
Università degli Studi di Milano Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione
Dottorato di Ricerca in Informatica — XXIV Ciclo

Data mining techniques for design
pattern detection

SUPERVISOR: Prof.ssa Francesca Arcelli Fontana

TUTOR: Prof. Fabio Stella

PhD Candidate: Zanoni Marco

Academic Year 2011-2012

To my wife and my son.

Contents

1 Introduction 1

2 Techniques and Tools for DPD 5
2.1 Classification of design pattern detection approaches 5
2.2 Design pattern detection tools . 6

2.2.1 Static analysis with exact recognition . 6
2.2.2 Static analysis and approximated recognition 9
2.2.3 Dynamic analysis with exact recognition 9
2.2.4 Dynamic analysis with approximated recognition 10
2.2.5 Details about the reported tools . 10

2.3 Theoretical design pattern detection approaches 10
2.3.1 Static analysis with exact recognition . 10
2.3.2 Static analysis with approximated recognition 15
2.3.3 Dynamic analysis with exact recognition 15

2.4 Machine learning and design pattern detection 15
2.5 Conclusion . 17

3 Model driven reverse engineering 19
3.1 Reverse engineering models . 19

3.1.1 Knowledge Discovery Metamodel . 19
3.1.2 FAMIX . 22
3.1.3 Dagstuhl Middle Model . 23
3.1.4 Pattern and Abstract-level Description Language 25
3.1.5 MARPLE meta-model . 26
3.1.6 Other models . 28

3.2 Models for design pattern detection tools . 29
3.2.1 Structure of DPDX . 29
3.2.2 Diffusion . 30

3.3 Conclusion . 30

4 An introduction to MARPLE 33
4.1 Architecture . 33
4.2 Technologies . 35

4.2.1 Java Development Tools . 35
4.2.2 Eclipse Modeling Framework . 35
4.2.3 Graphical Editing Framework . 35

4.3 Information Detector Engine . 36
4.3.1 Micro Structures Detector . 36
4.3.2 Metrics Collector . 37

iii

4.4 Software Architecture Reconstruction . 37
4.5 Distributed MARPLE . 40
4.6 Conclusion . 42

5 Micro structures 43
5.1 Elemental Design Patterns . 43

5.1.1 Create Object EDP . 44
5.1.2 Delegate EDP . 44
5.1.3 Elemental Design Pattern catalog . 45

5.2 Micro Patterns . 45
5.2.1 Restricted Creation Micro pattern . 47
5.2.2 Designator Micro Pattern . 47
5.2.3 Micro Patterns catalog . 47

5.3 Design Pattern Clues . 49
5.3.1 A Catalogue of Design Pattern Clues . 50

5.4 Example of micro-structures in a design pattern instance 54
5.4.1 Design Pattern Clues . 55
5.4.2 Elemental Design Patterns . 55

5.5 Conclusion . 55

6 Joiner: extracting pattern instances from source code 57
6.1 Matching . 57
6.2 Merging . 59

6.2.1 DP representation model . 60
6.2.2 Merging the mappings . 63

6.3 Detection rules . 64
6.3.1 Creational Design Patterns . 65
6.3.2 Structural Design Patterns . 68

6.4 Conclusion . 78

7 Classifier: ranking pattern candidates 79
7.1 Introduction to the learning approach . 79
7.2 Motivation . 81
7.3 Evolution of the methodology . 86

7.3.1 Micro-structures representation . 86
7.3.2 Choice of the micro-structures . 87
7.3.3 Single level patterns . 90

7.4 User experience . 90
7.5 Conclusion . 93

8 Experimentations with MARPLE-DPD 95
8.1 Experiments . 95

8.1.1 Algorithms . 95
8.1.2 Projects . 96
8.1.3 Patterns . 97
8.1.4 Parameter optimization . 98

8.2 Results . 99
8.2.1 Singleton . 99
8.2.2 Adapter . 104
8.2.3 Composite . 108

iv

8.2.4 Decorator . 109
8.2.5 Factory Method . 111

8.3 Threats to validity and Limitations . 113
8.3.1 Design pattern definitions . 113
8.3.2 Granularity . 114
8.3.3 Libraries . 114
8.3.4 Time and computational resources . 115

8.4 Conclusion . 115

9 Conclusions and Future Developments 117
9.1 Future work . 119

A Joiner rules for non-experimented patterns 123
A.1 Creational Design Patterns . 123

A.1.1 Abstract Factory . 123
A.1.2 Builder . 124
A.1.3 Prototype . 125

A.2 Structural Design Patterns . 126
A.2.1 Bridge . 126
A.2.2 Facade . 127
A.2.3 Flyweight . 128
A.2.4 Proxy . 129

A.3 Behavioral Design Patterns . 130
A.3.1 Chain of Responsibility . 130
A.3.2 Command . 130
A.3.3 Interpreter . 132
A.3.4 Iterator . 132
A.3.5 Mediator . 134
A.3.6 Memento . 134
A.3.7 Observer . 135
A.3.8 State . 136
A.3.9 Strategy . 137
A.3.10 Template Method . 138
A.3.11 Visitor . 139

B Setup parameters for the experimented algorithms 141
B.1 Setup of the genetic algorithm parameters . 141
B.2 Parameter values for the best result setups . 143

B.2.1 Singleton . 143
B.2.2 Adapter . 146
B.2.3 Composite . 150
B.2.4 Decorator . 155
B.2.5 Factory Method . 160

C Comparison with other tools 167
C.1 Adapter . 168
C.2 Singleton . 171
C.3 Composite . 171
C.4 Decorator . 172
C.5 Factory Method . 172

v

C.6 Conclusion . 173

vi

List of Figures

3.1 KDM: graphic representation of the meta-model 20
3.2 DMM: graphical representation of the meta-model 24
3.3 PADL: graphical representation of the meta-model 26
3.4 UML class diagram for the MARPLE meta-model 28
3.5 DPDX: Schema meta-model . 30
3.6 DPDX: Result meta-model . 31
3.7 DPDX: Program element meta-model . 31

4.1 An overview of the general process . 33
4.2 The architecture of MARPLE . 34
4.3 Package View example: JHotdraw 6.0b1 . 38
4.4 Package View example: JHotdraw 6.0b1 reorganized 38
4.5 Package Metrics View example: JHotdraw 6.0b1 39
4.6 Class compact view example: package org.jhotdraw.contrib.dnd of JHotdraw 6.0b1 39
4.7 Class extended view example: package org.jhotdraw.contrib.dnd of JHotdraw 6.0b1 40
4.8 The architecture of distributed MARPLE. 41

5.1 Create Object EDP UML diagram . 44
5.2 Delegate EDP UML diagram . 45

6.1 Example of an input graph of the Joiner . 58
6.2 An example of Joiner rule . 58
6.3 DP Definition UML class diagram . 60
6.4 UML object diagram of the DP definition example 61
6.5 Model UML class diagram . 61
6.6 UML object diagram of the DP result example 62
6.7 Merge process example. IN : Inheritance, AT : Abstract Type 63

7.1 Classification process . 80
7.2 Merge process example (recalled) . 83
7.3 Mapping generation example for an Abstract Factory instance 83
7.4 Cluster Generation . 85
7.5 MARPLE configured for pattern detection . 91
7.6 MARPLE showing a pattern candidate . 92
7.7 MARPLE showing an evaluated pattern instance 92

vii

viii

List of Tables

2.1 Design patterns supported by the reported tools 11
2.2 Main characteristics of cited tools . 12
2.3 Experimentations made on the cited tools . 13

4.1 Metrics measured by MARPLE . 37

5.1 The list of the Elemental Design Patterns . 46
5.2 The Micro Patterns list . 48
5.3 A catalogue of design pattern clues . 50
5.3 A catalogue of design pattern clues . 51
5.3 A catalogue of design pattern clues . 52
5.3 A catalogue of design pattern clues . 53
5.3 A catalogue of design pattern clues . 54

6.1 Example of Joiner matching output . 59
6.2 Example of merge rule diagram . 65

7.1 Example of the typical input format of a supervised classification algorithm . . . 81
7.2 Example format of a dataset representing classes using micro-structures as features 82
7.3 Example format of a dataset representing role mappings using micro-structures . 84
7.4 Micro-structures selection . 87
7.4 Micro-structures selection . 88
7.4 Micro-structures selection . 89

8.1 Projects for the experimentations . 96
8.2 Summary of detected pattern instances . 97
8.3 Best performance results for the Singleton design pattern 100
8.4 Singleton: evaluated instances summary . 100
8.5 Singleton: experiments summary . 102
8.6 Singleton Classifier Ranking . 103
8.7 Best performance results for the Adapter design pattern 104
8.8 Adapter : evaluated instances summary . 104
8.9 Adapter : experiments summary . 106
8.10 Adapter Classifier Ranking . 107
8.11 Best performance results for the Composite design pattern 108
8.12 Composite: evaluated instances summary . 109
8.13 Best performance results for the Decorator design pattern 110
8.14 Decorator : evaluated instances summary . 111
8.15 Best performance results for the Factory Method design pattern 112
8.16 Factory Method: evaluated instances summary 113

ix

B.1 SimpleKMeans: experiment parameters . 141
B.2 CLOPE: experiment parameters . 141
B.3 JRip: experiment parameters . 142
B.4 SMO: experiment parameters . 142
B.5 RandomForest: experiment parameters . 142
B.6 J48: experiment parameters . 142
B.7 LibSVM: experiment parameters . 142
B.8 Singleton: JRip parameter setup . 143
B.9 Singleton: SMO parameter setup . 143
B.10 Singleton: RandomForest parameter setup . 143
B.11 Singleton: J48 Unpruned parameter setup . 144
B.12 Singleton: J48 reduced error pruning parameter setup 144
B.13 Singleton: J48 pruned parameter setup . 144
B.14 Singleton: LibSVM ν-SVC Linear parameter setup 144
B.15 Singleton: LibSVM ν-SVC Sigmoid parameter setup 144
B.16 Singleton: LibSVM ν-SVC RBF parameter setup 145
B.17 Singleton: LibSVM ν-SVC Polynomial parameter setup 145
B.18 Singleton: LibSVM C-SVC Polynomial parameter setup 145
B.19 Singleton: LibSVM C-SVC RBF parameter setup 145
B.20 Singleton: LibSVM C-SVC Polynomial parameter setup 146
B.21 Singleton: LibSVM C-SVC Linear parameter setup 146
B.22 Adapter: SMO parameter setup . 146
B.23 Adapter: J48 pruned parameter setup . 147
B.24 Adapter: J48 unpruned parameter setup . 147
B.25 Adapter: J48 reduced error pruning parameter setup 147
B.26 Adapter: RandomForest parameter setup . 147
B.27 Adapter: LibSVM C-SVC Linear parameter setup 148
B.28 Adapter: LibSVM C-SVC Polynomial parameter setup 148
B.29 Adapter: LibSVM C-SVC RBF parameter setup 148
B.30 Adapter: LibSVM C-SVC Sigmoid parameter setup 148
B.31 Adapter: LibSVM ν-SVC Linear parameter setup 149
B.32 Adapter: LibSVM ν-SVC Polynomial parameter setup 149
B.33 Adapter: LibSVM ν-SVC RBF parameter setup 149
B.34 Adapter: LibSVM ν-SVC Sigmoid parameter setup 149
B.35 Adapter: JRip parameter setup . 150
B.36 Composite: SimpleKMeans - OneR parameter setup 150
B.37 Composite: SimpleKMeans - NaiveBayes parameter setup 150
B.38 Composite: SimpleKMeans - JRip parameter setup 151
B.39 Composite: SimpleKMeans - RandomForest parameter setup 151
B.40 Composite: SimpleKMeans - J48 unpruned parameter setup 151
B.41 Composite: SimpleKMeans - J48 reduced error pruning parameter setup 152
B.42 Composite: SimpleKMeans - J48 pruned parameter setup 152
B.43 Composite: SimpleKMeans - LibSVM C-SVC RBF parameter setup 152
B.44 Composite: SimpleKMeans - LibSVM ν-SVC RBF parameter setup 153
B.45 Composite: CLOPE - OneR parameter setup . 153
B.46 Composite: CLOPE - NaiveBayes parameter setup 153
B.47 Composite: CLOPE - JRip parameter setup . 154
B.48 Composite: CLOPE - RandomForest parameter setup 154
B.49 Composite: CLOPE - J48 unpruned parameter setup 154

x

B.50 Composite: CLOPE - J48 reduced error pruning parameter setup 154
B.51 Composite: CLOPE - J48 pruned parameter setup 154
B.52 Composite: CLOPE - LibSVM C-SVC RBF parameter setup 155
B.53 Composite: CLOPE - LibSVM ν-SVC RBF parameter setup 155
B.54 Decorator: SimpleKMeans - OneR parameter setup 155
B.55 Decorator: SimpleKMeans - NaiveBayes parameter setup 156
B.56 Decorator: SimpleKMeans - JRip parameter setup 156
B.57 Decorator: SimpleKMeans - RandomForest parameter setup 156
B.58 Decorator: SimpleKMeans - J48 unpruned parameter setup 156
B.59 Decorator: SimpleKMeans - J48 reduced error pruning parameter setup 157
B.60 Decorator: SimpleKMeans - J48 pruned parameter setup 157
B.61 Decorator: SimpleKMeans - LibSVM C-SVC RBF parameter setup 157
B.62 Decorator: SimpleKMeans - LibSVM ν-SVC RBF parameter setup 158
B.63 Decorator: CLOPE - OneR parameter setup . 158
B.64 Decorator: CLOPE - NaiveBayes parameter setup 158
B.65 Decorator: CLOPE - Jrip parameter setup . 159
B.66 Decorator: CLOPE - RandomForest parameter setup 159
B.67 Decorator: CLOPE - J48 unpruned parameter setup 159
B.68 Decorator: CLOPE - J48 reduced error pruning parameter setup 159
B.69 Decorator: CLOPE - J48 pruned parameter setup 159
B.70 Decorator: CLOPE - LibSVM C-SVC RBF parameter setup 160
B.71 Decorator: CLOPE - LibSVM ν-SVC RBF parameter setup 160
B.72 Factory Method: SimpleKMeans - OneR parameter setup 160
B.73 Factory Method: SimpleKMeans - NaiveBayes parameter setup 161
B.74 Factory Method: SimpleKMeans - JRip parameter setup 161
B.75 Factory Method: SimpleKMeans - RandomForest parameter setup 161
B.76 Factory Method: SimpleKMeans - J48 unpruned parameter setup 161
B.77 Factory Method: SimpleKMeans - J48 reduced error pruning parameter setup . . . 162
B.78 Factory Method: SimpleKMeans - J48 pruned pruning parameter setup 162
B.79 Factory Method: SimpleKMeans - LibSVM C-SVC RBF pruning parameter setup . 162
B.80 Factory Method: SimpleKMeans - LibSVM ν-SVC RBF pruning parameter setup . 163
B.81 Factory Method: CLOPE - OneR pruning parameter setup 163
B.82 Factory Method: CLOPE - NaiveBayes pruning parameter setup 163
B.83 Factory Method: CLOPE - JRip pruning parameter setup 164
B.84 Factory Method: CLOPE - RandomForest pruning parameter setup 164
B.85 Factory Method: CLOPE - J48 unpruned pruning parameter setup 164
B.86 Factory Method: CLOPE - J48 reduced error pruning pruning parameter setup . . 164
B.87 Factory Method: CLOPE - J48 pruned pruning parameter setup 164
B.88 Factory Method: CLOPE - LibSVM C-SVC RBF pruning parameter setup 165
B.89 Factory Method: CLOPE - LibSVM ν-SVC RBF pruning parameter setup 165

C.1 Adapter comparison . 168
C.1 Adapter comparison . 169
C.1 Adapter comparison . 170
C.2 Adapter comparison matrix . 171
C.3 Singleton comparison . 171
C.4 Singleton comparison matrix . 171
C.5 Composite comparison . 172
C.6 Composite comparison matrix . 172

xi

C.7 Decorator comparison . 173
C.8 Decorator comparison matrix . 173
C.9 Factory Methods comparison . 174
C.10 Factory Method comparison matrix . 174

xii

Chapter 1

Introduction

The detection of design patterns [74] is a topic which is gaining importance in the context of
reverse engineering [136, 45], and in particular for software architecture reconstruction [66].

A relevant objective of reverse engineering is to obtain representations of the system at a
higher level of abstraction and to identify the fundamental components of the analyzed system
by retrieving its constituent structures. Getting this information should greatly simplify the
restructuring and maintenance activities, as we obtain more understandable views of the system
and the system can be seen as a set of coordinated components, rather than as a unique
monolithic block.

Design pattern detection can be useful for this purpose. In fact, the main objective of design
pattern detection is to gain better comprehension of a software system, and of the kind of
problems addressed during the development of the system itself. Design patterns support these
goals because the definition of a pattern brings also the intent of the developer who applies it.
Moreover, the collection of design patterns applied in a system create a dictionary of the design
solutions, simplifying the communications among developers and maintainers. The presence of
design patterns can be considered an indicator of good software design [2], as design patterns
are reusable for their self definition. For these motivations they are very important during the
re-documentation process, in particular when the documentation is very poor, incomplete or not
up-to-date.

Since the introduction of design patterns the research community started to try to detect
them automatically. Many different approaches were developed, with different results, but no
approach reached a real visibility. Many causes concur to this situation. One is that the empirical
validation of the detection of design patterns is a long task, where expert designers must check
detected instances to validate and enhance an approach or a tool. Another one is that different
experts can assign different evaluations to the same pattern instance. This difference in the
evaluation of design patterns derives from the fact that patterns are defined as structures to
apply to solve a particular design issue, but their exact structure is not enforced. The definitions
given by Gamma et al.[74] give examples of UML class and sequence diagrams, examples of
source code, and a natural language definition of when to apply the pattern or not, how to apply
it and what consequences are to be expected from its application. Many different variants are
defined for each pattern definition, and many others can be created as needed.

In this kind of situation it would be desirable to have an agreed reference formal definition of
what is a pattern and what is not. While that reference is not available, some solutions can be
tried. One of these solutions is to have at least a shared and agreed dataset of pattern instances
as a test for design pattern detection tools. Some work has been done in this direction, and it is
getting relevance in the research community. An available work is from Fülöp et al. [73, 72] and
consists of a web platform for the benchmarking of reverse engineering tools, and another one is

1

DPDX [119], an exchange format developed by Kniesel et al. for design pattern detection tool
results. Another work in the reverse engineering benchmark field, called DPB [15], is developed
by our research group and is a web platform for the benchmarking of design pattern detection
tools. The development of DPB was part of my research during the PhD, but it is not addressed
in this thesis.

Another way of having a better-targeted detection would be to make it subjective to the
particular user or community. In fact, if it is possible to consistently evaluate many pattern
instances, it could be possible to teach a tool what is the wanted definition of a certain pattern.
This thesis proposes a solution to this kind of setup.

The solution proposed in this thesis exploits machine learning technologies [91, 161] to support
an iterative learn-by-example process in a design pattern detection tool, called MARPLE-DPD.
MARPLE [11] (Metrics and Architecture Reconstruction PLugin for Eclipse) is an Eclipse plugin
for software architecture reconstruction able to perform design pattern detection, developed
in our Software Evolution and Reverse Engineering Lab [14]. MARPLE-DPD shows a list of
pattern candidates to the user, who can evaluate them and train a classification algorithm. The
trained algorithm will be able to evaluate new pattern instances, returning a confidence value
telling how much each instance conforms to the learned model. The train-evaluation steps are
iterative, supporting an incremental analysis of the system, and keeping the evaluation effort as
low as possible.

Part of the solution is based on a particular modeling of design patterns, based on micro-
structures, which are a particular kind of basic information, or facts, about classes or other
recognizable pieces of code. Micro-structures have the peculiarity to be formally defined and
mechanically-recognizable, so they represent a reliable source of information for the abstraction of
a software system. Micro-structures are combined with the roles of design patterns to define the
models representing pattern instances, which are seen as tree-structured groupings of role-class
mappings.

The two main subsystems of MARPLE implementing the approach described in the thesis
are the Joiner and the Classifier modules. The Joiner module is able to extract design pattern
candidates from a software system. It represents the system as a graph, where the nodes are
the classes of the system and the edges are the micro-structure detected in the system. Then it
applies a graph matching query on the graph for each design pattern, and retrieves structured
groups of classes representing the pattern candidates. Each class is assigned to a role for the
respective design pattern.

The machine learning part of the detection process is implemented by the Classifier module,
which takes the candidates extracted by the Joiner as input. The pattern candidates can be
labeled as correct or incorrect by the user, and the Classifier module uses this information to
train clustering and classification algorithms. The trained algorithms are then exploited to
classify new candidates coming from the Joiner, without the need of another training session.
The user can decide when to add other labeled instances to the ones already present and re-run
the training of the algorithms.

In this thesis the detection process is carefully explained and some experiments are reported
to test the effectiveness of the process on five design patterns: Singleton, Adapter, Composite,
Decorator and Factory Method. The thesis is organized as follows.

In Chapter 2 the literature related to design pattern detection is reviewed, with particular
attention to the implemented tools; in particular, Section 2.4 discusses the approaches exploiting
machine learning or other kind of soft computing techniques.

In Chapter 3 the modeling aspect of reverse engineering is taken into consideration. A
selection of the existing models for reverse engineering and design pattern detection are reviewed,
discussing the differences among them and the ones integrated in MARPLE.

2

In Chapter 4 the MARPLE tool is introduced, describing its architecture and the Eclipse
technologies exploited for its different modules. The Information Detector and Software Ar-
chitecture Reconstruction modules are described, providing also examples of the reconstructed
architectural views. Finally, a prototypal distributed implementation of MARPLE is described.

In Chapter 5 the micro-structures defined for both reverse engineering and design pattern
detection are discussed. The concept of micro-structure is defined, and examples are given for
each of the kind of micro-structures supported in MARPLE: elemental design patterns, micro
patterns, design pattern clues.

In Chapter 6 the first design pattern detection module, called Joiner, is described. The
chapter explains the matching phase of the Joiner process, where role-class mappings are
extracted from source code, and the merge phase were the extracted role-class mappings are
grouped to build the final tree-structured pattern candidates. The merge phase is supported
by a model for the representation of design patterns, explained in Subsection 6.2.1. Finally,
the detection rules for the five patterns evaluated with the Classifier module in this thesis are
reported and explained. In Appendix A the definitions of the Joiner rules, for all the patterns of
the Gamma et al.’s book that are not used for the experiments, are reported.

In Chapter 7 the approach of the Classifier module is explained. The modeling issues related
to the representation of design patterns as feature vectors are addressed, and the strategy to
solve these issues is explained and justified; some enhancements to the basic solution are then
explained. Finally, the graphical interface and user interaction with the MARPLE-DPD are
described.

In Chapter 8 the report of the performed experiments is available. The tested machine learning
techniques, the detected patterns and the analyzed projects are described. The experimental
setup description is completed by the discussion of the approach employed to perform the
parameter optimization for the learning algorithms. Then the experiments results are reported,
showing and discussing the performance values obtained on the detection of five different patterns.
Finally, the limitations of the approach and the threats to validity are discussed. In Appendix B
the parameters of the machine learning algorithms setups whose performance are reported in
Chapter 8 are listed.

In Chapter 9 conclusions are drawn for the entire approach, and future work is outlined;
future work is about the extension of the experimentation to other patterns and algorithms, and
the enhancement of the support software and libraries exploited to perform the experiments.

The list of the papers published in the context of this work can be found at the end of the
thesis, in chapter Publications.

3

4

Chapter 2

Techniques and Tools for DPD

This chapter will introduce some related work about design pattern detection. Every approach
defines its different detection strategy and in some cases provides also a tool implementing the
strategy itself.

2.1 Classification of design pattern detection approaches

Since the introduction of design patterns by the book from Gamma et al. [74] many design
pattern detection approaches were proposed and experimented. They can be classified using the
following properties:

Analysis type The majority of the approaches available in the literature is based on static
analysis and is typically focused on the evaluation of the structural aspects of source code
(e.g. generalization, association, attributes and methods). Other approaches consider
useful to verify results coming from static analysis using dynamic analysis, i.e. recording
the behaviour of the system (method invocations) at execution time. A little number of
solutions relies on certain semantic information (i.e. naming conventions).

Recognition type The recognition of a design pattern instance can be exact or approximate. In
the first case the detection tool will consider only the results satisfying all the constraints
defined by a detection rule. Some techniques belonging to this category are: graph
matching (or isomorphism recognition) [128, 160, 115], pattern matching [3], regular
expressions [3, 25], SQL [1] queries, SPARQL [198] queries over RDF [159], constraint
solvers [110], first order logic [30]. In the second case the tool defines a minimum threshold
on the number of constraints an instance must satisfy to be reported as a result, or is able
to give a confidence or probability value to the matching. Some techniques belonging to
this category are: machine learning [69], fuzzy logic [138], genetic algorithms [87].

Input type Every tool executes its analysis starting from the information extracted from an
input system. The system must be coded in a specific programming language and can be
in binary or textual format.

Intermediate representation It is often useful to transform the information extracted from
the analyzed system in a more abstract format, to simplify the analysis of the system and
the query of the information itself. Among the most common representation types, used
by design pattern detection tools, are: Abstract Syntax Trees, Abstract Semantic Graphs,
Unified Modeling Language, or other ad-hoc meta-models.

5

2.2 Design pattern detection tools

This section will introduce some of the best known design pattern detection tools available
in the literature. The descriptions are organized following the classification introduced at the
beginning of the chapter, exploiting the Analysis type and the Recognition type criteria. In
particular, tools are first subdivided by these categories: tools based on static analysis and tools
based on dynamic analysis; each category has a further categorization for tools providing exact
or approximated recognition. For each tool, if an official homepage exists, it is specified after
the tool’s description.

2.2.1 Static analysis with exact recognition

Pat

Pat is a tool based on the approach from Kramer et al. [122]. The tool proposes a methodology
based on the structural analysis of the code, targeted to the creation of a Prolog knowledge base.
The knowledge base, integrated with a set of rules derived from the design pattern definitions,
can be queried to provide the set of detected patterns. The approach is limited to structural
patterns.

DP++

DP++, developed by Bansiya [28], proposes an approach to design pattern detection based
on the recognition of structural relationships among the components of the analyzed system.
The design pattern detection process description is not detailed, so other comments are not
possible.

SPOOL

SPOOL a design pattern detection tool built following the approach defined by Keller
et al. [114] in the context of the SPOOL (Spreading Desirable Properties into the Design of
Object-Oriented, Large-Scale Software Systems) project. The tool proposes a procedure split in
two phases: an automatic one and an interactive one. In the first phase some generic pattern
structures are identified. Next they are graphically visualized (using UML/CDIF) to the user,
who will refine the selection, deleting wrong results and completing the correct or partial ones.

Hedgehog

Hedgehog is a tool defined following the approach from Blewitt et al. [39]. The approach
defines a new first order logic language, called SPINE, which allows to describe some structural
and behavioural (called semantic in the paper) aspects of a design pattern in synthetic syntax
similar to Prolog. The structure of a design patter is decomposed into mini-patterns and idioms.
Pattern descriptions can be interpreted by a dedicated system, able to test if a class satisfies the
pattern requirements or not.

JBOORET

JBOORET (Jade Bird Object-Oriented Reverse Engineering Tool), developed by Hong et
al. [101], analyzes C++ source code, filling a database using the extracted information. That
information is then used to reconstruct high level views of the analyzed code. The user can
explore the obtained models to visually look for design pattern instances.

6

Ptidej

Inspired by the approach from Albin-Amiot et al. [4], and furtherly developed by Guéhéneuc
et al.[134], Ptidej (Pattern Trace Identification, Detection, and Enhancement in Java) proposes a
solution based on the modeling of design patterns as entities in the PADL model, easy to handle
and analyze. Models can be interpreted as a set of constraints a piece of code must satisfy to be
considered a pattern instance.

Homepage http://www.ptidej.net

SPQR

SPQR (System for Pattern Query and Recognition) was conceived basing on the approach
developed by Smith and Stotts [170], who propose a detection based on ρ-calculus and on the
usage of the OTTER theorem prover1. The data necessary to the automatic elaboration by
OTTER are retrieved from source code, analyzing the abstract syntax trees exported by the
gcc compiler. The abstract syntax trees are analyzed and the retrieved facts are saved in an
exchange file, and then transformed to the OTTER input format. The facts about the code are
called EDPs (Elemental Design Patterns). OTTER than evaluates the ρ-calculus rules against
the system model and determines if pattern instances are present. SPQR is able to detect
structural patterns.

CroCoPat

CroCoPat, realized during the development of the research from Beyer et al. [34], is a query
tool for relational data. It takes RSF (Rigi [191] Standard Format) files as input, which is a
popular exchange and persistence format among reverse engineering tools. From the RSF it
derives binary decision diagrams (BDDs). The BDDs, combined to computation techniques
based on logic predicates, provide a formal analysis of the system, allowing the detection of
patterns using logic queries.

Homepage http://www.sosy-lab.org/~dbeyer/CrocoPat/

DPRE

DPRE (Design Pattern Recovery Environment) is a visual environment based on the approach,
composed of two phases, developed by Costagliola et al. [51]. In the first phase a UML class
diagram is extracted from the source code. The diagram, encoded in SVG, is submitted to a
second module having the goal to inspect the diagram, which applies graph matching techniques
to detect design patterns in the system.

PINOT

PINOT (Pattern INference recOvery Tool) is a tool based on the approach defined by Shi
et al. [167], who argue against the techniques available in the former literature, and propose a
re-classification of design patterns, paired with a different per-category detection process. The
approach exploits the structural and behavioural characteristics of each group of patterns and
promises to provide a more accurate and fast detection. The tool is developed as a modification
of the jikes [103] open source Java compiler.

1http://www.cs.unm.edu/~mccune/otter/

7

http://www.ptidej.net
http://www.sosy-lab.org/~dbeyer/CrocoPat/
http://www.cs.unm.edu/~mccune/otter/

Homepage http://www.cs.ucdavis.edu/~shini/research/pinot/

DP-Miner

DP-Miner was developed by Dong et al. [60], who introduce a solution composed of three
phases. The first one is the structural analysis of source code: data retrieved from the class
diagram are compared to a set of metrics related to the definitions of design patterns. The
results of the first phase are refined by a second behavioural analysis, and by a third syntactic
analysis, where some naming conventions are verified.

Homepage http://www.utdallas.edu/~jdong/DesignPattern/DP_Miner/index.htm

DPJF

DPJF (Detection of Patterns by Joining Forces) is a tool developed by Binun and Kniesel [37].
The authors define a methodology based on the optimized usage of different existing analysis
strategies. The presented solution derives from the accurate study of the weaknesses of previous
approaches. The reached goals are 100% precision, excellent recall values and execution time,
which makes the approach eligible for real-time detection of patterns with the direct support of
the user. The tool is also able to raise a warning to the user if a detected pattern is incomplete,
and to trigger the correct refactoring to reach a complete implementation.

Homepage http://sewiki.iai.uni-bonn.de/research/dpd/dpjf/start

Web Of Patterns

One of the distinguishing feature of Web Of Patterns (WOP), developed by Dietrich and
Elgar [57, 59], is the attention paid to the specification of the information associated to the
recognized instances. The information is conforming to an OWL ontology, published on the
project web page[58]. The technique adopted by the tool is the verification of formulas described
using first-order logic.

Homepage http://www-ist.massey.ac.nz/wop/

Rational Software Architect

Rational Software Architect (RSA) is a commercial suite developed by IBM. The employed
techniques for the detection are not publicly available, but it is possible to conjecture that the
tool exploits static analyses, because there is no request for an execution setup. The tool does
not associate confidence values to the detection, so it is possible to think that it employs exact
matching techniques.

Homepage http://www.ibm.com/developerworks/rational/products/rsa/

D-CUBED

A tool developed by Stencel et al. [177]. The design pattern detection rules are specified
using first order logic. They are then transformed into SQL queries, to be applied on a database
containing a model of the analyzed application.

Homepage www.yonlabs.com/dcubed.html

8

http://www.cs.ucdavis.edu/~shini/research/pinot/
http://www.utdallas.edu/~jdong/DesignPattern/DP_Miner/index.htm
http://sewiki.iai.uni-bonn.de/research/dpd/dpjf/start
http://www-ist.massey.ac.nz/wop/
http://www.ibm.com/developerworks/rational/products/rsa/
www.yonlabs.com/dcubed.html

2.2.2 Static analysis and approximated recognition

Columbus

Columbus is a design pattern detection tool for C++ based on the approach from Ferenc
et al. [69]. The tool combines machine learning techniques and “classic” approaches based on
graph matching. The detection process consists of a first transformation of the code into an
Abstract Semantic Graph (ASG), and then matched against the definition of the supported
design pattern; the instances are represented using other kinds of information, representing
non-structural information, and then submitted to a machine learning system.

DPD-tool

Developed by Tsantalis et al. [195], who choose to represent the analyzed system as an
inheritance tree and a set of n × n matrices (where n is the number of classes), containing
structural information (e.g. associations, generalizations, method invocations). The detection
starts with an exploration of the inheritance tree and can be expanded to the analysis of the
matrices. A score is assigned to each analyzed class, which determines the similarity with a role
of a design pattern.

Homepage http://java.uom.gr/~nikos/pattern-detection.html

2.2.3 Dynamic analysis with exact recognition

Design Pattern Verification toolKit

DPVK (Design Pattern Verification toolKit) is a tool developed by Wang and Tzerpos [199].
The employed approach is composed of a first static code inspection, where a matching is
performed against structural pattern definitions, followed by a dynamic analysis, which allows
to refine the results using the information about the behaviour of the classes in the pattern
instances.

mb-pde

mb-pde, developed by Marcel Birkner [38], supports the recognition of a great number of
design pattern, providing a good flexibility in the definition of recognition rules. The detection
process is composed of a first static analysis, where the information extracted from the source
code is compared with the UML class diagram of the wanted design pattern. In the next phase,
the tool compares the execution trace of an instrumented version of the system with a UML
sequence diagram of the same pattern. Then the acquired information is compared to provide
the matching degree between the system and the diagrams.

Homepage http://code.google.com/p/mb-pde/

ePAD

ePAD is an Eclipse plugin, developed by De Lucia et al. [55], which detects structural and
behavioural design patterns. The detection process is composed of a first static analysis phase,
which extracts an UML class diagram from the source code and applies pattern matching against
a text representation of the diagram. The found instances are then filtered using dynamic
analysis over an instrumented version of the system.

9

http://java.uom.gr/~nikos/pattern-detection.html
http://code.google.com/p/mb-pde/

Homepage http://www.sesa.dmi.unisa.it/ePAD/

2.2.4 Dynamic analysis with approximated recognition

Fujaba-Reclipse

Developed following the approach from Niere et. al. [139], and refined later by Wendehals [200].
The tool performs the translation of the system source code in an abstract syntax graph (ASG).
The graph is matched against a set of detection rules. The detection process is helped by the
user, to reduce false positives and avoid useless computations. In particular, the user has to set
the fuzzy thresholds for the different sub-patterns present in the rule, influencing the detection.
Each matching is fuzzy itself, bringing its fuzzy value.

Homepage http://www.fujaba.de/no_cache/projects/reengineering/reclipse.html

2.2.5 Details about the reported tools

This section contains three tables, reporting relevant information about the tool described in
Section 2.2. The tables are provided as a synthesis of the available information about the tools,
and to facilitate comparisons.

Some information contained in the tables is taken from a survey written by Dong et al. [61].
Table 2.1 compares the tools regarding the design patterns they can recognize.
Table 2.2 compares the tools reporting some generic characteristics, i.e. supported languages,

export format, documentation availability and last update.
Table 2.3 reports the systems analyzed by the tools’ authors during their development and

test. The reported data can be used also as an indirect estimation of the reliability and scalability
of the tools.

2.3 Theoretical design pattern detection approaches

Other design pattern detection approaches exist in the literature, other than the ones reported
in Section 2.2, but they have never been implemented as a tool known to be available freely,
commercially or under specific request. This section collects a significant set of these approaches,
following the same classification of Section 2.2: static or dynamic analysis combined with exact
or approximated recognition.

2.3.1 Static analysis with exact recognition

Seemann and von Gudenberg (1998)

Seemann and von Gudenberg [164] introduce an approach based on the analysis and refining
of a graph representing the structure of the analyzed system’s codebase, exploiting first order
logic. Results are reported on the detection of structural patterns.

Antoniol et al. (1998)

Antoniol et al. [5] define an approach that transforms the source code in an intermediate
model, based on the formalization of existing concepts in object-oriented languages. Design
patterns are detected matching their definition, formalized using a set of metrics, with the same
metrics extracted from the source code model.

10

http://www.sesa.dmi.unisa.it/ePAD/
http://www.fujaba.de/no_cache/projects/reengineering/reclipse.html

Table 2.1: Design patterns supported by the reported tools

Tool A
bs
tr
ac
t
Fa

ct
or
y

A
da

pt
er
/C

om
m
an

d

B
ui
ld
er

B
rid

ge

C
ha

in
of

R
es
po

ns
ib
ili
ty

C
om

po
sit

e

D
ec
or
at
or

Fa
ca
de

Fa
ct
or
y
m
et
ho

d

Fl
yw

ei
gh

t

M
ed

ia
to
r

O
bs
er
ve
r

Pr
ot
ot
yp

e

Pr
ox
y

Si
ng

le
to
n

St
ra
te
gy

/S
ta
te

Te
m
pl
at
e
M
et
ho

d

V
isi
to
r

Columbus × ×
CroCoPat — information not available —
D-CUBED × × × × ×
DP++ — information not available —
DPJF × × × × ×
DPD-tool × × × × × × × × ×
DP-Miner × × × ×
DPRE × × × × ×
DPVK — information not available —
ePAD × × × × × × × × × ×
Reclipse × × ×
Hedgehog × × × × × ×
JBOORET — user-driven recognition —
MARPLE × × ×
mb-pde × × × × × × × × × × × × × × × × ×
Pat × × × × ×
PINOT × × × × × × × × × × × × × × × ×
Ptidej — user-defined recognition algorithms —
RSA × × × × ×
SPOOL × × × × ×
SPQR — user-defined recognition algorithms —
WOP × × × × × × ×

11

Table 2.2: Main characteristics of cited tools
Tool Supported lan-

guages
Export Documentation Last update

Columbus C++ n/a n/a n/a
CroCoPat Java RSF Yes 02/2008
D-CUBED Java n/a n/a n/a
DP++ C++ n/a n/a n/a
DPJF Java Prolog Yes 11/2011
DPD-tool Java XML Yes 05/2010
DP-Miner Java XML Yes 01/2010
DPRE C++ e Java n/a n/a n/a
DPVK Eiffel n/a n/a n/a
ePAD Java not supported Yes 10/2010
Reclipse Java not supported Yes 10/2011
Hedgehog Java n/a n/a n/a
JBOORET C++ n/a n/a n/a
MARPLE Java XML n/a 12/2011
mb-pde Java XML Yes 03/2008
Pat C++ n/a n/a n/a
PINOT Java unstructured text Yes 10/2004
Ptidej Java semi-structured

text
Yes 04/2006

RSA Java XML Yes 11/2011
SPOOL C++ n/a n/a n/a
SPQR C++ XML n/a n/a
WOP Java XML Yes 1.4.3

12

Table 2.3: Experimentations made on the cited tools

Tool Ja
va

AW
T

Ja
va

Sw
in
g

Ja
va

IO

Ja
va

JD
K

JH
ot
D
ra
w

JR
ef
ac
to
ry

JU
ni
t

JE
di
t

A
rg
oU

M
L

Ec
lip

se

B
at
ik

Ja
sp
er
R
ep

or
ts

St
ar
W
rit

er

Tr
ac
ke
rL

ib

G
al
ib

Li
bg

+
+

M
ec

O
th
er
s

Columbus ×
CroCoPat × × × ×
D-CUBED — information not available —
DP++ — information not available —
DPJF × × × × ×
DPD-tool × × ×
DP-Miner × × × ×
DPRE × × × ×
DPVK — information not available —
ePAD ×
Reclipse ×
Hedgehog ×
JBOORET — information not available —
MARPLE × ×
mb-pde — information not available —
Pat — information not available —
PINOT × × × ×
Ptidej × × × ×
RSA — information not available —
SPOOL ×
SPQR × ×
WOP — information not available —

13

Asencio et al. (2002)

Asencio et al. [24] represent patterns as classes with links to other patterns, software
qualities, design concepts, and applicability conditions. Each pattern is associated with one or
more recognizers. They employ a set-theoretic, structural specification language for describing
recognition assets. Using this language, recognizer authors construct specifications of a pattern’s
template. Each recognizer is not intended to be a perfect solution, but should be easily changeable
and extensible by interested users.

Espinoza et al. (2002)

Espinoza et al. [64] conjecture that design patterns can be described using a model defining the
structural relationships existing among their components. The relationships can be: inheritance,
aggregation, knowledge or creation (as defined by the original design pattern book [74]). Once
described the source code using the same model, the detection is performed matching the
definition against the source code model. The approach allows the detection of structural
patterns.

Zhang et al. (2004)

Zhang et al. [204] propose to represent an analyzed system using extended graphs, based
on these relationships: association, composition and inheritance. The detection of patterns is
performed as a graph matching task, looking for isomorphisms, complete or between sub-graphs.

Streitferdt et al. (2005)

Streitferdt et al. [179] introduce a solution based on a new paradigm for the description of
design patterns, where the structure of each pattern must be characterized by a set of elements
that can be necessary, forbidden (negative) or “don’t-care" (to ignore). That solution would
allow a better detection of pattern variants.

Kaczor et al. (2006)

Kaczor et al. [111] formulate the design pattern detection as a combinatorial problem,
proposing a bit-vector based solution. The proposed algorithm allows an efficient detection,
computationally independent from the size of the analyzed program.

Bayley et al. (2007)

Bayley et al. [30] propose an approach based on the description of the detection rules in
first-order logic. The rules are applied to a model of the system defined using the GEBNF
meta-model, that can be represented using sets and first-order logic. GEBNF is a modified
EBNF version that allows the description of any graphic model. The model represents the UML
class diagram of the systems. Rules are matched using a theorem prover.

Gupta et al. (2010)

Gupta et al. [88] propose an approach based on graph matching over UML class diagrams.
In particular, the approach has a first phase where nodes and edges are labeled in terms of their
depth and nature, and a second search phase, where the DNIT search algorithm is applied.

14

Rasool et al. (2010)

Rasool et al. [158] propose an innovative approach based on the introduction of annotations
in the analyzed system’s source code. The usage of annotations would allow a simple and direct
knowledge transfer among the different people involved in the system design and maintenance.
The choice of the specification language to adopt into the annotations is up to the user.

2.3.2 Static analysis with approximated recognition

Guéhéneuc et al. (2004/2010)

Guéhéneuc et al. [84, 86] exploit machine learning to solve the design pattern detection
problem. They propose to have a first step of information gathering, where a human agent
retrieves and classifies a significant sample of micro-architectures, representing pattern instances.
The second step is automated: a tool analyzes the code, matching metrics calculated on the
input sample.

Guéhéneuc and Antoniol (2008)

Guéhéneuc and Antoniol [85] introduce a three-tier approach for the identification and
traceability of micro-architectures in the source code. The approach uses meta-models, which
can be applied to model the source code and the wanted design patterns. A support tool will
transform the description of each design pattern in a set of constraints, to be used for the
detection of the patterns into the model representing the system.

2.3.3 Dynamic analysis with exact recognition

Heuzeroth et al. (2003)

Heuzeroth et al. [96] propose an approach where a first analysis of the source code is made
using the Recoder tool, which is able to extract an abstract syntax tree (AST) from the source
code. A static analysis is performed on the AST, which retrieves a list of pattern candidates.
The list is refined using dynamic analysis. The approach is able to recognize structural and
behavioural patterns.

Hayashi et al. (2008)

Hayashi et al. [95] describe an integrated approach based on static and dynamic analysis. The
design patterns supported by the detection process are described as Pree’s meta-patterns [153].
This choice brings a reduction in the elaboration time, by simplifying the detection process. The
detection of pattern instances is made using search rules written as Prolog predicates.

2.4 Machine learning and design pattern detection
The focus of this thesis is the exploitation of data mining techniques for design pattern

detection, so the relevant approaches applying some kind of machine learning or soft computing
techniques need to be discussed in more detail.

Ferenc et al. [69], in their Columbus tool, define an approach similar to the one explained in
this thesis. The similarities is in the fact that they use machine learning algorithms to filter
false positives out of the results of a graph matching phase, trying to provide better precision to
the overall output. The main differences with their approach are three: the modeling approach,
the employed techniques and the usage of the confidence values of the classification algorithm.

15

The modeling approach taken in consideration by the authors is to represent each pattern
instance as a labeled dataset row, having has features the values of predictors, defined for the
specific pattern in consideration. Predictors are measures over a pattern instance, reporting the
value of a metric or particular property of the entire instance or one of its parts. Predictors
are similar in definition and scope to the micro-structures (see Chapter 5) used in this thesis
as features, but they are defined over an instance and not over classes. Micro-structures are
collected indiscriminately on each class of the system and used as features to represent the
property of one specific class or pair of classes. Moreover, the value of the micro-structures,
when used as features, is boolean.

The techniques employed in the cited paper are C4.5 decision tree and neural networks with
back propagation. In the experiments reported in this thesis the focus is more on Support Vector
Machines, but also some other common algorithms (including C4.5) have been experimented. In
particular, the proposed implementation is “algorithm-agnostic” in the sense that every possible
learning algorithm available (or adaptable to) the Weka [91] framework can be employed. No
neural network was experimented.

Finally, the last difference is that the MARPLE tool reports the confidence value (if available)
of the classifier to the user, enabling a ranking of the reported pattern instances; the confidence
value enriches the knowledge about the reported pattern, simplifying the user’s choice of which
pattern to inspect first.

Another approach based on machine learning is the one from Guéhéneuc et al. [84, 86]. The
authors use standard metrics as features for the machine learning process. The main differences
are two: machine learning is not employed as a filter and the modeling phase is different.

The approach is based on a single detection step, where for each class of the systems a set of
metrics are recorded, and used in the learning and validation by a rule learner. The rule learner,
therefore, is not used to filter out false positives produced by an initial matching performed by
some other kind of detector. The training set is produced by the user labeling a set of classes as
belonging to a role of a design pattern (or not), without tool help.

The dataset construction and modeling is very different from the one described in this thesis:
rules for each design pattern role are learned independently, and the dataset is filled with a
proportion of true instances vs. false instances of 1 to 3, respectively. As opposed, my approach
uses the combination of all the roles belonging to a design pattern to enhance to learning phase.

The main commonality between the two approaches is that the Weka environment is used
(not surprisingly, as it is the most common machine learning framework for Java), even if the
usage of the JRip learner by the authors could be easily extended to any other classifier supported
by Weka. In fact, the only advantage of using JRip is that it produces readable rules that can be
interpreted by the user. The Guéhéneuc et al. assert that the learned rules are the “fingerprints”
of the design patterns, and build their paper on that metaphor. One could argue that, using the
same learning process, and exploiting other classifiers, the internal model of any trained classifier
can be considered as the “fingerprint” of the pattern, even if it is not directly comprehensible by
the user. After all, also human fingerprints are not distinguishable by people, by eye.

Tsantalis et al. [195] use similarity scoring among matrices to allow partial matching between
the definition of a pattern and the reported instances. The main difference is that the similarity
algorithm is not a machine learning technique. This is a great advantage from the user’s effort
point of view, because the algorithm does not need to be trained and is stable from user to
user; the only setup task is to set the threshold for the score, which is discussed in the paper.
The most significant similarity with the approach presented in this thesis is that the similarity
scoring could be reported to the user, giving the idea of the amount of matching.

Similarly, the approach implemented in Fujaba by Niere et. al. [139] is to give to each
subpattern matching a fuzzy value, that will influence the scoring of the entire pattern. In the

16

same fashion, the user can give different fuzzy weights to the different subpatterns to influence
the overall matching. The authors wish to automatically set the fuzzy weights using machine
learning techniques in future work, which I am not aware of.

The approach of the DeMIMA tool, from Guéhéneuc and Antoniol [85] is a kind of hybrid
one. It does not use machine learning, but it exploits a constraint solver, called JPalm [110], to
perform an exact detection. JPalm performs an explanation-based constraint solving, which
means that the results are paired with the list of the matched (or not) constraints. On top of
the constraint solver, an interactive procedure asks the user (if he wants) to remove one or more
constraints, therefore relaxing the constraint and including more results, which are imperfect
design pattern instances. The amount of relaxation is used by the tool to give a score to the
pattern instance. The only learning process in the approach is the interactive relaxation made
by the user, who can decide to stop the process. The use of a scoring that uses a fixed scheme
and is not inferred from examples can be discussed with the same considerations applied to the
two previously discussed approaches.

2.5 Conclusion
Researchers tried to detect design pattern instances in source code since their introduction in

1995. The applied techniques span many areas, like graph theory, constraint satisfaction, fuzzy
sets, machine learning, computation of similarity measures. The amount of available literature
suggests an optimal solution has not yet been found. Many causes concur to this situation:
design pattern definitions, programming languages, the environment that hosts the detection
process.

The definitions of design patterns are traditionally given in a semi-formal or informal way,
mixing UML diagrams, textual descriptions and code examples. The focus of the definition of
the pattern is often on the pattern’s intent, and not on the solution. This raises the known
problem of variants, but also a more subtle problem of agreement around what can be considered
a pattern or not. Some authors prefer to use the term design motif [85] detection, instead of
design pattern detection, because motifs are the concrete realizations of the patterns we want to
detect. The point is good, but my personal opinion is that the task does not change by changing
its name: the goal is to find subsystems where a particular design pattern was applied. A more
useful option would be to start formalizing better the definitions of patterns from the point of
view only of the design, considering also the mid-level of abstraction of the patterns. In fact, a
lot of the debate on the correctness of a pattern instance is in the intent and behaviour, which
are not really related to the design. A correctly implemented pattern instance, but implemented
for the wrong reason, is still a correct one. From the assessment perspective it would be more
useful to have better design information, not necessarily related to particularly high-level intent
information. In this context, the specification of new pattern definitions could be the way to go.

Design pattern detection is influenced also by the particular constructs of programming
languages: every new native construct of a language could implicitly implement (and eliminate
the need for) a particular design pattern. In this sense, design patterns could be seen as
suggestions for what next-generation languages should allow to directly implement.

The last variable for the pattern detection is the kind of usage and interaction expected:
some tools tend to implement a traditional assessment task, in a batch fashion, while other ones
model the task as an interactive and/or contextual one. Moreover, some approaches want the
user to collaborate with the detection algorithm, while others, in a more traditional way, think
that the process should be totally automated.

17

18

Chapter 3

Model driven reverse engineering

Reverse engineering tasks are often supported by models. Models are the way techniques
or tools are able to abstract from the input representation of the systems, i.e. source code or
binaries. The abstraction of the concepts related to the features of the programming languages
allows reverse engineering tools to be more independent from the single language, focusing on
the key concept related to the programming paradigm and the structural information relevant to
the reverse engineering task. Moreover, abstracting means also representing the input by using
less information, and improving the speed of any analysis. Many models have been proposed or
implemented in the reverse engineering research community, and also MARPLE defines its own
model for the representation of the system and of design patterns. The remainder of this chapter
contains a review of a selection of models and meta-models in the reverse engineering area; in
particular the available models for the representation of design patterns will be discussed. The
related work will be useful to understand the commonalities and differences among the existing
models and the ones used in MARPLE.

3.1 Reverse engineering models

3.1.1 Knowledge Discovery Metamodel

KDM (Knowledge Discovery Metamodel) [145] is a meta-model defined by the Architecture-
Driven Modernization (ADM) Task Force [137, 143] of the Object Management Group (OMG) [146],
defined using MOF [141]. The specification is composed of a set of meta-models that, com-
bined, are able to provide a complete and accurate representation of an existing software
system, independent from its programming language and from the technologies exploited for its
implementation.

The collection of meta-models composing KDM can be seen as a holistic and extensible
representation schema, with the aim of describing the key aspect of the knowledge associated to
the different aspect of an enterprise software system.

The goal of KDM is to define a shared and complete representation, able to guarantee the
interoperability of different tools, and to efficiently support maintenance, evolution, assessment
and modernization activities.

The widescale adoption of KDM would allow to abandon source code as the only agreed
knowledge reference of a system, and to adopt a more abstract representation as a knowledge
base, which would be independent from the employed technologies and the operational context.

A representation with these characteristics would permit the authors of analysis tools to
focus on the development of useful techniques for their goals, and to be able to demand to
third-party, standard-compliant, tools the task of the extraction of the model from the source

19

code. A full separation of the program parsing and analysis would be achieved.
KDM is designed to simplify the analysis process based on incremental activities, where an

initial representation, produced by an automatic code inspection, is gradually enriched by design
details, coming from other tools or from expert users working on the extracted model.

Structure of KDM

Figure 3.1: KDM: graphic representation of the meta-model

KDM is designed as a meta-model composed of nine meta-models, or packages, subdivided
in four layers (see Figure 3.1). Each layer provides a new higher abstraction level.

The implementation of a layer requires the adoption of all the underlying layers, and every
layer, excluding the first, is optional and must be used with respect to the context and the
analysis goals.

In the following there is a short description of the four layers cited above, and their respective
packages.

• Infrastructure layer: Gathers the fundamental concepts in KDM.

– Core: Defines a set of element types, the constraints belonging to these elements, and
the relationships it is possible to define among them. Each relationship is binary, and
represents a semantic association between the entities it links.

– Kdm: Defines a set of elements representing KDM’s representation framework.
– Source: Defines the entities used to elicitate the traceability references among KDM

elements and the artifacts representing the analyzed system’s source code.

• Program elements layer: Contains the definition of entities necessary for the description of
the fundamental constructs shared by the majority of programming languages.

