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Abstract

Gaussian Directed Acyclic Graphs (DAGs) represent a powerful tool for learning
the network of dependencies among variables, a task which is of primary interest in
many fields and specifically in biology. Different DAGs may encode equivalent con-
ditional independence structures, implying limited ability, with observational data,
to identify causal relations. In many contexts however, measurements are collected
under heterogeneous settings where variables are subject to exogenous interventions.
Interventional data can improve the structure learning process whenever the targets
of an intervention are known. However, these are often uncertain or completely un-
known, as in the context of drug target discovery. We propose a Bayesian method
for learning dependence structures and intervention targets from data subject to in-
terventions on unknown variables of the system. Selected features of our approach
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include a DAG-Wishart prior on the DAG parameters, and the use of variable selction
priors to express uncertainty on the targets. We provide theoretical results on the
correct asymptotic identification of intervention targets and derive sufficient condi-
tions for Bayes factor and posterior ratio consistency of the graph structure. Our
method is applied in simulations and real-data world settings, to analyze perturbed
protein data and assess antiepileptic drug therapies. Details of the MCMC algorithm
and proofs of propositions are provided in the Supplementary Material, together with
more extensive results on simulations and applied studies.

Keywords: Directed acyclic graph; DAG-Wishart prior; Interventional data; Target discov-

ery.

1 Introduction

1.1 Motivation and framework

Graphical models based on directed networks have been widely employed to understand

dependence relations between variables, a crucial problem in many scientific areas, espe-

cially in biology (Friedman, 2004; Shojaie and Michailidis, 2009). Typically, the network

structure is inferred under the assumption that multivariate data have been generated by

a stable system. More realistically however, measurements can be heterogeneous, meaning

that modifications in the generating mechanism, e.g. due to exogenous interventions, have

occurred.

An instance is genomic medicine, where interactions between genes provide insights on

the genesis and progression of diseases, whose occurrence is reflected by aberrations in the

gene-network functioning. In this setting, drug therapies capable of gene-inhibition can be

applied to regulate and restore dependencies in the gene-network structure. However, the

effect of drug treatments at gene level can be uncertain or completely unknown (Paananen

2



and Fortino, 2019; Marton et al., 1998), so that discovering the targets of an intervention

or therapy becomes of interest in itself. Drug target discovery is also essential for the

development of personalized treatments, to identify genes that are affected by drugs and in

turn evaluate patients’ response to therapies; see Rawat et al. (2020) for a recent discussion.

In this paper we consider multivariate data generated from a system subject to unknown

interventions, and we propose a novel method for learning their dependence structure and

the effects of interventions. We represent the data generating mechanism through a Di-

rected Acyclic Graph (DAG) which allows for a factorization of the joint distribution in

terms of “parent-child” relations between nodes (variables). An intervention modifies the

original DAG structure by dropping the dependence of each intervened node (the inter-

vention target) from its parents. Deterministic interventions assume that each intervened

variable is set equal to a constant level, an assumption reasonable in some contexts, such as

gene-knockout experiments; by converse, stochastic interventions (Korb et al., 2004), that

we adopt in the current paper, are more general and replace the conditional distribution

of the intervened node with that of a new random variable, independent from all parent

nodes.

1.2 Related works

The problem of learning DAGs from interventional data has received some interest over the

last years. In particular, some methodologies for structure learning of DAGs given inter-

ventions with known targets have been developed; see for instance Hauser and Bühlmann

(2015) and Castelletti and Consonni (2019) for a frequentist and Bayesian approach respec-

tively. When unknown targets are allowed, Eaton and Murphy (2007) apply the dynamic

programming algorithm of Koivisto and Sood (2004) on a graph augmented with interven-
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tional nodes, to estimate edge inclusion probabilities and interventions. Their method is

implemented for categorical data, using the the Bayesian-Dirichlet score of Heckerman and

Geiger (1995), although it could be adapted to the Gaussian case. The authors show in

simulations that their method can correctly recover both the intervention targets and the

graph structure under specific settings. Importantly however, the augmentation with inter-

ventional nodes increases the graph size, and causes the method to be practically feasible

only up to 20 nodes. Higher dimensions compel to severely restrictive assumptions on the

interventions: (i) in terms of the number of intervened nodes, thus ruling out interventions

with a diffuse impact, as in our application of Section 6.1, or (ii) in terms of interven-

tions forced to act on distinct nodes, thus excluding cases where different but related drug

therapies can partially share effects on the same node, as in the analysis of antiepileptic

therapies Valporate and Carbamazepine, discussed in Section 6.2.

A similar idea of graph augmentation to include hidden nodes representing intervention

targets has been proposed in Zhang et al. (2017): they apply constraint-based methods,

as the PC algorithm of Spirtes et al. (2000), on the augmented graph to identify the

network skeleton and v -structures, and then recover arrow directions through invariance

considerations. Specifically, the distribution of a target node, conditional on its causal

parents, should not change when interventions affect other nodes; this idea was first adopted

in Peters et al. (2016), who propose a method that estimates causal effects, and that

can be iterated with the purpose of network learning under uncertain interventions. The

PC algorithm is also used by He and Geng (2016) who first recover from a collection

of datasets group-specific network structures, then pooled together to infer the causal

graph. The methods of Zhang et al. (2017) and He and Geng (2016) are both substantially

different from our framework as they are based on multiple hypothesis tests and do not
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provide any uncertainty of the estimated graph. In addition, He and Geng (2016) do not

perform target estimation, while Zhang et al. (2017) recover the manipulated variables, but

without identifying the interventional settings they refer to. More recently, Ke et al. (2019)

propose an optimization-based Bayesian method for network learning, limited to categorical

interventional and observational data. Finally, Squires et al. (2020) suggest a greedy search

algorithm for causal structure learning with unknown interventions and target estimation,

in the presence of multiple datasets, one of which has to be purely observational.

