
SCUOLA DI DOTTORATO

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

DEPARTMENT OF COMPUTER SCIENCES, SYSTEMS AND COMMUNICATIONS

PhD program in Computer Science Cycle XXXIII

COMBINATORIAL METHODS FOR THE
ANALYSIS OF RELATED GENOMIC

SEQUENCES

Giulia Bernardini
(​827377​)

Tutor:​ ​Prof. Leonardo Mariani

Supervisor:​ ​Prof. Paola Bonizzoni

Co-supervisor:​ ​Prof. Nadia Pisanti

Coordinator:​ ​Prof. Leonardo Mariani

ACADEMIC YEAR 2019/2020

Acknowledgements

First and foremost, I would like to thank my supervisors: Paola, who welcomed me
in her lab three years ago and made me constantly grow over the years, and Nadia,
who is the reason why I undertook my academic journey, supported me from the very
beginning and guided me through to the end. None of this would have been possible
without you.

A heartfelt thanks goes to another two great mentors of mine, Solon and Pawe l,
for their guidance, their invaluable insights on a wide range of subjects and for the
countless enriching conversations I had with them.

I deeply thank my awesome colleagues and office mates Marco, Luca, Simone,
Murray and Stefano for making my workplace such a fun and pleasant place to
be. This last, crazy year has been a bit empty without your company. I also thank
Gianluca and Raffaella for the useful discussions I had with them.

A special thanks to all the other collaborators with whom I carried out an always
stimulating research and spent some quality time too: Grigorios, Roberto, Costas,
Alessio, Leen, Giovanna, Gabriele, Giulia, Garance, Michelle, to name a few.

It goes without saying that I am most grateful to my whole family, which has always
supported and encouraged me, and to Chiara and Alessandro, who are the bedrocks
of my life.

Contents

1 Introduction 7
1.1 Part I . 8
1.2 Part II . 9
1.3 Roadmap and Synopsis of the Publications 11

1.3.1 Elastic-Degenerate String Matching via Matrix Multiplication . . 11
1.3.2 Approximate Pattern Matching on Elastic-Degenerate Text . . . 12
1.3.3 Comparing Degenerate Strings 12
1.3.4 A Rearrangement Distance for Fully-Labelled Trees 13
1.3.5 Triplet-Based Similarity Score for Tumor Phylogenies 14
1.3.6 Incomplete Directed Perfect Phylogeny in Linear Time 14

1.4 List of Publications . 15

I Degenerate Strings 22

2 Elastic-Degenerate String Matching via Matrix Multiplication 23
2.1 Introduction . 24
2.2 Preliminaries . 27
2.3 AP Conditional Lower Bound . 29
2.4 EDSM Conditional Lower Bound . 31
2.5 An Õ(nmω−1 +N)-time Algorithm for EDSM 34

2.5.1 Type 1 Strings . 36
2.5.2 Type 2 Strings . 42
2.5.3 Type 3 Strings . 44
2.5.4 Wrapping Up . 47

2.6 Final Remarks . 47

3 Approximate Pattern Matching on Elastic-Degenerate Text 48
3.1 Introduction . 48
3.2 Preliminaries . 50
3.3 An Algorithm for kE-EDSM . 52

3.3.1 Algorithm kE-bord . 54
3.3.2 Algorithm kE-ext . 58

3.4 An Algorithm for kH -EDSM . 62
3.5 Extension to General Integer Alphabets 64

3

3.6 Final Remarks . 65

4 Comparing Degenerate Strings 66
4.1 Introduction . 67
4.2 Preliminaries . 68
4.3 GD String Comparison for Small Alphabets Using Automata 70
4.4 GD String Comparison for Integer Alphabets 71
4.5 Computing Palindromes in GD Strings 76

4.5.1 Algorithms for Computing GD Palindromes 77
4.5.2 Computing GD Palindromes in Protein Sequences 78

4.6 A Conditional Lower Bound under SETH 79
4.7 Concluding Remarks and Open Problems 80

II Phylogenetic Trees 81

5 A Rearrangement Distance for Fully-Labelled Trees 82
5.1 Introduction . 82
5.2 Preliminaries . 84
5.3 Permutation Distance . 87

5.3.1 Polynomial Time Algorithm . 87
5.3.2 Reduction to Bipartite Maximum Matching 89
5.3.3 Reduction from Bipartite Maximum Matching 93

5.4 Rearrangement Distance . 94
5.4.1 A 4-Approximation Algorithm for Binary Trees 96
5.4.2 A General Constant-Factor Approximation Algorithm 98
5.4.3 Step 1 . 100
5.4.4 Step 2 . 101
5.4.5 Step 3 . 102

5.5 Fixed parameter tractability . 103

6 MP3: Triplet-Based Similarity Score for Tumor Phylogenies 105
6.1 Introduction . 105
6.2 Methods . 107

6.2.1 Extension to fully labeled trees and multi-labeled trees 107
6.2.2 Extension to poly-occurring labels 109
6.2.3 Similarity measure between trees 109

6.3 Results . 111
6.3.1 Simulated Data . 111
6.3.2 Measures comparison . 111
6.3.3 Application to clustering of trees 113
6.3.4 Application to real dataset . 115

6.4 Discussion . 117

4

7 Incomplete Directed Perfect Phylogeny in Linear Time 118
7.1 Introduction . 119
7.2 Preliminaries . 121
7.3 (N,N)-DC in O(N2 logN) Total Update Time and O(N) Time per Query126
7.4 (N,N)-DC in O(N2) Total Update Time and O(N) Time per Query . . 127

III Appendices 131

A Fundamental Definitions and Data Structures 132
A.1 Strings . 132
A.2 Graphs and Data Structures . 134

B Additional Experiments of Chapter 6 136
B.1 Effect of label sliding . 137
B.2 Base tree for poly-occurring label experiment 137
B.3 Base trees for Exp1 and Exp2 . 138
B.4 Base trees for Clustering experiment . 139
B.5 Trees for real data experiment . 140
B.6 Example of computation of MP3 . 142

C Combinatorial String Dissemination 145
C.1 Introduction . 146

C.1.1 Model and Settings . 146
C.1.2 Our Contributions . 147

C.2 Related Work . 150
C.2.1 Data Sanitization . 150
C.2.2 Data Anonymization . 153

C.3 Preliminaries . 154
C.4 TFS-ALGO . 156
C.5 PFS-ALGO . 160
C.6 MCSR Problem, MCSR-ALGO, and Implausible Pattern Elimination 163

C.6.1 The MCSR Problem . 163
C.6.2 MCSR-ALGO . 165
C.6.3 Eliminating Implausible Patterns 167

C.7 ETFS-ALGO . 168
C.8 Experimental Evaluation . 171

C.8.1 TPM vs. PH . 174
C.8.2 TPM vs. BA . 176
C.8.3 TM vs. TMI . 180
C.8.4 TFS-ALGO vs. ETFS-ALGO 183

D String Sanitization Under Edit Distance 185
D.1 Introduction . 185
D.2 ETFS-DP: An O(kn2)-time Algorithm for ETFS 187

D.2.1 Dynamic Programming . 188
D.2.2 Construction of XED . 190

5

D.2.3 Wrapping up . 192
D.3 A Conditional Lower Bound for ETFS 192
D.4 Final Remarks . 198

E Reverse-Safe Text Indexing 199
E.1 Introduction . 199
E.2 Preliminaries . 202
E.3 A z-RSDS for Text Indexing . 203
E.4 Constructing z-RSDS . 205
E.5 Engineering the z-RC Algorithm . 209

E.5.1 Improvement I: Reducing the BS Interval 209
E.5.2 Improvement II: Checking Prefixes of S 209
E.5.3 Improvement III: Sparse LU Decomposition 210

E.6 Implementations and Experiments . 210
E.6.1 Implementations . 210
E.6.2 Experimental Setup and Datasets 211
E.6.3 Data Utility . 214
E.6.4 Runtime . 215
E.6.5 Disregarded Prefixes . 216

E.7 Application to Adversary Models . 216
E.7.1 Adversary Model I: Positive Adversarial Knowledge 216
E.7.2 Adversary Model II: Negative Adversarial Knowledge 219
E.7.3 Generalization to a Collection of Patterns 220

E.8 A z-RSDS for Decision Queries . 221
E.9 Final Remarks . 222

F Hide and Mine in Strings 224
F.1 Introduction . 224
F.2 Related Work . 228
F.3 Preliminaries and Problem Statement 229
F.4 HMd is NP-complete . 229

F.4.1 The Unique-Weights Bin Packing problem 230
F.4.2 Overview of the Reduction from UWBP to HMd 230
F.4.3 Construction of an Instance of HMd 231
F.4.4 Correctness . 232

F.5 HM is Hard to Approximate . 233
F.6 Exact Algorithms for HM . 235
F.7 Greedy Heuristic for HM . 238
F.8 Experiments . 239

6

Chapter 1

Introduction

The recent development of computational pan-genomics is posing new challenges to
computer scientists, requiring, among other things, to lay solid theoretical foundations for
this new kind of biological data. The availability of a large number of sequenced genomes
impacts many different application domains, ranging from the study of microbial and
viral genomes to human genetic diseases, cancer and phylogenies. Motivated by the
importance of the applications and by the novelty of the field, the main goal of this thesis
is to develop new algorithmic frameworks to deal with (i) a convenient representation
of a set of similar genomes and (ii) phylogenetic data, with particular attention to the
increasingly accurate tumor phylogenies.

With the exception of Chapter 6, which is more practice-oriented, the focus of the
whole work is mainly theoretical, the intent being to lay firm algorithmic foundations
for the problems by investigating their combinatorial aspects, rather than to provide
practical tools for attacking them. The initial theoretical studies have been completed,
whenever relevant, with either experimentation on real data or proof-of-concept trials
(see Chapters 4, 6).

To provide deep theoretical insights on a computational problem is fundamental, as
this allows a rigorous analysis of existing methods, identifying their strong and weak
points, providing details on how they perform and helping to decide which problems
need to be further addressed. In addition, it is often the case where new theoretical
results (algorithms, data structures and reductions to other well-studied problems) can
be either directly applied or adapted to fit the model of a practical problem, or at least
they serve as inspiration for developing new practical tools.

In this dissertation, particular attention is devoted to exploring the connections
between the considered computational biological problems and other abstract problems
that arise in different contexts. The virtue of such approach is to provide, from time
to time, new algorithmic techniques that take advantage of existing efficient solutions
to the more general problems, or conditional lower bounds for the complexity of the
original problems.

7

1.1 Part I

The first part of this thesis is devoted to methods for handling an Elastic-Degenerate
(ED) text, a computational object that compactly encodes a collection of similar texts.
The study of such an object in bioinformatics is motivated by the advantages of
representing a collection of closely related genomes, including their variation, as a
pan-genome. A pan-genome is, in general, any collection of genomic sequences to be
analyzed jointly or to be used as a reference for a population. Traditionally, a reference
genome is a single genomic sequence used as a representative of its species, to which,
for example, fragments of newly sequenced genomes are mapped. If a single annotated
reference genome generally provides a good approximation of any individual genome,
in loci with polymorphic variations mapping and sequence comparison often fail their
purposes, and a pan-genome would be a better reference text.

One of the advantages of representing a pan-genome as an ED text is that it can
be straightforwardly obtained from files in the Variant Call Format (VCF), which has
become the standard way of storing variants for pan-genomes and in next-generation
sequencing. The VCF format was initially developed for the 1000 Genomes Project [336],
and has also been adopted by other projects like UK10K [109] and dbSNP [323]. Unlike
other possible representations of a pan-genome proposed in the literature, the string-like
structure of ED texts makes it possible to read them sequentially, on-line, and thus to
allow on-line algorithms for performing crucial tasks like pattern matching. The benefit
of solving this problem on-line is to avoid the burden of building disk-based indexes
or rebuilding them with every update in the sequences. Actually, the usage of indexes
carries the assumption that the data is static or changes very infrequently, something
that cannot always be assumed in the context of pan-genomics.

In Chapter 2 (paper [58]) we address the fundamental problem of matching a pattern
on an ED text on-line. We start by conducting an exhaustive and enlightening analysis
of the problem, by proving a conditional lower bound both for the problem itself and
for the sub-problem constituting the core of all the on-line algorithmic frameworks
proposed in the literature so far. Not only give these results very detailed insights on
the inherent complexity of the problem, they have also inspired us to design an even
faster algorithm that combines string periodicity, fast Fourier transform and fast matrix
multiplication. As this is the first time that these tools are combined together in string
algorithms, and an important building block in our solution is a new substring-selection
method that might find applications in other problems, the scope of this result seems
to extend beyond the mere solution of the pattern matching problem.

As genomic sequences are typically endowed with polymorphisms and sequencing
errors, the existence of an exact occurrence of a pattern in an ED text encoding a set
of similar genomes is often too strong an assumption. This issue brought us to consider
the approximate version of the problem, and to develop a combinatorial algorithm to
perform approximate pattern matching on an ED text. The resulting publication is
presented in Chapter 3 (paper [60]).

After working on the problem of matching a string in an ED text, it was only natural
to consider the problem of matching two ED texts. The work presented in Chapter 4
(papers [27, 28]) is a first step in that direction, as it attacks the problem of comparing
two Generalized degenerate (GD) strings, a restricted version of ED text that models

8

a gapless multiple sequence alignment. The main result, an asymptotically optimal
algorithm for deciding whether two GD strings have a non-empty intersection, can
be used as a basic tool in various GD string processing applications. We apply it to
compute all the palindromes of a GD string, a task needed in biological applications to
identify hairpins, patterns that occur in single-stranded DNA or, more commonly, in
RNA. In the spirit of exploring the connections with other problems, we complement
our algorithm for decomposing a GD string into palindromic factors with a non-trivial
conditional lower bound, and give an alternative solution to the GD string intersection
problem that employs an automata-based approach.

1.2 Part II

The second part of this thesis focuses on another kind of biological data: phylogenetic
trees. A phylogeny is meant to describe the evolutionary relationships among a group
of items, be they species of living beings, genes, natural languages, ancient manuscripts
or cancer cells. Depending on the characteristics of the evolutionary relationships one
needs to describe, phylogenies are modelled, on a case-by-case basis, as trees (either
rooted or not) or directed acyclic graphs. The simplest mathematical object that has
been historically used to describe the evolution over time of a set of species is a rooted,
leaf-labelled tree, whose leaves are in a one-to-one correspondence with the species.

While a leaf-labelled tree is a reasonable description of the evolutionary history of
a set of living species whose ancestors (corresponding to internal nodes) are extinct,
this model does not fit well with the evolution of a tumor, in which cancer cells with
“ancestral” mutations are alive at the very same time as their descendants. Instead,
the simplest mathematical object that may be used to represent the evolution of
a tumor is a rooted fully-labelled tree, whose entire set of nodes is in a one-to-one
correspondence with the mutations of cancer cells. The motivation for studying such
object is that recent methods to infer the evolution and progression of cancer have
made it possible to develop targeted therapies for treating the disease. As discussed
in several studies, understanding the history of accumulation and the prevalence of
somatic mutations during cancer progression is a fundamental step to devise new
treatment strategies. Given the importance of the task, a multitude of methods for
cancer phylogeny reconstruction have been developed over the years, encouraged by
the diversity of the available data; in particular, we are witnessing a shift from bulk
sequencing data towards single-cell data and hybrid approaches.

Having many different tools accomplishing the same task requires solid methods
to compare their results. While there is an ample literature on measures of distance
for classical phylogenies (modelled as leaf-labelled trees), the investigation of methods
for comparing tumor phylogenies is still in its infancy. Chapters 5 and 6 study the
problem of comparing tumor phylogenies under two different points of view. The results
reported in Chapter 5 (papers [52, 51]) attack the problem from a purely combinatorial
point of view. In [52] we take the simplest possible model of tumor phylogeny, a
fully-labelled rooted tree: we assume that the two trees to be compared have the same
number of nodes and are labelled by the same set of mutations, meaning that there is a
bijection between the nodes of each tree and the set of labels. We define a measure of
distance based on two operations on the trees. Like other similar-in-spirit rearrangement

9

distances for leaf-labelled trees, such distance turns out to be NP-hard to decide, while
the distances defined with respect to, in turn, only one of the two operations, are
polinomially computable.

The follow-up paper [51] stemmed from a meaningful discussion that took place
after the presentation of [52] at the conference CPM 2019. The contribution of the
second paper is twofold. We start by studying in depth one of the restricted versions
of the rearrangement distance, providing a two-way fine-grained reduction from (and
to) the problem of computing the maximum cardinality matching in multiple bipartite
graphs. In one direction, this reduction provides a method for computing the distance
that takes advantage from the highly-efficient solutions to the maximum matching
problem; in the other direction, the reduction gives insights on the time complexity of
the problem. The other main contribution is a constant-factor approximation algorithm
for the actual rearrangement distance, which has the additional merit of offering a
clearer understanding of the structure of the problem.

If in Chapter 5 we took the simplest (and perhaps unrealistic) model of tumor
phlyogeny, as the main intent was to unveil the combinatorial structure of the problem,
rather than to provide an actual method for comparing real phylogenies, in Chapter 6
(paper [100]) we radically change our point of view, and aim at designing a comparison
method that is meaningful in practice. We thus tweak the model of tumor phylogeny
so as to reflect the characteristics of the real cancer phylogenies outputted by most
inferring methods, and consider fully-multi-labelled trees with poly-occurring labels,
meaning that not only can a node of a tree be labelled by multiple mutations, but
each mutation may label more than one node. With the goal of addressing the major
limitations of the existing comparison methods, we then define a similarity score inspired
by the triplet distance for leaf-labelled trees, and perform an extensive experimental
study to show its effectiveness and advantages with respect to other tools.

A problem which is closely related to the comparison of tumor phylogenies is to
reconstruct them from the binary data given, for example, by single-cell sequencing
methods. As such data are often incomplete, our attention has turned to a longstanding
problem in computational phylogenetics, for which an asymptotically optimal solution
was hitherto unknown: to decide whether a collection of species, described by a set
of characters with some missing data, can be arranged in a leaf-labelled phylogenetic
tree that enjoys particular properties. Previous solutions to a specific formulation of
this problem follow a graph theoretic approach, and rely on complex, pre-existing data
structures used as a blackbox. In line with (almost all) the other works presented in this
dissertation, the research objective in this paper is to reveal and use the combinatorial
properties of the problem to obtain faster algorithms. This way of proceeding led us to
describe a fairly simple data structure, ad-hoc for the problem, that implies the first
asymptotically optimal algorithm for the problem. This last work is still in preparation:
indeed, even if the theoretical result reported in Chapter 7 is already complete, we
believe that an experimental assessment of the algorithm would strengthen the paper.

In order not to slow down the rhythm of this dissertation, and not to bore the
reader from the very beginning with a massive preliminary section, I will assume that
they are already familiar with the most common combinatorial objects. All such basic
definitions can anyway be found in Appendix A: more specific definitions will be given
in the preliminary section of each chapter.

10

1.3 Roadmap and Synopsis of the Publications

This dissertation is divided into two parts, which are determined by the general scope
of the papers they gather. To help the reader navigate the document, each chapter
begins with a preamble containing the status of the papers it consists of (whether and
where they are published or submitted) and a schematic summary of the contents.

Part I contains the results on the analysis of degenerate strings: Chapter 2 (paper [58])
is on exact pattern matching on ED text, Chapter 3 (paper [60]) is about approximate
pattern matching on ED text, Chapter 4 (papers [28] and [27]) is on comparison between
generalized degenerate strings.

Part II gathers the results on phylogenetic trees: Chapter 5 (papers [52, 51]) is about
a rearrangement distance for comparing tumor phylogenies, Chapter 6 (paper [100])
contains the only practice-oriented result of this thesis, a similarity score for tumor
phylogenies, and Chapter 7 (paper [50]) presents an algorithm for solving the Incomplete
Directed Perfect Phylogeny in linear time.

In the rest of this introduction I will give an overview of the results included in the
main parts of the thesis, followed by a complete list of my publications. The aim of
the following sections is to help the reader get the big picture of the thesis, orientate
themselves on the document and find out which chapters might interest them. I will
highlight the computational problems addressed in each chapter with a short synopsis
and give an idea of the main algorithmic techniques they make use of, avoiding formal
definitions and without diving into details.

1.3.1 Elastic-Degenerate String Matching via Matrix Multipli-
cation

An elastic-degenerate (ED) string is a sequence of n sets of strings of total length N ,
which models a set of similar sequences, e.g., a set of closely related genomes. We call
deterministic segments the sets consisting of a single string, non-deterministic segments
the rest of the sets. Non-deterministic segments may be used to represent a position
in a DNA sequence that can have multiple possible alternatives. These are used to
encode the consensus of a population of sequences [108, 27, 165] in a multiple sequence
alignment (MSA) in the presence of insertions or deletions.

The ED string matching (EDSM) problem is to find all occurrences of a pattern of
length m in an ED text on-line, meaning that the ED text is read sequentially, segment
by segment. The EDSM problem has received some attention in the combinatorial
pattern matching community, and an O(nm1.5

√
logm+N)-time algorithm is known [31].

