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Abstract. We prove the convergence of the vanishing viscosity approximation
for a class of 2×2 systems of conservation laws, which includes a model of traffic

flow in congested regimes. The structure of the system allows us to avoid the

typical constraints on the total variation and the L1 norm of the initial data.
The key tool is the compensated compactness technique, introduced by Murat

and Tartar, used here in the framework developed by Panov. The structure of

the Riemann invariants is used to obtain the compactness estimates.

1. Introduction5

1.1. Modeling traffic flow in the congested regime. We consider the Cauchy6

problem associated to the following 2× 2 system of conservation laws in one space7

dimension:8

(1.1)


∂tρ+ ∂x(uρf(ρ)) = 0, t > 0, x ∈ R,
∂tu+ ∂x(u2f(ρ)) = 0, t > 0, x ∈ R,
ρ(0, x) = ρ0(x), x ∈ R,
u(0, x) = u0(x), x ∈ R.

The functions ρ : (0,∞) × R → R and u : (0,∞) × R → R represent respectively9

the vehicular density and the generalized momentum. The velocity law is given by10

uf(ρ), where the function f = f(ρ) describes the reaction of drivers to the different11

crowding level of the road.12

System (1.1) describes the evolution of congested traffic in the second-order13

macroscopic traffic model, introduced in [13] as an extension of the classical first-14

order Lighthill-Whitham-Richards (LWR) model (see [31, 52]) for allowing different15

drivers to have different maximal speeds. According to the empirical evidence that16

vehicular traffic behaves differently in the situations of low and high densities,17

see [26], the model in [13] consists in two different regimes or phases: a free phase,18

described by a single transport equation, and a congested one, modeled by the 2×219

system (1.1).20

We remark that the well-known second-order Aw-Rascle-Zhang (ARZ) model in
its original form [1, Formula (2.10)], i.e.{

∂tρ+ ∂x(ρv) = 0, t > 0, x ∈ R,
∂t(ρ(v + p(ρ))) + ∂x(ρv(v + p(ρ))) = 0, t > 0, x ∈ R,
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is obtained from (1.1) by formally setting v = uf(ρ) and p = u
ρ − uf(ρ).1

The original ARZ model does not distinguish between a free and a congested2

phase, but it was extended in this direction in [20], where Goatin generalized the3

two-phase model proposed by Colombo in [12], coupling the LWR equation in the4

free phase with the ARZ model in the congested phase. A peculiar difference5

between the aformentioned models and the one formulated in [13], is that the two6

phases are here connected. For other second order macroscopic or two-phase models7

describing traffic evolution and for differences between models see [4, 17, 19, 21, 30,8

58] and the references therein.9

In the present paper, we do not consider phase transitions; we focus on the10

evolution of traffic in the congested regime given by system (1.1). Indeed, the more11

complex and richer dynamics happens in the congested phase; on the other hand,12

in the free phase the model reduces to a linearly degenerate 2 × 2 system, where13

each driver’s speed is constantly equal to the maximal one. Our main contribution14

is a proof that the solutions of the viscous approximations of (1.1) converge to a15

weak solution of the hyperbolic system.16

1.2. Vanshing viscosity for systems of conservation laws. The vanishing vis-17

cosity limit for the uniformly parabolic viscous regularizations of scalar conserva-18

tion laws is a crucial point in Kružkov’s well-posedness theory (see [29]; cf. [23, ?]19

for a modern exposition). The developments concerning the vanishing viscosity20

approximation of systems of conservation laws are more recent. DiPerna proved21

convergence for certain classes of 2 × 2 genuinely nonlinear systems in [15, 28, 9].22

His results were subsequently extended in many directions to more general systems23

describing gas dynamics or other physical phenomena (e.g. shallow waters, liquid24

chromatography, etc.) – see, e.g. [34, 25, 10, 27, 35, 44, 36, 24, 42, 43, 41, 54, 48,25

40, 47, 59, 39, 22, 46, 45, 38, 37] and references therein. The proofs rely on a com-26

pensated compactness argument: the key idea, introduced by Tartar and Murat27

(see, e.g., [16, Chapter 5] for a survey), is as follows: the invariant region method28

provides uniform L∞ bounds on the sequence of viscous approximation, but the29

weak-star convergence does not allow to pass to limit in the nonlinear terms of the30

equations; however, the weak limit can be represented in terms of Young measures,31

which reduce to a Dirac mass (hence giving strong convergence) due to the mech-32

anism of entropy dissipation. In [53], Serre proved the global existence of weak33

solutions for a 2 × 2 Temple class systems, that is for systems with either linearly34

degenerate characteristic fields, or with straight characteristic curves (see also [57]).35