1.3 Contribution and structure of the paper

In this paper we propose a Bayesian methodology for joint structure learning of Gaussian

DAGs and intervention targets that extend the literature along the following directions:

(i) we build a new modelling framework where observational data are not strictly required,

the excessive reliance on multiple tests is avoided, and unknown interventions are repre-

sented as indicator vector parameters, rather than auxiliary nodes that increase the graph

dimension; (ii) we demonstrate theoretically, and validate empirically, the correct asymp-

totic identification of the targets and of the equivalence class of the true DAG; (iii) we

propose a novel MCMC algorithm for joint posterior analysis over the space of graphs and

interventions, without resorting to optimization routines. In addition, we emphasize that

our method is practically feasible on graphs of dimension larger than those studied so far

in the Bayesian literature, without imposing restrictive assumptions on the structure of the

interventions. Finally, differently from other Bayesian approaches for DAG structure learn-

ing, our method revolves around arbitrary DAGs, i.e. with completely unknown ordering

of the nodes; see Ni et al. (2017, 2019) for a comparison.

The rest of the paper is organized as follows. In Section 2 we briefly summarize the main
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concepts about DAGs and interventions, introduce our Gaussian DAG-model, and priors

on DAGs, intervention targets and DAG-parameters. Asymptotic theoretical properties

of target identification and graph learning are described in Section 3, whilst in Section 4

we develop the MCMC scheme for posterior inference on DAGs and targets. Simulation

studies to assess the performance of our method are conducted in Section 5, while Section 6

presents applications to real data and comparisons with alternative methods available in the

literature. Finally, Section 7 contains a brief discussion together with possible extensions

of our methodology. Further details on our MCMC algorithm, proofs of propositions,

and more in-depth simulation and real-world studies are provided in the Supplementary

Material.

2 Model formulation

2.1 Directed acyclic graphs and interventions

Let D = (V,E) be a Directed Acyclic Graph (DAG), where V = {1, . . . , q} is a set of

nodes and E ⊆ V × V a set of edges. If (u, v) ∈ E, then (v, u) /∈ E and we say that u

is a parent of node v and v is a child of u. The set of all parents of v in D is denoted by

paD(v). Consider a collection of q random variables, X1, . . . , Xq. We assume that the joint

distribution f factorizes according to D as

f(x1, . . . , xq | D) =

q∏
j=1

f(xj |xpaD(j)). (1)

If (1) holds, f(x1, . . . , xq | D) is said to obey the Markov property of D. In our context of

interventional data, Equation (1) is also called observational or pre-interventional distri-

bution.
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Figure 1: A DAG D and the corresponding intervention DAG DI for the target I = {3, 5}.

An intervention on the node j ∈ V is defined as the action of setting Xj to the value

of a random variable Uj having density f̃(uj). A joint intervention on I ⊆ V fix, for each

j ∈ I, Xj to Uj, with {Uj}j∈I mutually independent. I is called an intervention target

and the do-operator do{Xj = Uj}j∈I (Pearl, 2000) is used to denote such an intervention.

As a consequence of the intervention, the original dependence in D of node j from its

parents paD(j) is dropped, and the intervention DAG of D is defined, following Hauser

and Bühlmann (2012), as DI = (V,EI), where EI = {(u, v) ∈ E | v /∈ I}. See also Figure 1

for an example of DAG and related intervention DAG. The intervention on I replaces the

conditional density of each node j ∈ I in (1), that is f(xj |xpaD(j)), with f̃(xj). Therefore,

the post-intervention distribution of X1, . . . , Xq given the operator do{Xj = Uj}j∈I is

obtained from (1) using the truncated factorization

f(x1, . . . , xq | do{Xj = Uj}j∈I ,D) =
∏
j /∈I

f(xj |xpaD(j))
∏
j∈I

f̃(xj). (2)

When there are no interventions, Equation (2) reduces to Equation (1). Multiple inde-

pendent interventions form a family of intervention targets I = {I1, . . . , IK}, where each

Ik ⊆ V and index k refers to the k-th intervention.
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2.2 Gaussian DAG-models

We assume (X1, . . . , Xq) |Σ,D ∼ Nq (0,Σ) , where Σ ∈ CD, the space of all covariance

matrices Markov w.r.t. D. A Gaussian DAG-model can be equivalently written as a linear

Structural Equation Model (SEM) of the form L>(X1, . . . , Xq)
> = ε, where L is a q × q

matrix with unit diagonal elements and ε ∼ Nq (0,D), D = diag(σ2
1, . . . , σ

2
q ); see Kaplan

(2009). Accordingly, the decomposition Σ = L−>DL−1 holds. For each (u, v)-element of

L and u 6= v we have Lu,v 6= 0 if and only if u ∈ paD(v), and it holds that

f(x1, . . . , xq |D,L,D) =

q∏
j=1

ϕ
(
xj | −L>≺j ]xpaD(j), σ

2
j

)
, (3)

where ϕ is the Gaussian density function, ≺ j ] = paD(j) × j and LA×B denotes the sub-

matrix of L with elements belonging to rows and columns indexed by A and B respectively.

The set
{(
L≺j ], σ

2
j

)}q
j=1

represents the collection of observational parameters (because they

index the observational model).

For any intervention target I ⊆ V , we further assume that each interventional density

f̃ in (2) is zero-mean Gaussian f̃(uj) = ϕ(uj | 0, φj), j ∈ I, with Uj ⊥⊥ Uj′ for each j 6= j′.

With this specific choice of interventional density, we can now replace the conditioning

event do{Xj = Uj}j∈I with the parameters {I,Φ = {φj}j∈I}, where Φ is the collection of

interventional parameters. The post-intervention distribution of (X1, . . . , Xq) thus becomes

f
(
x1, . . . , xq |D,L,Φ, I,D

)
=
∏
j /∈I

ϕ
(
xj | −L>≺j ]xpaD(j), σ

2
j

)∏
j∈I

ϕ(xj | 0, φj). (4)

We now split the available observations of X1, . . . , Xq among K datasets, as arising

from the family of K independent interventions: each n(k) × q dataset X(k) consists of a

collection of n(k) i.i.d. multivariate observations x
(k)
i =

(
x

(k)
i,1 , . . . , x

(k)
i,q

)>
(rows of the data

matrix X(k)) associated to intervention target Ik, for i = 1, . . . , n(k). Accordingly, the
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post intervention distribution related to intervention k is f
(
x

(k)
i |D,L,Φ(k), Ik,D

)
, where

Φ(k) = {φ(k)
j }j∈I are the interventional parameters associated to the k-th intervention.