The standard assumption in the prior work on this question is that N is substantially
larger than both n and m (e.g., when an ED string encodes a collection of genomes,
N is the total length of all the genomes) and thus we would like to have a linear
dependency on the former. Under this assumption, the natural open problem is whether
we can decrease the 1.5 exponent in the time complexity, similarly as in the related
(but, to the best of our knowledge, not equivalent) word break problem [39]. A recent
paper [170] provides a conditional lower bound showing that, even with arbitrary
polynomial preprocessing time, an index for an ED text with n segments that can
perform queries on a pattern of length m in time O(nαmβ), for constants α and β

11

where α < 1 or β < 1, would violate the widely believed Strong Exponential Time
Hypothesis (SETH) [208, 207].

Our starting point is a different conditional lower bound for the EDSM problem, that
does not allow the construction of an index using arbitrary polynomial preprocessing time.
We use the popular combinatorial Boolean Matrix Multiplication (BMM) conjecture
stating that there is no truly subcubic combinatorial algorithm for BMM [10]. By
designing an appropriate reduction we show that a combinatorial algorithm solving the
EDSM problem in O(nm1.5−ε +N) time, for any ε > 0, refutes this conjecture. Our
reduction should be understood as an indication that decreasing the exponent requires
fast matrix multiplication.

String periodicity and fast Fourier transform are two standard tools in string
algorithms. Our main technical contribution is that we successfully combine these tools
with fast matrix multiplication to design a non-combinatorial Õ(nmω−1 + N)-time
algorithm for EDSM, where ω denotes the matrix multiplication exponent and the
Õ(·) notation suppresses polylog factors. To the best of our knowledge, we are the
first to combine these tools in string algorithms. In particular, using the fact that
ω < 2.373 [242, 362], we obtain an O(nm1.373 + N)-time algorithm for EDSM. An
important building block in our solution, that might find applications in other problems,
is a method of selecting a small set of length-` substrings of the pattern, called anchors,
so that any occurrence of a string from an ED text segment contains at least one but
not too many such anchors inside.

1.3.2 Approximate Pattern Matching on Elastic-Degenerate Text

Since genomic sequences are endowed with polymorphisms and sequencing errors, the
existence of an exact occurrence of a pattern in an ED text encoding a set of similar
genomes can result into a strong assumption. The aim of this work is to generalize the
EDSM problem allowing some approximation in the occurrences of the input pattern.
We suggest a simple on-line O(kmG+ kN)-time and O(m)-space algorithm, G being
the total number of strings in the ED text and k > 0 the maximum number of allowed
substitutions in a pattern’s occurrence, that is nonzero Hamming distance.

Our main contribution is an on-line O(k2mG+kN)-time and O(m)-space algorithm
where the type of edit operations allowed is extended to insertions and deletions as well,
that is nonzero edit distance. These results are good in the sense that for small values
of k the algorithms incur (essentially) no increase in time complexity with respect to
the O(nm2 +N)-time and O(m)-space algorithm presented in [178] for the exact case.
Our solution relies on an ad-hoc modification of the Landau-Vishkin algorithm [240]
for computing the edit distance, properly incorporated in the algorithmic framework
of [178] for exact EDSM.

1.3.3 Comparing Degenerate Strings

String comparison is the core computational task in several string-processing applications,
whether they process standard or uncertain strings. For example, to extract frequent
patterns from a single string, to find common substrings among several strings, or
to check whether a string is palindromic, one must have a tool for comparing two

12

strings. In this chapter we start looking into the problem of comparing two generalized
degenerate strings (GD strings), a restricted variant of ED strings where the ith set
contains strings of the same length ki but this length can vary between different sets.
We denote by W the sum of these lengths k0, k1, . . . , kn−1. A GD string can be used
to represent in a compact form a gapless multiple sequence alignment (MSA) of fixed
width, that is, for example, a high-scoring local alignment of multiple sequences.

Our main result is an O(N + M)-time algorithm for deciding whether two GD
strings of total sizes N and M , respectively, over an integer alphabet, have a non-empty
intersection. This result is based on a combinatorial result of independent interest:
although the intersection of two GD strings can be exponential in the total size of the
two strings, it can be represented in linear space. As proof of concept, we then apply
our string comparison tool to devise a simple algorithm for computing all palindromes
in Ŝ in O(min{W,n2}N)-time.

We complement this upper bound by showing a non-trivial Ω(n2|Σ|) lower bound
under the Strong Exponential Time Hypothesis [207, 208] for computing maximal
palindromes in Ŝ. We also show that a result, which is essentially the same as our string
comparison linear-time algorithm, can be obtained by employing an automata-based
approach.

1.3.4 A Rearrangement Distance for Fully-Labelled Trees

The problem of comparing trees representing the evolutionary histories of cancerous
tumors has turned out to be crucial, since there is a variety of different methods which
typically infer multiple possible trees. A departure from the widely studied setting of
classical phylogenetics, where trees are leaf-labelled, tumoral trees are fully labelled,
i.e., every node has a label.

In this work we provide a rearrangement distance measure between two fully-labelled
trees. This notion originates from two operations: one which modifies the topology of
the tree, the other which permutes the labels of the nodes, hence leaving the topology
unaffected. While we show that the distance between two trees in terms of each such
operation alone can be decided in polynomial time, the more general notion of distance
when both operations are allowed is NP-hard to decide.

For what concerns the distance between two trees in terms of permutation operations
alone we show, via a two-way reduction, that calculating the permutation distance
between two trees on n nodes is equivalent, up to polylogarithmic factors, to finding
the largest cardinality matching in a sparse bipartite graph. Due to the recent progress
in the area of fine-grained complexity we now know, for many problems that can be
solved in polynomial time, what is essentially the best possible exponent in the running
time, conditioned on some plausible but yet unproven hypothesis [363]. For maximum
matching, this is not the case yet, although we do have some understanding of the
complexity of the related problem of computing the max-flow between all pairs of
nodes [9, 238, 8]. So, even though our reductions do not tell us what is the best possible
exponent in the running time, they do imply that it is the same as for maximum
matching in a sparse bipartite graph. In particular, by plugging in the algorithm of
Liu and Sidford [254], we obtain an Õ(n4/3+o(1)) time algorithm for computing the
permutation distance between two trees on n nodes. The main technical novelty in our

13

reduction from permutation distance is that, even though the natural approach would
result in multiple instances of weighted maximum bipartite matching, we manage to
keep the graphs unweighted.

As for the actual rearrangement distance, we show that it is fixed-parameter tractable,
and we give a simple, linear-time 4-approximation algorithm when one of the trees
is binary. Moreover, we design a general linear-time constant-factor approximation
algorithm that does not assume that the trees are binary. The algorithm consists of
multiple phases, each of them introducing more and more structure into the currently
considered instance, while making sure that we do not pay more than the optimal
distance times some constant. To connect the number of steps used in every phase with
the optimal distance, we introduce a new combinatorial object that can be used to lower
bound the latter, inspired by the well-known algorithm for computing the majority [76].

1.3.5 Triplet-Based Similarity Score for Tumor Phylogenies

In this chapter we address the problem of comparing tumor phylognies from a more
practical point of view. Indeed, several notions of distance or similarity have recently
been proposed in the literature, but none of them has emerged as the golden standard.
We identified two major limitations in the existing methods: first, they are not sensitive
enough to detect even major differences in the topology of the trees, as we demonstrate
with ad-hoc experiments. Second, they are not able to meaningfully compare trees
where the same label is assigned to more than one node, a circumstance often occurring
in real cases.

To overcome these limitations we propose MP3, the first similarity measure for tumor
phylogenies which is able to effectively manage cases where multiple mutations can occur
at the same time and mutations can occur multiple times. Our measure is based on a
generalization of the notion of rooted triples similarity for classical phylogenies to tumor
phylogenies, modelled as multi-labeled trees (that is, where each node is labeled by a set
of labels) with poly-occurring labels (that is, each label can be assigned to more than one
node). The latter feature is needed because recent studies [239, 82] suggest widespread
recurrence and loss of mutations, and more and more methods designed to infer tumor
phylogenies considering such a possibility are starting to appear [135, 102, 101].

A comparison of MP3 with other measures shows that it is able to classify correctly
similar and dissimilar trees, both on simulated and on real data.

1.3.6 Incomplete Directed Perfect Phylogeny in Linear Time

Reconstructing the evolutionary history of a set of species is a central task in compu-
tational biology. In real data, it is often the case that some information is missing:
the Incomplete Directed Perfect Phylogeny (IDPP) problem asks, given a collection of
species described by a set of binary characters with some unknown states, to complete
the missing states in such a way that the result can be explained with a perfect directed
phylogeny. Pe’er et al. [293] proposed a solution that takes Õ(nm) time for n species
and m characters. Their algorithm relies on pre-existing dynamic connectivity data
structures: taking a closer look, we see that it operates on bipartite graphs and only
needs to deactivate nodes on one of the sides.

14

While it seems plausible that some of the known dynamic connectivity structures are
actually asymptotically more efficient on such instances, all of them are very complex,
and this is not clear. Furthermore, recently Fernández-Baca and Liu [142] performed
an experimental study of the algorithm of Pe’er et al. for IDPP [293] with the aim
of assessing the impact of the underlying dynamic graph connectivity data structure
on their solution. Specifically, they tested the use of the data structure of Holm et
al. [195] against a simplified version of the same method, and showed that, in this
context, simple data structures perform better than more sophisticated ones with better
asymptotic bounds.

We are thus motivated to look for simple, ad-hoc methods that make use of the
properties of the decremental connectivity as used in IDPP, so as to avoid the use
of sophisticated data structures as a blackbox. We start by describing a simple data
structure that dynamically maintains the connected components of a bipartite graph
with N nodes on each side, whilst vertices are removed from one side of the graph.
The starting point for our solution is an application of a version of the sparsification
technique of Eppstein et al. [136]: we define a hierarchical decomposition of the graph,
and maintain a forest representing the connected components of each subgraph in
this decomposition. This allows us to obtain an extremely simple data structure with
O(N2 logN) total update time, which we show to imply an O(nm log n) algorithm for
IDPP.

The main technical part of our paper refines this solution to shave the logarithmic
factor and thus obtain an algorithm that runs in O(nm) time, which is asymptotically
optimal under the natural assumption that the input is given as a matrix [183].

1.4 List of Publications

I have contributed to the following publications during the three years of doctoral studies.
However, only the ones marked with F constitute the basis of this dissertation. For
each of the rest of the publications, the reason for its exclusion is that its subject-area
is not closely related to the theme of this dissertation.

The papers marked with � form the other main strand of research I followed during
my PhD: combinatorial approaches to privacy-preserving data dissemination. Even if
such publications were excluded from the core of the thesis because of their field of
application, they are fully consistent with my training career, which revolves around
combinatorial algorithms on strings and tress. For completeness, these works are
included in Appendices C, D and E.

Journal Publications

1. � G. Bernardini, A. Conte, G. Gourdel, R. Grossi, G. Loukides, N. Pisanti,
S. P. Pissis, G. Punzi, L. Stougie, M. Sweering. Combinatorial Algorithms for
String Sanitization. In: ACM Transactions on Knowledge Discovery from Data
(TKDD), 2020.

2. F S. Ciccolella, G. Bernardini, L. Denti, P. Bonizzoni, M. Previtali, G. Della
Vedova. Triplet-based similarity score for fully multi-labeled trees with poly-
occurring labels. In Bioinformatics, 2020.

15

3. FM. Alzamel, L. Ayad, G. Bernardini, R. Grossi, C. S. Iliopoulos, N. Pisanti, S.
P. Pissis, G. Rosone. Comparing Degenerate Strings. In Fundamenta Informaticae,
2020.

4. L. Ayad, G. Bernardini, R. Grossi, C. S. Iliopoulos, N. Pisanti, S. P. Pissis, G.
Rosone. Longest Property-Preserved Common Factor: a New String-Processing
Framework. In Theoretical Computer Science (TCS), 2020.

5. F G. Bernardini, N. Pisanti, S. P. Pissis, G. Rosone. Approximate Pattern
Matching on Elastic-Degenerate Text. In Theoretical Computer Science (TCS),
2020.

6. L. Denti, M. Previtali, G. Bernardini, A. Schönhuth, P. Bonizzoni. MALVA:
genotyping by Mapping-free ALlele detection of known VAriants. In iScience,
2019.

Conference Publications

1. � G. Bernardini, A. Conte, G. Gourdel, R. Grossi, G. Loukides, N. Pisanti, S.
P. Pissis, G. Punzi, L. Stougie, M. Sweering. Hide and Mine in Strings: Hardness
and Algorithms. In 20th IEEE International Conference on Data Mining (ICDM
2020).

2. FG. Bernardini, P. Bonizzoni, P. Gawrychowski. On Two Measures of Distance
between Fully-Labelled Trees. In 31th Annual Symposium on Combinatorial
Pattern Matching (CPM 2020).

3. � G. Bernardini, H. Chen, G. Loukides, N. Pisanti, S. P. Pissis, L. Stougie, M.
Sweering. String Sanitization under Edit Distance. In 31th Annual Symposium
on Combinatorial Pattern Matching (CPM 2020).

4. � G. Bernardini, H. Chen, G. Fici, G. Loukides, S. P. Pissis. Reverse-Safe
Data Structures for Text Indexing. In 2020 Proceedings of the Twenty-Second
Workshop on Algorithm Engineering and Experiments (ALENEX 2020).

5. � G. Bernardini, H. Chen, A. Conte, R. Grossi, G. Loukides, N. Pisanti, S.
P. Pissis, G. Rosone. String Sanitization: A Combinatorial Approach. In Euro-
pean Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML/PKDD 2019).

6. F G. Bernardini, P. Gawrychowski, N. Pisanti, S. P. Pissis, G. Rosone. Even
Faster Elastic-Degenerate String Matching via Fast Matrix Multiplication. In 46th
International Colloquium on Automata, Languages and Programming (ICALP
2019).

7. FG. Bernardini, P. Bonizzoni, G. Della Vedova, M. Patterson. A rearrangement
distance for fully-labelled trees. In 30th Annual Symposium on Combinatorial
Pattern Matching (CPM 2019).

16

8. L. Ayad, G. Bernardini, R. Grossi, C. S. Iliopoulos, N. Pisanti, S.P. Pissis, G.
Rosone. Longest Property-Preserved Common Factor. In String Processing and
Information Retrieval (SPIRE 2018).

9. F M. Alzamel, L. Ayad, G. Bernardini, R. Grossi, C. S. Iliopoulos, N. Pisanti,
S. P. Pissis, G. Rosone. Degenerate String Comparison and Applications. In
Conference on Algorithms in Bioinformatics (WABI 2018).

10. F G. Bernardini, N. Pisanti, S.P. Pissis, G. Rosone. Pattern Matching on
Elastic-Degenerate Text with Errors. In String Processing and Information
Retrieval (SPIRE 2017).

Submitted

1. F G. Bernardini, P. Gawrychowski, N. Pisanti, S. P. Pissis, G. Rosone. Elastic-
Degenerate String Matching via Fast Matrix Multiplication. Submitted to SIAM
Journal on Computing (SICOMP), 2020.

2. � G. Bernardini, H. Chen, G. Fici, G. Loukides, S. P. Pissis. Reverse-Safe
Data Structures for Text Indexing. Submitted to ACM Journal of Experimental
Algorithmics (JEA), 2020

Work in progress

1. � G. Bernardini, A. Conte, G. Gourdel, R. Grossi, G. Loukides, N. Pisanti, S.
P. Pissis, G. Punzi, L. Stougie, M. Sweering. Hide and Mine in Strings: Hardness
and Algorithms. To be submitted to IEEE Transactions on Knowledge and Data
Engineering (TKDE), 2020

2. G. Bernardini, G. Fici, P. Gawrychowski, S. P. Pissis. Substring Complexity in
Sublinear Space.

3. F G. Bernardini, P. Gawrychowski, P. Bonizzoni. Incomplete Directed Perfect
Phylogeny in Linear Time.

17

List of Figures

2.1 An occurrence of S in P generated by an anchor 40
2.2 An occurrence of S in P corresponds to a triple 40

3.1 Example of execution of kE-bord . 58
3.2 Example of execution of kE-ext . 60

4.1 Multiple sequence alignment and Local Gapless Alignment 67
4.2 GD string obtained from a local gapless alignment 67
4.3 The DFA for L(R̂) . 71
4.4 The DFA for L(Ŝ) . 71
4.5 The product DFA for L(R̂) ∩ L(Ŝ) . 71

5.1 Example of rearrangement distance between two trees 86
5.2 Example of heavy path decomposition 89
5.3 Graphs of type 1 and type 3 . 90
5.4 Reduction from Bipartite Maximum Matching 94
5.5 Reduction from 3D matching . 95
5.6 The four steps of the approximation algorithm. 99
5.7 Pairing of elements of a multiset . 99
5.8 Family partition of two forests . 101
5.9 The four steps of the approximation algorithm 102

6.1 Rooted triplet on labels (a, c, e) . 107
6.2 The five possible configurations for the minimal tree topology induced

by three nodes. 107
6.3 The four additional possible configurations for the minimal tree topology

of multi-labeled trees induced by three nodes. 109
6.4 Effect of a node that ascends from leaf to child of the root and effect of

label duplication on the similarity scores. 112
6.5 Results for the first experimental configuration 114
6.6 Results for the second experimental configuration 115
6.7 Results for the clustering experiment . 116
6.8 Similarities between the manually curated trees and trees inferred by

different tools . 117

7.1 The decomposition tree of K4,4. 126

18

7.2 Effect of deactivating a character on the connected components. 128
7.3 The auxiliary graph of a node of the decomposition tree after deactivating

a character. 129

B.1 Similarity scores for the second experimental setting 136
B.2 Effect of a label sliding from left to right on the lowest level of a binary

tree. 137
B.3 Base tree used for evaluating the effect of poly-occurring labels on the

similarity scores. 137
B.4 Base trees used in Experiments 1 and 2. 138
B.5 Base trees used in the clustering experiment. 139
B.6 Trees used in the experiment on real data from [168] 140
B.7 Trees used in the experiment on real data from [134] 141
B.8 Edge case tree used in the experiment on real data from [134] 142
B.9 Two tumor progression trees. 143
B.10 Minimal tree topology of each triplet of nodes in Tree A. 143
B.11 Minimal tree topology of each triplet of nodes in Tree B. 144
B.12 Minimal tree topologies shared between Tree A and Tree B. 144

C.1 Illustration of the rules of TFS-ALGO 156
C.2 Utility evaluation of TPM vs. PH . 175
C.3 Runtime, distortion and number of τ -lost and τ -ghost patterns vs. length

of the records . 176
C.4 Distortion vs. number of sensitive patterns and their total number of

occurrences . 177
C.5 Distortion vs. length of sensitive patterns k (and |S|). 178
C.6 Total number of τ -lost and τ -ghost patterns vs. number of sensitive patterns179
C.7 Total number of τ -lost and τ -ghost patterns vs. length of sensitive patterns180
C.8 Length of the output of TFS-ALGO and PFS-ALGO for different

varying parameters . 181
C.9 Percentage of implausible patterns vs. number of sensitive patterns . . . 182
C.10 Distortion vs. number of sensitive patterns and their total number of

occurrences . 182
C.11 Number of τ -ghost patterns vs. number of sensitive patterns 183
C.12 Assessment of TM and TMI with respect to k 183
C.13 Assessment of TM and TMI with respect to ρ 184
C.14 Edit Distance Relative Error vs. different varying parameters 184

E.1 A suffix tree truncated at depth 3 . 204
E.2 d-equivalent strings have the same trie truncated at depth d. 204
E.3 A de Bruijn graph of order 3 and the corresponding set of 3-equivalent

strings . 207
E.4 Depth of the RSDS for different privacy thresholds 211
E.5 Evaluation of utility with frequent pattern mining and phylogenetic trees 213
E.6 Runtimes . 215
E.7 De Bruijn graph for positive adversarial knowledge 219
E.8 De Bruijn graph with negative adversarial knowledge 220

19

E.9 De Bruijn graph for multiple adversarial knowledge 221

F.1 Number of τ -ghosts for each dataset and varying τ 240
F.2 Number of τ -ghosts for each dataset and varying pattern length k . . . 241
F.3 Number of τ -ghosts for each dataset and varying number of sensitive

patterns . 241
F.4 Distortion for varying different parameters 241
F.5 Runtime on SYN for varying different parameters 242

20

List of Algorithms

1 kE-edsm(P ,STP ,T̃ ,n,k) . 53
2 INSERT(L,(j, d),V) . 56
3 Ri(|X|, |Y |, ST ∗X,Y , r, c) . 56
4 Rd(|X|, |Y |, ST ∗X,Y , r, c) . 56
5 Rs(|X|, |Y |, ST ∗X,Y , r, c) . 56
6 kE-bord(P, S, ST ∗

P,T̃ [i]
, k) . 57

7 kE-ext(j, P, S, ST ∗
P,T̃ [i]

, k) . 59

8 kH -bord(P ,S,ST ∗
P,T̃ [i]

,k) . 62

9 kH -ext(j,P ,S,ST ∗
P,T̃ [i]

,k) . 63

10 The high-level structure of Alg A [293]. 123

11 TFS-ALGO . 157

12 z-RC . 206

21

Part I

Degenerate Strings

22

Chapter 2

Elastic-Degenerate String
Matching via Matrix
Multiplication

Key Points

Problem. Traditionally, a single annotated reference genome is used as representative
example of the genomic sequence of a species. It serves as a reference text to
which, for example, fragments of newly sequenced genomes of individuals are
mapped. Although a single reference genome provides a good approximation of
any individual genome, in loci with polymorphic variations mapping and sequence
comparison often fail their purposes. This is where a multiple genome, i.e., a
pan-genome, would be a better reference text. The computational task we consider
here is to map a sequence in a collection of similar strings (e.g., a pan-genome)
on-line.