20

– Code: Defines the necessary entities for the description of the elements, and their
structural relationships, contained in an analyzed source code.

– Action: Defines useful concepts for the description of the behavioural characteristics
of a system. In particular, using this package, it is possible to describe control and
data flows between pairs of elements extending the Code package.

• Runtime resource layer: Represents the operating runtime environment of a software system.

– Platform: Defines the basic dictionary to use to describe the elements building the
operating environment of the considered system (e.g. OS, middleware) and the logic
flows among them at runtime.

– UI: Defines the entities that can be used to describe concepts related to the system’s
user interface.

– Event: Represents the knowledge associated to the events and state transitions that
are observable in the runtime phase.

– Data: Allows describing the artifacts used for data persistence, e.g. RDBMS, struc-
tured files.

• Abstractions layer: Represents different types of domain and application abstraction.

– Conceptual: Defines the practical tools needed to describe the business rules and the
domain constraints.

– Structure: Allows the description of the logical structure of a system in terms of
logical sub-components or modules, layers and sub-systems.

– Build: Represents the characteristics of the resources generated during the build
process.

Diffusion

To the best of my knowledge, at the moment of writing this thesis, the usage of KDM
is limited to a project, now hosted by the Eclipse Foundation [186], called MoDisco [62, 43].
The low interest demonstrated by the research community towards KDM, could be caused to
the complexity of the detailed specification, combined with its level of maturity or to the low
visibility of the project in the scientific literature.

Documentation

The KDM meta-model is widely documented in the official specification documents [144]
and in some documentation pages on the KDM Analytics organization website [112].

Final considerations

KDM is with no doubt the most complete meta-model currently available in the literature,
and the one with the more detailed specification.

The possibility to represent a software system using different levels of abstraction, catching
only some aspects and discarding others, allows the developer to move in different directions,
following his analysis needs, and to rely on other complementary tools if it is possible to reuse
functionalities which have already been developed by others.

The meta-model provides great expressiveness and is perfectly extensible.

21

3.1.2 FAMIX

FAMIX [56] is a meta-model, defined using the FM3 [123, 172] meta-meta-model, which is
a simplification of EMOF [141]. It is designed to represent the static properties of a software
system, and to be independent from the programming languages used for the implementation of
the system. The meta-model supports procedural and object-oriented languages.

The main goal of this meta-model is the definition of a schema, sufficiently complete to
satisfy the needs of reverse engineering tools and refactoring tasks.

It considers a limited number of entities and the resulting schema, even if it is less complete
than the one provided by the KDM specifications, has many interesting characteristics that
make it adaptable, easily extensible and simply exploitable in a practical context.

Among the distinguishing characteristics of the schema are:

• the support for multiple inheritance;

• the support of statically and dynamically typed languages;

• the possibility to represent exceptions and annotations.

Structure of FAMIX

At the moment of writing, these FAMIX specifications are available:

• FAMIX 2.2 [189];

• FAMIX 3.0 (beta) [190].

The first one is very tied to the object-oriented paradigm and aims to isolate shared
characteristics of different programming languages, grouping them in a bottom-up fashion.

The second one, instead, allows abstracting more from the constructs adopted by the
single supported languages, and aims to a meta-model that can be sufficiently generic for the
comprehension of a larger and heterogeneous set of systems.

In order to have more detailed information about FAMIX 3.0, it is possible to refer to the
class diagram represented in the documentation pages on the official web site [190].

Diffusion

FAMIX is adopted, and was born for, the Moose [140, 174] open source project. In fact, the
project, started in 1996, has the meta-model’s authors among his authors.

The Moose platform allows the translation of the source code of a software system in a
FAMIX model. The model, enriched also with metrics information, can be then employed in the
analysis of the system. Among the available functionalities of the tool are: modeling, metrics
computation, software visualization, duplicated code detection.

The FAMIX meta-model, and the whole Moose framework, are implemented using Smalltalk,
to simplify the exploration of the data contained in the model. In fact, one of the benefits of
this technological choice is the ability to navigate the contents of the instantiated models using
a native query language inherited by the Smalltalk language.

Every FAMIX model can be serialized to file using the MSE [173] format, which is a textual
format able to represent any model whose meta-model was defined using FM3.

22

Documentation

The FAMIX meta-model is partially documented in the original author’s PhD thesis [188]
and on the Moose project web site [77]

The data in the first document are not up to date and refer to the first version of the meta-
model, while the information available on the web site is fragmented and not much formalized.
The most up to date information is the source code of the FAMIX implementation in Moose.

Final considerations

FAMIX shares many characteristics with the Program elements layer of KDM. Each of them
is used to describe the static characteristics of a system, at the level of the constructs existing in
the source code.

KDM offers a more detailed and clear reference documentation, while FAMIX is more
limited in the number of defined entities and in the documentation quality. Despite the lack of
documentation, FAMIX has many interesting characteristics and a hierarchical structure that
is simple to understand. The probable motivation of this difference is that FAMIX was built
relying on the experience gained during the development and testing of the Moose platform, in
research and industrial projects, while KDM, which comes from an industry-oriented consortium,
is designed as a holistic standard proposal. Finally, if FAMIX had a more organic documentation,
it could be considered as a reduced version of the KDM’s Program elements layer, because they
share the same kinds of abstraction.

3.1.3 Dagstuhl Middle Model

Dagstuhl, or Dagstuhl Middle Model (DMM), is a meta-model, compatible with the GXL
format [97], developed in the context of an international research project started in 2001 within
the Dagstuhl Seminar on Interoperability of Re-engineering Tools [124].

The main feature of the meta-model is to base its definition on the distinction, in the
representation of a software system, of the distinct and well-separated macro areas: references to
source code (ModelObject), code elements (SourceObject) and relationships among code elements
(Relationship).

The overall goal of DMM is to define a meta-model able to abstract from low-level details
(i.e. the particular features or constructs of specific programming languages), and at the same
time to ignore features usually modeled by other high-level meta-models, e.g. components, pipes,
filters.

DMM was not born as a complete and omni-comprehensive model, but is proposed instead
as an agile tool to be practically applied in reverse engineering projects.

The authors of DMM did the choice of ignoring some kind of entity:

• references to method or procedure calls;

• assignments and control statements;

• local variables.

The consequences of these choices can be summarized by these assertions:

• DMM does not model enough details to reconstruct the original source code after the
population of the model;

• DMM does not model enough details to generate a data flow diagram.

23

Structure of DMM

As already introduced, DMM poses the focus on the distinction among SourceObject, Mode-
lObject and Relationship (as shown in Figure 3.2) elements. The complete specification of the
model contains a rich inheritance of elements, each one extending one of these three elements.

Figure 3.2: DMM: graphical representation of the meta-model

The first can be interpreted as a simple link to source code. By using the entities extending
it, it is possible to contextualize a ModelObject representation.

ModelObject can represent any type of programming language construct, in the procedural
or object-oriented paradigm. The representable entities can be, for example, methods, routines,
classes, variables and other constructs that are significant for a structural or behavioural static
analysis.

Relationship, finally, represents relationships that can exist among elements of type SourceOb-
ject↔SourceObject, ModelObject↔ModelObject and SourceObject↔ModelObject.

The elements described in this subsection can be extended and enriched is needed. The
interoperability of the model is guaranteed by the presence of the common superclasses defining
the basic dictionary, which is common to all the tools supporting the meta-model.

Each model can be translated in every format supporting the concepts of class, instance and
association among instances, e.g. GXL [102, 99], XMI [142], RDF [159].

Diffusion

The Dagsthul Middle Model was experimented in the context of a project for metrics
calculation from Java code [132].

Documentation

The meta-model is documented in the PhD thesis of the author [126] and in a document
published by Lethbridge et al. [125]. The project has no official web site and it is possible to
conjecture that was abandoned.

24

Final considerations

The Dagsthul Middle Model is an interesting simplified variant of other more complete
meta-models, like KDM (limiting to the Program elements layer) and FAMIX. Its strength is in
the extreme simplification of concepts and their clear distinction.

With respect to FAMIX it is possible to notice:

• the absence of an explicit management of exceptions: no entities were defined to represent
exceptions and the entities with type Method have no reference to other classes in case of
exception;

• the presence of entities able to explicitly manage aggregation classes like Collection or
Enumeration;

• the presence of a wider and more logically organized hierarchy of entity relationships;

• the presence of a number of additional attributes in the Method entity, e.g. isConstructor,
isDestructor, isDinamicallyBound, isOverridable;

• the absence of an entity representing packages or namespaces.

Unfortunately, the absence of an exhaustive documentation and of a reference implementation
drastically reduces the value of the meta-model. The extensibility of the model is guaranteed by
the compliance with the GXL specification.

3.1.4 Pattern and Abstract-level Description Language

Pattern and Abstract-level Description Language (PADL) [155] is a meta-model developed
for the Ptidej tool from Gueheneuc et al. [85].

Structure of PADL

Three different levels of abstraction are used to model programs, which are called abstract-level
models (see Figure 3.3):

• ICodeLevelModel represents the information about a program that can be directly extracted
from the program representation;

• IIdiomLevelModel represents a model of a program where some idioms have been reified,
typically binary class relationships computed using one of PADL Analyses, and some extra
data have been added, for example the length of the methods. From the documentation
it appears that an effort was made to classify all the different relationships present in
UML, i.e. generalisation, implementation, specialisation, creation, association, aggregation,
composition.

• IDesignLevelModel represents a model of a program where design data is available. Typical
design data is extracted from the idiom-level model, for example occurrences of design
motifs.

A fourth model exists to describe design motifs, used by the Ptidej Solver: IDesignMotif.

Diffusion

The meta-model is employed in Ptidej and its side projects.

25

Figure 3.3: PADL: graphical representation of the meta-model

Documentation

Documentation is available through the Ptidej Wiki [155], and its usage is explained in
several papers regarding the Ptidej [82], DECOR [134, 133], and DeMIMA [85] projects. A
dedicated documentation or specification for the metamodel is not available. The most reliable
source of information for the model is the source ode implementing it.

Final considerations

The PADL meta-model appears to be a model built bottom-up for the needs of the Ptidej
tool. It is aligned with FAMIX, for example, in terms of the abstraction provided. It is not
possible to formulate other meaningful considerations, as the documentation is not sufficient,
and a review of the source code was not performed.

3.1.5 MARPLE meta-model

MARPLE uses an internal meta-model for the representation of the systems it analyzes,
developed specifically for the tool needs. The model focuses on the practical needs of a tool that
supports different activities, e.g. software architecture reconstruction (SAR) [66], design pattern
detection and anti-pattern [36, 42, 201] detection [134, 133].

The meta-model entities are subdivided in different categories, representing logical or physical
entities of the system, and other higher level information kinds, which support deeper analyses.

Among the information contained in the meta-model we find:

• metrics, e.g. NOC, LOC (Table 4.1 contains the complete list);

• micro-structures, e.g. design pattern clues, elemental design patterns, micro-pattern (see
Chapter 5 for descriptions and references).

26

Structure of the MARPLE meta-model

Three kinds of information are present in the representation of the system (see Figure 3.4):

• information about the logical structure of the system: here we find entities belonging to the
procedural and object-oriented programming paradigms, e.g. classes, methods, attributes;

• information about the physical structure of the system: the files and folders containing the
code and every other resource composing the system;

• meta-data associated to logical or physical entities, i.e. metrics and micro-structures.

The three kind of information are combined in a single meta-model, which relates them in a
simple and practical way.

The central element of the meta-model is CodeEntity, which is specialized into different
subtypes. A CodeEntity is a Measurable entity, so it is possible to associate a collection of
Metrics to it for further analyses. Each CodeEntity can be linked to other CodeEntity elements
by BasicElement entities1 (representing micro-structures). The CodeEntity acts also as a link to
code for any external model, e.g. meta-model for the representation of design patterns.

Diffusion

As already introduced, the meta-model is used in the MARPLE project (see Chapter 4 to
see the usage of the meta-model). It is generic enough to be compatible with other existing
meta-models, e.g. FAMIX, KDM.

Documentation

The meta-model is documented in a research paper I am co-author of [13].

Final considerations

The meta-model employed by MARPLE is targeted to be simple and concise. It is possible
to extend it by linking other models to its entities, but in most cases the flexibility brought by
the meta-data entities is enough, providing a good off-the-shelf modularity.

The inclusion of both qualitative (BasicElement entities) and quantitative (Metric entities)
information contribute to enrich the global representation of the system, and providing direct
support to the analysis process. Every association is modeled as bidirectional, improving the
ease of navigation of the models.

Some differences with respect to FAMIX and DMM are:

• the representation of the hierarchical structure of files and directories;

• the absence of commonly modeled relationships, e.g. use, call, inheritance;

• the absence of an entity representing comments;

• the absence of an entity representing annotations.

The model is designed to support a variety of languages, both procedural and object-oriented,
but it is tested mainly against the Java programming language.

1“basic elements” is the previous name for micro-structures. The definition and implementation of the model
will keep that name until a new major revision will be available.

27

Figure 1. Model Architecture

of classes), so it will be used also by the metrics col-

lector module of Marple.

In Figure 1 the UML definition of the model architecture

is shown.

The entities have been colored in order to identify their

nature.

The entities representing a project’s physical structure

are colored in yellow:

• Resource is an interface that is implemented by all

the physical entities and is characterized by a path;

• Directory is defined as a Resource that can con-

tain many Resources;

• File is a simple physical Resource.

CompilationUnit is a file containing source code; it

is a container of logical entities of the project, so it repre-

sents the link between the physical and the logical parts of

the project. For this reason it is colored in a different way

(using orange).

The logical entities are colored in blue and represent the

entities of a generic object oriented programming language:

types, behavioural entities and structural entities and the re-

lations between them. The following logical entities have

been defined:

• Type represents the definition of a class, interface or

abstract class in source code. The distinction between

class and interface is made through its typeDef at-

tribute.

• Procedure is an interface that represents the def-

inition in source code of a behavioural abstraction,

which is characterized by input parameters and by one

return type; both are represented in the model with

the two associations between Procedure and Type.

Procedure is extended by:

Figure 3.4: UML class diagram for the MARPLE meta-model

3.1.6 Other models

Columbus Ferenc et al. [70, 68] developed in 2002 a meta-model in the context of the Columbus
design pattern detection tool (reviewed in Section 2.2.2). The meta-model supports only C++
and, considering the context of the application, it is quite complex, as it directly represents most
of the features of the language. Its diffusion is apparently limited to the projects mentioned in
the early publications.

Datrix A meta-model developed by Bell Canada Inc. [98] in 2000. It supports C, C++ and
Java but, due to the lack of documentation and reference implementation, it can be considered
unsupported.

Dynamix A meta-model [80, 79], compatible with MOF [141], created to describe the dynamic
behaviour of an application.

28

3.2 Models for design pattern detection tools

This section contains the description of a meta-model available in the literature for the
representation of design pattern instances. The only other meta-model available for the same
purpose is the one used in MARPLE (see Subsection 6.2.1). The same model was employed to
build DPB, a web platform for the benchmark of design pattern detection tools [15], defined
and implemented by my research group.

The described meta-model is DPDX, proposed by Kniesel et al. [119] in 2010 for the modeling
of design patterns. It is composed of these parts:

• the Schema meta-model specifies the entities to use in the description of design pattern
schemas;

• the Program element meta-model describes the elements that are used to represent source
code, and that are referenced by the modeled design pattern instances;

• the Result meta-model collects the entities needed to model the design pattern instances
found in an analyzed source code.

All the instances in a result meta-model, referring to the same design pattern, must comply
with the same schema, defined by an instance of the schema meta-model. Result meta-model
instances keep references to source code artifacts using links to the Program element meta-model.

The goal of the meta-model is to provide a common representation to be used as a standard
encoding for every tool in the design pattern detection area.

The introduction and the adoption of a common exchange format by the active design pattern
detection tools would bring many advantages and would simplify the interaction among existing
tools able to provide detection, validation, visualization, comparison and fusion of design pattern
instances.

The approach adopted by the authors of DPDX is to define a representation that is sufficiently
generic to satisfy the needs of any kind of tool of this community.

3.2.1 Structure of DPDX

• Schema meta-model (Figure 3.5): this meta-model specifies the structure of the definition
of a design pattern. Each definition is seen as a collection of roles, which are related to
each other using arbitrary relationships. Instances of the meta-model are graphs composed
by interconnected roles.

• Result meta-model (Figure 3.6): this meta-model represents design pattern instances
detected in a certain source code base. Each instance consists of a collection of RoleAssign-
ment entities, each one filled with the information regarding the particular instance. Each
RoleAssignment refers to the code using an association to a ProgramElement entity.

• Program element meta-model (Figure 3.7): this meta-model defines the fundamental entities
needed to represent the interesting parts of software system’s source code. The choice of
the elements represented by the model is limited to the ones interesting in a design pattern
detection task, and is not intended to be a generic software representation model. The
categorization of the entities is based on the distinction in four different types, and seems
to be generic enough to represent a large number of programming languages.

29

Figure 3.5: DPDX: Schema meta-model

3.2.2 Diffusion

No known reference implementation is available for DPDX.

Documentation

The DPDX meta-model was published in an international conference paper by Kniesel et
al. [119] and in extended technical report from the same authors [117].

Final considerations

DPDX promises to be the next de facto standard for the representation of the data produced
and consumed by the tools in the design pattern detection community. Unfortunately, probably
due to the young age of the meta-model, and to the lack of a detailed and formal specification,
its application is still limited.

The first impression of the model is that it is wide and generic; this kind of impression can
limit its adoption by tool developers who want to use it for their practical needs. A shared
and agreed set of design pattern schemas (using the schema meta-model) and example pattern
instances would invite developers of design pattern detection tools to embrace the model, going
in the direction of real interoperability.

Finally, the choice to specify the schemas of design patterns using the XSD [187] format
can be considered a point of possible improvement, as XSD does not allow the authors of
new definitions to automatically verify their formal correctness, because no formal meta and
meta-meta models were employed.

Some consideration about the differences between the model employed in MARPLE and the
DPDX model are reported in Subsection 6.2.1.

3.3 Conclusion

This chapter reviewed the available literature in reverse engineering modeling, with a
particular focus on design pattern detection tasks. A lot of work was done by the research
community to define meta-models to be used for tooling and data exchange. The current diffusion
of the available models seems generally low and limited to the projects they were created for.

30

Figure 3.6: DPDX: Result meta-model

Figure 3.7: DPDX: Program element meta-model

31

The model used by the major number of projects seems to be FAMIX, mainly because it is the
oldest among the cited models. KDM was designed by the Object Management Group to be the
next standard for reverse engineering modeling, but its adoption is slow, probably because its
specification is huge, and a full implementation, at least in one language, is not yet available. The
particular community of design pattern detection is younger and only two models are available:
DPDX aims to be a complete specification, and the one employed in MARPLE is more concise
and application oriented, while imposing stronger modeling constraints. PADL contains a model
for the representation of design patterns, but its specification is not documented.

32

Chapter 4

An introduction to MARPLE

MARPLE (Metrics and ARchitecture Reconstruction PLugin for Eclipse) is the tool imple-
menting all the functionalities developed for this thesis.

An overview of the principal activities performed through MARPLE is depicted in Figure 4.1,
which shows the general process of data extraction, design pattern detection, software architecture
reconstruction and results visualization. The information used by MARPLE is obtained by an
Abstract Syntax Tree (AST) representation of the analyzed system.

DPD

MARPLE
Data extraction

Information
analysis

Results
output

SAR

Visualization

AST

Figure 4.1: An overview of the general process

Design pattern detection and software architecture reconstruction activities both work on
information extracted from the ASTs of the analyzed system. This information set is composed
of elements, or facts, which are called micro-structures (see Chapter 5), and of metrics that
have been measured inside the system. Both of these kinds of information are used to have an
abstract and more consistent view of the system, instead of relying on the code or on the AST
directly.

4.1 Architecture
The overall architecture of MARPLE is depicted in Figure 4.2. It is constituted of five main

modules that interact with one another through a common model. The five modules are the
following:

Information Detector Engine: builds the model of the system and collects both micro-
structures and metrics, starting from an AST representation of the source code of the
analyzed project; micro-structures and metrics are stored in the model. This module
implements the first level of abstraction provided by MARPLE.

33

Micro Structures Detector

Metrics Collector

Information Detector Engine

Joiner

Classifier

Recognition rules

DPD

Model
(serialized to XML)

Software Architecture
Reconstruction

Views

Eclipse JDT
Java
Code AST

Figure 4.2: The architecture of MARPLE

Joiner: extracts all the potential design pattern candidates that satisfy a given definition,
working on the micro-structures extracted by the Information Detector Engine.

Classifier: tries to infer whether the groups of classes detected by the Joiner could effectively
be realizations of design patterns or not. This module helps to detect possible false
positives identified by the Joiner and to evaluate the similarity with correct design pattern
implementations, by assigning different confidence values.

Software Architecture Reconstruction: obtains abstractions from the target project basing
on the available micro-structures and metrics.

Views generation: provides an organic view of the project analysis results. Through this
activity, the user will see both the results produced by the detection of design patterns
and the views provided by the SAR module.

The union of the Joiner and the Classifier module form the design pattern detection module:
MARPLE-DPD.

The following sections describe the technologies involved in the development of MARPLE, and
the next two discuss the Information Detector and Software Architecture Reconstruction modules.
The Joiner and Classifier modules are discussed respectively in Chapter 6 and Chapter 7, because
they address the central arguments of this thesis.

34

4.2 Technologies

MARPLE is an Eclipse plugin, and relies on technologies available in the Eclipse framework
in order to implements its functionalities. The remainder of this section introduces the main
Eclipse technologies exploited in MARPLE.

4.2.1 Java Development Tools

Java Development Tools (JDT) [180] is the main plugin present in the most common Eclipse
installations; it provides all the Java IDE functionalities in Eclipse, like compiling, syntax
highlighting, debugging. It provides also the implementation of the ASTs used for the analysis
of Java code: every Java file (called Compilation Unit) can be explored through its AST,
implementing an interface that follows the Visitor design pattern. A feature of this particular
AST implementation is that it is able to link the nodes of the AST to other descriptors, filled in
by the compiler. For example, it is possible to retrieve information about the type of a local
variable from one of its references (different from the declaration), or to determine if a method
overrides another one. All this pieces of information are very useful for our analysis purposes
and are not directly available using other general purpose parser generators, like ANTLR [148],
CocO/R [135] or JavaCC [105].

4.2.2 Eclipse Modeling Framework

Eclipse Modeling Framework [181, 176], (EMF) is an Eclipse plugin that provides a way of
defining models using a formal meta-meta-model, called ECore. ECore is an implementation
of EMOF (Essential MOF), a variant of the MOF [141] standard from OMG, that is used
also for the definition of UML. EMF lets the user define new models using ECore, and can
generate the Java code implementing the model; the generated code has interesting features, like
constant-time reflection using the meta-model definition constants, bidirectional associations
and events over the entities and their properties. The framework is able also to serialize models
to XMI [142], off the shelf; other serialization formats can be defined by the user. ECore is
translatable also to XMLSchema [187]: therefore a common serialization format is the XML
direct translation of the model, which has to be defined in the details by the user. Other plugins
provide also persistence over existing object oriented persistence frameworks, i.e. Hibernate [106]
or EclipseLink [182]. Finally, EMF provides a query language over the model that resembles
SQL.

4.2.3 Graphical Editing Framework

Graphical Editing Framework (MVC)

Graphical Editing Framework (GEF) [183] is the plugin used for the generation of views.
The graphical environment of Eclipse is based on the SWT [185] library, that provides all the
standard GUI toolkit functionalities, like menus, windows, text fields, etc; it also provides
canvases for graphical views or editors. In Eclipse, the library used to draw on these canvases
is Draw2d. GEF relies on Draw2d and defines a way of using it following the MVC pattern:
it defines separate abstractions to define the model of the graphical representation, the visual
components and ways to manipulate them, if needed. It is a neat general solution to a problem
that normally tends to get more and more complicated.

35

Zest

Zest is a recent plugin in the Eclipse community. It is a specialized library for drawing
graphs. It is used instead of GEF for the SAR views that represent graphs in MARPLE. It
provides graphs layouts and models off the shelf, and it is simpler to use than GEF for this
purpose, because GEF is more generic. It uses Draw2d like GEF, but it integrates well also with
JFace [184], which is another library that abstracts the use of SWT.

4.3 Information Detector Engine

4.3.1 Micro Structures Detector

Currently, the Micro Structures Detector (MSD) module has been completely developed
and tested. As already introduced, its goal is to detect the so-called micro-structures, which
are explained deeply in Chapter 5. In order to have an idea of what micro-structures are, it is
possible to see them as facts about a code element or a pair of them.

Micro-structures are not ambiguous (as on the contrary design patterns may be), and once a
micro-structure has been specified in terms of the source code details that are used to implement
it, it can be correctly detected.

Micro-structures are extracted by visitors that parse an AST representation of the source
code; each visitor reports instances of the micro-structures if the analyzed classes or interfaces
actually implement them. Usually a visitor is able to detect only one kind of micro-structure,
but in some cases it detects more than one, i.e. when two or more micro-structures have similar
detection algorithm. For example, a visitor that has to check if a class is declared as abstract is
almost equal to a visitor that has to check if the class is declared final , as both keywords are flags
of the class declaration; it is therefore a good idea to put the detection of both micro-structures
in the same visitor.

The information is acquired statically and is characterized by 100% rate of precision and
recall. This value is due to the fact that these kinds of structures are meant to be mechanically
recognizable [76], i.e. there is always a 1-to-1 correspondence between a micro-structure and a
piece (or a set of pieces) of code, and the algorithm that detects the micro-structure is defined
in terms of source code structure and properties.

By their definition, micro-structures can be recognized in a software system using different
techniques, and the only constraint is that they have to refer to two (or also only one) code
entities in the system; usually a code entity is a type, but it can be also a method or an attribute.
Code entities are the central element of the representation model exploited in MARPLE. In
general we can say that a code entity can be any element of the source code that can be identified
in the system by its name and its namespaces. The micro-structures detected at the moment use
simple conditions on the ASTs, or some simple algorithm, but it would be possible to exploit
also (if needed) more complex analyses, e.g. data flow analysis [131], call graph analysis [81],
dynamic analysis [27] or simulation, symbolic execution [154, 165], points to analysis [89].

The actual implementation of the MSD module exploits the JDT library that provides the
classes and interfaces used to access the ASTs contained in a set of projects of the same workspace.
The MSD module runs the analysis on a set of selected projects. The micro-structures are
collected by a set of visitors, invoked sequentially on the ASTs of the classes constituting the
project. The visitors work only on those nodes that may contain the information they are able
to detect. For example, the visitors that look for method calls only analyze nodes that represent
a method invocation, i.e. instances of the MethodInvocation class.

The instances of micro-structures coming from the visitors are then stored in the central
model, which is explained in Subsection 3.1.5. In particular cases visitors can query the model in

36

Table 4.1: Metrics measured by MARPLE
Name Definition Name Definition

AHNL Number of overridden attributes NMAA Number of attribute accesses
C1M Number of Function Objects at-

tribute types
NMA Number of added methods

CBO Coupling Between Objects NME Number of extended methods
CC McCabe’s Cyclomatic Complexity NMI Number of inherited methods
DIT Depth of Inheritance Tree NMO Number of overridden methods
DITI Number of superinterfaces NOA Number Of Attrbutes
DITS Number of superclasses NOC Number of nested subclasses
EC Number of break or continue state-

ments
NOCH Number Of Children

HNL Number of superclasses NOIF Number Of Interface
LCOM Lack Of Cohesion in Methods NOP Number of parameters
LOC Lines of Code in methods NOS Number of statements
MHNL Number of overridden methods WLOC Lines of Code in classes
MSG Number of sent messages in a

method
WMSG Number of sent messages in a class

NGA Number of global accesses WNI Number of incoming calls
NIA Number of inherited attributes WNMAA Number of field accesses

order to compose the information they found on the ASTs and the information already present
in the model. In this way it is possible to define dependencies among different visitors. For this
reason it is possible to define the order of invocation of visitors, by putting them in groups that
are invoked sequentially.

The MSD module has been developed also for the .NET environment in a previous work [7].

4.3.2 Metrics Collector

The Metrics Collector module evaluates some object-oriented metrics that are useful for
SAR. These metrics are exploited in the generation of some of the architectural views described
in Section 4.4. Table 4.1 lists the metrics currently supported by MARPLE.

4.4 Software Architecture Reconstruction

One of the objectives of MARPLE is to support the user with the visualization of abstractions
about the analyzed systems. Currently, the SAR module generates six kinds of views on a
system:

• The package diagram of all the packages that form the analyzed system; it is a graph
showing all the packages as nodes and their dependencies as edges. An example of the
package diagram, for the JHotdraw v.6.0b1 system, can be seen in Figure 4.3. The view
allows moving and reordering entities, achieving a more readable diagram, like the one
shown in Figure 4.4.

• The package metrics view is a table reporting a set of dependency-related metrics about
each package. Figure 4.5 shows an example of the table on the same JHotdraw version.

37

Figure 4.3: Package View example: JHotdraw 6.0b1

Figure 4.4: Package View example: JHotdraw 6.0b1 reorganized

38

Figure 4.5: Package Metrics View example: JHotdraw 6.0b1

Figure 4.6: Class compact view example: package org.jhotdraw.contrib.dnd of JHotdraw 6.0b1

39

Figure 4.7: Class extended view example: package org.jhotdraw.contrib.dnd of JHotdraw 6.0b1

• The class compact diagrams of each package constituting the system. In this view (an
example is shown in Figure 4.6), all the classes and interfaces belonging to the package are
shown as a single graph, where the nodes correspond to the classes and interfaces, while
the edges are the relationships connecting them. Relationships represent a selected set of
micro-structure, like method calls

• The class extended diagrams of each package constituting the system. This view is
characterized by many graphs, one for each class or interface belonging to the package.
Each graph (an example is shown in Figure 4.7) reports only the relationships its subject
class or interface has with the other classes or interfaces that constitute the system. In
this way, the graphs will not be overwhelmed with a huge number of edges, letting the
users focus on single classes without minding to the rest of the system.

These views are obtained by different kinds of information: the package and the class
diagrams exploit the output coming from the MSD. More specifically, the SAR functionalities
related to the generation of the class compact and of the class extended diagrams are achieved
only through the analysis of the elemental design patterns [168] detected by the Micro Structure
Detector. These elements revealed themselves very useful for the identification and definition of
the relationships that are typical of class diagrams and which link the various classes constituting
the analyzed project. These relationships, underlining the architectural constraints, let the users
have a general overview of the classes’ structures and aggregations.

The integration of the information coming from the design pattern detection module in the
software architecture reconstruction views could enhance the program comprehension experience
of the developer, helping to visually locate pattern instance in the system, and their relation
with the other classes. The integration is one of the planned future developments.

4.5 Distributed MARPLE

An experimental prototype was developed to allow MARPLE to work in a client-server
environment; the prototype’s architecture is summarized in Figure 4.8). The prototype was

40

developed because loading the projects ASTs using the Eclipse APIs requires a large amount of
memory (i.e. the AST of Batik, a system composed by 1643 java files, requires about 1700Mb
of memory). The distributed version of MARPLE splits the classes of the system into k sets
and the BED1 nodes analyze only their own set. This solution allows us to reduce the memory
requirement for the nodes; this solution is used in the normal version of MARPLE, serializing
the analysis of each set using only one BED instance. This choice has the same memory benefits
of the distributed one, but is more practical and easy to setup.

Client 1 Client n

Middle Layer

BED 1 BED n

1

Joiner

Classifier

n

Joiner

Classifier

JMSJMS

DataBase

Web Service

Figure 4.8: The architecture of distributed MARPLE.

Another problem that convinced us toward the development of the distributed version is the
computational requirement of the classifier module. It is well known that some machine learning
algorithms require a long time in order to build the model of their input dataset.

For all of these reasons, we decided to implement a distributed version in order to allow users
to run their analysis through the internet on the elaboration server and to asynchronously check
the results of the elaboration. This project is based on the J2EE v.5 platform and precisely on
the Glassfish [147] application server.

The system architecture (see Figure 4.8) is composed of four main modules:

Client: this module is developed as an Eclipse plugin (maintaining MARPLE’s interface) and
allows users to use the elaboration service. Users using this service can send their projects,
they can check current elaboration status, and they can also manage (retrieve, modify,
delete) all the already performed analyses.

Server: this module is developed on a J2EE Application Server, and it implements the middle
layer of the system. It also implements the Web Service in order to receive users’ requests,

1BED stands for Basic Element Detector. The name refers to “basic element”, which was the name given to
micro-structures in the early development stages

41

manages the persistence backend (Database) that contains the information about the users,
and finally starts the elaboration of a project. When an elaboration starts, first the server
calls in parallel all the BED nodes, and at the end of their elaboration it calls in parallel
all the Joiner-Classifier nodes. This job serialization is necessary because, in order to go in
execution, the Joiner-Classifier node has to own all the detected basic elements.

BED Node: this module receives from the server, through JMS [93], a set of classes and the
entire project source code; then it simply runs the BED on this set and returns to the
server the detected micro-structures.

Joiner-Classifier Node: this module receives a rule from the server, through JMS, which
specifies the pattern to find and all the detected micro-structures. Next it sequentially
runs the Joiner and the Classifier Module and then it returns to the server all the found
pattern instances with their classification values.

4.6 Conclusion
This chapter described the architecture of MARPLE, the tool implementing the design

pattern detection functionalities described in this thesis through its MARPLE-DPD module.
MARPLE is also capable of reconstructing several views of analyzed software, to facilitate
its comprehension. The design pattern detection and software architecture reconstruction
functionalities of MARPLE are based on the detection of micro-structures: Chapter 5 describes
the concept of micro-structure and the different kinds of micro-structure integrated in MARPLE.

42

Chapter 5

Micro structures

In tasks of system modernization, program comprehension, system architecture reconstruction,
and static software analysis in general, a common approach to the solution is to represent explicitly
useful pieces of information about the system. This information is found directly on the observed
system, and summarizes some mid/low level concepts that are useful for further analyses. In the
MARPLE project, all these pieces of information are called micro-structures.

A micro-structure is defined as a fact or relationship between two entities in the code (e.g.
classes, attributes, methods). It abstracts a concept that is possible to exactly retrieve from the
source code. In fact, every micro-structure has the property of being mechanically recognizable,
which means it is possible to write an algorithm able to retrieve every micro-structure instance
in the source code without errors. Because of this property, the extraction of micro-structures is
characterized by 100% precision and recall.

Different kinds of micro-structures have been proposed in the literature, with different
objectives, like design pattern detection, identification of common programming techniques and
extraction of architectural relationships. As far as design pattern detection is concerned, the
approaches based on the recognition of micro-structures inside the code and other input generally
exploit static analysis of source code.

The relevance of micro-structures in the general design pattern detection process is substantial.
To obtain an effective detection process, with good rates of precision and recall, micro-structures
should help to identify those aspects that are fundamental for the presence of patterns inside
the code, because they are the primary mean for its representation.

Next sections explain the kinds of micro-structures integrated in the MARPLE project.

5.1 Elemental Design Patterns

Elemental Design Patterns (EDPs) [169] were introduced by Smith and Stotts, in the scope
of the SPQR tool [171]. SPQR (System for Pattern Query and Recognition) is a tool for design
pattern detection for C++ that uses EDPs to build the representation of the system it analyzes;
the definition and implementation of EDPs for Java was performed by our research group. EDPs
were defined to inherit from design patterns their ability to capture design intents, but being
significantly simpler than design patterns. In SPQR EDPs and their composition rules are
expressed formally in terms of ρ-calculus, which represents a sub-set of σ-calculus extended with
new reliance operators. Design patterns and their implementation variants are not statically
described, but they are dynamically inferred through the formalized rules.

There are sixteen EDPs subdivided into three categories:

Object Elements contains three EDPs related to the creation and the referencing of objects as

43

well as to the presence of abstract methods inside an abstract class, or interface methods
inside an interface;

Object Behavioural collects twelve EDPs which represent the various forms of possible method
calls;

Type Relation contains a single EDP representing the inheritance relationship between two
classes.

EDPs are defined with the same description structure used in [74] for the presentation of
the design patterns. For a complete description of each EDP refer to [169]. As examples, we
describe the Create Object EDP and the Delegate EDP.

5.1.1 Create Object EDP

Intent

This EDP represents the construction of an object of a certain class (see Figure 5.1).

Category

Object Elements.

Structure

CreationPoint
-newObject: NewObject

+operation()

NewObject

newObject = new NewObject();

1

0..*

Figure 5.1: Create Object EDP UML diagram

Sample Code

pub l i c c l a s s Cr e a t i o nPo i n t {
pr i va te NewObject no ;
pub l i c void op e r a t i o n (){

no = new NewObject () ;
}

}

pub l i c c l a s s NewObject {
pub l i c NewObject () { . . . }

}

5.1.2 Delegate EDP

Intent

This EDP delegates part of the current work to a method of another class (see Figure 5.2).

44

Category

Object Behavioural.

Structure

Delegator
-target: Delegatee

+operation()

Delegatee

+operation2()

void operation(){
target.operation2();
}

Figure 5.2: Delegate EDP UML diagram

Sample Code

pub l i c c l a s s De l ega to r {
pr i va te De l ega t ee t a r g e t ;
pub l i c void op e r a t i o n (){

t a r g e t . o p e r a t i o n 2 () ;
}

}
pub l i c c l a s s De l ega t ee {

pub l i c void op e r a t i o n 2 (){
. . .

}
}

5.1.3 Elemental Design Pattern catalog

Table 5.1 shows the list of all the EDPs and their respective category. The ones in the Object
Behavioural are all different types of method invocations. Their differences are characterized
over three parameters: the referred instance, the signature of the method and the type of the
class. The referred instance can be {same, different}, the signature can be {same, different}, and
the class type can be {same, parent, sibling, unrelated}. Not all the combinations are possible:
the same instance can have only the same type. The example Delegate EDP represents the
(instance: different, signature: different, type: unrelated) combination.

5.2 Micro Patterns

Micro patterns were introduced by Gil and Maman [76] in order to capture very common
programming techniques. Micro patterns can be thought of as class-level traceable patterns, i.e.,
structures similar to design patterns which can be mechanically recognized and which stand at a
class abstraction level. A micro pattern is traceable if it can be expressed as a simple formal
condition on the attributes, types, name and body of a software module and its components.
Currently, there are 27 micro patterns subdivided into eight categories. Authors do not assert

45

Table 5.1: The list of the Elemental Design Patterns
Name Category

CreateObject Object Creation
Abstract Interface Object Structural
Inheritance Type Relation
Retrieve Object Structural
Delegate Object Behavioural
Redirect Object Behavioural
Conglomeration Object Behavioural
Recursion Object Behavioural
RevertMethod Object Behavioural
Extend Method Object Behavioral
DelegatedConglomeration Object Behavioural
RedirectedRecursion Object Behavioural
DelegateInFamily Object Behavioural
RedirectInFamily Object Behavioral
DelegateInLimitedFamily Object Behavioural
RedirectInLimitedFamily Object Behavioural

that the set of the identified micro patterns is complete or exhaustive. The eight micro pattern
categories are:

Degenerate State and Behaviour this category includes micro patterns describing interfaces
and classes whose state and behaviour are degenerated. In most cases this means that the
interface or class does not define any attribute or method;

Degenerate Behaviour these micro patterns are related to classes with no methods or with
very simple ones;

Degenerate State this category is related to classes which have no state (i.e., attributes), or
their state is shared with other classes or they are immutable;

Controlled Creation the micro patterns belonging to this category describe special protocols
for creating objects;

Wrappers this category collects micro patterns dealing with classes which have a single central
instance field and methods working on it, so that the main functionalities are delegated to
this field;

Data Managers these micro patterns are related to classes whose main purpose is to manage
the data stored in a set of instance variables;

Base Classes the micro patterns belonging to this category describe different ways in which a
base class makes preparations for its subclasses;

Inheritors the micro patterns in this category correspond to three ways in which a class can use
the definitions of its superclass, i.e., abstract method implementation, method overriding
and interface enrichment.

The complete description of micro patterns is presented in [76]. We provide two examples of
micro patterns: Restricted Creation and Designator.

46

5.2.1 Restricted Creation Micro pattern

An instance of this micro pattern can be found in those classes which do not have any public
constructors and have at least one static field of the same type as the class.

Category

Controlled Creation.

Source Code

pub l i c c l a s s R e s t r i c t e dC r e a t i o n C l a s s {
s t a t i c R e s t r i c t e dC r e a t i o nC l a s s r c c ;
pr i va te R e s t r i c t e dC r e a t i o n C l a s s () {

. . .
}

}

Many classes which represent singletons satisfy these constraints, as the class java . lang .Runtime.
5.2.2 Designator Micro Pattern

One of the simplest micro patterns is the Designator micro pattern. It represents interfaces
which are completely empty, i.e., they do not declare any methods and do not define any static
field or method, except inheriting them from one of its super interfaces.

Category

Degenerate State and Behaviour.

Source Code

i n t e r f a ce De s i g n a t o r I n t e r f a c e {}

An example of this micro pattern can be found in the java . lang .Cloneable interface.
5.2.3 Micro Patterns catalog

Table 5.2 shows the list of all the micro patterns. The categories subdivided in a “Main
Category” and “Additional Category”, because some of the micro patterns belong to more than
one category. It happens for the micro patterns addressing different concepts; for example,
Record belongs to the “Data Managers” category, but being a class without methods belongs
also to the “Degenerate Behavior” one.

47

Table 5.2: The Micro Patterns list
Main Cate-
gory Pattern Short description Additional

Category

D
eg
en

er
at
e
C
la
ss
es

Degenerate
State
and
Behavior

Designator An interface with absolutely no members.
Taxonomy An empty interface extending another interface.
Joiner An empty interface joining two or more superinterfaces.
Pool A class which declares only static final fields, but no

methods.

Degenerate
Behavior

Function Pointer A class with a single public instance method, but with
no fields.

Function Object A class with a single public instance method, and at
least one instance field.

Cobol Like A class with a single static method, but no instance
members.

Degenerate
State

Stateless A class with no fields, other than static final ones.
Common State A class in which all fields are static.
Immutable A class with several instance fields, which are assigned

exactly once, during instance construction.

Controlled
Creation

Restricted Creation A class with no public constructors, and at least one
static field of the same type as the class.

Sampler A class with one or more public constructors, and at
least one static field of the same type as the class.

C
on

ta
in
m
en
t

Wrappers
Box A class which has exactly one, mutable, instance field.
Compound Box A class with exactly one non primitive instance field.

Canopy A class with exactly one instance field that it assigned
exactly once, during instance construction.

Degenerate
State

Data
Managers

Record A class in which all fields are public, no declared
methods.

Degenerate
Behavior

Data Manager A class where all methods are either setters or getters.
Sink A class whose methods do not propagate calls to any

other class.

In
he

rit
an

ce Base
Classes

Outline A class where at least two methods invoke an abstract
method on “this”

Degenerate
State

Trait An abstract class which has no state.
State Machine An interface whose methods accept no parameters. Degenerate

State
and
Behavior

Pure Type A class with only abstract methods, and no static
members, and no fields.

Augmented Type Only abstract methods and three or more static final
fields of the same type.

Pseudo Class A class which can be rewritten as an interface: no
concrete methods, only static fields.

Inheritors

Implementor A concrete class, where all the methods override inher-
ited abstract methods.

Overrider A class in which all methods override inherited, non-
abstract methods.

Extender A class which extends the inherited protocol, without
overriding any methods.

48

5.3 Design Pattern Clues
Design Pattern Clues are a kind of micro structure defined originally by Stefano Maggioni

[129, 130], in our research group.
The definition started with the comparison of other types of micro-structures for design

pattern detection [8], focusing on their relevance in the identification of GoF design patterns
[74]; the result was that the detection of one kind of micro-structure is not enough to detect
design patterns.

Hence we decided to study and propose a new category of micro-structures, named design
pattern clues, with the aim to identify hints, conditions and concepts useful for design pattern
detection. The aim to introduce a new kind of micro structure was to try to complement the
information that can be extracted through other micro-structures, to obtain information to be
used in a design pattern detection approach. So we started to analyze design pattern instances,
extracted from examples and real systems, and we tried to understand, for each specific design
pattern, what information the other micro-structures (in particular EDPs) were not able to
capture. We put together the causes of bad detection for each pattern, and we tried to specify
more precisely what all these causes had in common. Then we tried, when possible, to specify
how to detect these causes in the code without ambiguity; clues were the output of this process.
After having done this work for each pattern, we also made a further analysis of the clues coming
from different patterns in order to avoid duplication and let their definition become more stable.
It was a bottom-up task, done starting from the real implementations of patterns rather than
from their theoretical definition.

Currently, we have identified 46 design pattern clues (definitions are available in Subsec-
tion 5.3.1), subdivided into the following nine categories:

Class Information: collects clues that can be identified analyzing a class declaration or that
characterize a single class;

Multiple Class Information: collects clues that can be identified by the comparison among
two classes (or more) and their contents;

Variable Information: gathers information about particular variables;

Instance Information: contains clues regarding particular instances of a certain class, and
one clue representing a controlled instantiation mechanism;

Method Signature Information: collects clues that are identifiable analyzing the signature
of a method;

Method Body Information: contains those clues that can be identified by only analyzing
the body of any kind of method;

Method Set Information: collects clues whose details can be deducted analyzing the whole
set of methods the involved classes declare and implement;

Return Information: includes those clues regarding various possible return modes from a
method;

Java Information: collects clues which are strictly bound to the Java language.

All 46 clues can be automatically detected from source code, as they are representations
of implementation issues which can be easily understood through an analysis of it. The clue
catalogue is reported in Subsection 5.3.1. Each design pattern clue is automatically recognizable
from source code using the Micro Structures Detector.

49

5.3.1 A Catalogue of Design Pattern Clues

Table 5.3 reports the complete catalogue of the design pattern clues. Each clue is identified
by its name, its meaning, the design pattern it belongs to and the correspondent design pattern
category (“C” for creational, “B” for behavioural, or “S” for structural design patterns), and
eventually the other clues it depends on. In fact, the existence of some clues is subordinated to
the presence of some others. For example, asserting that the Template implementor clue depends
on the Template Method clue means that the existence of the Template Method clue is a necessary
condition for the detection of the Template implementor.

Table 5.3: A catalogue of design pattern clues

C
at

eg
or

y

Clue name Meaning Belongs
to

D
P

C
at

eg
or

y

Depends on

C
la
ss

In
fo
rm

at
io
n Final class The class is declared final. Singleton C

Interface and class in-
herited

The class implements an interface and
extends a class, providing therefore the
only mechanism to simulate multiple in-
heritance in the Java language.

Adapter
(based on
classes)

S

Multiple interfaces in-
herited

The class implements n interfaces, with
n > 1.

Adapter
(based on
classes)

S

Object structure child The class is a Visitable class and it has
at least an ancestor which is either an
interface or an abstract class.

Visitor B Cross relation-
ship, Visitable
class

Template implementor A class extends another class implement-
ing a Template Method

Template
Method

B Template
Method

M
ul
tip

le
C
la
ss
es

In
fo
rm

at
io
n Façade method The body of a method consists uniquely

of method calls to classes which are not
related with it, i.e. which are not a
superclass, an implemented interface or
the class itself. A facade method could
also contain some object creations, but
no other statements besides object cre-
ations or method calls.

Façade S

Proxy class A class implements an interface or ex-
tends an (abstract) class, and owns a
reference to a class that implements the
same interface or extends the same (ab-
stract) class.

Proxy S

Va
ria

bl
es

In
fo
rm

at
io
n Private flag The class maintains a control flag that
is declared private. A flag belongs to a
simple type, typically boolean; numeri-
cal fields are considered flags when their
value is compared to form a boolean ex-
pression in a control statement.

Singleton C

50

Table 5.3: A catalogue of design pattern clues
C

at
eg

or
y

Clue name Meaning Belongs
to

D
P

C
at

eg
or

y

Depends on

Static flag The class maintains a control flag that
is declared static. A flag belongs to a
simple type, typically boolean; numeri-
cal fields are considered flags when their
value is compared to form a boolean ex-
pression in a control statement.

Singleton C

In
st
an

ce
In
fo
rm

at
io
n

Controlled self instan-
tiation

The instantiation of an object of the
same class occurs inside an if (or a
switch) block, therefore under a condi-
tion.

Singleton C

Private self instance The class owns a private instance of the
same class. Access to this instance can
occur only from within the same class.

Singleton C

Static self instance The class has a static instance of the
same class. Therefore this instance is
unique inside the system.

Singleton C

Single self instance The class maintains a unique instance of
the same class, no matter if it is static
or not.

Singleton C

Instance in abstract
class

An abstract class maintains a reference
to a different class.

Bridge S

Same interface con-
tainer

A class contains some kind of collection
of objects that are compatible with an
ancestor of the declaring class.

Composite,
Interpreter

S

Same interface in-
stance

A class contains a reference to an ob-
ject whose type is compatible with an
ancestor of the declaring class.

Decorator S

M
et
ho

d
Si
gn

at
ur
e
In
fo
rm

at
io
n

Controlled parameter A method of a certain class receives as
input a parameter used inside it to make
some controls (i.e. the parameter is used
in the condition of some if or switch
block). If a method controls more than
one of its input parameters, each one of
these parameters will be an instance of
this clue.

Abstract
Factory,
Builder,
Factory
Method

C

Factory parameter A method of a certain class receives as an
input parameter an object that belongs
to a class defining some Concrete product
getter methods.

Abstract
Factory,
Builder,
Factory
Method

C Concrete prod-
uct getter

Protected instantia-
tion

All the constructors within a given class
are declared private.

Singleton C

This parameter A method receives the caller object as a
parameter.

Observer,
Visitor

B

51

Table 5.3: A catalogue of design pattern clues
C

at
eg

or
y

Clue name Meaning Belongs
to

D
P

C
at

eg
or

y

Depends on

Adapter method Two types of Adapter method exist. It
can be a method which is an implemen-
tation of an interface method and that
calls a method belonging to the par-
ent class; or it can be an overridden
method from the parent class which calls
a method belonging to a class that does
not share common ancestors with the
adapter method declaring class.

Adapter S Interface
method (only
in the first
case)

Interface method A class implements a method declared
inside an interface.

Adapter
(based on
classes)

S

Overriding method A class overrides a method belonging to
its superclass.

Adapter
(based on
objects)

S

Component method A class declares a method that takes
an object of the same class as its single
parameter.

Composite S

Cross relationship Given two classes C1 and C2, C1 de-
clares a method which accepts a ref-
erence to C2 as one of its parameters,
viceversa C2 declares a method which
accepts a reference to C1 as one of its
parameters.

Visitor B

Abstract cyclic call A method invokes an abstract method
within a cycle.

Iterator,
Observer

B

Factory Method A method contains a class instance cre-
ation statement and overrides a method
belonging to the superclass or to one of
the superinterfaces of the subject class.

Factory
Method

C

M
et
ho

d
B
od

y
In
fo
rm

at
io
n Instance in abstract re-

ferred
A method of a class implementing In-
stance in abstract class invokes a method
on the declared instance.

Bridge S Instance in ab-
stract class

Multiple redirections
in family

A method contains a Redirect in Fam-
ily [168] method invocation that is con-
tained within a cycle.

Composite S

Proxy method invoked A proxy class invokes a method on the
referred subject using a Redirect in lim-
ited family [168] method call EDP.

Proxy S Proxy class

Visitable class A method has a Cross relationship clue
and passes the owner object (this) to the
target method of the Cross relationship.

Visitor B This parame-
ter, Cross rela-
tionship

Template Method A method calls at least an abstract
method within its body.

Template
Method

B

52

Table 5.3: A catalogue of design pattern clues
C

at
eg

or
y

Clue name Meaning Belongs
to

D
P

C
at

eg
or

y

Depends on

M
et
ho

d
Se

t
In
fo
rm

at
io
n All methods invoked A class invokes all of the public methods

declared in a target class.
Adapter S

Leaf class A class extends another class without
implementing or redefining the methods
that are concerned with the handling
of classes that are compatible with the
same interface (therefore tagged with a
Component method clue), or giving an
empty implementation for such meth-
ods.

Composite S Component
method

Node class A class extends another class implement-
ing or redefining the methods that are
concerned with the handling of classes
that are compatible with the same inter-
face (therefore tagged with a Component
method clue).

Composite S Component
method

R
et
ur
n
In
fo
rm

at
io
n

Concrete product get-
ter

A class declares one or more methods
that return objects of a type different
from itself.

Abstract
Factory,
Prototype

C

Concrete products re-
turned

A method returns objects that belong to
subclasses of the declared return type.

Abstract
Factory,
Factory
Method,
Builder

C

Empty concrete prod-
uct getter

A class declares one or more methods
that return objects belonging to some
other classes, but the implementation of
these methods is empty, i.e. it consists
only of a default return statement (as,
for example, return null).

Builder C

Empty method A class declares one or more methods
that return simple types, but their im-
plementation is empty, i.e. it is only
formed by a default return statement
(for example, return false for the boolean
data type).

Builder C

Multiple returns A method provides several possible re-
turn points.

Abstract
Factory,
Factory
Method,
Builder

C

Void return A class defines a method that instanti-
ates an object without returning it.

Builder C

Cross hierarchy return A method returns an object of a class
belonging to a different hierarchy.

Iterator B

53

Table 5.3: A catalogue of design pattern clues
C

at
eg

or
y

Clue name Meaning Belongs
to

D
P

C
at

eg
or

y

Depends on

Ja
va

In
fo
rm

at
io
n Clone returned A method returns a clone of a certain

instance.
Prototype C

Cloneable imple-
mented

A class implements the
java.lang.Cloneable interface.

Prototype C

Prototyping construc-
tor

A method defines a constructor which
receives objects that can be cloned, as
instances of classes implementing the
java.lang.Cloneable interface.