Given the collection of datasets X =
(
X(1), . . . ,X(K)

)>
, the likelihood function is finally

f
(
X |θ, I1, . . . , IK ,D

)
=

K∏
k=1

n(k)∏
i=1

f
(
x

(k)
i,1 , . . . , x

(k)
i,q |D,L,Φ(k), Ik,D

)
, (5)

where θ =
{
D,L,Φ(1), . . . ,Φ(K)

}
is the collection of all DAG-dependent (observational

and interventional) parameters.

2.3 Prior on DAG parameter θ

Conditionally on DAG D and the collection of targets I1, . . . , IK , we first assign a prior

to the observational parameters (D,L). Recall that Σ = L−>DL−1, where Σ is the

covariance matrix of a multivariate Gaussian random variable Markov w.r.t. DAG D. We

assign (D,L) a DAG-Wishart prior with hyperparameterU (a q×q positive definite matrix)

and shape hyperparameter aD = (aD1 , . . . , a
D
q )>; see Ben-David et al. (2015) and Cao et al.

(2019). Also, a standard choice, hereinafter adopted, is U = gIq (g > 0). The DAG-

Wishart distribution induces a re-parameterization of Σ in terms of the node-parameters{
(L≺j ], σ

2
j )
}q
j=1

, independent across j = 1, . . . , q, and with distribution

σ2
j ∼ I-Ga

(
1

2
aDj ,

1

2
g

)
, L≺j ] |σ2

j ∼ N|paD(j)|

(
0, σ2

j

(
gI|paD(j)|

)−1
)
, (6)

where ≺ j ] = paD(j) × j and I-Ga(a, b) stands for an Inverse-Gamma distribution with

shape a > 1 and rate b > 0 having expectation b/(a − 1). From (6), the prior on the

observational parameters (D,L) is given by p(D,L) =
∏q

j=1 p
(
L≺j ] |σ2

j

)
p
(
σ2
j

)
. Hyper-

parameters aDj are specific to each DAG model, and it can be shown that the default choice
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(hereinafter adopted) aDj = a + |paD(j)| − q + 1 (a > q − 1) guarantees compatibility

among prior distributions for Markov equivalent DAGs; see Peluso and Consonni (2020).

In particular, we set a = q, the minimum integer value that guarantees a proper prior

distribution, regardless of the specific D.

Consider now the interventional parameters
{
Φ(k)

}K
k=1

, where each Φ(k) is a collection

of node-parameters
{
φ

(k)
j

}
j∈Ik

. Because each φ
(k)
j corresponds to an unconditional variance

in a post-intervention distribution where each node j ∈ Ik has no parents, we can set

φ
(k)
j ∼ I-Ga

(
a

(k)
j , b

(k)
j

)
, (7)

independently, where a
(k)
j = (a−q+1)/2 and b

(k)
j = g/2, following the same elicitation pro-

cedure leading to (6). The prior on the collection of interventional parameters is therefore

p(Φ(1), . . . ,Φ(K)) =
∏K

k=1

∏
j∈Ik p(φ

(k)
j ), leading to a conditional prior on θ of the form

p(θ | I1, . . . , IK ,D) = p(D,L) · p(Φ(1), . . . ,Φ(K)) =

q∏
j=1

{
p
(
L≺j ] |σ2

j

)
p(σ2

j )
∏

k:j∈Ik

p(φ
(k)
j )

}
. (8)

2.4 Prior on targets I1, . . . , IK

Consider now the collection of targets I1, . . . , IK , where Ik ⊆ {1, . . . , q}, k = 1, . . . , K. For

convenience, we represent each target Ik as an indicator vector hk = (hk(1), . . . , hk(q))>

such that for each j = 1, . . . , q, hk(j) = 1 if j ∈ Ik, and 0 otherwise. Conditionally on a

prior probability πk(j) ∈ (0, 1), we can assign a prior to Ik through q independent Bernoulli

distributions on hk,

p
(
Ik |πk

)
= p
(
hk |πk

)
=

q∏
j=1

πk(j)hk(j)
(
1− πk(j)

)1−hk(j)
, (9)

where πk = (πk(1), . . . , πk(q))>. Assuming prior independence among intervention targets,

we then set p(I1, . . . , IK |π1, . . . ,πK) =
∏K

k=1 p(hk |πk). In addition we assign, for j =
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1, . . . , q and k = 1, . . . , K, πk(j)
iid∼ Beta(ak, bk), which leads to the integrated prior for Ik

p(Ik) =
Γ(ak + bk)

Γ(ak) + Γ(bk)
·

Γ
(
ak + |Ik|

)
Γ
(
q − |Ik|+ bk

)
Γ
(
ak + bk + q

) , (10)

where |Ik| =
∑q

j=1 hk(j) corresponds to the number of intervened nodes under intervention

k. Expression (10) resembles the multiplicity correction prior introduced in Scott and

Berger (2010) for variable selection.