Model. Elastic-degenerate (ED) strings have been introduced to represent a multiple
alignment of several closely-related sequences compactly. In this representation,
substrings of these sequences that match exactly are collapsed, while in positions
where the sequences differ, all possible variants observed at that location are listed.
We assume that an ED text is read degenerate position by degenerate position,
and we search for occurrences of a deterministic pattern on-line.

Included Works

This chapter presents the paper Elastic-Degenerate String Matching via Fast Ma-
trix Multiplication, which is currently submitted to the SIAM Journal on Computing
(SICOMP). This paper is a journal extension of Even Faster Elastic-Degenerate
String Matching via Fast Matrix Multiplication [58], which I presented at the

23

46th International Colloquium on Automata, Languages and Programming (ICALP
2019).

2.1 Introduction

Boolean matrix multiplication (BMM) is one of the most fundamental computational
problems. Apart from its theoretical interest, it has a wide range of applications [210, 350,
157, 150, 277]. BMM is also the core combinatorial part of integer matrix multiplication.
In both problems, we are given two N×N matrices and we are to compute N 2 values.
Integer matrix multiplication can be performed in truly subcubic time, i.e., in O(N 3−ε)
operations over the field, for some ε>0. The fastest known algorithms for this problem
run in O(N 2.373) time [242, 362]. These algorithms are known as algebraic: they rely
on the ring structure of matrices over the field.

There also exists a different family of algorithms for the BMM problem known as
combinatorial. Their focus is on unveiling the combinatorial structure in the Boolean
matrices to reduce redundant computations. A series of results [34, 42, 91] culminating
in an Ô(N 3/ log4N)-time algorithm [372, 371] (the Ô(·) notation suppresses polyloglog
factors) has led to the popular combinatorial BMM conjecture stating that there is no
combinatorial algorithm for BMM working in time O(N 3−ε), for any ε>0 [10]. There
has been ample work on applying this conjecture to obtain BMM hardness results: see ,
e.g., [243, 10, 311, 192, 241, 236, 96].

String matching is another fundamental problem, asking to find all fragments of
a string text of length n that match a string pattern of length m. This problem
has several linear-time solutions [113]. In many real-world applications, it is often
the case that letters at some positions are either unknown or uncertain. A way of
representing these positions is with a subset of the alphabet Σ. Such a representation
is called degenerate string. A special case of a degenerate string is when at such
unknown or uncertain positions the only subset of the alphabet allowed is the whole
alphabet. These special degenerate strings are more commonly known as strings with
wildcards. The first efficient algorithm for a text and a pattern, where both may contain
wildcards, was published by Fischer and Paterson in 1974 [151]. It has undergone
several improvements since then [209, 219, 107, 105]. The first efficient algorithm for a
standard text and a degenerate pattern, which may contain any non-empty subset of
the alphabet, was published by Abrahamson in 1987 [11], followed by several practically
efficient algorithms [364, 286, 196].

Degenerate letters are used in the IUPAC notation [211] to represent a position
in a DNA sequence that can have multiple possible alternatives. These are used to
encode the consensus of a population of sequences [108, 27, 165] in a multiple sequence
alignment (MSA). In the presence of insertions or deletions in the MSA, we may need to
consider alternative representations. Consider the following MSA of three closely-related
sequences:

GCAACGGGTA--TT

GCAACGGGTATATT

GCACCTGG----TT

24

These sequences can be compacted into a single sequence T̃ of sets of strings, containing
some deterministic and some non-deterministic segments:

T̃ =
{

GCA
}
·
{

A

C

}
·
{

C
}
·
{

G

T

}
·
{

GG
}
·

 TA

TATA

ε

 · { TT
}

A non-deterministic segment is a finite set of deterministic strings and may contain the
empty string ε corresponding to a deletion. The total number of segments is the length
of T̃ and the total number of letters is the size of T̃ . We denote the length by n = |T̃ |
and the size by N = ||T̃ ||.

This representation has been defined in [205] by Iliopoulos et al. as an elastic-
degenerate (ED) string. Being a sequence of subsets of Σ∗, it can be seen as a general-
ization of a degenerate string. The natural problem that arises is finding all matches
of a deterministic pattern P in an ED text T̃ . This is the elastic-degenerate string
matching (EDSM) problem. Since its introduction in 2017 [205], it has attracted some
attention in the combinatorial pattern matching community, and a series of results
have been published. The simple algorithm by Iliopoulos et al. [205] for EDSM was
first improved by Grossi et al. in the same year, who showed that, for a pattern of
length m, the EDSM problem can be solved on-line in O(nm2 +N) time [178]; on-line
means that it reads the text segment-by-segment and reports an occurrence as soon
as this is detected. This result was improved by Aoyama et al. [31] who presented
an O(nm1.5

√
logm + N)-time algorithm. An important feature of these bounds is

their linear dependency on N . A different branch of on-line algorithms waiving the
linear-dependency restriction exists [178, 296, 104, 103]. Recent results on founder block
graphs [260] can also be casted on elastic-degenerate strings.

A question with a somewhat similar flavor is the word break problem. We are given
a dictionary D, m = ||D||, and a string S, n = |S|, and the question is whether we can
split S into fragments that appear in D (the same element of D can be used multiple
times). Backurs and Indyk [39] designed an Õ(nm1/2−1/18 +m)-time algorithm for this
problem1. Bringmann et al. [79] improved this to Õ(nm1/3 +m) and showed that this
is optimal for combinatorial algorithms by a reduction from k-Clique. Their algorithm
uses fast Fourier transform (FFT), and so it is not clear whether it should be considered
combinatorial. While this problem seems similar to EDSM, there does not seem to be a
direct reduction and so their lower bound does not immediately apply.

Our Results. It is known that BMM and triangle detection (TD) in graphs either
both have truly subcubic combinatorial algorithms or none of them do [361]. Recall
also that the currently fastest algorithm with linear dependency on N for the EDSM
problem runs in O(nm1.5

√
logm+N) time [31]. In this chapter we prove the following

two theorems.

Theorem 1. If the EDSM problem can be solved in O(nm1.5−ε + N) time, for any
ε > 0, with a combinatorial algorithm, then there exists a truly subcubic combinatorial
algorithm for TD.

1The Õ(·) notation suppresses polylog factors.

25

Arguably, the notion of combinatorial algorithms is not clearly defined, and Theo-
rem 1 should be understood as an indication that in order to achieve a better complexity
one should use fast matrix multiplication. Indeed, there are examples where a lower
bound conditioned on BMM was helpful in constructing efficient algorithms using
fast matrix multiplication [7, 92, 78, 269, 122, 360, 377]. We successfully design such
a non-combinatorial algorithm by combining three ingredients: a string periodicity
argument, FFT, and fast matrix multiplication. While periodicity is the usual tool in
combinatorial pattern matching [231, 120, 235] and using FFT is also not unusual (for
example, it often shows up in approximate string matching [11, 30, 105, 167]), to the
best of our knowledge, we are the first to combine these with fast matrix multiplication.
Specifically, we show the following result for the EDSM problem, where ω denotes the
matrix multiplication exponent.

Theorem 2. The EDSM problem can be solved on-line in Õ(nmω−1 +N) time.

In order to obtain a faster algorithm for the EDSM problem, we focus on the active
prefixes (AP) problem that lies at the heart of all current solutions [178, 31]. In the AP
problem, we are given a string P of length m and a set of arbitrary prefixes P [1 . . i] of
P , called active prefixes, stored in a bit vector U so that U [i] = 1 if P [1 . . i] is active.
We are further given a set S of strings of total length N and we are asked to compute a
bit vector V which stores the new set of active prefixes of P . A new active prefix of P
is a concatenation of P [1 . . i] (such that U [i] = 1) and some element of S.

Using the algorithmic framework introduced in [178], EDSM is addressed by solving
an instance of the AP problem per each segment i of the ED text corresponding to set
S of the AP problem. Hence, an O(f(m) +Ni) solution for the AP problem (with Ni
being the size of a single segment of the ED text) implies an O(nf(m) +N) solution of
EDSM, as f(m) is repeated n times and N =

∑n
i=1Ni. The algorithm of [31] solves the

AP problem in O(m1.5
√

logm+Ni) time leading to O(nm1.5
√

logm+N) time for the
EDSM problem. Our algorithm partitions the strings of each segment i of the ED text
into three types according to a periodicity criterion, and then solves a restricted instance
of the AP problem for each of the types. In particular, we solve the AP problem in
Õ(mω−1 +Ni) time leading to Õ(nmω−1 +N) time for the EDSM problem. Given this
connection between the two problems and, in particular, between their size parameter
N , in the rest of the chapter we will denote with N also the parameter Ni of the AP
problem.

An important building block in our solution that might find applications in other
problems is a method of selecting a small set of length-` substrings of the pattern, called
anchors, so that any relevant occurrence of a string from an ED text set contains at
least one but not too many such anchors inside. This is obtained by rephrasing the
question in a graph-theoretical language and then generalizing the well-known fact that
an instance of the hitting set problem with m sets over [n], each of size at least k, has a
solution of size O(n/k · logm). While the idea of carefully selecting some substrings of
the same length is not new (for example Kociumaka et al. [235] used it to design a data
structure for pattern matching queries on a string), our setting is different and hence so
is the method of selecting these substrings.

In addition to the conditional lower bound for the EDSM problem (Theorem 1) we
show here the following conditional lower bound for the AP problem.

26

Theorem 3. If the AP problem can be solved in O(m1.5−ε +N) time, for any ε > 0,
with a combinatorial algorithm, then there exists a truly subcubic combinatorial algorithm
for the BMM problem.

Roadmap. Section 2.2 provides the necessary definitions and notation as well as the
algorithmic toolbox used throughout the chapter. In Section 2.3 we prove our lower
bound result for the AP problem (Theorem 3). The lower bound result for the EDSM
problem is proved in Section 2.4 (Theorem 1). In Section 2.5 we present our algorithm
for EDSM (Theorem 2); this is the most technically involved part of the chapter.

2.2 Preliminaries

Recall that a period of a string X is any integer p ∈ [1, |X|] such that X[i] = X[i+ p]
for every i = 1, 2, . . . , |X| − p, and the period, denoted by per(X), is the smallest such
p. We call a string X strongly periodic if per(X) ≤ |X|/4. We start by reporting a
well-known result of which we will make extensive use.

Lemma 1 ([147]). If p and q are both periods of the same string X, and additionally
p+ q ≤ |X|+ 1, then gcd(p, q) is also a period of X.

A heavy path decomposition of a tree T is obtained by selecting, for every non-leaf
node u ∈ T , its child v such that the subtree rooted at v is the largest. This decomposes
the nodes of T into node-disjoint paths, with each such path p (called a heavy path)
starting at some node, called the head of p, and ending at a leaf. An important property
of such a decomposition is that the number of distinct heavy paths above any leaf (that
is, intersecting the path from a leaf to the root) is only logarithmic in the size of T [328].

Let Σ̃ denote the set of all finite non-empty subsets of Σ∗. Previous works (cf. [205,
178, 31, 296, 60]) define Σ̃ as the set of all finite non-empty subsets of Σ∗ excluding
{ε} but we waive here the latter restriction as it has no algorithmic implications. An
elastic-degenerate string T̃ = T̃ [1] . . . T̃ [n], or ED string, over alphabet Σ, is a string
over Σ̃, i.e., an ED string is an element of Σ̃∗, and hence each T̃ [i] is a set of strings.

Let T̃ denote an ED string of length n, i.e. |T̃ | = n. We assume that for any
1 ≤ i ≤ n, the set T̃ [i] ∈ Σ̃ is implemented as an array and can be accessed by an index,
i.e., T̃ [i] = {T̃ [i][k] | k = 1, . . . , |T̃ [i]|}. For any σ̃ ∈ Σ̃, ||σ̃|| denotes the total length of
all strings in σ̃, and for any ED string T̃ , ||T̃ || denotes the total length of all strings

in all T̃ [i]s. We will denote Ni =
∑|T̃ [i]|
k=1 |T̃ [i][k]| the total length of all strings in T̃ [i]

and N =
∑n
i=1 ||T̃ [i]|| the size of T̃ . An ED string T̃ can be thought of as a compact

representation of the set of strings A(T̃) which is the Cartesian product of all T̃ [i]s;
that is, A(T̃) = T̃ [1] × . . . × T̃ [n] where A × B = {xy | x ∈ A, y ∈ B} for any sets of
strings A and B.
For any ED string X̃ and a pattern P , we say that P matches X̃ if:

1. |X̃| = 1 and P is a substring of some string in X̃[1], or,

2. |X̃| > 1 and P = P1 . . . P|X̃|, where P1 is a suffix of some string in X̃[1], P|X̃| is a

prefix of some string in X̃[|X̃|], and Pi ∈ X̃[i], for all 1 < i < |X̃|.

27

We say that an occurrence of a string P ends at position j of an ED string T̃ if there
exists i ≤ j such that P matches T̃ [i] . . . T̃ [j]. We will refer to string P as the pattern
and to ED string T̃ as the text. We define the main problem considered in this chapter.

Elastic-Degenerate String Matching (EDSM)
INPUT: A string P of length m and an ED string T̃ of length n and size N ≥ m.
OUTPUT: All positions in T̃ where at least one occurrence of P ends.

Example 1. Pattern P = GTAT ends at positions 2, 6, and 7 of the following text T̃ .

T̃ =
{

ATGTA
}
·
{

A

T

}
·
{

C
}
·
{

G

T

}
·
{

CG
}
·

 TA

TATA

ε

 ·
{

TATGC

TTTTA

}

Aoyama et al. [31] obtained an on-line O(nm1.5
√

logm + N)-time algorithm by
designing an efficient solution for the following problem.

Active Prefixes (AP)
INPUT: A string P of length m, a bit vector U of size m, a set S of strings of
total length N .
OUTPUT: A bit vector V of size m with V [j] = 1 if and only if there exists S ∈ S
and i ∈ [1,m], U [i] = 1, such that P [1 . . i] · S = P [1 . . i+ |S|] and j = i+ |S|.

In more detail, given an ED text T̃ = T̃ [1] . . . T̃ [n], one should consider an instance
of the AP problem per each T̃ [i]. Hence, an O(f(m) +Ni) solution for AP (Ni being
the size of T̃ [i]) implies an O(n · f(m) +N) solution for EDSM, as f(m) is repeated n
times and N =

∑n
i=1Ni. We provide an example of the AP problem.

Example 2. Let P = ababbababab of length m = 11, U = 01000100000, and S =
{ε, ab, abb, ba, baba}. We have that V = 01011101010.

For our lower bound results we rely on BMM and the following closely related
problem.

Boolean Matrix Multiplication (BMM)
INPUT: Two N ×N Boolean matrices A and B.
OUTPUT: N ×N Boolean matrix C, where C[i, j] =

∨
k

(A[i, k] ∧B[k, j]).

Triangle Detection (TD)
INPUT: Three N ×N Boolean matrices A,B and C.
OUTPUT: Are there i, j, k such that A[i, j] = B[j, k] = C[k, i] = 1?

An algorithm is called truly subcubic if it runs in O(N 3−ε) time, for some ε > 0.
TD and BMM either both have truly subcubic combinatorial algorithms, or none of
them do [361].

28

2.3 AP Conditional Lower Bound

To investigate the hardness of the EDSM problem, we first show that an O(m1.5−ε+N)-
time solution to the active prefixes problem, that constitutes the core of the solutions
proposed in [178, 31], would imply a truly subcubic combinatorial algorithm for Boolean
matrix multiplication (BMM). We recall that in the AP problem we are given a string
P of length m and a set of prefixes P [1 . . i] of P , called active prefixes, stored in a
bit vector U (U [i] = 1 if and only if P [1 . . i] is active). We are further given a set S
of strings of total length N and we are asked to compute a bit vector V storing the
new set of active prefixes of P : a prefix of P that extends P [1 . . i] (such that U [i] = 1)
with some element of S. Of course, we can solve BMM by working over integers and
using one of the fast matrix multiplication algorithms; plugging in the best known
bounds results in an O(N 2.373)-time algorithm [242, 362]. However, such an algorithm
is not combinatorial, i.e., it uses algebraic methods. In comparison, the best known
combinatorial algorithm for BMM works in Ô(N 3/ log4N) time [372]. This leads to
the following popular conjecture.

Conjecture 1 ([10]). There is no combinatorial algorithm for the BMM problem
working in time O(N 3−ε), for any ε > 0.

Aoyama et al. [31] showed that the AP problem can be solved in O(m1.5
√

logm+N)
time for constant-sized alphabets. Together with some standard string-processing
techniques applied similarly as in [178], this is then used to solve the EDSM problem
by creating an instance of the AP problem for every set T̃ [i] of T̃ , i.e., with S = T̃ [i].

We argue that, unless Conjecture 1 is false, the AP problem cannot be solved
faster than O(m1.5−ε + N), for any ε > 0, with a combinatorial algorithm (note
that the algorithm of Aoyama et al. [31] uses FFT, and so it is not completely clear
whether it should be considered to be combinatorial). We show this by a reduction
from combinatorial BMM. Assume that, for the AP problem, we seek combinatorial
algorithms with the running time O(m1.5−ε +N), i.e., with linear dependency on the
total length of the strings. We need to show that such an algorithm implies that the
BMM problem can be solved in O(N 3−ε′) time, for some ε′ > 0, with a combinatorial
algorithm, thus implying that Conjecture 1 is false.

Theorem 3. If the AP problem can be solved in O(m1.5−ε +N) time, for any ε > 0,
with a combinatorial algorithm, then there exists a truly subcubic combinatorial algorithm
for the BMM problem.

Proof. Recall that in the BMM problem the matrices are denoted by A and B. In order
to compute C=A×B, we need to find, for every i, j = 1, . . . ,N , an index k such that
A[i, k] = 1 and B[k, j] = 1. To this purpose, we split matrix A into blocks of size N ·L
and B into blocks of size L·L. This corresponds to considering values of j and k in
intervals of size L, and clearly there are N/L such intervals. Matrix B is thus split
into (N/L)2 blocks, giving rise to an equal number of instances of the AP problem,
each one corresponding to an interval of j and an interval of k. This creates (N/L)2

blocks in matrix B; we will thus create (N/L)2 separate instances of the AP problem
corresponding to an interval of j and an interval of k. We will now describe the instance
corresponding to the (K,J)-th block, where 1 ≤ K,J ≤ N/L.

29

We build the string P of the AP problem, for any block, as a concatenation of
N gadgets corresponding to i = 1, . . . ,N , and we construct the bit vector U (K,J) of
the AP problem as a concatenation of N bit vectors, one per gadget. Each gadget
consists of the same string aLbaL; we set to 1 the k′-th bit of the i-th gadget bit
vector if A[i, (K − 1)L + k′] = 1. The solution of the AP problem V (K,J) will allow
us to recover the solution of BMM, as we will ensure that the bit corresponding to
the j′-th a in the second half of the gadget is set to 1 if and only if, for some k′ ∈ [L],
A[i, (K − 1)L+ k′] = 1 and B[(K − 1)L+ k′, (J − 1)L+ j′] = 1. In order to enforce
this, we will include the following strings in set S(K,J):

aL−k
′
baj

′
, for every k′, j′ ∈ [L] such that B[(K − 1)L+ k′, (J − 1)L+ j′] = 1.

This guarantees that after solving the AP problem we have the required property,
and thus, after solving all the instances, we have obtained matrix C=A×B. Indeed,
consider values j, i.e., the index that runs on the columns of C, in intervals of size L.
By construction and by definition of BMM, the i-th line of the J-th column interval of
C is obtained by taking the disjunction of the second half of the i-th interval of each
(K,J)-th bit vector for every K = 1, 2, . . . ,N/L.

We have a total of (N/L)2 instances. In each of them, the total length of all strings
is O(L3), and the length of the input string P is (2L + 1)N = O(L · N). Using our
assumed algorithm for each instance, we obtain the following total time:

O((N/L)2 · (L3 + (N · L)1.5−ε)) = O(N 2 · L+N 3.5−ε/L0.5+ε).

If we set L = N (1.5−ε)/(1.5+ε), then the total time becomes:

O(N 2+(1.5−ε)/(1.5+ε) +N 3.5−ε−(0.5+ε)(1.5−ε)/(1.5+ε))

= O(N 2+(1.5−ε)/(1.5+ε) +N 2+(1.5−ε)−(1.5−ε)(0.5+ε)/(1.5+ε))

= O(N 2+(1.5−ε)/(1.5+ε) +N 2+(1.5−ε)(1.5+ε−0.5−ε)/(1.5+ε))

= O(N 2+(1.5−ε)/(1.5+ε)).

Hence we obtain a combinatorial BMM algorithm with complexity O(N 3−ε′) , where
ε′ = 1− (1.5− ε)/(1.5 + ε) > 0.

Example 3. Consider the following instance of the BMM problem with N = 6 and
L = 3.