Prototype C Cloneable im-
plemented

Controlled exception A method of a class can throw an excep-
tion inside a control block.

Singleton C

5.4 Example of micro-structures in a design pattern instance

Considering the structural design pattern category, we propose the basic implementation of
the Composite design pattern and we discuss the design pattern clues and EDPs that can be
identified in it. The description of design pattern clues can be found in Subsection 5.3.1, while
the description of EDPs are available in a separate catalog [168]. Next we show a simple Java
implementation of the Composite design pattern:
pub l i c abst ract c l a s s Component{

pub l i c abst ract void op e r a t i o n () ;
pub l i c void add (Component c){}
pub l i c void remove (Component c){}

}

pub l i c c l a s s Composite extends Component{
pr i va te L i s t <Component> components = new Vector<Component >() ;

pub l i c void op e r a t i o n (){
f o r (Component c : components)

c . o p e r a t i o n () ;
}

pub l i c void add (Component c){
components . add (c) ;

}

pub l i c void remove (Component c){
components . remove (c) ;

}
}

pub l i c c l a s s Lea f extends Component{
pub l i c void op e r a t i o n (){ . . . }

}

54

5.4.1 Design Pattern Clues

Seven design pattern clues can be found in this basic implementation of the Composite:

Abstract cyclic call: (method signature information category) in the Composite class the
method operation() invokes the Component.operation() abstract method within a cycle; there-
fore the Composite class contains an Abstract cyclic call;

Component method: (method signature information category) the two methods Component.add()
and Component.remove() are instances of this clue, as they receive as parameter an object
belonging to the same class;

Node class: (method set information category) Composite extends a class (Component) declaring
Component methods and overrides them;

Leaf class: (method set information category) Leaf extends a class (Component) declaring Com-
ponent methods without overriding them;

Same interface container: (instance information category) Composite contains a list of Components,
which are objects that share the same interface with the Composite class; so Composite has
a Same interface container clue;

Multiple redirections in family: (method body information category) the Redirect in Family
EDP is detected inside a cycle (into the Composite.operation() method), therefore it is
supposed to work on a set of elements. In this case, the operation() method is invoked on
each Component object belonging to the Components list.

5.4.2 Elemental Design Patterns

In the implementation above of the Composite the following EDPs have been detected:

• one Abstract Interface EDP states that the Component class declares an abstract method,
and consequently is an abstract class;

• two Inheritance EDPs connect the Composite and Leaf class through an extension relationship;

• a Create Object EDP can be found in Composite, where a list of Components is instantiated;

• finally a Redirect in Family EDP is detected in the Composite.operation() method. This
method invokes a method with the same signature belonging to Composite’s superclass.

5.5 Conclusion

The set of micro structures explained in this chapter is not intended to be complete. The
reported micro structures are mainly the kinds that are detected by the micro structures detector.

My research group did an extensive comparison [16] of four micro-structures types, precisely:
Design Pattern Clues, Elemental Design Patterns [169], Sub-Patterns [139] and Micro Pat-
terns [76], with the aim to provide in the future a unified catalog of micro-structures. That work
can be used in order to have a deeper insight of the topic. The exploitation of Design Pattern
Clues in the refinement of third-party design pattern detection results has been investigated in
another paper I wrote with my research group [21]. That research combines clues and EDPs in
a way similar to the one the Joiner does (see Chapter 6), but with a different aim.

55

Both clues and EDPs are used, because they provide different kinds of information. For
example, clues are strictly focused on formalizing constructs that are typical in the implementation
of design patterns, while EDPs depict basic programming constructs (like object instantiations
or method invocations) that are independent from the presence of design patterns inside the
system to be analyzed. Clues and EDPs share the same detail level, as in general they can be
detected by the analysis of single statements and elements of a class, like method invocations
or field declarations. EDPs capture object-oriented best practices and are independent of any
programming language; clues aim to identify basic structures peculiar to each design pattern.
In spite of the differences between them, these micro-structures can be used both for the
construction and the detection of design patterns.

56

Chapter 6

Joiner: extracting pattern instances
from source code

The Joiner is the MARPLE module that uses the information coming from the micro-
structures detected on the system to extract the pattern instance candidates from the analyzed
system.

The approach used by the Joiner is to represent the system as a graph, where the micro-
structures are the edges and the nodes are the types1.

The task accomplished by the Joiner is to extract groups of classes from the system, where
each group is a pattern candidate. A candidate is a group of classes, where a role is assigned
to each class and the classes are organized according to a particular structure that fits well
the conceptual organization of the pattern. The roles are assigned to each class exploiting the
information represented by the micro structures (the edges of the graph), using graph matching
techniques. The Joiner takes in input the graph of the system and the rules describing how to
match each particular pattern; the rules are given in a declarative form. Next sections give all
the details of the detection process.

6.1 Matching

The Joiner does not handle the system through its Abstract Syntax Tree (AST) representation,
but it manages it as an Attributed Relational Graph (ARG) [115], where the set of vertices
corresponds to the set of types (i.e. classes and interfaces) the project is constituted of, while
the edges are the set of micro-structures that connect the types with one another. In fact, each
micro-structure can be seen as a relationship between a type and another one (therefore depicted
as an edge between two nodes of the graph), or as a relationship between a class and itself
(depicted as a self loop on a graph node). Figure 6.1 shows an example of a graph built using
the micro-structures already shown in the Composite pattern example reported in Section 5.4.

Micro-structures can be also useful for representing some kind of behavioural information,
such as the resolution of polymorphic method calls. The representation of a software system
using graphs is not new, as many other tools and exchange formats in the reverse engineering
area use graphs as the basis of the system representation [191, 102, 59].

The system graph representation is directly derived from the output generated by the
Information Detector Engine. As I briefly anticipated, this module tries to extract architectures
that match a target structure, defined in terms of Joiner rules. In the simpler case a Joiner rule

1Methods and attributes are already supported, but due to the legacy implementation of the visitors collecting
micro-structures, their exploitation is considered future work.

57

Component
Composite

Leaf

Abstract Cyclic Call
Multiple Redirections in Family
Inheritance
Redirect In Family

Component Method

Node Class
Same Interface Container

Leaf Class

Inheritance

Vector

Create Object

Figure 6.1: Example of an input graph of the Joiner

is a graph that collects roles and the micro-structures (edges) that must be present among the
roles in order to satisfy the rule. The roles in the rule are the roles of the target design pattern,
which are usually listed in the pattern definition. For example, if we want to extract the couple
of roles (R1, R2), where R2 is connected with an Inheritance to R1 and R1 has an Abstract Type,
we may represent this rule as shown in Figure 6.2.

R2 R1
Inheritance

Abstract Type

Figure 6.2: An example of Joiner rule

The original version of the Joiner module tried to match and extract this kind of architecture
from the graph representing the system through an ad-hoc graph matching algorithm. The
algorithm has been demonstrated to have linear complexity (in the average case) in the number
of the classes of the system. All the details of the algorithm and the complexity demonstration
can be found in [203]; the complexity of the detection is compatible with the graph matching
literature [128], that demonstrates that it is possible to solve the subgraph matching problem in
polynomial time when the input graph has bounded valence.

In the general case a Joiner rule is a propositional logic expression (plus predicates), where
the micro structures are used as predicates and the roles of the pattern are used as variables. The
current version of the Joiner has been enhanced by the exploitation of the SPARQL [150, 52, 198]
query language, using the ARQ [107] Jena [108] library; this choice permitted to enhance
the expressiveness of the rules, from a graphic form to a full propositional logic one. The
original graphic form is interpreted as propositional logic expression where all the predicates
are in conjunction and are not negated. The transformation for the graphical notation to the
propositional one is quite straightforward: roles are the variables, and micro structures are
translated to predicates on the roles, which are true when the micro-structure exists between the

58

instantiated roles. So testing a graph matching is the same as trying to match the translated
expression, which consist of instantiating the variables (representing the roles) in a combination
that satisfies the predicate composition. The advantage of using full propositional logic in
graph matching is that the rules can specify also negations and disjunctions, augmenting the
expressiveness of the rule.

As an example the rule represented in Figure 6.2 could be translated in this simple expression:

Inheritance(R2, R1) ∧AbstractType(R1, R1)

The use of some kind of logic to express recognition rules for patterns is not new in the research
area; it is also quite common to use predicates in order to represent properties of classes (or
methods and attributes) or group of classes. For example Zhu and Bayley propose an approach
to design pattern detection [31] that uses rules written in first order logic to detect patterns.
Another example of usage of logic for pattern detection is in SPQR [171], where the EDPs are
used in the detection rules, expressed using ρ-calculus. These and the other existing approaches
for design pattern detection are reviewed in Chapter 2. The approach used in the Joiner uses a
lighter logic form: only propositional logic with predicates is used, without the use of quantifiers
or other higher-order constructs.

In order to be able to run a SPARQL query over the graph representing the system, the
graph itself has to be translated in RDF [159] form. RDF is basically a way of specifying a
graph for web applications and technologies. The use of it in the Joiner is internal and not really
related to its features. The Joiner simply takes its graph representation, builds the equivalent
data structure representing the RDF graph using the Jena framework and runs the SPARQL
query over the data structure.

The output of this matching phase is a list of mappings of the roles on the types of the
system that match the rule.

Following the example rule shown in Figure 6.2, and applying the rule to the example found
in Section 5.4, the output would be the one found Table 6.1. The most important thing to note
is that the Component class is present in both the mappings.

Table 6.1: Example of Joiner matching output
Roles → R1 R2

Mapping 1 → Component Composite
Mapping 2 → Component Leaf

If we think about the example rule as the specification of a virtual “pattern” (we can call it
Implementor), where the role R1 is the Abstract class and R2 is the Concrete class, the result
shown in Table 6.1 is not expressive enough in order to represent instances of that pattern. In
fact, as already underlined, there are two separate results coming from the same sample code,
which should be obviously reported as one pattern instance. The consequence of this fact is that
the Joiner rule needs to specify also how to merge the results matched in the analyzed system.
Next section addresses this issue.

6.2 Merging

In the second phase of the detection, the matches in the graph are grouped to identify
single pattern instances having more than one class for the same role. In the example rule,
shown in Figure 6.2, we can impose that the results will be grouped by the assignment of R1,

59

obtaining tree-wise instances, each one formed by an assignment of R1 and a set of related
R2 assignments. The model that fully implements these basic concepts has been proposed for
generic pattern instance modeling [9], and it is exploited in a parallel project of our research
group that implements a benchmark platform for design pattern detection tools [20, 15, 6].

6.2.1 DP representation model

To be able to work on design pattern instances we need a way to represent them in some kind
of data structure. The model used by the Joiner specifies that a design pattern can be defined
from the structural point of view using the roles it contains and the cardinality relationship
between couple of roles.

Roles [118] are duties that can be fulfilled by program elements (e.g. types, methods) relations
(e.g. inheritance, association) and collaborations in a design pattern.

A design pattern is defined as a tree whose nodes are called Levels; each Level has to contain
at least one of the roles of the pattern and it can contain other nested Levels, recursively. In
Figure 6.3 it is possible to see the tree structure of the LevelDef class (representing the level
definition), and the RoleDefs it owns; finally, DpDef defines that a design pattern definition is a
tree having as root one LevelDef.

Figure 6.3: DP Definition UML class diagram

When two roles are contained in the same level, they are in a one-to-one relationship; when
a role is in a nested Level, instead, it means that, for each instance of the role set in the parent
level, there can be many sets of roles of the child level. The most common case is when a pattern
defines that a class must extend another class. In most cases we identify a single instance of that
pattern as the parent class connected with all the children classes. Following the example Joiner
rule shown in Figure 6.2, if we want to specify that concrete classes referring to the same abstract
class must be grouped together, we have to specify two Levels L1 and L2, containing respectively
the Abstract and Concrete roles. Figure 6.4 shows the UML object diagram representing that
rule.

Instances are modeled as in Figure 6.5; the model is simply an extension of the definition, as
it models the instantiation of the concepts contained in the definition: a RoleAssociation is the
realization of a RoleDef, a LevelInstance is the realization of a LevelDef, and so on. The only
complex detail is the splitting of Level and LevelInstance; the explanation is that each LevelDef
is instantiated as a LevelInstance when the RoleAssociations are filled, but to define a child Level
we need to specify which particular parent instance it belongs to.

Applying the rule shown in Figure 6.4 to the results shown in Table 6.1 the Joiner merger
result is like the one shown in Figure 6.6: there is only one instance for the LevelDef L1, that

60

Figure 6.4: UML object diagram of the DP definition example

Figure 6.5: Model UML class diagram

61

contains only one role association to the class Component. The Composite and Leaf classes are in
two different sublevels that depend on the upper one.

Figure 6.6: UML object diagram of the DP result example

In Section 3.2 another model for the representation of design pattern instances and definition,
called DPDX, is discussed. DPDX is a wider model with a different aim, but the main differences
among this model and DPDX are two. First, DPDX specifies a Program element meta-model able
to represent a software system, and defines a protocol to identify the classes or methods referred
by design pattern instances, because its target is the exchange of models among different tools.
In MARPLE the solution of this issue is externalized to the particular implementation, i.e. there
is a reference from the RoleAssociation entity to a CodeEntity in the model for the representation
of the system. The second difference is more conceptual: MARPLE does not model the reason
why instances are grouped in a particular way, but only how they are grouped; DPDX instead
specifies the Relation, RelationAssignment and Justification entities for this purpose. The two
different approaches have different goals: MARPLE tends to be minimal, without repeating
information that can be reached by other means (e.g. the match rule, the micro-structures),

62

while DPDX includes all the possible information about the found instances to enable a better
comprehension of the modeled instances.

6.2.2 Merging the mappings

All the retrieved mappings, like the ones shown in Table 6.1, have to be merged in order to
build design pattern candidate instances, following the structure defined in the merge rule, like
the one shown in Figure 6.4. The example of the overall process the Joiner has to complete can
be resumed using Figure 6.7: the application of the rule to the system extracts many disjoint
mappings that have to be merged in order to form well-structured pattern candidates.

Component
(Abstract Class)

Leaf
(Concrete Class)

Composite
(Concrete Class)

Instance1

IN IN

Abstr.
Class

Concr.
Class

Match

Component

Composite

Component

Leaf

IN Merge

Mapping1 Mapping2AT AT

Figure 6.7: Merge process example. IN : Inheritance, AT : Abstract Type

The merge rule is interpreted as a rooted tree of levels defining the cardinality relationships
between the instances of those levels; there are rules to follow in order to correctly interpret the
rule, which implement the concepts introduced in the previous subsection:

• if a level is child of another level, it means that for each instance of the parent level there
can be more than one instance of the child level; in the previous example, level L1 contains
level L2, because we want to group all the subclasses (contained in L2) of the same abstract
class (contained in L1);

• if two (or more) roles are in the same level, it means that the two roles uniquely identify
that level; therefore, when applying the first rule, to consider two LevelInstances “equal”,
all the respective role associations have to be the same; it is possible to say that the roles
act as primary keys for the levels;

• each level cannot contain duplicate roles.

The merge algorithm builds all the level instances found in a mapping, and, starting from
the root, it adds those instances to the model, instantiated as a multi-root structure (the roots
are design pattern instances). For each level it applies this simple rule: if the level already
contains a level instance having the same role associations as the input, it recursively applies to
the children levels of that level instance, otherwise it adds the input level instance to the level
and then it descends like in the first case. The procedure adds a new level instance only when it
is not present in the particular path the algorithm is examining, building the tree in a recursive
fashion.

For example, referring to Figure 6.7, the algorithm takes the first mapping and creates the
two level instances containing the two role associations; the level instances create a tree with
only two role associations, and a root that is the level instance containing the Component class.

63

When the second mapping is added, the first level instance generated is equal to the one acting
as the root of the tree, so only the second one is added to the same root. The algorithm works
recursively using this behaviour.

An interesting property of the merge structure is the fact that children levels depend on
their parent level instance. This implies that if a user knows, after the merge, that a certain
level instance is not valid (the role associations it contains are not correct) he can prune the tree
deleting that level instance and all its children. This is semantically correct because deleting
a level instance means deleting all the mappings having a certain subset of role association.
Finally, the correctness of the tree is guaranteed if, after the pruning, every node not being at
least in a path from the root to a leaf of the tree will be deleted (it would represent a broken
mapping). This behaviour will be coded (in future work) in the GUI of MARPLE, in the results
inspection form.

The models instantiated by the Joiner are then inspected by the Classifier module, which
tries to infer whether they can represent instances of design patterns or not. In Chapter 7 the
details of the classification process will be explained. Next section lists the detection rules for
the design patterns supported by MARPLE.

6.3 Detection rules
This section contains the detection rules, for both matching and merging, exploited for the

detection of the patterns used for the experimentation of the classification approach. Detection
rules have been created also for the other design patterns of the GoF book, and they are reported
in Appendix A.

To fully understand the reported rules it is necessary to understand the syntax used to
specify them. Match rules are specified using a SPARQL query. A SPARQL query is composed
(simplifying) of a SELECT statement and a WHERE statement. In the match rules the SELECT
statement lists the name of the roles of the design pattern, with a ? prefix. Then the WHERE
statement is a list of constraint in conjunction, i.e. all of them must be satisfied for the rule to
have a correct match. Constraints are separated by . (full stops). To create a negative constraint
(to specify an illegal role assignment) the constraint must be put into a NOT EXISTS block.
UNION blocks instead act as disjunctions, i.e. the whole block is matched if at least one of
the constraints is matched. Finally, OPTIONAL blocks are not required to be matched, but
it is possible to test if their variables were matched or not, allowing more sophisticated rules.
The SPARQL implementation of the example rule described in Section 6.1, and represented in
Figure 6.2, is the following2:
PREFIX BE : <ht tp :// e s s e r e . d i s c o . un imib . i t /marp le /BEs#>

SELECT ? Ab s t r a c tC l a s s ? Conc r e t eC l a s s
WHERE {
? Conc r e t eC l a s s BE : I n h e r i t a n c e ? Ab s t r a c tC l a s s .
? Ab s t r a c tC l a s s BE : Abst ractType ? Ab s t r a c tC l a s s .
}

The merge rule is specified instead using an XML syntax. A pattern is defined by a <pattern>
tag, which has a name. A <pattern> contains a list of <role> tags and <sublevel> tags. <role>
tags have a name, while <sublevel> tags have no attribute. The nesting of <sublevel> tags
(<pattern> is a particular <sublevel>) determines the placement of roles, following the principles
described in Section 6.2. The XML representation could be sometimes difficult to read, and the
UML object diagram notation (an example is can be seen in Figure 6.4) is verbose at best. For

2recall that (R1, R2) in the original example are respectively (AbstractClass, ConcreteClass) in the rule

64

this reason a simple graphical notation was developed to better understand merge rules. The
graphical (diagram) notation uses the level nesting as boxes. A box represents a LevelDef (or a
<pattern> or <sublevel> tag in the XML). When a box is under another box, and has the same
width (or less) it means that it is a sublevel of the upper box. When two boxes are side-by-side
it means that they are sibling levels. Named ellipses in the boxes represent roles. The example
rule used in Section 6.2 and depicted in Figure 6.4 can be represented by the following XML
rule and diagram, which are shown respectively in Listing 6.1 and Table 6.2.

Listing 6.1: Example of XML merge rule
<pa t t e r n name=" I n h e r i t a n c e ">

<r o l e name=" Ab s t r a c tC l a s s " />
<r o l e name=" Conc r e t eC l a s s " />

</ pa t t e r n>

Table 6.2: Example of merge rule diagram

AbstractClass

ConcreteClass

The remainder of the section contains the rules for each design pattern.

6.3.1 Creational Design Patterns

Factory Method

Match rule The Factory Method pattern is detected looking for classes able to create instances
of arbitrary (i.e. related to it or not) classes and returning them using an abstract interface.
In the detection rule the direct creation of the ConcreteProduct object by the ConcreteCreator
is required, because factory methods are the simplest indirection mechanism for the creation
of objects. The same rule does not apply for Abstract Factory, for example, because it is an
aggregator that provides creation of related classes in one of the ways that make it possible (i.e.
direct creation, redirection to other factories, prototypes).

The match rule for the Factory Method pattern allows the two abstractions (the products and
the creators) to be collapsed, in order to detect instances that are simpler and less structured
than their theoretical description.
PREFIX BE : <ht tp :// e s s e r e . d i s c o . un imib . i t /marp le /BEs#>

SELECT ? C r ea t o r ? Conc r e t eC r ea t o r ? Product ? Conc re teProduct
WHERE {
? C r ea t o r BE : ProductRetu rns ? Product .
? Conc r e t eC r ea t o r BE : C r ea t eOb j e c t ? Conc re teProduct .
{{? Conc r e t eC r ea t o r BE : E x t e nd ed I n h e r i t a n c e ? C r ea to r .
}UNION{? Conc r e t eC r ea t o r BE : SameClass ? C r ea to r . } } .

{{? Conc re teProduct BE : E x t e nd ed I n h e r i t a n c e ? Product . }
UNION{? Conc re teProduct BE : SameClass ? Product . } } .

65

NOT EXISTS{? Product BE : E x t e nd ed I n h e r i t a n c e ? C r ea to r . } .
NOT EXISTS{? Product BE : E x t e nd ed I n h e r i t a n c e ? Conc r e t eC r ea t o r . } .

OPTIONAL{
? C r ea t o r BE : E x t e nd ed I n h e r i t a n c e ?y .
? y BE : ProductRetu rns ? Product .

}FILTER (! bound (? y)) .
}

Merge rule The focus of the merge rule for the Factory Method pattern is the on fact that
this pattern describes a way of giving the responsibility of the creation of a class instance to a
method different from the constructor. Each implemented method is an instance of the pattern,
and it belongs to the ConcreteCreator role. There exists only one Creator (the superclass) and
Product (the return type) for each ConcreteCreator, so all the three of them are in the same level.
Many ConcreteProducts may exist for the same pattern instance.
<pa t t e r n name=" FactoryMethod ">

<r o l e name=" Crea to r " />
<r o l e name=" Conc r e t eC r ea t o r " />
<r o l e name=" Product " />
<s u b l e v e l>

<r o l e name=" Concre teProduct " />
</ s u b l e v e l>

</ pa t t e r n>

Merge rule diagram

Creator ConcreteCreator Product

ConcreteProduct

Evaluation During the manual evaluation, one of the strongest criteria used is that a Factory
Method must have a method which is in charge of creating objects and that decides if creating
them or not. The criterion includes static factories (for the same class or not). The only
exceptions to the criterion are factories using prototyping constructors or similars; even if the
clone (or equivalent) method is a factory method for the same class, it is a very specific case
and it belongs to the Prototype design pattern.

Discussion Sometimes the documentation of software systems describes some methods as a
Factory Method for something, but the ConcreteCreator simply delegates the creation to some
other object; in this case it is simply an Adapter for some other Factory Method, and should
be reported as such. An extreme example of this situation is the instantiation of objects using
the reflection API, e.g. Class .newInstance(), in Java; those mechanisms are Factory Methods
themselves, allowing the instantiation of an object without knowing its real type.

It is possible to imagine some kind of “pattern arithmetic” that would allow the composition
of patterns, and to state that, for example, an “Adapter for a Factory Method is a Factory
Method itself, transitively”, but this needs future investigations.

The Factory Method pattern rule puts the ConcreteCreator in the root level. This has been
done to underline the lightweight nature of the Factory Method. Despite this, after the evaluation

66

of many instances, having the ConcreteCreator in its own sublevel would be another good option,
producing a lot less instances and grouping the different ConcreteCreators and Products related
to the same Creator.

Singleton

Singleton is a simple pattern, with only one role. The detection rule is therefore not
particularly complicated.

Match rule Next the match rule for the Singleton pattern, defined in SPARQL. Basically
there are four variant managed, that use different mechanisms to ensure that the class exists in
a single instance.
PREFIX BE : <ht tp :// e s s e r e . d i s c o . un imib . i t /marp le /BEs#>

SELECT ? S i n g l e t o n
WHERE {
{? S i n g l e t o n

BE : C rea t eOb j e c t ? S i n g l e t o n ;
BE : P r i v a t e S t a t i c R e f e r e n c e ? S i n g l e t o n ;
BE : P r i v a t eCo n s t r u c t o r ? S i n g l e t o n . }

UNION {? S i n g l e t o n
BE : C rea t eOb j e c t ? S i n g l e t o n ;
BE : P r o t e c t e d S t a t i c R e f e r e n c e ? S i n g l e t o n ;
BE : P r i v a t eCo n s t r u c t o r ? S i n g l e t o n . }

UNION {? S i n g l e t o n
BE : C rea t eOb j e c t ? S i n g l e t o n ;
BE : O t h e r S t a t i cR e f e r e n c e ? S i n g l e t o n ;
BE : P r i v a t eCo n s t r u c t o r ? S i n g l e t o n . }

UNION {? S i n g l e t o n
BE : C rea t eOb j e c t ? S i n g l e t o n ;
BE : P r i v a t e S t a t i c R e f e r e n c e ? S i n g l e t o n ;
BE : Con t r o l l e dE x c e p t i o n ? S i n g l e t o n . }

UNION {? S i n g l e t o n
BE : S t a t i c F l a g ? S i n g l e t o n ;
BE : Con t r o l l e dE x c e p t i o n ? S i n g l e t o n . }

UNION {? S i n g l e t o n
BE : C rea t eOb j e c t ? S i n g l e t o n ;
BE : S t a t i c F l a g ? S i n g l e t o n ;
BE : C o n t r o l l e d I n s t a n t i a t i o n ? S i n g l e t o n . }

}

Merge rule Next the merge rule for the Singleton pattern, given in XML. There is only one
role, so there is also only one level.
<pa t t e r n name=" S i n g l e t o n ">

<r o l e name=" S i n g l e t o n "/>
</ pa t t e r n>

Merge rule diagram

Singleton

67

6.3.2 Structural Design Patterns

Adapter

Match rule The particular constraints in the Adapter match rule are that Target and Adaptee
must not know each other, and the Adapter has not to be an empty class. The Adapter class must
extend a class or interface Target, implementing at least one method. One call to an Adaptee
object must exist, coming from at least one implemented method, considering also other methods
(public or private) defined in the same class, transitively; invocations on objects coming from
parameters of the overridden method are not considered, including objects or expression directly
derivable from the parameters using chained method calls. Passing parameters to external
methods is not considered as a method call, but as a delegation, even if the target operation,
behaviour or return value is obvious/known.

Method calls originated from other methods and constructors are clearly ignored. Adaptees
can be instantiated on the fly, they can be Singletons, and they can be generically retrieved from
a static method (also transitively).

It is improbable for the Adaptee to be a superclass of Target; it means they come from the
same library or project, and it would seem more of a Decorator.

PREFIX BE : <ht tp :// e s s e r e . d i s c o . un imib . i t /marp le /BEs#>

SELECT ? Target ? Adapter ?Adaptee
WHERE {
{ # C l a s s Adapter c l a u s e

? Adapter
BE : E x t e nd ed I n h e r i t a n c e ? Target ;
BE : E x t e nd ed I n h e r i t a n c e ?Adaptee .
?Adaptee BE : SameClass ?Adaptee .

{{? Adapter BE : RevertMethod ?Adaptee }
UNION{? Adapter BE : ExtendMethod ?Adaptee }
UNION{? Adapter BE : Cong lomerat ion ?Adaptee }} .

{{? Target BE : I n t e r f a c e ? Target . }
UNION {?Adaptee BE : I n t e r f a c e ?Adaptee . } } .

}
UNION
{ # Object Adapter c l a u s e

? Adapter BE : E x t e nd ed I n h e r i t a n c e ? Target .
?Adaptee BE : SameClass ?Adaptee .

{{? Adapter BE : De l ega t e ?Adaptee . } UNION {? Adapter BE : R e d i r e c t ?Adaptee . } } .

{
{? Adapter BE : P r o t e c t e d I n s t a n c eR e f e r e n c e ?Adaptee . }

UNION{? Adapter BE : P r i v a t e I n s t a n c eR e f e r e n c e ?Adaptee . }
UNION{? Adapter BE : O th e r I n s t a n c eRe f e r e n c e ?Adaptee . }
UNION{? Adapter BE : P r o t e c t e d S t a t i c R e f e r e n c e ?Adaptee . }
UNION{? Adapter BE : P r i v a t e S t a t i c R e f e r e n c e ?Adaptee . }
UNION{? Adapter BE : O t h e r S t a t i cR e f e r e n c e ?Adaptee . }
UNION{

{{? Adapter BE : De l ega t e ? f . }
UNION{? Adapter BE : R e d i r e c t ? f . }
UNION{? Adapter BE : De l e ga t e I nFam i l y ? f . }

68

UNION{? Adapter BE : R e d i r e c t I n F am i l y ? f . }
UNION{? Adapter BE : De l e g a t e I nL im i t e dFam i l y ? f . }
UNION{? Adapter BE : R e d i r e c t I n L im i t e dF am i l y ? f . } } .
? f BE : ProductRetu rns ?Adaptee .

}
UNION{

? Adapter BE : C rea t eOb j e c t ?Adaptee .
}
} .

} # End o f Object adap t e r c l a u s e

Target and i t s s u p e r t y p e s must not "know" the Adaptee
OPTIONAL {

{{? Target BE : E x t e nd ed I n h e r i t a n c e ?x . }UNION{? Target BE : SameClass ?x . } } .

{{? x BE : De l ega t e ?Adaptee . }
UNION {? x BE : R ed i r e c t ?Adaptee . }
UNION {? x BE : Cong lomerat ion ?Adaptee . }
UNION {? x BE : Recu r s i on ?Adaptee . }
UNION {? x BE : RevertMethod ?Adaptee . }
UNION {? x BE : ExtendMethod ?Adaptee . }
UNION {? x BE : De l ega tedCong lomera t i on ?Adaptee . }
UNION {? x BE : R ed i r e c tR e c u r s i o n ?Adaptee . }
UNION {? x BE : De l e ga t e I nFam i l y ?Adaptee . }
UNION {? x BE : R e d i r e c t I n F am i l y ?Adaptee . }
UNION {? x BE : De l e g a t e I nL im i t e dFam i l y ?Adaptee . }
UNION {? x BE : R e d i r e c t I n L im i t e dF am i l y ?Adaptee . }
UNION {? x BE : Rece i v e sPa ramete r ?Adaptee . }
UNION {? x BE : P r o t e c t e d I n s t a n c eR e f e r e n c e ?Adaptee . }
UNION {? x BE : P r i v a t e I n s t a n c eR e f e r e n c e ?Adaptee . }
UNION {? x BE : O th e r I n s t a n c eRe f e r e n c e ?Adaptee . } } .

}
FILTER (! bound (? x)) .

Target must not "know" Adaptee
NOT EXISTS {? Target BE : SameClass ?Adaptee . } .
NOT EXISTS {? Target BE : E x t e nd ed I n h e r i t a n c e ?Adaptee . } .

NOT EXISTS {?Adaptee BE : SameClass ? Target . } .
NOT EXISTS {?Adaptee BE : E x t e nd ed I n h e r i t a n c e ? Target . } .
NOT EXISTS {?Adaptee BE : De l ega t e ? Target . } .
NOT EXISTS {?Adaptee BE : R e d i r e c t ? Target . } .
NOT EXISTS {?Adaptee BE : Cong lomerat ion ? Target . } .
NOT EXISTS {?Adaptee BE : Recu r s i on ? Target . } .
NOT EXISTS {?Adaptee BE : RevertMethod ? Target . } .
NOT EXISTS {?Adaptee BE : ExtendMethod ? Target . } .
NOT EXISTS {?Adaptee BE : De l ega tedCong lomera t i on ? Target . } .
NOT EXISTS {?Adaptee BE : R ed i r e c tR e c u r s i o n ? Target . } .
NOT EXISTS {?Adaptee BE : De l e g a t e I nFam i l y ? Target . } .
NOT EXISTS {?Adaptee BE : R e d i r e c t I n F am i l y ? Target . } .
NOT EXISTS {?Adaptee BE : De l e g a t e I nL im i t e dFam i l y ? Target . } .
NOT EXISTS {?Adaptee BE : R e d i r e c t I n L im i t e dF am i l y ? Target . } .

69

NOT EXISTS {? Adapter BE : J o i n e r ? Adapter . } .

S e l e c t the more s p e c i a l i z e d Target i n the Adapter s u p e r t y p e s
OPTIONAL {

?y BE : E x t e nd ed I n h e r i t a n c e ? Target .
? Adapter BE : E x t e nd ed I n h e r i t a n c e ?y .

}
FILTER (! bound (? y)) .
}

Merge rule There is basically no grouping for the adapter pattern. Adapter is an “oppor-
tunistic” pattern which aim is to transform an interface into another one in order to reuse some
existing code.
<pa t t e r n name=" Adapter ">

<r o l e name=" Target " />
<r o l e name=" Adapter " />
<r o l e name="Adaptee " />

</ pa t t e r n>

Merge rule diagram

Target Adapter Adaptee

Discussion Object-oriented programming consists of defining classes that are interconnected
and delegate each other the work which is their responsibility. The arrangement of responsibility
of classes is one of the major causes of good or bad design quality. The Adapter pattern brings the
concept that some objects are responsible to adapt a Target interface/protocol to be implemented
using some existing facility, which is in turn another class. The pattern is a way of describing
the fact that some objects are mainly glue code, and some others are defined in order to be (if
necessary) implemented by other classes for their needs. Unfortunately the definition of Adapter
is not able to express how much adapting must be done by the Adapter, how many Adaptees can
be used, if the same Adapter can adapt more than one Target, and so on. The main concern of
the Adapter design pattern definition is to explain a concept that is useful and widely used. The
ambiguity of the definition causes problems, also in relation to other design patterns from the
same catalogue, like the Strategy design pattern. In fact, Strategy is the most abstract pattern
in this sense. An Adapter can coincide with a ConcreteStrategy, if the strategy is to rely on other
objects that are already able to execute some tasks, but also the Strategy can be the Adaptee and
the Adapter its Context, if the concrete type of the Adaptee is unknown to the Adapter. As an
overall conclusion, object-oriented programming is dominated by delegation of responsibility and
behaviour. In the context of software analysis and assessment, where the intents and purposes of
the developers (of the software we are analyzing) are difficult to understand (in some case) also
to expert software engineers and programmers, does it really make sense to try to automatically
distinguish between delegation for Adapters, Strategies, Commands and so on? Would it be
possible to define some measure of this intrinsic characteristic of the object-oriented paradigm
that is able to help people at least to understand quickly how software was organized? Another
perspective could be the one of dependency analysis. In that discipline, software is seen as a
graph of nodes, representing packages, classes, methods or each of them (for different purposes);
the nodes are connected by edges that represent the dependencies between the nodes, creating

70

a graph. A dependency is usually one (or each of) of this kind of constructs: method calls,
field declarations, passed parameters, etc. . .More generally, in the context of static analysis, a
dependency [32] is every kind of explicit static usage of a different code entity, that explicitly
ties (at least) its external interface to the type. This fact has consequences on the maintenance
effort, because every time the interface (or worse, the behaviour) of a dependency is changed, all
its dependents need to be checked.

The dependency analysis perspective can help to define a method for analyzing software in a
way similar (or with similar aims at least, when talking about reverse engineering) to Adapter or
Strategy design patterns discovery, but with a more formalized definition. Both of these patterns
define a different motivation of delegating a task to another object, possibly without knowing
about its implementation. Given the previous discussion, and the many variants defined in the
GoF book [74] or in real systems, from a detection point of view most of the times a delegation
exists we are in the presence of one these patterns; this extreme diffusion lowers their relevance
in the knowledge of the system: it would be more useful to measure, for example, how much
adaptation is present in a class.

We need to define a strategy to achieve this goal. Some analysis techniques can be useful:
using call graph analysis it is possible to extract all the method call paths from a given starting
point, and using data flow analysis it is possible to track all the possible assignment of a given
variable in a certain point. Each of these two techniques can suffer from performance issues
when applied to an entire system, but not when applied to a single class.

Imagine to track all the call paths starting from a method implemented in a class, without
following method calls to different types (and direct or indirect recursions), simply tagging
external method calls for later use. Each of the external method calls is sent to a certain static
type, resolved at compile time (in assessment tasks polymorphism is less relevant than in other
disciplines, and overcomplicated to analyze for the purpose). Using data flow analysis, it is
possible to know the types of the objects referred by the variables that received the external
method calls; the retrieved types are limited to the ones which are explicitly resolvable in the
context of the class. Tracking all this information (the feasibility should be clear), it is possible
to get this particular kind of dependency analysis: which types (and which methods of them)
are used by a method to execute its task?

Following the criteria reported above, it is possible to take the new dependency analysis and
customize it a little: for each overridden method in a class, which types/method does it use to
execute its task, without considering those retrieved from the method parameters? In the end
the result will be a list of types/methods that the type decided to rely on when trying to achieve
its goals. It is possible to make different considerations over these data, like the ones described
in next items.

• The simplest one is reporting the types used to implement the method, grouped by the
overridden type: this gives the idea of which classes were used by the class to be able to
implement (or properly override) the behaviour of each particular supertype. From the
Adapter design pattern detection point of view this means that, considering every class
a potential Adapter, we point, for each of its supertypes (the potential Targets), to all
its Adaptees. If the Adapter design pattern is intended in a more subtle way, it would
be possible to remove from the calculation the method calls sent to instances which are
derived from other ones (remember we already removed everything coming from the root
method’s parameter), and therefore we will end up with the “root” Adaptee types, the
ones that are able to provide everything else is used to implement the Adapter’s behavior.
Another variant could be to associate to each type the number of methods or the number
of calls used in the overall paths. This would be a possible measure of how much a type is
an Adaptee for an Adapter.

71

• The second example is less related to design pattern detection. If we take the grouping
made in the first example, considering the analysis of a whole system, and group another
time, over the Adapter’s type, we end up with the Adaptees used to implement each Target
(it is possible to group another time collapsing Targets that inherit each other). This kind
of analysis can describe different situations where, for example (the opposites): a Target is
always implemented by the same (or a small number of) type(s) or it is implemented by a
very high number of types, or if some type is never/very used as Adaptee. This “proportion”
analysis is typical of dependency analysis, but is deeper than simply stating how many
times a method/type has been used and from which other type: it measures the quantity
of object composition used in the system, and the analysis of limit cases (or outliers) it
could be useful to find, e.g., design patterns, code smells and anti-patterns.

• A possible variant of this particular dependency analysis can be the application of a
simple filter, which is used to decide to consider (or not) the types coming from particular
libraries (or packages, in the example of Java). The filter could be useful because, in a
first approximation, it is very probable that standard libraries (or other utility libraries
and frameworks) will be pervasive in a system, especially as Adaptees, in this particular
parallel example; most classes will use Strings and Collections , for example, and in most
cases this information is not relevant (but if the analyzed project is some kind of utility
over the standard library it will be useful to keep everything).

The one described above is only an example of how it is possible to use a dependency analysis
approach to make a discovery that is reliable, because it is not approximated, that is feasible
and that can be used for different purposes, potentially discovering patterns or flaws. Using the
same approach, but with a slightly different analysis, it would be possible to track all the fields
and variables that are used only for storage purposes, and, measuring the number of paths, it
would be possible to measure the amount of, e.g., code used for delegation, “glue code” [29], and
“data store” code.

In this hypothetical context what is the definition of an Adapter design pattern? A class that
forwards calls only to another “root”, one for each of its direct supertypes? And a Strategy? A
class that delegates to something else? It could be possible to define how much Adapter and how
much Strategy there is in each class or method, and it would be a more precise information in
an assessment task. Naturally this analysis useful only for some patterns (but it is not a design
pattern-oriented analysis). For example the Template Method design pattern does not need
any analysis of this kind, because it is based on another kind of object-oriented construct, i.e.
inheritance. Curiously, the Template Method is one of the patterns where it is possible to define
a formal definition that is able to extract it with no (or very few) errors. The motivation is
simply the fact that the programming language (in Java, at least) supports directly the pattern
without the need of particular conventions or arrangements.

Composite

Match rule The Composite design pattern is made by three roles Component, Composite and
Leaf. The essence of the design pattern is that it lets the client treat a Composite like an indistinct
Component, without knowing the type and the number of receivers of the Component’s operations.
Moreover, this goal is achieved using a tree structure, where Composites are non-terminal nodes,
able to have children, and Leaves are terminal nodes. The rule focuses on the inheritance tree
and the redirection of method calls from the Composite to the Component, and the absence of
redirection in the Leaf.
PREFIX BE : <ht tp :// e s s e r e . d i s c o . un imib . i t /marp le /BEs#>

72

SELECT ?Component ? Composite ? Lea f
WHERE {
?Composite BE : E x t e nd ed I n h e r i t a n c e ?Component ;

BE : R e d i r e c t I n F am i l y ?Component .

? Lea f BE : E x t e nd ed I n h e r i t a n c e ?Component ;
BE : SameClass ? Lea f .

NOT EXISTS{? Lea f BE : E x t e nd ed I n h e r i t a n c e ? Composite . } .
NOT EXISTS{? Lea f BE : R e d i r e c t I n F am i l y ?Component . } .
NOT EXISTS{? Lea f BE : Ab s t r a c tC l a s s ? Lea f . } .
NOT EXISTS{? Lea f BE : I n t e r f a c e ? Lea f . } .

S e l e c t the more s p e c i a l i z e d Component
OPTIONAL {

?y BE : E x t e nd ed I n h e r i t a n c e ?Component .

#Repeat ing r u l e s
?Composite BE : E x t e nd ed I n h e r i t a n c e ?y ;

BE : R e d i r e c t I n F am i l y ?y .
? Lea f BE : E x t e nd ed I n h e r i t a n c e ?y .

}
FILTER (! bound (? y)) .
}

Merge rule The merge rule simply describes the fact that a Composite design pattern is
identified by its abstraction, i.e. the Component, which has a collection of realizations that are
subdivided in Composites and Leaves.
<pa t t e r n name=" Composite ">

<r o l e name="Component " />
<s u b l e v e l>

<r o l e name=" Composite " />
</ s u b l e v e l>
<s u b l e v e l>

<r o l e name=" Lea f " />
</ s u b l e v e l>

Merge rule diagram

Component

Composite Leaf

Evaluation In my evaluation I consider a Composite pattern as correct when both tree and
delegation characteristics are present. If only the tree structure is present, e.g. because all
operations are delegated to Visitor roles (see for example the SimpleNode class and its subclasses
in PMD), the structure is not considered a Composite pattern. If I did otherwise, every class
having a reference to a collection of superclasses would be considered to belong to a Composite
pattern.

73

Discussion The detection of (typed) aggregation or collection is a tricky and delicate argument.
In this thesis I decided not to deepen the analysis of this aspect to focus on other ones, but
in the future it will be one of the important problems to solve. The detection rule for the
Composite pattern does not enforce the aggregation of Components in the Composite, but relies
on the redirection of methods from the Composite to children Components (in the rule), and the
presence of calls from Composite to Components in cycles (in the classifier).

From the design/implementation (not only the intent) point of view, a Composite design
pattern is simply the generalization of a Decorator pattern to many children objects, instead of
a single one. The Decorator detection rule can be more precise in the definition of the pattern
structure because a single reference can be better detected than a collection or an aggregation.

An interesting distinction in the Composite design pattern roles is the one between Composite
and Leaf. Composite is an intermediate node able to host children Components, which can be
mixed Composites or Leaves. Most of the times this distinction is enough. In complex hierarchies
there are also intermediate classes (maybe abstract) that are used for example to put together
common functionalities, as for example to be able to host children, without using them; this is
the case where different Composites are available, but they share the same children management
implementation (but not the same composition of children). In a detection rule (that looks
for a cyclic composition) such classes can be seen as Leaves, but they are not. And they are
not Composites, so it is better to leave them out of the pattern (inspecting the pattern they
will come up anyway). In the detection rule this is achieved removing from the Leaves abstract
classes and interfaces.

Decorator

Match rule The match rule for the Decorator pattern allows the Decorator and the Concret-
eDecorator roles to be assigned to the same class, and does not allow the ConcreteDecorator to
be abstract. The other issues addressed by the rule are the inheritance tree and the separation
of ConcreteComponents and Decorators.

Decorator is, from the implementation point of view, a “degenerate” Composite having only
one child. The rule defines that a Decorator enforces constraints similar to the ones used in the
Composite rule, but has different roles number and organization.
PREFIX BE : <ht tp :// e s s e r e . d i s c o . un imib . i t /marp le /BEs#>

SELECT ?Component ? Deco ra to r ? Conc r e t eDeco ra to r ?ConcreteComponent
WHERE {
? Deco ra to r BE : E x t e nd ed I n h e r i t a n c e ?Component .
? ConcreteComponent BE : E x t e nd ed I n h e r i t a n c e ?Component .

{{? Deco ra to r BE : R e d i r e c t I n F am i l y ?Component . }
UNION
{? Deco ra to r BE : De l e ga t e I nFam i l y ?Component . } } .

{
{? Conc r e t eDeco ra to r BE : E x t e nd ed I n h e r i t a n c e ? Deco ra to r .
{{? Conc r e t eDeco ra to r BE : ExtendMethod ? Deco ra to r . }
UNION{? Conc r e t eDeco ra to r BE : RevertMethod ? Deco ra to r . }
UNION{? Conc r e t eDeco ra to r BE : R e d i r e c t I n F am i l y ?Component . }
UNION{? Conc r e t eDeco ra to r BE : De l e ga t e I nFam i l y ?Component . } } .

}UNION{
? Conc r e t eDeco ra to r BE : SameClass ? Deco ra to r .

}
} .

74

NOT EXISTS {? Conc r e t eDeco ra to r BE : Abst ractType ? Conc r e t eDeco ra to r . } .

NOT EXISTS {? ConcreteComponent BE : E x t e nd ed I n h e r i t a n c e ? Deco ra to r . } .
NOT EXISTS {? ConcreteComponent BE : SameClass ? Deco ra to r . } .
NOT EXISTS {? ConcreteComponent BE : SameClass ? Conc r e t eDeco ra to r . } .

NOT EXISTS{? ConcreteComponent BE : R e d i r e c t I n F am i l y ?Component . } .
NOT EXISTS{? ConcreteComponent BE : De l e ga t e I nFam i l y ?Component . } .

NOT EXISTS {? ConcreteComponent BE : De l ega t e ? Deco ra to r . } .
NOT EXISTS {? ConcreteComponent BE : R ed i r e c t ? Deco ra to r . } .
NOT EXISTS {? ConcreteComponent BE : Cong lomerat ion ? Deco ra to r . } .
NOT EXISTS {? ConcreteComponent BE : Recu r s i on ? Deco ra to r . } .
NOT EXISTS {? ConcreteComponent BE : RevertMethod ? Deco ra to r . } .
NOT EXISTS {? ConcreteComponent BE : ExtendMethod ? Deco ra to r . } .
NOT EXISTS {? ConcreteComponent BE : De l ega tedCong lomera t i on ? Deco ra to r . } .
NOT EXISTS {? ConcreteComponent BE : R ed i r e c tR e c u r s i o n ? Deco ra to r . } .
NOT EXISTS {? ConcreteComponent BE : De l e ga t e I nFam i l y ? Deco ra to r . } .
NOT EXISTS {? ConcreteComponent BE : R e d i r e c t I n F am i l y ? Deco ra to r . } .
NOT EXISTS {? ConcreteComponent BE : De l e g a t e I nL im i t e dFam i l y ? Deco ra to r . } .
NOT EXISTS {? ConcreteComponent BE : R e d i r e c t I n L im i t e dF am i l y ? Deco ra to r . } .

Report the more a b s t r a c t Deco ra to r i f more than one a r e a v a i l a b l e
OPTIONAL{

? Deco ra to r BE : E x t e nd ed I n h e r i t a n c e ?x .
? x BE : E x t e nd ed I n h e r i t a n c e ?Component .
{{? x BE : R e d i r e c t I n F am i l y ?Component . }
UNION
{? x BE : De l e ga t e I nFam i l y ?Component . } } .

{{? Conc r e t eDeco ra to r BE : ExtendMethod ?x . }
UNION{? Conc r e t eDeco ra to r BE : RevertMethod ?x . }
UNION{? Conc r e t eDeco ra to r BE : R e d i r e c t I n F am i l y ?Component . }
UNION{? Conc r e t eDeco ra to r BE : De l e ga t e I nFam i l y ?Component . } } .

NOT EXISTS {? ConcreteComponent BE : E x t e nd ed I n h e r i t a n c e ?x . } .
NOT EXISTS {? ConcreteComponent BE : SameClass ?x . } .
NOT EXISTS {? ConcreteComponent BE : De l ega t e ?x . } .
NOT EXISTS {? ConcreteComponent BE : R ed i r e c t ?x . } .
NOT EXISTS {? ConcreteComponent BE : Cong lomerat ion ?x . } .
NOT EXISTS {? ConcreteComponent BE : Recu r s i on ?x . } .
NOT EXISTS {? ConcreteComponent BE : RevertMethod ?x . } .
NOT EXISTS {? ConcreteComponent BE : ExtendMethod ?x . } .
NOT EXISTS {? ConcreteComponent BE : De l ega tedCong lomera t i on ?x . } .
NOT EXISTS {? ConcreteComponent BE : R ed i r e c tR e c u r s i o n ?x . } .
NOT EXISTS {? ConcreteComponent BE : De l e ga t e I nFam i l y ?x . } .
NOT EXISTS {? ConcreteComponent BE : R e d i r e c t I n F am i l y ?x . } .
NOT EXISTS {? ConcreteComponent BE : De l e g a t e I nL im i t e dFam i l y ?x . } .
NOT EXISTS {? ConcreteComponent BE : R e d i r e c t I n L im i t e dF am i l y ?x . } .

}FILTER (! bound (? x)) .

Report the more c o n c r e t e Component i f more than one a r e a v a i l a b l e
OPTIONAL{

75

?y BE : E x t e nd ed I n h e r i t a n c e ?Component .

? Deco ra to r BE : E x t e nd ed I n h e r i t a n c e ?y .
? ConcreteComponent BE : E x t e nd ed I n h e r i t a n c e ?y .

{{? Deco ra to r BE : R e d i r e c t I n F am i l y ?y . }
UNION
{? Deco ra to r BE : De l e ga t e I nFam i l y ?y . } } .
{

{? Conc r e t eDeco ra to r BE : E x t e nd ed I n h e r i t a n c e ? Deco ra to r .
{{? Conc r e t eDeco ra to r BE : ExtendMethod ? Deco ra to r . }
UNION{? Conc r e t eDeco ra to r BE : RevertMethod ? Deco ra to r . }
UNION{? Conc r e t eDeco ra to r BE : R e d i r e c t I n F am i l y ?y . }
UNION{? Conc r e t eDeco ra to r BE : De l e ga t e I nFam i l y ?y . } } .

}UNION{
? Conc r e t eDeco ra to r BE : SameClass ? Deco ra to r .

}
} .

NOT EXISTS{? ConcreteComponent BE : R e d i r e c t I n F am i l y ?y . } .
NOT EXISTS{? ConcreteComponent BE : De l e ga t e I nFam i l y ?y . } .

}FILTER (! bound (? y)) .
}

Merge rule The choice done in the merge rule is to put together different Decorators for
the same Component, focusing the merging on the detection of the “extension by composition”
feature of the Decorator pattern. Keeping the Component at the root level lets the user to see
all the possible ways of decorating it. The choice does not create side-effects because a Decorator
cannot decorate other classes than its Component.

<pa t t e r n name=" Deco ra to r ">
<r o l e name="Component " />
<s u b l e v e l>

<r o l e name=" Deco ra to r " />
<s u b l e v e l>

<r o l e name=" Conc r e t eDeco ra to r " />
</ s u b l e v e l>

</ s u b l e v e l>
<s u b l e v e l>

<r o l e name=" ConcreteComponent " />
</ s u b l e v e l>

</ pa t t e r n>

Merge rule diagram

Component

Decorator

ConcreteDecorator
ConcreteComponent

76

Evaluation Sometimes Composites keep a reference to the parent Component. When some
method call is forwarded to the parent, the Composite could be seen as a Decorator for the parent
component. As this is a known option of the Composite pattern, these instances have been
evaluated as incorrect.

A problem for the detection is not having the information of which method is calling another
one: it can lead to lots of false positives, e.g. classes having a static method that build a new
instance of the class and calls its inherited method will be considered a DelegateInFamily EDP.
This can create a false Decorator report. Most of these instances will should be filtered by the
classifier if, for example, the Decorator class has no direct reference to the Component (which is
not needed but is true in the majority of correct cases).

Discussion The Decorator pattern can also be considered “object inheritance”, because one
class extends the interface of another one, but can vary the implementation of the superclass. In
some contexts this behaviour is called consulting (e.g. definition and references are reported
by Kniesel [116] in the context of the Darwin project). Considering all the variants specified in
the definition, it is simple to see that there is no (or very little difference) among the Decorator,
Proxy and Chain of Responsibility design patterns. Most of the differences explained in the
book [74] are about the intent and not the structure or even the behaviour. The classical forms
of these patterns have slight differences because usually:

• Decorator receives the Component during its initialization;

• Proxy can be able to instantiate its Subject;

• the Handler of a Chain of Responsibility knows how to reach its successor and exposes it
to its subclasses.

Despite these differences, it is possible to find variants of each of these patterns that can
be seen exactly as one of the other two. The motivation is that these patterns are different
ways of decoupling the sender of a message from the concrete receiver(s). In these sense the
Composite pattern can be seen as another variant of these three patterns. Each of these patterns
let the designer to define (or reuse) an interface and leave the choice (or combination) of the
implementation to the run-time. And each one of these patterns has the impact on the overall
design of preventing the explosion of the number of classes of the system, in the case some
feature must be added to all the classes implementing some interface.

For these reasons one could argue that the separation of these patterns (in two different
categories) is good for educational purposes, but not from the maintenance and assessment point
of view, because the mechanism employed in these patterns are always the same.