2.5 Prior on DAG D

For a given DAG D = (V,E), let SD be the 0-1 adjacency matrix of its skeleton (the

underlying undirected graph obtained after removing the orientation of its edges), such

that for each (u, v)-element in SD, SDu,v = 1 if and only if (u, v) ∈ E or (v, u) ∈ E, and 0

otherwise. Given some prior probability of inclusion η ∈ (0, 1), we assume SDu,v
iid∼ Ber(η)

for each u > v, so that p(SD) = η|S
D|(1− η)

q(q−1)
2
−|SD|, where |SD| is the number of edges

in D (equivalently in its skeleton) and q(q − 1)/2 corresponds to the maximum number of

edges in a DAG with q nodes. Finally we set p(D) ∝ p(SD), for any D ∈ Sq, where Sq is

the space of all DAGs on q nodes. Such a prior only depends on the number of edges in

the graph and can easily reflect prior knowledge of sparsity (Castelletti et al., 2018). Other

priors, specific for DAGs and based on the number of compatible perfect orderings of the

vertices, are also present in the literature (Friedman and Koller, 2003; Kuipers and Moffa,

2017).
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3 Theoretical properties of target and graph learning

In the present section we investigate the asymptotic behaviour of the false positive and

false negative rates associated to the estimation of the intervention targets, and the correct

asymptotic identification of the graphical structure. The dependence on a given graph D is

assumed and omitted in the first part of this section, and later reinstated when we discuss

graph learning. Let I01, . . . , I0k be the true unknown intervention targets, Φ
(1)
0 , . . . ,Φ

(K)
0

the true interventional parameters, and (D0,L0) the true observational parameters corre-

sponding to the Cholesky decomposition of the variance (precision) matrix Σ0 (Ω0). For

a given node j and dataset k, and with θ =
{
D,L,Φ(1), . . . ,Φ(K)

}
, we first define the

posterior log-odds of an intervention on node j in dataset k as

γ̃
(k)
j (X,θ) := logit (hk(j) = 1 |X,θ) = logit

(
hk(j) = 1 |X(k),D,L,Φ(k)

)
,

where logit(A) = ln(P(A)/P(Ā)) for some event A and its complement Ā. The posterior

conditional probability of an intervention on node j in dataset k is

P(hk(j) = 1 | ·) ∝ πk(j)ϕn(k)

(
X

(k)
j |0, φ

(k)
j In(k)

j

)
,

where ϕp is the density function of a p-variate Gaussian r.v. and X
(k)
j denotes column

indexed by j in dataset X(k). For the complement event we have instead

P(hk(j) = 0 | ·) ∝ (1− πk(j))ϕn(k)

(
X

(k)
j | −X

(k)
paD(j)L≺j ], σ

2
jIn(k)

j

)
.

We further remove the dependence from θ by considering the conditional expectation

γ
(k)
j (X | Ak

j ) := Eθ|X,Ak
j

[
γ̃

(k)
j (X,θ)

]
,

where the conditioning event is Ak
j = {j ∈ I0k}, therefore interpreted as the posterior

expected log-odds of an intervention on node j in dataset k, given that j is indeed a true
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intervened node (target) in the dataset. In the following proposition we show that the

posterior expected log-odds γ
(k)
j (X | Ak

j ) correctly diverges when the intervention has truly

occurred, and the asymptotic normality of the scaled log-odds.

Proposition 3.1. For Kj(D) := aDj /Ujj|≺j� we have

γ
(k)
j (X | Ak

j )/n(k) d→ N
(

1

2

(
Kj(D)φ

(k)
0j − 1 + trΣ0≺j�/g − ln

(
Kj(D)φ

(k)
0j

)
+ C1

)
,(

φ
(k)
0j Kj(D)− 1

)2

/(2n(k)) + trΣ2
0≺j�/(2n

(k))

)
,

where C1 = ln(aDj /2)−ψ
(
aDj /2

)
and ψ is the digamma function. Also, γ

(k)
j (X | Ak

j )
a.s.→ +∞.

Proof. See Supplementary Material.

The proposition states that, if j ∈ Ik, i.e. node j is a target under intervention k, this

will be detected with sample size large enough and for any given graph D, therefore with a

false negative rate eventually zero. The scaled log-odds of the (correct) target classification

has asymptotic Gaussian distribution. Note that the mean of the asymptotic distribution

increases when aDj is large. This is typical of a node with many parents in a large graph,

which makes easier the identification of an intervention, because the latter will suppress

many dependence relations. We refer the reader to the Supplementary Material for a more

extensive discussion of the proposition.

In the opposite case of no intervention, we analyse the behaviour of

γ̄
(k)
j (X | Āk

j ) := Eθ|X,Āk
j

[
−γ̃(k)

j (X,θ)
]
,

where the conditioning event is Āk
j = {j /∈ I0k}, therefore interpreted as the posterior

expected log-odds of no intervention on node j in dataset k, given that j is not an unknown

intervened node. With the following result we show conditions for which this quantity

diverges when there is no intervention, and its asymptotic normality.
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Proposition 3.2. For δjk :=
a
(k)
j

b
(k)
j

σ2
0j − 1 we have

γ̄
(k)
j (X | Āk

j )/n(k) d→ N

(
1

2

(
a

(k)
j

b
(k)
j

Σ0jj − 1− ln
a

(k)
j

b
(k)
j

σ2
0j + C2

)
,

(
Σ0jj

σ2
0j

δjk

)2

/(2n(k)) +
Σ2

0jj − σ4
0j

σ4
0j

[
δjk/n

(k) +

(
5Σ0jj − 3σ2

0j

Σ0jj + σ2
0j

)
/(2n(k))

])
,

where C2 = ln
(
a

(k)
j

)
−ψ

(
a

(k)
j

)
and ψ is the digamma function. Also, γ

(k)
j (X | Āk

j )
a.s.→ +∞.

Proof. See Supplementary Material.

Proposition 3.2 tells that a true negative case of no intervention, i.e. j /∈ Ik, will be

eventually detected with sample size large enough. Note that the mean of the asymptotic

distribution is closer to zero when node j is independent from any other node. Intuitively,

it is more difficult to understand the absence of an intervention since there are no parent-

child relations that are removed by the intervention on node j, which makes the intervention

effect less apparent. We refer the reader to the Supplementary Material for a more extensive

discussion. In the following sections we develop and implement an MCMC algorithm that

empirically confirm the correct detection of nodes which are targeted by interventions.