A B C

0 1 0
1 0 1
0 0 0

0 1 0
0 0 0
0 0 1

1 0 0
0 0 0
0 1 0

0 1 0
1 0 0
0 0 0


×



0 0 0
1 0 0
0 0 1

0 0 1
0 0 0
0 1 0

0 1 0
0 0 0
1 0 0

0 0 0
1 0 0
0 1 0


=



1 0 0
0 0 1
1 0 0

1 0 0
0 1 1
0 1 0

0 0 0
0 1 0
1 0 0

1 0 1
0 0 0
0 0 0



30

From matrices A and B, we now show how the resulting matrix C can be found by
building and solving 4 instances of the AP problem constructed as follows. The pattern
is

P = aaabaaa · aaabaaa · aaabaaa · aaabaaa · aaabaaa · aaabaaa

where the six gadgets are separated by a ′·′ to be highlighted. For the AP instances,
the vectors U (K,J) shown below are the input bit vectors, and the sets S(K,J) are the
input set of strings.

For each instance, the bit vector V (K,J) shown below is the output of the AP problem.

i 1 2 3 4 5 6

U (1,1) : [0 1 0 0 0 0 0 | 1 0 1 0 0 0 0 | 0 0 0 0 0 0 0 | 1 0 0 0 0 0 0 | 0 0 0 0 0 0 0 | 0 1 0 0 0 0 0]

S(1,1) : {aba,baaa}

V (1,1) : [0 0 0 0 1 0 0 | 0 0 0 0 0 0 1 | 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 | 0 0 0 0 1 0 0]

U (1,2) : [0 1 0 0 0 0 0 | 1 0 1 0 0 0 0 | 0 0 0 0 0 0 0 | 1 0 0 0 0 0 0 | 0 0 0 0 0 0 0 | 0 1 0 0 0 0 0]

S(1,2) : {aabaaa,baa}

V (1,2) : [0 0 0 0 0 0 0 | 0 0 0 0 0 1 1 | 0 0 0 0 0 0 0 | 0 0 0 0 0 0 1 | 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0]

U (2,1) : [0 1 0 0 0 0 0 | 0 0 0 0 0 0 0 | 0 0 1 0 0 0 0 | 0 1 0 0 0 0 0 | 1 0 0 0 0 0 0 | 0 0 0 0 0 0 0]

S(2,1) : {aabaa,ba}

V (2,1) : [0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 | 0 0 0 0 1 0 0 | 0 0 0 0 0 0 0 | 0 0 0 0 0 1 0 | 0 0 0 0 0 0 0]

U (2,2) : [0 1 0 0 0 0 0 | 0 0 0 0 0 0 0 | 0 0 1 0 0 0 0 | 0 1 0 0 0 0 0 | 1 0 0 0 0 0 0 | 0 0 0 0 0 0 0]

S(2,2) : {aba,baa}

V (2,2) : [0 0 0 0 1 0 0 | 0 0 0 0 0 0 0 | 0 0 0 0 0 1 0 | 0 0 0 0 1 0 0 | 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0]

As an example on how to obtain matrix C, consider the bold part of C above (i.e.,
the first line of block (1, 1) of C). This is obtained by taking the disjunction of the bold
parts of V (1,1) and V (2,1).

2.4 EDSM Conditional Lower Bound

Since the lower bound for the AP problem does not imply per se a lower bound for the
whole EDSM problem, in this section we show a conditional lower bound for the EDSM
problem. Specifically, we perform a reduction from Triangle Detection to show that,
if the EDSM problem could be solved in O(nm1.5−ε +N) time, this would imply the
existence of a truly subcubic algorithm for TD. We show that TD can be reduced to
the decision version of the EDSM problem: the goal is to detect whether there exists
at least one occurrence of P in T̃ . To this aim, given three matrices A, B, C, we

31

first decompose matrix B into blocks of size N/s × N/s, where s is a parameter to
be determined later; the pattern P is obtained by concatenating a number (namely
z = N s2) of constituent parts Pi of length O(N/s), each one built with five letters
from disjoint subalphabets. The ED text T̃ is composed of three parts: the central part
consists of three degenerate segments, the first one encoding the 1s of matrix A, the
second one those of matrix B and the third one those of matrix C. These segments are
built in such a way that the concatenation of strings of subsequent segments is of the
same form as the pattern’s building blocks. This central part is then padded to the left
and to the right with sets containing appropriately chosen concatenations of substrings
Pi of P , so that an occurrence of the pattern in the text implies that one of its building
blocks matches the central part of the text, thus corresponding to a triangle. Formally:

Theorem 1. If the EDSM problem can be solved in O(nm1.5−ε + N) time, for any
ε > 0, with a combinatorial algorithm, then there exists a truly subcubic combinatorial
algorithm for TD.

Proof. Consider an instance of TD, where we are given three N ×N Boolean matrices
A,B,C, and the question is to check if there exist i, j, k such that A[i, j] = B[j, k] =
C[k, i] = 1. Let s be a parameter, to be determined later, that corresponds to decom-
posing B into blocks of size (N/s)× (N/s). We reduce to an instance of EDSM over
an alphabet Σ of size O(N).
Pattern P . We construct P by concatenating, in some fixed order, the following
strings:

P (i, x, y) = v(i)xaN/sx$$yaN/syv(i)

for every i = 1, 2, . . . ,N and x, y = 1, 2, . . . , s, where a ∈ Σ1, $ ∈ Σ2, x ∈ Σ3, y ∈ Σ4,
v(i) ∈ Σ5, and Σ1,Σ2, . . . ,Σ5 are disjoint subsets of Σ.
ED text T̃ . The text T̃ consists of three parts. Its middle part encodes all the entries
equal to 1 in matrices A, B and C, and consists of three string sets X =X1 · X2 · X3,
where:

1. X1 contains all strings of the form v(i)xaj , for some i ∈ [N], x ∈ [s] and j ∈ [N/s]
such that A[i, (x− 1) · (N/s) + j] = 1;

2. X2 contains all strings of the form aN/s−j x$$yaN/s−k, for some x, y ∈ [s] and
j, k =∈ [N/s] such that B[(x− 1) · (N/s) + j, (y − 1) · (N/s) + k] = 1, i.e., if the
corresponding entry of B is 1;

3. X3 contains all strings of the form akyv(i), for some i ∈ [N], y ∈ [s] and k ∈ [N/s]
such that C[(y − 1) · (N/s) + k, i] = 1.

It is easy to see that |P (i, x, y)| = O(N/s). This implies the following:

1. The length of the pattern is m = O(N · s2 · N/s) = O(N 2 · s);

2. The total length of X is

||X || = O(N · s · N/s · N/s+ s2 · (N/s)2 · N/s+N · s · N/s · N/s) = O(N 3/s).

By the above construction, we obtain the following fact.

32

Fact 4. P (i, x, y) matches X if and only if the following holds for some j, k =
1, 2, . . . ,N/s:

A[i, (x−1)·(N/s)+j] = B[(x−1)·(N/s)+j, (y−1)·(N/s)+k] = C[(y−1)·(N/s)+k, i] = 1

Solving the TD problem thus reduces to taking the disjunction of all such conditions.
Let us write down all strings P (i, x, y) in some arbitrary but fixed order to obtain
P = P1P2 . . . Pz with z = N s2, where every Pt = P (i, x, y), for some i, x, y. We aim
to construct a small number of sets of strings that, when considered as an ED text,
match any prefix P1P2 . . . Pt of the pattern, 1 ≤ t ≤ z − 1; a similar construction can
be carried on to obtain sets of strings that match any suffix Pk . . . Pz−1Pz, 2 ≤ k ≤ z.
These sets will then be added to the left and to the right of X , respectively, to obtain
the ED text T̃ .
ED Prefix. We construct log z sets of strings as follows. The first one contains
the empty string P1P2 . . . Pz/2 and ε. The second one contains Pz/2+1 . . . Pz/2+z/4,
P1P2 . . . Pz/4 and ε. The third one contains Pz/2+z/4+1 . . . Pz/2+z/4+z/8, Pz/2+1 . . . Pz/2+z/8,
Pz/4+1 . . . Pz/4+z/8, P1P2 . . . Pz/8 and ε. Formally, for every i = 1, 2, . . . , log z, the i-th
of such sets is:

T̃ pi = ε ∪ {Pj z

2i−1 +1 . . . Pj z

2i−1 + z

2i
| j = 0, 1, . . . , 2i−1 − 1}.

ED Suffix. We similarly construct log z sets to be appended to X :

T̃ si = ε ∪ {Pz−j z

2i−1− z

2i
+1 . . . Pz−j z

2i−1
| j = 0, 1, . . . , 2i−1 − 1}.

The total length of all the ED prefix and ED suffix strings is O(log z · N 2 · s) =
O(N 2 · s · logN). The whole ED text T̃ is thus: T̃ = T̃ p1 · · · · · T̃

p
log z · X · T̃ slog z · · · · · T̃ s1 .

We next show how a solution of such instance of EDSM corresponds to the solution of
TD.

Lemma 2. The pattern P occurs in the ED text T̃ if and only if there exist i, j, k such
that A[i, j] = B[j, k] = C[k, i] = 1.

Proof. By Fact 4, if such i, j, k exist then Pt matches X , for some t ∈ {1, . . . , z}. Then,
by construction of the sets T̃ pi and T̃ si , the prefix P1 . . . Pt−1 matches the ED prefix
(this can be proved by induction), and similarly the suffix Pt+1 . . . Pz matches the ED
suffix, so the whole P matches T̃ , and so P occurs therein. Because of the letters $
appearing only in the center of Pis and strings from X2, every Pis and a concatenation
of X1 ∈ X1, X2 ∈ X2, X3 ∈ X3 having the same length, and the Pis being distinct,
there is an occurrence of the pattern P in T̃ if and only if X1X2X3 = Pt for some t
and X1 ∈ X1, X2 ∈ X2, X3 ∈ X3. But then, by Fact 4 there exists a triangle.

Note that for the EDSM problem we have m = N 2 · s, n = 1+2log z and N =
||X ||+O(N 2 ·s·logN). Thus if we had a solution running in O(log z ·m1.5−ε + ||X ||+
N 2 · s · logN) =O(logN · (N 2 · s)1.5−ε + N 3/s) time, for some ε > 0, by choosing
a sufficiently small α > 0 and setting s = Nα we would obtain, for some δ > 0, an
O(N 3−δ)-time algorithm for TD.

33

2.5 An Õ(nmω−1 +N)-time Algorithm for EDSM

Our goal is to design a non-combinatorial Õ(nmω−1 +N)-time algorithm for EDSM,
which in turn can be achieved with a non-combinatorial Õ(mω−1 +N)-time algorithm
for the AP problem, that is the bottleneck of EDSM (cf. [178]).

We reduce AP to a logarithmic number of restricted instances of the same problem,
based on the length of the strings in S. We start by giving a lemma that we will use
to process näıvely the strings of length up to a constant c, to be determined later, in
O(m+N) time.

Lemma 3. For any integer t, all strings in S of length at most t can be processed in
O(m logm+mt+N) time.

Proof. We first construct the suffix tree ST of P and store, for every node, the first
letters on its outgoing edges in a static dictionary with constant access time. This can
be done in O(m logm) time [313]. For every S ∈ S, find and mark its corresponding
(implicit or explicit) node of ST . This takes O(N) time overall. For every possible
length t′≤ t, scan P with a window of length t′ while maintaining its corresponding node
of ST . This takes O(m) time overall. If the current window P [i . . (i+t′−1)] corresponds
to a marked node of ST and additionally U [i− 1] = 1, we set V [i+ t′ − 1] = 1.

We build the rest of the restricted instances of the AP problem by restricting on
strings in Sk ⊆ S of length in [(19/18)k, (19/18)k+1) for each integer k ranging from⌈

log c
log(19/18)

⌉
to
⌊

logm
log(19/18)

⌋
. These intervals are a partition of the set of all strings in S

of length up to m; longer strings are not addressed in EDSM by solving AP.

For each integer k from
⌈

log c
log(19/18)

⌉
to
⌊

logm
log(19/18)

⌋
, let ` be an integer such that the

length of every string in Sk belongs to [9/8 · `, 5/4 · `). Note that such an integer always
exists for an appropriate choice of the integer constant c. In fact, it must hold that

9

8
· ` ≤

(
19

18

)k
<

(
19

18

)k+1

≤ 5

4
· ` ⇐⇒ 4

5
·
(

19

18

)k+1

≤ ` ≤ 8

9
·
(

19

18

)k
.

To ensure that there exists an integer ` satisfying such conditions, it must actually hold
that

4

5
·
(

19

18

)k+1

+ 1 ≤ 8

9
·
(

19

18

)k
⇐⇒ 45

2
≤
(

19

18

)k
.

The last equation holds for k ≥ 58, implying that we will process näıvely the strings

of length up to c = 23, and each Sk, for k ranging from 58 to
⌊

logm
log(19/18)

⌋
, will be

processed separately as described in the next paragraph.
Denoting by Nk the total size of strings in Sk, we have that, if we solve every such

instance of AP in O(Nk+f(m)) time, then we can solve the original instance of AP
in O(N + f(m) logm) time by taking the results disjunction. Switching to Õ notation
that disregards polylog factors, it thus suffices to solve each such instance of the AP
problem in Õ(N +mω−1) time.

We further partition the strings in Sk into three types, compute the corresponding
bit vector V for each type separately and, finally, take the disjunction of the resulting
bit vectors V to obtain the answer for each restricted instance.

34

Partitioning Sk. Keeping in mind that from now on (until Section 2.5.4) we address
the AP problem assuming that S only contains strings of length in [9/8 · `, 5/4 · `), and
thus is in fact Sk, to lighten the notation we now switch back to denote it simply with
S. The three types of strings are as follows:

Type 1: Strings S ∈ S such that every length-` substring of S is not strongly periodic.

Type 2: Strings S ∈ S containing at least one length-` substring that is not strongly
periodic and at least one length-` substring that is strongly periodic.

Type 3: Strings S ∈ S such that every length-` substring of S is strongly periodic (in
Lemma 4 we show that in this case per(S) ≤ `/4).

These three types are evidently a partition of S. We start with showing that, in fact,
strings of type 3 are exactly strings with period at most `/4.

Lemma 4. Let S be a string. If per(S[j . . j+`−1]) ≤ `/4 for every j then per(S) ≤ `/4.

Proof. We first show that, for any string W and letters a, b, if per(aW) ≤ |aW |/4
and per(Wb) ≤ |Wb|/4 then per(aW) = per(Wb). This follows from Lemma 1: since
per(aW) and per(Wb) are both periods of W and (1 + |W |)/4 ≤ |W |/2, then we have
that d = gcd(per(aW),per(Wb)) is a period of W . Assuming by contradiction that
per(aW) 6= per(Wb), then it must be that either d < per(aW) or d < per(Wb); by
symmetry it is enough to consider the former possibility, and we claim that then d is
a period of aW . Indeed, a = W [per(aW)− 1] (observe that per(aW)− 1 ≤ |W |) and
W [i] = W [i + d] for any i = 1, 2, . . . , |W | − d, so by per(aW) being a multiple of d
we obtain that a = W [per(aW)− 1] = W [d− 1], which is a contradiction because by
definition of per(aW) we have that d < per(aW) cannot be a period of aW .

If per(S[j . . j + `− 1]) ≤ `/4 for every j then by the above reasoning the periods of
all substrings S[j . . j+ `− 1] is the same and in fact equal to p. But then S[i] = S[i+ p]
for every i, so per(S) ≤ `/4.

Before proceeding with the algorithm, we show that, for each string S ∈ S, we can
determine its type in O(|S|) time.

Lemma 5. Given a string S we can determine its type in O(|S|) time.

Proof. It is well-known that per(T) can be computed in O(|T |) time for any string T
(cf. [113]). We partition S into blocks Tα = S[αb`/2c . . (α+ 1)b`/2c − 1] of size b`/2c,
and compute per(Tα) for every α in O(|S|) total time. Observe that every substring
S[i . . i+ `− 1] contains at least one whole block inside.

If per(Tα) > `/4 then the period of any substring S[i . . i+ `− 1] that contains Tα is
also larger than `/4. Consequently, if per(Tα) > `/4 for every α, then we declare S to
be of type 1.

Consider any α such that p = per(Tα) ≤ `/4. If the period p′ of a substring
S′ = S[i . . i + ` − 1] that contains Tα is at most `/4, then in fact it must be equal
to p, because p′ ≥ p and so, by Lemma 1 applied on Tα, p′ must be a multiple of p
and, by repeatedly applying S′[j] = S′[j + p′] and Tα[j] = Tα[j + p] and using the fact
that Tα occurs inside S′, we conclude that in fact S′[j] = S′[j + p] for any j, and thus
p′ = p. This allows us to check whether there exists a substring S′ = S[i . . i+ `−1] that

35

contains Tα such that per(S′) ≤ `/4 by computing, in O(`) time, how far the period p
extends to the left and to the right of Tα in Tα−1TαTα+1 (if either Tα−1 or Tα+1 do not
exist, then we do not extend the period in the corresponding direction). There exists
such a substring S′ if and only if the length of the extended substring with period p is
at least `. Therefore, for every α we can check in O(`) time if there exists a length-`
substring S′ containing Tα with per(S′) ≤ `/4. By repeating this procedure for every
α, we can distinguish between S of type 2 and S of type 3 in O(|S|) total time.

Since we have shown how to efficiently partition the strings of S into the three types,
in what follows we present our solution of the AP problem for each type of strings
separately.

Remark 1. The length of every string in S belonging to [9/8 · `, 5/4 · `) implies that
every string in S contains at most `/4 length-` substrings (and at least 1 + `/8 of them).

2.5.1 Type 1 Strings

In this section we show how to solve a restricted instance of the AP problem where
every string S ∈ S is of type 1, that is, each of its length-` substrings is not strongly
periodic, and furthermore |S| ∈ [9/8 · `, 5/4 · `) for some ` ≤ m. Observe that all (and
hence at most `/4 by Remark 1) length-` substrings of any S ∈ S must be distinct, as
otherwise we would be able to find two occurrences of a length-` substring at distance
at most `/4 in S, making the period of the substring at most `/4 and contradicting the
assumption that S is of type 1.

We start with constructing the suffix tree ST of P (our pattern in the EDSM
problem) in O(m logm) time [357]. Let us remark that we are spending O(m logm)
time and not just O(m) so as to avoid any assumptions on the size of the alphabet.
For every explicit node u ∈ ST , we construct a perfect hash function mapping the first
letter on every edge outgoing from u to the corresponding edge. This takes O(m logm)
time [313] and allows us to navigate in ST in constant time per letter. Then, for every
S ∈ S, we check in O(|S|) time using ST if it occurs in P and, if not, we disregard it
from further consideration. Therefore, from now on we assume that all strings S, and
thus all their length-` substrings, occur in P . We will select a set of length-` substrings
of P , called the anchors, each represented by one of its occurrences in P , such that:

1. The total number of occurrences of all anchors in P is O(m/` · logm).

2. For every S ∈ S, at least one of its length-` substrings is an anchor.

3. The total number of occurrences of all anchors in strings S ∈ S is O(|S| · logm).

We formalize this using the following auxiliary problem, which is a strengthening of
a well-known Hitting Set problem, which given a collection of m sets over [n], each of
size at least k, asks to choose a subset of [n] of size O(n/k · logm) that nontrivially
intersects every set.

36

Node Selection (NS)
INPUT: A bipartite graph G = (U, V,E) with deg(u) ∈ (d, 2d] for every u ∈ U
and weight w(v) for every v ∈ V , where W =

∑
v∈V w(v).

OUTPUT: A set V ′ ⊆ V of total weight O(W/d · log |U |) such that N [U]∩ V ′ 6= ∅
for every node in U , and

∑
u∈U |N [u] ∩ V ′| = O(|U | log |U |).

We reduce the problem of finding anchors to an instance of the NS problem, by
building a bipartite graph G in which the nodes in U correspond to strings S ∈ S,
the nodes in V correspond to distinct length-` substrings of P , and there is an edge
(u, v) if the length-` string corresponding to v occurs in the string S corresponding
to u. Using suffix links, we can find the node of the suffix tree corresponding to
every length-` substring of S in O(|S|) total time, so the whole construction takes
O(m logm+

∑
S∈S |S|) = O(m logm+N) time. The size of G is O(m+N), and the

degree of every node in U belongs to (`/8, `/4]. We set the weight of a node v ∈ V to
be its number of occurrences in P , and solve the obtained instance of the NS problem
to obtain the set of anchors. It is not immediately clear that an instance of the NS
problem always has a solution. We show that indeed it does, and that it can be found
in linear time.

Lemma 6. A solution to an instance of the NS problem always exists and can be found
in linear time in the size of G.

Proof. We first show a solution that uses the probabilistic method and leads us to an
efficient Las Vegas algorithm; we will then derandomize the solution using the method
of conditional expectations.

We independently choose each node of V with probability p to obtain the set V ′

of selected nodes. The expected total weight of V ′ is
∑
v∈V p · w(v) = p ·W , so by

Markov’s inequality it exceeds 4p ·W with probability at most 1/4. For every node
u ∈ U , the probability that N [u] intersects V ′ is at most (1 − p)d ≤ e−pd. Finally,
E[
∑
u∈U |N [u] ∩ V ′|] ≤ |U | · 2pd, so by Markov’s inequality

∑
u∈U |N [u] ∩ V ′| exceeds

|U | ·8pd with probability at most 1/4. We set p = ln(4|U |)/d (observe that if p > 1 then
we can select all nodes in V). By union bound, the probability that V ′ is not a valid
solution is at most 3/4, so indeed a valid solution exists. Furthermore, this reasoning
gives us an efficient Las Vegas algorithm that chooses V ′ randomly as described above
and then verifies if it constitutes a valid solution. Each iteration takes linear time in
the size of G, and the expected number of required iterations is constant.