Taking another point of view a Decorator is like an Adapter, where the Adaptee is the
Component. The difference is that in the Decorator the Target and the Adaptee coincide. Here a
quote from the book: “Adapter: A decorator is different from an adapter in that a decorator only
changes an object’s responsibilities, not its interface; an adapter will give an object a completely
new interface.”

Following this line it is possible to apply the same analysis described in the Adapter ’s
discussion in order to activate another form of detection of the Decorator (but also Proxy
and Chain of Responsibility) pattern, more oriented to the identification of which methods are
decorated, how much, and if the same Decorator is decorating two different components (for
different interfaces, otherwise it would be a Composite pattern).

77

6.4 Conclusion
The Joiner module was completely developed and enhanced from its early development

stages. It is now possible to reliably match any SPARQL query against a model of the system
represented as a graph where the nodes are code entities (currently only types) and the edges
are the micro-structures collected by the Micro Structure Detector. The output of the Joiner
module is taken as input from the Classifier module, which is introduced in the next chapter.

78

Chapter 7

Classifier: ranking pattern
candidates

The Classifier module takes all the candidate design pattern instances identified by the Joiner
and evaluates their similarity to the searched design pattern, to be able to rank them. Figure 7.1
shows an example of the classification process. This chapter introduces the approach, explains
the motivation of the choices made during its design, the found solutions and the enhancements
applied during its development and experimentation. Finally, the interaction of MARPLE-DPD
with the user is described, reporting some example screenshots of the user interface.

7.1 Introduction to the learning approach

The rationale behind the approach is that the Joiner module finds all the instances matching
an exact rule; this rule is written trying to keep it very general, so the matching tends to produce
a large number of instances (having very high recall), but many of them are false positives (so
the precision is low). However, the returned instances also carry a lot of information that the
recognition rule does not use: all the micro-structures found in the classes belonging to the
instances. A classifier has the possibility to choose the right instances among the ones extracted
by the Joiner module, exploiting the micro-structures not used by the Joiner. Without the
support of the Joiner, a simpler approach to the problem would be to submit every class, or
worse, every possible group of classes of the system to the classification algorithm; such an
approach would be very resource-demanding, and would require a lot of correct pattern instances
to training the classifiers.

The approach described here has the benefit of submitting a smaller number of candidates
to the classifier, but with a higher percentage of true instances. In this way, the performance
estimation is more accurate and the dataset contains a smaller quantity of noise, because it is
focused only on a specific subset of the domain. The choice of using a classification process after
an exact matching is one of the principal features characterizing the approach; the same rationale
is used also, for example, by Ferenc et al. [69], while other authors tried the full-classification
approach, e.g. Guéhéneuc et al. [86]. A discussion of machine learning approaches for design
pattern detection can be found in Section 2.4.

In some cases the same pattern can have different well known structural alternatives; these
cases are handled in my approach in two ways:

• If the different structural alternatives have the same set of roles, and they are organized in
the same structure, the alternatives are handled by a single rule composed of the union
of different constraints; for example, an Adapter design pattern is known in two major

79

Role Mappings Generator

CLUSTERER k

Role Mapping 1

R1 R2 R3

Role Mapping 1

R1 R2 R3

R1

R2 R3

Design Pattern Instance

CLASSIFIER
Wrong

 Correct

c1 ... ci ... ck

New Design Pattern Representation

Figure 7.1: Classification process

80

variants: object Adapter and class Adapter. The two variants are composed of the same
roles, i.e. Target, Adaptee and Adapter, and with the same organization. So the two variants
are handled in the same detection rule.

• If the set of roles of the different alternatives are different, or organized in a different
structure, the alternatives are handled like different design patterns, and computed inde-
pendently. Alternatives of this kind are for example derived from different interpretations
of the pattern or from some design decisions, e.g. to include or exclude the Client role from
the pattern definition.

The integrated handling of structurally different alternatives of a design pattern will be
handled by at the user interface level, adding some modeling effort to track the different variants.
This is out of the focus of the thesis and it is considered future work.

Through the current approach, depicted in Figure 7.1, I generate every possible valid role
mapping {(R1, C1), (R2, C2), . . . , (Rn, Cn)} for each pattern instance, where each Ci is the
class that is supposed to play the role Ri inside the pattern. These mappings are all of a fixed
size (one element for each pattern role) and each class has a fixed number of features, where
the features are the micro-structures retrieved in the class. In this way each mapping can be
represented as a vector of features whose length is given by (num_features ∗ num_roles).
These vectors are grouped by a clustering [47, 104] algorithm, producing k clusters; each pattern
instance is represented as a k-long vector, having in each position i the absence/presence of the
i-th mapping. Since we know that an instance is a design pattern (or not) directly from the
training set, we can label each vector with the class attribute and use the resulting dataset for
the training of a supervised classifier. The early version of the approach was published in an
international workshop [10], and then published in an international journal [19] in 2011.

7.2 Motivation

The design of a machine learning oriented solution to a classification problem leads to the
modeling of the input and output format of the algorithms to employ. The typical expectation
of a learning algorithm is to receive a dataset as input, i.e. a list of vectors (a matrix) where
each vector represents one of the subjects of the classification. The representation is achieved by
the usage of features: the i-th cell of the vector represents the value of the i-th feature used to
describe the subject. During the learning of a supervised classifier, a special feature is expected
that represents the class value of the subject. The class is the target of the classification problem,
i.e. in a design pattern detection problem it can be a boolean value telling if the subject (a
pattern candidate) represents a correct pattern instance. Table 7.1 shows an example of an
input dataset for a design pattern classification problem, composed of n features, from F1 to
Fn, a Class attribute allowing two values (correct, incorrect) and representing two instances,
named Instance 1 and Instance 2; the one represented in Table 7.1 is therefore the target format
to make possible the exploitation of supervised classification algorithms.

Table 7.1: Example of the typical input format of a supervised classification algorithm
F1 F2 . . . Fi . . . Fn−1 Fn Class

Instance 1 correct
Instance 2 incorrect

A deeper look to the target format makes the modeling problem clear: how can we represent
a pattern instance as a feature vector, knowing from Subsection 6.2.1 that a design pattern

81

instance is a group of classes, of unknown size, and organized in a tree structure? What kind of
features can be exploited?

In Chapter 5 the concept of micro-structure was introduced and a lot of micro-structures of
different kinds were described. Micro-structures are employed by the Joiner module (explained
in Chapter 6) for the extraction of pattern instances, because they provide a way of representing
different aspect of analyzed system, by exposing different properties independently and with
the same syntax. A single micro-structure can match different kinds of code pieces that share
a certain characteristic, and they are not ambiguous. They are designed to abstract from the
details of the code and expose more abstract concepts. Given their properties, it would be logical
to use micro-structures as features into our dataset representation.

Table 7.2: Example format of a dataset representing classes using micro-structures as features
MS1 MS2 MS3 MS4 MS5

Class 1 1 1 1 0 0
Class 2 0 0 1 1 1
Class 3 0 1 0 1 1

The direct representation of classes in a dataset form using micro-structures as features
would lead to a dataset like the one shown in Table 7.2. The dataset represents three classes,
on the rows, described by five different values of micro-structures (from MS1 to MS5); each
cell contains 1 if the micro-structure is present in the class, and 0 if not. It is clear that the
representation is very far from the target representation needed. The major issue is that the
number of classes in a design pattern instance is unknown. If this was not true, it would be
possible to build a dataset representation made by the micro-structure values of the classes
belonging to a pattern concatenated, leading to vectors whose length is determined by Nms ·Ncl,
where Nms is the number of micro-structures used as features, and Ncl is the fixed number of
classes belonging to a pattern. Each row would contain all the information available regarding a
pattern instance. Unfortunately, the number of classes in a design pattern definition is not fixed.
But the number of roles is fixed. The number of roles is the only fixed decomposition given by
the definition of a design pattern.

Applying the last modeling hypotheses to roles, instead of classes, and exploiting the way
the Joiner module works it is possible to create a representation of each role mapping detected
by the Joiner. Recalling the example used in Chapter 6 to explain the detection process, and in
particular Figure 7.2, which gives an overview of the merging process applied to role mappings
to create pattern instances, we can see that many role mappings concur to the creation of a
single pattern instance.

Keeping track of the role mappings use to create a pattern instance it is possible to undo the
process and producing all the mappings building the detected instance. Figure 7.3 depicts a
more complex example of the generation of all the mappings that concurred to the building of
an Abstract Factory pattern instance. The classes are represented by circles, whose names are
built composing a prefix string representing the name role played by the class, and a numeric
suffix representing the particular class. The meanings of the prefixes are: af → Abstract Factory,
ap → Abstract Product, cf → Concrete Factory, cp → Concrete Product.

The list of mappings is clearly made by fixed size elements, and each element is a class.
Composing this kind of representation with the direct micro-structure representation of classes
shown in Table 7.2 it is possible to achieve a new representation of mappings as dataset rows,
shown in Table 7.3 as an example composing the previous ones. In the example the two mappings
(the rows) are represented by fifteen features, created combining three roles (R1, R2, R3) with
five micro-structures (from MS1 to MS5). Every single feature RiMSj tells if the j-th micro-

82

Component
(Abstract Class)

Leaf
(Concrete Class)

Composite
(Concrete Class)

Instance1

IN IN

Abstr.
Class

Concr.
Class

Match

Component

Composite

Component

Leaf

IN Merge

Mapping1 Mapping2AT AT

Figure 7.2: Merge process example (recalled). IN :Inheritance, AT : Abstract Type

af1

cp1

ap1cf1 ap2

cp2 cp3 cp4 cp5cf2

af1 cf1 ap1 cp1

af1 cf1 ap1 cp2

af1 cf1 ap2 cp3

af1 cf1 ap2 cp5

af1 cf1 ap2 cp4

af1 cf2 ap1 cp1

af1 cf2 ap1 cp2

af1 cf2 ap2 cp3

af1 cf2 ap2 cp5

af1 cf2 ap2 cp4

Figure 7.3: Mapping generation example for an Abstract Factory instance

83

structure is present in the class playing the i-th role in the respective mapping. Please notice
that in this kind of dataset the information about pattern instances is lost: the rows represent
the mappings, not the instances. There is no reference to the instance the mapping belongs
to, and no class label; those pieces of information are kept out of the dataset and exploited in
another moment. Summarizing, the dataset describes the classes contained in the mappings
using only the micro-structures and the role assignments.

Table 7.3: Example format of a dataset representing role mappings using micro-structures
R

1M
S

1

R
1M

S
2

R
1M

S
3

R
1M

S
4

R
1M

S
5

R
2M

S
1

R
2M

S
2

R
2M

S
3

R
2M

S
4

R
2M

S
5

R
3M

S
1

R
3M

S
2

R
3M

S
3

R
3M

S
4

R
3M

S
5

Mapping 1 1 1 1 0 0 0 1 1 1 0 1 1 0 1 1
Mapping 2 0 1 1 1 0 0 0 1 0 0 1 0 1 1 0

A dataset having this format is not compatible with supervised classification, because each
row is a role mapping, and not a pattern instance. Despite the incompatibility, the representation
has the interesting property of being suitable as input for machine learning algorithms, while
representing the information at a manageable abstraction level. In fact, the information about
the belonging of a mapping to a pattern instance can be kept out of the dataset, and used in a
different moment.

For this reason a new elaboration step was added before the supervised classification in order
to obtain only one feature vector for each instance. This step groups the mappings in clusters,
and represents each pattern instance using the set of clusters its mappings belongs to. Figure 7.4
shows the follow-up of the previous example shown in Figure 7.1: The mappings are grouped by
a clusterer algorithm in k = 10 clusters. Then the pattern instance is represented as a vector in
a dataset, having k features (one for each cluster). Each cell of the vectors for the i-th feature
tells if the instance (the row) contains a mapping that was clustered in cluster i. Adding the
class label to the vector the target dataset form shown in Table 7.1 is obtained.

The overall process handles the problem of the unknown size of the pattern instance imposing
a number of clusters, therefore limiting the number of features to represent a single pattern
instance to a fixed number. If the meaning of the dataset used for the clustering process is
quite clear and directly related to the system and the pattern definition, the meaning of the last
dataset is less obvious and requires a little discussion.

The clustering process groups mappings, which can belong to different pattern instances,
using the properties (described by micro-structures) of the classes they are composed of. No
information about patterns is exploited. This means that the clusters represent a number of
similar mappings, which we can call mapping types. An example can clarify the approach: a
hypothetical clustering approach would be, for example, to create completely homogeneous
clusters, i.e. where every element is identical to the others. A clustering approach like that
would be feasible and could produce clusters containing more than one instance, because the
representation of a class using micro-structure represents a projection of its structure in the
micro-structure space, and there is no guarantee that the set of micro-structures employed in
the experiments is able to uniquely identify a class in a system. Returning to the example,
this particular clustering, applied to the generation of the second dataset, would produce
a dataset where each feature represents one of the available combinations of {classes, roles,
micro-structures} in the retrieved mappings. The example highlights two important problems.
The first is that, as the number n of employed micro-structures grows, the number of possible
combinations to represent a mapping grows exponentially, with the value of 2rn, where r is the
number of roles of the pattern. The second problem is that the learning process is composed of

84

af1 cf1 ap1 cp1

af1 cf1 ap1 cp2

af1 cf1 ap2 cp3

af1 cf1 ap2 cp5

af1 cf1 ap2 cp4

af1 cf2 ap1 cp1

af1 cf2 ap1 cp2

af1 cf2 ap2 cp3

af1 cf2 ap2 cp5

af1 cf2 ap2 cp4

C
L
U
S
T
E
R

k=10

7

3

2

5

10

2

2

3

10

3

1 2 43 5 6 7 98 10

FALSE TRUE FALSETRUE TRUE FALSE TRUE FALSEFALSE TRUE

Figure 7.4: Cluster Generation

85

two steps: training and test, which correspond respectively to the moment when an algorithm
learns about the domain, and creates its internal representation of it, and the moment in which
new representations of the domain are evaluated. Given the learning process, a clustering
algorithm like the one described in the example would not be able to handle new representations,
different from the ones it already knows, and it would fail. For this reason a real clustering
algorithm can be seen as a solution able to approximate that behaviour, having the advantage
to be able to reasonably choose a cluster (in a fixed size set) for any new correctly encoded
instance of the domain.

The classification dataset is therefore an encoding of the input mappings, which uses
information directly retrieved from the content of the system in the form of micro-structures.
The encoding can always be created from a mapping because micro-structures are not ambiguous.
Moreover, micro-structures are abstract features of the code, and role mappings are directly
derived from the pattern definition and the analyzed system, so the dataset encoding maintains
the semantics exposed by the two parts of the combination.

7.3 Evolution of the methodology

The classification methodology described up to now is a basic version. During the development
and real implementation of the solution, many improvements were made to it. The remainder of
this section describes the different improvements.

7.3.1 Micro-structures representation

The basic usage of micro-structures for the creation of the dataset of role mappings was to
represent each micro-structure as a single boolean value telling if that micro-structure is present
in that particular class. Micro-structures, as explained in Chapter 5, are binary relationships (or
facts) among classes or other code entities. The fact of being unary is seen as a particular case
where the source and destination of the micro-structure are the same. Some micro-structures are
unary by definition, e.g. AbstractClass, FinalClass, Immutable: all the ones describing a simple
property of a class. Being more precise with respect to the creation of the dataset (as explained
up to now) every cell is a boolean value telling if a particular class in a role is the source of
a particular micro-structure. This modeling loses the information about the destination of a
micro-structure. An important property of micro-structures to remember is that, in general,
there is no limit to the number of different micro-structures of the same kind contained in a class.
For example, the Delegate EDP represents a method call existing between two methods belonging
to different classes and with different signatures. It is clear that this kind of relationship is very
common.

To enhance the representation of the role mappings in the dataset, the information about the
destination of each micro-structure was included: A new dimension was added to the definition
of a single feature, representing the destination role of a particular micro-structure. Every
feature is a boolean value defined as RiMSjRk. A cell tells if in a mapping the class in the
i-th role is the source of a micro-structure j having as destination the class in the k role of the
same mapping. This representation better describes the mapping, fully exploiting the available
information. Another improvement was done adding a default Other role to each mapping,
representing every other class of the system (not represented by the current mapping), which is
used as either source or destination (but not both of them) in the feature building described
above. This solution allows the clusterer to have an approximated idea of the relationships
among the represented mappings and the rest of the system.

86

7.3.2 Choice of the micro-structures

The improvement introduced in the previous subsection contributed to the creation of a
plethora of features in the role mapping dataset representation. A deeper analysis of the available
micro-structures resulted in a more accurate selection of the micro-structures to use. Table 7.4
contains the list of the micro-structures selected for the machine learning process, with additional
simple properties added for the machine learning process. The content of Table 7.4 is called
feature setup in MARPLE. The interpretation of the columns of the table is:

Category: it is a categorization of the micro-structures: everything other than Micro Patterns
and Elemental Design Patterns are Design Pattern Clues. Clues are divided in several
categories, and some category is not present in the original catalogue.

Cardinality: it admits two values (B: Binary, U: Unary). When it assumes the “Unary” value,
the behaviour explained in Subsection 7.3.1 changes and reverts to the original one. In
other words only one feature RiMSjRi is produced for each role i and unary feature j.

Del Self?: stands for “Delete self?”, and can be applied only to micro-structures having “Binary”
cardinality. When “Del Self?” = “Yes”, the micro-structure will not produce a self link
(where source is equal to destination). The consequence is that only features like RiMSjRk,
with i 6= k will be produced for micro-structure j having “Del Self?” = “Yes”.

Table 7.4: Micro-structures selection

Category Name C
ar
di
na

lit
y

D
el

Se
lf
?

Basic Attribute Information

OtherInstanceReference B No
OtherStaticReference B No
PrivateInstanceReference B No
PrivateStaticReference B No
ProtectedInstanceReference B No
ProtectedStaticReference B No

Basic Class Relationship

AbstractMethodInvoked B No
ClassInherited B Yes
InterfaceInherited B Yes
SameClass B Yes

Basic Method Information

ControlledParameter B No
InheritanceThisParameter B No
PrivateConstructor U
ProtectedConstructor U

Basic Returned Elements Information
CloneReturned U
DifferentHierarchyObjectReturned B Yes
SameHierarchyObjectReturned B Yes

Basic Type Information FinalClass U

Behavioural Clue AbstractCycleTerminationCall B No

87

Table 7.4: Micro-structures selection

Category Name C
ar
di
na

lit
y

D
el

Se
lf
?

Behavioural Clue AbstractCyclicCall B No
ManyThisParameterCallTarget U

Elemental Design Pattern

AbstractInterface U
Conglomeration B No
Delegate B Yes
DelegatedConglomeration B No
DelegateInFamily B Yes
DelegateInLimitedFamily B Yes
ExtendMethod B Yes
Recursion B No
Redirect B Yes
RedirectInFamily B Yes
RedirectInLimitedFamily B Yes
RedirectRecursion B No
Retrieve B No
RevertMethod B Yes

Information Clue

AbstractType U
CloneableImplemented U
ConcreteProductGetter U
ConcreteProductsReturned U
ControlledException U
ControlledInstantiation B No
DirectReturnedObject B No
EmptyConcreteProductGetter U
FactoryParameter U
MultipleReturnedObject B No
MultipleReturns B No
ReceivesParameter B No
SingleReturnedObject B No
VoidReturn U

Micro Pattern

AugmentedType U
Box U
Canopy U
CobolLike U
CommonState U
CompoundBox U
DataManager U
Designator U
Extender U
FunctionObject U
FunctionPointer U

88

Table 7.4: Micro-structures selection

Category Name C
ar
di
na

lit
y

D
el

Se
lf
?

Micro Pattern

Immutable U
Implementor U
Joiner U
Outline U
Overrider U
Pool U
PseudoClass U
PureType U
Record U
RestrictedCreation U
Sampler U
Sink U
Stateless U
StateMachine U
Taxonomy U
Trait U

Structural Clues

AdapterMethod U
AllMethodsInvoked B No
ExtendedInheritance B Yes
InstanceInAbstractReferred B No
ProductReturns B No

The feature setup is a more precise characterization of what is needed in the role mapping
dataset, and contributes to a more compact and manageable feature space, without removing
important information. The choice of the micro-structures was made by selecting the ones with a
clear definition, removing the ones that were not completely proved and tested or that were not
considered to be useful in a design pattern detection task. In fact, many other kinds of micro-
structures are available in MARPLE, e.g. for the detection of code smells and anti-patterns.
In addition some new micro-structure was created, to better characterize some aspect of a
software systems that were not addressed by the existing ones. The new micro-structures were
designed to have some useful property when used as features. For example, the six “*Reference”
micro-structures in the “Basic Attribute Information” category represent attributes of a class as
links from the class to the type of the attribute. Their characterization is the combination of two
criteria {Private, Protected, Other} and {Static, Instance} that characterize the modifiers of the
attribute for visibility and the presence of absence of the static keyword. The characterization
is total: each attribute can report only one of the six micro-structures. This kind of property
allows to safely group the features by summarizing over one or both the criteria, reducing
the number of features. The choice of grouping features can be done to enhance the machine
learning performance for example when a set of features is too sparse to be significant or if the
feature space is still to large to be computed. Grouping is only a planned feature, and it will be
implemented in future work. The feature setup will be integrated with new information that
will allow to automatically choose a set of features to group, e.g. when some programmable

89

constraints on the performance values and the feature space will be satisfied.

7.3.3 Single level patterns

The last important enhancement of the machine learning process is the handling of design
patterns whose definitions are composed of only one level. Examples of this kind of patterns are
Singleton and Adapter, whose merge rule diagrams are reported below.

Singleton Target Adapter Adaptee

The problem with single-level patterns is that, applying the dataset generation process
explained in this chapter to them, the output dataset, containing the representation of the
instances using clusters as features, has a peculiar form. In fact, instances of design patterns
with a single level are composed of only one mapping, producing a classifier dataset having only
one true value per row. In fact, if each instance contains exactly one mapping, and the mappings
are clustered in k clusters, each vector describing an instance will have k cells, one having value
“true” (the one corresponding to the cluster containing the only mapping), and the other k − 1
will have value “false”.

A dataset in that form reduces the supervised classification problem to a choice of the best
set of clusters representing the design pattern, which is an over-simplification, but a solution
is available to improve this condition. In fact, if a single mapping is present in this kind of
patterns, it is possible to directly use the role mapping dataset for the supervised classification,
by adding the class label to each mapping, because there is only one of both for each instance.

A slightly different approach was chosen, to avoid different implementations of similar
processes: a bypass clusterer. When a single-level design pattern is analyzed, the applied
clusterer simply produces a classifier dataset having the same number of features of the input
dataset, using this criterion: cluster i contains a mapping if the value of the i-th feature of the
mapping is “true”. In other words, it produces a copy of the input dataset, with different feature
names. This solution allows the process to remain the same, adding only the choice of the right
clusterer for the pattern.

The only change to the methodology, is that the clustering phase shifts from a regular hard
clustering task to a soft clustering [53, 149, 35] one. Soft clustering occurs when it is possible to
assign an input vector to more than one cluster, creating a multi-categorization, like tagging
on the web. Soft clustering is a generalization of the regular clustering, so the change in the
methodology was simple and safe.

7.4 User experience
The MARPLE tool supports an iterative and incremental design pattern discovery and

evaluation methodology. The user creates a “MARPLE Developer Project”, selecting which
projects of the same workspace he wants to analyze. Then in the new project he creates a
“MARPLE Developer File”, which is an xmi file containing the setup of the analysis. The
editor shows a red box, representing the Information Detector. By right-clicking on the box and
selecting “Run” from the menu the Information Detector starts and collects all the metrics and
micro-structures contained in the analyzed project. Saving the analysis file triggers the save of
all collected information. This behaviour is consistent for all the elaboration steps.

Now MARPLE is ready for design pattern detection. By clicking “Add Elaboration Chain”
in the Eclipse toolbar, two new boxes appear in the analysis editor, representing the Joiner
(green) and the Classifier (blue) modules. A right-click on the outer yellow box lets to choose

90

the pattern to detect, by selecting the “Change chain properties” menu item. Once selected a
pattern and confirmed, MARPLE is in a state like the one shown in Figure 7.5.

Figure 7.5: MARPLE configured for pattern detection

The detection of design patterns candidates can be triggered by selecting the “Run” item in
the contextual menu of the Joiner module. Then, selecting the “Show results” menu item a table
view opens with the list of the detected design pattern candidates. For each pattern the names
of the classes with role in the root level is shown, together with a combo box for the evaluation
of the pattern and a column for the confidence value. Selecting a row and clicking the buttons
“Graph” and “Joiner Model” in the “DP Instance Selection” view, two different graphical views
of the selected pattern instance are shown, the first representing the classes as nodes in a graph
(where the edges are the micro-structures), and the second following the graphical representation
of the merge rule diagram (see Section 6.3). An example result is shown in Figure 7.6.

After having inspected some instances, it is possible to evaluate them as “CORRECT” or
“INCORRECT” using the combo box. After a number of instances have been evaluated, it
is possible to submit them to the Classifier module. First, the “Copy instances to training”
contextual menu item must be selected, and then the “Run training” one. The splitting of the
two commands is caused by the fact that the instances used from the training are copied in a
separate “training” project, which can be shared across many different analyses for different
projects. The training project allows summing the instances coming from different systems to
have a bigger training set. After the “Run training” command is finished, the clusterer and
classifier algorithms have been trained and persisted to file, in the training project.

At this point it is possible to select the “Run” menu item on the Classifier module, to fill the
“Confidence” column in the “DP Instance Selection” view. An example of the evaluation of the
Adapter design pattern is shown in Figure 7.7.

91

Figure 7.6: MARPLE showing a pattern candidate

Figure 7.7: MARPLE showing an evaluated pattern instance

92

7.5 Conclusion
This chapter described the machine learning methodology applied to the problem of design

pattern detection. The methodology is focused on the modeling of the input and output formats
of the learning algorithms employed. Machine learning algorithms traditionally work on datasets
or matrices composed of vectors, which describe the domain of the problem. Domain modeling
is important, sometimes crucial, in object-oriented software solutions: machine learning software
solutions are not different in this sense. It is important to describe the domain to the algorithms
in the best possible manner, to hope to have some kind of sensible results. Machine learning
algorithms performances can be influenced by the input representation: Many techniques to
improve their performance are based on the different kind of modification of the input format,
like the use of kernel functions [166] in Support Vector Machines (SVM) [50] to change the
feature space, or the selection of the features to use during the learning [90, 46, 48]. For this
reason most of the effort was in the direction of dataset and feature modeling.

Another important feature of the methodology is that it does not rely on a particular
algorithm or set of algorithms, but it just focuses on the general formulation of supervised and
unsupervised classification problem. No concrete technology or algorithm was mentioned in this
chapter with the purpose of highlighting this aspect. The fact of being “algorithm-agnostic”
brings a nice modularity in the implementation of the analysis system, allowing free plugging of
different algorithms without the need of rewriting some kind of adaptation code.

93

94

Chapter 8

Experimentations with
MARPLE-DPD

The Classifier module was tested against the detection of five design patterns: Singleton,
Adapter, Composite, Decorator, Factory Method. The detection rule for the five patterns are
specified in Section 6.3, while the ones for all the other design patterns are available in Appendix A.
This chapter explains the performed experiments and reports the obtained results.

8.1 Experiments

The experiments on the five design patterns were conducted applying a set of clustering and
classification algorithms. The choice of the algorithms was made looking to the ones available
for the Weka [196, 91] framework.

8.1.1 Algorithms

The choice of the algorithms to test resulted in the following list:

• ZeroR is a simple classification rule that chooses always the dominant class; it is useful
to include it in the tests because it provides a baseline telling how much the problem is
unbalanced.

• OneR [100] is a classification rule that chooses the attribute giving the minimum-error
prediction for the classification. This is another kind of baseline useful to measure the
difficulty of the problem.

• NaiveBayes [109] is the simplest bayesian network available. It makes strong assumptions
on the input: features are considered as independent.

• JRip [49] is a rule learner. Its advantage is to be able to produce simple propositional logic
rules for the classification, which are understandable to humans and simply translatable in
logic programming.

• RandomForest [41] is a classifier that build a forest of random decision trees, each one using
a subset of the input features.

• J48 [156] is an implementation of the C4.5 decision tree. It has the advantage of producing
human-understandable rules for the classification of new instances.

95

• SMO [152, 113, 94] is an implementation of John Platt’s sequential minimal optimization
algorithm for training a support vector classifier. In the experimentation only the RBF
(Radial Basis Function) kernel is used in combination with this classifier.

• LibSVM [63, 44] is another support vector machine (SVM) library, available to Weka using
an external adapter. Two SVM variants are experimented (C-SVC, ν-SVC), in combination
with four different kernels (Linear, Polynomial, RBF, Sigmoid).

• SimpleKMeans [23] is an implementation of the k means algorithm. It was exploited in two
variants: with the Euclidean and Manhattan distances.

• CLOPE [202] is a clustering algorithm for transactional data. Its advantages are being very
fast and designed for nominal attributes datasets.

• SelfOrganizingMap [120] is a clusterer that implements Kohonen’s Self-Organizing Map1 algo-
rithm for unsupervised clustering. Self Organizing Maps are a special kind of competitive
networks.

• LVQ [121] is a clusterer that implements the Learning Vector Quantization algorithm for
unsupervised clustering.

• Cobweb [71, 75] is an hierarchical clusterer implementing the Cobweb and Classit clustering
algorithms.

8.1.2 Projects

For each pattern, a set of pattern instances was extracted using the Joiner module, and then
manually classified with the support of the user interface of the Classifier module, integrated
with the Eclipse IDE. The set of projects used for the gathering of the design pattern instances
was composed of a project containing example pattern instances gathered on the web, and the
projects used for the PMARt [83] dataset. The summary of the experimented systems and some
demographic metrics about them are shown in Table 8.1.

Table 8.1: Projects for the experimentations
Project CUs Packages Types Methods Attributes TLOC

DesignPatternExample 1060 235 1749 4710 1786 32313
1 - QuickUML 2001 156 11 230 1082 421 9233
2 - Lexi v0.1.1 alpha 24 6 100 677 229 7101
3 - JRefactory v2.6.24 569 49 578 4883 902 79732
4 - Netbeans v1.0.x 2444 184 6278 28568 7611 317542
5 - JUnit v3.7 78 10 104 648 138 4956
6 - JHotDraw v5.1 155 11 174 1316 331 8876
8 - MapperXML v1.9.7 217 25 257 2120 691 14928
10 - Nutch v0.4 165 19 335 1854 1309 23579
11 - PMD v1.8 446 35 519 3665 1463 41554

CUs: Number of Compilation Units — TLOC: Total number of Lines of Code

1A more tested SOM package is available in MATLAB. Some tests were conducted with the MATLAB GUI, and
a adaptation module was developed to call MATLAB from Java. Unfortunately, a non-documented incompatibility
did not allow the Java-MATLAB bridge to work. It appears from the Mathworks support forum that it is not
possible to train a neural network from Java.

96

Each Joiner rule was originally designed and tested against the project containing the example
patterns. The idea behind the approach is to have the Joiner extracting (possibly) all the pattern
instances contained in a software system, having virtually 100% recall. To achieve this goal,
each rule (the ones in Chapter 6 and in Appendix A) was tuned to be able to catch all the
pattern instances contained in the DesignPatternExampleproject. Then, the five rules of the
experimented design patterns were enhanced during the experimentations. In fact, every pattern
contained in the PMARt dataset was checked to be present in the results obtained by the Joiner,
and when an instance was missed, the rule was analyzed and modified to include the missing
instance (without losing the others). Another kind of enhancement was adding more selective
constraints to avoid the explosion of the number of results.

Some problems rose during the comparison with the PMARt dataset. The instances of
the five tested patterns contained in PMARt revealed to be only partially correct. In par-
ticular, 14 instances out of 61; the 14 instances in PMARt contain 26 classes having key
roles in their patterns, raising the number of wrong instances in the MARPLE definition to
26. The error contained in the dataset are of different kinds: for example in 4 - Netbeans
v1.0.xorg.netbeans.modules.form.FormAdapter is reported as playing the Adapter role in the Adapter
pattern, but it is an empty class; another example is net. sourceforge .pmd.ast.JavaParserConstants
in 11 - PMD v1.8, which is reported as a Product for a Factory Method, but it is an interface
only defining static constants, which has no meaning to instantiate. Other errors concerns, e.g.,
the wrong assignment of roles to some class in the pattern instance. The corrections will be
discussed with the authors of PMARt after the submission if this thesis.

8.1.3 Patterns

The patterns to test were chosen by looking in the literature for the ones reported to be
more frequent. The estimation was made analyzing the results coming from PMARt, the Design
Pattern Detection Tool from Tsantalis et al. [194, 195] and design pattern detection results from
Rasool et al. [157, 175]. Table 8.2 reports the amount of instances found and evaluated for each
experimented pattern. The Adapter and Factory Method patterns have a number of candidates
with a “+” suffix, because the number of candidates is not complete. In fact, those two patterns
have been experimented only with the projects from “DesignPatternExample” to “4 - Netbeans
v1.0.x”, because during the evaluation of instances in “4 - Netbeans v1.0.x”, in both cases, the
number of evaluations grew over 1000, which I considered the threshold to decide to stop the
manual evaluation. The decision of stopping to evaluate instances is motivated by the great
amount of time employed in the evaluation task: the validation of a single pattern instance can
take from 15 seconds to 5 minutes, depending on the complexity of instance itself. The 1000
threshold was set to reach a significant dataset for the patterns that made it possible.

Table 8.2: Summary of detected pattern instances
Pattern Candidates Evaluated Correct Incorrect

Singleton 154 154 58 96
Adapter 5861+ 1221 618 603
Composite 128 128 30 98
Decorator 250 247 93 154
Factory Method 2546+ 1044 562 482

The evaluations were then exploited for the search of the best classification setup. Singleton
and Adapter are single-level patterns, so only classification algorithms were tested, while for the
other patterns also clustering algorithms were included in the tests.

97

8.1.4 Parameter optimization

The search for the best parameter of a machine learning algorithm is a long, tedious, and
error-prone (when results are recorded manually) task. Each algorithm has a set of parameters,
each one having its domain, which can be of different types (i.e. continuous, discrete, boolean,
nominal) and the entire set of parameters of a single algorithm is a potentially huge space to
explore. The traditional way of exploring the space is a grid search2, which means that every
parameter must be discretized, by defining a discretization criterion for continuous parameters
and assigning a discrete number to boolean and nominal ones. Then for each possible combination
of parameters the algorithm must be tested and its performance values (e.g. confusion matrix,
area under ROC, precision, recall) must be recorded. The set of performance values must be
then analyzed and the best parameter set must be searched, defining one or more comparison
criteria. The approach is defined to be sure to have a complete description of the parameter
space with respect to the performance values. The problem with this methodology is that, as
already introduced, it is time-consuming.

A faster evaluation was needed, and an approach exploiting genetic algorithms was taken to
try to reach the objective. Genetic algorithms [54, 127, 78] are an approach for the solution of
optimization problems, inspired from the biological research and that allows sub-optimal solutions.
Its general formulation is simple to adapt to different problems, and many implementation are
available for research purposes. In particular I exploited JGAP3, which is able to abstract from
the algorithm details, providing a simple way of extending the framework just adding a new
FitnessFunction . In general, optimization problems are characterized by the search for the best set
of parameters to pass to a fitness function: when the maximum (or minimum for minimization
problems) value is reached, the parameters are the optimal solution to the problem. The same
kind of approach was already tested in the literature [163].

Performance estimators

In my context, I defined a fitness function able to perform ten-fold cross validation[33, 178]
over the evaluated pattern instances, using different performance indexes [26] as fitness values:
accuracy, f-measure[197], area under ROC [40].

Accuracy Accuracy is one of the simplest performance measure for classification tasks: it is
the percentage of correctly classified instances, in the positive and negative class. It is usually
never reported alone, because it has several drawbacks, in particular when the positive and
negative classes are unbalanced: a typical issue in classification tasks is having a little number
of positive instances and a huge number of negative instances. In such cases, a naive classifier
always giving the negative answers would have high accuracy. As the most important class
is usually the positive one, it is clear that accuracy is not very useful as-is. Other kind of
performance indicators exist. In fact, the second indicator employed is f-measure.

F-measure It is defined (in the basic version) as the harmonic mean of precision and recall,
which are other two performance values. Precision is the part of the positive-classified instances
which is really positive, while recall is the part of really-positive instances classified as positive.
The first measures the ability to correctly choose a positive instance, the second the ability to
extract positive instances among the others. The two measures tend to be in contrast and the
goal is usually to find the best trade-off value of the two. F-measure is a way of having a single
number combining the two measures.

2like suggested, e.g., in http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
3http://jgap.sourceforge.net/

98

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://jgap.sourceforge.net/

Area under ROC The last indicator is the area under ROC (Receiver Operating Character-
istic). The ROC is a plot of true positive rate against false positive rate as the discrimination
threshold of the classifier is varied. The area under ROC grows near to value 1 when the
discrimination performs better, while bad classification brings values near to 0.5. The area under
ROC has a stricter relation with the ability of ranking the results [67], because of the way the
curve is built.

All the described performance values are to be considered useful only in combination with
each other and in relation to the domain. Moreover, research in machine learning and information
retrieval is evolving, and some indicators are being criticized [92]. The approach taken in this
experimentation is to rely on available performance indicators, exploiting the ones able to give a
single score value and comparing the models from different perspectives.

8.2 Results

For each experimented design pattern, the classifiers’ setups having the best performance
results are reported and discussed, together with the performance values. The experiments with
the Classifier module are made on the output on the Joiner. Every direct or indirect performance
value (including recall) is calculated on that particular dataset. In other words, the Classifier
module performance is estimated under the hypothesis that the Joiner succeeded in extracting
every pattern instance contained in the analyzed systems.

8.2.1 Singleton

Singleton is a single-level pattern, so only classifier algorithms were experimented. Table 8.3
reports the best results for each classifier type (the best value of the column is in bold font).
When the same classifier is reported in different variants it is because some options lead to
major differences in the algorithms being applied, e.g. the pruning setting in J48 and the SVM
type and kernel in LibSVM. The numbers near the performance values are the identifiers of the
configuration able to produce it; they will be used in Table 8.5 and Table 8.6 to uniquely identify
a particular classifier setup. The values reported in Table 8.3 are the ones achieved during the
parameter optimization procedure. The table shows performance values that can be considered
quite good, because in many cases the values go beyond 0.9. The accuracy value near to 0.6 of
the ZeroR classifier can be used as a simple measure of the balance between the classes, which is
good because it is near to 0.5. At this level it is interesting to notice that the best performances
were achieved by three different algorithm types.

Table 8.4 gives a more detailed view of the distribution of the retrieved and evaluated
instances among the different projects. The values are referred to the instances as they came
from the Joiner, and how they were manually evaluated. No learning was involved in this phase.

The classifier configurations whose performances are reported in Table 8.3 were then used to
build an experiment in the Weka Experimenter module, which allows to test different classifiers
against the same data and to compare their performance, calculating the standard deviations of
the performance values and the statistical significance of the comparisons. In fact, to correctly
compare different classifiers (with respect to one performance value), ranking the values is not
enough, but a standard test must be applied with a significance value. The tests were conducted
with the default 0.05 significance value. Table 8.5 contains the performance values, calculated
using the Weka experimenter, for the classifiers defined in Table 8.3, accompanied by their
standard deviations. For each classifier its reference number and class name are reported. The
values are not the same (for the respective classifier setup) as the ones shown in Table 8.3,
because the experimenter by default repeats each cross validation 10 times with different dataset

99

Table 8.3: Best performance results for the Singleton design pattern
Classifier accuracy f-measure area under

ROC

ZeroR 0.61 (1) 0.00 (1) 0.48 (1)
OneR 0.87 (2) 0.83 (2) 0.86 (2)
NaiveBayes 0.81 (3) 0.73 (3) 0.89 (3)
JRip 0.88 (5) 0.85 (6) 0.88 (4)
RandomForest 0.93 (7) 0.90 (9) 0.97 (8)
J48 Unpruned 0.87 (10) 0.82 (12) 0.91 (11)
J48 Reduced Error Pruning 0.88 (13) 0.91 (15) 0.85 (14)
J48 Pruned 0.88 (16) 0.84 (18) 0.91 (17)
SMO RBF 0.90 (19) 0.86 (21) 0.94 (20)
C-SVC Linear 0.83 (22) 0.77 (24) 0.87 (23)
C-SVC Polynomial 0.91 (25) 0.88 (27) 0.94 (26)
C-SVC RBF 0.92 (28) 0.89 (30) 0.95 (29)
C-SVC Sigmoid 0.86 (31) 0.88 (33) 0.94 (32)
ν-SVC Linear 0.91 (34) 0.88 (36) 0.93 (35)
ν-SVC Polynomial 0.90 (37) 0.87 (39) 0.94 (38)
ν-SVC RBF 0.91 (40) 0.89 (42) 0.95 (41)
ν-SVC Sigmoid 0.90 (43) 0.79 (45) 0.92 (44)

Table 8.4: Singleton: evaluated instances summary
Project Candidates Evaluated Correct Incorrect

DesignPatternExample 18 18 18 0
1 - QuickUML 2001 2 2 1 1
2 - Lexi v0.1.1 alpha 2 2 2 0
3 - JRefactory v2.6.24 10 10 6 4
4 - Netbeans v1.0.x 99 99 22 77
5 - JUnit v3.7 0 0 0 0
6 - JHotDraw v5.1 1 1 1 0
8 - MapperXML v1.9.7 4 4 3 1
10 - Nutch v0.4 14 14 2 12
11 - PMD v1.8 4 4 3 1

Total 154 154 58 96

100

randomizations. The shown values are the average on the 10 different runs.
To be able to tell which classifier is the best among the tested ones, and with a certain

significance, it is possible to apply a ranking test in the Weka experimenter. Table 8.6 contains
the ranking for the accuracy, f-measure and area under ROC of all the classifiers. The ranking
test ranks the different classifiers by counting how many times each classifier significantly wins
or loses against the other ones. The Wins−Losses difference gives the ranking score, telling
which classifier is the best. From the tables it is simple to understand that there is no single
winner, but different algorithms perform best for different purposes.

One of the most noticeable facts is that accuracy and f-measure give a similar ranking to
the classifiers. In fact, classifiers (28), (41), and (42) occupy the top 3 positions. All the three
classifiers are support vector machines using a RBF kernel, using LibSVM and two different SVM
types. The top three positions for the area under ROC are given to the three RandomForest
classifiers, instead, followed by another support vector machine with RBF kernel and from the
(41) classifier. The overall results suggest that support vector machines with RBF kernel can
be considered the best trade-off choice for the Singleton design pattern. The fact these good
performance values are achieved on a relatively small dataset (less than two hundred instances)
can be an indicator of the fact this pattern is simple to discriminate because the micro-structures
are able to describe well its features, or that the dataset is biased in some way, and it would
need more instances.

101

Table 8.5: Singleton: experiments summary. Significance level: 0.05
Classifier accuracy stddev F-measure stddev auc stddev

1 rules.ZeroR 0.61 0.02 0.00 0.00 0.50 0.00
2 rules.OneR 0.87 0.08 0.82 0.11 0.86 0.09
3 bayes.NaiveBayes 0.81 0.09 0.72 0.16 0.89 0.08
4 rules.JRip 0.88 0.08 0.85 0.10 0.88 0.09
5 rules.JRip 0.88 0.07 0.85 0.10 0.88 0.08
6 rules.JRip 0.87 0.08 0.84 0.10 0.88 0.08
7 trees.RandomForest 0.89 0.07 0.85 0.10 0.97 0.04
8 trees.RandomForest 0.89 0.07 0.85 0.11 0.97 0.03
9 trees.RandomForest 0.89 0.08 0.85 0.11 0.96 0.04
10 trees.J48 0.86 0.08 0.80 0.12 0.90 0.08
11 trees.J48 0.86 0.08 0.82 0.10 0.91 0.07
12 trees.J48 0.86 0.07 0.80 0.12 0.91 0.07
13 trees.J48 0.87 0.08 0.82 0.10 0.87 0.08
14 trees.J48 0.87 0.08 0.82 0.10 0.87 0.09
15 trees.J48 0.84 0.09 0.78 0.14 0.85 0.10
16 trees.J48 0.89 0.08 0.87 0.10 0.89 0.08
17 trees.J48 0.86 0.08 0.80 0.12 0.90 0.08
18 trees.J48 0.87 0.08 0.83 0.12 0.88 0.08
19 functions.SMO 0.89 0.08 0.84 0.12 0.95 0.05
20 functions.SMO 0.88 0.07 0.83 0.12 0.95 0.05
21 functions.SMO 0.89 0.08 0.85 0.12 0.95 0.05
22 functions.LibSVM 0.84 0.09 0.78 0.13 0.91 0.08
23 functions.LibSVM 0.84 0.09 0.78 0.15 0.90 0.08
24 functions.LibSVM 0.84 0.09 0.77 0.14 0.91 0.08
25 functions.LibSVM 0.89 0.07 0.85 0.11 0.88 0.09
26 functions.LibSVM 0.89 0.08 0.85 0.12 0.94 0.06
27 functions.LibSVM 0.88 0.08 0.84 0.12 0.87 0.09
28 functions.LibSVM 0.90 0.07 0.86 0.10 0.95 0.05
29 functions.LibSVM 0.90 0.07 0.86 0.11 0.95 0.06
30 functions.LibSVM 0.89 0.07 0.85 0.10 0.95 0.05
31 functions.LibSVM 0.83 0.08 0.73 0.15 0.79 0.10
32 functions.LibSVM 0.88 0.08 0.82 0.13 0.95 0.05
33 functions.LibSVM 0.87 0.07 0.81 0.12 0.94 0.05
34 functions.LibSVM 0.88 0.07 0.82 0.12 0.94 0.05
35 functions.LibSVM 0.88 0.08 0.82 0.12 0.95 0.05
36 functions.LibSVM 0.88 0.07 0.82 0.12 0.94 0.05
37 functions.LibSVM 0.89 0.07 0.85 0.11 0.94 0.06
38 functions.LibSVM 0.86 0.08 0.80 0.13 0.95 0.05
39 functions.LibSVM 0.89 0.07 0.85 0.11 0.94 0.06
40 functions.LibSVM 0.89 0.07 0.85 0.11 0.95 0.06
41 functions.LibSVM 0.90 0.08 0.86 0.11 0.95 0.05
42 functions.LibSVM 0.90 0.07 0.86 0.11 0.95 0.05
43 functions.LibSVM 0.86 0.08 0.79 0.13 0.83 0.09
44 functions.LibSVM 0.84 0.08 0.77 0.14 0.92 0.07
45 functions.LibSVM 0.82 0.09 0.69 0.19 0.77 0.11

Average 0.87 0.80 0.90

102

Table 8.6: Singleton Classifier Ranking. W−L: Wins−Losses, W: Wins, L:Losses
Accuracy f-measure area under ROC

Classifier W−L W L Classifier W−L W L Classifier W−L W L

(42) 9 9 0 (42) 8 8 0 (7) 25 25 0
(28) 6 6 0 (41) 8 8 0 (9) 24 24 0
(41) 5 5 0 (28) 8 8 0 (8) 24 24 0
(40) 5 5 0 (30) 6 6 0 (21) 20 20 0
(37) 5 5 0 (29) 6 6 0 (41) 19 19 0
(29) 5 5 0 (25) 6 6 0 (19) 19 19 0
(39) 4 4 0 (40) 5 5 0 (32) 17 17 0
(30) 4 4 0 (16) 5 5 0 (30) 17 17 0
(26) 4 4 0 (39) 4 4 0 (42) 16 16 0
(25) 4 4 0 (37) 4 4 0 (40) 16 16 0
(16) 4 4 0 (26) 4 4 0 (38) 16 16 0
(8) 4 4 0 (21) 4 4 0 (36) 16 16 0
(7) 4 4 0 (20) 4 4 0 (35) 16 16 0
(21) 3 3 0 (19) 4 4 0 (34) 16 16 0
(20) 3 3 0 (9) 4 4 0 (29) 16 16 0
(19) 3 3 0 (8) 4 4 0 (28) 16 16 0
(9) 3 3 0 (7) 4 4 0 (20) 16 16 0
(36) 2 2 0 (6) 4 4 0 (39) 14 14 0
(35) 2 2 0 (5) 4 4 0 (37) 14 14 0
(43) 1 1 0 (4) 4 4 0 (26) 14 14 0
(38) 1 1 0 (36) 3 3 0 (33) 13 14 1
(34) 1 1 0 (35) 3 3 0 (11) 3 6 3
(33) 1 1 0 (34) 3 3 0 (44) 1 4 3
(32) 1 1 0 (27) 3 3 0 (12) 1 5 4
(27) 1 1 0 (11) 3 3 0 (24) 0 4 4
(18) 1 1 0 (38) 2 2 0 (22) 0 4 4
(17) 1 1 0 (33) 2 2 0 (17) 0 5 5
(14) 1 1 0 (32) 2 2 0 (10) 0 5 5
(13) 1 1 0 (18) 2 2 0 (23) -4 4 8
(12) 1 1 0 (14) 2 2 0 (16) -14 3 17
(11) 1 1 0 (13) 2 2 0 (3) -14 3 17
(10) 1 1 0 (2) 2 2 0 (27) -18 3 21
(6) 1 1 0 (17) 1 1 0 (25) -18 3 21
(5) 1 1 0 (12) 1 1 0 (18) -18 3 21
(4) 1 1 0 (10) 1 1 0 (13) -18 3 21
(2) 1 1 0 (23) 0 1 1 (6) -18 3 21
(23) 0 1 1 (15) 0 1 1 (5) -18 3 21
(24) -1 1 2 (43) -1 1 2 (4) -18 3 21
(22) -1 1 2 (24) -3 1 4 (14) -19 2 21
(15) -1 1 2 (44) -5 1 6 (15) -21 1 22
(44) -4 1 5 (22) -5 1 6 (2) -23 2 25
(31) -11 1 12 (31) -19 1 20 (43) -28 1 29
(45) -16 1 17 (3) -24 1 25 (31) -37 1 38
(3) -18 1 19 (45) -31 1 32 (45) -39 1 40
(1) -44 0 44 (1) -44 0 44 (1) -44 0 44

103

8.2.2 Adapter

The Adapter design pattern had the same experimental setup of Singleton. Table 8.7 contains
the best results obtained during the parameter optimization, and it is interesting to see that the
best performance were achieved always by support vector machines with a RBF kernel type,
even if from two different kinds of algorithm.

Table 8.7: Best performance results for the Adapter design pattern
Classifier accuracy f-measure area under

ROC

ZeroR 0.53 (1) 0.00 (1) 0.50 (1)
OneR 0.68 (2) 0.66 (2) 0.68 (2)
NaiveBayes 0.70 (3) 0.70 (3) 0.78 (3)
JRip 0.81 (4) 0.77 (5) 0.82 (6)
RandomForest 0.85 (7) 0.84 (8) 0.92 (9)
J48 Unpruned 0.80 (10) 0.79 (11) 0.86 (12)
J48 Reduced Error Pruning 0.79 (13) 0.79 (14) 0.84 (15)
J48 Pruned 0.80 (16) 0.79 (17) 0.86 (18)
SMO RBF 0.85 (19) 0.84 (20) 0.92 (21)
C-SVC Linear 0.80 (22) 0.79 (23) 0.85 (24)
C-SVC Polynomial 0.84 (25) 0.82 (26) 0.89 (27)
C-SVC RBF 0.86 (28) 0.85 (29) 0.92 (30)
C-SVC Sigmoid 0.79 (31) 0.69 (32) 0.84 (33)
ν-SVC Linear 0.80 (34) 0.79 (35) 0.85 (36)
ν-SVC Polynomial 0.84 (37) 0.82 (38) 0.91 (39)
ν-SVC RBF 0.86 (40) 0.84 (41) 0.93 (42)
ν-SVC Sigmoid 0.75 (43) 0.64 (44) 0.82 (45)

The evaluation of the Adapter candidates stopped during the analysis of 4 - Netbeans v1.0.x,
because the number of evaluated patterns reached 1221. Table 8.8 suggests that Adapter is widely
present as a pattern, which is a confirmation for the considerations expressed in Section 6.3.2.

Table 8.8: Adapter : evaluated instances summary
Project Candidates Evaluated Correct Incorrect

DesignPatternExample 212 212 128 84
1 - QuickUML 2001 75 69 13 56
2 - Lexi v0.1.1 alpha 65 65 44 21
3 - JRefactory v2.6.24 508 500 261 239
4 - Netbeans v1.0.x 5003 375 172 203
5 - JUnit v3.7 - - - -
6 - JHotDraw v5.1 - - - -
8 - MapperXML v1.9.7 - - - -
10 - Nutch v0.4 - - - -
11 - PMD v1.8 - - - -

Total 5861+ 1221 618 603

The usage of the Weka Experimenter of the best classifier configurations for the Adapter is

104

summarized in Table 8.9. The table shows data that are consistent with the ones shown for the
Singleton pattern. In fact, the best-fitting classifiers are support vector machine and random
forests. They are also among the ones with the lower standard deviation values. The overall
shown performance is over 0.8 for the best setup, which can be considered good with respect to
the 0.53 accuracy of ZeroR and ~0.65 performance of OneR.

A deeper comparison of the classifiers is available in Table 8.10, which shows the ranking of
the classifiers for the Adapter pattern. Classifiers number {(28),(29),(30),(40),(42)} are in the top
five positions for all the three performance values. Even the difference in terms of Wins−Losses
is low (0 for the area under ROC). With no surprise, the classifiers are support vector machines
with RBF kernels. RandomForest classifiers are lower in ranking, but the difference Wins−Losses
score is not much lower than the top positions. In fact, the first ten positions of the rank never
lose a comparison, and the first 18 have a positive Wins−Losses balance. The 18th position is
the limit of significantly good classifiers. The classifiers in the first 18 positions are occupied by
support vector machines and random forests. That 18th position line separates the classifiers
that are significantly better than the others, and very distant in terms of ranking.