The above discussion focuses on the correct identification of interventions for a given

DAG. We now prove model selection consistency of the true DAG observational equiva-

lence class; the latter, combined with consistent estimation of targets, allows to identify

the group-specific intervention graphs. Data within group k is used to find interventions

specific to that group, and observational data from all groups are combined to make in-

ference on the underlying observational DAG structure. In Section 3 of Supplementary

material, we first extend the conjugacy result on the DAG-Wishart prior of Ben-David

et al. (2015) to interventional Gaussian multivariate data from multiple groups; then we
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prove, following Cao et al. (2019) and Peluso and Consonni (2020), its Bayes factor and

posterior ratio consistency outside [D0], the equivalence class of the true DAG, and its

asymptotic compatibility within [D0].

We have Bayes factor consistency if, for all D 6= D0, the Bayes factor

BFD,D0 =
m(X | D, I1, . . . , IK)

m(X | D0, I1, . . . , IK)

P̄→ 0,

whenever D0 is the true DAG generatingX, where
P̄→ denotes convergence in probability, P̄

is the probability measure under the true DAG D0, and m(X | D, I1, . . . , Ik) is the marginal

(or integrated) likelihood. We have posterior ratio consistency if, with D0 being the true

DAG, it holds that

max
D6=D0

p(D |X, I1, . . . , IK)

p(D0 |X, I1, . . . , IK)
= max
D6=D0

BFD,D0(X | I1, . . . , Ik)
p(D)

p(D0)

P̄→ 0. (11)

For each j ∈ V , let ñj =
∑

k:j∈Ik n
(k) and n∗j =

∑
k:j /∈Ik n

(k) be the number of observations

among groups k = 1, . . . , K such that node j is respectively intervened and not.

Proposition 3.3. Let D0 be the true DAG. Assume (D,L) | D follows a DAG-Wishart

distribution with hyperparameters U and aD as in Equation (8), and consider the likelihood

function in Equation (5). If (a) aDj = a + |paD(j)| − q + 1, (b) ñj = o(n∗j) for all j ∈ V ,

and (c) for all j 6= l ∈ V there exists a k such that j /∈ Ik and l /∈ Ik hold, then as n→∞,

i) max
D/∈[D0]

p(D |X, I1, . . . , IK)

p(D0 |X, I1, . . . , IK)

P̄−→ 0,

ii)
p(D |X, I1, . . . , IK)

p(D0 |X, I1, . . . , IK)

P̄−→ p(D)

p(D0)
for all D ∈ [D0].

Proof. See Supplementary Material.
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Proposition 3.3 shows that posterior ratio and Bayes factor consistency under DAG-

Wishart prior holds outside the Markov equivalence class of the true generating DAG D0.

On the other hand, the posterior ratio tends to the prior ratio (Bayes factor equal to

one) within the true equivalence class. This result is coherent with Peluso and Consonni

(2020), in the context of a single-group observational dataset. We refer the reader to the

Supplementary Material for a discussion of the assumptions underlying the result.

4 MCMC scheme and posterior inference

We construct a collapsed Metropolis-Hastings sampler (Metropolis et al., 1953) on the space

of DAGs and intervention targets to approximate the marginal posterior

p(I1, . . . , IK ,D |X) ∝ m
(
X | I1, . . . , IK ,D

)
· p(I1, . . . , IK) p(D). (12)

The full conditional distribution of D is p(D | I1, . . . , IK ,X) ∝ m(X | I1, . . . IK ,D) p(D).

To update DAG D we implement a Metropolis-Hastings step where, given the current DAG,

a new DAG D̃ is proposed from as suitable proposal q(D̃ | D) and accepted with probability

α = min

{
1;
m
(
X | I1, . . . , IK , D̃

)
m
(
X | I1, . . . , IK ,D

) · p(D̃)

p(D)
· q(D | D̃)

q(D̃ | D)

}
. (13)

Conditionally on DAG D we update the K targets I1, . . . , IK (equivalently, the indicator

vectors h1, . . . ,hK introduced in Section 2.4) sequentially. For a given k, the full conditional

of Ik is p(Ik | {Is}s 6=k,D,X) ∝ m(X | I1, . . . , IK ,D)p(I1, . . . , IK). Update of Ik conditionally

on {Is}s 6=k and DAG D is again performed through a Metropolis Hastings step, where a

new target Ĩk proposed from q(Ĩk | Ik) is accepted with probability

βk = min

{
1;
m
(
X | Ĩk, {Is}s 6=k,D

)
m
(
X | Ik, {Is}s 6=k,D

) · p(Ĩk)

p(Ik)
· q(Ik | Ĩk)

q(Ĩk | Ik)

}
. (14)
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We refer the reader to Section 4 of Supplementary Material for full details. The output

is a collection of DAGs
{
D(s)

}S
s=1

and targets
{
I

(s)
1 , . . . , I

(s)
K

}S
s=1

approximately sampled

from the posterior (12), where S is the number of finally kept MCMC iterations. Given

this output, we can estimate, for each node j and target Ik, the posterior probability of

intervention

p̂(j ∈ Ik |X) ≡ p̂j∈Ik =
1

S

S∑
s=1

1

{
j ∈ I(s)

k

}
, (15)

a measure of evidence that intervention k acts on node j. In addition, an approximated

marginal posterior distribution over the DAG space is available, with each DAG posterior

probability estimated as p̂(D |X) = 1
S

∑S
s=1 1

{
D(s) = D

}
, for D ∈ Sq, the set of all DAGs

on q nodes. Furthermore, we can estimate with

p̂(u→ v |X) ≡ p̂u→v =
1

S

S∑
t=1

1u→v

{
D(s)

}
(16)

the posterior probability of inclusion of each directed edge u → v, where 1u→v

{
D(s)

}
= 1

if D(s) contains u→ v, 0 otherwise.

5 Simulation study

5.1 Simulated settings

To assess the performance of our method, we construct various simulated settings by varying

the number of variables q ∈ {20, 40}, the sample size of each dataset X(k) with increasing

values n(k) ∈ {10, 20, 50, 100, 200, 500}, for a number of interventions (datasets) K = 4.

