areas in the Indian Ocean (Andruleit et al.,
2004; Guptha et al., 1995; Kleijne, 1993; Kleijne et al., 1989; Liu et al., 2018; Schiebel et al., 2004).
In our samples, U. irregularis is always present as a minor species, pointing to a rather eutrophic
setting.

Umbellosphaera tenuis is also a minor species in the assemblages of the Faafu Atoll and is
represented by types | and O. These two types are always found in association and typically in
combination with U. irregularis (Kleijne, 1993) in samples from the Indian Ocean (NE Indian Ocean,
eastern Arabian Sea, northern Red Sea) and are indicated as typical of tropical areas. Other
records of type O come in fact from tropical sites such as Palau (Pacific Ocean, 7°N, Konno and
Jordan, 2006), western Pacific (Nishida, 1979), equatorial Pacific (Hagino and Okada, 2006),
Atlantic Ocean (1.6 and 13.99°S, unpublished photos by JRY on Nannotax3), northern Gulf of Elat,
29.5°N (Winter et al., 1979 as U. irregularis) and Australian waters (Hallegraeff, 1984).

Other common UPZ species of the tropical and temperate settings are represented by D. tubifera
and R. clavigera (Kleijne, 1992; Mclintyre and Bé, 1967; Okada and Mclintyre, 1977) which are
typically present in the Indian Ocean but are rare or scattered in our survey, indicating unsuitable

conditions.

15



Among the species of Umbilicosphaera, the most represented in our samples was U. sibogae, a
temperate-subtropical species (Okada and Mcintyre, 1979; Winter, 1985) typical of oligotrophic
settings (Ziveri et al., 2004) and associated with oligotrophic stable waters in plankton and fluxes
of the equatorial Pacific (Broerse, 2000; Hagino and Okada, 2006). Umbilicosphaera sibogae is
reported as the third abundant species in the eastern equatorial Indian Ocean (Guptha et al.,
2005), but showed low abundances throughout the Indian Ocean surface waters, decreasing in
upwelling areas (Kleijne, 1993). It is the second most abundant species in fluxes of the Bay of
Bengal (Mergulhao et al., 2013) and is reported to increase in settling fluxes off Pakistan during
the NE monsoon (Andruleit et al., 2000). Although it is reported as a LPZ species in other oceans

(Mcintyre and Bé, 1967; Reid, 1980) as well as in the Arabian Sea off Tanzania (Stolz et al., 2015)

and in the eastern Indian Ocean (Liu et al., 2018), it did not show any depth trend in our samples.

Umbilicosphaera foliosa, a mesotrophic to eutrophic species in different oceans (Andruleit et al.,
2005; Broerse, 2000; Hagino and Okada, 2006; Okada and Mclntyre, 1979; Ziveri and Thunell,

2000) was less frequent here, as reported from other locations of the Indian ocean (Kleijne, 1993

).

Finally, U. hulburtiana was scattered in our samples and mostly restricted to the surface samples.

Usually considered as an upper photic zone species typical of warm waters (Okada and Mcintyre,
1977) it was found in surface waters only in the northeast Indian Ocean and Arabian Sea (Kleijne,

1993), but in the MPZ in open ocean non-upwelling settings off Tanzania (Stolz et al., 2015).

5.3 Middle photic zone (MPZ) coccolithophores in surface waters of the Faafu Atoll

Apart from the dominant role of G. oceanica, the majority of the species found in the Faafu Atoll

are typical of the MPZ to LPZ assemblages of tropical to temperate settings.

16



The second most abundant species in all samples of the Faafu Atoll is in fact represented by

O. antillarum, which is indicated as a Lower Photic Zone (LPZ) (Hagino et al., 2000; Takahashi and
Okada, 2000) or MPZ species (Winter et al., 1994). In the plankton, O. antillarum is reported as an
important component in the eastern equatorial Indian Ocean (Guptha et al., 2005), at mid-depth
in the eastern Indian Ocean (Liu et al., 2021), in LPZ waters off Australia (Takahashi and Okada,
2000), in deep waters >60 m of the open ocean of the western equatorial Indian Ocean off
Tanzania (Stolz et al., 2015), at 40-60 m in the northern and western Arabian Sea (Andruleit et al.,
2005; Andruleit et al., 2003) and at the thermocline in the Java upwelling area (Andruleit, 2007).
Increased abundances of O. antillarum are observed in upwelling areas of the Indian Ocean and in
the surface waters of the western Arabian Sea, along with A. robusta (Kleijne, 1993), as well as
south of Java, along with increasing total coccolithophores, E. huxleyi and G. oceanica (Young et
al., 2017). A similar increase of O. antillarum in the upper water column in and around the
upwelling front was observed in the equatorial Pacific Ocean (Hagino et al., 2000). In sinking fluxes
from the Bay of Bengal, O. antillarum increases along with F. profunda during periods associated
with oligotrophic conditions (Mergulhao et al., 2013).