Coclite, Karlsen, Mishra, Risebro applied an improved compensated compactness36

result due to Panov (see [51, 50]) to prove convergence for 2× 2 triangular systems37

in [11]. For strictly hyperbolic n × n systems with small initial total variation,38

in [3], Bianchini and Bressan managed to develop a theory of vanishing viscosity39

based a priori BV bounds on solutions. We remark that the general uniqueness40

results known for systems of conservation laws apply only to BV solutions (see41

[6, 32, 33, 5, 7, 8]); therefore, the uniqueness of the L∞ solutions obtained by the42

compensated compactness method remains a long-standing open problem.43

None of the previously known results can be directly applied to our problem:44

indeed, we do not assume any smallness condition on the initial data and system45

(1.1) is neither of Temple class nor genuinely nonlinear nor triangular.46
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1.3. Outline of the paper. The paper is organized as follows. In Section 2, we1

introduce the approximate viscous system and we state the main result together2

with the assumptions on the function f and on the initial data. Section 3 is dedi-3

cated to several a priori estimates for the solutions of the viscous system and to the4

compactness of the family of Riemann invariants, which is a preliminary step in the5

proof of the main result. Finally, in Section 4, we prove the existence of a solution6

to (1.1) by the vanishing viscosity approach. Here the main tool is the version of7

the compensated compactness proposed by Panov in [50, 51].8

2. Main result9

Before stating the main result of the paper, Theorem 2.1, we introduce the10

viscous approximation of (1.1) and all the required assumptions.11

We consider a flux function f that satisfies the following hypothesis:12

(F): f ∈ C2((0, 1];R+) ∩ L1 ((0, 1);R+) satisfies f(1) = 0 and

L1
({
ρ ∈ (0, 1) : ∂2ρρ(ρ

2f(ρ)) = 0
})

= 0,

where L1 denotes the Lebesgue measure in R.13

Assumption (F) guarantees that the function g : (0, 1]→ R+, defined by14

(2.1) g(ρ) = ρ2f(ρ)

for every ρ ∈ (0, 1], is genuinely nonlinear.15

Example 2.1. The affine function f(ρ) = 1− ρ satisfies assumption (F). Indeed16

g′′(ρ) = 2− 6ρ is equal to 0 if and only if ρ = 1
3 .17

Example 2.2. Choose δ ∈ (0, 1) and define

f(ρ) =


1
δ − 1, 0 < ρ ≤ δ,
1
ρ − 1, δ ≤ ρ ≤ 1.

The function f satisfies (F). This is a typical choice in traffic flow modeling.18

On the initial data ρ0 and u0, we assume that there exist two constants 0 < w̌ <
ŵ <∞, such that

0 ≤ ρ0 ≤ 1, w̌ρ0 ≤ u0 ≤ ŵρ0,(2.2)

ln(ρ0) ∈ L1(R),
u0
ρ0
∈ BV (R).(2.3)

Remark 2.1. Assumptions (2.2) and (2.3) on the function ρ0 imply also that the19

function ρ0 − 1 belongs to L1(R).20

We use the following definition of weak solution of problem (1.1).21

Definition 2.1 (Weak solutions). Given ρ0 ∈ L∞ (R;R) and u0 ∈ L∞ (R;R), we22

say that the couple (ρ, u) is a weak solution to (1.1) if the following statements hold:23

(1) ρ ∈ L∞ ((0,+∞)× R;R);24

(2) u ∈ L∞ ((0,+∞)× R;R);25

(3) for every ϕ ∈ C∞c ([0,+∞)× R;R),∫ +∞

0

∫
R

[ρ(t, x)∂tϕ(t, x) + u(t, x)ρ(t, x)f (ρ(t, x)) ∂xϕ(t, x)] dxdt=

∫
R
ρ0(x)ϕ(0, x) dx;
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(4) for every ϕ ∈ C∞c ([0,+∞)× R;R),∫ +∞

0

∫
R

[
u(t, x)∂tϕ(t, x) + u2(t, x)f (ρ(t, x)) ∂xϕ(t, x)

]
dxdt =

∫
R
u0(x)ϕ(0, x) dx.