A family of intervention targets I1, . . . , IK is generated under two scenarios resembling

different degrees of “sparsity” in the targets. Scenario Sparse is characterized by a moderate
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number of interventions, with each target Ik obtained by drawing without replacement

s ∈ {2, 4} nodes, respectively for q = 20 or q = 40 . On the other hand, in Scenario Diffuse

we assign each node to one of the K targets. As a consequence, each variable is involved

in one of the K interventions, with an overall larger number of simultaneous interventions

(sizes of the targets Ik). Under each scenario defined by (q, n(k)) and settings Sparse and

Diffuse, we perform 40 simulations, each corresponding to a true DAG D, family of targets

{I1, . . . , IK} and resulting in a (multiple with K = 4 groups) dataset. For each simulation

we first generate a topologically ordered DAG D with probability of edge inclusion pedge =

2/q. Given DAG D and family targets I1, . . . , IK , we then generate parameters D, L and

Φ(k) =
{
φ

(k)
j , j ∈ Ik

}
, by fixing D = Iq, and φ

(k)
j = 0.1 for each j ∈ Ik and k = 1, . . . , K;

non-zero elements of L are uniformly chosen in the interval [−1,−0.1] ∪ [0.1, 1]; see also

Equation (4). Next, for each k = 1 . . . , K, n(k) i.i.d. interventional data collected in the

n(k) × q data matrix X(k) are generated as in (4). Each dataset is therefore a collection of

K interventional data matrices X(1), . . . ,X(K).

For comparison we include the Unknown Target Interventional Greedy Sparsest Per-

mutation algorithm of Squires et al. (2020), with significance level α ∈ {0.1%, 0.001%}

(IGSP 0.1% and IGSP 0.001% respectively), as recommended in the original paper. We

also include Algorithm 1 of He and Geng (2016), implemented at significance level 0.05.

As a further benchmark, we also construct a baseline node-wise regression approach, by

adapting to our interventional setting the two-stage adaptive lasso method of Han et al.

(2016); we call this benchmark Node-wise. Finally, we include the Greedy Interventional

Equivalence Search (GIES) method of Hauser and Bühlmann (2012), implemented using

the Extended Bayesian Information Criterion (EBIC, Foygel and Drton 2010) with tuning

coefficient γ ∈ {0.5, 1} (GIES 0.5 and GIES 1 respectively) as also recommended in the
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original paper. The method of GIES was developed for known intervention targets that we

input, as in an oracle setting, using the true intervened nodes. All methods can be adopted

for DAG structure learning, whilst only IGSP and Node-wise can perform target estima-

tion. Finally, notice that IGSP requires n(k) > q, so that results of IGPS for n(k) ∈ {10, 20}

are missing. Further details on benchmarks, together with convergence diagnostics and

more extensive simulation settings are provided in Supplementary Material.

5.2 Results

We fix the number of MCMC iterations S ∈ {25000, 50000} for q ∈ {20, 40} respectively.

In addition we set g = 1/n in the Inverse Gamma priors (6) and (7), and η = 1/q in

the prior on DAG (Section 2.5) which corresponds to a prior probability of edge inclusion

smaller than the expected level of sparsity, as commonly recommended; see for instance

Barbieri and Berger (2004). Finally we fix ak = 1/q, bk = 1 for each k = 1, . . . , K in the

Beta prior leading to (10). Other scenarios not reported for brevity show that the results

are quite insensitive to these hyperparameter choices, expecially for large sample sizes; for

instance when we fix π = 2/q there is a negligible change for n(k) = {10, 20} and no change

is observed for higher sample sizes.

We start by evaluating the performance of the methods in identifying the intervention

targets. With regard to our Bayesian method, we first compute for each simulation, the

posterior probabilities p̂j∈Ik in (15). Next, by fixing a threshold of inclusion z = 0.5 we

provide a target estimate Îk, k = 1, . . . , K, by including in Îk all nodes j such that p̂j∈Ik > z.

Estimated targets Îk’s are compared with the true targets by computing the false positive
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and false negative rates, respectively defined as

FPR =

∑
j,k 1

{
j ∈ Îk, j /∈ Ik

}∑
j,k 1

{
j /∈ Ik

} , FNR =

∑
j,k 1

{
j /∈ Îk, j ∈ Ik

}∑
j,k 1

{
j ∈ Ik

} ; (17)

similarly for the other frequentist methods under evaluation. Results for q = 40 setting

are summarized in the box-plots of Figure 2, whilst results for q = 20 are reported in the

Supplementary Material. This reports the distribution of FPR and FNR constructed across

the N = 40 simulations for three methods under evaluation and increasing sample sizes n(k)

under scenarios Sparse and Diffuse. With regard to our method (Bayes) we notice that

coherently with the theoretical results of Section 3, both sources of error vanish as sample

size increases. This tendency is more evident for FNR that rapidly goes to zero already

at moderate sample sizes, e.g. n(k) = 20. It is clear the outperformance of our proposal,

relative to the benchmarks, with Node-wise performing equally well only in terms of FNR.

We then evaluate the overall performance of each methodology in recovering the DAG

structure. With regard to our method, we provide a DAG estimate by computing first

p̂u→v, the (estimated) posterior probability of inclusion, for each edge (u, v) as in (16);

then we fix a threshold for edge inclusion z = 0.5 and obtain an estimate D̂ by including

all edges such that p̂u→v > 0.5, as in the median probability model proposed by Barbieri

and Berger (2004) in a linear regression framework. We compare D̂ with the true DAG

by measuring the Structural Hamming Distance (SHD, Tsamardinos et al. 2006) between

the two graphs; similarly for each DAG estimate directly outputted by the other methods;

lower values of SHD correspond to better performances. Results for q = 40 are summarized

in the box-plots of Figure 3, where each plot reports the distribution of SHD across the

N = 40 simulated datasets for the various methods and increasing sample sizes n(k) ∈