Algirosphaera robusta is commonly indicated as a LPZ species (Hagino et al., 2000; Kleijne, 1993;
Knappertsbusch, 1993; Okada and Honjo, 1973; Okada and Mclntyre, 1979; Reid, 1980; Takahashi
and Okada, 2000) or MPZ species (Dimiza et al., 2008; Jordan and Winter, 2000; Malinverno et al.,
2003) and makes an important contribution to the fluxes in a coastal setting of the eastern
Mediterranean (Malinverno et al., 2009). In the Indian Ocean, it occurs at the thermocline in the
Java upwelling area (Andruleit, 2007), in the LPZ of the eastern Indian Ocean off Australia
(Takahashi and Okada, 2000), but increases in abundance in surface waters of the upwelling areas
off Somalia and south of India, thus indicating lower temperatures and eutrophic conditions

(Kleijne et al., 2002). In our samples, A. robusta is present throughout the investigated water
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column depth, but is comparably more abundant in the deeper samples, confirming its preference
for lower layers.

Another significant component of the typical MPZ community of coastal and pelagic subtropical
settings is represented by species of Calciosolenia, Michaelsarsia, Ophiaster and Calciopappus
(Cerino et al., 2017; Jordan and Chamberlain, 1997; Jordan and Winter, 2000; Malinverno et al.,
2003) that make an important contribution in most samples of the Faafu Atoll.

Calciosolenia is represented by C. murrayi, C. corsellii and C. brasiliensis, but the former is the most
abundant species, as in other coastal locations of the Indian Ocean, where it shows a preference
for restricted local conditions in coastal surface waters and high turbidity (Andruleit and Rogalla,
2002; Andruleit et al., 2003; Painter et al., 2021; Reid et al., 1978).

Michaelsarsia is only represented by M. adriaticus, as reported for the northern Inner Sea of the
Maldives (Young et al., 2017) as well as the eastern Arabian Sea and NE Indian Ocean (Kleijne,
1993). Ophiaster is frequent in Arabian Sea, NE Indian Ocean and South of India (Kleijne, 1993) as
well as in coastal NW Arabian Sea (Painter et al., 2021) and is represented here by O. hydroideus
and O. reductus. Calciopappus is represented by C. rigidus, which is common to abundant in the
Arabian Sea (Andruleit et al., 2003) and South of India (Kleijne, 1993). The common presence of
these typical MPZ species throughout the upper water column probably indicates high turbidity
and/or elevated nutrient concentrations, as also observed at a coastal setting of the

Mediterranean during the fall season (Cerino et al., 2017).

6. Conclusions
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428  Coccolithophores are the main mineralised group of phytoplankton detected in the study area of
4§29 the Faafu Atoll, as analysed from surface samples along the Magoodhoo and Adanga coast, from
430 thelagoon and the open ocean as well as from 40 m deep profiles. Coccolithophore abundance is
431  lowest (100-1000 coccospheres/litre) at shallow coastal locations and increases offshore in both
B2 the lagoon and the open ocean up to 44x103 coccospheres/litre. The assemblage is dominated by
483  G. oceanica, with a significant community of middle-lower photic zone taxa, mainly O. antillarum
1%4 followed by Calciosolenia spp., M. adriaticus, C. rigidus, Ophaster spp. and A. robusta. Taxa that
1BB5  are typically found in stratified oligotrophic settings are present but not abundant, such as U.

%836 irregularis, U. tenuis, D. tubifera or even rare, like Rhabdosphaera spp. Finally, E. huxleyi, the most
287  abundant and widespread species in the world’s oceans is present here with low abundances, as
2438  testified from other surveys of the tropical Indian Ocean. Overall the assemblage is typical of

5%9 neritic settings, with taxa that indicate eutrophic conditions accompanied by high turbidity, which
3M0  possibly explain the high contribution of middle- and lower-photic zone taxa at the surface and the
géffll lack of other more competitive phytoplankton groups like e.g., diatoms, as testified by overall low

32  chlorophyll-a concentrations detected in water samples.
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Figure captions

Figure 1: Map of the investigated area

Figure 2: Coccolithophore density in surface waters of a) the whole investigated area of the Faafu
Atoll, b) the area around the island of Magoodhoo, c) the area around the island of Adanga. Grey
area = land; light grey = reef; white = water. Coccolithophore assemblage composition and

abundance in open water samples shows d) all species e) minor species across the transect drawn

as dashed line in a.