The results for the Adapter and Singleton design patterns suggest that the classification
strategy adopted for single-level design patterns is reasonable and produces sensible results. The
performance values are high in both patterns and quite stable also when different randomizations
of the dataset are used for the cross validation. In fact, the peak values shown in Table 8.7 are
not much higher than the average values produced by the Experimenter and shown in Table 8.9,
where the standard deviations are under 0.05 in most cases.

105

Table 8.9: Adapter : experiments summary. Significance level: 0.05
Classifier accuracy stddev fmeasure stddev auc stddev

1 rules.ZeroR 0.53 0.00 0.00 0.00 0.50 0.00
2 rules.OneR 0.68 0.04 0.65 0.05 0.68 0.04
3 bayes.NaiveBayes 0.70 0.04 0.70 0.05 0.78 0.05
4 rules.JRip 0.77 0.04 0.73 0.05 0.76 0.04
5 rules.JRip 0.77 0.04 0.73 0.05 0.76 0.04
6 rules.JRip 0.77 0.04 0.73 0.05 0.76 0.04
7 trees.RandomForest 0.83 0.04 0.82 0.04 0.91 0.03
8 trees.RandomForest 0.83 0.04 0.82 0.04 0.92 0.03
9 trees.RandomForest 0.83 0.04 0.82 0.04 0.92 0.03
10 trees.J48 0.77 0.04 0.75 0.05 0.78 0.05
11 trees.J48 0.76 0.05 0.75 0.05 0.81 0.05
12 trees.J48 0.77 0.04 0.75 0.05 0.83 0.04
13 trees.J48 0.76 0.05 0.75 0.05 0.81 0.05
14 trees.J48 0.76 0.05 0.75 0.05 0.81 0.05
15 trees.J48 0.75 0.05 0.73 0.06 0.80 0.05
16 trees.J48 0.76 0.05 0.74 0.05 0.80 0.05
17 trees.J48 0.77 0.04 0.75 0.05 0.80 0.05
18 trees.J48 0.76 0.05 0.75 0.05 0.83 0.04
19 functions.SMO 0.83 0.04 0.83 0.04 0.91 0.03
20 functions.SMO 0.83 0.04 0.82 0.04 0.83 0.04
21 functions.SMO 0.82 0.04 0.82 0.04 0.91 0.03
22 functions.LibSVM 0.78 0.04 0.76 0.05 0.77 0.04
23 functions.LibSVM 0.78 0.04 0.76 0.05 0.78 0.04
24 functions.LibSVM 0.78 0.04 0.77 0.05 0.83 0.04
25 functions.LibSVM 0.82 0.04 0.81 0.04 0.88 0.03
26 functions.LibSVM 0.82 0.04 0.81 0.04 0.88 0.03
27 functions.LibSVM 0.81 0.04 0.80 0.04 0.88 0.03
28 functions.LibSVM 0.84 0.04 0.83 0.04 0.91 0.03
29 functions.LibSVM 0.84 0.04 0.83 0.04 0.91 0.03
30 functions.LibSVM 0.84 0.04 0.83 0.04 0.91 0.03
31 functions.LibSVM 0.77 0.04 0.75 0.05 0.83 0.04
32 functions.LibSVM 0.63 0.05 0.67 0.04 0.71 0.05
33 functions.LibSVM 0.76 0.04 0.74 0.05 0.83 0.04
34 functions.LibSVM 0.78 0.04 0.77 0.04 0.78 0.04
35 functions.LibSVM 0.78 0.04 0.77 0.05 0.78 0.04
36 functions.LibSVM 0.77 0.04 0.75 0.04 0.84 0.04
37 functions.LibSVM 0.82 0.04 0.81 0.04 0.89 0.03
38 functions.LibSVM 0.82 0.04 0.81 0.04 0.82 0.04
39 functions.LibSVM 0.82 0.04 0.81 0.04 0.89 0.03
40 functions.LibSVM 0.84 0.04 0.83 0.04 0.91 0.03
41 functions.LibSVM 0.83 0.04 0.82 0.04 0.83 0.04
42 functions.LibSVM 0.84 0.04 0.83 0.04 0.91 0.03
43 functions.LibSVM 0.67 0.14 0.63 0.16 0.66 0.14
44 functions.LibSVM 0.47 0.00 0.64 0.00 0.50 0.00
45 functions.LibSVM 0.74 0.04 0.72 0.05 0.80 0.05

Average 0.77 0.75 0.82

106

Table 8.10: Adapter Classifier Ranking. W−L: Wins−Losses, W: Wins, L:Losses
Accuracy f-measure area under ROC

Classifier W−L W L Classifier W−L W L Classifier W−L W L

(28) 31 31 0 (42) 32 32 0 (42) 35 35 0
(40) 29 29 0 (29) 32 32 0 (40) 35 35 0
(42) 28 28 0 (28) 32 32 0 (30) 35 35 0
(30) 28 28 0 (30) 31 31 0 (29) 35 35 0
(29) 28 28 0 (40) 30 30 0 (28) 35 35 0
(41) 27 27 0 (41) 28 28 0 (21) 35 35 0
(38) 27 27 0 (21) 28 28 0 (19) 35 35 0
(37) 27 27 0 (20) 28 28 0 (9) 35 35 0
(21) 27 27 0 (19) 28 28 0 (8) 35 35 0
(20) 27 27 0 (37) 27 27 0 (7) 35 35 0
(19) 27 27 0 (9) 27 27 0 (39) 23 33 10
(9) 27 27 0 (8) 27 27 0 (37) 23 33 10
(8) 27 27 0 (7) 27 27 0 (26) 19 31 12
(7) 27 27 0 (39) 23 27 4 (25) 19 31 12
(26) 26 27 1 (26) 23 27 4 (27) 16 30 14
(25) 26 27 1 (25) 23 27 4 (36) 3 18 15
(39) 25 27 2 (38) 22 27 5 (31) 3 18 15
(27) 22 27 5 (27) 18 27 9 (18) 3 18 15
(35) -10 8 18 (36) -11 7 18 (12) 3 18 15
(34) -10 8 18 (35) -11 7 18 (24) 2 17 15
(24) -10 8 18 (34) -11 7 18 (41) 1 16 15
(36) -11 7 18 (33) -11 7 18 (20) 1 16 15
(31) -11 7 18 (31) -11 7 18 (38) -1 14 15
(23) -11 7 18 (24) -11 7 18 (33) -2 15 17
(22) -11 7 18 (23) -11 7 18 (14) -7 8 15
(33) -12 6 18 (22) -11 7 18 (13) -7 8 15
(17) -12 6 18 (17) -11 7 18 (11) -7 8 15
(12) -12 6 18 (18) -12 6 18 (15) -12 5 17
(10) -12 6 18 (14) -12 6 18 (45) -15 8 23
(6) -12 6 18 (13) -12 6 18 (16) -15 5 20
(5) -12 6 18 (12) -12 6 18 (17) -17 5 22
(4) -12 6 18 (11) -12 6 18 (35) -19 5 24
(18) -13 5 18 (10) -12 6 18 (34) -19 5 24
(16) -13 5 18 (16) -13 5 18 (23) -19 5 24
(14) -13 5 18 (15) -14 4 18 (22) -19 5 24
(13) -13 5 18 (6) -14 4 18 (10) -19 5 24
(11) -13 5 18 (5) -14 4 18 (3) -19 5 24
(15) -16 5 21 (4) -14 4 18 (6) -23 5 28
(45) -21 5 26 (45) -23 4 27 (5) -23 5 28
(43) -29 2 31 (3) -31 3 34 (4) -23 5 28
(3) -36 3 39 (43) -32 1 33 (32) -37 3 40
(2) -36 3 39 (32) -37 2 39 (43) -38 2 40
(32) -39 2 41 (2) -39 1 40 (2) -39 2 41
(1) -42 1 43 (44) -40 1 41 (44) -43 0 43
(44) -44 0 44 (1) -44 0 44 (1) -43 0 43

107

8.2.3 Composite

The experimental setup for the Composite (and all the next patterns) is a bit different. First,
Composite is a multi-level pattern, so it needs a clustering algorithm for the detection. Second,
less clusterers and classifiers were employed for the experiments than the ones described in
Subsection 8.1.1, making the experiments less time and resource-demanding. In Subsection 8.3.4
the issues related to clusterers are discussed. The reduction of the number of employed classifiers
is given only by time constraints for the production of the results. Only the faster and better
performing (on average) were kept. In particular all the LibSVM with kernels different from RBF
were removed, and also the SMO classifier. The rationale is that, among the SVMs, the RBF is
the kernel with better performance and lower computation time. SMO with the RBF kernel was
removed because it performs similar to LibSVM with the RBF kernel.

The best results achieved for the Composite design pattern are reported in Table 8.11. The
performances are by far lower than the ones reported in Table 8.3 and Table 8.7 for the Singleton
and Adapter design patterns, respectively. It is not possible to give an idea of the significance of
the results, but some considerations can be formulated. First, the maximum (even if modest)
performance values are scored by the support vector machines classifiers. Second, there is no
clue for deducing which is the best clusterer among the two, even calculating the mean and
standard deviation of the performance values for the two cases.

Table 8.11: Best performance results for the Composite design pattern
Clusterer Classifier accuracy f-

measure
area

under
ROC

SimpleKMeans ZeroR 0.75 (1) 0.00 (1) 0.39 (1)
SimpleKMeans OneR 0.75 (2) 0.11 (2) 0.50 (2)
SimpleKMeans NaiveBayes 0.77 (3) 0.38 (3) 0.63 (3)
SimpleKMeans JRip 0.75 (4) 0.35 (5) 0.48 (6)
SimpleKMeans RandomForest 0.75 (7) 0.45 (8) 0.61 (9)
SimpleKMeans J48 Unpruned 0.75 (10) 0.27 (11) 0.59 (12)
SimpleKMeans J48 Reduced Error Pruning 0.77 (13) 0.25 (14) 0.51 (15)
SimpleKMeans J48 Pruned 0.75 (16) 0.00 (17) 0.51 (18)
SimpleKMeans C-SVC RBF 0.79 (19) 0.36 (20) 0.88 (21)
SimpleKMeans ν-SVC RBF 0.81 (22) 0.55 (23) 0.67 (24)

CLOPE ZeroR 0.75 (25) 0.00 (25) 0.39 (25)
CLOPE OneR 0.75 (26) 0.00 (26) 0.50 (26)
CLOPE NaiveBayes 0.75 (27) 0.12 (27) 0.52 (27)
CLOPE JRip 0.81 (28) 0.42 (29) 0.60 (30)
CLOPE RandomForest 0.81 (31) 0.38 (32) 0.65 (33)
CLOPE J48 Unpruned 0.81 (34) 0.42 (35) 0.53 (36)
CLOPE J48 Reduced Error Pruning 0.81 (37) 0.25 (38) 0.56 (39)
CLOPE J48 Pruned 0.75 (40) 0.42 (41) 0.58 (42)
CLOPE C-SVC RBF 0.81 (43) 0.40 (44) 0.61 (45)
CLOPE ν-SVC RBF 0.77 (46) 0.56 (47) 0.72 (48)

The summary of the per-project evaluated instance is available in Table 8.12. The table
shows that all the available systems were analyzed, and their pattern candidates evaluated,
because the total number of instances was less than 1000. In fact, only 128 instances were found

108

in all the systems analyzed. The not very high amount of pattern instances can be motivated by
the diffusion of the pattern, which is high but not pervasive, and from the fact that Composite
instances tend to be composed of many classes, and therefore of many role mappings. The size
of the instances has the direct consequence of lowering the total number of the instances.

Table 8.12: Composite: evaluated instances summary
Project Candidates Evaluated Correct Incorrect

DesignPatternExample 27 27 15 12
1 - QuickUML 2001 5 5 1 4
2 - Lexi v0.1.1 alpha 1 1 0 1
3 - JRefactory v2.6.24 2 2 0 2
4 - Netbeans v1.0.x 71 71 9 62
5 - JUnit v3.7 1 1 1 0
6 - JHotDraw v5.1 5 5 2 3
8 - MapperXML v1.9.7 5 5 0 5
10 - Nutch v0.4 10 10 2 8
11 - PMD v1.8 1 1 0 1

Total 128 128 30 98

One of the motivations of the low performances on this pattern could be the insufficient
information contained in the dataset. Future work will try to demonstrate this hypothesis.

The last major difference with the results of the first two design patterns is that no results
are available from the Weka Experimenter: it is not possible to evaluate the significance level of
the produced results. The reason is two-fold:

• First, Weka is able to run only classification experiments (or other one-type only exper-
iments), while the needed procedure is too complex. In fact, a single run requires the
application of a clusterer chained with a classifier. Even writing a new classifier for Weka
able to hide the complexity of the process to the Experimenter, a problem remains regarding
the cross validation: the input of the clusterer is a dataset without the class labels, which
is an information that stays outside the process until the supervised classification phase
starts. Without the prior knowledge about the class labeling, the Experimenter is not able
to record the analytical results for its estimations.

• Second, even producing a dataset containing the summary data from all the experiments
conducted during the optimization phase, the Experimenter is not prepared to handle all
the produced data, and needs a huge amount of memory and time. In addition, the results
would not be comparable, and the significance levels and standard deviations would have
less meaning, because the data available from the optimization algorithm is the summary
of an entire cross validation, while the Experimenter is designed to handle the results
coming from all the single foldings of a cross validation, repeated a certain number of
times on different randomizations of the same dataset.

In Section 9.1 some future works related to these issues are described.

8.2.4 Decorator

The experiment regarding the Decorator design pattern has the same setup of the one on
the Composite design pattern, for the same causes.

109

The best performance values obtained are shown in Table 8.13. The scenario is quite different
from the one available in Table 8.11 for the Composite design pattern. The first significant
difference is the splitting of the values between the two clusterers: SimpleKMeans beats CLOPE in
most cases. Another difference is that the f-measure values for the Decorator are almost double
of the ones in the Composite, and area under ROC values are significantly higher. At a first
impression it seems that the Decorator dataset had a better classification outcome than the one
for the Composite. One peculiarity of the results is that all the best performance values are
scored by RandomForest classifiers. Random forests had good results also on the Singleton and
Adapter patterns, but they never totally won over support vector machines. SVMs are just a
bit lower in performance, and a suspect comes that, if a significance analysis was possible, the
support vector machines could be considered equal or superior to the random forests, in the
same way it happened for the first two patterns.

Table 8.13: Best performance results for the Decorator design pattern
Clusterer Classifier accuracy f-

measure
area

under
ROC

SimpleKMeans ZeroR 0.58 (1) 0.00 (1) 0.49 (1)
SimpleKMeans OneR 0.70 (2) 0.56 (2) 0.65 (2)
SimpleKMeans NaiveBayes 0.77 (3) 0.74 (3) 0.76 (3)
SimpleKMeans JRip 0.80 (4) 0.76 (5) 0.76 (6)
SimpleKMeans RandomForest 0.82 (7) 0.77 (8) 0.82 (9)
SimpleKMeans J48 Unpruned 0.77 (10) 0.75 (11) 0.74 (12)
SimpleKMeans J48 Reduced Error Pruning 0.77 (13) 0.73 (14) 0.77 (15)
SimpleKMeans J48 Pruned 0.80 (16) 0.76 (17) 0.75 (18)
SimpleKMeans C-SVC RBF 0.80 (19) 0.75 (20) 0.82 (21)
SimpleKMeans ν-SVC RBF 0.80 (22) 0.76 (23) 0.81 (24)

CLOPE ZeroR 0.58 (25) 0.00 (25) 0.49 (25)
CLOPE OneR 0.66 (26) 0.59 (26) 0.64 (26)
CLOPE NaiveBayes 0.70 (27) 0.67 (27) 0.73 (27)
CLOPE JRip 0.71 (28) 0.65 (29) 0.68 (30)
CLOPE RandomForest 0.73 (31) 0.72 (32) 0.74 (33)
CLOPE J48 Unpruned 0.73 (34) 0.66 (35) 0.74 (36)
CLOPE J48 Reduced Error Pruning 0.72 (37) 0.68 (38) 0.74 (39)
CLOPE J48 Pruned 0.73 (40) 0.65 (41) 0.73 (42)
CLOPE C-SVC RBF 0.72 (43) 0.66 (44) 0.72 (45)
CLOPE ν-SVC RBF 0.74 (46) 0.70 (47) 0.76 (48)

The evaluated instances for the Decorator design pattern are more than the ones for the
Composite, which are 128. In fact, the dataset is composed of 247 instances, 93 correct and 154
incorrect. The dataset is therefore also better balanced, having 38% of correct instances and
62% of incorrect instances, while the percentage for the Composite is respectively 23% and 77%.

The better performance gained on the Decorator (with respect to the Composite) can be
justified also with the larger size of the dataset, which is almost double, and the better balance
between correct and incorrect instances that favours a better learning for the classifiers.

110

Table 8.14: Decorator : evaluated instances summary
Project Candidates Evaluated Correct Incorrect

DesignPatternExample 31 31 10 21
1 - QuickUML 2001 16 16 2 14
2 - Lexi v0.1.1 alpha 6 6 0 6
3 - JRefactory v2.6.24 12 12 1 11
4 - Netbeans v1.0.x 131 128 59 69
5 - JUnit v3.7 7 7 1 6
6 - JHotDraw v5.1 14 14 5 9
8 - MapperXML v1.9.7 16 16 8 8
10 - Nutch v0.4 11 11 6 5
11 - PMD v1.8 6 6 1 5

Total 250 247 93 154

8.2.5 Factory Method

The last experimented pattern is the Factory Method, which has the same experimental setup
of the last two analyzed patterns.

In Table 8.15 the best results achieved for the Factory Method are reported. This results
report another enhancement over the ones reported in Table 8.13 for the Decorator design
pattern. The f-measure is over 0.8 in most cases, and the area under ROC reaches the maximum
of 0.87. Accuracy values are comparable to the ones in for the Decorator, near to 0.8 in most
cases. Another time, SimpleKMeans clearly beats CLOPE: results obtained through the CLOPE
clusterer on the Factory Method are lower than the same experiments applied to the Decorator.
There is a confirmation instead regarding the classifier algorithms: random forests have the
maximum performance for all the indicators, and support vector machines are equal or a few
behind. The real surprise in the table are the performances of NaiveBayes. In fact, while for all the
other patterns it has an average or bad performance, here it scores performances very near to the
top ones. The causes of these good scores are unknown, but some hypotheses can be formulated.
The simplest one is that on this dataset the SimpleKMeans is able to group the mappings in
a way that simplifies a lot the job of the classifiers, leading to good average results and the
outstanding values of the NaiveBayes, which is a simple4 (but sometimes very effective) technique.
A confirmation of this hypothesis is that, for example, for the Composite the NaiveBayes has
performances comparable to the average ones, and very near to the ones of the ZeroR and OneR.
These values suggest that the performed clustering did not help the classifiers to choose the
correct instances. In the Decorator ’s results, instead the values of ZeroR, OneR and NaiveBayes
progressively grow, suggesting that as the complexity of the classifier augments, better results
can be achieved because more complicated relationships among the features (the clusters) can
be calculated. The best values are better than the ones for the NaiveBayes, but not so much.
Finally, in the Factory Method there is the same performance growing, but the NaiveBayes has
similar performances to the top ones. This last observation suggests that the extracted clusters
are meaningful enough without, the need to combine their values in complicated ways, like more
advanced classifiers are able to do.

The number of instances found in the target systems for the Factory Method design pattern
is huge compared with the Composite and Decorator patterns. One of the causes is the large

4The naïve bayes classification technique is the simplest bayesian network. It is composed of one level, and
assumes the input features are statistically independent, which is a strong assumption

111

Table 8.15: Best performance results for the Factory Method design pattern
Clusterer Classifier accuracy f-

measure
area

under
ROC

SimpleKMeans ZeroR 0.52 (1) 0.69 (1) 0.50 (1)
SimpleKMeans OneR 0.70 (2) 0.73 (2) 0.70 (2)
SimpleKMeans NaiveBayes 0.81 (3) 0.82 (3) 0.87 (3)
SimpleKMeans JRip 0.76 (4) 0.79 (5) 0.77 (6)
SimpleKMeans RandomForest 0.82 (7) 0.83 (8) 0.87 (9)
SimpleKMeans J48 Unpruned 0.80 (10) 0.81 (11) 0.86 (12)
SimpleKMeans J48 Reduced Error Pruning 0.78 (13) 0.81 (14) 0.85 (15)
SimpleKMeans J48 Pruned 0.79 (16) 0.81 (17) 0.85 (18)
SimpleKMeans C-SVC RBF 0.82 (19) 0.83 (20) 0.84 (21)
SimpleKMeans ν-SVC RBF 0.80 (22) 0.82 (23) 0.87 (24)

CLOPE ZeroR 0.52 (25) 0.69 (25) 0.50 (25)
CLOPE OneR 0.54 (26) 0.69 (26) 0.53 (26)
CLOPE NaiveBayes 0.55 (27) 0.69 (27) 0.55 (27)
CLOPE JRip 0.54 (28) 0.69 (29) 0.52 (30)
CLOPE RandomForest 0.55 (31) 0.69 (32) 0.57 (33)
CLOPE J48 Unpruned 0.55 (34) 0.69 (35) 0.54 (36)
CLOPE J48 Reduced Error Pruning 0.55 (37) 0.69 (38) 0.55 (39)
CLOPE J48 Pruned 0.55 (40) 0.69 (41) 0.54 (42)
CLOPE C-SVC RBF 0.56 (43) 0.69 (44) 0.54 (45)
CLOPE ν-SVC RBF 0.56 (46) 0.69 (47) 0.58 (48)

112

diffusion of this pattern, which simply prescribes an indirection in the responsibility of the
creation of a new object, and another one is that the merge rule groups Factory Method instances
using the Creator, ConcreteCreator and Product roles in the root level. The rationale is detailed
in Section 6.3.1, and it is based on the definition and intent of the pattern itself. The sum of
these causes led to 1044 pattern instances evaluated out of 2546 found ones. Also the balance
is very good: 562 correct instances out of 482 wrong ones means that the 54% of the found
instances were correct.

Table 8.16: Factory Method: evaluated instances summary
Project Candidates Evaluated Correct Incorrect

DesignPatternExample 269 269 218 51
1 - QuickUML 2001 55 49 26 23
2 - Lexi v0.1.1 alpha 18 18 13 5
3 - JRefactory v2.6.24 159 159 108 51
4 - Netbeans v1.0.x 2045 549 197 352
5 - JUnit v3.7 - - - -
6 - JHotDraw v5.1 - - - -
8 - MapperXML v1.9.7 - - - -
10 - Nutch v0.4 - - - -
11 - PMD v1.8 - - - -

Total 2546 1044 562 482

As already outlined for the last two patterns, the size and composition of the dataset is
important for the creation of the classification models. The one for the Factory Method is the
larger dataset for the multi-level patterns and it is the better balanced, very near to the 1:1
ratio of correct and incorrect instances. This can be one of the causes of the performance values,
which are better then the previous two ones.

8.3 Threats to validity and Limitations

8.3.1 Design pattern definitions

The entire goal of this thesis is to provide a way of training the tool to understand what a
pattern instance is and what is not. The machine learning approach was taken following the
conjecture that it is not possible to formulate the precise formal definition of a pattern using only
its implementation details, because the definition of a pattern is taught to designers through
high level concepts and examples, and often designers learn patterns in different ways. This
experiment was conducted by training classifiers using a labeling given from only one person, i.e.
the author of this thesis. This condition influences (it must!) the results, in unknown directions.
The interpretation of the results given in this chapter must be therefore interpreted in this sense
“is this particular setup able to learn the definition of pattern x learned by this particular person?”.
A better experiment would be to have training sets produced by different people, or better
from an agreed and shared dataset, like the one we are trying to build through our DPB [15]
project. The different personal interpretation of the design pattern definitions, in fact, reduces
the reliability of the results of all the existing approaches in the literature, as every researcher
defines the detection rules for design patterns following his interpretation of the definition.

113

8.3.2 Granularity

Currently the granularity of the micro-structures employed for the modeling of the analyzed
system is at class level. This means that every micro-structure is recorded into the model as a
link from a Type to another one or to itself. Micro-structures (represented by the BasicElement
class into the model) are supported by the model as links from one CodeEntity to another one.
CodeEntity is an abstract class representing every kind of clearly recognizable and referable piece
of code, i.e. classes, attributes, methods, and also procedures and global variables (referring to
non object-oriented code).

The motivation of this choice is purely historical. MARPLE-DPD (see Chapter 4) is a
project existing since 2008 and has been evolved to the current state. The module containing the
Abstract Syntax Tree visitors catching the micro-structures was designed in order to support only
class-level information granularity, while lower level granularity was supported using optional
attributes. As the goal of this thesis is to demonstrate that data mining techniques applied to
the pattern detection task are a sensible solution, the choice was to keep the existing (proved
and tested) setup, and to focus on the development of the machine learning module.

The consequence of the choice is that the current implementation is expected to have some
kind of sub-optimal performances, especially regarding precision. In fact, placing information
also at the method and attribute level could allow specifying detection rules able to express that
the same method (having a role in the pattern) must satisfy a set of constraints, also related
to some other role played by other classes/methods/attributes in the same pattern. The same
applies to the Classifier module: more precise information can help the algorithm to have a
precise description of the input, and to behave accordingly. I mentioned that this will impact on
precision in particular, because the current implementation, specifying rules that must match
patterns using more abstract information, must use less strict constraints, which statistically
include more results and thus more correct pattern instances.

The work for the immediate future will be to extend the approach to information placed to a
more appropriate granularity level, in order to exploit all the information that can be extracted
from the source code.

8.3.3 Libraries

The analysis of the connection from an analyzed system to its libraries is one of the major
limitations of the approach. Most real-life software systems use lots of libraries to reach their goal.
This is normal and it is what software reuse is about. The problem for design pattern detection
is that many patterns are useful in order to extend frameworks (small or big) implemented into
libraries. And frameworks use plenty of design patterns. The consequence is that in order to
extract all the real instances of patterns existing in a system we should be able to represent an
integrated model of the system and all its libraries. Unfortunately some issues arise, making
the solution harder to implement. First, it is possible, especially in industry, that the source
code of libraries is not available. Second, loading the model of every library connected to the
system would mean handling a really huge model, whose significance would be low, as we expect
a software system to use only a fraction of the classes of the libraries it relies on. The usage of
such an integrated model like that would have many obvious performance consequences, in terms
of both detection time and memory consumption. Even if the performance issues were solved,
another modeling problem would raise: detecting patterns into a model including the analyzed
system and all its libraries would extract also patterns which are exclusively contained in the
libraries, which are of no interest to the user. Moreover a pattern half-implemented in a library is
more related to the library, from the design point of view, than to the client system, but knowing
about the connection between the two is useful information for program comprehension. The

114

ideal library handling, in the context of design pattern detection, would be to create a repository
of single library analyzed models, which can be connected to the analyzed system model (like
the libraries are connected to the system), and to exploit the joint information without the need
to build the library model every time and already knowing the instances contained in the library.
This kind of implementation needs a degree of design and scalability that is out of the scope of
this thesis, but it is still the goal I think a reverse engineering tool should aim to.

In the actual implementation, MARPLE does not handle the content of libraries, with the
exception of inheritance, which is retrieved using the information provided by Eclipse using the
compiler bindings. That kind of information is simple to retrieve and it is available also when the
source code of the library is not available. Future work will aim to at least mitigate the issues
coming from libraries and perhaps provide a degree of configuration of the desired behaviour.

8.3.4 Time and computational resources

The initial experimental setup was larger than the one reported in this chapter. In
particular, more clustering algorithms were tested other than CLOPE and SimpleKMeans, i.e.
SelfOrganizingMaps, LVQ, Cobweb. The achieved results are not reported because for different
reasons those algorithms were not applicable. SelfOrganizingMap is too slow, at least one order of
magnitude, compared to, e.g., SimpleKMeans. It takes 4 hours to learn the Composite dataset,
for example. In addition, an undocumented problem does not allow the clusterer to handle
nominal attribute, even if they are accepted without returning errors. The same applied for LVQ,
which does not share the same computation time, however. In both cases the clustering is null
(instances are all clustered in the same cluster) if the dataset is made by nominal attributes, and
only a little better when nominal attributes are transformed to a numeric (0,1) form. Finally,
Cobweb does not fit into memory for most of the inputs, even allocating 3500MB of Java heap.

The remaining clustering algorithms, namely CLOPE and SimpleKMeans, are fast and have
a small memory footprint, but they are also simpler as clustering technologies. For these
reasons, newer and better results will be hopefully achieved by testing other clustering algorithm
implementations, as outlined in Section 9.1.

8.4 Conclusion

This chapter described the experimental setup for the Classifier module, and the results
obtained over five different design patterns.

Despite the experienced difficulties, especially regarding the clustering algorithms, some
overall considerations can be formulated.

First, it seems that, in the average case, the kinds of classification algorithm having the best
performance are the support vector machines, when paired with a RBF kernel. This is not a real
surprise, as it is one of the most common kernels for SVMs and it is the default one, for example,
in LibSVM. The second classifier was RandomForest, which is less stable in the performances, but
reaches higher area under ROC values, better also than SVMs.

Second, as the size of the dataset grows, the performance values increase also on multi-level
patterns, and a difference between the SimpleKMeans and the CLOPE clusterers becomes more
evident. In fact, in the results for the Decorator, and more in the ones for the Factory Method,
the clustering performed by the SimpleKMeans produces datasets that are classified with better
performances. A peculiarity of the last experiment, the one on the Factory Method pattern is
that the NaiveBayes classifier, which is not as advanced as, e.g., as support vector machines, as
performance values very near to the top ones, scored by RandomForest and LibSVM. It will be

115

interesting, in the future, to test new clustering algorithms and to augment the smaller datasets,
to understand if better performances can be achieved.

Another important validation of the approach is to compare its results with the results coming
from other tools. A first attempt to provide this kind of validation is reported in Appendix C.

116

Chapter 9

Conclusions and Future
Developments

Many approaches have been developed by the research community for design pattern detection.
This thesis described an approach that applies data mining techniques to the design pattern
detection problem, to solve the issues related to the informal definition given to design patterns,
which often leads to slightly different interpretations by different developers.

The approach is implemented in the MARPLE tool, building the MARPLE-DPD module.
MARPLE-DPD allows a user to detect patterns, exploiting existing rules or new ones, and to
train some clusterer and classifier algorithms to learn what a good pattern instance is and what
is not. The training consists of submitting to the algorithms a set of example pattern instances,
which have been labeled as correct or incorrect, to let them build an internal model able to
perform their evaluations. New pattern instances can then be automatically evaluated without
having been inspected by the user. The automatic evaluation gives a confidence value to each
pattern instance, which measures how much an instance is compliant with the set of examples
submitted in the training phase.

In this thesis the design pattern detection area has been analyzed from different perspectives.
A review of the different approaches for design pattern detection highlighted that only few
existing approaches try to overcome the limitations of exact matching techniques. By exploiting
some kind of soft computing or machine learning techniques, which are designed to approximate
the optimal solution of decision problems, it is possible to address the design pattern definition
informality issue. The four reviewed approaches applying inexact matching exploit different
techniques to solve the problem: machine learning, similarity scoring, and constraint relaxation.
The machine learning approach most similar to the one described in this thesis is the one from
Ferenc et al. [69], then extended by Fülöp [72]. In fact, it is the only approach using supervised
classification to filter out wrong instances from a set of candidates. The apparent major limitation
of that approach is that patterns are represented by features that mask their structure, while the
approach introduced in this thesis employs lower level features, i.e. micro-structures. Similarity
scoring does not involve the subjective view of the developer into the detection, while constraint
relaxation is not able to learn from the choices made by the user when deciding to relax or
not the rule. The other machine learning approach, which did not use exact matching for the
extraction of patterns, was limited to represent one role at a time in the dataset, cutting the
possibility to show the relationship among different the roles to the classifier algorithm. Given
the requirements the usage of a classification as a filter is a better solution.

The modeling aspect has a great relevance in reverse engineering, so a review of the available
models for reverse engineering was performed. It turned out that, despite different good solutions
are available, no one appears to be going to become a de facto standard. The only available

117

model for design pattern detection results, DPDX [119], was reported, discussed and compared
to the model existing in MARPLE-DPD for the same purpose. DPDX has a different goal than
the model employed in MARPLE-DPD. In fact, DPDX is wider and more complete, and is
designed for the exchange of information among research groups, while the MARPLE-DPD
model has the only goal of representing the structure of design pattern instances. One of the
information available in DPDX and not in MARPLE-DPD, for example is the justification of
the role assignments. Finally, DPDX lacks a meta-meta-model definition able to express the
grammar of pattern definitions; this limitation can be problematic for users writing new pattern
definitions and wanting to test the compliance of the definition with the model.

One of the central points of the model integrated in MARPLE for the representation of an
analyzed system is the concept of micro-structure. A micro-structure is a fact regarding one or
two classes, having the property of being mechanically recognizable from the source code. This
property makes micro-structures very useful for the abstraction of software systems. MARPLE
supports three different families of micro-structures: elemental design patterns, micro patterns
and design pattern clue. Each of these have been discussed and analyzed.

Micro-structures are also the base for the pattern detection facilities in MARPLE-DPD. In
fact, the Joiner module exploits micro-structures as edges in the graph it uses to represent the
software system; the nodes are represented by the classes. Patterns are extracted by matching
query rules against the graph, and then grouping the extracted role-class mappings in tree-wise
structures representing pattern instances. The grouping (called “merge” in the Joiner) procedure
is one of the most important parts of the entire approach, because it allows to define the roles
identifying a pattern instance and their dependencies. The Joiner rules for all the design patterns
of the GoF book have been defined, and the rules for the five design pattern which had the
deeper experiments are discussed. In particular, many issues regarding the definition of the
patterns are highlighted, and some proposals to overcome these issues are made. For example,
the Adapter design pattern was found to be pervasive in software systems, when allowing all the
possible interpretations available in the literature and in the analyzed system. A proposal for
a different and formal interpretation of the Adapter design pattern has been then introduced,
able to express the amount of adaptation performed by each class. The same rationale can be
applied also to the Decorator and the other patterns defining an object indirection protocol.
The rules defined for the Joiner were written and tested to maximize the number of detected
patterns, admitting to retrieve many false positives. This criterion is based on the fact that the
classification phase will filter out false positives, but it cannot extract correct instances from the
system by itself. The Classifier module assumes the Joiner to have 100% recall.

The classification approach was then described, and the modeling aspect of the supervised
classification problem was discussed. The proposed solution is to split the process in two phases,
the first exploiting clustering and the second supervised classification. The clustering phase
transforms a dataset composed of the role-class mappings in a dataset representing the instances.
The first dataset uses a combination of roles and micro-structures as features, while the second
uses the information coming from the clustering phase to represent the pattern instances. The
advantage of this approach is that it is able to represent pattern instances composed of an
arbitrary number of classes as feature vectors of fixed size, which can be consumed by data
mining algorithms. A major enhancement to the process is the special handling of patterns
modeled with a single level. This kinds of pattern instances are composed of only one mapping.
This property enables the direct usage of supervised classification on the first kind of dataset,
allowing the classification algorithm to build its model on a representation that is more close to
the system.

The classification process was tested through a set of experiments on five design patterns:
Singleton, Adapter, Composite, Decorator and Factory Method. The patterns were extracted

118

from a set of systems composed of the ones contained in the PMARt dataset plus one system
containing example pattern instances. Many clustering and classification techniques, limiting to
the ones having an implementation in the Weka framework, have been experimented on the five
design patterns, with different results. More precisely, when clustering techniques are applied,
the performance of the approach is lower than when applying only classification techniques. In
the latter case, instead good performance values were achieved. The lower performances of the
clustering process (than the direct classification one) can be caused by different factors. To have
a confirmation of the performance degrade it will be necessary to be able to apply some of the
clustering algorithms that were not runnable in the time limits, due to their implementation
and to the limitations of computational resources. The best performances were obtained on the
Singleton design pattern, which is a single-level pattern. The performances for the Adapter are
only a little lower: Singleton scores ~0.9 of f-measure and ~1.0 of area under ROC, and Adapter
~0.8 and ~0.9, respectively, which are both good results. The best result on multi-level patterns
is the one obtained on the Factory Method, which reached values similar to the ones of the
Adapter, but ~0.05 lower. The performances for the Decorator are slightly lower and the ones
for the Composite are not good. One of the outcomes of the experiments on these three patterns
is that there is an apparent increase in the performances when the size of the dataset grows;
moreover, as the dataset grows, also the difference between the two clusterer algorithms becomes
relevant, with SimpleKMeans achieving better performances than CLOPE. The hypothesis of the
correlation of the size of the dataset and the performances should be tested with the approach
of learning curves [151].

Some problems raised through the manual evaluation and labeling of the results coming from
the Joiner module. In particular, many of the instances reported in the PMARt dataset were
not considered correct ones, and many others were not present in the dataset. If the second
problem is normal in a manually validated dataset, the first one is more serious, tackling the
validity of the dataset itself.

Finally, the described approach demonstrated that an approach for the detection of design
patterns exploiting data mining techniques can be successfully applied, despite the encountered
technical limitations.

9.1 Future work

Many future works can be planned, and many were advised or described in the content of
the thesis. Next paragraphs will summary a selection of the most relevant future developments.

Micro-structures catalog The micro-structures catalog is not meant to be complete or
perfect. Many new kinds of information can be specified, and others may be removed if they are
not enough significant. A review of the catalog contents will be performed and new experiments
will be done using the newer available information. Another task related to the catalog will be
to test (empirically) the significance of the found micro-structures, in the same or similar way
Gil and Maman did for micro patterns [76].

Micro-structures granularity The current implementation of the Micro Structure Detector
reports micro-structures at the class level, i.e. information given by micro-structures is reported
referring to classes. Some of this information should be reported at method or attribute level,
leading to a more precise description of the underlying system. A more precise description
will allow writing better Joiner rules, and it should imply better performances of the Classifier
module.

119

Software architecture reconstruction integration MARPLE has architecture reconstruc-
tion facilities able to show graphs representing a software system, exploiting the micro-structures.
As the model is enriched with the design pattern instances, the views will benefit from the
integration of that information, which will augment the value of both the pattern detection and
the architecture reconstruction modules.

Design pattern instances pruning The pattern instances retrieved by the Joiner are
modeled as trees of levels. The trees have the property of allowing the deletion of intermediate
nodes without losing their correctness. The only limit is that, after the pruning, at least one
class must play every role of the pattern. In future work, the user interface of MARPLE will
allow the users delete levels from the pattern instances, permitting the cleaning of partially
correct ones.

Patterns interconnections Design patterns often exploited in combination with other ones.
The representation of the connection among patterns will be useful to enhance the detection,
and will have some application also in the SAR module: for example, when two patterns are
connected and they have complementary goals, they can be shown as a single pattern or cluster
of patterns.

Variants or alternatives handling In some cases the same pattern has different structural
alternatives, where the number and type of roles are not equal. If the different alternatives share
the same intent, it will be possible to code the relationship in the pattern definitions, allowing
the user interface to show the different alternatives under the same name, enhancing the user
perception of the results.

Libraries The handling of the connection among systems and libraries is one of the planned
future works. The plan is to create an analysis repository for each library, and to recall it when
a library is used by the analyzed system. The approach will permit to reuse existing analysis
and to discover new usages of the patterns implemented in the libraries.

New patterns One of the most obvious future works is to extend the experiments to all the
other design pattern, which are reported in Appendix A. The new experiments will benefit
from the experience gained with the experiments reported in this thesis, and errors due to
algorithm implementations can be avoided. The results on all the patterns will allow better
comparison with other results coming from different tools, exploiting for example the comparison
functionalities of our Design Pattern Benchmark platform [15].

Clustering algorithm Given the results obtained through the clustering algorithms, one of
the most important future developments is to test better clustering algorithm implementations,
adapting them to the Weka interface if necessary. An interesting technique to try will be Self
Organizing Maps1.

Dataset representation A new experiment to perform will be to represent also metrics in
the datasets, and to represent micro-structures using their frequency values, absolute or relative,
or to try more sophisticated frequency measures, like the TF-IDF [162] one.

1The implementation used for the experimentations gave bad results. It needs more testing at least.

120

Feature grouping The current feature setup is not able to express the possibility of grouping
different features to create more general ones. The grouping feature can be useful if the dataset
representation that uses the basic features is too sparse, and can enhance both the time and
results performances of the classification phase.

Experimenter plugin The Weka Experimenter module is a great source of information about
the significance of the performance values for classification algorithms. It allows to have a
better informed view of the real reliability of the trained models and to sensibly rank different
models. Unfortunately, only classification is supported as model scheme. A future work will be to
provide a plugin for the Weka Experimenter to allow the evaluation of the full clusterer-classifier
trained models, enabling the statistical analysis of the performances for the entire approach. One
possibility will be to implement a meta-classifier that will mask the complete tool chain; another
one will be to plug new weka.experiment. ResultListener or weka.experiment.ResultProducer classes to
allow this functionality.

If this kind of work will be too complicated, because it changes the way the Experimenter
is designed, another possibility would be to modify the optimization algorithm to produce a
fully-compliant Experimenter result file. During the experiments a partially compliant exporter
was developed, but it produced too large and unmanageable files.

Weka enhancement Many of the issues related to Weka during the experiments, especially
in the Experimenter module, were related to observable design or implementation flaws in the
code (which is open-source). Weka is becoming very popular in the research, and a contribution
from the software engineering perspective could help to enhance a good initiative like it is, that
brings data mining techniques to Java systems in a free and open manner.

Full automation The effort in the last two points is in the direction of achieving full au-
tomation in the experiments, removing the issues related to the manual results collection. The
only human-driven phases should be the evaluation of instances and the interpretation of the
experimental results.

Extensive comparison To better validate the approach, an extensive comparison with other
tools, repositories and techniques will be performed, exploiting also the DPB [65] platform.
The comparison will be performed against a number of system and instances that will make
it statistically significant. A preliminary comparison against only one system is available in
Appendix C.

121

122

Appendix A

Joiner rules for non-experimented
patterns

A.1 Creational Design Patterns

A.1.1 Abstract Factory

Match rule The match rule for the Abstract Factory design pattern addresses only the basic
concepts regarding the pattern definition. The constraints are related to the two hierarchies
of factories and products, to the abstractness of AbstractFactory and AbstractProduct, and to
the declarations of the returned products by the factories. Every other constraint will be tested
by the classifier module, because Abstract Factory is a generic pattern allowing many different
variants, like factory methods or prototypes as concrete factories.
PREFIX BE : <ht tp :// e s s e r e . d i s c o . un imib . i t /marp le /BEs#>

SELECT ? Ab s t r a c tFa c t o r y ? Conc r e t eFac to r y ? Abs t r a c tP roduc t ? Conc re teProduct
WHERE {
? Ab s t r a c tFa c t o r y

BE : Abst ractType ? Ab s t r a c tFa c t o r y ;
BE : ProductRetu rns ? Abs t r a c tP roduc t .

? Conc r e t eFac to r y
BE : E x t e nd ed I n h e r i t a n c e ? Ab s t r a c tFa c t o r y ;
BE : ProductRetu rns ? Abs t r a c tP roduc t .

? Abs t r a c tP roduc t BE : Abst ractType ? Abs t r a c tP roduc t .
? Conc re teProduct BE : E x t e nd ed I n h e r i t a n c e ? Abs t r a c tP roduc t .
NOT EXISTS {? Ab s t r a c tFa c t o r y BE : SameClass ? Abs t r a c tP roduc t . }
}

Merge rule The merge rule describes an Abstract Factory as an AbstractFactory class having
some AbstractProducts and some ConreteFactory classes realizing it. Each AbstractProducts is
realized by some ConcreteProduct.
<pa t t e r n name=" Abs t r a c t ␣ Fac to r y ">

<r o l e name=" Ab s t r a c tFa c t o r y " />
<s u b l e v e l>

<r o l e name=" Conc r e t eFac to r y " />
</ s u b l e v e l>
<s u b l e v e l>

<r o l e name=" Abs t r a c tP roduc t " />
<s u b l e v e l>

123

<r o l e name=" Concre teProduct " />
</ s u b l e v e l>

</ s u b l e v e l>
</ pa t t e r n>

Merge rule diagram

AbstractFactory

AbstractProduct

ConcreteProduct
ConcreteFactory

A.1.2 Builder

Match rule The match rule for the Builder design pattern focuses on two elements Director
and Builder must be linked my method calls, but they must be unrelated classes, and the
ConcreteBuilder realizing the Builder must be able to return the Product.
PREFIX BE : <ht tp :// e s s e r e . d i s c o . un imib . i t /marp le /BEs#>

SELECT ? D i r e c t o r ? Bu i l d e r ? Product ? Con c r e t eBu i l d e r
WHERE {
{{? D i r e c t o r BE : De l ega t e ? Bu i l d e r }
UNION {? D i r e c t o r BE : R e d i r e c t ? Bu i l d e r }
UNION {? D i r e c t o r BE : De l e g a t e I nL im i t e dFam i l y ? Bu i l d e r }
UNION {? D i r e c t o r BE : R e d i r e c t I n L im i t e dF am i l y ? Bu i l d e r }} .

? Con c r e t eBu i l d e r
BE : E x t e nd ed I n h e r i t a n c e ? Bu i l d e r ;
BE : ProductRetu rns ? Product .

NOT EXISTS { ? D i r e c t o r BE : C rea t eOb j e c t ? Con c r e t eBu i l d e r . }
NOT EXISTS { ? D i r e c t o r BE : E x t e nd ed I n h e r i t a n c e ? Bu i l d e r . }
NOT EXISTS { ? Bu i l d e r BE : E x t e nd ed I n h e r i t a n c e ? D i r e c t o r . }
NOT EXISTS { ? Bu i l d e r BE : SameClass ? D i r e c t o r . }
NOT EXISTS { ? Product BE : E x t e nd ed I n h e r i t a n c e ? D i r e c t o r . }
NOT EXISTS { ? Product BE : E x t e nd ed I n h e r i t a n c e ? Con c r e t eBu i l d e r . }
NOT EXISTS { ? Product BE : E x t e nd ed I n h e r i t a n c e ? Bu i l d e r . }
NOT EXISTS { ? Product BE : SameClass ? D i r e c t o r . }
NOT EXISTS { ? Product BE : SameClass ? Con c r e t eBu i l d e r . }
NOT EXISTS { ? Product BE : SameClass ? Bu i l d e r . }
NOT EXISTS { ? Con c r e t eBu i l d e r BE : S t a t e l e s s ? Con c r e t eBu i l d e r . }
}

Merge rule The merge rule tells that a Builder pattern instance is identified by its Director,
which manages potentially more than one Builder. Each Builder is realized by some ConcreteBuilder,
each one able to produce one Product kind.
<pa t t e r n name=" Bu i l d e r ">

<r o l e name=" D i r e c t o r " />
<s u b l e v e l>

124

<r o l e name=" Bu i l d e r " />
<s u b l e v e l>

<r o l e name=" Product " />
<r o l e name=" Con c r e t eBu i l d e r " />

</ s u b l e v e l>
</ s u b l e v e l>

</ pa t t e r n>

Merge rule diagram

Director

Builder

Product ConcreteBuilder

A.1.3 Prototype

Match rule The match rule for the Prototype pattern specifies two main variants: classes
creating instances of theirselves and returning them declared as a superclass, and classes that
implement the java . lang .Cloneable interface, following the Java framework.
PREFIX BE : <ht tp :// e s s e r e . d i s c o . un imib . i t /marp le /BEs#>

SELECT ? Pro to type ? Conc r e t eP ro to t ype
WHERE {
{{? Pro to type BE : ProductRetu rns ? Pro to type .
? Conc r e t eP ro to t ype BE : E x t e nd ed I n h e r i t a n c e ? Pro to type ;

BE : C r ea t eOb j e c t ? Conc r e t eP ro to t ype .
{

{? Conc r e t eP ro to t ype BE : ProductRetu rns ? Conc r e t eP ro to t ype . }
UNION
{? Conc r e t eP ro to t ype BE : ProductRetu rns ? Pro to type }

} .
}UNION{
? Pro to type BE : C loneab l e Imp l emented ? Pro to type .
{

{? Conc r e t eP ro to t ype BE : E x t e nd ed I n h e r i t a n c e ? Pro to type . }
UNION
{? Conc r e t eP ro to t ype BE : SameClass ? Pro to type .
OPTIONAL {? x BE : E x t e nd ed I n h e r i t a n c e ? Pro to type . }
FILTER (! bound (? x))
}

} .
}} .
}

Merge rule In the Prototype pattern there are only two roles, one child of the other. The
ConcretePrototype is in a sublevel in order to group all the ConcretePrototypes for each Prototype.
<pa t t e r n name=" Pro to type ">

<r o l e name=" Pro to type " />

125

<s u b l e v e l>
<r o l e name=" Conc r e t eP ro to t ype " />

</ s u b l e v e l>
</ pa t t e r n>

Merge rule diagram

Prototype

ConcretePrototype

A.2 Structural Design Patterns

A.2.1 Bridge

The match rule for the Bridge design pattern looks for two separate hierarchies, connected
through a reference from Abstraction or RefinedAbstraction to Implementor and wants the Refined-
Abstraction to use the Implementor.

PREFIX BE : <ht tp :// e s s e r e . d i s c o . un imib . i t /marp le /BEs#>

SELECT ? Ab s t r a c t i o n ? Implementor ? Conc re te Imp lemento r ? R e f i n e dAb s t r a c t i o n
WHERE {
? Conc re te Imp lemento r BE : E x t e nd ed I n h e r i t a n c e ? Implementor .
? Conc re te Imp lemento r BE : Over r id ingMethod "␣? Implementor .

? R e f i n e dAb s t r a c t i o n ␣BE : E x t e nd ed I n h e r i t a n c e ␣? Ab s t r a c t i o n .

{
{? Ab s t r a c t i o n ␣BE : O t h e r S t a t i cR e f e r e n c e ␣? Implementor . }
UNION{? Ab s t r a c t i o n ␣BE : P r i v a t e I n s t a n c eR e f e r e n c e ␣? Implementor . }
UNION{? Ab s t r a c t i o n ␣BE : P r i v a t e S t a t i c R e f e r e n c e ␣? Implementor . }
UNION{? Ab s t r a c t i o n ␣BE : O th e r I n s t a n c eRe f e r e n c e ␣? Implementor . }
UNION{? Ab s t r a c t i o n ␣BE : P r o t e c t e d I n s t a n c eR e f e r e n c e ␣? Implementor . }
UNION{? Ab s t r a c t i o n ␣BE : P r o t e c t e d S t a t i c R e f e r e n c e ␣? Implementor . }
UNION{? Re f i n e dAb s t r a c t i o n ␣BE : O t h e r S t a t i cR e f e r e n c e ␣? Implementor . }
UNION{? Re f i n e dAb s t r a c t i o n ␣BE : P r i v a t e I n s t a n c eR e f e r e n c e ␣? Implementor . }
UNION{? Re f i n e dAb s t r a c t i o n ␣BE : P r i v a t e S t a t i c R e f e r e n c e ␣? Implementor . }
UNION{? Re f i n e dAb s t r a c t i o n ␣BE : O th e r I n s t a n c eRe f e r e n c e ␣? Implementor . }
UNION{? Re f i n e dAb s t r a c t i o n ␣BE : P r o t e c t e d I n s t a n c eR e f e r e n c e ␣? Implementor . }
UNION{? Re f i n e dAb s t r a c t i o n ␣BE : P r o t e c t e d S t a t i c R e f e r e n c e ␣? Implementor . }
} .

{
{? R e f i n e dAb s t r a c t i o n ␣BE : Cong lomerat ion ␣? Implementor . }
UNION{? Re f i n e dAb s t r a c t i o n ␣BE : De l ega t e ␣? Implementor . }
UNION{? Re f i n e dAb s t r a c t i o n ␣BE : De l ega tedCong lomera t i on ␣? Implementor . }
UNION{? Re f i n e dAb s t r a c t i o n ␣BE : De l e ga t e I nFam i l y ␣? Implementor . }
UNION{? Re f i n e dAb s t r a c t i o n ␣BE : De l e g a t e I nL im i t e dFam i l y ␣? Implementor . }
UNION{? Re f i n e dAb s t r a c t i o n ␣BE : ExtendMethod␣? Implementor . }
UNION{? Re f i n e dAb s t r a c t i o n ␣BE : Recu r s i on ␣? Implementor . }
UNION{? Re f i n e dAb s t r a c t i o n ␣BE : R ed i r e c t ␣? Implementor . }

126

UNION{? Re f i n e dAb s t r a c t i o n ␣BE : R e d i r e c t I n F am i l y ␣? Implementor . }
UNION{? Re f i n e dAb s t r a c t i o n ␣BE : R e d i r e c t I n L im i t e dF am i l y ␣? Implementor . }
UNION{? Re f i n e dAb s t r a c t i o n ␣BE : R e d i r e c tR e c u r s i o n ␣? Implementor . }
UNION{? Re f i n e dAb s t r a c t i o n ␣BE : RevertMethod␣? Implementor . }
} .