To derandomize the above procedure we apply the method of conditional expectations.
Let X1, X2, . . . be the binary random variables corresponding to the nodes of V . Recall
that in the above proof we set Xi = 1 with probability p. Now we will choose the
values of X1, X2, . . . one-by-one. Define a function f(X1, X2, . . .) that that bounds the
probability that X1, X2, . . . corresponds to a valid solution as follows:

f(X1, X2, . . .) =

∑
vXv · w(v)

4W/d · ln(4|U |)
+
∑
u∈U

∏
v∈N [u]

(1−Xv) +

∑
u∈U

∑
v∈N [u]Xv

8|U | ln(4|U |)
.

As explained above, we have E[f(X1, X2, . . .)] = 3/4. Assume that we have already
fixed the values X1 = x1, . . . , Xi = xi. Then there must be a choice of Xi+1 = xi+1

37

that does not increase the expected value of f(X1, X2, . . .) conditioned on the already
chosen values. We want to compare the following two quantities:

E[f(X1, X2, . . .) |X1 = x1, . . . , Xi = xi, Xi+1 = 0]

E[f(X1, X2, . . .) |X1 = x1, . . . , Xi = xi, Xi+1 = 1]

and choose xi+1 corresponding to the smaller one. Cancelling out the shared terms, we
need to compare the expected values of:

0 +
∑

u∈N [i+1]

∏
v∈N [u]

(1−Xv) + 0 and

w(i+ 1)

4W/d · ln(4|U |)
+ 0 +

deg(i+ 1)

8|U | ln(4|U |)
.

The second quantity can be computed in constant time. We claim that (ignoring the
issue of numerical precision) the first quantity can be computed in time O(deg(i+ 1))
after a linear-time preprocessing as follows. In the preprocessing we compute and
store E[i] = E[

∏i
j=1(1− Yj)], where the Yj ’s are independent indicator variables with

Pr[Yj = 1] = p, for every i = 0, 1, . . . , |V |. It is straightforward to compute E[i + 1]
from E[i] in constant time. Then, during the computation we maintain, for every u ∈ U ,
the number c[u] of v ∈ N [u] for which we still need to choose the value Xe, and a single
bit b[u] denoting whether for some v ∈ N [u] ∩ {1, . . . , i} we already have xv = 1. This
information can be updated in O(deg(i+ 1)) time after selecting xi+1. Now to compute
the first quantity, we iterate over u ∈ N [i+ 1] and, if b[u] = 0 then we add E[c[u]] to the
result. Finally, we claim that it is enough to implement all calculations with precision
Θ(log |V |) bits. This is because such precision allows us to calculate both quantities
with relative accuracy 1/(8|V |), so the expected value of f(X1, X2, . . .) might increase
by a factor of (1 + 1/(4|V |)) in every step, which is at most (1 + 1/(4|V |))|V | ≤ e1/4

overall. This still guarantees that the final value is at most 3/4 · e1/4 < 1, so we obtain
a valid solution.

In the rest of this section we explain how to compute the bit vector V from the bit
vector U , and thus solve the AP problem, after having obtained a set A of anchors.
For any S ∈ S, since S contains an occurrence of at least one anchor H ∈A, say
S[j . .(j+ |H|−1)]=H, so any occurrence of S in P can be generated by choosing
some occurrence of H in P , say P [i . . (i + |H| − 1)] = H, and then checking that
S[1 . . (j−1)] = P [(i− j+1) . . (i−1)] and S[(j+ |H|) . . |S|] = P [(i+ |H|) . . (i+ |S|− j)].
In other words, S[1 . . (j − 1)] should be a suffix of P [1 . . (i− 1)] and S[(j + |H|) . . |S|]
should be a prefix of P [(i+ |H|) . . |P |]. In such case, we say that the occurrence of S
in P is generated by H. By the properties of A, any occurrence of S ∈ S is generated
by occS ≥ 1 occurrences of anchors, where

∑
S∈S occS = O(|S| logm). For every H∈A

we create a separate data structure D(H) responsible for setting V [i+ |S|−1]=1, when
U [i− 1]=1 and P [i . .(i+|S|−1)]=S is generated by H. We now first describe what
information is used to initialize each D(H), and how this is later processed to update
V .

Initialization. D(H) consists of two compact tries T (H) and T r(H). For every
occurrence of H in P , denoted by P [i . . (i+ |H| − 1)] = H, T (H) should contain a leaf

38

corresponding to P [(i+ |H|) . . |P |]$ and T r(H) should contain a leaf corresponding to
(P [1 . . (i− 1)])r$, both decorated with position i. Additionally, D(H) stores a list L(H)
of pairs of nodes (u, v), where u ∈ T r(H) and v ∈ T (H). Each such pair corresponds
to an occurrence of H in a string S ∈ Sh, S[j . . (j + |H| − 1)] = H, where u is the node
of T r(H) corresponding to (S[1 . . (j − 1)])r$ and v is the node of T (H) corresponding
to S[(j + |H| + 1) . . |S|]$. We claim that D(H), for all H, can be constructed in
O(m logm+N) total time.

We first construct the suffix tree ST of P$ and the suffix tree ST r of P r$ (again in
O(m logm) time not to make assumptions on the alphabet). We augment both trees
with data for answering both weighted ancestor (WA) and lowest common ancestor
(LCA) queries, that are defined as follows. For a rooted tree T on n nodes with an
integer weight D(v) assigned to every node u, such that the weight of the root is zero
and D(u) < D(v) if u is the parent of v, we say that a node v is a weighted ancestor
of a node v at depth `, denoted by WAT (u, `), if v is the highest ancestor of u with
weight of at least `. Such queries can be answered in O(log n) time after an O(n)
preprocessing [140]. For a rooted tree T , LCAT (u, v) is the lowest node that is an
ancestor of both u and v. Such queries can be answered in O(1) time after an O(n)
preprocessing [47]. Recall that every anchor H is represented by one of its occurrences
in P . Using WA queries, we can access in O(logm) time the nodes corresponding to H
and Hr, respectively, and extract a lexicographically sorted list of suffixes following an
occurrence of H in P$ and a lexicographically sorted list of reversed prefixes preceding
an occurrence of H in P r$ in time proportional to the number of such occurrences.
Then, by iterating over the lexicographically sorted list of suffixes and using LCA
queries on ST we can build T (H) in time proportional to the length of the list, and
similarly we can build T r(H). To construct L(H) we start by computing, for every
S ∈ S and j = 1, . . . , |S|, the node of ST r corresponding to (S[1 . . j])r and the node
of ST corresponding to S([(j + 1) . . |S|] (the nodes might possibly be implicit). This
takes only O(|S|) time, by using suffix links. We also find, for every length-` substring
S[j . . (j + `− 1)] of S, an anchor H ∈ A such that S[j . . (j + `− 1)] = H, if any exists.
This can be done by finding the nodes (implicit or explicit) of ST that correspond to
the anchors, and then scanning over all length-` substrings while maintaining the node
of ST corresponding to the current substring using suffix links in O(|S|) total time.
After having determined that S[j . . (j + `− 1)] = H we add (u, v) to L(H), where u
and v are the previously found nodes of ST r and ST corresponding to (S[1 . . (j − 1)])r

and S[(j + `) . . |S|], respectively. By construction, we have the following property, also
illustrated in Figure 2.1.

Fact 5. A string S ∈ S starts at position i−j+1 in P if and only if, for some anchor
H ∈ A, L(H) contains a pair (u, v) corresponding to S[j . . (j+|H|−1)]=H, such that
the subtree of T r(H) rooted at u and that of T (H) rooted at v contain a leaf decorated
with i.

Note that the overall size of all lists L(H), when summed up over all H ∈ A, is∑
S∈S occS = O(|S| logm), and since each S is of length at least ` this is O(N/` · logm).

Processing. The goal of processing D(H) is to efficiently process all occurrences
generated by H. As a preliminary step, we decompose T r(H) and T (H) into heavy
paths. Then, for every pair of leaves u ∈ T r(H) and v ∈ T (H) decorated by the same

39

H

T r(H) T (H)

i

i

v
u

Figure 2.1: An occurrence of S starting at position i in P is generated by H: (u, v) corresponds
to S[j . . (j + |H| − 1)] = H and i appears in the subtree of T r(H) rooted at u, as well as in
the subtree of T (H) rooted at v.

H

T r(H) T (H)

i i
vu

ux vy

Figure 2.2: An occurrence of S starting at position i in P corresponds to a triple
(i,L(ux),L(vy)) on some auxiliary list.

i, we consider all heavy paths above u and v. Let p = u1 − u2 − . . . be a heavy path
above u in T r(H) and q = v1 − v2 − . . . be a heavy path above v in T (H), where u1 is
the head of p and v1 is the head of q, respectively. Further, choose the largest x such
that u is in the subtree rooted at ux, and the largest y such that v is in the subtree
rooted at vy (this is well-defined by the choice of p and q, as u is in the subtree rooted
at u1 and v is in the subtree rooted at v1). We add (i, | L(ux)|, | L(vy)|) to an auxiliary
list associated with the pair of heavy paths (p, q). In the rest of the processing we work
with each such lists separately. Notice that the overall size of all auxiliary lists, when
summed up over all H ∈ A, is O(m/` · log3m), because there are at most log2m pairs
of heavy paths above u and v decorated by the same i, and the total number of leaves in
all trees T r(H) and T (H) is bounded by the total number of occurrences of all anchors
in P , which is O(m/` · logm). By Fact 5, there is an occurrence of a string S generated
by H and starting at position i− j + 1 in P if and only if L(H) contains a pair (u, v)
corresponding to S[j . . (j + |H| − 1)] = H such that, denoting by p the heavy path
containing u in T r(H) and by q the heavy path containing v in T (H), the auxiliary list
associated with (p, q) contains a triple (i, x, y) such that x ≥ |L(u)| and y ≥ |L(v)|.
This is illustrated in Figure 2.2. Henceforth, we focus onthe problem of processing a
single auxiliary list associated with (p, q), together with a list of pairs (u, v), such that
u belongs to p and v belongs to q.

An auxiliary list can be interpreted geometrically as follows: for every (i, x, y) we

40

create a red point (x, y), and for every (u, v) we create a blue point (| L(u)|, | L(v)|).
Then, each occurrence of S ∈ S generated by H corresponds to a pair of points (p1, p2)
such that p1 is red, p2 is blue, and p1 dominates p2. We further reduce this to a
collection of simpler instances in which all red points already dominate all blue points.
This can be done with a divide-and-conquer procedure which is essentially equivalent to
constructing a 2D range tree [49]. The total number of points in all obtained instances
increases by a factor of O(log2m), making the total number of red points in all instances
O(m/` · log5m), while the total number of blue points is O(N/` · log3m). There is an
occurrence of a string S ∈ S generated by H and starting at position i− j + 1 in P if
and only if some simpler instance contains a red point created for some (i, x, y) and a
blue point created for some (u, v) corresponding to S[j . . (j + |H| − 1)] = H. In the
following we focus on processing a single simpler instance.

To process a simpler instance we need to check if U [i − j] = 1, for a red point
created for some (i, x, y) and a blue point created for some (u, v) corresponding to
S[j . . (j + |H| − 1)] = H, and if so set V [i − j + |S|] = 1. This has a natural
interpretation as an instance of BMM: we create a d5/4 · `e × d5/4 · `e matrix M such
that M [|S| − j, d5/4 · `e+ 1− j] = 1 if and only if there is a blue point created for some
(u, v) corresponding to S[j . . (j + |H| − 1)] = H; then for every red point created for
some (i, x, y) we construct a bit vector Ui = U [(i− d5/4 · `e) . . (i− 1)] (if i < d5/4 · `e,
we pad Ui with 0s to make its length always equal to d5/4 · `e); calculate Vi = M × Ui;
and finally set V [i+ j] = 1 whenever Vi[j] = 1 (and i+ j ≤ m).

Lemma 7. Vi[k] = 1 if and only if there is a blue point created for some (u, v)
corresponding to S[j . . (j + |H| − 1)] = H such that U [i− j] = 1 and k = |S| − j.

Proof. By definition of Vi = M × Ui, we have that Vi[k] = 1 if and only if M [k, t] = 1
for some t such that Ui[t] = 1. By definition of Ui, we have that Ui[t] = 1 if and only if
U [i−d5/4·`e+t−1] = 1, and hence the previous condition can be rewritten as M [k, t] = 1
and U [i− d5/4 · `e+ t− 1] = 1, or equivalently, by substituting j = d5/4 · `e+ 1− t,
M [k, d5/4 · `e + 1 − j] = 1 and U [i − j] = 1. By definition of M , we have that
M [k, d5/4 · `e + 1 − j] = 1 if and only if there is a blue point created for some (u, v)
corresponding to S[j . . (j+ |H|−1)] = H with k = |S|− j, which proves the lemma.

The total length of all vectors Ui and Vi is O(m log5m), so we can afford to extract
the appropriate fragment of U and then update the corresponding fragment of V .
The bottleneck is computing the matrix-vector product Vi = M × Ui. Since the total
number of 1s in all matrices M is bounded by the total number of blue points, a näıve
method would take O(N/` · log3m) time; we overcome this by processing together
all multiplications concerning the same matrix M , thus amortizing the costs. Let
Ui1 , Ui2 , . . . , Uis be all bit vectors that need to be multiplied with M , and let z a
parameter to be determined later. We distinguish between two cases: (i) if s < z, then
we compute the products näıvely by iterating over all 1s in M , and the total computation
time, when summed up over all such matrices M , is O(N/` · log3m · z); (ii) if s ≥ z,
then we partition the bit vectors into ds/ze ≤ s/z + 1 groups of z (padding the last
group with bit vectors containing all 0s) and, for every group, we create a single matrix
whose columns contain all the bit vectors belonging to the group. Thus, we reduce the
problem of computing all matrix-vector products M × Ui to that of computing O(s/z)

41

matrix-matrix products of the form M ×M ′, where M ′ is an d5/4 · `e× z matrix. Even
if M ′ is not necessarily a square matrix, we can still apply the fast matrix multiplication
algorithm to compute M ×M ′ using the standard trick of decomposing the matrices
into square blocks.

Lemma 8. If two N × N matrices can be multiplied in O(Nω) time, then, for any
N ≥ N ′, an N ×N and an N ×N ′ matrix can be multiplied in O((N/N ′)2N ′ω) time.

Proof. We partition both matrices into blocks of size N ′ × N ′. There are (N/N ′)2

such blocks in the first matrix and N/N ′ in the second matrix. Then, to compute the
product we multiply each block from the first matrix by the appropriate block in the
second matrix in O(N ′ω) time, resulting in the claimed complexity.

By applying Lemma 8, we can compute M×M ′ inO(`2zω−2) time (as long as we later
verify that 5/4 · ` ≥ z), so all products M ×Ui can be computed in O(`2zω−2 · (s/z+ 1))
time. Note that this case can occur only O(m/(` · z) · log5m) times, because all values
of s sum up to O(m/` · log5m). This makes the total computation time, when summed
up over all such matrices M , O(`2zω−2 ·m/(` · z) · log5m) = O(`zω−3 ·m log5m). We
can now prove our final result for strings of type 1.

Theorem 6. An instance of the AP problem where all strings are of type 1 can be
solved in Õ(mω−1 +N) time.

Proof. The total time complexity is first O(m + N) to construct the graph G, then
O(m logm+N) to solve its corresponding instances of the NodeSelection problem and
obtain the set of anchors H. The time to initialize all structures D(H) is O(m logm+N).
For every D(H), we obtain in O(m/` · log5m+N/` · log3m) time a number of simpler
instances, and then construct the corresponding Boolean matrices M and bit vectors
Ui in additional O(m log5m) time. Note that some M might be sparse, so we need to
represent them as a list of 1s. Then, summing up over all matrices M and both cases, we
spend O(N/`·log3m·z+`zω−3 ·m log5m) time. We would like to assume that ` ≥ log3m
so that we can set z = `/ log3m. This is indeed possible, because for any t we can switch
to a more näıve approach to process all strings of length at most t in O(mt2 +N) time
as described in 3. After applying it with t = log3m in O(m log6m+N) time, we can set
z = `/ log3m (so that indeed 5/4 · ` ≥ z as required in case s ≥ z) and the overall time

complexity for all matrices M and both cases becomes O(N + `ω−2 ·m log5+3(3−ω)m).
Summing up over all values of ` and taking the initialization into account we obtain
O(m log7m+mω−1 log5+3(3−ω)m+N) = Õ(mω−1 +N) total time.

2.5.2 Type 2 Strings

In this section we show how to solve a restricted instance of the AP problem where every
string S ∈ S is of type 2, that is, S contains a length-` substring that is not strongly
periodic as well as a length-` substring that is strongly periodic, and furthermore
|S| ∈ [9/8 · `, 5/4 · `) for some ` ≤ m.

Similarly as in Section 2.5.1, we select a set of anchors. In this case, instead of the
NodeSelection problem we need to exploit periodicity. We call a string T `-periodic
if |T | ≥ ` and per(T) ≤ `/4. We consider all maximal `-periodic substrings of S, that

42

is, `-periodic substrings S[i . . j] such that either i = 1 or per(S[(i− 1) . . j]) > `/4, and
j = |S| or per(S[i . . (j+1)]) > `/4. We know that S contains at least one such substring
(because there exists a length-` substring that is strongly periodic), and that the whole
S is not such a substring (because otherwise S would be of type 3). Further, two
maximal `-periodic substrings cannot overlap too much, as formalized in the following
lemma.

Lemma 9. Any two distinct maximal `-periodic substrings of the same string S overlap
by less than `/2 letters.

Proof. Assume (by contradiction) the opposite; then we have two distinct `-periodic
substrings S[i . . j] and S[i′ . . j′] such that i < i′ ≤ j < j′ and j − i′ + 1 ≥ `/2. Then,
both p = per(S[i . . j]) and p′ = per(S[i′ . . j′]) are periods of S[i′ . . j], and hence by
Lemma 1 we have that gcd(p, p′) is a period of S[i′ . . j]. If p 6= p′ then, because S[i′ . . j]
contains an occurrence of both S[i . . (i + p − 1)] and S[i′ . . (i′ + p′ − 1)], we obtain
that one of these two substrings is a power of a shorter string, thus contradicting the
definition of p or p′. So p = p′, but then p ≤ `/4 is actually a period of the whole
S[i . . j′], meaning that S[i . . j] and S[i′ . . j′] are not maximal, a contradiction.

By Lemma 9, every S ∈ S contains exactly one maximal `-periodic substring, and
by the same argument P contains O(m/`) such substrings. The set of anchors will be
generated by considering the unique maximal `-periodic substring of every S ∈ S, so
we first need to show how to efficiently generate such substrings.

Lemma 10. Given a string S of length at most 5/4 · `, we can generate its (unique)
maximal `-periodic substring in O(|S|) time.

Proof. We start with observing that any length-` substring of S must contain S[(b`/2c+
1) . . `] inside. Consequently, we can proceed similarly as in the proof of Lemma 5. We
compute p = per(S[(b`/2c+ 1) . . `]) in O(|S|) time. If p > `/4 then S does not contain
any `-periodic substrings. Otherwise, we compute in O(|S|) time how far the period
p extends to the left and to the right; that is, we compute the smallest i ≤ b`/2c+ 1
such that S[k] = S[k + p] for every k = i, i + 1, . . . , b`/2c and the largest j ≥ ` such
that S[k] = S[k − p] for every k = `+ 1, `+ 2, . . . , j. If j − i+ 1 ≥ ` then S[i . . j] is a
maximal `-periodic substring of S, and, as shown earlier by Lemma 9, S cannot contain
any other maximal `-periodic substrings. We return S[i . . j] as the (unique) maximal
`-periodic substring of S.

For every S ∈ S, we apply Lemma 10 on S to find its (unique) maximal `-periodic
substring S[i . . j] in O(|S|) time. If i > 1 then we designate S[(i− 1) . . (i− 1 + `)] as
an anchor, and similarly if j < |S| we designate S[(j + 1− `) . . (j + 1)] as an anchor.
Observe that because S is of type 2 (and not of type 3) either i > 1 or j < |S|, so for
every S ∈ S we designate at least one if its length-(`+ 1) substrings as an anchor. As
in Section 2.5.1, we represent each anchor by one of its occurrences in P , and so need
to find its corresponding node in the suffix tree of P (if any). This can be done in
O(|S|) time, so O(N) overall. During this process we might designate the same string
as an anchor multiple times, but we can easily remove the possible duplicates to obtain
the set A of anchors in the end. Then, we generate the occurrences of all anchors in

43

P by accessing their corresponding nodes in the suffix tree of P and iterating over all
leaves in their subtrees. We claim that the total number of all these occurrences is only
O(m/`). This follows from the following characterization.

Lemma 11. If P [x . . (x+ `)] is an occurrence of an anchor then either P [(x+ 1) . . y]
is a maximal `-periodic substring of P , for some y ≥ x+ `, or P [x′ . . (x+ `− 1)] is a
maximal `-periodic substring of P , for some x′ ≤ x.