Let us consider the following viscous approximation of (1.1):1

(2.4)


∂tρε + ∂x(uερεf(ρε)) = ε∂2xxρε, t > 0, x ∈ R,
∂tuε + ∂x(u2εf(ρε)) = ε∂2xxuε, t > 0, x ∈ R,
ρε(0, x) = ρ0,ε(x), x ∈ R,
uε(0, x) = u0,ε(x), x ∈ R,

where ε > 0 and the initial data ρ0,ε and u0,ε are smooth approximations of ρ0 and
u0. More precisely we assume:

ρ0,ε, u0,ε ∈ C∞(R;R) for every ε > 0,(2.5)

ρ0,ε → ρ0, u0,ε → u0 in Lploc(R), 1 ≤ p <∞, and a.e. as ε→ 0,(2.6)

‖ρ0,ε − 1‖L1(R) ≤ ‖ρ0 − 1‖L1(R) for every ε > 0,(2.7)

‖u0,ε‖L2(R) ≤ ‖u0‖L2(R) ,(2.8)

ε ≤ ρ0,ε ≤ 1, w̌ρ0,ε ≤ u0,ε ≤ ŵρ0,ε for every ε > 0,(2.9)

‖ln(ρ0,ε)‖L1(R) ≤ ‖ln(ρ0)‖L1(R) ,

∥∥∥∥∥
(
u0,ε
ρ0,ε

)′∥∥∥∥∥
L1(R)

≤ TV
(
u0
ρ0

)
for all ε > 0.(2.10)

The well-posedness of classical solutions to (2.4) is guaranteed for short time2

by the Cauchy-Kowaleskaya theorem (see [56]) and for large times by the classical3

parabolic theory (see [18]). Moreover, at least for short time we can assume ρε ≥4

ε/2. A key ingredient for the proof is the analysis of the Riemann invariant5

(2.11) wε =
uε
ρε

(see [14, Section 7.3] for a definition of Riemann invariant). From (2.4), we easily6

deduce that wε satisfies the equation7

(2.12) ∂twε + ρεf(ρε)wε∂xwε = ε∂2xxwε + 2ε
∂xρε∂xwε

ρε
.

By a L2
loc estimate, Lemma 3.5, we then deduce that wε is well-defined for all t > 0.8

Our main result is the following convergence theorem.9

Theorem 2.1 (Convergence of the vanishing viscosity approximation). Let us sup-10

pose that the assumptions (F), (2.7), (2.9), and (2.10) hold. Then, there exists a11

sequence {εk}k∈N ⊂ (0,∞), εk → 0, and a weak solution (ρ, u) of problem (1.1), in12

the sense of Definition 2.1, such that13

ρεk → ρ, uεk → u in Lploc((0,∞)× R), 1 ≤ p <∞,
and a.e. in (0,∞)× R as k →∞,

(2.13)

where (ρεk , uεk) is a classical solution of the viscous problem (2.4).14
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3. A priori estimates and compactness results1

In this section, we obtain several a priori estimates on the functions ρε, uε, solu-2

tions to (2.4), and on the function wε, defined in (2.11). For the sake of simplicity,3

throughout this section, we use c to denote various constants, which are indepen-4

dent from the parameter ε and from the time t.5

Lemma 3.1 (L∞ estimates on ρε, uε, wε). Let us assume that (F) and (2.9) hold.6

For every t > 0 and x ∈ R, we have that7

(3.1) 0 ≤ ρε(t, x) ≤ 1, w̌ρε(t, x) ≤ uε(t, x) ≤ ŵρε(t, x), w̌ ≤ wε(t, x) ≤ ŵ.

Proof. Due to (F) and (2.9), the functions r = ρε, r = 0, and r = 1 are respectively
a solution, a subsolution, and a supersolution of the Cauchy problem{

∂tr + ∂x(uεrf(r)) = ε∂2xxr, t > 0, x ∈ R,
r(0, x) = ρ0,ε(x), x ∈ R.

Therefore, the first part of (3.1) follows from the comparison principle for parabolic8

equations (see [18]).9

Due to (2.9), the functions r = uε − w̌ρε and r = 0 are respectively a solution
and a subsolution of the Cauchy problem{

∂tr + ∂x(ruεf(ρε)) = ε∂2xxr, t > 0, x ∈ R,
r(0, x) = u0,ε(x)− w̌ρ0,ε(x), x ∈ R.