NOT␣EXISTS{? Ab s t r a c t i o n ␣BE : SameClass ␣? Implementor . }
NOT␣EXISTS{? Ab s t r a c t i o n ␣BE : SameClass ␣? Conc re te Imp lemento r . }
NOT␣EXISTS{? Implementor ␣BE : SameClass ␣? R e f i n e dAb s t r a c t i o n . }
NOT␣EXISTS{? Concre te Imp lemento r ␣BE : SameClass ␣? R e f i n e dAb s t r a c t i o n . }
NOT␣EXISTS{? Re f i n e dAb s t r a c t i o n ␣␣BE : E x t e nd ed I n h e r i t a n c e ␣? Implementor . }
NOT␣EXISTS{? Re f i n e dAb s t r a c t i o n ␣␣BE : SameClass ␣? Implementor . }
NOT␣EXISTS{? Re f i n e dAb s t r a c t i o n ␣␣BE : SameClass ␣? Conc re te Imp lemento r . }
}

Merge rule The merge rule tells that the Bridge is identified by its Abstraction class, which
manages a number of Implementors and has some realization as RefinedAbstraction. Each
Implementor has some realization.
<pa t t e r n name=" Br idge ">

<r o l e name=" Ab s t r a c t i o n " />
<s u b l e v e l>

<r o l e name=" Implementor " />
<s u b l e v e l>

<r o l e name=" Concre te Imp lemento r " />
</ s u b l e v e l>

</ s u b l e v e l>
<s u b l e v e l>

<r o l e name=" Re f i n e dAb s t r a c t i o n " />
</ s u b l e v e l>

</ pa t t e r n>

Merge rule diagram

Abstraction

Implementor

ConcreteImplementor
RefinedAbstraction

A.2.2 Facade

PREFIX BE : <ht tp :// e s s e r e . d i s c o . un imib . i t /marp le /BEs#>

SELECT ? Facade ? Subsys temClas s
WHERE {
{{ ? Facade BE : De l ega t e ? Subsys temClas s }
UNION { ? Facade BE : R ed i r e c t ? Subsys temClas s }
UNION { ? Facade BE : Cong lomerat ion ? Subsys temClas s }
UNION { ? Facade BE : Recu r s i on ? Subsys temClas s }

127

UNION { ? Facade BE : RevertMethod ? Subsys temClas s }
UNION { ? Facade BE : ExtendMethod ? Subsys temClas s }
UNION { ? Facade BE : De l ega tedCong lomera t i on ? Subsys temClas s }
UNION { ? Facade BE : R e d i r e c tR e c u r s i o n ? Subsys temClas s }
UNION { ? Facade BE : De l e ga t e I nFam i l y ? Subsys temClas s }
UNION { ? Facade BE : R e d i r e c t I n F am i l y ? Subsys temClas s }
UNION { ? Facade BE : De l e g a t e I nL im i t e dFam i l y ? Subsys temClas s }
UNION { ? Facade BE : R e d i r e c t I n L im i t e dF am i l y ? Subsys temClas s }} .

NOT EXISTS { ? Facade BE : E x t e nd ed I n h e r i t a n c e ? Subsys temClas s . }
NOT EXISTS { ? Subsys temClas s BE : E x t e nd ed I n h e r i t a n c e ? Facade . }

NOT EXISTS { ? Subsys temClas s BE : De l ega t e ? Facade . }
NOT EXISTS { ? Subsys temClas s BE : R e d i r e c t ? Facade . }
NOT EXISTS { ? Subsys temClas s BE : Cong lomerat ion ? Facade . }
NOT EXISTS { ? Subsys temClas s BE : Recu r s i on ? Facade . }
NOT EXISTS { ? Subsys temClas s BE : RevertMethod ? Facade . }
NOT EXISTS { ? Subsys temClas s BE : ExtendMethod ? Facade . }
NOT EXISTS { ? Subsys temClas s BE : De l ega tedCong lomera t i on ? Facade . }
NOT EXISTS { ? Subsys temClas s BE : R e d i r e c tR e c u r s i o n ? Facade . }
NOT EXISTS { ? Subsys temClas s BE : De l e g a t e I nFam i l y ? Facade . }
NOT EXISTS { ? Subsys temClas s BE : R e d i r e c t I n F am i l y ? Facade . }
NOT EXISTS { ? Subsys temClas s BE : De l e g a t e I nL im i t e dFam i l y ? Facade . }
NOT EXISTS { ? Subsys temClas s BE : R e d i r e c t I n L im i t e dF am i l y ? Facade . }
}

<pa t t e r n name=" Facade ">
<r o l e name=" Facade " />
<s u b l e v e l>

<r o l e name=" Subsys temClas s " />
</ s u b l e v e l>

</ pa t t e r n>

Merge rule diagram

Facade

SubsystemClass

A.2.3 Flyweight

Complete rule The rule for the Flyweight pattern is completely specified using the XML syntax.
Only little constraints are specified: the FlyweightFactory must create at least a ConcreteFlyweight
instance and there must exist an inheritance of Flyweight and ConcreteFlyweight roles. Both
the roles may not make method calls to FlyweightFactory, i.e. they cannot know about the
existence of a factory managing them. The structure of the roles tells that the FlyweightFactory
identifies the pattern, and it can manage many Flyweight types, which can be realized by many
ConcreteFlyweight types.

128

<pa t t e r n name=" F l ywe i gh t ">
<r o l e name=" F l ywe i gh tFa c t o r y ">

<be name=" Crea t eOb j e c t " to=" Conc r e t eF l ywe i gh t " />
</ r o l e>
<s u b l e v e l>

<r o l e name=" F l ywe i gh t ">
<be name=" Ex t e nd ed I n h e r i t a n c e " to=" F l ywe i g h tFa c t o r y " n ega t i on=" t r u e " />
<be name=" De l ega t e " to=" F l ywe i gh tFa c t o r y " n ega t i on=" t r u e " />

</ r o l e>
<s u b l e v e l>

<r o l e name=" Conc r e t eF l ywe i gh t ">
<be name=" Ex t e nd ed I n h e r i t a n c e " to=" F l ywe i gh t " />
<be name=" De l ega t e " to=" F l ywe i g h tFa c t o r y " n ega t i on=" t r u e " />

</ r o l e>
</ s u b l e v e l>

</ s u b l e v e l>
</ pa t t e r n>

Merge rule diagram

FlyweightFactory

F lyweight

ConcreteF lyweight

A.2.4 Proxy

The rule for the Proxy pattern is specified using the XML syntax. The rule defines the
inheritance among Subject and {RealSubject, Proxy} roles. Proxy must keep a reference to the
Subject or RealSubject and make a call to RealSubject. The pattern is identified by the Subject,
which can be realized by many RealSubject and Proxy instances.

<pa t t e r n name=" Proxy ">
<r o l e name=" Sub j e c t ">

<be name=" De l ega t e " to=" Proxy " nega t i on=" t r u e " />
</ r o l e>
<s u b l e v e l>

<r o l e name=" Rea l Sub j e c t ">
<be name=" Ex t e nd ed I n h e r i t a n c e " to=" Sub j e c t " />
<be name=" Ex t e nd ed I n h e r i t a n c e " to=" Proxy " nega t i on=" t r u e " />

</ r o l e>
</ s u b l e v e l>
<s u b l e v e l>

<r o l e name=" Proxy ">
<be name=" Ex t e nd ed I n h e r i t a n c e " to=" Sub j e c t " />
<be name=" SameHie ra rchyObject " to=" Proxy " />
<be name=" Red i r e c t I n L im i t e dF am i l y " to=" Rea l Sub j e c t " />

</ r o l e>
</ s u b l e v e l>

</ pa t t e r n>

129

Merge rule diagram

Subject

RealSubject Proxy

A.3 Behavioral Design Patterns

A.3.1 Chain of Responsibility

The rule for the Chain of Responsibility pattern is very simple. It defines the inheritance tree
of Handler and ConcreteHandler and that the ConcreteHandler must make a call to the Handler,
which must have at least an abstract method. The way the ConcreteHandler reaches the Handler
is not defined. The structure of the pattern is simple: for each Handler, many ConcreteHandler
may exist.

<pa t t e r n name=" Ch a i nO fR e s p o n s i b i l i t y ">
<r o l e name=" Hand le r ">

<be name=" Ab s t r a c t I n t e r f a c e " to=" Hand le r " />
</ r o l e>
<s u b l e v e l>

<r o l e name=" Conc r e t eHand l e r ">
<be name=" Ex t e nd ed I n h e r i t a n c e " to=" Hand le r " />
<be name=" Red i r e c t I n F am i l y " to=" Hand le r " />

</ r o l e>
</ s u b l e v e l>

</ pa t t e r n>

Merge rule diagram

Handler

ConcreteHandler

A.3.2 Command

Match rule In the Command pattern the match rule cares about the ordering of the method
calls among the roles, and the division between Commands (abstract and concrete) and the other
roles. In fact, Commands may not extend Receivers or Invokers, and vice versa. In order to have
a decent pattern implementation the Receiver must not call the ConcreteCommand, otherwise it
means that the internal command layer is known to the implementation of the system.
PREFIX BE : <ht tp :// e s s e r e . d i s c o . un imib . i t /marp le /BEs#>

SELECT ?Command ? Re c e i v e r ?ConcreteCommand ? I n v o k e r
WHERE {

130

?Command BE : A b s t r a c t I n t e r f a c e ?Command .
?ConcreteCommand BE : E x t e nd ed I n h e r i t a n c e ?Command .
? I n v o k e r BE : Abst ractMethod Invoked ?Command .
{

{ ?ConcreteCommand BE : De l ega t e ? R e c e i v e r }
UNION { ?ConcreteCommand BE : R e d i r e c t ? R e c e i v e r }
UNION { ?ConcreteCommand BE : Cong lomerat ion ? Re c e i v e r }
UNION { ?ConcreteCommand BE : Recu r s i on ? Re c e i v e r }
UNION { ?ConcreteCommand BE : RevertMethod ? Re c e i v e r }
UNION { ?ConcreteCommand BE : ExtendMethod ? Re c e i v e r }
UNION { ?ConcreteCommand BE : De l ega tedCong lomera t i on ? Re c e i v e r }
UNION { ?ConcreteCommand BE : R e d i r e c tR e c u r s i o n ? Re c e i v e r }
UNION { ?ConcreteCommand BE : De l e g a t e I nFam i l y ? R e c e i v e r }
UNION { ?ConcreteCommand BE : R e d i r e c t I n F am i l y ? R e c e i v e r }
UNION { ?ConcreteCommand BE : De l e g a t e I nL im i t e dFam i l y ? R e c e i v e r }
UNION { ?ConcreteCommand BE : R e d i r e c t I n L im i t e dF am i l y ? R e c e i v e r }
} .
NOT EXISTS { ?Command BE : E x t e nd ed I n h e r i t a n c e ? Re c e i v e r . }
NOT EXISTS { ?Command BE : E x t e nd ed I n h e r i t a n c e ? I n v o k e r . }

NOT EXISTS { ? Re c e i v e r BE : De l ega t e ?ConcreteCommand . }
NOT EXISTS { ? Re c e i v e r BE : R e d i r e c t ?ConcreteCommand . }
NOT EXISTS { ? Re c e i v e r BE : Cong lomerat ion ?ConcreteCommand . }
NOT EXISTS { ? Re c e i v e r BE : Recu r s i on ?ConcreteCommand . }
NOT EXISTS { ? Re c e i v e r BE : RevertMethod ?ConcreteCommand . }
NOT EXISTS { ? Re c e i v e r BE : ExtendMethod ?ConcreteCommand . }
NOT EXISTS { ? Re c e i v e r BE : De l ega tedCong lomera t i on ?ConcreteCommand . }
NOT EXISTS { ? Re c e i v e r BE : R e d i r e c tR e c u r s i o n ?ConcreteCommand . }
NOT EXISTS { ? Re c e i v e r BE : De l e g a t e I nFam i l y ?ConcreteCommand . }
NOT EXISTS { ? Re c e i v e r BE : R e d i r e c t I n F am i l y ?ConcreteCommand . }
NOT EXISTS { ? Re c e i v e r BE : De l e g a t e I nL im i t e dFam i l y ?ConcreteCommand . }
NOT EXISTS { ? Re c e i v e r BE : R e d i r e c t I n L im i t e dF am i l y ?ConcreteCommand . }

NOT EXISTS { ? I n v o k e r BE : E x t e nd ed I n h e r i t a n c e ?Command . }
NOT EXISTS { ? I n v o k e r BE : E x t e nd ed I n h e r i t a n c e ?ConcreteCommand . }
}

Merge rule The Command pattern encapsulates actions into objects, exposing only a generic
interface and permitting the choice of the real action to do at runtime. Of consequence, each
Command may be used by many Invokers with many implementations (unknown to the invoker)
that forward to specific Receivers.
<pa t t e r n name="Command">

<r o l e name="Command" />
<s u b l e v e l>

<r o l e name=" Re c e i v e r " />
<r o l e name="ConcreteCommand " />

</ s u b l e v e l>
<s u b l e v e l>

<r o l e name=" I n v o k e r " />
</ s u b l e v e l>

</ pa t t e r n>

Merge rule diagram

131

Command

Receiver ConcreteCommand Invoker

A.3.3 Interpreter

The rule for the Interpreter design pattern defines first the inheritance tree of the expressions
and forbids the Context to be in the same inheritance tree of the expressions. The expressions
must receive the Context as a method parameter. The rule tells that there is one Context
for each AbstractExpression, and many TerminalExpression and NonTerminalExpression for each
AbstractExpression.

<pa t t e r n name=" I n t e r p r e t e r ">
<r o l e name=" Ab s t r a c t E x p r e s s i o n ">

<be name=" Ex t e nd ed I n h e r i t a n c e " to=" Context " n ega t i on=" t r u e " />
<be name=" SameClass " to=" Context " n ega t i on=" t r u e " />
<be name=" Rece i v e sPa ramete r " to=" Context " />

</ r o l e>
<r o l e name=" Context ">

<be name=" Ex t e nd ed I n h e r i t a n c e " to=" Ab s t r a c t E x p r e s s i o n " nega t i on=" t r u e " />
</ r o l e>
<s u b l e v e l>

<r o l e name=" Te rm ina lE xp r e s s i o n ">
<be name=" Ex t e nd ed I n h e r i t a n c e " to=" Ab s t r a c t E x p r e s s i o n " />
<be name=" Ex t e nd ed I n h e r i t a n c e " to=" NonTermina lExpre s s i on "

nega t i on=" t r u e " />
<be name=" Rece i v e sPa ramete r " to=" Context " />
<be name=" Red i r e c t I n F am i l y " to=" Ab s t r a c t E x p r e s s i o n " nega t i on=" t r u e " />

</ r o l e>
</ s u b l e v e l>
<s u b l e v e l>

<r o l e name=" NonTermina lExpre s s i on ">
<be name=" Ex t e nd ed I n h e r i t a n c e " to=" Ab s t r a c t E x p r e s s i o n " />
<be name=" Red i r e c t I n F am i l y " to=" Ab s t r a c t E x p r e s s i o n " />
<be name=" Rece i v e sPa ramete r " to=" Context " />

</ r o l e>
</ s u b l e v e l>

</ pa t t e r n>

Merge rule diagram

AbstractExpression Context

TerminalExpression NonTerminalExpression

A.3.4 Iterator

Match rule The match rule for the Iterator design pattern defines two inheritances of
aggregators and iterators, which must be disconnected from one another, and looks for Iterators

132

which define all methods with no parameters (the StateMachine clause). The ConcreteIterator
must call the ConcreteAggregate to get the next value or to test the stop condition.

PREFIX BE : <ht tp :// e s s e r e . d i s c o . un imib . i t /marp le /BEs#>

SELECT ? I t e r a t o r ? Aggregate ? Conc re t eAggrega te ? C o n c r e t e I t e r a t o r
WHERE {

? I t e r a t o r BE : StateMach ine ? I t e r a t o r .
? Aggregate BE : ProductRetu rns ? I t e r a t o r .
? Conc re t eAggrega te BE : E x t e nd ed I n h e r i t a n c e ? Aggregate .
? C o n c r e t e I t e r a t o r BE : E x t e nd ed I n h e r i t a n c e ? I t e r a t o r .

{{? C o n c r e t e I t e r a t o r BE : Cong lomerat ion ? Conc re t eAggrega te . }
UNION{? C o n c r e t e I t e r a t o r BE : De l ega t e ? Conc re t eAggrega te . }
UNION{? C o n c r e t e I t e r a t o r BE : De l e ga t e I nFam i l y ? Conc re t eAggrega te . }
UNION{? C o n c r e t e I t e r a t o r BE : De l e g a t e I nL im i t e dFam i l y ? Conc re t eAggrega te . }
UNION{? C o n c r e t e I t e r a t o r BE : De l ega tedCong lomera t i on ? Conc re t eAggrega te . }
UNION{? C o n c r e t e I t e r a t o r BE : ExtendMethod ? Conc re t eAggrega te . }
UNION{? C o n c r e t e I t e r a t o r BE : Recu r s i on ? Conc re t eAggrega te . }
UNION{? C o n c r e t e I t e r a t o r BE : R e d i r e c t ? Conc re t eAggrega te . }
UNION{? C o n c r e t e I t e r a t o r BE : R e d i r e c t I n F am i l y ? Conc re t eAggrega te . }
UNION{? C o n c r e t e I t e r a t o r BE : R e d i r e c t I n L im i t e dF am i l y ? Conc re t eAggrega te . }
UNION{? C o n c r e t e I t e r a t o r BE : R e d i r e c tR e c u r s i o n ? Conc re t eAggrega te . }
UNION{? C o n c r e t e I t e r a t o r BE : RevertMethod ? Conc re t eAggrega te . } } .

NOT EXISTS {? I t e r a t o r BE : E x t e nd ed I n h e r i t a n c e ? Aggregate . } .
NOT EXISTS {? Aggregate BE : E x t e nd ed I n h e r i t a n c e ? I t e r a t o r . } .
}

Merge rule The merge rule defines that an Iterator can manage different type of Aggregates,
which can be realized by more than one ConcreteAggregate. Each Iterator can be realized by
many ConcreteIterator types, not necessarily one for each ConcreteAggregate.

<pa t t e r n name=" I t e r a t o r ">
<r o l e name=" I t e r a t o r " />
<s u b l e v e l>

<r o l e name=" Aggregate " />
<s u b l e v e l>

<r o l e name=" Conc re t eAggrega te " />
</ s u b l e v e l>

</ s u b l e v e l>
<s u b l e v e l>

<r o l e name=" C o n c r e t e I t e r a t o r " />
</ s u b l e v e l>

</ pa t t e r n>

Merge rule diagram

133

Iterator

Aggregate

ConcreteAggregate
ConcreteIterator

A.3.5 Mediator

Complete rule The Mediator detection rule is defined using the XML syntax. Not many
constraints are defined. Basically the inheritance trees of mediators and colleagues are defined,
and the crossing calls among mediators and colleagues are required. The Mediator role identifies
the pattern, which can manage many Colleague types. Mediator and Colleague types can be
realized by many ConcreteMediator and ConcreteColleague ones.
<pa t t e r n name="Mediator ">

<r o l e name="Mediator ">
<be name=" Ex t e nd ed I n h e r i t a n c e " to=" Co l l e a gue " nega t i on=" t r u e "/>

</ r o l e>
<s u b l e v e l>

<r o l e name=" Co l l e a gue ">
</ r o l e>
<s u b l e v e l>

<r o l e name=" Conc r e t eCo l l e a gue ">
<be name=" Ex t e nd ed I n h e r i t a n c e " to=" Co l l e ague " />
<be name=" De l ega t e " to="Mediator " />

</ r o l e>
</ s u b l e v e l>

</ s u b l e v e l>
<s u b l e v e l>

<r o l e name=" Conc re t eMed ia to r ">
<be name=" Ex t e nd ed I n h e r i t a n c e " to="Mediator " />
<be name=" De l ega t e " to=" Conc r e t eCo l l e ague " />

</ r o l e>
</ s u b l e v e l>

</ p d e f : p a t t e r n>

Merge rule diagram

Mediator

Colleague

ConcreteColleague
ConcreteMediator

A.3.6 Memento

Complete rule Memento is a pattern defined by a rule telling that Memento and Originator
must by unrelated and that the Originator is a factory for the Memento, which is not Stateless
and does not propagate calls to other classes. This is a single-level pattern; every instance is
identified by the Memento-Originator pair.

134

<pa t t e r n name="Memento">
<r o l e name="Memento">

<be name=" Ex t e nd ed I n h e r i t a n c e " to=" O r i g i n a t o r " n ega t i on=" t r u e " />
<be name=" S ink " to="Memento" />
<be name=" S t a t e l e s s " to="Memento" nega t i on=" t r u e "/>

</ r o l e>
<r o l e name=" O r i g i n a t o r ">

<be name=" Ex t e nd ed I n h e r i t a n c e " to="Memento" nega t i on=" t r u e " />
<be name=" ProductRetu rns " to="Memento" />
<be name=" Crea t eOb j e c t " to="Memento" />

</ r o l e>
</ pa t t e r n>

Merge rule diagram

Memento

Originator

A.3.7 Observer

Match rule The match rule for the Observer pattern allows the abstract and concrete roles
to collapse, while the Subject and Observer may not be covered by the same class. The other
constraints specify that the ConcreteObserver makes the notification and that the Subject exposes
a way to register the Observers.
PREFIX BE : <ht tp :// e s s e r e . d i s c o . un imib . i t /marp le /BEs#>

SELECT ? Sub j e c t ? Obse rve r ? Conc r e t eSub j e c t ? Conc r e t eObse r v e r
WHERE {
? Sub j e c t BE : Rece i v e sPa ramete r ? Obse rve r .

{{? Conc r e t eObse r ve r BE : E x t e nd ed I n h e r i t a n c e ? Obse rve r . }
UNION { ? Conc r e t eObse r v e r BE : SameClass ? Obse rve r .

OPTIONAL { ? Conc r e t eObse r v e r BE : E x t e nd ed I n h e r i t a n c e ?x .
FILTER(? x != ? Obse rve r) }

FILTER (! bound (? x))
}}
{{? Conc r e t eSub j e c t BE : E x t e nd ed I n h e r i t a n c e ? Sub j e c t . }
UNION {

? Conc r e t eSub j e c t BE : SameClass ? Sub j e c t .
OPTIONAL { ?x BE : Rece i v e sPa ramete r ? Obse rve r .

? Conc r e t eSub j e c t BE : E x t e nd ed I n h e r i t a n c e ?x .
FILTER(? x != ? Sub j e c t)

}
FILTER (! bound (? x))

}}
{ { ? Conc r e t eSub j e c t BE : De l ega t e ? Obse rve r }
UNION { ? Conc r e t eSub j e c t BE : R e d i r e c t ? Obse rve r }
UNION { ? Conc r e t eSub j e c t BE : Cong lomerat ion ? Obse rve r }
UNION { ? Conc r e t eSub j e c t BE : Recu r s i on ? Obse rve r }
UNION { ? Conc r e t eSub j e c t BE : RevertMethod ? Obse rve r }
UNION { ? Conc r e t eSub j e c t BE : ExtendMethod ? Obse rve r }

135

UNION { ? Conc r e t eSub j e c t BE : De l ega tedCong lomera t i on ? Obse rve r }
UNION { ? Conc r e t eSub j e c t BE : R e d i r e c tR e c u r s i o n ? Obse rve r }
UNION { ? Conc r e t eSub j e c t BE : De l e g a t e I nFam i l y ? Obse rve r }
UNION { ? Conc r e t eSub j e c t BE : R e d i r e c t I n F am i l y ? Obse rve r }
UNION { ? Conc r e t eSub j e c t BE : De l e g a t e I nL im i t e dFam i l y ? Obse rve r }
UNION { ? Conc r e t eSub j e c t BE : R e d i r e c t I n L im i t e dF am i l y ? Obse rve r }}

NOT EXISTS { ? Sub j e c t BE : E x t e nd ed I n h e r i t a n c e ? Obse rve r . }
NOT EXISTS { ? Obse rve r BE : E x t e nd ed I n h e r i t a n c e ? Sub j e c t . }
NOT EXISTS { ? Sub j e c t BE : SameClass ? Obse rve r . }
NOT EXISTS { ? Conc r e t eObse r v e r BE : I n t e r f a c e ? Conc r e t eObse r v e r . }}

Merge rule Each instance of the Observer pattern is identified by a couple of Subject and
Observer roles. Each of them can have a concrete implementation.
<pa t t e r n name=" Obse rve r ">

<r o l e name=" Sub j e c t " />
<r o l e name=" Obse rve r " />
<s u b l e v e l>

<r o l e name=" Conc r e t eSub j e c t " />
</ s u b l e v e l>
<s u b l e v e l>

<r o l e name=" Conc r e t eObse r v e r " />
</ s u b l e v e l>

</ pa t t e r n>

Merge rule diagram

Subject Observer

ConcreteSubject ConcreteObserver

A.3.8 State

Match rule The match rule for the State pattern describes a Context class that may not be
immutable and that calls methods belonging to a State class (which is not in its hierarchy),
which is abstract and has at least one concrete implementation.
PREFIX BE : <ht tp :// e s s e r e . d i s c o . un imib . i t /marp le /BEs#>

SELECT ? S ta t e ? Context ? Conc r e t eS t a t e
WHERE {
? Conc r e t eS t a t e BE : E x t e nd ed I n h e r i t a n c e ? S ta t e .

{{ ? Context BE : De l ega t e ? S ta t e }
UNION { ? Context BE : R e d i r e c t ? S ta t e }
UNION { ? Context BE : De l e g a t e I nL im i t e dFam i l y ? S ta t e }
UNION { ? Context BE : R e d i r e c t I n L im i t e dF am i l y ? S ta t e }}

OPTIONAL {? x BE : C rea t eOb j e c t ? S ta t e . } FILTER (! bound (? x))

NOT EXISTS { ? Context BE : E x t e nd ed I n h e r i t a n c e ? S ta t e . }
NOT EXISTS { ? Context BE : Immutable ? Context . }

136

}

Merge rule One State pattern instance is identified by a State class and its Context. There
can be many concrete implementations of the State.
<pa t t e r n name=" Sta t e ">

<r o l e name=" Sta t e " />
<r o l e name=" Context " />
<s u b l e v e l>

<r o l e name=" Conc r e t eS t a t e ">
<be name=" Ex t e nd ed I n h e r i t a n c e " to=" Sta t e " />

</ r o l e>
</ s u b l e v e l>

</ pa t t e r n>

Merge rule diagram

State Context

ConcreteState

A.3.9 Strategy

The Strategy pattern is a very general one. Its detection rule is very similar to the one of
the State pattern, but many other patterns can be seen as specializations of Strategy: Builder
and Factory Method, for example define two different way of implementing a strategy for object
instantiation, and Visitor defines a strategy for handling different kind of elements of a data
structure.

Match rule In the match rule the Strategy pattern is defined as an inheritance of strategies,
whose abstract class is used by a Context. The Context must keep a reference to the Strategy or
receive it as a parameter, and it has to call it.
PREFIX BE : <ht tp :// e s s e r e . d i s c o . un imib . i t /marp le /BEs#>

SELECT ? S t r a t e g y ? Context ? Conc r e t eS t r a t e g y
WHERE {
? Conc r e t eS t r a t e g y BE : E x t e nd ed I n h e r i t a n c e ? S t r a t e g y .

{{ ? Context BE : Rece i v e sPa ramete r ? S t r a t e g y }
UNION { ? Context BE : P r i v a t e I n s t a n c eR e f e r e n c e ? S t r a t e g y }
UNION { ? Context BE : P r o t e c t e d I n s t a n c eR e f e r e n c e ? S t r a t e g y }}

{{ ? Context BE : De l ega t e ? S t r a t e g y }
UNION { ? Context BE : R e d i r e c t ? S t r a t e g y }
UNION { ? Context BE : De l e g a t e I nL im i t e dFam i l y ? S t r a t e g y }
UNION { ? Context BE : R e d i r e c t I n L im i t e dF am i l y ? S t r a t e g y }}

OPTIONAL {? x BE : C rea t eOb j e c t ? S t r a t e g y . } FILTER (! bound (? x))

NOT EXISTS { ? Context BE : E x t e nd ed I n h e r i t a n c e ? S t r a t e g y . }

137

NOT EXISTS { ? S t r a t e g y BE : De l ega t e ? Conc r e t eS t r a t e g y }
NOT EXISTS { ? S t r a t e g y BE : R e d i r e c t ? Conc r e t eS t r a t e g y }
NOT EXISTS { ? S t r a t e g y BE : Cong lomerat ion ? Conc r e t eS t r a t e g y }
NOT EXISTS { ? S t r a t e g y BE : Recu r s i on ? Conc r e t eS t r a t e g y }
NOT EXISTS { ? S t r a t e g y BE : RevertMethod ? Conc r e t eS t r a t e g y }
NOT EXISTS { ? S t r a t e g y BE : ExtendMethod ? Conc r e t eS t r a t e g y }
NOT EXISTS { ? S t r a t e g y BE : De l ega tedCong lomera t i on ? Conc r e t eS t r a t e g y }
NOT EXISTS { ? S t r a t e g y BE : R e d i r e c tR e c u r s i o n ? Conc r e t eS t r a t e g y }
NOT EXISTS { ? S t r a t e g y BE : De l e g a t e I nFam i l y ? Conc r e t eS t r a t e g y }
NOT EXISTS { ? S t r a t e g y BE : R e d i r e c t I n F am i l y ? Conc r e t eS t r a t e g y }
NOT EXISTS { ? S t r a t e g y BE : De l e g a t e I nL im i t e dFam i l y ? Conc r e t eS t r a t e g y }
NOT EXISTS { ? S t r a t e g y BE : R e d i r e c t I n L im i t e dF am i l y ? Conc r e t eS t r a t e g y }
}

Merge rule The merge rule for the Strategy pattern is basically the same as the one for the
State pattern. Each pattern instance is identified by a couple {Strategy, Context}; many Concrete
Strategy instances are allowed for each pattern instance.

<pa t t e r n name=" S t r a t e g y ">
<r o l e name=" S t r a t e g y " />
<r o l e name=" Context " />
<s u b l e v e l>

<r o l e name=" Conc r e t eS t r a t e g y " />
</ s u b l e v e l>

</ pa t t e r n>

Merge rule diagram

Strategy Context

ConcreteStrategy

A.3.10 Template Method

Complete rule The Template Method pattern is detected using a rule that needs no more
expressiveness than the XML syntax can provide. It is a very simple rule that specifies classes
declaring an abstract method and calling it, and their subclasses. It is possible to have many
Concrete Classes for each AbstractClass.

<pa t t e r n name="TemplateMethod ">
<r o l e name=" Ab s t r a c tC l a s s ">

<be name=" Abst ractMethod Invoked " to=" Ab s t r a c tC l a s s " />
<be name=" Ab s t r a c t I n t e r f a c e " to=" Ab s t r a c tC l a s s " />

</ r o l e>
<s u b l e v e l>

<r o l e name=" Conc r e t eC l a s s ">
<be name=" Ex t e nd ed I n h e r i t a n c e " to=" Ab s t r a c tC l a s s " />

</ r o l e>
</ s u b l e v e l>

</ pa t t e r n>

138

Merge rule diagram

AbstractClass

ConcreteClass

A.3.11 Visitor

Match rule In the Visitor pattern the match rule defines the two inheritances and their
relations. ConcreteElements pass theirselves to the Visitors and Visitors accept Elements as
paramters. The abstract and concrete roles are allowed to collapse, but at least the two
abstract roles must not be related one to the other. In addition, Concrete Visitors must have an
implementation.

PREFIX BE : <ht tp :// e s s e r e . d i s c o . un imib . i t /marp le /BEs#>

SELECT ? V i s i t o r ? Element ? C o n c r e t eV i s i t o r ? Concre teE lement
WHERE {
? V i s i t o r BE : I n h e r i t a n c eTh i sPa r ame t e r ? Concre teE lement .
? Element BE : Rece i v e sPa ramete r ? V i s i t o r .

{{? Concre teE lement BE : E x t e nd ed I n h e r i t a n c e ? Element . }
UNION { ? Concre teE lement BE : SameClass ? Element . }}

{{? C o n c r e t eV i s i t o r BE : E x t e nd ed I n h e r i t a n c e ? V i s i t o r . }
UNION { ? C o n c r e t eV i s i t o r BE : SameClass ? V i s i t o r . }}

NOT EXISTS { ? V i s i t o r BE : E x t e nd ed I n h e r i t a n c e ? Element . }
NOT EXISTS { ? Element BE : E x t e nd ed I n h e r i t a n c e ? V i s i t o r . }
NOT EXISTS { ? V i s i t o r BE : SameClass ? Element . }
NOT EXISTS { ? C o n c r e t eV i s i t o r BE : I n t e r f a c e ? C o n c r e t eV i s i t o r . }
NOT EXISTS { ? C o n c r e t eV i s i t o r BE : PseudoC las s ? C o n c r e t eV i s i t o r . }

OPTIONAL {
? Concre teE lement BE : SameClass ? Element ; BE : E x t e nd ed I n h e r i t a n c e ? e .
? e BE : Rece i v e sPa ramete r ? V i s i t o r .

}
FILTER (! bound (? e) | | ? e = ?Element)

OPTIONAL {
? C o n c r e t eV i s i t o r BE : SameClass ? V i s i t o r ; BE : E x t e nd ed I n h e r i t a n c e ?v .
? v BE : I n h e r i t a n c eTh i sPa r ame t e r ? Concre teE lement .

}
FILTER (! bound (? v) | | ? v = ? V i s i t o r)

OPTIONAL {
? C o n c r e t eV i s i t o r BE : SameClass ? V i s i t o r .
? cv BE : E x t e nd ed I n h e r i t a n c e ? V i s i t o r .

}
FILTER (! bound (? cv) | | ? cv = ? Co n c r e t eV i s i t o r)
}

139

Merge rule A Visitor pattern instance is defined by a Visitor and its related Element. Their
concrete implementations are each one if a different sublevel.
<pa t t e r n name=" V i s i t o r ">

<r o l e name=" V i s i t o r " />
<r o l e name=" Element " />
<s u b l e v e l>

<r o l e name=" Co n c r e t eV i s i t o r " />
</ s u b l e v e l>
<s u b l e v e l>

<r o l e name=" Concre teE lement " />
</ s u b l e v e l>

</ pa t t e r n>

Merge rule diagram

V isitor Element

ConcreteV isitor ConcreteElement

140

Appendix B

Setup parameters for the
experimented algorithms

This appendix contains the setup of the parameters for each experiment reported in Chapter 8.
The parameter names are taken from the parameters of the respective algorithm implementations
found in Weka. When an algorithm has a major variant it was considered as a different algorithm.
The name of the variant should be sufficient to setup the respective algorithm using the dedicated
parameters, which are not reported here for brevity.

B.1 Setup of the genetic algorithm parameters
This section contains the list of the parameters exploited by the genetic algorithm for their

optimization. For each parameter the range of tested values is reported. Boolean values have
no range. When a boolean value has literals in the range cell, it means it was employed as a
selector for a nominal parameter. The parameters are reported in Tables B.1, B.2, B.3, B.4, B.5,
B.6 and B.7.

Table B.1: SimpleKMeans: experiment parameters
Parameter Type Min/False Max/True

DISTANCE_FUNCTION Boolean ManhattanDistance EuclideanDistance
MAX_ITERATIONS Integer 10 1000
NUM_CLUSTERS Integer 2 n. pattern instances
PRESERVE_INSTANCE_ORDER Boolean

Table B.2: CLOPE: experiment parameters
Parameter Type Min/False Max/True

REPULSION Double 0.0001 5

141

Table B.3: JRip: experiment parameters
Parameter Type Min/False Max/True

FOLDS Integer 2 20
MIN_NO Double 1 10
OPTIMIZATIONS Integer 1 10
USE_PRUNING Boolean

Table B.4: SMO: experiment parameters
Parameter Type Min/False Max/True

COMPLEXITY Double 0 1
RBF_GAMMA Double 0 1
BUILD_LOGISTIC Boolean
FILTER Integer 0 2

0:SMO.FILTER_NONE, 1:SMO.FILTER_NORMALIZE,
2:SMO.FILTER_STANDARDIZE

Table B.5: RandomForest: experiment parameters
Parameter Type Min/False Max/True

MAX_DEPTH Integer 1 100
NUM_FEATURES Integer 1 100
NUM_TREES Integer 1 100

Table B.6: J48: experiment parameters
Parameter Type Min/False Max/True

MIN_NUM_OBJ Integer 2 10
USE_LAPLACE Boolean
NUM_FOLDS Integer 2 10
SUBTREE_RAISING Boolean
CONFIDENCE_FACTOR Double 0.000001 0.499999

Table B.7: LibSVM: experiment parameters
Parameter Type Min/False Max/True

EPS Double 0.000001 0.5
NORMALIZE Boolean
PROBABILTY_ESTIMATES Boolean
SHRINKING Boolean
NU Double 0.001 1.9 * min(t, f) / (t + f)

t,f: number of correct/incorrect instances
GAMMA Double 0.000001 1
COEF0 Double 0 1
DEGREE Integer 1 10
COST Double 1 1000

142

B.2 Parameter values for the best result setups
This section contains the values assigned to the parameters in the setups that gave the best

performance results for each clusterer/classifier/indicator combination.

B.2.1 Singleton

Table B.8: Singleton: JRip parameter setup
fitness Area under ROC Accuracy F-measure

fitnessValue 0.876667869 88.23529412 0.85
FOLDS 14 17 10
MIN_NO 2.491927135 2.194347838 3.382071059
OPTIMIZATIONS 6 6 2
USE_PRUNING 1 1 1

Table B.9: Singleton: SMO parameter setup
fitness Accuracy Area under ROC F-measure

fitnessValue 89.54248366 0.936350523 0.86440678
COMPLEXITY 0.907272432 0.390406503 0.878478287
RBF_GAMMA 0.048917945 0.079104816 0.053803617
BUILD_LOGISTIC 1 1 1
FILTER 0 0 0

Table B.10: Singleton: RandomForest parameter setup
fitness Accuracy Area under ROC F-measure

fitnessValue 92.81045752 0.97295348 0.902654867
MAX_DEPTH 75 6 8
NUM_FEATURES 23 21 32
NUM_TREES 27 29 21

143

Table B.11: Singleton: J48 Unpruned parameter setup
fitness Accuracy Area under ROC F-measure

fitnessValue 86.92810458 0.906869816 0.824561404
MIN_NUM_OBJ 6 2 5
USE_LAPLACE 0 1 1

Table B.12: Singleton: J48 reduced error pruning parameter setup
fitness Accuracy Area under ROC F-measure

fitnessValue 88.23529412 0.85 0.909574468
MIN_NUM_OBJ 2 2 2
NUM_FOLDS 9 9 2
SUBTREE_RAISING 1 1 1
USE_LAPLACE 1 0 1

Table B.13: Singleton: J48 pruned parameter setup
fitness Accuracy Area under ROC F-measure

fitnessValue 88.23529412 0.906689506 0.836065574
CONFIDENCE_FACTOR 0.009631137 0.489802895 0.015933832
MIN_NUM_OBJ 2 6 4
SUBTREE_RAISING 1 1 1
USE_LAPLACE 1 0 1

Table B.14: Singleton: LibSVM ν-SVC Linear parameter setup
fitness Accuracy Area under ROC F-measure

fitnessValue 90.8496732 0.928056257 0.877192982
EPS 0.344078746 0.495402263 0.194587296
NORMALIZE 1 0 1
PROBABILTY_ESTIMATES 1 1 1
SHRINKING 0 0 0
NU 0.342955452 0.314646335 0.335400779

Table B.15: Singleton: LibSVM ν-SVC Sigmoid parameter setup
fitness Accuracy Area under ROC F-measure

fitnessValue 90.19607843 0.918139199 0.788461538
EPS 0.113284358 0.222587555 0.147295419
NORMALIZE 1 1 1
PROBABILTY_ESTIMATES 0 1 0
SHRINKING 1 1 0
NU 0.424088139 0.598580091 0.711933062
GAMMA 0.008328026 0.010606261 0.035134906
COEF0 0.116485554 0.0101632 0.549330163

144

Table B.16: Singleton: LibSVM ν-SVC RBF parameter setup
fitness Accuracy Area under ROC F-measure

fitnessValue 90.8496732 0.94536603 0.884955752
EPS 0.100644678 0.42076115 0.120477979
NORMALIZE 0 0 1
PROBABILTY_ESTIMATES 1 1 1
SHRINKING 0 0 1
NU 0.104058888 0.466017838 0.242945741
GAMMA 0.213819335 0.137143097 0.157237791

Table B.17: Singleton: LibSVM ν-SVC Polynomial parameter setup
fitness Accuracy Area under ROC F-measure

fitnessValue 90.19607843 0.942661378 0.869565217
EPS 0.012350442 0.002045813 0.384346545
NORMALIZE 1 0 0
PROBABILTY_ESTIMATES 1 1 1
SHRINKING 1 1 1
NU 0.036450364 0.45456103 0.080471697
GAMMA 0.489635291 0.512654237 0.878147677
COEF0 0.555937306 0.623301385 0.928545162
DEGREE 7 8 8

Table B.18: Singleton: LibSVM C-SVC Polynomial parameter setup
fitness Accuracy Area under ROC F-measure

fitnessValue 85.62091503 0.934998197 0.882882883
EPS 0.473158238 0.335832258 0.057769974
NORMALIZE 1 1 0
PROBABILTY_ESTIMATES 0 1 1
SHRINKING 0 0 0
COST 4.759183142 160.5730193 64.99786261
GAMMA 0.031108782 0.003717292 0.004188825
COEF0 0.184433818 0.90200825 0.929203933

Table B.19: Singleton: LibSVM C-SVC RBF parameter setup
fitness Accuracy Area under ROC F-measure

fitnessValue 91.50326797 0.947169131 0.884955752
EPS 0.187421331 0.475207425 0.291966499
NORMALIZE 1 0 1
PROBABILTY_ESTIMATES 1 1 1
SHRINKING 0 1 0
COST 182.3670168 652.3441583 352.3539085
GAMMA 0.152371477 0.199882514 0.115169846

145

Table B.20: Singleton: LibSVM C-SVC Polynomial parameter setup
fitness Accuracy Area under ROC F-measure

fitnessValue 90.8496732 0.936891453 0.879310345
EPS 0.33341545 0.447516262 0.443612346
NORMALIZE 0 0 0
PROBABILTY_ESTIMATES 0 1 0
SHRINKING 0 0 0
COST 920.691888 878.7101755 316.7532615
GAMMA 0.077797416 0.503991969 0.27360741
COEF0 0.956183195 0.758533359 0.934314589
DEGREE 9 8 6

Table B.21: Singleton: LibSVM C-SVC Linear parameter setup
fitness Accuracy Area under ROC F-measure

fitnessValue 83.00653595 0.869094843 0.767857143
EPS 0.021746244 0.452934558 0.286795006
NORMALIZE 0 0 0
PROBABILTY_ESTIMATES 1 1 1
SHRINKING 0 1 1
COST 690.7413843 481.1982605 213.5932008

B.2.2 Adapter

Table B.22: Adapter: SMO parameter setup
fitness type Area under ROC F-measure Accuracy

fitnessvalue 0.922075924 0.838137472 84.59893048
Complexity 0.865905488 0.865985504 0.983172214
RBF Gamma 0.147751954 0.121408508 0.077572363
Build Log. Mod. 1 0 1
filter type None Normalize Normalize

146

Table B.23: Adapter: J48 pruned parameter setup
fitness type Accuracy Area under ROC F-measure

fitnessvalue 79.57219251 0.859284297 0.785634119
unpruned 0 0 0
reduced error pruning 0 0 0
confidence factor 0.199527046 0.471610036 0.220464716
min num obj 3 3 2
subtree raising 0 0 1
use laplace 0 1 0

Table B.24: Adapter: J48 unpruned parameter setup
fitness type Area under ROC F-measure Accuracy

fitnessvalue 0.857816978 0.786740331 79.67914439
unpruned 1 1 1
reduced error pruning 0 0 0
min num obj 2 4 2
subtree raising 1 1 1
use laplace 1 0 0

Table B.25: Adapter: J48 reduced error pruning parameter setup
fitness type Accuracy Area under ROC F-measure

fitnessvalue 78.71657754 0.838337681 0.787553648
unpruned 0 0 0
reduced error pruning 1 1 1
min num obj 2 6 2
subtree raising 1 0 0
use laplace 1 1 1
num folds 4 6 4

Table B.26: Adapter: RandomForest parameter setup
fitness type F-measure Area under ROC Accuracy

fitnessvalue 0.83699422 0.922000147 84.9197861
max depth 63 30 78
num features 30 22 41
num trees 86 69 73

147

Table B.27: Adapter: LibSVM C-SVC Linear parameter setup
fitness type Accuracy Area under ROC F-measure

fitnessvalue 79.78609626 0.848618102 0.788636364
COST 20.40604817 3.090249402 10.04844513
EPS 0.361713603 0.262171802 0.354427706
GAMMA
NORMALIZE 0 0 0
PROBABILTY_ESTIMATES 0 1 0
SHRINKING 0 0 0

Table B.28: Adapter: LibSVM C-SVC Polynomial parameter setup
fitness type Accuracy Area under ROC F-measure

fitnessvalue 83.95721925 0.88955838 0.824742268
COST 230.8110157 753.4009324 139.9882963
EPS 0.046882418 0.314884205 0.023950759
GAMMA 0.021235224 0.228908609 0.037430045
NORMALIZE 1 0 0
PROBABILTY_ESTIMATES 1 1 1
SHRINKING 0 1 0
COEF0 0.874965071 0.785273948 0.273116537
DEGREE 10 5 9

Table B.29: Adapter: LibSVM C-SVC RBF parameter setup
fitness type Accuracy Area under ROC F-measure

fitnessvalue 85.88235294 0.92256503 0.84787472
COST 43.51200118 255.5979976 643.4954656
EPS 0.454684996 0.00219059 0.413506262
GAMMA 0.084317679 0.135001489 0.126313835
NORMALIZE 1 1 0
PROBABILTY_ESTIMATES 1 1 1
SHRINKING 1 0 0

Table B.30: Adapter: LibSVM C-SVC Sigmoid parameter setup
fitness type Accuracy Area under ROC F-measure

fitnessvalue 78.71657754 0.83744443 0.686849574
COST 888.7931318 136.49770200376494 999.0044255
EPS 0.450397687 0.070988244 0.17289205
GAMMA 0.000331892 0.001674441 0.023477247
NORMALIZE 0 0 0
PROBABILTY_ESTIMATES 1 1 1
SHRINKING 0 0 0
COEF0 0.537172567 0.14348617 0.275626783

148

Table B.31: Adapter: LibSVM ν-SVC Linear parameter setup
fitness type Accuracy Area under ROC F-measure

fitnessvalue 80.42780749 0.85102919 0.792710706
EPS 0.434901047 0.044215302 0.130299238
NORMALIZE 0 1 1
PROBABILTY_ESTIMATES 0 1 0
SHRINKING 0 0 0
NU 0.28004794775497777 0.450111654 0.272521773

Table B.32: Adapter: LibSVM ν-SVC Polynomial parameter setup
fitness type Accuracy Area under ROC F-measure

fitnessvalue 84.17112299 0.909163972 0.823798627
EPS 0.119565788 0.047143104 0.269064174
GAMMA 0.073863324 0.021901786 0.90431511
NORMALIZE 0 1 0
PROBABILTY_ESTIMATES 1 1 0
SHRINKING 0 0 0
COEF0 0.146193618 0.302682177 0.997158129
DEGREE 9 10 6
NU 0.131077112 0.263294293 0.156632596

Table B.33: Adapter: LibSVM ν-SVC RBF parameter setup
fitness type Accuracy Area under ROC F-measure

fitnessvalue 85.56149733 0.925995665 0.840354767
EPS 0.017374013 0.018321126 0.170673699
GAMMA 0.07774256 0.094701366 0.151420292
NORMALIZE 1 1 0
PROBABILTY_ESTIMATES 1 1 0
SHRINKING 1 1 0
NU 0.37252526586781476 0.117159219 0.404754854

Table B.34: Adapter: LibSVM ν-SVC Sigmoid parameter setup
fitness type Accuracy Area under ROC F-measure

fitnessvalue 74.54545455 0.820603553 0.639010189
EPS 0.04753725 0.017132685 0.153713693
GAMMA 0.003498945 0.00296521 0.123433326
NORMALIZE 0 1 0
PROBABILTY_ESTIMATES 0 1 1
SHRINKING 0 0 1
COEF0 0.337645091 0.23301761 0.455315401
NU 0.48029852 0.487152425 0.050874644

149

Table B.35: Adapter: JRip parameter setup
fitness type Accuracy Area under ROC F-measure

fitnessvalue 80.53475936 0.815611452 0.770780856
FOLDS 19 9 6
MIN_NO 4.734980748 4.930796817 4.447837397
OPTIMIZATIONS 1 5 5
USE_PRUNING 0 0 0

B.2.3 Composite

SimpleKMeans

Table B.36: Composite: SimpleKMeans - OneR parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 75.43859649 0.111111111 0.500830565
DISTANCE_FUNCTION 1 0 1
MAX_ITERATIONS 434 518 495
NUM_CLUSTERS 31 13 13
PRESERVE_INSTANCE_ORDER 0 0 1

Table B.37: Composite: SimpleKMeans - NaiveBayes parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 77.19298246 0.380952381 0.626245847
DISTANCE_FUNCTION 1 1 1
MAX_ITERATIONS 406 460 247
NUM_CLUSTERS 46 46 46
PRESERVE_INSTANCE_ORDER 1 1 0

150

Table B.38: Composite: SimpleKMeans - JRip parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 75.43859649 0.347826087 0.47923588
DISTANCE_FUNCTION 0 1 0
MAX_ITERATIONS 493 131 555
NUM_CLUSTERS 20 16 57
PRESERVE_INSTANCE_ORDER 0 1 0
FOLDS 20 2 4
MIN_NO 8.429803315 3.380404131 1.527368557
OPTIMIZATIONS 1 4 7
USE_PRUNING 0 0 0

Table B.39: Composite: SimpleKMeans - RandomForest parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 75.43859649 0.454545455 0.61461794
DISTANCE_FUNCTION 1 1 0
MAX_ITERATIONS 66 937 383
NUM_CLUSTERS 3 33 15
PRESERVE_INSTANCE_ORDER 1 1 1
MAX_DEPTH 89 9 7
NUM_FEATURES 94 3 39
NUM_TREES 9 1 6

Table B.40: Composite: SimpleKMeans - J48 unpruned parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 75.43859649 0.272727273 0.592192691
DISTANCE_FUNCTION 0 0 0
MAX_ITERATIONS 837 589 613
NUM_CLUSTERS 34 17 31
PRESERVE_INSTANCE_ORDER 1 0 0
MIN_NUM_OBJ 5 5 2
USE_LAPLACE 0 1 0

151

Table B.41: Composite: SimpleKMeans - J48 reduced error pruning parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 77.19298246 0.25 0.512458472
DISTANCE_FUNCTION 1 1 0
MAX_ITERATIONS 311 569 380
NUM_CLUSTERS 16 35 24
PRESERVE_INSTANCE_ORDER 1 0 0
MIN_NUM_OBJ 4 2 2
USE_LAPLACE 1 1 1
NUM_FOLDS 8 10 7
SUBTREE_RAISING 0 1 1

Table B.42: Composite: SimpleKMeans - J48 pruned parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 75.43859649 0 0.509136213
DISTANCE_FUNCTION 1 1 0
MAX_ITERATIONS 387 73 488
NUM_CLUSTERS 43 22 57
PRESERVE_INSTANCE_ORDER 1 0 1
MIN_NUM_OBJ 3 3 2
USE_LAPLACE 0 0 1
SUBTREE_RAISING 0 1 1
CONFIDENCE_FACTOR 0.077144984 0.442125797 0.490801397

Table B.43: Composite: SimpleKMeans - LibSVM C-SVC RBF parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 78.94736842 0.363636364 0.882890365
DISTANCE_FUNCTION 1 1 1
MAX_ITERATIONS 671 739 206
NUM_CLUSTERS 5 23 20
PRESERVE_INSTANCE_ORDER 0 1 0
EPS 0.080501581 0.300619908 0.355347522
NORMALIZE 0 0 1
PROBABILTY_ESTIMATES 1 0 1
SHRINKING 1 1 1
GAMMA 0.172696899 0.731010389 0.047630468
COST 129.7843365 890.6592276 35.88081429

152

Table B.44: Composite: SimpleKMeans - LibSVM ν-SVC RBF parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 80.70175439 0.551724138 0.67192691
DISTANCE_FUNCTION 1 0 0
MAX_ITERATIONS 948 970 185
NUM_CLUSTERS 19 17 46
PRESERVE_INSTANCE_ORDER 0 1 1
EPS 0.227419701 0.319148425 0.156936556
NORMALIZE 1 0 1
PROBABILTY_ESTIMATES 1 0 1
SHRINKING 1 1 0
NU 0.271947753 0.334323643 0.087636061
GAMMA 0.409835808 0.203621544 0.790240729

CLOPE

Table B.45: Composite: CLOPE - OneR parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 75.43859649 0 0.5
REPULSION 0.183870953 1.874012942 2.024577041

Table B.46: Composite: CLOPE - NaiveBayes parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 75.43859649 0.117647059 0.522425249
REPULSION 2.418779301 4.460473835 4.993424821

153

Table B.47: Composite: CLOPE - JRip parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 80.70175439 0.421052632 0.59717608
REPULSION 4.009555786 3.987781208 3.641830125
FOLDS 11 18 15
MIN_NO 2.579433314 1.335208694 1.931853551
OPTIMIZATIONS 8 8 1
USE_PRUNING 0 0 1

Table B.48: Composite: CLOPE - RandomForest parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 80.70175439 0.380952381 0.647009967
REPULSION 3.709822053 3.856774369 0.824341586
MAX_DEPTH 2 99 96
NUM_FEATURES 76 8 42
NUM_TREES 99 16 1

Table B.49: Composite: CLOPE - J48 unpruned parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 80.70175439 0.421052632 0.533222591
REPULSION 3.867457495 3.847633716 3.77623696
MIN_NUM_OBJ 3 3 2
USE_LAPLACE 0 0 0