Proof. By symmetry, it is enough to consider an anchor H created because of a maximal
`-periodic substring S[i . . j] such that i > 1, when we add S[(i− 1) . . (i− 1 + `)] to A.
Thus, per(H[2 . . |H|]) ≤ `/4 and if P [x . . (x+ `)] = H then per(P [(x+ 1) . . (x+ `)]) ≤
`/4, making P [(x+ 1) . . (x+ `)] a substring of some maximal `-periodic substring of
P [(x′ + 1) . . y], where x′ ≤ x and y ≥ x + `. If x′ < x then per(H) ≤ `/4. But then
H = S[(i − 1) . . (i − 1 + `)] can be extended to some maximal `-periodic substring
S[i′ . . j′] such that i′ ≤ i − 1 and j′ ≥ i − 1 + `. The overlap between S[i . . j] and
S[i′ . . j′] is at least `, so by Lemma 9 i = i′ and j = j′, which is a contradiction.
Consequently, x′ = x and we obtain the lemma.

By Lemma 11, the number of occurrences of all anchors in P is at most two per each
maximal `-periodic substrings, so O(m/`) in total. We thus obtain a set of length-(`+1)
anchors with the following properties:

1. The total number of occurrences of all anchors in P is O(m/`).

2. For every S ∈ S, at least one of its length-(`+ 1) substrings is an anchor.

3. For every S ∈ S, at most two of its length-(`+ 1) substrings are anchors.

These properties are even stronger than what we had used in Section 2.5.1 (except that
now we are working with length-(` + 1) substrings, which is irrelevant), we can now
prove our final result also for strings of type 2.

Theorem 7. An instance of the AP problem where all strings are of type 2 can be
solved in Õ(mω−1 +N) time.

2.5.3 Type 3 Strings

In this section we show how to solve a restricted instance of the AP problem where
every string S ∈ S is of type 3, that is, per(S) ≤ `/4. Furthermore |S| ∈ [9/8 · `, 5/4 · `)
for some ` ≤ m. Recall that strings S ∈ S are such that every length-` substring of S is
strongly periodic and, by Lemma 31, in this case, per(S) ≤ `/4. An occurrence of such
S in P must be contained in a maximal `-periodic substring of P . Recall that a string
T is called `-periodic if |T | ≥ ` and per(T) ≤ `/4. For an `-periodic string T , let its
root, denoted by root(T), be the lexicographically smallest cyclic shift of T [1 . .per(T)].
Because per(T) ≤ `/4 and |T | ≥ ` by definition, there are at least four repetitions of
the period in T , so we can write T = R[i . . |R|]RαR[1 . . j], where R = root(T), for
some i, j ∈ [1, |R|] and α ≥ 2. It is well known that root(T) can be computed in O(|T |)
time [132].

44

Example 4. Let T = babababab and ` = 8. We have |T | = 9 ≥ ` = 8 and per(T) =
2 ≤ `/4 = 2, so T is `-periodic. We have root(T) = R = ab, and T can be written as
T = b · (ab)3 · ab, for i = 2 and j = 2.

We will now make a partition of type 3 strings based on their root. We start with
extracting all maximal `-periodic substrings of P using Lemma 10 and compute the
root of every such substring. This can be done in O(m) total time because two maximal
`-periodic substrings cannot overlap by more than `/2 letters, and hence their total
length is at most 3/2 · `. We also extract the root of every S ∈ S in O(N) total time.
We then partition maximal `-periodic substrings of P and strings S ∈ S into groups
that have the same root. In the remaining part we describe how to process each such
group corresponding to root R in which all maximal `-periodic substrings of P have
total length m′, and the strings S ∈ S have total length N ′.

Recall that the bit vector U stores the active prefixes input to the AP problem, and
the bit vector V encodes the new active prefixes we aim to compute. For every maximal
`-periodic substring of P with root R we extract the corresponding fragment of the bit
vector U and need to update the corresponding fragment of the bit vector V . To make
the description less cluttered, we assume that each such substring of P is a power of R,
that is, Rα for some α ≥ 4. This can be assumed without loss of generality as it can be
ensured by appropriately padding the extracted fragment of U and then truncating the
results, while increasing the total length of all considered substrings of P by at most
half of their length. In the description below, for simplicity of presentation, U and V
denote these padded fragments of the original U and V . When computing V from U
we use two different methods for processing the elements S = R[i . . |R|]RβR[1 . . j] of S
depending on their length: either β > α/|R| (large β) or β ≤ α/|R| (small β).

Large β. We proceed in phases corresponding to β = α/|R|+ 1, . . . , α. In each single
phase, we consider all strings S ∈ S with S = R[i . . |R|]RβR[1 . . j], for some i and j. Let
C(β) be the set of the corresponding pairs (i, j), and observe that

∑
β |C(β)| · |Rβ | ≤ N ′.

This is because the length of Rβ is not greater than that of S = R[i . . |R|]RβR[1 . . j],
there are |C(β)| distinct strings of the latter form, and the total length of all S ∈ S
is N ′. The total number of occurrences of a string S = R[i . . |R|]RβR[1 . . j] in Rα is
bounded by O(α), and all such occurrences can be generated in time proportional to
their number. Thus, for every (i, j) ∈ C(β), we can generate all occurrences of the
corresponding string and appropriately update V in O(α · |C(β)|) total time.

Small β. We start by giving a technical lemma on the complexity of multiplying two
r × r matrices whose cells are polynomials of degree up to d.

Lemma 12. If two r × r matrices over Z can be multiplied in O(rω) time, then two
r × r matrices over Z[X] with degrees up to d can be multiplied in Õ(drω) time.

Proof. Let A and B be two r × r matrices over Z[X] with degrees up to d. We reduce
the product A ·B = C to 2d products of r × r matrices over Z as follows. We evaluate
the polynomials of each matrix in the complex (2d)th roots of unity: let Ai and Bi be
the matrices obtained by evaluating the polynomials of A and B in the i-th such root,
respectively. We then perform the 2d products A1 ·B1, . . . , A2d ·B2d to obtain matrices
C1, . . . , C2d: the 2d values C1[i, j], . . . , C2d[i, j] are finally interpolated to obtain the

45

coefficient representation of C[i, j], for each i, j = 1, . . . , r, in O(d log d) time for each
polynomial [110]. Since we perform 2d products of matrices in Zr×r, and we evaluate
and interpolate r2 polynomials of degree up to 2d, the overall time complexity is
2dO(rω) + r2O(d log d) = Õ(drω).

Unlike in the large β case, we process β = 2, . . . , α/|R| simultaneously as follows.
For each β we construct an |R| × |R| matrix Mβ , with Mβ [i, j] = 1 if and only if
(i, j) ∈ C(β) (and Mβ [i, j] = 0 otherwise), and collect them in a single 3D matrix
M ∈ {0, 1}|R|×|R|×(α/|R|−1) with the third dimension corresponding to the value of β.
We then create another α× |R| matrix, denoted by M ′, by setting M ′[γ, i] = 1 if and
only if U [γ · |R| + i − 1] = 1 (and Mβ [i, j] = 0 otherwise). Observe that M ′ can be
interpreted as a vector of length |R| over Z[X] with degrees up to α, and M as an
|R| × |R| matrix over Z[X] with degrees up to α/|R|: in this way, xγ appears with
non-zero coefficient in the polynomial at M ′[i] if and only if U [γ · |R|+ i−1] = 1, and xβ

appears with non-zero coefficient in the polynomial at M [i, j] if and only if (i, j) ∈ C(β).
M can be constructed in total O(N ′) time by first iterating over all S ∈ S and adding
xβ to the polynomial at M [i, j], where S = R[i . . |R|]RβR[1 . . j], and then extracting a
prefix of each polynomial consisting of monomials of degree less than α/|R|.

The product M ′ ·M = M ′′ allows us to recover the updates to V by observing
that V [(q + 1) · |R|+ j] = 1 if and only if xq appears with non-zero coefficient in the
polynomial at M ′′[j]. We aim at reducing this product to a matrix-matrix product over
Z[X] with degrees up to α/|R|, so as to compute it efficiently by applying Lemma 12.

The idea now is to decompose the columns of M ′ into |R| chunks of size α/|R| in
order to transform it into another 3D matrix. To this end, we transform M ′ into an
|R| × |R| × (α/|R|) matrix A by setting

A[k, i, γ] = 1⇔M ′[(k − 1)α/|R|+ γ, i] = 1⇔ U [(k − 1)α/|R|+ γ + i− 1] = 1.

By interpreting A as an |R| × |R| matrix over Z[X] with degrees up to α/|R|, and
interpreting M ′ as a vector of length |R| over Z[X] with degrees up to α, we have
that the first row of A consists of the coefficients of x1, . . . , xα/|R| of each of the |R|
polynomials of M ′, the second row consists of the coefficients of xα/|R|+1, . . . , x2α/|R|

of each of the |R| polynomials of M ′, and so on. In general, A[k, i] consists of the
coefficients of x(k−1)α/|R|+1, . . . , xkα/|R| of polynomial M ′[i].

The product A ·M = C still allows us to recover the updates of V , by observing
that V [((k − 1)α/|R|+ 1 + q + 1)|R|+ j] = 1 if xq appears with non-zero coefficient in
the polynomial at C[k, j]. This is because at row A[k, ·] there are the coefficients that
correspond to U [γ · |R|+ i− 1] for γ = (k − 1)α/|R|+ 1, . . . , kα/|R| and i = 1, . . . , |R|,
and hence a xq appearing at C[k, j] is equivalent to a xq+(k−1)α/|R|+1 at M ′′[j].

We are now in a position to prove the following result for type 3 strings.

Theorem 8. An instance of the AP problem where all strings are of type 3 can be
solved in Õ(mω−1 +N) time.

Proof. Recall that we consider strings S of type 3 with root R and substrings of P
with root R together. We first analyze the time to process a single group containing a
number of substrings of P of total length m′ and a number of strings S ∈ S of total

46

length N ′. Let us denote by Rαi the i-th considered substring of P and further define
α =

∑
i αi = m′/|R|.

If β > α/|R| we use the first method and spend O(αi · |C(β)|) time, where C(β) is
the set of (i, j) for this specific β. The overall time used for all applications of the first
method is:∑

i

O(αi ·
∑

β>α/|R|

|C(β)|) = O(α/|Rα/|R|| ·
∑

β>α/|R|

|C(β)| · |Rα/|R||)

= O(
∑

β>α/|R|

|C(β)| · |Rβ |) = O(N ′),

using the fact that
∑
β |C(β)| · |Rβ | ≤ N ′ and α/|Rα/|R|| = α/(α/|R|)|R| = O(1).

For each αi, we process together all β ≤ αi/|R| using the second method, and we
need to multiply two |R| × |R| matrices of polynomials of degree up to αi/|R|, that we
can build in time O(N ′) and multiply in time O(|R|ω ·αi/|R|+ |R|2(αi/|R|) log(αi/|R|))
by Lemma 12. The overall time used for all applications of the second method is:

O(N ′) +
∑
i

O(|R|ω · αi/|R|+ |R|2(αi/|R|) log(αi/|R|)) = O(|R|ω−2m′ +m′ logm′ +N ′),

using the fact that α = m′/|R|. Since |R| ≤ m′, this is in fact O((m′)ω−1 +
m′ logm′ +N ′).

Because all values of N ′ sum up to N and all values of m′ sum up to O(m), by
convexity of xω−1 we obtain that the overall time complexity is Õ(mω−1 +N).

2.5.4 Wrapping Up

In Sections 2.5.1, 2.5.2 and 2.5.3 we design three Õ(mω−1 + N)-time algorithms for
an instance of the AP problem where all strings are of type 1, 2 and 3, respectively.
We thus obtain Theorem 2, and using the fact that ω < 2.373 [242, 362] we obtain the
following corollary.

Corollary 9. The EDSM problem can be solved on-line in O(nm1.373 +N) time.

Note that the polylog factors are shaved from Õ(nmω−1 +N) by using the fact that
the inequality of ω < 2.373 is strict.

2.6 Final Remarks

Our contribution in this chapter is twofold. First, we designed an appropriate reduction
showing that a combinatorial algorithm solving the EDSM problem in O(nm1.5−ε +N)
time, for any ε > 0, refutes the well-known BMM conjecture. Second, we designed a
non-combinatorial Õ(nmω−1 + N) -time algorithm to attack the same problem. By
using the fact that ω < 2.373, our algorithm runs in O(nm1.373 +N) time thus breaking
the combinatorial conditional lower bound for the EDSM problem. Let us point out
that if ω = 2 then our algorithm for the AP problem is time-optimal up to polylog
factors.

47

Chapter 3

Approximate Pattern
Matching on
Elastic-Degenerate Text

Key Points

Problem. The computational task we consider here is to search on-line for a pattern
in a collection of similar strings, typically closely related genomes, allowing a
fixed amount of errors in the matches. A certain degree of approximation in the
matching is needed to account for possible polymorphisms and sequencing errors,
often occurring in real data.

Model. We study the problem of matching a pattern against an ED string (EDSM)
on-line under the Hamming and the edit distance models, limiting the maximum
number of allowed errors in both cases. Our solution relies on an ad-hoc modifica-
tion of the Landau-Vishkin algorithm [240] for computing the edit distance.

Included Works

This chapter contains the results of the paper Approximate Pattern Matching on
Elastic-Degenerate Text [60], published in the journal Theoretical Computer Science.
This paper is the journal extension of Pattern matching on Elastic-Degenerate
Text with Errors [59], which I presented at the 24th International Symposium on
String Processing and Information Retrieval (SPIRE 2017).

3.1 Introduction

There is a growing interest in the notion of pan-genome [345]. In the last ten years,
with faster and cheaper sequencing technologies, re-sequencing (that is, sequencing the

48

genome of yet another individual of a species) became more and more a common task
in modern genome analysis workflows. By now, a huge amount of genomic variations
within the same population has been detected (e.g., in humans for medical applications,
but not only), and this is only the beginning. With this, new challenges of functional
annotation and comparative analysis have been raised. Traditionally, a single annotated
reference genome is used as a control sequence. The reference genome is a representative
example of the genomic sequence of a species. It serves as a reference text to which, for
example, fragments of newly sequenced genomes of individuals are mapped. Although
a single reference genome provides a good approximation of any individual genome, in
loci with polymorphic variations, mapping and sequence comparison often fail their
purposes. This is where a multiple genome, i.e., a pan-genome, would be a better
reference text [198].

In the literature, many different (compressed) representations and thus algorithms
have been considered for pattern matching on a set of similar texts [65, 158, 287,
353, 159, 45, 234]. A natural representation of pan-genomes, or fragments of them,
that we consider here are elastic-degenerate texts [205]. An elastic-degenerate text is
a sequence which compactly represents a multiple alignment of several closely-related
sequences. In this representation, substrings that match exactly are collapsed, while in
positions where the sequences differ (by means of substitutions, insertions, and deletions
of substrings), all possible variants observed at that location are listed in so-called
degenerate segments. In the literature, other similar types of uncertain sequences have
also been considered, namely degenerate strings, where each degenerate segment can
contain only single letters (see [11, 116, 206, 294, 331] and references therein) and
generalised degenerate strings [27], where each degenerate segment contains strings of
the same length. Elastic-degenerate texts are more general than both the previous
objects, and they correspond to the Variant Call Format (VCF), that is, the standard
for storing gene sequence variations [344]. A tool for creating elastic-degenerate texts
from VCF files was also made available in [299].

The natural problem that arises is to find all matches of a deterministic pattern P
in an ED text T̃ . We call this the Elastic-Degenerate String Matching (EDSM)
problem. The simplest version of this problem assumes that a degenerate (sometimes
called indeterminate) segment can contain only single letters [196].

Due to the application of cataloguing human genetic variation [344], there has been
ample work in the literature on the off-line (indexing) version of the pattern matching
problem [198, 304, 258, 327, 281]. The on-line, more fundamental, version of the EDSM
problem has not been studied as much as indexing approaches. The motivation for
considering the on-line version of the problem is to remove the hardship of building
disk-based indexes or rebuilding them with every update in the sequences. Indexes
are often unwieldy, take a lot of time and space to build, and require lots of disk
space to be stored. Their usage is therefore only convenient when the data is static
or changes very infrequently. Solutions to the on-line version can thus be beneficial
for a number of reasons: (a) efficient on-line solutions can be used in combination
with partial indexes as practical trade-offs; (b) efficient on-line solutions for exact
pattern matching can be applied for fast average-case approximate pattern matching
similar to standard strings [40]; (c) on-line solutions can be useful when one wants
to search for a few patterns in many degenerate texts similar to standard strings

49

such as protein or DNA sequences [26]. A few results exist on the exact EDSM
problem [205, 178, 31, 299, 104, 307], culminating in the result presented in Chapter 2.

Our Contribution. Since genomic sequences are endowed with polymorphisms
and sequencing errors, the existence of an exact occurrence can result into a strong
assumption. The aim of this work is to generalize the studies of [205] and [178] for the
exact case, allowing some approximation in the occurrences of the input pattern. We
suggest a simple on-line O(kmG+ kN)-time and O(m)-space algorithm, G being the
total number of strings in T̃ and k > 0 the maximum number of allowed substitutions
in a pattern’s occurrence, that is nonzero Hamming distance. Our main contribution
is an on-line O(k2mG+ kN)-time and O(m)-space algorithm where the type of edit
operations allowed is extended to insertions and deletions as well, that is nonzero edit
distance. These results are good in the sense that for small values of k the algorithms
incur (essentially) no increase in time complexity with respect to the O(nm2 +N)-time
and O(m)-space algorithm presented in [178] for the exact case.

Structure of the Chapter. Section 3.2 provides some preliminary definitions and
facts as well as the formal statements of the problems we address. Section 3.3 describes
our solution for constant-sized alphabets under the edit distance model, while Section 3.4
describes the algorithm under the Hamming distance model for constant-sized alphabets.
Section 3.5 extends these algorithms to work for general integer alphabets. We conclude
in Section 3.6.

3.2 Preliminaries

For convenience, we start by recalling the definition of elastic-degenerate string and
the notation we adopt. An elastic-degenerate (ED) string of length n on alphabet Σ,
T̃ = T̃ [0]T̃ [1] . . . T̃ [n− 1], is a finite sequence of n degenerate letters. Every degenerate
letter T̃ [i] is a finite non-empty set of strings T̃ [i][j] ∈ Σ∗, with 0 ≤ j < |T̃ [i]|. The size
N of T̃ is defined as

N =

n−1∑
i=0

|T̃ [i]|−1∑
j=0

|T̃ [i][j]|

assuming (for representation purposes only) that |ε|=1. The total number of strings in

T̃ is defined as G =
∑n−1
i=0 |T̃ [i]|. Notice that n ≤ G ≤ N .

In Chapter 2 we gave a definition of an exact match between a deterministic string
P and an ED string T̃ ; here we extend such definition to deal with errors.

Definition 1. Given an integer k > 0, we say that a string P ∈ Σm kH -matches
(resp. kE-) an ED string T̃ = T̃ [0]T̃ [1] . . . T̃ [n− 1] of length n > 1 if all of the following
hold:

• there exists a non-empty suffix X of some string S ∈ T̃ [0];

• if n > 2, there exist strings Y1 ∈ T̃ [1],. . . ,Yt ∈ T̃ [t], for 1 ≤ t ≤ n− 2;

• there exists a non-empty prefix Z of some string S ∈ T̃ [n− 1];

• the Hamming (resp. edit) distance between P and XY1 . . . YtZ (note that Y1 . . . Yt
can be ε) is no more than k.

50

We say that P has a kH-occurrence (resp. kE-) ending at position j in T̃ if either
there exists a kH -match (resp. kE-) between P and T̃ [i] . . . T̃ [j] for some 0 ≤ i < j ≤ n−1
or P is at Hamming (resp. edit) distance of at most k from a substring of some string
S ∈ T̃ [j]. We say that P has a partial kH -occurrence (resp. kE-) P [0 . . . `], for some
` < m − 1, ending at position j of T̃ if P [0 . . . `] kH -matches (resp. kE-) T̃ [i] . . . T̃ [j],
for some 0 ≤ i ≤ j.

Example 5 (Running example). Consider P = GAACAA of length m = 6. The following
ED string has n = 7, N = 20, and G = 12. An 1H-occurrence of P is underlined, and
an 1E-occurrences of P is overlined.

T̃ = {G} ·


AA

AG

ε

 · {A} ·

CAA

GTG

AC

 · {A} ·
{
A

ε

}
· {CA}

Given two strings X and Y and a pair (i, j), with 0 ≤ i ≤ |X|−1 and 0 ≤ j ≤ |Y |−1,
the longest common extension at (i, j), denoted by lceX,Y (i, j), is the length of the
longest substring of X starting at position i that matches a substring of Y starting at
position j. For instance, when X = CGCGT and Y = ACG, lceX,Y (2, 1) = 2, corresponding
to the substring CG. We define lceX,Y (i, j) = 0 when either i /∈ {0, 1, . . . , |X| − 1} or
j /∈ {0, 1, . . . , |Y | − 1}.

Fact 10 ([184]). Given a string X, its suffix tree STX , and a set of strings W =
{Y1, . . . , Yl} over a constant-sized alphabet, it is possible to build the generalized suffix

tree STX,W extending STX , in time O(
∑l
h=1 |Yh|). Moreover, given two strings X and

Y of total length q, for each index pair (i, j), lceX,Y (i,j) queries can be computed in
constant time per query, after a pre-processing of STX,Y that takes time and space O(q).