Figure 3: vertical (0-40 m) distribution and assemblage composition of coccolithophores and main
water properties along the MV stations. Left panels = temperature, chlorophyll concentration,
oxygen concentration; central panels = abundance of all coccolithophore species; right panels =

abundance of minor coccolithophore species.

Plate 1. Light microscope images of coccolithophores. 1-4, E. huxleyi in low and high focus: 1, 2
crossed nicols; 3, 4 parallel nicols; 5-8, G. oceanica in low and high focus: 5-6 crossed nicols, 7-8
parallel nicols; 9-11, U. sibogae low, medium and high focus; 12-14, U. foliosa low, medium and
high focus; 15, 16 U. irregularis, 15 crossed nicols, 16 parallel nicols; 17 U. tenuis crossed nicols;
18-20, O. antillarum, 18, crossed nicols, 19, 20 parallel nicols low and high focus, 21-26, A. robusta

in low, medium and high focus, 21-23 crossed nicols, 24-26 parallel nicols; 27-29, U. hulburtiana,
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27, 28 crossed nicols low and high focus, 29 parallel nicols; 30, 31, C. rigidus crossed nicols, 30
circumpolar view, 31 lateral view; 32-34, M. adriaticus, 32 crossed nicols, 33 parallel nicols low and
high focus; 35, C. murrayi crossed nicols; 36, 37, C. brasiliensis, 36 crossed nicols, 37 parallel nicols;
38-40, S. pulchra, 38 crossed nicols, 39, 40 parallel nicols low and high focus; 41-43, D. tubifera
crossed nicols low, medium and high focus; 44-47, C. leptoporus, 44, 45 crossed nicols low and

high focus, 46, 47 parallel nicols low and high focus.

Plate 2: SEM images of coccolithophores. 1, coccospheres of Gephyrocapsa oceanica with well-
developed inner tube cycle; 2, bilayered coccosphere of G. oceanica with well-developed inner
tube cycle; 3, bilayered coccosphere of G. oceanica with poorly-developed inner tube cycle; 4,
Emiliania huxleyi type A; 5, Umbilicosphaera sibogae; 6, U. foliosa; 7, U. hulburtiana; 8, Tintinnid
lorica, showing agglutinated coccoliths, mostly of G. oceanica; 9, Calcidiscus leptoporus subsp.
quadriperforatus; 10, 11, Oolithotus antillarum: 11, collapsed coccosphere showing the proximal
side of the coccoliths; 12, O. fragilis; 13, 14, 15, 16, Calciopappus rigidus: 13, with CFC in normal
position, 14, with CFC enclosing the coccosphere; 15, 16, focus on the CFCs; 17, 18, 19, Ophiaster
reductus, 17 whole coccosphere; 18, 19, focus on the CFCs and the antapical BCs with open central
area; 20, 21, 22, O. hydroideus, 20 whole coccosphere, 21 focus on CFCs, 22 coccosphere
surrounded by link coccoliths; 23, 24, Michaelsarsia adriaticus, 23 whole coccosphere, 24 detail on

BCs. BC = body coccolith; CFC = circumflagellar coccolith.

Plate 3: SEM images of coccolithophores. 1, Acanthoica quattrospina; 2, Discosphaera tubifera, 3,
Rhabdosphaera clavigera var. stylifera; 4, Palusphaera vandelii; 5, Umbellosphaera irregularis; 6,
U. tenuis type O; 7, U. tenuis type |; 8, 9,10, 11, 12 Alisphaera bidentata sp. nov.: 9, 10: holotype;

11, 12: collapsed coccosphere; 13, 14, 15, Calciosolenia brasiliensis: 13 whole coccosphere, 14
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focus on BC and a-apical coccoliths, 15 focus on a- and b-apical coccoliths; 16, Alisphaera gaudii;
17, 18, 19, Calciosolenia murrayi: 17 whole coccosphere, 18 focus on BC and apical coccoliths from
one side, 19 focus on BC and apical coccoliths on the elongated side; 20, Florisphaera profunda
var. elongata; 21, 22, Algirosphaera robusta, 22 partly collapsed coccosphere, showing the
proximal side of BCs; 23, 24, partly dissolved coccospheres of G. oceanica, with separated

coccolith elements collapsed on the sphere.

Plate 4: SEM images of coccolithophores. 1, Solisphaera galbula; 2, Syracosphaera dilatata; 3, S,
corolla; 4, S. noroitica; 5, S. florida; 6, S. prolongata; 7, 8, S. halldalii; 9, S. ossa type |; 10, S. rotula,
11, S. tumularis; 12, S. bannockii, 13, S. orbiculus; 14, S. mediterranea, 15, Syracosphaera sp.; 16, S.
pulchra HOL oblonga type; 17, Calyptrolithina divergens; 18, Corisphaera gracilis; 19,
Helladosphaera cornifera; 20, partly dissolved and collapsed holococcolithophore, cf.
Helladosphaera vavilovii; 21, Poricalyptra magnaghii; 22, Calicasphaera diconstricta; 23,

Poritectolithus cf. maximus; 24, Unidentified holococcolithophore.