{10, . . . , 500} under Scenarios Sparse and Diffuse. It is clear the tendency of a better

and better recovery of the true graphical structure as we increase the amount of available
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Figure 2: Simulations. Distribution of the False Positive Rate (FPR, first row) and False Negative

Rate (FNR, second row) across N = 40 simulated datasets under Scenarios Sparse (first column)

and Diffuse (second column) for number of nodes q = 40 and increasing sample sizes n(k). Methods

under comparison are: our Bayesian methodology (Bayes), the Unknown Target Interventional

Greedy Sparsest Permutation algorithm implemented at significance level α ∈ {0.1%, 0.001%}

(IGSP 0.1% and IGSP 0.001%) and node-wise regression (Node-wise).
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data, and an overall better performance of Bayes relative to all the benchmarks. The

only exception is GIES 0.5, however implemented with knowledge of the true targets, that

outperforms our Bayesian method in few settings characterized by small sample sizes, where

indeed target identification was more difficult for our method. However, it performs worse

than Bayes as n(k) increases, especially under Scenario Sparse.

6 Real data analyses

6.1 Protein signalling data

In the current section we apply our methodology to the protein signalling data presented

in Sachs et al. (2005). The dataset, provided as a supplement to the original paper, col-

lects simultaneous measurements of multiple phosphorylated proteins and phospholipid

components in individual primary human immune system cells. Measurements of q = 11

phosphorylated proteins and phospholipids were collected after a series of stimulatory cues

and inhibitory interventions obtained from the administration of distinct reagents. Each

reagent induces a perturbation of the proteins’ pathway since it affects either one of the sig-

nalling molecules directly or some (unmeasured) receptor enzymes. More specifically, seven

datasets are associated to known interventions, while other two (reagents CD3/CD28 and

ICAM-2) refer to general (unknown) perturbations; see also Table 1 in Sachs et al. (2005)

and our Table 1. The same dataset was analysed by Castelletti and Consonni (2019) who

implemented their OBIES method on the collection of measurements associated to known

targets to learn the structure of an interventional essential graph.

We include in our analysis all nine datasets, by assuming known intervention targets for

the first seven, whilst considering the last two as characterized by uncertain interventions
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Figure 3: Simulations. Distribution across N = 40 simulated datasets of the Structural Ham-

ming Distance (SHD) between estimated and true DAG for number of nodes q = 40 and increas-

ing sample sizes n(k) under Sparse and Diffuse Scenarios. Methods under comparison are: our

Bayesian methodology (Bayes), the Unknown Target Interventional Greedy Sparsest Permuta-

tion algorithm implemented at significance level α ∈ {0.1%, 0.001%} (IGSP 0.1%, IGSP 0.001%),

node-wise regression (Node-wise), Algorithm 1 of He and Geng (2016) (He & Geng) and the

Greedy Interventional Equivalence Search method with tuning coefficient γ ∈ {0.5, 1} (GIES 0.5,

GIES 1).
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Reagent Akt in. G06976 Psitect U0126 LY294002 PMA B2cAMP CD3/C28 ICAM-2

Target Akt PKC PIP2 Mek Akt PKC PKA ? ?

Sample size 911 723 810 799 848 913 707 853 902

Table 1: Sachs data. Intervention targets and sample sizes for each of the nine administrated

reagents giving rise to the collection of nine datasets. Symbol ? indicates an unknown target for

the corresponding reagent.

that we learn with our methodology. We run S = 25000 iterations of our MCMC algorithm

to approximate the posterior distribution over the space of DAGs and intervention targets;

we fix g = 1/n in the priors on DAG parameters (6) and (7), a prior probability of edge

inclusion η = 1/q (Section 2.5) and ak = 1/q, bk = 1 (k = 1, . . . , K) in the Beta prior

leading to (10).

Results are summarized in Figure 4, with the heat map of posterior probabilities of

intervention for each node and each of the two uncertain intervention groups CD3/CD28

and ICAM-2. Black dots for the first seven interventions represent the targets that were

assumed to be known. Our findings are coherent with biological literature establishing

that both reagents ICAM-2 and CD3/C28 are capable of activating enzyme ZAP70 and

in turn signalling nodes Mek, PLC and PKC among others. These are indeed selected

as promising targets under at least one of the two interventions. We also report in the

right panel of Figure 4 a DAG estimate obtained by including those edges whose posterior

probability of inclusion exceeds 0.5: dark and light grey circles identify proteins whose

posterior probability of intervention computed under CD3/C28 and ICAM-2 respectively

is larger than 0.5, and therefore represent plausible intervention targets for the two reagents.

We stress that a higher cardinality of the estimated intervention set in the two datasets with
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unknown targets is not unexpected, since Sachs et al. (2005) refer to general perturbations

that overall stimulated the cell, against specific perturbations acting on defined set of

molecules in the remaining datasets with known targets. We refer to Sections 6 and 7 of

Supplementary Material for sensitivity analyses and detailed comparisons with alternative

methods. In particular, He & Geng does not provide target estimates, whilst we share 3

out of 4 targets with Node-wise in the dataset CD3/C28 and 1 out of 2 with IGPS in the

dataset ICAM-2. Also, Node-wise and He & Geng estimate the same graph skeleton of our

method, whilst IGPS, that wrongly assumes one dataset to be purely observational, misses

two links. The benchmark Node-wise also share many edge orientations; on the other hand,

with He & Geng many edges remain unoriented.

6.2 Gene expression profiles under antiepileptic drug therapies

In this section we consider a gene expression dataset relative to patients affected by epilepsy.

The original dataset (publicly available at https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE143272) includes measurements of about 13, 000 genes collected on sub-

jects divided into: healthy patients, epilepsy patients drug-näıve treated and subjects

treated with one antiepileptic monotherapy among Valporate, Phenytoin and Carbamazepine.

The aim of the original study was to identify mRNA expression biomarkers associated with

the disease and the antiepileptic drug response. Results in Rawat et al. (2020) revealed

that patients showing differential response to antiepileptic monotherapies were also char-

acterized by differential blood gene expression profiles.