We will denote by ST ∗X,Y such a pre-processed tree for answering lce queries. The
time is ripe now to formally introduce the two problems considered here.

[kE-EDSM] Elastic-Degenerate String Matching under the edit distance
model:

Input: A deterministic pattern P of length m, an ED text T̃ of length n and size
N ≥ m, an integer 0 < k < m.

Output: Pairs (i, d), i being a position in T̃ where at least one kE-occurrence of P
ends and d ≤ k being the minimal number of errors (substitutions, insertions and
deletions) for occurrence i.

[kH-EDSM] Elastic-Degenerate String Matching under the Hamming dis-
tance model:

Input: A deterministic pattern P of length m, an ED text T̃ of length n and size
N ≥ m, an integer 0 < k < m.

Output: Pairs (i, d), i being a position in T̃ where at least one kH -occurrence of P
ends and d ≤ k being the minimal number of substitutions for occurrence i.

51

3.3 An Algorithm for kE-EDSM

In Chapter 2 we showed that the exact EDSM problem (that is, for k = 0) cannot
be solved O(nm1.5−ε + N) time with a combinatorial algorithm unless there exists
a truly subcubic combinatorial algorithm for Triangle Detection, and showed a non-
combinatorial algorithm requiring Õ(nmω−1 + N) time, where ω is the matrix mul-
tiplication exponent. Allowing up to k substitutions, insertions, and deletions in the
occurrences clearly entails a time-cost increase. The solution proposed here manages to
keep the time-cost growth limited, solving the kE-edsm problem in time O(k2mG+kN),
G being the total number of strings in the ED text. We assume a constant-sized al-
phabet. At a high level, the kE-edsm algorithm (pseudocode shown below) works as
follows.

Pre-processing phase: build the suffix tree for the pattern P .

Searching phase: in an on-line manner, scan the text T̃ from left to right and, for
each T̃ [i]:

(1) Find the prefixes of P that are at edit distance at most k from any suffix of
some S ∈ T̃ [i]; if there exists an S ∈ T̃ [i] that is long enough, also search for
kE-occurrences of P that start and end at position i (lines 3 and 13 of the
pseudocode)

(2) Try to extend at T̃ [i] each partial kE-occurrence of P which has started earlier in
T̃ (line 19)

(3) In both previous cases, if a full kE-occurrence of P also ends at T̃ [i], then output
position i; otherwise store the prefixes of P extended at T̃ [i] (lines 4-7, 14-17, 20-28)

Step (1) of algorithm kE-edsm is implemented by algorithm kE-bord described in
Section 3.3.1. Step (2) is implemented by algorithm kE-ext described in Section 3.3.2.

The following lemma follows directly from Fact 10.

Lemma 13. Given P of length m and T̃ of length n and size N , to build ST ∗
P,T̃ [i]

, for

all i ∈ [0, n− 1], requires total time O(N).

Besides STP (built once as a pre-processing step) and ST ∗
P,T̃ [i]

(built for all T̃ [i]’s),

the algorithm uses the following data structures:

L′ - a list that temporarily stores the output of functions kE-bord and kE-ext. It is
re-initialized to ∅ (lines 3, 13 and 19) for each S ∈ T̃ [i] before executing either of
the functions.

Vc - a vector of size |P | such that Vc[j] contains the lowest number of errors for a
partial kE-occurrence of P [0 . . . j] ending at T̃ [i]. For each pair position - edit
operations (j, d) in L′, if Vc[j] < d then Vc[j] is updated with d by the function
insert. Vc (c stands for current) is re-initialized to Vc[j] = ∞ (line 11) for all
j’s each time a new degenerate segment T̃ [i] is read: Vc[j] = ∞ denotes that a
partial kE-occurrence of P [0 . . . j] ending at T̃ [i] has not yet been found.

52

kE-edsm(P ,STP ,T̃ ,n,k)

1 Vc[0 . . . |P | − 1]←∞; Build ST ∗
P,T̃ [0]

;

2 forall S ∈ T̃ [0] do
3 L′ ← ∅; L′ ← kE-bord(P, S, ST ∗

P,T̃ [0]
, k);

4 forall (j, d) ∈ L′ do
5 if j = |P | − 1 then
6 if d < Vc[|P | − 1] then Vc[|P | − 1]← d;
7 else insert(Lc,(j, d),Vc);

8 if Vc[|P | − 1] 6=∞ then report (0, Vc[|P | − 1]);
9 for i = 1 to n− 1 do

10 Lp ← Lc; Lc ← ∅; Vp ← Vc;
11 Vc[0 . . . |P | − 1]←∞; Build ST ∗

P,T̃ [i]
;

12 forall S ∈ T̃ [i] do
13 L′ ← ∅; L′ ← kE-bord(P, S, ST ∗

P,T̃ [i]
, k);

14 forall (j, d) ∈ L′ do
15 if j = |P | − 1 then
16 if d < Vc[|P | − 1] then Vc[|P | − 1]← d;
17 else insert(Lc,(j, d),Vc);

18 forall p ∈ Lp do
19 L′ ← ∅; L′ ← kE-ext(p+ 1,P ,S,ST ∗

P,T̃ [i]
,k − Vp[p]);

20 forall (j, d) ∈ L′ do
21 if j = |P | − 1 then
22 if d+ Vp[p] < Vc[|P | − 1] then Vc[|P | − 1]← d+ Vp[p];
23 else insert(Lc,(j, d+ Vp[p]), Vc);

24 if Vc[|P | − 1] 6=∞∨ Vp[|P | − 1] < k then
25 report (i,min{Vc[|P | − 1], Vp[|P | − 1] + 1})
26 if Vp[|P | − 1] + minS∈T̃ [i] |S| < k then

27 if Vp[|P | − 1] + minS∈T̃ [i] |S| < Vc[|P | − 1] then

28 Vc[|P | − 1]← Vp[|P | − 1] + minS∈T̃ [i] |S|

53

Lc - a list that contains the rightmost position of the prefixes of P found in L′. It
is filled in by function insert for each prefix P [0 . . . j] where Vc[j] turns into a
value 6= ∞. Before reading a new degenerate segment T̃ [i], it is copied into Lp
and re-initialized to ∅ (line 10).

Lp - a list where the Lc list, filled in at iteration i− 1, is copied at the beginning of
each iteration i (line 10). Lp thus stores prefixes of P found in L′ during the
previous iteration (p stands for previous).

Vp - similarly, Vp stores a copy of the vector Vc of the previous position.

Algorithm kE-edsm needs to report each position i in T̃ where some kE-occurrence
of P ends with edit distance d ≤ k, d being the minimal such value for position i. To
this aim, the last position of Vc is updated with the following criterion: each time we
find an occurrence of P ending at T̃ [i], corresponding to pair (m−1, d), if Vc[m−1] > d
then we set Vc[m− 1] = d (lines 6, 16 and 22). After all S ∈ T̃ [i] have been examined,
if either Vc[m − 1] 6= ∞ or Vp[m − 1] < k (i.e., an occurrence of P at the previous

position implies an occurrence at the current one by deleting a letter in any S ∈ T̃ [i]:
see Example 6) the algorithm outputs position i together with the minimum between
Vc[m− 1] and Vp[m− 1] + 1 (lines 24-25). If an occurrence of P at i− 1 can lead to

an occurrence at i+ 1 by deleting a whole string S ∈ T̃ [i] and a letter of any string in
T̃ [i+ 1], i.e., if Vp[m− 1] + minS∈T̃ [i] |S| < k, and if this value is smaller than Vc[m− 1],

it eventually updates Vc[m− 1] (lines 26-28).

Example 6 (Running example). Consider text T̃ and pattern P = GAACAA of Example
5. The kE-occurrence of P beginning at position 0 and ending at position 5 of T̃ with
edit distance 0 implies an occurrence of P ending at position 6 with 1 deletion (namely,
letter C).

3.3.1 Algorithm kE-bord

For each i and for each S ∈ T̃ [i], Step (1) of the algorithm finds the prefixes of P that
are at distance at most k from any suffix of S, as well as kE-occurrences of P that
start and end at position i if S is long enough. To this end, we use and modify the
Landau-Vishkin algorithm [240]. We first recall some relevant definitions concerning
the dynamic programming table [184].

Given an m×q dynamic programming table (m rows, q columns), the main diagonal
consists of cells (h, h) for 0 ≤ h ≤ min {m− 1, q − 1}. The diagonals above the main
diagonal are numbered 1 through (q − 1); the diagonal starting in cell (0, h) is diagonal
h. The diagonals below the main one are numbered −1 through −(m− 1); the diagonal
starting in cell (h, 0) is numbered −h. A d-path in the dynamic programming table
is a path that starts in row zero and specifies a total of exactly d edit operations
(substitutions, insertions, and deletions). A d-path is farthest reaching in diagonal h if
it is a d-path that ends in diagonal h and the index of its ending column c is ≥ to the
ending column of any other d-path ending in diagonal h.

Algorithm kE-bord takes as input a pattern P , a string S ∈ T̃ [i], ST ∗
P,T̃ [i]

and the

upper bound k for edit distance; it outputs pairs (j, d), where j is the rightmost position

54

of the prefix of P that is at distance d ≤ k from a suffix of S, with the minimal value of
d reported for each j. In order to fulfill this task, at a high level, the algorithm executes
the following steps on a table having P at the rows and S at the columns:

(1a) For each diagonal 0 ≤ h ≤ |S| − 1 it finds lceP,S(0, h). This specifies the end
column of the farthest reaching 0-path on each diagonal from 0 to |S| − 1.

(1b) For each 1 ≤ d ≤ k, it finds the farthest reaching d-path on diagonal h, for each
−d ≤ h ≤ |S| − 1. This path is derived from the farthest reaching (d− 1)-paths
on diagonals (h− 1), h and (h+ 1).

(1c) Any d-path that reaches the last row of the dynamic programming table indicates
a kE-occurrence of P with edit distance d that starts and ends at position i, thus
the algorithm reports (|P | − 1, d); any d-path that reaches the end of S in row
r denotes that the prefix of P ending at P [r] is at distance d from a suffix of S,
and the algorithm reports (r, d).

In Step (1b), the farthest reaching d-path on diagonal h is found by computing and
comparing the following three particular paths that end on diagonal h:

Ri - consists of the farthest reaching (d − 1)-path on diagonal h + 1, followed by a
vertical edge to diagonal h, and then by the maximal extension along diagonal h
that corresponds to identical substrings. Function Ri takes as input the length
|X| of a string X, whose letters spell the rows of the dynamic programming table,
the length |Y | of a string Y , whose letters spell the columns, ST ∗X,Y and the pair
row-column (r, c) where the farthest reaching (d− 1)-path on diagonal h+ 1 ends.
It outputs pair (ri, ci) where path Ri ends. This path represents a letter insertion
in X.

Rd - consists of the dual case of Ri with a horizontal edge representing a letter deletion
in X.

Rs - consists of the farthest reaching (d− 1)-path on diagonal h followed by a diagonal
edge, and then by the maximal extension along diagonal h that corresponds to
identical substrings. Function Rs takes as input the length |X| of a string X,
whose letters spell the rows of the dynamic programming table, the length |Y |
of a string Y , whose letters spell the columns, ST ∗X,Y and the pair row-column
(r, c) where the farthest reaching (d− 1)-path on diagonal h ends. It outputs pair
(rs, cs) where path Rs ends. This path represents a letter substitution.

All such functions output (−∞,−∞) if it is not possible to derive a path from the given
parameters (e.g., if r or c exceed the input dimension).

Fact 11 ([184]). The farthest reaching path on diagonal h is the path among Ri, Rd or
Rs that extends the farthest along h.

In each one of the iterations in kE-bord, a diagonal h is associated with two variables
Fp(h) and Fc(h), storing the column reached by the farthest reaching path (FRP) on h in
the previous and in the current iteration, respectively. We define Fp(h) = Fc(h) = −∞
when h /∈ {−(|P | − 1), . . . , |S| − 1}. Notice that at most k + |S| diagonals will be

55

INSERT(L,(j, d),V)

1 if V [j] > d then
2 if V [j] =∞ then Insert j

in L;
3 V [j]← d;

Ri(|X|, |Y |, ST ∗X,Y , r, c)

1 if −1 ≤ r ≤ |X| − 2 ∧ −1 ≤ c ≤
|Y | − 1 then

2 `← lceX,Y (r + 2, c+ 1);
3 ri ← r + 1 + `;
4 ci ← c+ `;
5 return (ri, ci)

6 else return (−∞,−∞);

Rd(|X|, |Y |, ST ∗X,Y , r, c)

1 if −1 ≤ r ≤ |X| − 1 ∧ −1 ≤ c ≤
|Y | − 2 then

2 `← lceX,Y (r + 1, c+ 2);
3 rd ← r + `;
4 cd ← c+ 1 + `;
5 return (rd, cd)

6 else return (−∞,−∞);

Rs(|X|, |Y |, ST ∗X,Y , r, c)

1 if −1 ≤ r ≤ |X| − 2 ∧ −1 ≤ c ≤
|Y | − 2 then

2 `← lceX,Y (r + 2, c+ 2);
3 rs ← r + 1 + `;
4 cs ← c+ 1 + `;
5 return (rs, cs)

6 else return (−∞,−∞);

taken into account: the algorithm first finds the lce’s between P [0] and S[j], for all
0 ≤ j ≤ |S| − 1, and hence it initializes |S| diagonals; after this, for each successive
step (there are at most k of them), it widens to the left one diagonal at a time because
an initial deletion can be added; therefore, it will consider at most k + |S| diagonals.
The only difference between algorithm kE-bord and the algorithm by Landau and
Vishkin [240] is that kE-bord outputs pairs (`, d) corresponding to FRPs that reach the
last column of the DP table, in addition to the ones corresponding to FRPs that reach
the last row. By construction, these additional pairs correspond to kE-matches between
prefixes of P and suffixes of S. The correctness of the Landau-Vishkin algorithm thus
directly implies the following lemma:

Lemma 14. Algorithm kE-bord is correct.

The next lemma provides the time complexity of applying kE-bord to every S ∈ T̃ [i],
for all i = 0, . . . , n− 1.

Lemma 15. Given P of length m, T̃ of length n and size N , ST ∗
P,T̃ [i]

for all i ∈ [0, n−1],

and an integer 0 < k < m, kE-bord finds the minimal edit distance ≤ k between the
prefixes of P and any suffix of S ∈ T̃ [i], as well as the kE-occurrences of P that start
and end at position i, in time O(k2G+ kN), G being the total number of strings in T̃ .

Proof. For a string S ∈ T̃ [i], for each 0 ≤ d ≤ k and each diagonal −k ≤ h ≤ |S|−1, the
kE-bord algorithm retrieves the end of three (d− 1)-paths (constant-time operations)
and computes the path extension along the diagonal via a constant-time lce query
(Fact 10). It thus takes time O(k2 + k|S|) to find the prefixes of P that are at distance
at most k from any suffix of S; the kE-occurrences of P that start and end at position i

are computed within the same complexity. The total time is O(k2|T̃ [i]|+k
∑|T̃ [i]|−1
j=0 |S|),

56

kE-bord(P, S, ST ∗
P,T̃ [i]

, k)

1 for h = −(k + 1) to −1 do Fc(h)← h− 1;
2 for h = 0 to |S| − 1 do
3 `← lceP,S(0, h);
4 Fc(h)← `− 1 + h;
5 if `+ h = |S| then report (`− 1, 0);
6 else
7 if ` = |P | then report (|P | − 1, 0);

8 for d = 1 to k do
9 for h = −(k + 1) to |S| − 1 do Fp(h)← Fc(h);

10 for h = −d to |S| − 1 do
11 (ri, ci)← Ri(|P |, |S|, ST ∗P,T̃ [i]

, Fp(h+ 1)− (h+ 1), Fp(h+ 1));

12 (rd, cd)← Rd(|P |, |S|, ST ∗P,T̃ [i]
, Fp(h− 1)− (h− 1), Fp(h− 1));

13 (rs, cs)← Rs(|P |, |S|, ST ∗P,T̃ [i]
, Fp(h)− h, Fp(h));

14 if max {ci, cd, cs} > −∞ then Fc(h)← max {ci, cd, cs};
15 else Fc(h)← Fp(h);
16 if max {ri, rd, rs} = |P | − 1 then report (|P | − 1, d);
17 if max {ci, cd, cs} = |S| − 1 then report (|S| − 1− h, d);

for all S ∈ T̃ [i]. Since the size of T̃ is N and the total number of strings in T̃ is G, the
result follows.

Example 7 (Running example). Let us consider again text T̃ and pattern P = GAACAA

of Example 5, and let k = 1. Suppose we already executed iteration 0, and we move to
position i = 1, where we need to find the suffixes of all S ∈ T̃ [1] that are at edit distance
at most 1 from some prefix of P . Consider then S = AA ∈ T̃ [1]. The borders at edit
distance 1 are the following:

P: GAACAA GAACAA GAACAA

S : -AA AA AA

Output: (2, 1) (1, 1) (0, 1)

To find them, Algorithm kE-bord(P, S, ST ∗
P, ˜T [1]

, 1) executes the following steps:

d = 0: find 0-paths on diagonals 0, 1 via lce queries. lceP,S(0, 0) = lceP,S(0, 1) = 0,
thus Fc(−2) = −3, Fc(−1) = −2, Fc(0) = −1, Fc(1) = 0.

d = 1: compute farthest reaching 1-paths for diagonals -1, 0, 1 with Fp(−2) = −3,
Fp(−1) = −2, Fp(0) = −1 and Fp(1) = 0 (Figure 3.1).

This results in Lc = {0, 1, 2} and Vc = [1, 1, 1,∞,∞,∞].

57

A A

G

A

A

C

A

A

Ri
(2,1)

(a)

A A

G

A

A

C

A

A

Rs Ri

(1,1)

(b)

A A

G

A

A

C

A

A

Rs (0,1)

(c)

Figure 3.1: (3.1a) diagonal h = −1: Ri(|P |, |S|, ST ∗P,S ,−1,−1) returns (ri, ci) = (2, 1) (as
lceP,S(1, 0) = 2), hence Fc(−1) = 1, the path exhausts S and kE-bord returns pair (2, 1).
(3.1b) diagonal 0: both Ri(|P |, |S|, ST ∗P,S ,−1, 0) and Rs(|P |, |S|, ST ∗P,S ,−1,−1) return (1, 1)
(as lceP,S(1, 1) = 1), thus they reach the end of S and kE-bord returns pair (1, 1).
(3.1c) diagonal 1: Rs(|P |, |S|, ST ∗P,S ,−1, 0) returns (0, 1) (as lceP,S(1, 2) = 0), the path
consumes the whole S and kE-bord returns pair (0, 1).

3.3.2 Algorithm kE-ext

In Step (2), algorithm kE-edsm tries to extend each partial kE-occurrence that has
started earlier in T̃ . That is, at position i, for each p ∈ Lp and for each string

S ∈ T̃ [i], we try to extend P [0 . . . p] with S. Once again, we modify the Landau-Vishkin
algorithm [240] to our purpose: it suffices to look for the FRPs starting at the desired
position only.

kE-ext takes as input a pattern P , a string S ∈ T̃ [i], the ST ∗
P,T̃ [i]

, the upper bound

k for edit distance and the position j in P where the extension should start; it outputs
a list of distinct pairs (h, d), where h is the index of P where the extension ends, and
d is the minimum additional number of edit operations introduced by the extension.
Algorithm kE-ext performs a task similar to that of kE-bord: (i) it builds a |S| × |P |
DP table (rather than a |P | × |S| table) and (ii) instead of searching for occurrences
of P starting anywhere within S, kE-ext checks whether the whole of S can extend
the prefix P [0 . . . j − 1] detected at the previous text position or whether a prefix of
S matches the suffix of P starting at P [j] (and hence a kE-occurrence of P has been
found). In order to fulfill this task, at a high level, the algorithm executes the following
steps on a table having S at the rows and P at the columns:

(2a) It finds lceS,P (0, j) specifying the end column of the farthest reaching 0-path on
diagonal j. The value of the end column of the farthest reaching 0-path for the
rest of the diagonals from j − (k + 1) to j + k + 1 is set to −∞ by default. This
initialization ensures that any FRP on the other diagonals will originate from
diagonal j.

(2b) For each 1 ≤ d ≤ k, it finds the farthest reaching d-path on diagonal h, for each
j − d ≤ h ≤ j + d. This path is found from the farthest reaching (d− 1)-paths on
diagonals (h− 1), h and (h+ 1).