Table B.50: Composite: CLOPE - J48 reduced error pruning parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 80.70175439 0.25 0.55730897
REPULSION 3.900886157 3.93265919 3.903386009
MIN_NUM_OBJ 2 3 3
NUM_FOLDS 8 8 3
SUBTREE_RAISING 0 0 0
USE_LAPLACE 0 0 0

Table B.51: Composite: CLOPE - J48 pruned parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 75.43859649 0.421052632 0.57641196
REPULSION 2.176694351 3.859931202 3.792497218
MIN_NUM_OBJ 9 2 4
SUBTREE_RAISING 0 1 1
USE_LAPLACE 1 1 0
CONFIDENCE_FACTOR 0.335749462 0.429897668 0.399593715

154

Table B.52: Composite: CLOPE - LibSVM C-SVC RBF parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 80.70175439 0.4 0.611295681
REPULSION 3.658938766 3.843321227 3.900085972
EPS 0.413262897 0.316562312 0.023123313
NORMALIZE 1 0 1
PROBABILTY_ESTIMATES 1 0 1
SHRINKING 0 0 1

Table B.53: Composite: CLOPE - LibSVM ν-SVC RBF parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 77.19298246 0.555555556 0.717607973
REPULSION 2.733112047 0.685348493 4.520115091
EPS 0.087404586 0.03277159 0.33927191
NORMALIZE 0 1 1
PROBABILTY_ESTIMATES 1 0 0
SHRINKING 0 1 1
NU 0.428307441 0.349824712 0.208937114
GAMMA 0.743461332 0.033228898 0.550830164

B.2.4 Decorator

SimpleKMeans

Table B.54: Decorator: SimpleKMeans - OneR parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 69.71830986 0.557692308 0.650609756
DISTANCE_FUNCTION 0 1 1
MAX_ITERATIONS 846 555 371
NUM_CLUSTERS 104 34 108
PRESERVE_INSTANCE_ORDER 0 0 1

155

Table B.55: Decorator: SimpleKMeans - NaiveBayes parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 77.46478873 0.737704918 0.761890244
DISTANCE_FUNCTION 0 1 1
MAX_ITERATIONS 855 48 390
NUM_CLUSTERS 136 136 123
PRESERVE_INSTANCE_ORDER 1 1 0

Table B.56: Decorator: SimpleKMeans - JRip parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 79.57746479 0.756302521 0.755081301
DISTANCE_FUNCTION 0 1 0
MAX_ITERATIONS 747 400 735
NUM_CLUSTERS 93 92 104
PRESERVE_INSTANCE_ORDER 0 1 0
FOLDS 3 19 10
MIN_NO 1.631138361 1.181172757 1.441909535
OPTIMIZATIONS 4 6 1
USE_PRUNING 0 0 1

Table B.57: Decorator: SimpleKMeans - RandomForest parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 81.69014085 0.774193548 0.819004065
DISTANCE_FUNCTION 0 1 1
MAX_ITERATIONS 953 504 994
NUM_CLUSTERS 129 123 123
PRESERVE_INSTANCE_ORDER 1 1 1
MAX_DEPTH 49 53 13
NUM_FEATURES 45 27 18
NUM_TREES 6 15 82

Table B.58: Decorator: SimpleKMeans - J48 unpruned parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 77.46478873 0.747826087 0.742886179
DISTANCE_FUNCTION 0 0 0
MAX_ITERATIONS 903 79 760
NUM_CLUSTERS 131 136 115
PRESERVE_INSTANCE_ORDER 0 0 1
MIN_NUM_OBJ 4 4 3
USE_LAPLACE 1 0 0

156

Table B.59: Decorator: SimpleKMeans - J48 reduced error pruning parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 77.46478873 0.732142857 0.765752033
DISTANCE_FUNCTION 1 0 0
MAX_ITERATIONS 259 582 508
NUM_CLUSTERS 112 95 133
PRESERVE_INSTANCE_ORDER 0 1 1
MIN_NUM_OBJ 2 2 2
USE_LAPLACE 1 0 0
NUM_FOLDS 9 10 5
SUBTREE_RAISING 0 0 1

Table B.60: Decorator: SimpleKMeans - J48 pruned parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 80.28169014 0.75862069 0.753760163
DISTANCE_FUNCTION 1 0 1
MAX_ITERATIONS 551 720 670
NUM_CLUSTERS 136 136 141
PRESERVE_INSTANCE_ORDER 1 0 1
MIN_NUM_OBJ 2 2 4
USE_LAPLACE 1 0 0
SUBTREE_RAISING 1 1 0
CONFIDENCE_FACTOR 0.137163929 0.167650337 0.350560531

Table B.61: Decorator: SimpleKMeans - LibSVM C-SVC RBF parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 79.57746479 0.747826087 0.815752033
DISTANCE_FUNCTION 1 1 0
MAX_ITERATIONS 863 210 873
NUM_CLUSTERS 95 130 127
PRESERVE_INSTANCE_ORDER 1 1 0
EPS 0.081406929 0.056190332 0.377847611
NORMALIZE 1 0 1
PROBABILTY_ESTIMATES 1 0 1
SHRINKING 1 0 0
GAMMA 0.002206704 0.658422613 0.127348768
COST 860.2031727 210.9170396 296.6834907

157

Table B.62: Decorator: SimpleKMeans - LibSVM ν-SVC RBF parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 80.28169014 0.75862069 0.809349593
DISTANCE_FUNCTION 1 0 0
MAX_ITERATIONS 281 446 28
NUM_CLUSTERS 124 122 132
PRESERVE_INSTANCE_ORDER 1 1 1
EPS 0.132975006 0.475033107 0.076417029
NORMALIZE 0 0 0
PROBABILTY_ESTIMATES 0 0 1
SHRINKING 1 1 1
NU 0.514773445 0.509070688 0.741886437
GAMMA 0.406221173 0.550577284 0.570703549

CLOPE

Table B.63: Decorator: CLOPE - OneR parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 66.1971831 0.591549296 0.644715447
REPULSION 4.785043641 4.570730394 4.714897055

Table B.64: Decorator: CLOPE - NaiveBayes parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 69.71830986 0.666666667 0.727235772
REPULSION 4.747312231 4.809130751 4.741317658

158

Table B.65: Decorator: CLOPE - Jrip parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 71.12676056 0.648648649 0.681808943
REPULSION 4.709496849 4.684522026 4.789454749
FOLDS 6 3 5
MIN_NO 5.201339273 2.697944142 3.946578448
OPTIMIZATIONS 10 10 5
USE_PRUNING 1 1 1

Table B.66: Decorator: CLOPE - RandomForest parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 73.23943662 0.724832215 0.744308943
REPULSION 4.840795752 4.921676173 4.917802019
MAX_DEPTH 8 3 51
NUM_FEATURES 3 25 19
NUM_TREES 29 99 25

Table B.67: Decorator: CLOPE - J48 unpruned parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 72.53521127 0.661538462 0.73546748
REPULSION 4.899147674 4.805396176 4.896935622
MIN_NUM_OBJ 4 10 3
USE_LAPLACE 1 1 1

Table B.68: Decorator: CLOPE - J48 reduced error pruning parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 71.83098592 0.67768595 0.74054878
REPULSION 4.900482596 4.895846622 4.632937405
MIN_NUM_OBJ 2 2 9
NUM_FOLDS 4 4 3
SUBTREE_RAISING 0 0 0
USE_LAPLACE 1 1 0

Table B.69: Decorator: CLOPE - J48 pruned parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 72.53521127 0.649122807 0.725914634
REPULSION 4.898652991 4.462867544 4.93429999
MIN_NUM_OBJ 3 10 2
SUBTREE_RAISING 0 0 0
USE_LAPLACE 1 0 0
CONFIDENCE_FACTOR 0.3083529 0.493976558 0.477118428

159

Table B.70: Decorator: CLOPE - LibSVM C-SVC RBF parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 71.83098592 0.661290323 0.723373984
REPULSION 4.900345284 4.838658879 4.917109203
EPS 0.032546474 0.474632229 0.448192638
NORMALIZE 0 1 1
PROBABILTY_ESTIMATES 0 0 1
SHRINKING 1 0 0
GAMMA 0.22872371 0.197780493 0.100424045
COST 411.3189911 727.1400025 8.456614514

Table B.71: Decorator: CLOPE - LibSVM ν-SVC RBF parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 73.94366197 0.704 0.764329268
REPULSION 4.86697326 4.855369018 4.859859604
EPS 0.491801915 0.22313508 0.106376777
NORMALIZE 0 0 0
PROBABILTY_ESTIMATES 0 0 1
SHRINKING 0 1 0
NU 0.613261861 0.386209277 0.614024318
GAMMA 0.444388438 0.51232777 0.668408264

B.2.5 Factory Method

SimpleKMeans

Table B.72: Factory Method: SimpleKMeans - OneR parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 70.03121748 0.734920635 0.697658169
DISTANCE_FUNCTION 0 0 0
MAX_ITERATIONS 264 909 855
NUM_CLUSTERS 3 4 3
PRESERVE_INSTANCE_ORDER 1 1 0

160

Table B.73: Factory Method: SimpleKMeans - NaiveBayes parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 80.54110302 0.82146161 0.870658976
DISTANCE_FUNCTION 1 1 1
MAX_ITERATIONS 559 632 683
NUM_CLUSTERS 122 163 336
PRESERVE_INSTANCE_ORDER 1 0 0

Table B.74: Factory Method: SimpleKMeans - JRip parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 75.6503642 0.793879388 0.774114869
DISTANCE_FUNCTION 1 1 0
MAX_ITERATIONS 172 309 43
NUM_CLUSTERS 61 52 24
PRESERVE_INSTANCE_ORDER 0 0 1
FOLDS 16 4 12
MIN_NO 4.696965029 3.052700485 2.998763359
OPTIMIZATIONS 4 10 8
USE_PRUNING 0 1 0

Table B.75: Factory Method: SimpleKMeans - RandomForest parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 81.89386056 0.833955224 0.873158781
DISTANCE_FUNCTION 1 0 1
MAX_ITERATIONS 677 960 807
NUM_CLUSTERS 123 162 143
PRESERVE_INSTANCE_ORDER 1 0 1
MAX_DEPTH 75 67 100
NUM_FEATURES 77 4 2
NUM_TREES 27 51 19

Table B.76: Factory Method: SimpleKMeans - J48 unpruned parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 80.12486993 0.808300395 0.864496263
DISTANCE_FUNCTION 1 0 1
MAX_ITERATIONS 531 72 164
NUM_CLUSTERS 123 120 144
PRESERVE_INSTANCE_ORDER 0 0 0
MIN_NUM_OBJ 2 2 2
USE_LAPLACE 0 1 0

161

Table B.77: Factory Method: SimpleKMeans - J48 reduced error pruning parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 77.73152966 0.805217391 0.853709346
DISTANCE_FUNCTION 0 0 1
MAX_ITERATIONS 228 268 163
NUM_CLUSTERS 111 115 163
PRESERVE_INSTANCE_ORDER 1 1 1
MIN_NUM_OBJ 2 2 2
USE_LAPLACE 0 1 0
NUM_FOLDS 9 8 7
SUBTREE_RAISING 1 0 1

Table B.78: Factory Method: SimpleKMeans - J48 pruned pruning parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 79.18834547 0.814814815 0.849929259
DISTANCE_FUNCTION 0 1 1
MAX_ITERATIONS 920 108 822
NUM_CLUSTERS 120 165 141
PRESERVE_INSTANCE_ORDER 0 1 0
MIN_NUM_OBJ 2 2
USE_LAPLACE 0 0
SUBTREE_RAISING 1 0
CONFIDENCE_FACTOR 0.431117159 0.021105213 0.473508094

Table B.79: Factory Method: SimpleKMeans - LibSVM C-SVC RBF pruning parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 81.78980229 0.826904055 0.839502556
DISTANCE_FUNCTION 0 1 0
MAX_ITERATIONS 162 120 28
NUM_CLUSTERS 123 123 500
PRESERVE_INSTANCE_ORDER 0 1 1
EPS 0.17957423 0.257847013 0.285146007
NORMALIZE 1 1 0
PROBABILTY_ESTIMATES 1 1 1
SHRINKING 1 0 0
GAMMA 0.433900861 0.995915645 0.154952215
COST 68.85739085 158.413506 175.758742

162

Table B.80: Factory Method: SimpleKMeans - LibSVM ν-SVC RBF pruning parameter setup
fitnessType Accuracy F-measure Area under

ROC

fitnessValue 80.2289282 0.823747681 0.865162444
DISTANCE_FUNCTION 1 0 0
MAX_ITERATIONS 571 925 155
NUM_CLUSTERS 334 164 336
PRESERVE_INSTANCE_ORDER 1 1 0
EPS 0.254983279 0.264379569 0.156750503
NORMALIZE 1 0 0
PROBABILTY_ESTIMATES 0 1 1
SHRINKING 1 0 0
NU 0.562181189 0.67549282 0.699786976
GAMMA 0.377257812 0.27181635 0.132671811

CLOPE

Table B.81: Factory Method: CLOPE - OneR pruning parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 54.11030177 0.689607708 0.525766216
REPULSION 4.975233877 4.494942346 4.996605249

Table B.82: Factory Method: CLOPE - NaiveBayes pruning parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 55.1508845 0.686261107 0.550141482
REPULSION 4.974190008 0.180940135 4.947164564

163

Table B.83: Factory Method: CLOPE - JRip pruning parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 54.31841831 0.689226519 0.518206043
REPULSION 4.967227909 4.419208949 4.966745238
FOLDS 9 9 5
MIN_NO 3.351089895 1.232149997 5.917575367
OPTIMIZATIONS 7 5 10
USE_PRUNING 0 1 0

Table B.84: Factory Method: CLOPE - RandomForest pruning parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 55.46305931 0.692200557 0.566832886
REPULSION 4.956635607 4.646575307 4.896194005
MAX_DEPTH 8 36 10
NUM_FEATURES 5 72 18
NUM_TREES 11 58 3

Table B.85: Factory Method: CLOPE - J48 unpruned pruning parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 55.04682622 0.69123783 0.541012421
REPULSION 4.95711195 4.655361008 4.782930144
MIN_NUM_OBJ 4 3 4
USE_LAPLACE 0 0 0

Table B.86: Factory Method: CLOPE - J48 reduced error pruning pruning parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 54.52653486 0.692520776 0.548474946
REPULSION 4.971951846 4.492369234 4.989492797
MIN_NUM_OBJ 2 6 3
NUM_FOLDS 7 6 3
SUBTREE_RAISING 1 1 0
USE_LAPLACE 1 0 0

Table B.87: Factory Method: CLOPE - J48 pruned pruning parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 55.25494277 0.69123783 0.542451111
REPULSION 4.948825773 4.648482649 4.780161516
MIN_NUM_OBJ 3 3 4
SUBTREE_RAISING 1 1 0
USE_LAPLACE 0 1 0
CONFIDENCE_FACTOR 0.481916334 0.45165662 0.181158498

164

Table B.88: Factory Method: CLOPE - LibSVM C-SVC RBF pruning parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 55.67117586 0.694019471 0.536939388
REPULSION 4.958204031 4.654364389 4.976853476
EPS 0.195764181 0.493704237 0.046550532
NORMALIZE 0 0 1
PROBABILTY_ESTIMATES 1 0 0
SHRINKING 0 1 1
GAMMA 0.709541592 0.814339376 0.760618206
COST 968.5425882 949.7913411 539.5664491

Table B.89: Factory Method: CLOPE - LibSVM ν-SVC RBF pruning parameter setup
fitnessType Accuracy F-measure Area under ROC

fitnessValue 56.39958377 0.692041522 0.579789773
REPULSION 4.89562368 4.445868389 4.993482293
EPS 0.37228905 0.439423838 0.492907525
NORMALIZE 1 0 0
PROBABILTY_ESTIMATES 1 1 1
SHRINKING 1 1 1
NU 0.594281712 0.901827114 0.552202024
GAMMA 0.369782724 0.981972706 0.358000756

165

166

Appendix C

Comparison with other tools

The Classifier module was compared to other available results produced by different design
pattern detection tools. The comparison is made against a single project, namely “6 - JHotDraw
v5.1”, which is contained in PMARt. The compared results come from different tools or sources:

• MARPLE Joiner module;

• MARPLE Classifier module;

• PMARt [83];

• DPD-Tool [195] (using the results loaded into DPB [65]);

• Web of Patterns [59] (using the results loaded into DPB [65]);

• DPJF [37] (results exported by the authors of the tool).

Every reported pattern instance was also manually evaluated.
The set of analyzed instances is the union of the instances reported as correct by each tool,

minus the Joiner module, because its target is not to be a full detector, but only a step in a
computation chain. The name of the instances in the tables are symbolic, and they represent an
index in the dataset (in the case of PMARt) or a sequence number paired with the name of a
representative class in the pattern instance. The results for every tool are reported as boolean
values, where true (T) means the tool considers the instance as correct; cells containing “-” values
represent cases where the value is not available, i.e. when the tool does not support the pattern,
or it was not applied on that instance (in the case of the Classifier module). The “Manual” tool
represents the manual evaluation of the instances. The only different column is the one for the
Classifier module, which reports the confidence value for each instance; when the value is positive
the instance was considered as correct, otherwise it is negative. No value (represented with “-”)
is specified for the Classifier if the Joiner column contains false (F), because the instance was not
evaluated. Only the patterns tested by the Classifier module were included in the comparison.

The set of compared instances is composed of 85 Adapter instances, 2 Singleton instances, 5
Composite instances, 5 Decorator instances, and 10 Factory Method instances.

For each pattern the comparison reports the analytic data and a comparison matrix. The
comparison matrix reports the tools (considering also the manual evaluation) on rows and columns,
and reports in each cell the number of instances considered correct by the two respective tools.
Only the upper half matrix is filled, and the values in the lower half are represented as “-”. Each
cell gives the idea of the agreement of correct instances. The row corresponding to the manual
evaluation tells how many instances were really correct for each tool; the diagonal, instead tell

167

how many instances were reported as correct by each tool. The fraction of the values contained
in the manual row and the respective values on the diagonal (for each column) gives the idea of
the precision of each tool.

C.1 Adapter
Table C.1 reports the list of all the instances considered for the comparison, and their

evaluation by each of the considered tools. Table C.2, instead, shows the comparison matrix.

Table C.1: Adapter comparison

Instance M
an

ua
l

PM
A
R
t:1

Jo
in
er
:1
35

C
la
ss
ifi
er
:7
5

D
PJ

F:
-

W
oP

:0

D
PD

-T
oo

l:2
2

pmart 73 T T T 0.70 - F F
dpdtool 1 - DrawApplication T F F - - F T
dpdtool 2 - AlignCommand T F T 0.64 - F T
dpdtool 3 - AbstractTool T F T 0.71 - F T
dpdtool 4 - BringToFrontCommand T F T 0.85 - F T
dpdtool 5 - StandardDrawingView T F F - - F T
dpdtool 6 - StandardDrawingView T F F - - F T
dpdtool 7 - GroupCommand T F T 0.87 - F T
dpdtool 8 - TextFigure T F F - - F T
dpdtool 9 - ChangeAttributeCommand T F T 0.68 - F T
dpdtool 10 - ToggleGridCommand T F T 0.74 - F T
dpdtool 11 - LocatorHandle T F T 0.81 - F T
dpdtool 12 - StandardDrawingView T F F - - F T
dpdtool 13 - AbstractFigure T F F - - F T
dpdtool 14 - ReverseFigureEnumerator F F F - - F T
dpdtool 15 - InsertImageCommand T F T 0.64 - F T
dpdtool 16 - UngroupCommand T F T 0.81 - F T
dpdtool 17 - AbstractConnector T F F - - F T
dpdtool 18 - LineConnection T F F - - F T
dpdtool 19 - PolygonHandle T F T 0.71 - F T
dpdtool 20 - SentToBackCommand T F T 0.85 - F T
dpdtool 21 - Toolbutton T F T 0.63 - F T
dpdtool 22 - DrawApplet T F F - - F T
marple 1 - Animator T F T 0.54 - F F
marple 2 - JavaDrawApplet F F T 0.64 - F F
marple 3 - JavaDrawApp T F T 0.56 - F F
marple 4 - CommandButton T F T 0.61 - F F
marple 5 - CommandButton F F T 0.57 - F F
marple 6 - ChangeConnectionHandle T F T 0.58 - F F
marple 7 - ConnectionTool T F T 0.83 - F F
marple 8 - ConnectionHandle T F T 0.53 - F F
marple 9 - ChangeConnectionHandle F F T 0.63 - F F
marple 10 - ElbowHandle T F T 0.75 - F F

168

Table C.1: Adapter comparison

Instance M
an

ua
l

PM
A
R
t:1

Jo
in
er
:1
35

C
la
ss
ifi
er
:7
5

D
PJ

F:
-

W
oP

:0

D
PD

-T
oo

l:2
2

marple 11 - ConnectionTool T F T 0.85 - F F
marple 12 - ConnectionHandle F F T 0.70 - F F
marple 13 - ActionTool T F T 0.56 - F F
marple 14 - ConnectionTool T F T 0.81 - F F
marple 15 - CreationTool T F T 0.65 - F F
marple 16 - PolygonTool T F T 0.78 - F F
marple 17 - ScribbleTool T F T 0.70 - F F
marple 18 - SelectAreaTracker T F T 0.68 - F F
marple 19 - SelectionTool T F T 0.55 - F F
marple 20 - BringToFrontCommand T F T 0.75 - F F
marple 21 - FigureTransferCommand F F T 0.58 - F F
marple 22 - GRoupCommand T F T 0.74 - F F
marple 23 - SendToBackCommand T F T 0.76 - F F
marple 24 - UngroupCommand T F T 0.70 - F F
marple 25 - ActionTool T F T 0.57 - F F
marple 26 - ConnectionTool T F T 0.84 - F F
marple 27 - CreationTool T F T 0.55 - F F
marple 28 - PolygonTool T F T 0.76 - F F
marple 29 - ScribbleTool T F T 0.69 - F F
marple 30 - FigureTransferCommand F F T 0.68 - F F
marple 31 - Animator T F T 0.56 - F F
marple 32 - ConnectionTool T F T 0.77 - F F
marple 33 - CreationTool T F T 0.71 - F F
marple 34 - DragTracker F F T 0.68 - F F
marple 35 - FollowURLTool T F T 0.69 - F F
marple 36 - SelectAreaTracker T F T 0.66 - F F
marple 37 - URLTool T F T 0.68 - F F
marple 38 - AlignCommand T F T 0.60 - F F
marple 39 - ChangeAttributeCommand T F T 0.62 - F F
marple 40 - FigureTransferCommand F F T 0.57 - F F
marple 41 - UngroupCommand T F T 0.68 - F F
marple 42 - ChangeConnectionHAndle F F T 0.55 - F F
marple 43 - ConnectionTool T F T 0.74 - F F
marple 44 - DragTRacker T F T 0.68 - F F
marple 45 - SelectAreaTracker T F T 0.58 - F F
marple 46 - AlignCommand T F T 0.68 - F F
marple 47 - BringToFrontCommand T F T 0.78 - F F
marple 48 - ChangeAttributeCommand T F T 0.75 - F F
marple 49 - FigureTransferCommand F F T 0.63 - F F
marple 50 - SendToBackCommand T F T 0.78 - F F
marple 51 - UngroupCommand T F T 0.68 - F F
marple 52 - ConnectionHandle F F T 0.60 - F F

169

Table C.1: Adapter comparison

Instance M
an

ua
l

PM
A
R
t:1

Jo
in
er
:1
35

C
la
ss
ifi
er
:7
5

D
PJ

F:
-

W
oP

:0

D
PD

-T
oo

l:2
2

marple 53 - DuplicateCommand T F T 0.69 - F F
marple 54 - PasteCommand T F T 0.58 - F F
marple 55 - TextTool T F T 0.55 - F F
marple 56 - HandleTracker T F T 0.68 - F F
marple 57 - InsertImageCommand T F T 0.73 - F F
marple 58 - ToolButton F F T 0.68 - F F
marple 59 - PaletteButton F F T 0.52 - F F
marple 60 - ScribbleTool T F T 0.65 - F F
marple 61 - PolygonTool T F T 0.58 - F F
marple 62 - TextHolder T F T 0.66 - F F

No results are available from Web of Patterns and DPJF for the Adapter design pattern.
DPJF does not support the Adapter design pattern.

The other tools are very different in the number of reported instances: PMARt reports only
one instance, DPD-Tool 22 instances and the Classifier module 75 instances. The precision
of each tool is good, but the results are very different: the only instance reported by PMARt
contains a lot of classes; it was considered correct because it contains adapters, even if it
represents an entire family of Adapters. The wrong evaluations of the Joiner, instead, are due to
some restrictions in the rule that forbid the Adaptee and the Target to belong to the same type
hierarchy; most of the mistakes are due to the implementation of Serializable , Cloneable, or other
utility interfaces or classes. The one-to-one tool comparison (on positive instances), available in
Table C.2, shows that the instance reported in PMARt was correctly identified by MARPLE and
DPD-tool, while about half of the instances reported by DPD-tool were identified by MARPLE.
The reason of this result is the already described restriction in the Joiner. Another fact is that
a lot of the instances reported by MARPLE are correct (62/75) and only 12 are found by the
other tools, leading to new 50 discovered pattern instances. MARPLE discovered a relevant
number of unknown pattern instances, but did not report a half (ten) of the ones discovered
by DPD-tool, because of the setup of the Joiner rule (which can be redesigned to enhance the
detection). DPD-tool, instead, missed fifty correct instances, which is five times more than the
instances missed by MARPLE and more than two times more than all the instances reported by
DPD-tool. Finally, PMARt reports a single instance, which can be considered as an aggregation
of instances, but is far from giving an idea of the design pattern instances contained in the
project.

170

Table C.2: Adapter comparison matrix
Manual PMARt Joiner Classifier DPJF WoP DPD-

tool

Manual 71 1 62 62 0 0 21
PMARt - 1 1 1 0 0 0
Joiner - - 75 75 0 0 12
Classifier - - - 75 0 0 12
DPJF - - - - 0 0 0
Web of Patterns - - - - - 0 0
DPD-tool - - - - - - 22

C.2 Singleton

Only two Singleton instances were found by the tools, one correct and the other no. MARPLE
and Web of Patterns reported only the correct one, while PMARt and DPD-tool reported as
correct also the wrong one. DPJF reported no results, because it does not support the pattern.
Given the small number of instances, it is not possible to formulate more complex evaluations.
Table C.3 and Table C.4 give the overview of the available results.

Table C.3: Singleton comparison
Instance Manual PMARt:2 Joiner:1 Classifier:1 DPJF:- WoP:1 DPD-

tool:2

pmart 85 T T T 0.99 - T T
pmart 86 F T F - - F T

Table C.4: Singleton comparison matrix
Manual PMARt Joiner Classifier DPJF WoP DPD-

tool

Manual 1 1 1 1 0 1 1
PMARt - 2 1 1 0 1 2
Joiner - - 1 1 0 1 1
Classifier - - - 1 0 1 1
DPJF - - - - 0 0 0
Web of Patterns - - - - - 1 1
DPD-tool - - - - - - 2

C.3 Composite

The only correct Composite instance is reported by all the tools but not from the Classifier
module. Other four instances were reported by Web Of Patterns, and they are all incorrect ones.
Table C.5 and Table C.6 give the overview of the available data. The results available for this
pattern are aligned with the ones reported in Subsection 8.2.3, which highlight Composite is the
pattern with more detection issues. The motivations of the lower performance for the Composite

171

design pattern are mainly related to the size of the training set, as explained in Subsection 8.2.3,
and to the micro-structures used to catch the peculiarities of the pattern, e.g. the aggregation of
children. Some of these considerations are available in Section 6.3.2. In addition, some of the
micro-structures which are useful for the detection of the Composite suffer from the granularity
of the reported information, which is not able, e.g., to characterize the exact method cycling on
the children and forwarding the invocation. Future work will be directed to the correction of
these class of problems to enhance the detection of the Composite design pattern.

Table C.5: Composite comparison

Instance M
an

ua
l

PM
A
R
t:1

Jo
in
er
:5

C
la
ss
ifi
er
:0

D
PJ

F:
1

W
oP

:5

D
PD

-t
oo

l:1

pmart 75 T T T -0.74 T T T
wop 1 - FigureChangeListener F F F - F T F
wop 2 - FigureChangeListener F F F - F T F
wop 3 - CompositeFigure F F F - F T F
wop 5 - FigureChangeListener F F F - F T F

Table C.6: Composite comparison matrix
Manual PMARt Joiner Classifier DPJF WoP DPD-

tool

Manual 1 1 1 0 1 1 1
PMARt - 1 1 0 1 1 1
Joiner - - 1 0 1 1 1
Classifier - - - 0 0 0 0
DPJF - - - - 1 1 1
Web of Patterns - - - - - 5 1
DPD-tool - - - - - - 1

C.4 Decorator

The situation for the comparison of Decorator instances is the opposite one: five instances
were found, all correct ones, and all correctly identified by the Classifier module. PMARt
contains only one correct instance, DPD-tool three correct instances and DPJF three correct
instances. The instances reported by DPD-tool and DPJF are not completely overlapping, while
every tool reported the only instance found in PMARt. Web of Patterns reported no results
because it does not support the detection of this pattern. The overview of the results is reported
in Table C.7 and Table C.8.

C.5 Factory Method

The results for the Factory Method design pattern (shown in Table C.9) contain 10 instances,
found by PMARt, DPD-Tool and MARPLE, with little overlap. No single instance is agreed

172

Table C.7: Decorator comparison

Instance M
an

ua
l

PM
A
R
t:1

Jo
in
er
:1
4

C
la
ss
ifi
er
:5

D
PJ

F:
3

W
oP

:-

D
PD

-t
oo

l:3

pmart 76 T T T 0.68 T - T
dpjf 1 - FigureEnumerator T F T 0.66 T - F
dpjf 2 - OffsetLocator T F T 0.66 T - T
dpdtool 1 - SelectionTool T F T 0.71 F - T
marple 1 - FigureChangeListener T F T 0.68 F - F

Table C.8: Decorator comparison matrix
Manual PMARt Joiner Classifier DPJF WoP DPD-

tool

Manual 5 1 5 5 3 0 3
PMARt - 1 1 1 1 0 1
Joiner - - 5 5 3 0 3
Classifier - - - 5 3 0 3
DPJF - - - - 3 0 2
Web of Patterns - - - - - 0 0
DPD-tool - - - - - - 3

by the three tools. Web of Patterns and DPJF reported no instances because the pattern is
not supported. PMARt contains three instances; another instance is added by DPD-tool and
other 6 by MARPLE. Table C.10 shows that DPD-tool returns 2/2 correct instances; PMARt is
the second one, having 2/3 correct instances and MARPLE returned 4 correct instance out of 6
found instances. MARPLE is the tool that is able to find more correct instances for this pattern.

C.6 Conclusion

The comparison experiment reported in this appendix served as an example, demonstrating
that MARPLE has performances which are not worse than the ones of the other tools in most
cases, and that in many cases it produces a larger number of correct pattern instances. From
the analysis of the results it appears that the approach based on machine learning is able to
find many correct (and less trivial) instances that are discarded by exact matching approaches,
which are forced to use strong constraints to keep an acceptable level of precision. Despite
some localized issue the approach demonstrated its validity and that it is worth working in this
direction.

The reported data are not intended to be a full comparison of the different tools, primarily
because they refer to the pattern detection applied to only one system. A full comparison
would need to be done on more pattern instances, to reach a good significance, and the manual
evaluation should be agreed by many people. The precision values reported in the section are
therefore not to be intended as real estimations of the precision of the tools, but as clues helping
to reason on the available data. In this direction, it will be interesting to exploit the DPB [65]
platform to perform a wider and open comparison among the results of different tools, including

173

Table C.9: Factory Methods comparison

Instance M
an

ua
l

PM
A
R
t:3

Jo
in
er
:6
2

C
la
ss
ifi
er
:7

D
PJ

F:
0

W
oP

:-

D
PD

-t
oo

l:2

pmart 77 T T T -0.86 - - T
pmart 78 F T F - - - F
pmart 79 T T T 0.96 - - F
dpdtool 1 - Drawingview T F T -0.86 - - T
marple 1 - NetApp F F T 0.67 - - F
marple 2 - NothingApp F F T 0.67 - - F
marple 2 - PertApplication F F T 0.67 - - F
marple 3 - PertFigureCreationTool T F T 0.87 - - F
marple 4 - BoxHandleKit T F T 0.82 - - F
marple 5 - RelativeLocator T F T 0.82 - - F

Table C.10: Factory Method comparison matrix
Manual PMARt Joiner Classifier DPJF WoP DPD-

tool

Manual 6 2 6 4 0 0 2
PMARt - 3 2 1 0 0 1
Joiner - - 9 7 0 0 2
Classifier - - - 7 0 0 0
DPJF - - - - 0 0 0
Web of Patterns - - - - - 0 0
DPD-tool - - - - - - 2

MARPLE-DPD.
Another aspect to consider in the instance comparison is the different grouping of pattern

instances performed by different tools, which brings to situations where an instance for one tool
can be matched to more than one instance for another tool.

174

Publications

[1] Francesca Arcelli Fontana, Andrea Caracciolo, and Marco Zanoni. DPB: A benchmark for
design pattern detection tools. In Proceedings of the 16th European Conference on Software
Maintenance and Reengineering, CSMR 2012, pages 235–244, Szeged, Hungary, March 2012.
IEEE Computer Society. doi:10.1109/CSMR.2012.32.

[2] Francesca Arcelli Fontana, Marco Zanoni, Bartosz Walter, and Pawel Martenka. Code
smells, micro patterns and their relations. ERCIM News, 88:33, January 2012. Special
theme: Evolving Software. URL: http://ercim-news.ercim.eu/images/stories/EN88/
EN88-web.pdf.

[3] Francesca Arcelli, Andrea Caracciolo, and Marco Zanoni. A benchmark for design pattern
detection tools: a community driven approach. ERCIM News, 88:32, January 2012. Special
theme: Evolving Software. URL: http://ercim-news.ercim.eu/images/stories/EN88/
EN88-web.pdf.

[4] Francesca Arcelli Fontana and Marco Zanoni. A tool for design pattern detection and
software architecture reconstruction. Information Sciences, 181(7):1306–1324, April 2011.
doi:10.1016/j.ins.2010.12.002.

[5] Francesca Arcelli Fontana and Marco Zanoni. On investigating code smells correlations. In
Proceedings of the IEEE Fourth International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), RefTest Workshop, pages 474–475, Berlin, Germany,
March 2011. IEE. doi:10.1109/ICSTW.2011.14.

[6] Francesca Arcelli Fontana, Marco Zanoni, and Stefano Maggioni. Using design pattern clues
to improve the precision of design pattern detection tools. Journal of Object Technology,
10:4:1–31, 2011. URL: http://www.jot.fm/contents/issue_2011_01/article4.html,
doi:10.5381/jot.2011.10.1.a4.

[7] Francesca Arcelli Fontana, Marco Zanoni, and Andrea Caracciolo. A benchmark platform
for design pattern detection. In Proceedings of The Second International Conferences on
Pervasive Patterns and Applications, PATTERNS 2010, pages 42–47, Lisbon, Portugal,
November 2010. IARIA, Think Mind. URL: http://www.thinkmind.org/index.php?
view=article&articleid=patterns_2010_2_30_70046.

[8] Francesca Arcelli, Gianluigi Viscusi, and Marco Zanoni. Unifying software and data reverse
engineering: a pattern based approach. In Proc. of the 5th International Conference on
Software and Data Technologies, ICSOFT2010, pages 208–213, Athens, Greece, July 2010.
SciTePress. Short paper. doi:10.5220/0003010202080213.

[9] Francesca Arcelli, Marco Zanoni, Riccardo Porrini, and Mattia Vivanti. A model proposal for
program comprehension. In Proceedings of the 16th International Conference on Distributed

175

http://dx.doi.org/10.1109/CSMR.2012.32
http://ercim-news.ercim.eu/images/stories/EN88/EN88-web.pdf
http://ercim-news.ercim.eu/images/stories/EN88/EN88-web.pdf
http://ercim-news.ercim.eu/images/stories/EN88/EN88-web.pdf
http://ercim-news.ercim.eu/images/stories/EN88/EN88-web.pdf
http://dx.doi.org/10.1016/j.ins.2010.12.002
http://dx.doi.org/10.1109/ICSTW.2011.14
http://www.jot.fm/contents/issue_2011_01/article4.html
http://dx.doi.org/10.5381/jot.2011.10.1.a4
http://www.thinkmind.org/index.php?view=article&articleid=patterns_2010_2_30_70046
http://www.thinkmind.org/index.php?view=article&articleid=patterns_2010_2_30_70046
http://dx.doi.org/10.5220/0003010202080213

Multimedia Systems, DMS 2010: Globalization and Personalization, pages 23–28, Oak
Brook, Illinois, USA, October 2010. Knowledge Systems Institute. URL: http://www.ksi.
edu/seke/Proceedings/dms/DMS2010_Proceedings.pdf.

[10] Christian Tosi, Marco Zanoni, and Stefano Maggioni. A design pattern detection plugin for
eclipse. In Angelo Gargantini, editor, Proceedings of the 4th Italian Workshop on Eclipse
Technologies (Eclipse-IT 2009), Bergamo, Italy, September 2009. Eclipse Italian Community.
URL: http://eit09.unibg.it/pdfs/99990089.pdf.

[11] Francesca Arcelli Fontana, Christian Tosi, and Marco Zanoni. Can design pattern detection
be useful for legacy system migration towards soa? In SDSOA ’08: IEEE Proceedings of
the 2nd international workshop on Systems development in SOA environments, pages 63–68,
New York, NY, USA, 2008. ACM. doi:10.1145/1370916.1370932.

[12] Francesca Arcelli, Christian Tosi, and Marco Zanoni. A benchmark proposal for design
pattern detection. In Proceedings of 2nd Workshop on FAMIX and Moose in Reengi-
neering, FAMOOSr 2008, pages 24–27, Antwerp, Belgium, October 2008. MOOSE Tech-
nology. Co-located with WCRE 2008. URL: http://www.moosetechnology.org/?_s=
JdhwOEnqbH-6feuC.

[13] Francesca Arcelli, Christian Tosi, Marco Zanoni, and Stefano Maggioni. The marple
project — a tool for design pattern detection and software architecture reconstruction. In
Proceedings of the 1st International Workshop on Academic Software Development Tools and
Techniques, WASDeTT 2008, Paphos, Cyprus, July 2008. Software Composition Group. co-
located with ECOOP 2008. URL: http://www.iam.unibe.ch/~scg/download/wasdett/
wasdett2008-paper02.pdf.

[14] Christian Tosi, Marco Zanoni, Francesca Arcelli, and Claudia Raibulet. Joiner: from
subcomponents to design patterns. In Proceedings of the DPD4RE Workshop, co-located
event with IEEE WCRE 2006 Conference, Benevento, Italy, 2006. IEEE Computer Society.

176

http://www.ksi.edu/seke/Proceedings/dms/DMS2010_Proceedings.pdf
http://www.ksi.edu/seke/Proceedings/dms/DMS2010_Proceedings.pdf
http://eit09.unibg.it/pdfs/99990089.pdf
http://dx.doi.org/10.1145/1370916.1370932
http://www.moosetechnology.org/?_s=JdhwOEnqbH-6feuC
http://www.moosetechnology.org/?_s=JdhwOEnqbH-6feuC
http://www.iam.unibe.ch/~scg/download/wasdett/wasdett2008-paper02.pdf
http://www.iam.unibe.ch/~scg/download/wasdett/wasdett2008-paper02.pdf

Bibliography

[1] SQL — Part 1: Framework (SQL/Framework), 2011. URL: http://www.iso.org/iso/
iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53681.

[2] Md. Abul Khaer, M.M.A. Hashem, and Md. Raihan Masud. On use of design patterns in
empirical assessment of software design quality. In International Conference on Computer
and Communication Engineering, ICCCE 2008, pages 133–137, Kuala Lumpur, Malesia,
May 2008. IEEE Computer Society. doi:10.1109/ICCCE.2008.4580582.

[3] Mads Sig Ager, Olivier Danvy, and Henning Korsholm Rohde. Fast partial evaluation of
pattern matching in strings. ACM Trans. Program. Lang. Syst., 28(4):696–714, July 2006.
doi:10.1145/1146809.1146812.

[4] Hervé Albin-Amiot, Pierre Cointe, Yann-Gaël Guéhéneuc, and Narendra Jussien. Instan-
tiating and detecting design patterns: putting bits and pieces together. In Proceedings
of the 16th Annual International Conference on Automated Software Engineering, ASE
2001, pages 166–173, San Diego, CA, USA, November 2001. IEEE Computer Society.
doi:10.1109/ASE.2001.989802.

[5] Giulio Antoniol, Roberto Fiutem, and L. Cristoforetti. Design pattern recovery in object-
oriented software. In Proceedings of the 6th International Workshop on Program Com-
prehension, IWPC ’98, pages 153–160, Ischia, Italy, June 1998. IEEE Computer Society.
doi:10.1109/WPC.1998.693342.

[6] Francesca Arcelli, Andrea Caracciolo, and Marco Zanoni. A benchmark for design pattern
detection tools: a community driven approach. ERCIM News, 88:32, January 2012. Special
theme: Evolving Software. URL: http://ercim-news.ercim.eu/images/stories/EN88/
EN88-web.pdf.

[7] Francesca Arcelli, Luca Cristina, and Daniele Franzosi. nMARPLE: .NET re-
verse engineering with marple. In Proceedings of the ECOOP 2007 Workshop on
Object-Oriented Re-engineering, WOOR 2007, Berlin, Germany, July 2007. Soft-
ware Composition Group. URL: http://scg.unibe.ch/wiki/events/woor2007/
nmarplenetreverseengineeringwithmarple.

[8] Francesca Arcelli and Claudia Raibulet. The role of design pattern decomposition in
reverse engineering tools. In Pre-Proceedings of the IEEE International Workshop on
Software Technology and Engineering Practice (STEP 2005), pages 230–233, Budapest,
Hungary, 2005.

[9] Francesca Arcelli, Christian Tosi, and Marco Zanoni. A benchmark proposal for design
pattern detection. In Proceedings of 2nd Workshop on FAMIX and Moose in Reengi-
neering, FAMOOSr 2008, pages 24–27, Antwerp, Belgium, October 2008. MOOSE Tech-

177

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53681
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53681
http://dx.doi.org/10.1109/ICCCE.2008.4580582
http://dx.doi.org/10.1145/1146809.1146812
http://dx.doi.org/10.1109/ASE.2001.989802
http://dx.doi.org/10.1109/WPC.1998.693342
http://ercim-news.ercim.eu/images/stories/EN88/EN88-web.pdf
http://ercim-news.ercim.eu/images/stories/EN88/EN88-web.pdf
http://scg.unibe.ch/wiki/events/woor2007/nmarplenetreverseengineeringwithmarple
http://scg.unibe.ch/wiki/events/woor2007/nmarplenetreverseengineeringwithmarple

nology. Co-located with WCRE 2008. URL: http://www.moosetechnology.org/?_s=
JdhwOEnqbH-6feuC.

[10] Francesca Arcelli, Christian Tosi, Marco Zanoni, and Stefano Maggioni. The marple
project — a tool for design pattern detection and software architecture reconstruction.
In Proceedings of the 1st International Workshop on Academic Software Development
Tools and Techniques, WASDeTT 2008, Paphos, Cyprus, July 2008. Software Composition
Group. co-located with ECOOP 2008. URL: http://www.iam.unibe.ch/~scg/download/
wasdett/wasdett2008-paper02.pdf.

[11] Francesca Arcelli, Christian Tosi, Marco Zanoni, and Stefano Maggioni. Marple. Web site,
2009. URL: http://essere.disco.unimib.it/reverse/Marple.html.

[12] Francesca Arcelli, Gianluigi Viscusi, and Marco Zanoni. Unifying software and data reverse
engineering: a pattern based approach. In Proc. of the 5th International Conference on
Software and Data Technologies, ICSOFT2010, pages 208–213, Athens, Greece, July 2010.
SciTePress. Short paper. doi:10.5220/0003010202080213.

[13] Francesca Arcelli, Marco Zanoni, Riccardo Porrini, and Mattia Vivanti. A model proposal
for program comprehension. In Proceedings of the 16th International Conference on
Distributed Multimedia Systems, DMS 2010: Globalization and Personalization, pages
23–28, Oak Brook, Illinois, USA, October 2010. Knowledge Systems Institute. URL:
http://www.ksi.edu/seke/Proceedings/dms/DMS2010_Proceedings.pdf.

[14] Francesca Arcelli Fontana. Software evolution and reverse engineering lab at university of
milano bicocca. Web site, 2012. http://essere.disco.unimib.it.

[15] Francesca Arcelli Fontana, Andrea Caracciolo, and Marco Zanoni. DPB: A benchmark
for design pattern detection tools. In Proceedings of the 16th European Conference on
Software Maintenance and Reengineering, CSMR 2012, pages 235–244, Szeged, Hungary,
March 2012. IEEE Computer Society. doi:10.1109/CSMR.2012.32.

[16] Francesca Arcelli Fontana, Stefano Maggioni, and Claudia Raibulet. Design patterns: a
survey on their micro-structures. Journal of Software Maintenance and Evolution: Research
and Practice, June 2011. doi:10.1002/smr.547.

[17] Francesca Arcelli Fontana, Christian Tosi, and Marco Zanoni. Can design pattern detection
be useful for legacy system migration towards soa? In SDSOA ’08: IEEE Proceedings
of the 2nd international workshop on Systems development in SOA environments, pages
63–68, New York, NY, USA, 2008. ACM. doi:10.1145/1370916.1370932.

[18] Francesca Arcelli Fontana and Marco Zanoni. On investigating code smells correlations. In
Proceedings of the IEEE Fourth International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), RefTest Workshop, pages 474–475, Berlin, Germany,
March 2011. IEE. doi:10.1109/ICSTW.2011.14.

[19] Francesca Arcelli Fontana and Marco Zanoni. A tool for design pattern detection and
software architecture reconstruction. Information Sciences, 181(7):1306–1324, April 2011.
doi:10.1016/j.ins.2010.12.002.

[20] Francesca Arcelli Fontana, Marco Zanoni, and Andrea Caracciolo. A benchmark platform
for design pattern detection. In Proceedings of The Second International Conferences on
Pervasive Patterns and Applications, PATTERNS 2010, pages 42–47, Lisbon, Portugal,

178

http://www.moosetechnology.org/?_s=JdhwOEnqbH-6feuC
http://www.moosetechnology.org/?_s=JdhwOEnqbH-6feuC
http://www.iam.unibe.ch/~scg/download/wasdett/wasdett2008-paper02.pdf
http://www.iam.unibe.ch/~scg/download/wasdett/wasdett2008-paper02.pdf
http://essere.disco.unimib.it/reverse/Marple.html
http://dx.doi.org/10.5220/0003010202080213
http://www.ksi.edu/seke/Proceedings/dms/DMS2010_Proceedings.pdf
http://essere.disco.unimib.it
http://dx.doi.org/10.1109/CSMR.2012.32
http://dx.doi.org/10.1002/smr.547
http://dx.doi.org/10.1145/1370916.1370932
http://dx.doi.org/10.1109/ICSTW.2011.14
http://dx.doi.org/10.1016/j.ins.2010.12.002

November 2010. IARIA, Think Mind. URL: http://www.thinkmind.org/index.php?
view=article&articleid=patterns_2010_2_30_70046.

[21] Francesca Arcelli Fontana, Marco Zanoni, and Stefano Maggioni. Using design pattern clues
to improve the precision of design pattern detection tools. Journal of Object Technology,
10:4:1–31, 2011. URL: http://www.jot.fm/contents/issue_2011_01/article4.html,
doi:10.5381/jot.2011.10.1.a4.

[22] Francesca Arcelli Fontana, Marco Zanoni, Bartosz Walter, and Pawel Martenka. Code
smells, micro patterns and their relations. ERCIM News, 88:33, January 2012. Special
theme: Evolving Software. URL: http://ercim-news.ercim.eu/images/stories/EN88/
EN88-web.pdf.

[23] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, SODA
’07, pages 1027–1035, New Orleans, Louisiana, USA, January 2007. Society for Indus-
trial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=1283383.
1283494.

[24] Angel Asencio, Sam Cardman, David Harris, and Ellen Laderman. Relating expectations to
automatically recovered design patterns. In Proceedings of the Ninth Working Conference
on Reverse Engineering, WCRE’02, pages 87–96, Richmond, Virginia, USA, October 2002.
IEEE Computer Society. doi:10.1109/WCRE.2002.1173067.

[25] J. C. M. Baeten, F. Corradini, and C. A. Grabmayer. A characterization of regular
expressions under bisimulation. Journal of the ACM, 54(2), April 2007. doi:10.1145/
1219092.1219094.

[26] Pierre Baldi, Søren Brunak, Yves Chauvin, Claus A. F. Andersen, and Henrik Nielsen. As-
sessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics,
16(5):412–424, February 2000. doi:10.1093/bioinformatics/16.5.412.

[27] Thomas Ball. The concept of dynamic analysis. In Oscar Nierstrasz and Michel Lemoine,
editors, Software Engineering — ESEC/FSE ’99, volume 1687 of Lecture Notes in Computer
Science, pages 216–234. Springer Berlin / Heidelberg, 1999. URL: http://dx.doi.org/
10.1007/3-540-48166-4_14, doi:10.1007/3-540-48166-4_14.

[28] Jagdish Bansiya. Automating design-pattern identification. Dr Dobbs Journal, June 1998.
URL: http://drdobbs.com/architecture-and-design/184410578.

[29] Victor R. Basili and Barry Boehm. COTS-based systems top 10 list. Computer, 34(5):91–95,
May 2001. doi:10.1109/2.920618.

[30] Ian Bayley and Hong Zhu. Formalising design patterns in predicate logic. In Proceedings
of the Fifth IEEE International Conference on Software Engineering and Formal Methods,
SEFM 2007, pages 25–36, London, UK, September 2007. IEEE Computer Society. doi:
10.1109/SEFM.2007.22.

[31] Ian Bayley and Hong Zhu. Formal specification of the variants and behavioural features
of design patterns. Journal of Systems and Software, 83(2):209–221, 2010. Computer
Software and Applications. URL: http://www.sciencedirect.com/science/article/
pii/S0164121209002489, doi:10.1016/j.jss.2009.09.039.

179

http://www.thinkmind.org/index.php?view=article&articleid=patterns_2010_2_30_70046
http://www.thinkmind.org/index.php?view=article&articleid=patterns_2010_2_30_70046
http://www.jot.fm/contents/issue_2011_01/article4.html
http://dx.doi.org/10.5381/jot.2011.10.1.a4
http://ercim-news.ercim.eu/images/stories/EN88/EN88-web.pdf
http://ercim-news.ercim.eu/images/stories/EN88/EN88-web.pdf
http://dl.acm.org/citation.cfm?id=1283383.1283494
http://dl.acm.org/citation.cfm?id=1283383.1283494
http://dx.doi.org/10.1109/WCRE.2002.1173067
http://dx.doi.org/10.1145/1219092.1219094
http://dx.doi.org/10.1145/1219092.1219094
http://dx.doi.org/10.1093/bioinformatics/16.5.412
http://dx.doi.org/10.1007/3-540-48166-4_14
http://dx.doi.org/10.1007/3-540-48166-4_14
http://dx.doi.org/10.1007/3-540-48166-4_14
http://drdobbs.com/architecture-and-design/184410578
http://dx.doi.org/10.1109/2.920618
http://dx.doi.org/10.1109/SEFM.2007.22
http://dx.doi.org/10.1109/SEFM.2007.22
http://www.sciencedirect.com/science/article/pii/S0164121209002489
http://www.sciencedirect.com/science/article/pii/S0164121209002489
http://dx.doi.org/10.1016/j.jss.2009.09.039

[32] Fabian Beck and Stephan Diehl. On the congruence of modularity and code coupling. In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, ESEC/FSE ’11, pages 354–364, Szeged, Hungary,
September 2011. ACM. doi:10.1145/2025113.2025162.

[33] Yoshua Bengio and Yves Grandvalet. No unbiased estimator of the variance of k-fold
cross-validation. Journal of Machine Learning Research, 5:1089–1105, September 2004.
URL: http://www.jmlr.org/papers/volume5/grandvalet04a/grandvalet04a.pdf.

[34] Dirk Beyer, Andreas Noack, and Claus Lewerentz. Simple and efficient relational querying of
software structures. In Proceedings of the 10th Working Conference on Reverse Engineering,
WCRE ’03, pages 216–225, Victoria, B.C., Canada, November 2003. IEEE Computer
Society. doi:10.1109/WCRE.2003.1287252.

[35] James C. Bezdek, Robert Ehrlich, and William Full. FCM: The fuzzy c-means clustering al-
gorithm. Computers & Geosciences, 10(2-3):191–203, 1984. doi:10.1016/0098-3004(84)
90020-7.

[36] David Binkley, Nicolas Gold, Mark Harman, Zheng Li, Kiarash Mahdavi, and Joachim
Wegener. Dependence anti patterns. In Proceedings of the 23rd IEEE/ACM International
Conference on Automated Software Engineering - Workshops, 2008, pages 25–34, L’Aquila,
Italy, September 2008. IEEE Computer Society. doi:10.1109/ASEW.2008.4686318.

[37] Alexander Binun and Günter Kniesel. DPJF — design pattern detection with high
accuracy. In Proceedings of the 16th European Conference on Software Maintenance and
Reengineering, CSMR 2012, Szeged, Hungary, March 2012. IEEE Computer Society.