Using the comparison principle for parabolic equations (see [18]), we gain w̌ρε ≤ uε.10

An analogous argument proves that uε ≤ ŵρε.11

Finally, the third part of (3.1) follows from the second one, the definition of wε12

given in (2.11), and the positiveness of ρε. �13

Lemma 3.2 (L1 estimates on ρε − 1). Let us assume that (F), (2.7) and (2.9)14

hold. For every t ≥ 0, we have that15

(3.2) ‖ρε(t, ·)− 1‖L1(R) ≤ ‖ρ0 − 1‖L1(R) .

Proof. Lemma 3.1 implies that 1 − ρε is positive. Therefore, using (2.4) and ob-
serving

lim
x→±∞

ρε(t, x)f(ρε(t, x)) = f(1) = 0, lim
x→±∞

∂xρε(t, x) = 0,

due to (3.1), we deduce that

d

dt

∫
R
|ρε − 1|dx =

d

dt

∫
R
(1− ρε) dx = −

∫
R
∂tρε dx

=−
∫
R
∂x (ε∂xρε − uερεf(ρε)) dx = 0.

An integration over (0, t) and assumption (2.7) give the claim. �16

Lemma 3.3 (BV estimate on wε). Let us assume that (2.10) holds. We have that17

(3.3) ‖∂xwε(t, ·)‖L1(R) ≤ TV
(
u0
ρ0

)
for every t ≥ 0.18
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Proof. Differentiating (2.12) with respect to x, we get

∂2txwε + ∂x(ρεf(ρε)wε∂xwε) = ε∂3xxxwε + 2ε∂x

(
∂xρε∂xwε

ρε

)
.

In light of [2, Lemma 2],

d

dt

∫
R
|∂xwε|dx =

∫
R
∂2txwε sign (∂xwε) dx

= ε

∫
R
∂3xxxwε sign (∂xwε) dx+2ε

∫
R
∂x

(
∂xρε∂xwε

ρε

)
sign (∂xwε) dx

−
∫
R
∂x(ρεf(ρε)wε∂xwε) sign (∂xwε) dx

= −ε
∫
R

(∂2xxwε)
2δ{∂xwε=0} dx︸ ︷︷ ︸
≤0

−2ε

∫
R

∂xρε∂xwε
ρε

∂2xxwεδ{∂xwε=0} dx︸ ︷︷ ︸
=0

+

∫
R
ρεf(ρε)wε∂xwε∂

2
xxwεδ{∂xwε=0} dx︸ ︷︷ ︸

=0

≤ 0,

where δ{∂xwε=0} is the Dirac delta measure concentrated on the set {∂xwε = 0}.1

An integration over (0, t) and assumption (2.10) give the claim. �2

Lemma 3.4 (L1 estimate on ln(ρε)). Assume (F), (2.7), (2.9), and (2.10) hold.3

We have that4

‖ln(ρε(t, ·))‖L1(R) + ε

∫ t

0

∥∥∥∥∂xρερε
(s, ·)

∥∥∥∥2
L2(R)

ds

≤‖ln(ρ0)‖L1(R) + t TV

(
u0
ρ0

)∫ 1

0

|f(ξ)|dξ,
(3.4)

for every t ≥ 0.5

Proof. Using the definition of wε (see (2.11)) in (2.4), we get6

(3.5) ∂tρε + ∂x(wερ
2
εf(ρε)) = ε∂2xxρε.

Consider the function F : (0,+∞)→ R defined, for every ξ > 0, by

F (ξ) =

∫ ξ

1

f(s) ds.

Thanks to (3.1) and (3.3), we have that

d

dt

∫
R
| ln(ρε)|dx =− d

dt

∫
R

ln(ρε) dx = −
∫
R

∂tρε
ρε

dx

=− ε
∫
R

∂2xxρε
ρε

dx+

∫
R

∂x(wερ
2
εf(ρε))

ρε
dx

=− ε
∫
R

(∂xρε)
2

ρ2ε
dx+

∫
R
wε f(ρε)∂xρε︸ ︷︷ ︸

∂xF (ρε)

dx
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=− ε
∫
R

(∂xρε)
2

ρ2ε
dx−

∫
R
∂xwεF (ρε) dx

≤− ε
∫
R

(∂xρε)
2

ρ2ε
dx+ ‖F‖L∞(0,1)

∫
R
|∂xwε|dx.