In the following we consider four groups of subjects (Drug-näıve, Valporate, Phenytoin

and Carbamazepine) to evaluate the effect of each drug therapy, relative to the untreated

patients (Drug-näıve group). We include in our analysis 100 genes that were most differen-
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DAG with dark (light) grey circles representing nodes whose posterior probability of intervention

under reagent CD3/C28 (ICAM-2) exceeds 0.5 (right side).
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tially expressed between healthy and unhealthy drug-näıve patients as resulting from limma

(Linear Models for Microarray and RNA-Seq Data) tests (Smyth, 2005) and therefore rep-

resent suitable candidate targets to evaluate patients’ response to each drug therapy. Our

algorithm is run for number of iterations S = 1200000 by fixing prior hyperparameters as

in Section 6.1. Because our interest lies in discovering drug-induced effects (interventions)

on patients who received one of the drug therapies as opposed to unhealty, yet untreated,

patients, we consider drug-näıve individuals as a ground (reference) group and fix the

corresponding intervention target as the empty set.

We first compute, for each node/gene v ∈ {1, . . . , 100} and each intervention target

I2, I3, I4 corresponding to one of the three drug therapies, the posterior probabilities of

intervention; see Equation (15). Results reported in the Supplementary Material show

that there are few genes exhibiting a high posterior probability of intervention under some

of the treatments. Specifically, only six genes, that are reported in the sub-map of Figure

5, are associated with probabilities of intervention exceeding 0.5.

In addition, we show in the right panel of Figure 5 the estimated (median probability)

sub-graph of these genes, including parent and child nodes. This DAG estimate can help

understanding how gene dependencies modify in force of an intervention after one of the

drug therapies is administrated. The implementation of alternative methods (Section 5.1)

specifically designed for DAG and target learning under uncertain interventions revealed

several difficulties that are specific to this kind of data. In particular, while IGSP cannot be

applied since n(k) < q, the baseline Node-wise method analyses separately the K datasets

and does not identify any dependence relation between genes, even when implemented for

different values of the tuning parameter . Finally, the approach of He and Geng (2016),

shown to underperform in simulation, does not provide target estimates and outputs a DAG
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Figure 5: Epilepsy data. Left panel: Heat map with estimated posterior probabilities of

intervention computed under each intervention (drug treatment) for selected nodes (genes

1654552, . . . , 3192316). Right panel: Estimated (pre-intervention) sub-graph of six selected genes,

parent and child nodes, with grey circles representing intervention targets.

with a huge number of links, even for values of tuning parameter α encouraging sparsity.

We refer the reader to Sections 6 and 7 of Supplementary Material for sensitivity analyses

and further illustrations of the results.

7 Discussion

We have developed a Bayesian statistical methodology for simultaneous learning of network-

based structure dependencies and of intervention targets. Our proposal is useful in those

contexts where the data are subject to interventions, but each intervention affects unknown
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variables in the network, as in diffuse protein perturbations or drug target discovery. We

implement a novel MCMC sampler to approximate the posterior distribution on the space

of DAGs and intervention targets. When applied to genomic data collected under various

drug treatments, our method provides insights on the dependence relations between genes

and the effect of distinct drug therapies. We also provide theoretical guarantees of the

methodology, by looking at the consistency in recovering the true intervention targets and

graph. Our theoretical results are supported by rigorous simulation studies, showing an

overall outperformance of our method with respect to alternative approaches, in terms of

target and structure learning.

Since changes in brain networks are known to be involved in stimulus-response asso-

ciations (Boettiger and D’Esposito, 2005), a potential field of application of the devel-

oped methodology is on the joint learning of dependent changes in functional Magnetic

Resonance Imaging (fMRI) activations within brain regions and functional connectivities

between regions; see for instance Warnick et al. (2018). The human brain is an oriented

network system of brain regions involving directional connectivity, and the mainstream sta-

tistical approach relies on the theory of random networks (Simpson et al., 2013). Still, many

statistical issues remain unaddressed , with the study of complex dependencies among brain

regions a fertile area of methodological development, often based on simplistic inferential

frameworks. For instance, in the network construction process from raw fMRI data up to

the adjacency matrix, methods for estimating functional connectivities between network

nodes typically rely on association measures, whilst modeling methods remain relatively

limited for brain network estimation. After estimating a functional brain network, the

following step often involves various methods of crude thresholding of the connectivity ma-

trix (Telesford et al., 2011), to remove weak connections and produce an adjacency matrix
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which notes the presence or absence of a functional connection between any two nodes. We

conjecture that an implementation of our methodology directly on fMRI data can lead to

an alternative reliable estimation of the adjacency matrix characterizing the brain network

and of the activated target areas under stimuli, avoiding the arbitrary steps involved in the

process of network construction.

Our approach to structure learning of DAGs and targets relies on the do-calculus theory

and the allied notion of intervention DAG (Pearl, 2000). Accordingly, we are able to recover

interventions which modify the DAG Markov property, by destroying parent-child depen-

dencies for each intervened variable. Alternative definitions of intervention are available in

the literature. Among these, Kocaoglu et al. (2019) consider from a theoretical perspective

the case of soft interventions, where parent-child dependencies are “modified” but yet pre-

served after intervention, and develop graphical criteria to represent the post-intervention

DAG Markov property and characterize DAGs Markov equivalence. A Bayesian methodol-

ogy for structure learning under soft interventions is possible, following the lines of Castel-

letti and Consonni (2019), and an extension to uncertain soft interventions is of interest,

based on the premises developed in the current work.
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SUPPLEMENTARY MATERIAL

The file supplementary material.pdf provides supplemental information to our paper,

and is organized as follows. Sections 1 and 2 contain proofs and discussions of Propositions
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3.1 and 3.2. In Section 3 we show and discuss results on graph consistency. Sections 4

and 5 provide details about the proposed MCMC scheme and additional simulated results.

Finally, Sections 6 and 7 contain sensitivity analyses to hyperparameter choices and further

results for the two real data applications.
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