[38] Marcel Birkner. Objected-oriented design pattern detection using static and dynamic
analysis in java software. Master’s thesis, Bonn-Rhine-Sieg University of Applied Sci-
ences, Sankt Augustin, Germany, 2007. URL: http://mb-pde.googlecode.com/files/
MasterThesis.pdf.

[39] Alex Blewitt, Alan Bundy, and Ian Stark. Automatic verification of java design patterns. In
Proceedings of the 16th IEEE International Conference on Automated Software Engineering,
ASE’01, pages 324–327, San Diego, CA, USA, November 2001. IEEE Computer Society.
doi:10.1109/ASE.2001.989821.

[40] Andrew P. Bradley. The use of the area under the ROC curve in the evaluation of
machine learning algorithms. Pattern Recognition, 30(7):1145–1159, 1997. doi:10.1016/
S0031-3203(96)00142-2.

[41] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. doi:10.1023/A:
1010933404324.

[42] William Brown, Raphael C. Malveau, Hays W. McCormick III, and Thomas J. Mowbray.
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis. John Wiley,
April 1998.

[43] Hugo Bruneliere, Jordi Cabot, and Grégoire Dupé. How to deal with your it legacy: What
is coming up in modisco? ERCIM News, 88:43–44, January 2012. Special theme: Evolving
Software. URL: http://ercim-news.ercim.eu/images/stories/EN88/EN88-web.pdf.

[44] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines,
2001. URL: http://www.csie.ntu.edu.tw/~cjlin/libsvm.

180

http://dx.doi.org/10.1145/2025113.2025162
http://www.jmlr.org/papers/volume5/grandvalet04a/grandvalet04a.pdf
http://dx.doi.org/10.1109/WCRE.2003.1287252
http://dx.doi.org/10.1016/0098-3004(84)90020-7
http://dx.doi.org/10.1016/0098-3004(84)90020-7
http://dx.doi.org/10.1109/ASEW.2008.4686318
http://mb-pde.googlecode.com/files/MasterThesis.pdf
http://mb-pde.googlecode.com/files/MasterThesis.pdf
http://dx.doi.org/10.1109/ASE.2001.989821
http://dx.doi.org/10.1016/S0031-3203(96)00142-2
http://dx.doi.org/10.1016/S0031-3203(96)00142-2
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://ercim-news.ercim.eu/images/stories/EN88/EN88-web.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[45] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design recovery: a
taxonomy. Software, IEEE, 7(1):13–17, January 1990. doi:10.1109/52.43044.

[46] Bertrand Clarke, Ernest Fokoue, Hao Helen Zhang, Bertrand Clarke, Ernest Fokoué, and
Hao Helen Zhang. Learning in high dimensions. In Principles and Theory for Data Mining
and Machine Learning, Springer Series in Statistics, pages 493–568. Springer New York,
2009. doi:10.1007/978-0-387-98135-2_9.

[47] Bertrand Clarke, Ernest Fokoue, Hao Helen Zhang, Bertrand Clarke, Ernest Fokoué, and
Hao Helen Zhang. Unsupervised learning: Clustering. In Principles and Theory for Data
Mining and Machine Learning, Springer Series in Statistics, pages 405–491. Springer New
York, 2009. doi:10.1007/978-0-387-98135-2_8.

[48] Bertrand Clarke, Ernest Fokoue, Hao Helen Zhang, Bertrand Clarke, Ernest Fokoué, and
Hao Helen Zhang. Variable selection. In Principles and Theory for Data Mining and
Machine Learning, Springer Series in Statistics, pages 569–678. Springer New York, 2009.
doi:10.1007/978-0-387-98135-2_10.

[49] William W. Cohen. Fast effective rule induction. In Armand Prieditis and Stuart J. Russell,
editors, Proceedings of the Twelfth International Conference on Machine Learning, ICML
1995, pages 115–123, Tahoe City, California, USA, July 1995. Morgan Kaufmann. URL:
http://sci2s.ugr.es/keel/pdf/algorithm/congreso/ml-95-ripper.pdf.

[50] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995. doi:10.1007/BF00994018.

[51] Gennaro Costagliola, Andrea De Lucia, Vincenzo Deufemia, Carmine Gravino, and Michele
Risi. Design pattern recovery by visual language parsing. In Proceedings of the Ninth
European Conference on Software Maintenance and Reengineering, CSMR ’05, pages
102–111, Washington, DC, USA, Manchester, UK 2005. IEEE Computer Society. doi:
10.1109/CSMR.2005.23.

[52] Richard Cyganiak. A relational algebra for SPARQL. Technical Report HPL-2005-170,
Digital Media Systems Laboratory — HP Laboratories Bristol, Bristol, September 2005.
URL: http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html.

[53] Rajesh N. Davé and Raghu Krishnapuram. Robust clustering methods: a unified view.
IEEE Transactions on Fuzzy Systems, 5(2):270–293, May 1997. doi:10.1109/91.580801.

[54] Lawrence Davis. Handbook of genetic algorithms. Van Nostrand Reinhold, 1991.

[55] Andrea De Lucia, Vincenzo Deufemia, Carmine Gravino, and Michele Risi. An eclipse
plug-in for the detection of design pattern instances through static and dynamic analysis.
In Proceedings of the 2010 IEEE International Conference on Software Maintenance,
ICSM ’10, pages 1–6, Timisoara, Romania, September 2010. IEEE Computer Society.
doi:10.1109/ICSM.2010.5609707.

[56] Simon Denier and Mircea Lungu, editors. FAMOOSr 2010 4th Workshop on FAMIX
and MOOSE in Software Reengineering, Timisoara, Romania, September 2010. Self
Published. Co-located with ICSM 2010. URL: http://www.moosetechnology.org/
events/famoosr2010/FAMOOSr2010Proceedings.

181

http://dx.doi.org/10.1109/52.43044
http://dx.doi.org/10.1007/978-0-387-98135-2_9
http://dx.doi.org/10.1007/978-0-387-98135-2_8
http://dx.doi.org/10.1007/978-0-387-98135-2_10
http://sci2s.ugr.es/keel/pdf/algorithm/congreso/ml-95-ripper.pdf
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1109/CSMR.2005.23
http://dx.doi.org/10.1109/CSMR.2005.23
http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html
http://dx.doi.org/10.1109/91.580801
http://dx.doi.org/10.1109/ICSM.2010.5609707
http://www.moosetechnology.org/events/famoosr2010/FAMOOSr2010Proceedings
http://www.moosetechnology.org/events/famoosr2010/FAMOOSr2010Proceedings

[57] Jens Dietrich and Chris Elgar. A formal description of design patterns using owl. In
Proceedings of the 2005 Australian Software Engineering Conference, ASWEC 2005, pages
243–250, Brisbane, Australia, March-1 April 2005. IEEE Computer Society. doi:10.1109/
ASWEC.2005.6.

[58] Jens Dietrich and Chris Elgar. Owl ontology used by wop. Web Page, 2005. URL:
http://www-ist.massey.ac.nz/wop/20050204/owldoc/index.html.

[59] Jens Dietrich and Chris Elgar. Towards a web of patterns. Web Semantics: Science,
Services and Agents on the World Wide Web, 5(2):108–116, 2007. Software Engineering
and the Semantic Web. doi:10.1016/j.websem.2006.11.007.

[60] Jing Dong, Dushyant S. Lad, and Yajing Zhao. Dp-miner: Design pattern discovery using
matrix. In Proceedings of the 14th Annual IEEE International Conference and Workshops
on the Engineering of Computer-Based Systems, ECBS ’07, pages 371–380, Tucson, Arizona,
USA, March 2007. IEEE Computer Society. doi:10.1109/ECBS.2007.33.

[61] Jing Dong, Yajing Zhao, and Tu Peng. Architecture and design pattern discovery
techniques – a review. In Proceedings of the 6th International Workshop on Sys-
tem/Software Architectures, IWSSA’07, Las Vegas, Nevada, USA, June 2007. URL:
http://www.utdallas.edu/~jdong/papers/iwssa07.pdf.

[62] Gregoire Dupe and Hugo Bruneliere. MoDisco, 2012. URL: http://www.eclipse.org/
MoDisco/.

[63] Yasser EL-Manzalawy. WLSVM. Web site, 2005. URL: http://www.cs.iastate.edu/
~yasser/wlsvm/.

[64] Félix Agustín Castro Espinoza, Gustavo Núñez Esquer, and Joel Suárez Cansino. Automatic
design patterns identification of C++ programs. In Hassan Shafazand and A. Tjoa,
editors, EurAsia-ICT 2002: Information and Communication Technology, volume 2510 of
Lecture Notes in Computer Science, pages 816–823. Springer Berlin / Heidelberg, 2002.
doi:10.1007/3-540-36087-5_94.

[65] ESSeRE lab. Design pattern benchmark platform. Web Site, 2010. http://essere.disco.
unimib.it/DPB/.

[66] Jean-Marie Favre. CaCOphoNy: metamodel-driven software architecture reconstruction.
In Proceedings of the 11th Working Conference on Reverse Engineering, WCRE 2004,
pages 204–213, Delft, The Netherlands, November 2004. IEEE Computer Society. doi:
10.1109/WCRE.2004.15.

[67] Tom Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861–874,
June 2006. doi:10.1016/j.patrec.2005.10.010.

[68] Rudolf Ferenc and Árpád Beszédes. Data exchange with the Columbus schema for C++. In
Proceedings of the Sixth European Conference on Software Maintenance and Reengineering,
CSMR 2002, pages 59–66, Budapest, Hungary, March 2002. IEEE Computer Society.
doi:10.1109/CSMR.2002.995790.

[69] Rudolf Ferenc, Árpád Beszédes, Lajos Fülöp, and Janos Lele. Design pattern mining
enhanced by machine learning. In Proceedings of the 21st IEEE International Conference
on Software Maintenance, ICSM ’05, pages 295–304, Budapest, Hungary, September 2005.
IEEE Computer Society. doi:10.1109/ICSM.2005.40.

182

http://dx.doi.org/10.1109/ASWEC.2005.6
http://dx.doi.org/10.1109/ASWEC.2005.6
http://www-ist.massey.ac.nz/wop/20050204/owldoc/index.html
http://dx.doi.org/10.1016/j.websem.2006.11.007
http://dx.doi.org/10.1109/ECBS.2007.33
http://www.utdallas.edu/~jdong/papers/iwssa07.pdf
http://www.eclipse.org/MoDisco/
http://www.eclipse.org/MoDisco/
http://www.cs.iastate.edu/~yasser/wlsvm/
http://www.cs.iastate.edu/~yasser/wlsvm/
http://dx.doi.org/10.1007/3-540-36087-5_94
http://essere.disco.unimib.it/DPB/
http://essere.disco.unimib.it/DPB/
http://dx.doi.org/10.1109/WCRE.2004.15
http://dx.doi.org/10.1109/WCRE.2004.15
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1109/CSMR.2002.995790
http://dx.doi.org/10.1109/ICSM.2005.40

[70] Rudolf Ferenc, Árpád Beszédes, Mikko Tarkiainen, and Tibor Gyimóthy. Columbus
— reverse engineering tool and schema for C++. In Proceedings of the International
Conference on Software Maintenance, ICSM’02, pages 172–181, Montréal, Canada, October
2002. IEEE Computer Society. doi:10.1109/ICSM.2002.1167764.

[71] Douglas H. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine
Learning, 2(2):139–172, 1987. doi:10.1007/BF00114265.

[72] Lajos Jeno Fülöp. Evaluating and Improving Reverse Engineering Tools. PhD thesis,
Department of Software Engineering, University of Szeged, Szeged, Hungary, June 2011.
URL: http://www.inf.u-szeged.hu/~flajos/LajosJenoFulop_thesis.pdf.

[73] Lajos Jeno Fülöp, Péter Hegedus, Rudolf Ferenc, and Tibor Gyimóthy. Towards a
benchmark for evaluating reverse engineering tools. In Reverse Engineering, 2008. WCRE
’08. 15th Working Conference on, pages 335–336, October 2008. doi:10.1109/WCRE.2008.
18.

[74] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Professional, 1995.

[75] John H. Gennari, Pat Langley, and Doug Fisher. Models of incremental concept formation.
Artificial Intelligence, 40(1–3):11–61, 1989. doi:10.1016/0004-3702(89)90046-5.

[76] Joseph (Yossi) Gil and Itay Maman. Micro patterns in java code. In OOPSLA ’05:
Proceedings of the 20th annual ACM SIGPLAN conference on Object oriented programming,
systems, languages, and applications, pages 97–116, New York, NY, USA, 2005. ACM.
doi:10.1145/1094811.1094819.

[77] Tudor Gîrba. The Moose Book. Self Published, 2010. URL: http://www.themoosebook.
org/book.

[78] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

[79] Orla Greevy. Dynamix — a meta-model to support feature-centric analysis. In Proceedings
of the 1st Workshop on FAMIX and Moose in Reengineering, FAMOOSr 2007, Zurich,
Switzerland, June 2007. Software Composition Group. co-located with TOOLS Europe 2007.
URL: http://scg.unibe.ch/archive/papers/Gree07cDynamixFAMOOSr2007.pdf.

[80] Orla Greevy. Enriching Reverse Engineering with Feature Analysis. PhD thesis, University
of Bern, May 2007. URL: http://scg.unibe.ch/archive/phd/greevy-phd.pdf.

[81] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. Call graph construction in
object-oriented languages. In Proceedings of the 12th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, OOPSLA ’97, pages 108–124,
New York, NY, USA, 1997. ACM. URL: http://doi.acm.org/10.1145/263698.264352,
doi:10.1145/263698.264352.

[82] Yann-Gaël Guéhéneuc. Ptidej: Promoting patterns with patterns. In Proceedings of the
1st ECOOP workshop on Building a System using Patterns. Springer Verlag, 2005.

[83] Yann-Gaël Guéhéneuc. PMARt: pattern-like micro architecture repository. In Michael
Weiss, Aliaksandr Birukou, and Paolo Giorgini, editors, Proceedings of the 1st EuroPLoP
Focus Group on Pattern Repositories, July 2007.

183

http://dx.doi.org/10.1109/ICSM.2002.1167764
http://dx.doi.org/10.1007/BF00114265
http://www.inf.u-szeged.hu/~flajos/LajosJenoFulop_thesis.pdf
http://dx.doi.org/10.1109/WCRE.2008.18
http://dx.doi.org/10.1109/WCRE.2008.18
http://dx.doi.org/10.1016/0004-3702(89)90046-5
http://dx.doi.org/10.1145/1094811.1094819
http://www.themoosebook.org/book
http://www.themoosebook.org/book
http://scg.unibe.ch/archive/papers/Gree07cDynamixFAMOOSr2007.pdf
http://scg.unibe.ch/archive/phd/greevy-phd.pdf
http://doi.acm.org/10.1145/263698.264352
http://dx.doi.org/10.1145/263698.264352

[84] Yann-Gaël Guéhéneuc, Houari Sahraoui, and Farouk Zaidi. Fingerprinting design patterns.
In Proceedings of the 11th Working Conference on Reverse Engineering, WCRE ’04,
pages 172–181, Victoria, BC, Canada, November 2004. IEEE Computer Society. doi:
10.1109/WCRE.2004.21.

[85] Yann-Gaël Guéhéneuc and Giuliano Antoniol. DeMIMA: A multilayered approach for
design pattern identification. IEEE Transactions on Software Engineering, 34(5):667–684,
September 2008. doi:10.1109/TSE.2008.48.

[86] Yann-Gaël Guéhéneuc, Jean-Yves Guyomarc’h, and Houari Sahraoui. Improving design-
pattern identification: a new approach and an exploratory study. Software Quality Journal,
18(1):145–174, 2010. doi:10.1007/s11219-009-9082-y.

[87] Manjari Gupta, Akshara Pande, Rajwant Singh Rao, and A.K. Tripathi. Design pattern
detection by normalized cross correlation. In International Conference on Methods and
Models in Computer Science, ICM2CS 2010, pages 81–84, New Delhi, India, December
2010. IEEE Computer Society. doi:10.1109/ICM2CS.2010.5706723.

[88] Manjari Gupta, Akshara Pande, and A. K. Tripathi. Design patterns detection using sop
expressions for graphs. ACM SIGSOFT Software Engineering Notes, 36:1–5, January 2011.
doi:10.1145/1921532.1921541.

[89] Samuel Z. Guyer and Calvin Lin. Error checking with client-driven pointer analysis.
Science of Computer Programming, 58(1-2):83–114, 2005. Special Issue on the Static
Analysis Symposium 2003 - SAS’03. doi:10.1016/j.scico.2005.02.005.

[90] Isabelle Guyon and Andre Elisseeff. An introduction to variable and feature selection.
Journal of Machine Learning Research, 3:1157–1182, 2003. URL: http://www.jmlr.org/
papers/volume3/guyon03a/guyon03a.pdf.

[91] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H. Witten. The weka data mining software: an update. SIGKDD Explor. Newsl.,
11:10–18, November 2009. doi:10.1145/1656274.1656278.

[92] David Hand. Measuring classifier performance: a coherent alternative to the area under the
ROC curve. Machine Learning, 77(1):103–123, 2009. doi:10.1007/s10994-009-5119-5.

[93] Mark Hapner, Rich Burridge, Rahul Sharma, Joseph Fialli, and Kate Stout. Java(tm)
message service specification final release 1.1, April 2002. URL: http://download.oracle.
com/otndocs/jcp/7195-jms-1.1-fr-spec-oth-JSpec/.

[94] Trevor Hastie and Robert Tibshirani. Classification by pairwise coupling. Annals of
Statistics, 26(2):451–471, 1998. doi:10.1214/aos/1028144844.

[95] Shinpei Hayashi, Junya Katada, Ryota Sakamoto, Takashi Kobayashi, and Motoshi Saeki.
Design pattern detection by using meta patterns. IEICE Transactions on Information
and Systems, E91-D(4):933–944, April 2008. doi:10.1093/ietisy/e91-d.4.933.

[96] Dirk Heuzeroth, Thomas Holl, Gustav Högström, and Welf Löwe. Automatic design
pattern detection. In Proceedings of the 11th IEEE International Workshop on Program
Comprehension, IWPC ’03, pages 94–103, Portland, Oregon, USA, May 2003. IEEE
Computer Society. doi:10.1109/WPC.2003.1199193.

[97] Ric Holt, Andy Schürr, Susan Elliott Sim, and Andreas Winter. Gxl. Web site, 2002.
URL: http://www.gupro.de/GXL/.

184

http://dx.doi.org/10.1109/WCRE.2004.21
http://dx.doi.org/10.1109/WCRE.2004.21
http://dx.doi.org/10.1109/TSE.2008.48
http://dx.doi.org/10.1007/s11219-009-9082-y
http://dx.doi.org/10.1109/ICM2CS.2010.5706723
http://dx.doi.org/10.1145/1921532.1921541
http://dx.doi.org/10.1016/j.scico.2005.02.005
http://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf
http://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1007/s10994-009-5119-5
http://download.oracle.com/otndocs/jcp/7195-jms-1.1-fr-spec-oth-JSpec/
http://download.oracle.com/otndocs/jcp/7195-jms-1.1-fr-spec-oth-JSpec/
http://dx.doi.org/10.1214/aos/1028144844
http://dx.doi.org/10.1093/ietisy/e91-d.4.933
http://dx.doi.org/10.1109/WPC.2003.1199193
http://www.gupro.de/GXL/

[98] Richard C. Holt, Ahmed E. Hasan, Bruno Laguë, Sébastien Lapierre, and Charles Leduc.
E/R schema for the Datrix C/C++/Java exchange format. In Proceedings of the Seventh
Working Conference on Reverse Engineering, WCRE’00, pages 284 –286, Brisbane, QLD,
Australia, November 2000. IEEE Computer Society. doi:10.1109/WCRE.2000.891481.

[99] Richard C. Holt, Andreas Winter, and Andy Schurr. GXL: toward a standard exchange
format. In Proceedings of the Seventh Working Conference on Reverse Engineering, WCRE
2000, pages 162–171, Brisbane, QLD, Australia, November 2000. IEEE Computer Society.
doi:10.1109/WCRE.2000.891463.

[100] Robert C. Holte. Very simple classification rules perform well on most commonly used
datasets. Machine Learning, 11(1):63–90, 1993. doi:10.1023/A:1022631118932.

[101] Mei Hong, Tao Xie, and Fuqing Yang. Jbooret: an automated tool to recover oo design
and source models. In Proceedings of the 25th Annual International Computer Software
and Applications Conference, COMPSAC 2001, pages 71–76, Chicago, IL, USA, October
2001. IEEE Computer Society. doi:10.1109/CMPSAC.2001.960600.

[102] Richard C. Hull and Andreas Winter. A short introduction to the gxl software exchange
format. In Proceedings of the Seventh Working Conference on Reverse Engineering, WCRE
2000, pages 299–301, Brisbane, QLD, Australia, November 2000. IEEE Computer Society.
doi:10.1109/WCRE.2000.891486.

[103] IBM. Jikes. Web site, 2009. http://jikes.sourceforge.net.

[104] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Comput. Surv.,
31(3):264–323, September 1999. doi:10.1145/331499.331504.

[105] Java.net. Java compiler compiler [tm] (javacc [tm]) - the java parser generator. Web site,
2012. URL: http://javacc.java.net/.

[106] JBoss. Hibernate. Web Site, 2012. http://hibernate.org. URL: http://hibernate.
org.

[107] Jena. ARQ — a SPARQL processor for Jena. Web site, 2011. URL: http://jena.
sourceforge.net/ARQ/.

[108] Jena. Jena — a semantic web framework for Java. Web site, 2011. URL: http://openjena.
org/.

[109] George John and Pat Langley. Estimating continuous distributions in bayesian classifiers. In
Philippe Besnard and Steve Hanks, editors, Proceedings of the Eleventh Conference Annual
Conference on Uncertainty in Artificial Intelligence, UAI-95, pages 338–345, Montreal,
Quebec, Canada, August 1995. Morgan Kaufmann. URL: http://uai.sis.pitt.edu/
papers/95/p338-john.pdf.

[110] Narendra Jussien. e-constraints: Explanation-based constraint programming. In Proceed-
ings of the First International Workshop on User-Interaction in Constraint Satisfaction,
Paphos, Cyprus, December 2001. Self Published. Held in conjunction with Seventh In-
ternational Conference on Principles and Practice of Constraint Programming. URL:
http://www.cs.ucc.ie/~osullb/cp01/papers/jussien.ps.

185

http://dx.doi.org/10.1109/WCRE.2000.891481
http://dx.doi.org/10.1109/WCRE.2000.891463
http://dx.doi.org/10.1023/A:1022631118932
http://dx.doi.org/10.1109/CMPSAC.2001.960600
http://dx.doi.org/10.1109/WCRE.2000.891486
http://jikes.sourceforge.net
http://dx.doi.org/10.1145/331499.331504
http://javacc.java.net/
http://hibernate.org
http://hibernate.org
http://hibernate.org
http://jena.sourceforge.net/ARQ/
http://jena.sourceforge.net/ARQ/
http://openjena.org/
http://openjena.org/
http://uai.sis.pitt.edu/papers/95/p338-john.pdf
http://uai.sis.pitt.edu/papers/95/p338-john.pdf
http://www.cs.ucc.ie/~osullb/cp01/papers/jussien.ps

[111] Olivier Kaczor, Yann-Gaël Guéhéneuc, and Sylvie Hamel. Efficient identification of design
patterns with bit-vector algorithm. In Proceedings of the 10th European Conference on
Software Maintenance and Reengineering, CSMR 2006, pages 175–184, Bari, Italy, March
2006. IEEE Computer Society. doi:10.1109/CSMR.2006.25.

[112] KDM Analytics. KDM 1.0 annotated reference, 2010. URL: http://kdmanalytics.com/
kdmspec/index.php.

[113] S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy. Improvements to
platt’s smo algorithm for svm classifier design. Neural Computation, 13(3):637–649, March
2001. doi:10.1162/089976601300014493.

[114] Rudolf K. Keller, Reinhard Schauer, Sébastien Robitaille, and Patrick Pagé. Pattern-
based reverse-engineering of design components. In Proceedings of the 21st International
Conference on Software Engineering, ICSE ’99, pages 226–235, Los Angeles, California,
USA, May 1999. ACM. doi:10.1145/302405.302622.

[115] Duck Hoon Kim, Il Dong Yun, and Sang Uk Lee. A new attributed relational graph
matching algorithm using the nested structure of earth mover’s distance. In Proceedings
of the 17th International Conference on Pattern Recognition, volume 1 of ICPR 2004,
pages 48–51, Cambridge, England, UK, August 2004. IEEE Computer Society. doi:
10.1109/ICPR.2004.1334002.

[116] Günter Kniesel. Type-safe delegation for run-time component adaptation. In Rachid
Guerraoui, editor, ECOOP’ 99 — Object-Oriented Programming, volume 1628 of Lecture
Notes in Computer Science, pages 668–668. Springer Berlin / Heidelberg, 1999. doi:
10.1007/3-540-48743-3_16.

[117] Günter Kniesel, Alexander Binun, Péter Hegedüs, Lajos Jeno Fülöp, Alexander Chatzi-
georgiouz, Yann-Gaël Guéhéneuc, and Nikolaos Tsantalis. A common exchange format
for design pattern detection tools. Technical report, University of Bonn, 2010. URL:
http://java.uom.gr/~nikos/publications/dpdx-techreport.pdf.

[118] Günter Kniesel and Alexander Binun. Standing on the shoulders of giants — a data fusion
approach to design pattern detection. In Program Comprehension, 2009. ICPC ’09. IEEE
17th International Conference on, pages 208–217, May 2009. doi:10.1109/ICPC.2009.
5090044.

[119] Günter Kniesel, Alexander Binun, Péter Hegedüs, Lajos Jeno Fülöp, Alexander Chatzige-
orgiou, Yann-Gaël Guéhenéuc, and Nikolaos Tsantalis. DPDX — towards a common result
exchange format for design pattern detection tools. In Proceedings of the 14th European
Conference on Software Maintenance and Reengineering, CSMR 2010, pages 232–235,
Madrid, Spain, March 2010. IEEE Computer Society. doi:10.1109/CSMR.2010.40.

[120] Teuvo Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Information
Sciences. Springer, Berlin, Heidelberg, New York, 3rd edition, 2001.

[121] Teuvo Kohonen. The Handbook of Brain Theory and Neural Networks, chapter Learning
vector quantization, pages 537–540. MIT Press, Cambridge, MA, USA, 2 edition, November
2002.

[122] Christian Kramer and Lutz Prechelt. Design recovery by automated search for structural
design patterns in object-oriented software. In Proceedings of the Third Working Conference

186

http://dx.doi.org/10.1109/CSMR.2006.25
http://kdmanalytics.com/kdmspec/index.php
http://kdmanalytics.com/kdmspec/index.php
http://dx.doi.org/10.1162/089976601300014493
http://dx.doi.org/10.1145/302405.302622
http://dx.doi.org/10.1109/ICPR.2004.1334002
http://dx.doi.org/10.1109/ICPR.2004.1334002
http://dx.doi.org/10.1007/3-540-48743-3_16
http://dx.doi.org/10.1007/3-540-48743-3_16
http://java.uom.gr/~nikos/publications/dpdx-techreport.pdf
http://dx.doi.org/10.1109/ICPC.2009.5090044
http://dx.doi.org/10.1109/ICPC.2009.5090044
http://dx.doi.org/10.1109/CSMR.2010.40

on Reverse Engineering (WCRE’06), pages 208–215, Monterey, CA, USA, November 1996.
IEEE Computer Society. doi:10.1109/WCRE.1996.558905.

[123] Adrian Kuhn and Toon Verwaest. Fame, a polyglot library for metamodeling at runtime.
In Workshop on Models at Runtime, MRT 2008, pages 57–66, Toulouse, France, September
2008. Self Published. In conjunction with MODELS 2008. URL: http://www.comp.lancs.
ac.uk/~bencomo/MRT08/MRT2008Proceedings.pdf.

[124] Timothy C. Lethbridge. Report from the dagstuhl seminar on interoperability of reengineer-
ing tools. In Proceedings of the 9th International Workshop on Program Comprehension,
IWPC 2001, page 119, Toronto, Ontario, Canada, May 2001. IEEE Computer Society.
doi:10.1109/WPC.2001.921722.

[125] Timothy C. Lethbridge, Erhard Plödereder, Sander Tichelaar, Claudio Riva, Panos Linos,
and Sergei Marchenko. The dagstuhl middle model (dmm), 2002. URL: http://www.site.
uottawa.ca/~tcl/dmm/DMMDescriptionV0006.pdf.

[126] Timothy C. Lethbridge, Sander Tichelaar, and Erhard Ploedereder. The dagstuhl middle
metamodel: A schema for reverse engineering. Electronic Notes in Theoretical Computer
Science, 94:7–18, May 2004. Proceedings of the International Workshop on Meta-Models
and Schemas for Reverse Engineering (ateM 2003). doi:10.1016/j.entcs.2004.01.008.

[127] Ting Lim. Structured population genetic algorithms: a literature survey. Artificial
Intelligence Review, pages 1–15, 2012. doi:10.1007/s10462-012-9314-6.

[128] Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial
time. Journal of Computer and System Sciences, 25(1):42–65, 1982. doi:10.1016/
0022-0000(82)90009-5.

[129] Stefano Maggioni. Design patterns clues for creational design patterns. In Proceedings of
the First International Workshop on Design Pattern Detection for Reverse Engineering
(DPD4RE 2006), co-located event with WCRE 2006, October 2006.

[130] Stefano Maggioni. Design Pattern Detection and Software Architecture Reconstruction:
an Integrated Approach based on Software Micro-structures. PhD thesis, Università degli
Studi di Milano Bicocca — Dipartimento di Informatica, Sistemistica e Comunicazione,
Viale Sarca, 336 20126 Milano, Italy, October 2009.

[131] T. J. Marlowe and B. G. Ryder. Properties of data flow frameworks. Acta Informatica,
28:121–163, 1990. doi:10.1007/BF01237234.

[132] Jacqueline A. McQuillan and James F. Power. Experiences of using the dagstuhl middle
metamodel for defining software metrics. In Proceedings of the 4th international symposium
on Principles and practice of programming in Java, PPPJ ’06, pages 194–198, Mannheim,
Germany, 2006. ACM. doi:10.1145/1168054.1168082.

[133] Naouel Moha and Yann-Gael Guéhéneuc. Decor: a tool for the detection of design defects.
In Proceedings of the twenty-second IEEE/ACM international conference on Automated
software engineering, ASE ’07, pages 527–528, Atlanta, Georgia, USA, November 2007.
ACM. doi:10.1145/1321631.1321727.

[134] Naouel Moha and Yann-Gaël Guéhéneuc. PTIDEJ and DECOR: identification of design
patterns and design defects. In Companion to the 22nd ACM SIGPLAN conference on
Object-oriented programming systems and applications companion, OOPSLA ’07, pages
868–869, Montréal, Québec, Canada, 2007. ACM. doi:10.1145/1297846.1297930.

187

http://dx.doi.org/10.1109/WCRE.1996.558905
http://www.comp.lancs.ac.uk/~bencomo/MRT08/MRT2008Proceedings.pdf
http://www.comp.lancs.ac.uk/~bencomo/MRT08/MRT2008Proceedings.pdf
http://dx.doi.org/10.1109/WPC.2001.921722
http://www.site.uottawa.ca/~tcl/dmm/DMMDescriptionV0006.pdf
http://www.site.uottawa.ca/~tcl/dmm/DMMDescriptionV0006.pdf
http://dx.doi.org/10.1016/j.entcs.2004.01.008
http://dx.doi.org/10.1007/s10462-012-9314-6
http://dx.doi.org/10.1016/0022-0000(82)90009-5
http://dx.doi.org/10.1016/0022-0000(82)90009-5
http://dx.doi.org/10.1007/BF01237234
http://dx.doi.org/10.1145/1168054.1168082
http://dx.doi.org/10.1145/1321631.1321727
http://dx.doi.org/10.1145/1297846.1297930

[135] Hanspeter Mössenböck, Markus Löberbauer, and Albrecht Wöß. The compiler generator
Coco/R. Web Site, July 2011. URL: http://ssw.jku.at/Coco/.

[136] Hausi A. Müller, Jens H. Jahnke, Dennis B. Smith, Margaret-Anne Storey, Scott R. Tilley,
and Kenny Wong. Reverse engineering: a roadmap. In ICSE ’00: Proceedings of the
Conference on The Future of Software Engineering, pages 47–60, New York, NY, USA,
2000. ACM. doi:10.1145/336512.336526.

[137] Philip Newcomb. Architecture-driven modernization (adm). In Proceedings of the 12th
Working Conference on Reverse Engineering, WCRE ’05, page 237, Pittsburgh, Pennsylva-
nia, USA, November 2005. IEEE Computer Society. doi:10.1109/WCRE.2005.7.

[138] Jörg Niere. Fuzzy logic based interactive recovery of software design. In Proceedings of the
24th International Conference on Software Engineering, ICSE ’02, pages 727–728, Orlando,
Florida, USA, May 2002. ACM. doi:10.1145/581339.581473.

[139] Jörg Niere, Wilhelm Schäfer, Jörg P. Wadsack, Lothar Wendehals, and Jim Welsh. Towards
pattern-based design recovery. In Proceedings of the 24th International Conference on
Software Engineering, ICSE ’02, pages 338–348, Orlando, FL, USA, May 2002. ACM.
doi:10.1145/581339.581382.

[140] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̌rba. The story of moose: an agile
reengineering environment. In Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT international symposium on Foundations
of software engineering, ESEC/FSE-13, pages 1–10, Lisbon, Portugal, September 2005.
ACM. doi:10.1145/1095430.1081707.

[141] Object Management Group, Inc. Meta Object Facility (MOF) core specification, January
2006. URL: http://www.omg.org/spec/MOF/2.0/PDF/.

[142] Object Management Group, Inc. XML Metadata Interchange (XMI R©), 2011. URL:
http://www.omg.org/spec/XMI/Current/.

[143] Object Management Group, Inc. Architecture-driven modernization task force. Web site,
2012. URL: http://adm.omg.org/.

[144] Object Management Group, Inc. Catalog of OMG modernization specifications, 2012. URL:
http://www.omg.org/technology/documents/modernization_spec_catalog.htm.

[145] Object Management Group, Inc. Knowledge discovery metamodel (kdm). Web page, 2012.
URL: http://www.omg.org/technology/kdm/index.htm.

[146] Object Management Group, Inc. Object management group, 2012. URL: http://www.
omg.org.

[147] Oracle. GlassFish. Web site, 2012. http://glassfish.java.net/. URL: http://
glassfish.java.net/.

[148] Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific Languages.
The Pragmatic Programmers, LLC, May 2007.

[149] Witold Pedrycz. Clustering and Fuzzy Clustering, chapter 1, pages 1–27. John Wiley &
Sons, Inc., 2005. doi:10.1002/0471708607.ch1.

188

http://ssw.jku.at/Coco/
http://dx.doi.org/10.1145/336512.336526
http://dx.doi.org/10.1109/WCRE.2005.7
http://dx.doi.org/10.1145/581339.581473
http://dx.doi.org/10.1145/581339.581382
http://dx.doi.org/10.1145/1095430.1081707
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omg.org/spec/XMI/Current/
http://adm.omg.org/
http://www.omg.org/technology/documents/modernization_spec_catalog.htm
http://www.omg.org/technology/kdm/index.htm
http://www.omg.org
http://www.omg.org
http://glassfish.java.net/
http://glassfish.java.net/
http://glassfish.java.net/
http://dx.doi.org/10.1002/0471708607.ch1

[150] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of
SPARQL. ACM Transactions on Database Systems, 34(3):16:1–16:45, September 2009.
doi:10.1145/1567274.1567278.

[151] Claudia Perlich, Foster Provost, and Jeffrey S. Simonoff. Tree induction vs. logistic
regression: a learning-curve analysis. The Journal of Machine Learning Research, 4:211–
255, December 2003. doi:10.1162/153244304322972694.

[152] John C. Platt. Fast training of support vector machines using sequential minimal opti-
mization. In B. Schoelkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods
— Support Vector Learning. MIT Press, 1998. URL: http://research.microsoft.com/
~jplatt/smo.html.

[153] Wolfgang Pree. Design patterns for object-oriented software development. Addison-Wesley,
1995.

[154] Corina Păsăreanu and Willem Visser. A survey of new trends in symbolic execution for
software testing and analysis. International Journal on Software Tools for Technology
Transfer (STTT), 11(4):339–353, 2009. Special Section on HVC 07. doi:10.1007/
s10009-009-0118-1.

[155] Ptidej Team. PADL. Web site, September 2011. URL: http://wiki.ptidej.net/doku.
php?id=padl.

[156] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1993.

[157] Ghulam Rasool and Patrick Mäder. Flexible design pattern detection based on feature
types. In Proceedings of 26th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2011, pages 243–252, Lawrence, KS, USA, November 2011. IEEE
Computer Society. doi:10.1109/ASE.2011.6100060.

[158] Ghulam Rasool, Ilka Philippow, and Patrick Mäder. Design pattern recovery based
on annotations. Advances in Engineering Software, 41(4):519–526, April 2010. doi:
10.1016/j.advengsoft.2009.10.014.

[159] RDF Working Group. Resource Description Framework (RDF). Web site, 2004. URL:
http://www.w3.org/RDF/.

[160] Charles Rich and Linda M. Wills. Recognizing a program’s design: A graph-parsing
approach. IEEE Software, 07(1):82–89, January 1990. doi:10.1109/52.43053.

[161] Lorenza Saitta and Filippo Neri. Learning in the “real world”. Machine Learning, 30(2-
3):133–163, 1998. doi:10.1023/A:1007448122119.

[162] Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text
retrieval. Information Processing & Management, 24(5):513–523, 1988. doi:10.1016/
0306-4573(88)90021-0.

[163] F. Samadzadegan, A. Soleymani, and R. Ali Abbaspour. Evaluation of genetic algorithms
for tuning svm parameters in multi-class problems. In Proceedings of the 11th International
Symposium on Computational Intelligence and Informatics, CINTI 2010, pages 323–328,
Budapest, Hungary, November 2010. IEEE Computer Society. doi:10.1109/CINTI.2010.
5672224.

189

http://dx.doi.org/10.1145/1567274.1567278
http://dx.doi.org/10.1162/153244304322972694
http://research.microsoft.com/~jplatt/smo.html
http://research.microsoft.com/~jplatt/smo.html
http://dx.doi.org/10.1007/s10009-009-0118-1
http://dx.doi.org/10.1007/s10009-009-0118-1
http://wiki.ptidej.net/doku.php?id=padl
http://wiki.ptidej.net/doku.php?id=padl
http://dx.doi.org/10.1109/ASE.2011.6100060
http://dx.doi.org/10.1016/j.advengsoft.2009.10.014
http://dx.doi.org/10.1016/j.advengsoft.2009.10.014
http://www.w3.org/RDF/
http://dx.doi.org/10.1109/52.43053
http://dx.doi.org/10.1023/A:1007448122119
http://dx.doi.org/10.1016/0306-4573(88)90021-0
http://dx.doi.org/10.1016/0306-4573(88)90021-0
http://dx.doi.org/10.1109/CINTI.2010.5672224
http://dx.doi.org/10.1109/CINTI.2010.5672224

[164] Jochen Seemann and Jürgen Wolff von Gudenberg. Pattern-based design recovery of
java software. In Proceedings of the 6th ACM SIGSOFT international symposium on
Foundations of software engineering, SIGSOFT ’98/FSE-6, pages 10–16, Orlando, FL,
USA, November 1998. ACM. doi:10.1145/288195.288207.

[165] Koushik Sen. Concolic testing. In Proceedings of the 22nd IEEE/ACM international
conference on Automated software engineering, ASE ’07, pages 571–572, Atlanta, Georgia,
USA, November 2007. ACM. doi:10.1145/1321631.1321746.

[166] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge, UK, 2004.

[167] Nija Shi and Ronald A. Olsson. Reverse engineering of design patterns from java source
code. In Proceedings of the 21st IEEE/ACM International Conference on Automated
Software Engineering, ASE ’06, pages 123–134, Tokyo, Japan, September 2006. IEEE
Computer Society. doi:10.1109/ASE.2006.57.

[168] Jason McC Smith. An elemental design pattern catalog. Technical Report 02-040, Dept.
of Computer Science, Univ. of North Carolina - Chapel Hill, December 2002. URL:
ftp://ftp.cs.unc.edu/pub/publications/techreports/02-040.pdf.

[169] Jason McC. Smith and David Stotts. Elemental Design Patterns: A formal semantics
for composition of OO software architecture. In Proceedings of the 27th Annual NASA
Goddard Software Engineering Workshop, SEW-27’02, pages 183–190, Greenbelt, Maryland,
USA, December 2002. IEEE Computer Society. doi:10.1109/SEW.2002.1199472.

[170] Jason McC. Smith and David Stotts. SPQR: Flexible automated design pattern extraction
from source code. In Proceedings of the 18st IEEE/ACM International Conference on
Automated Software Engineering, ASE ’03, pages 215–224, Montreal, Canada, October
2003. IEEE Computer Society. doi:10.1109/ASE.2003.1240309.

[171] Jason McC Smith and David Stotts. SPQR: Formalized design pattern detection and
software architecture analysis. Technical Report TR05-012, Dept. of Computer Science,
University of North Carolina, Chapel Hill, NC, USA, May 2005. URL: http://rockfish.
cs.unc.edu/pubs/TR05-012.pdf.

[172] Software Composition Group. FM3. Web site, 2009. URL: http://scg.unibe.ch/wiki/
projects/fame/fm3.

[173] Software Composition Group. MSE. Web site, 2009. URL: http://scg.unibe.ch/wiki/
projects/fame/mse.

[174] Software Composition Group. Moose. Web Site, 2010. URL: http://www.
moosetechnology.org/.

[175] Software Engineering Research Center. Research projects: Design patterns. Web Site, 2012.
URL: http://research.ciitlahore.edu.pk/Groups/SERC/DesignPatterns.aspx.

[176] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse
Modeling Framework, 2nd Edition. The Eclipse Series. Addison-Wesley Professional, 2nd
edition, December 2008. URL: http://www.informit.com/store/product.aspx?isbn=
9780321331885.

190

http://dx.doi.org/10.1145/288195.288207
http://dx.doi.org/10.1145/1321631.1321746
http://dx.doi.org/10.1109/ASE.2006.57
ftp://ftp.cs.unc.edu/pub/publications/techreports/02-040.pdf
http://dx.doi.org/10.1109/SEW.2002.1199472
http://dx.doi.org/10.1109/ASE.2003.1240309
http://rockfish.cs.unc.edu/pubs/TR05-012.pdf
http://rockfish.cs.unc.edu/pubs/TR05-012.pdf
http://scg.unibe.ch/wiki/projects/fame/fm3
http://scg.unibe.ch/wiki/projects/fame/fm3
http://scg.unibe.ch/wiki/projects/fame/mse
http://scg.unibe.ch/wiki/projects/fame/mse
http://www.moosetechnology.org/
http://www.moosetechnology.org/
http://research.ciitlahore.edu.pk/Groups/SERC/DesignPatterns.aspx
http://www.informit.com/store/product.aspx?isbn=9780321331885
http://www.informit.com/store/product.aspx?isbn=9780321331885

[177] Krzysztof Stencel and Patrycja Wegrzynowicz. Detection of diverse design pattern variants.
In Proceedings of the 15th Asia-Pacific Software Engineering Conference, APSEC ’08,
pages 25–32, Beijing, China, December 2008. IEEE Computer Society. doi:10.1109/
APSEC.2008.67.

[178] M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal
of the Royal Statistical Society. Series B (Methodological), 36(2):111–147, 1974. URL:
http://www.jstor.org/stable/2984809.

[179] Detlef Streitferdt, Christian Heller, and Ilka Philippow. Searching design patterns in
source code. In Proceedings of the 29th Annual International Computer Software and
Applications Conference, COMPSAC ’05, pages 33–34, Hong Kong, China, September
2005. IEEE Computer Society. doi:10.1109/COMPSAC.2005.135.

[180] The Eclipse Foundation. Eclipse Java development tools (JDT). Web site, 2011. http:
//www.eclipse.org/jdt/. URL: http://www.eclipse.org/jdt/.

[181] The Eclipse Foundation. Eclipse Modeling Framework Project (EMF). Web Site, 2011.
URL: http://www.eclipse.org/modeling/emf/.

[182] The Eclipse Foundation. EclipseLink. Web site, 2011. http://www.eclipse.org/
eclipselink/. URL: http://www.eclipse.org/eclipselink/.

[183] The Eclipse Foundation. GEF (Graphical Editing Framework). Web site, 2011. URL:
http://www.eclipse.org/gef/.

[184] The Eclipse Foundation. JFace. Web site, 2011. http://wiki.eclipse.org/JFace. URL:
http://wiki.eclipse.org/JFace.

[185] The Eclipse Foundation. SWT: The Standard Widget Toolkit. Web site, 2011. http:
//www.eclipse.org/swt/. URL: http://www.eclipse.org/swt/.

[186] The Eclipse Foundation. Eclipse, 2012. URL: http://www.eclipse.org/.

[187] The XML Schema Working Group. XML Schema. Web Site, 2004. http://www.w3.org/
XML/Schema. URL: http://www.w3.org/XML/Schema.

[188] Sander Tichelaar. Modeling Object-Oriented Software for Reverse Engineering and Refac-
toring. PhD thesis, University of Bern, 2001.

[189] Sander Tichelaar. FAMIX 2.2. Web page, 2012. URL: http://www.moosetechnology.
org/docs/others/famix2.2.

[190] Sander Tichelaar. Famix 3.0 core beta. Web page, 2012. URL: http://www.
moosetechnology.org/docs/others/famix3.0.

[191] Scott R. Tilley, Kenny Wong, Margaret-Anne D. Storey, and Hausi A. Müller. Pro-
grammable reverse engineering. International Journal of Software Engineering and Knowl-
edge Engineering (IJSEKE), 4:501–520, August 1994. doi:10.1142/S0218194094000246.

[192] Christian Tosi, Marco Zanoni, Francesca Arcelli, and Claudia Raibulet. Joiner: from
subcomponents to design patterns. In Proceedings of the DPD4RE Workshop, co-located
event with IEEE WCRE 2006 Conference, Benevento, Italy, 2006. IEEE Computer Society.

191

http://dx.doi.org/10.1109/APSEC.2008.67
http://dx.doi.org/10.1109/APSEC.2008.67
http://www.jstor.org/stable/2984809
http://dx.doi.org/10.1109/COMPSAC.2005.135
http://www.eclipse.org/jdt/
http://www.eclipse.org/jdt/
http://www.eclipse.org/jdt/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/eclipselink/
http://www.eclipse.org/eclipselink/
http://www.eclipse.org/eclipselink/
http://www.eclipse.org/gef/
http://wiki.eclipse.org/JFace
http://wiki.eclipse.org/JFace
http://www.eclipse.org/swt/
http://www.eclipse.org/swt/
http://www.eclipse.org/swt/
http://www.eclipse.org/
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://www.moosetechnology.org/docs/others/famix2.2
http://www.moosetechnology.org/docs/others/famix2.2
http://www.moosetechnology.org/docs/others/famix3.0
http://www.moosetechnology.org/docs/others/famix3.0
http://dx.doi.org/10.1142/S0218194094000246

[193] Christian Tosi, Marco Zanoni, and Stefano Maggioni. A design pattern detection plugin
for eclipse. In Angelo Gargantini, editor, Proceedings of the 4th Italian Workshop on
Eclipse Technologies (Eclipse-IT 2009), Bergamo, Italy, September 2009. Eclipse Italian
Community. URL: http://eit09.unibg.it/pdfs/99990089.pdf.

[194] Nikolaos Tsantalis. Dpd tool results. Web Site, 2006. http://java.uom.gr/~nikos/
pattern-detection.html.

[195] Nikolaos Tsantalis, Alexander Chatzigeorgiou, George Stephanides, and Spyros T. Halkidis.
Design pattern detection using similarity scoring. IEEE Transactions on Software Engi-
neering, 32(11):896–909, 2006. doi:10.1109/TSE.2006.112.

[196] University of Waikato. Weka. Web site, 2009. URL: http://www.cs.waikato.ac.nz/ml/
weka/.

[197] C. J. van Rijsbergen. Information Retrieval. Butterworth-Heinemann, 2nd edition, 1979.
URL: http://www.dcs.gla.ac.uk/Keith/Preface.html.

[198] W3C. SPARQL query language for RDF. Web site, January 2008. URL: http://www.w3.
org/TR/rdf-sparql-query/.

[199] Wei Wang and Vassilios Tzerpos. Design pattern detection in eiffel systems. In Proceedings
of the 12th Working Conference on Reverse Engineering, WCRE ’05, pages 165–174,
Pittsburgh, Pennsylvania, USA, November 2005. IEEE Computer Society. doi:10.1109/
WCRE.2005.14.

[200] Lothar Wendehals. Improving design pattern instance recognition by dynamic analysis. In
Proceedings of the ICSE 2003 Workshop on Dynamic Analysis, WODA 2003, pages 29–32,
Portland, Oregon, USA, May 2003. Jonathan Cook, New Mexico State University. URL:
http://www.cs.nmsu.edu/~jcook/woda2003/woda2003.pdf.

[201] Rebecca J. Wirfs-Brock. Valuing design repair. IEEE Software, 25(1):76–77, January-
February 2008. doi:10.1109/MS.2008.26.

[202] Yiling Yang, Xudong Guan, and Jinyuan You. CLOPE: a fast and effective clustering
algorithm for transactional data. In Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’02, pages 682–687, Edmonton,
Alberta, Canada, July 2002. ACM. doi:10.1145/775047.775149.

[203] Marco Zanoni. MARPLE: discovering structured groups of classes for design pattern
detection. Master’s thesis, Università degli studi di Milano-Bicocca, Milano, Italy, July
2008.

[204] Zhi-Xiang Zhang, Qing-Hua Li, and Ke-Rong Ben. A new method for design pattern mining.
In Proceedings of 2004 International Conference on Machine Learning and Cybernetics,
volume 3 of ICMLC 2004, pages 1755–1759, Shanghai, China, August 2004. IEEE Computer
Society. doi:10.1109/ICMLC.2004.1382059.

192

http://eit09.unibg.it/pdfs/99990089.pdf
http://java.uom.gr/~nikos/pattern-detection.html
http://java.uom.gr/~nikos/pattern-detection.html
http://dx.doi.org/10.1109/TSE.2006.112
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.dcs.gla.ac.uk/Keith/Preface.html
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://dx.doi.org/10.1109/WCRE.2005.14
http://dx.doi.org/10.1109/WCRE.2005.14
http://www.cs.nmsu.edu/~jcook/woda2003/woda2003.pdf
http://dx.doi.org/10.1109/MS.2008.26
http://dx.doi.org/10.1145/775047.775149
http://dx.doi.org/10.1109/ICMLC.2004.1382059

	Introduction
	Techniques and Tools for DPD
	Classification of design pattern detection approaches
	Design pattern detection tools
	Static analysis with exact recognition
	Static analysis and approximated recognition
	Dynamic analysis with exact recognition
	Dynamic analysis with approximated recognition
	Details about the reported tools

	Theoretical design pattern detection approaches
	Static analysis with exact recognition
	Static analysis with approximated recognition
	Dynamic analysis with exact recognition

	Machine learning and design pattern detection
	Conclusion

	Model driven reverse engineering
	Reverse engineering models
	Knowledge Discovery Metamodel
	FAMIX
	Dagstuhl Middle Model
	Pattern and Abstract-level Description Language
	MARPLE meta-model
	Other models

	Models for design pattern detection tools
	Structure of DPDX
	Diffusion

	Conclusion

	An introduction to MARPLE
	Architecture
	Technologies
	Java Development Tools
	Eclipse Modeling Framework
	Graphical Editing Framework

	Information Detector Engine
	Micro Structures Detector
	Metrics Collector

	Software Architecture Reconstruction
	Distributed MARPLE
	Conclusion

	Micro structures
	Elemental Design Patterns
	Create Object EDP
	Delegate EDP
	Elemental Design Pattern catalog

	Micro Patterns
	Restricted Creation Micro pattern
	Designator Micro Pattern
	Micro Patterns catalog

	Design Pattern Clues
	A Catalogue of Design Pattern Clues

	Example of micro-structures in a design pattern instance
	Design Pattern Clues
	Elemental Design Patterns

	Conclusion

	Joiner: extracting pattern instances from source code
	Matching
	Merging
	DP representation model
	Merging the mappings

	Detection rules
	Creational Design Patterns
	Structural Design Patterns

	Conclusion

	Classifier: ranking pattern candidates
	Introduction to the learning approach
	Motivation
	Evolution of the methodology
	Micro-structures representation
	Choice of the micro-structures
	Single level patterns

	User experience
	Conclusion

	Experimentations with MARPLE-DPD
	Experiments
	Algorithms
	Projects
	Patterns
	Parameter optimization

	Results
	Singleton
	Adapter
	Composite
	Decorator
	Factory Method

	Threats to validity and Limitations
	Design pattern definitions
	Granularity
	Libraries
	Time and computational resources

	Conclusion

	Conclusions and Future Developments
	Future work

	Joiner rules for non-experimented patterns
	Creational Design Patterns
	Abstract Factory
	Builder
	Prototype

	Structural Design Patterns
	Bridge
	Facade
	Flyweight
	Proxy

	Behavioral Design Patterns
	Chain of Responsibility
	Command
	Interpreter
	Iterator
	Mediator
	Memento
	Observer
	State
	Strategy
	Template Method
	Visitor

	Setup parameters for the experimented algorithms
	Setup of the genetic algorithm parameters
	Parameter values for the best result setups
	Singleton
	Adapter
	Composite
	Decorator
	Factory Method

	Comparison with other tools
	Adapter
	Singleton
	Composite
	Decorator
	Factory Method
	Conclusion