An integration over (0, t) and (3.3) give the claim. �1

Lemma 3.5 (L2
loc estimate on wε). Let us assume that the assumptions (F), (2.7),2

(2.9), and (2.10) hold. Let χ ∈ C∞c (R) be a non negative cut-off function with3

compact support. Then there exists a positive constant c, possibly depending on the4

function χ, such that5

(3.6) ‖wε(t, ·)
√
χ‖2L2(R) + ε

∫ t

0

‖∂xwε(s, ·)
√
χ‖2L2(R) ds ≤ c(t+ 1)

for every t ≥ 0.6

Proof. Thanks to (2.12), (3.1), and (3.3), we have that

d

dt

∫
R

w2
ε

2
χ(x) dx =

∫
R
∂twεwεχ(x) dx

=ε

∫
R
∂2xxwεwεχ(x) dx+ 2ε

∫
R

∂xρε∂xwε
ρε

wεχ(x) dx

−
∫
R
ρεf(ρε)w

2
ε∂xwεχ(x) dx

=− ε
∫
R

(∂xwε)
2χ(x) dx− ε

∫
R
∂xwεwεχ

′(x) dx

+ 2ε

∫
R

∂xρε∂xwε
ρε

wεχ(x) dx−
∫
R
ρεf(ρε)w

2
ε∂xwεχ(x) dx

≤− ε

2

∫
R

(∂xwε)
2χ(x) dx

+ 4ε

∫
R

(
∂xρε
ρε

)2

w2
εχ(x) dx+ c

∫
R
|∂xwε|dx

≤− ε

2

∫
R

(∂xwε)
2χ(x) dx+ cε

∫
R

(
∂xρε
ρε

)2

dx+ c.

Integrating over (0, t) and using (2.10) and (3.4), we deduce that

‖wε(t, ·)
√
χ‖2L2(R) + ε

∫ t

0

‖∂xwε(s, ·)
√
χ‖2L2(R) ds

≤
∥∥∥∥u0,ερ0,ε

√
χ

∥∥∥∥2
L2(R)

+ εc

∫ t

0

∥∥∥∥∂xρερε
(s, ·)

∥∥∥∥2
L2(R)

ds+ ct

≤c(t+ 1),

where we used assumption (2.8)-(2.9) in the last line. This concludes the proof. �7

3.1. Compactness of wε. This subsection deals with the compactness of {wε}ε>0,8

which is a preliminary step for the proof of Theorem 2.1. We use the following result,9

due to Murat (see [49]).10
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Theorem 3.1 (Murat’s compact embedding). Let Ω be a bounded and open subset
of RN with N ≥ 2. Assume {Ln}n∈N is a bounded sequence of distributions in

W−1,∞(Ω). Suppose also that, for every n ∈ N, there exists a decomposition

Ln = L1,n + L2,n,

where {L1,n}n∈N lies in a compact subset of H−1loc (Ω) and {L2,n}n∈N lies in a1

bounded subset ofMloc(Ω). Then {Ln}n∈N belongs to a compact subset of H−1loc (Ω).2

The following result about the compactness of wε holds.3

Lemma 3.6 (Compactness of {wε}ε>0). Let us assume that the assumptions (F),
(2.7), (2.9), and (2.10) hold. Then, there exist a sequence {εk}k∈N ⊂ (0,∞), εk →
0, and a function

w ∈ L∞((0,∞)× R) ∩ L∞(0,∞;BV (R))

such that4

wεk → w in Lploc((0,∞)× R), 1 ≤ p <∞,
and a.e. in (0,∞)× R

(3.7)

as k → +∞.5

Proof. Note that the equation (2.12) for wε can be rewritten in the form6

(3.8) ∂twε = ∂x(
√
ε(
√
ε∂xwε)) + 2ε

∂xρε∂xwε
ρε

− ρεf(ρε)wε∂xwε.

Thanks to Lemma 3.1,7

(3.9) {∂twε}ε>0 is bounded in W−1,∞((0,∞)× R).