Table 1: Location of the samples and main hydrological parameters measured at each station.

Supplementary Figure 1: left, yearly sea surface Chlorophyll-a map from MODIS aqua during 2018;

right: montly Chlorophyll-a values in the area indicated on the left panel. Data extracted and

plotted from https://giovanni.gsfc.nasa.gov/giovanni.
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Table 1
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SAMPLE LOCATION DEPTH COORDINATESN COORDINATES E
M1A Magoodhoo Island 0 3°04'42.6" 72°57'58.1"
M1B Magoodhoo Island 0 3°04'40.8" 72°57'59.3"
M1C Magoodhoo Island 0 3°04'36.7" 72°58'00.5"
M2A Magoodhoo Island 0 3°04'36.5" 72°57'49.4"
M2B Magoodhoo Island 0 3°04'34.0" 72°57'49.6"
M2C Magoodhoo Island 0 3°04'31.0" 72°57'49.8"
M3A Magoodhoo Island 0 3°04'38.3" 72°57'34.1"
M3B Magoodhoo Island 0 3°04'41.9" 72°57'31.5"
M4A Magoodhoo Island 0 3°04'49.0" 72°57'49.6"
M4B Magoodhoo Island 0 3°04'49.6" 72°57'46.3"
M4C Magoodhoo Island 0 3°04'54.0" 72°57'41.0"
Ad1A Adanga Island 0 3°08'22.3" 73°00'32.0"
Ad1B Adanga Island 0 3°08'26.2" 73°00' 35.0"
Ad1C Adanga Island 0 3°08'29.8" 73°00'38.7"
Ad2A Adanga Island 0 3°08'18.4" 73°00'30.2"
Ad2B Adanga Island 0 3°08'17.2" 73°00' 28.1"
Ad2C Adanga Island 0 3°08'16.0" 73°00' 25.8"
V1 lagoon 0 3°07'33.22" 73°00' 14.3"
V1 lagoon 10 3°07'33.22" 73°00' 14.3"
V1 lagoon 25 3°07'33.22" 73°00' 14.3"
V1 lagoon 40 3°07'33.22" 73°00' 14.3"
V2 ocean 0 3°04'27.6" 72°58'07.5"
V2 ocean 10 3°04'27.6" 72°58'07.5"
V2 ocean 25 3°04'27.6" 72°58'07.5"
V2 ocean 40 3°04'27.6" 72°58'07.5"
V3 lagoon 0 3°04'584" 72°56'42.9"
V3 lagoon 10 3°04'58.4" 72°56'42.9"
V3 lagoon 25 3°04'58.4" 72°56'42.9"
V3 lagoon 40 3°04'58.4" 72°56'42.9"
V4 small lagoon 0 3°05'01.4" 72°57'16.9"
V4 small lagoon 10 3°05'01.4" 72°57'16.9"
V5 lagoon 0 3°06'11.8" 72°57'05.8"
V5 lagoon 10 3°06'11.8" 72°57'05.8"
V5 lagoon 25 3°06'11.8" 72°57'05.8"
V5 lagoon 40 3°06'11.8" 72°57'05.8"
V6 ocean 0 3°05'04.3" 72°59'57.4"
V6 ocean 10 3°05'04.3" 72°59'57.4"
V6 ocean 25 3°05'04.3" 72°59'57.4"
V6 ocean 40 3°05'04.3" 72°59'57.4"
MF01 enclosed bay Maghoodoo Island 0 3°4'52.61" 72°57'57.69"
MF02 enclosed bay Maghoodoo Island 0 3°4'52.14" 72°58'0.72"
MFO03 shallow Magoodhoo lagoon 0 3°4'54.00" 72°57'56.17"
MF04 shallow close to Adanga Island 0 3°8'16.50 73°0'34.70"
MF05-in  Port of Maghoodoo Island 0 3°4'56.29" 72°57'47.95"
MF05-out Out of the port of Maghoodoo Island 0 3°4'58.19" 72°57'48.74"
MF06 Lagoon 0 3°5'13.50" 72°57'53.80"
MFQO7 Lagoon 0 3°6'8.20" 72°58'17.40"
MFO08 Lagoon in front of the pass 0 3°6'57.80" 72°59' 34.80"
MF09 Pass 0 3°8'14.30" 73°0' 60.00"
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