Observing that {
√
ε∂xwε}ε>0 is bounded in L2

loc((0,∞) × R) (see Lemma 3.5) we8

gain9

(3.10) {∂x(
√
ε(
√
ε∂xwε))}ε>0 compact in H−1loc ((0,∞)× R).

Using Lemmas 3.4 and 3.510

(3.11)

{
ε
∂xρε∂xwε

ρε

}
ε>0

bounded in L1
loc((0,∞)× R).

Finally, Lemmas 3.1 and 3.3 guarantee that11

(3.12) {−ρεf(ρε)wε∂xwε}ε>0 is bounded in L1
loc((0,∞)× R).

Therefore, in light of Theorem 3.1, we deduce that12

(3.13) {∂twε}ε>0 is compact in H−1loc ((0,∞)× R).

This concludes the proof. �13

4. Proof of the main theorem14

In this section, we prove Theorem 2.1. To do that, first we state – in our setting15

– a result due to Panov (see [51, Theorem 5],[50]), which improves the classical16

compensated compactness theorem by Tartar (see [55]).17
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Theorem 4.1 (Panov’s compensated compactness). Let {vν}ν>0 be a family of
functions defined on (0,∞)×R and w the limit function introduced in Lemma 3.6.
If {vν}ν∈N lies in a bounded set of L∞loc((0,∞)×R) and if, for every constant c ∈ R,
the family

{∂t |vν − c|+ ∂x(sign (vν − c) (g(vν)− g(c))w)}ν>0 ,

where g is a genuinely nonlinear function, lies in a compact set of H−1loc ((0,∞)×R),
then there exist a sequence {νk}k∈N ⊂ (0,∞), νk → 0, and a map v ∈ L∞((0,∞)×
R) such that

vνk → v in Lploc((0,∞)× R), 1 ≤ p <∞,
and a.e. in (0,∞)× R

as k →∞.1

Proof of Theorem 2.1. We begin by proving the compactness of {ρε}ε>0. Let c ∈ R
be fixed. We claim that the family

{∂t |ρεk − c|+ ∂x [sign (ρεk − c) (g(ρεk)− g(c))w]}k∈N
is compact in H−1loc ((0,+∞)× R), where g is the function defined in (2.1), which
is genuinely nonlinear due to assumption (F). For simplicity we introduce the
following notations:

η0(ξ) = |ξ − c| − |c| ,
q0(ξ) = sign (ξ − c)

(
g(ξ)− g(c)

)
+ sign (−c) g(c).

Let us remark that2

η0(0) = q0(0) = 0,

∂t |ρεk − c|+ ∂x
[
sign (ρεk − c)

(
g(ρεk)− g(c)

)
w
]

= ∂tη0(ρεk) + ∂x(q0(ρεk)w)− sign (−c) g(c)∂xw.

(4.1)

Let {(ηε, qε)}ε>0 be a family of maps such that3

ηε ∈ C2(R), qε ∈ C2(R),

q′ε = g′η′ε, η′′ε ≥ 0

‖ηε − η0‖L∞(0,1) ≤ ε, ‖η′ε − η′0‖L1(0,1) ≤ ε,
‖η′ε‖L∞(0,1) ≤ 1, ηε(0) = qε(0) = 0,

(4.2)

for every ε > 0.4

Using (2.1), (2.4), (2.11), and (4.2), we deduce that

∂tη0(ρεk) + ∂x(q0(ρεk)w)

= ∂tηεk(ρεk) + ∂x(qεk(ρεk)wεk) + ∂t (η0(ρεk)− ηεk(ρεk))︸ ︷︷ ︸
I4,k

+ ∂x((q0(ρεk)− qεk(ρεk))w)︸ ︷︷ ︸
I5,k

+ ∂x(qεk(ρεk)(w − wεk))︸ ︷︷ ︸
I6,k

= η′εk(ρεk)∂tρεk + q′εk(ρεk)wεk∂xρεk + qεk(ρεk)∂xwεk + I4,k + I5,k + I6,k

= εkη
′
εk

(ρεk)∂2xxρεk − η′εk(ρεk)∂x (wεkg (ρεk)) + g′(ρεk)η′εk(ρεk)wεk∂xρεk

+ qεk(ρεk)∂xwεk + I4,k + I5,k + I6,k
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= εk∂
2
xxηεk (ρεk)︸ ︷︷ ︸
I2,k

−εkη′′εk (ρεk) (∂xρεk)
2︸ ︷︷ ︸

I3,k

−η′εk (ρεk) g (ρεk) ∂xwεk

− η′εk (ρεk) g′ (ρεk)wεk∂xρεk + η′εk (ρεk) g′ (ρεk)wεk∂xρεk

+ qεk(ρεk)∂xwεk + I4,k + I5,k + I6,k

= −
(
η′εk (ρεk) g (ρεk)− qεk (ρεk)

)
∂xwεk︸ ︷︷ ︸

I1,k

+I2,k + I3,k + I4,k + I5,k + I6,k.

By Lemma 3.1, Lemma 3.3, and (4.2), there exist c1 > 0 and c2 > 0 such that

‖I1,k‖L1((0,T )×R) ≤ c1
∫ T

0

‖∂xwεk(s)‖L1(R) ds ≤ c2T,

proving that I1,k is bounded in L1((0, T )× R) for every T > 0.1

By Lemma 3.1, Lemma 3.4, and (4.2), we deduce that there exist c1 > 0 and
c2 > 0 such that, for every T > 0,

ε2k

∫ T

0

∫
R
|∂xηεk (ρεk)|2 dx dt = ε2k

∫ T

0

∫
R

∣∣ρ2εkη′εk(ρεk)
∣∣2 ∣∣∣∣∂xρεkρεk

∣∣∣∣2 dxdt

≤ c1 ε2k
∫ T

0

∥∥∥∥∂xρεkρεk
(t, ·)

∥∥∥∥2
L2(R)

dt

≤ εk c1 c1 (1 + T ),

proving that I2,k → 0 as k → +∞ in H−1((0, T )× R).2

By Lemma 3.1 and Lemma 3.4, there exists c > 0 such that, for every T > 0,

εk

∫ T

0

∫
R
|η′′εk(ρεk)| |∂xρεk |

2
dx dt = εk

∫ T

0

∫
R
|ρ2εkη

′′
εk

(ρεk)|
∣∣∣∣∂xρεkρεk

∣∣∣∣2 dxdt

≤ c (1 + T ) ,

proving that I3,k is bounded in L1
loc((0,∞)× R).3

By Lemma 3.1 and (4.2), there exists c > 0 such that

‖η0(ρεk)− ηεk(ρεk)‖L∞((0,∞)×R) ≤‖η0 − ηεk‖L∞(0,1) ≤ εk,
‖(q0(ρεk)− qεk(ρεk))w‖L∞((0,∞)×R) ≤‖q0 − qεk‖L∞(0,1) ŵ

≤ŵ ‖g′‖L∞(0,1)

∥∥η′εk − η′0∥∥L1(0,1)
≤ c εk,

proving that both I4,k → 0 and I5,k → 0 as k → +∞ in H−1loc ((0,∞)× R).4

Finally, (4.2) implies that, for every ξ ∈ (0, 1),

|qεk(ξ)| ≤
∫ 1

0

|g′(s)|
∣∣η′εk(s)

∣∣ ds ≤
∫ 1

0

|g′(s)| ds ≤ c

for a suitable constant c > 0. By Lemma 3.1 and Lemma 3.6, for every set K which
is compactly embedded in (0,∞)× R, we get

‖qεk(ρεk)(w − wεk)‖L2(K) ≤‖qεk(ρεk)‖L∞(K) ‖w − wεk‖L2(K)

≤c ‖w − wεk‖L2(K),

and so

I6,k → 0 in H−1loc ((0,∞)× R).
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Having proved that the family

{∂t |ρεk − c|+ ∂x [sign (ρεk − c) (g(ρεk)− g(c))w]}k∈N
is compact in H−1loc ((0,+∞)× R), the compactness of {ρε}ε>0 follows from The-1

orem 4.1. This, together with the compactness of {wε}ε>0 established in Lemma2

3.6, yields the compactness of {uε}ε>0 since uε = wερε (see (2.11)).3

In conclusion, we have proved that there exists (u, ρ) ∈ L∞((0,∞)× R;R) such
that

ρεk → ρ, uεk → u in Lploc((0,∞)× R), 1 ≤ p <∞,
and a.e. in (0,∞)× R as k →∞.

By Lebesgue’s dominated convergence theorem, we conclude that (ρ, u) is a weak4

solution of (1.1) in the sense of Definition 2.1.5

�6
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