58

kE-ext(j, P, S, ST ∗
P,T̃ [i]

, k)

1 if S = ε then
2 for d = 0 to k do report (j + d, d);
3 else
4 for h = j − (k + 1) to j + k + 1 do Fc(h)← −∞;
5 `← lceS,P (0, j);
6 Fc(j)← `− 1 + j;
7 if ` = |S| then report (`+ j − 1, 0);
8 for d = 1 to k do
9 for h = j − (k + 1) to j + k + 1 do Fp(h)← Fc(h);

10 for h = j − d to j + d do
11 (ri, ci)← Ri(|S|, |P |, ST ∗P,T̃ [i]

, Fp(h+ 1)− (h+ 1), Fp(h+ 1));

12 (rd, cd)← Rd(|S|, |P |, ST ∗P,T̃ [i]
, Fp(h− 1)− (h− 1), Fp(h− 1));

13 (rs, cs)← Rs(|S|, |P |, ST ∗P,T̃ [i]
, Fp(h)− h, Fp(h));

14 if max {ci, cd, cs} > −∞ then Fc(h)← max {ci, cd, cs};
15 else Fc(h)← Fp(h);
16 if max {ri, rd, rs} = |S| − 1 then report (Fc(h), d);
17 if max {ci, cd, cs} = |P | − 1 then report (|P | − 1, d);

(2c) Any d-path that reaches the last row of the dynamic programming table in column
c denotes an occurrence of the whole S with edit distance d, and the algorithm
reports (c, d), c being the position in P where this extension ends; any d-path
that reaches the end of P denotes that a prefix of S is at distance d from a suffix
of P starting at position j, and the algorithm reports (|P | − 1, d).

Example 8 (Running example). Let us continue our running example with pattern
P=GAACAA and text T̃ of Example 5; let again k = 1, and let us consider i = 1. After
computing the borders as hinted in Example 7, we need to extend previous partial kE-
occurrences of P with the strings in T̃ [1]. Consider thus S =AA ∈ T̃ [1], Lp = {0, 1},
Vp = [0, 1,∞,∞,∞,∞]. We try to extend P [0] with S and up to k − Vp[0] = 1 extra
errors. kE-ext(1, P, S, ST ∗

P,T̃ [1]
, 1) performs the following steps:

d = 0 : find a 0-path on diagonal j = 1: Since lceS,P (0, 1) = 2, the value Fc(1) = 2 is
updated and the algorithm reports pair (2, 0) (see Figure 3.2a). The value of the
rest of Fc(h) for h from j − (k+ 1) = −1 to j + k+ 1 = 3 is set to −∞ by default.

d = 1 : compute FRPs for diagonals j − d = 0, j = 1, j + d = 2. Since the 0-FRP on
diagonal 1 reaches the last row of the DP table already, it is not possible to extend
it to 1-paths on lower diagonals: indeed, Ri, Rd and Rs all return (−∞,−∞) for
both diagonals 0 and 1. It is possible to extend it to a 1-path on diagonal 2 though,
as shown in Figure 3.2b.

This results in Lc = {0, 1, 2, 3} and Vc = [1, 1, 0, 1,∞,∞].

59

It is easy to see that the correctness of the Landau-Vishkin algorithm directly implies
the correctness of kE-ext, providing the following lemma.

Lemma 16. Algorithm kE-ext is correct.

G A A C A A

A

A

(a)

G A A C A A

A

A Rd

(b)

Figure 3.2: (3.2a) diagonal j = 1: lceS,P (0, 1) = 2, thus the 0-FRP reaches the last row of
the table and kE-ext correctly returns pair (2, 0).
(3.2b) diagonal j + d = 2: Rd(|S|, |P |, ST ∗P,S , 1, 2) returns (rd, cd) = (1, 3) (as lceS,P (2, 4) = 0):
since rd = |S| − 1, this path reaches the last row of the DP table, and kE-ext correctly returns
pair (3, 1).

Lemma 17. Given a prefix of P , a string S ∈ T̃ [i], ST ∗
P,T̃ [i]

, and an integer 0 < k < m,

kE-ext extends the prefix of P with S in time O(k2).

Proof. The kE-ext algorithm does k iterations: at iteration d, for each diagonal −d ≤
h ≤ d, the end of three paths must be retrieved (constant-time operations) and the path
extension along diagonal h must be computed via a constant-time lce query (Fact 10).
The overall time for the extension is then bounded by O(1+3+· · ·+(2k+1))=O(k2).

Correctness As for the correctness of algorithm kE-edsm, Lemmas 14 and 16 ensure
that borders and extensions are correctly computed; we further observe that, by storing
just the minimum edit distance for every partial kE-occurrence of P at a certain position
T̃ [i], we do not miss any occurrence of P nor report spurious occurrences. It is easy to
find examples where, should we store a single value different from the minimum, we
would either fail to report an occurrence (in case we stored a greater value), or report a
spurious one (if we stored a lower value). On the other hand, any additional distance
value beyond the minimum would be redundant according to the following observation:
assume P [0 . . . `] has two partial kE-occurrences at T̃ [i] with distances, respectively, d
and d′ > d. If P [`+ 1 . . .m− 1] matches a prefix of some string in T̃ [i+ 1] with e errors
and e+ d′ ≤ k, then also e+ d ≤ k. Therefore, it suffices to store distance d associated
to P [0 . . . `] to output an occurrence of P (or an extended partial one) at T̃ [i+ 1].

The following lemma summarizes the time complexity of kE-edsm.

Lemma 18. Given P of length m, T̃ of length n and total size N , and an integer 0 <
k < m, algorithm kE-edsm solves the kE-edsm problem on-line in time O(k2mG+kN),
G being the total number of strings in T̃ .

Proof. At the i-th iteration, algorithm kE-edsm tries to extend each p ∈ Lp with each

string S ∈ T̃ [i]. By Lemma 13, to build ST ∗
P,T̃ [i]

, for all i ∈ [0, n − 1], requires time

O(N). By Lemma 17, to extend a single prefix with a string S can be done in time
O(k2). Since in Lp there are at most |P | = m prefixes, to extend them all with a single

60

string S requires time O(mk2). In T̃ [i] there are |T̃ [i]| strings, so the time cost rises
to O(|T̃ [i]|mk2) for each T̃ [i], leading to an overall time cost of O(k2mG) to perform
extensions. By Lemma 15, the prefixes of P that are at distance at most k from any
suffix of S as well as the kE-occurrences of P that start and end at position i can
be found in time O(k2G + kN); the overall time complexity for the whole kE-edsm
algorithm is then O(N + k2mG + k2G + kN) = O(k2mG + kN). The algorithm is
on-line in the sense that any occurrence of the pattern ending at position i is reported
before reading T̃ [i+ 1].

We thus have the following result.

Theorem 12. The kE-edsm problem can be solved on-line in time O(k2mG + kN)
and space O(m) for constant-sized alphabets.

Proof. To obtain the space bound O(m), we need to slightly modify Algorithm kE-edsm
in the following way: each string S ∈ T̃ [i] is (conceptually) divided into windows of size
2m (except for the last one, whose length is ≤ m) overlapping by m. Let Wj be the

j-th window in S, 1 ≤ j ≤ d |S|m e. Instead of building ST ∗
P,T̃ [i]

for each degenerate letter

T̃ [i], the algorithm now builds ST ∗P,Wj
for each 1 ≤ j ≤ d |S|m e and for each S ∈ T̃ [i]:

since the windows are of size 2m, this can be done in both time and space O(m). Both
algorithms kE-bord and kE-ext require space linear in the size of the string that spell
the columns of the dynamic programming table, that is either P (in extensions) or a
window of size 2m (in borders). Each list (Lc, Lp, L

′) and each vector (Vc, Vp) requires
space O(m), so the overall required space is actually O(m).

The time bound is not affected by these modifications of the algorithm: the maximum

number of windows in T̃ [i], in fact, is max {|T̃ [i]|, dNim e}, where Ni =
∑|T̃ [i]|−1
j=0 |T̃ [i][j]|.

This means that it takes time O(m|T̃ [i]|) or O(mNi
m) = O(Ni) to build and pre-process

every suffix tree for T̃ [i]. Algorithm kE-bord requires time O(k2 + km) = O(km)
(because k < m) for each window: again, this must be multiplied by the number
of windows in T̃ [i], so the time is max {O(km|T̃ [i]|),O(kNi))} for T̃ [i]. Coming to
algorithm kE-ext, nothing changes, as prefixes of P can only be extended by prefixes
of S, so it suffices to consider one window for each S: it still requires time O(k2mG)
over the whole ED text. Summing up all these considerations, the overall time is

O(

n−1∑
i=0

[max {m|T̃ [i]|, Ni}+ max {km|T̃ [i]|, kNi}] + k2mG) =

= O(

n−1∑
i=0

[max {km|T̃ [i]|, kNi}] + k2mG)

which is clearly bounded by O(k2mG+ kN).

To sum up, the following example shows a full iteration of kE-edsm.

Example 9 (Running example). Consider the usual pattern P=GAACAA and text T̃ of
Example 5, k = 1, i = 1. Examples 7 and 8 considered string S = AA ∈ T̃ [1] to compute
borders and extensions respectively, so that Lc = {0, 1, 2, 3} and Vc = [1, 1, 0, 1,∞,∞]

61

so far: consider now S = AG ∈ T̃ [1].
kE-bord(P, S, ST ,

P,T̃ [1]
1) returns pair (0, 0): since 0 already belongs to Lc and Vc[0] =

1 > 0, we set Vc[0] = 0, so that Lc = {0, 1, 2, 3} and Vc = [0, 1, 0, 1,∞,∞]. Now
kE-ext(1, P, S, ST ,

P,T̃ [1]
1) returns (2, 1): 2 is already in the list, but since Vc[2] = 0 < 1

we leave it as it is.
kE-ext(2, P, S, ST ,

P,T̃ [1]
0) does not provide any additional extensions (as it is not

possible to extend P [0, 1] = GA with S = AG and no additional edit operations), so we
move to S = ε ∈ T̃ [1]. Of course the empty string can only be used to extend the prefixes
already matched at T̃ [0]: in this case, kE-ext(1, P, S, ST ,

P,T̃ [1]
1) outputs pairs (1, 0) and

(1, 1), kE-ext(2, P, S, ST ,
P,T̃ [1]

0) reports pair (2, 1), which are all stored in Lc and Vc

already. The whole iteration thus ends with Lc = {0, 1, 2, 3} and Vc = [0, 1, 0, 1,∞,∞].

3.4 An Algorithm for kH-EDSM

The overall structure of algorithm kH -edsm (pseudocode not shown) is the same as kE-
edsm. We assume a constant-sized alphabet. The two algorithms differ in the functions
used to perform Step (1) (kH -bord rather than kE-bord) and Step (2) (kH -ext rather
than kE-ext). The new functions take as input the same parameters as the old ones
and, like them, they both return lists of pairs (j, d) (pseudocode shown below). Unlike
kE-bord and kE-ext, with kH -bord and kH -ext such pairs now represent partial
kH -occurrences of P in T̃ .

kH -bord(P ,S,ST ∗
P,T̃ [i]

,k)

1 for h = 0 to |S| − 1 do
2 d← 0; j ← 0; h′ ← h;
3 while d ≤ k do
4 `← lceP,S(j, h′);
5 if h′ + ` = |S| then report (|S| − h− 1, d) ;
6 else
7 if h′ + `+ 1 = |S| ∧ d+ 1 ≤ k then report (|S| − h, d+ 1) ;
8 else
9 if j + ` = |P | then report (|P | − 1, d) ;

10 else
11 if j + `+ 1 = |P | ∧ d+ 1 ≤ k then report (|P | − 1, d+ 1) ;
12 else d← d+ 1; j ← j + `+ 1; h′ ← h′ + `+ 1 ;

At the i-th iteration, for each S ∈ T̃ [i] and any position h in S, kH -bord determines
whether a prefix of P is at distance at most k from the suffix of S starting at position h
via executing up to k+1 lce queries in the following manner: computing ` = lceP,S(0, h),
it finds out that P [0 . . . `− 1] and S[h . . . h+ `− 1] match exactly and P [`] 6= S[h+ `].
It can then skip one position in both strings (the mismatch P [`] 6= S[h+ `]), increasing
the error-counter d by 1, and compute the lceP,S(` + 1, h + ` + 1). This process is
performed up to k+ 1 times, until either (i) the end of S is reached, and then a prefix of

62

kH -ext(j,P ,S,ST ∗
P,T̃ [i]

,k)

1 if S = ε then report (j, 0);
2 else
3 d← 0; h← 0; j′ ← j;
4 while d ≤ k do
5 `← lceS,P (h, j′);
6 if h+ ` = |S| then report (j′ + `− 1, d) ;
7 else
8 if h+ `+ 1 = |S| ∧ d+ 1 ≤ k then report (j′ + `, d+ 1) ;
9 else

10 if j′ + ` = |P | then report (|P | − 1, d) ;
11 else
12 if j′ + `+ 1 = |P | ∧ d+ 1 ≤ k then report (|P | − 1, d+ 1) ;
13 else d← d+ 1; h← h+ `+ 1; j′ ← j′ + `+ 1 ;

P is at distance at most k from the suffix of S starting at h (lines 7-12 in pseudocode);
or (ii) the end of P is reached, then a kH -occurrence of P has been found (lines 13-17
in pseudocode). If the end of S nor the end of P are reached, then more than k
substitutions are required, and the algorithm continues with the next position (that is,
h+ 1) in S.

The following lemma gives the total cost of all the calls of algorithm kH -bord in
kH -edsm.

Lemma 19. Given P of length m, T̃ of length n and size N , the ST ∗
P,T̃ [i]

, for all

i ∈ [0, n− 1], and an integer 0 < k < m, kH-bord finds the minimal Hamming distance
≤ k between the prefixes of P and any suffix of S ∈ T̃ [i], as well as the kH-occurrences
of P that start and end at position i, in time O(kN).

Proof. For any position h in S, the kH -bord algorithm finds the prefix of P that is at
distance at most k from the suffix of S starting at position h in time O(k) by performing
up to k + 1 lce queries (Fact 10). Over all positions of S, the method therefore requires
time O(k|S|). Doing this for all S ∈ T̃ [i] and for all i ∈ [0, n− 1] leads to the result.

At the i-th iteration, for each partial kH -occurrence of P started earlier (represented
by p ∈ Lp similar to algorithm kE-edsm) kH -ext tries to extend it with a string from

the current text position. To this end, for each string S ∈ T̃ [i], it checks whether some
partial kH -occurrence can be extended with the whole S starting from position j = p+1
of P , or whether a full kH -occurrence can be obtained by considering only a prefix of S
for the extension. The algorithm therefore executes up to k + 1 lce queries with the
same possible outcomes and consequences mentioned for kH -bord.

Lemma 20. Given P of length m, T̃ of length n and size N , the ST ∗
P,T̃ [i]

, for all

i ∈ [0, n− 1], and an integer 0 < k < m, kH-ext finds all the extensions of prefixes of
P required by kH-edsm in time O(kmG), G being the total number of strings in T̃ .

63

Proof. Algorithm kH -ext determines in time O(k) whether a partial kH -occurrence of
P can be extended by S by performing up to k + 1 constant-time lce queries (Fact 10);
checking whether a full kH -occurrence is obtained by considering only a prefix of S for
the extension can be performed within the same complexity. Since P has m different
prefixes, extending all of them costs O(km) per each string S. Since there are G such
strings, the overall time is O(kmG).

Lemma 21. Given P of length m, T̃ of length n and total size N , and an integer 0 <
k < m, algorithm kH-edsm solves the kH-edsm problem on-line in time O(kmG+ kN),
G being the total number of strings in T̃ .

Proof. At the i-th iteration, algorithm kH -edsm tries to extend each p ∈ Lp with each

string S ∈ T̃ [i]. By Lemma 13, building ST ∗
P,T̃ [i]

, for all i ∈ [0, n − 1], requires time

O(N). By Lemma 20, extending prefixes of P stored in Lp with each string S ∈ T̃ [i] has
an overall time cost of O(kmG). By Lemma 19, the prefixes of P that are at distance
at most k from any suffix of S as well as the kH -occurrences of P that start and end at
position i can be found in time O(kN) in total. Summing up, the overall time complexity
for the whole kH -edsm algorithm is then O(N + kmG + kN) = O(kmG + kN), as
G ≥ n. The algorithm is on-line in the sense that any occurrence of the pattern ending
at position i is reported before reading T̃ [i+ 1].

The proof of Theorem 12 suggests a way in which algorithm kE-edsm can be run
on-line in space O(m); it should be straightforward to see that a similar modification of
algorithm kH -edsm leads to the following result.

Theorem 13. The kH-edsm problem can be solved on-line in time O(kmG+ kN) and
space O(m) for constant-sized alphabets.

3.5 Extension to General Integer Alphabets

The algorithms presented in the previous sections are designed for constant-sized
alphabets only: a straightforward switch to the general integer alphabets case would
entail an increase in the time required to build the suffix trees, and hence in the
complexity of the algorithm. In this section we show how to extend our results to the
case of general integer alphabets, while maintaining the same time and space complexity.
We obtain this by using perfect hashing [154] to build the suffix tree of a window of
length (at most) 2m in O(m) time for general integer alphabets. The procedure consists
of a preprocessing phase followed by the proper construction of the suffix tree.

Preprocessing: We hash the letters of pattern P using perfect hashing. For each key,
we assign a rank value from {1, . . . ,m}. This takes O(m) (expected) time and
space [154].

Construction: When reading a window W of length (at most) 2m of the text we look
up its letters using the hash table constructed during the preprocessing phase.
If a letter is in the hash table we replace it in W by its rank value; otherwise
we replace it by rank m+ 1. This operation takes O(1) time [154]. We can now

64

construct the suffix tree of W in O(m) time and O(m) space using Farach’s suffix
tree construction algorithm [139]. This is because string W is over {1, . . . ,m+ 1}.

We thus have the following lemma.

Lemma 22. Given P of length m and T̃ of length n and size N , to build ST ∗P,Wj
for

each window Wj of length 2m, 1 ≤ j ≤ d |S|m e, and for each S ∈ T̃ [i], for all i ∈ [0, n−1],
requires total time O(N) for general integer alphabets.

By plugging this lemma into the algorithms of, respectively, Section 3.3 and Sec-
tion 3.4, we obtain the following results.

Theorem 14. The kE-edsm problem can be solved on-line in time O(k2mG + kN)
and space O(m) for general integer alphabets.

Theorem 15. The kH-edsm problem can be solved on-line in time O(kmG+ kN) and
space O(m) for general integer alphabets.

3.6 Final Remarks

In this chapter we introduced two algorithms for finding all approximate matches of
a pattern P of length m in an ED text T̃ of length n and size N : an O(kmG+ kN)-
time algorithm for Hamming distance; and an O(k2mG+ kN)-time algorithm for edit
distance, where G is the total number of strings in T̃ and k is the maximum distance
allowed. Both algorithms are on-line, their working space is O(m), and they work for
general integer alphabets.

There are at least two directions for future work. The first one is to improve the
time complexity for these problems by perhaps removing the dependency on parameter
G. The second direction is to develop algorithms for searching multiple patterns
simultaneously under the approximate setting.

65

Chapter 4

Comparing Degenerate
Strings

Key Points

Problem. String comparison is the core computational task in several string-processing
applications, whether they process standard or uncertain strings. For example, to
extract frequent patterns from a single string, to find common substrings among
several strings, or to check whether a string is palindromic, one must have a
tool for comparing two strings. Our goal here is to find an efficient method to
compare two sets of similar strings, represented in a string-like, compact form.
More precisely, we consider gapless multiple sequence alignments (MSA) of fixed
width, that is, for example, high-scoring local alignments of multiple sequences.

Model. We encode the gapless multiple sequence alignments as generalized degenerate
strings (GD strings), a restricted variant of ED strings where the ith set contains
strings of the same length ki but this length can vary between different sets. Our
solution to the problem of comparing two GD strings is based on a combinatorial
result of independent interest: although the intersection of two GD strings can
be exponential in the total size of the two strings, it can be represented in linear
space. We also show that a result, which is essentially the same as our string
comparison algorithm, can be obtained by employing an automata-based approach
when the alphabet has constant size.

Included Works

This chapter presents the results of the paper Comparing Degenerate Strings [28],
published in Fundamenta Informaticae, which is the journal extension of Degenerate
String Comparison and Applications [27], presented at the 18th Workshop on
Algorithms in Bioinformatics (WABI 2018).

66

4.1 Introduction

Uncertain sequences are useful for representing sets of similar strings in a compact
form. They highlight common segments by collapsing them, and explicitly represent
varying segments by listing all possible options. In Chapters 2 and 3 we considered
elastic-degenerate (ED) strings, that are sequence of subsets of Σ∗ (see also network
expressions [278]), and solve both the exact and the approximate version of pattern
matching on ED strings.

In this chapter we introduce another special type of uncertain sequence called a
generalized degenerate string; this can be viewed as a restricted variant of ED strings.
Formally, a generalized degenerate string (GD string) Ŝ over Σ is a sequence of n sets
of strings of total size N over Σ, where the ith set contains strings of the same length
ki > 0 but this length can vary between different sets. We denote the sum of these
lengths k0, k1, . . . , kn−1 by W . A GD string can be used to represent in a compact form
a gapless multiple sequence alignment (MSA) of fixed width, that is, for example, a
high-scoring local alignment of multiple sequences (see Figure 4.1 and Figure 4.2).

CA--AGCTCTATCTCGTA--TT AGCTCTATCTCG

C---AGCCGAAGCTCGTATATT AGCCGAAGCTCG

CATCAAGTCAACGCAG----TT AAGTCAACGCAG

Figure 4.1: Multiple sequence alignment (left) and Local Gapless Alignment (right).

In this chapter we solve the problem of comparing two GD strings, that is, deciding
whether two GD strings have a non-empty intersection. String comparison is the core
computational task in several string-processing applications, whether they process
standard or uncertain strings. For example, to extract frequent patterns from a single
string, to find common substrings among several strings, or to check whether a string
is palindromic, one must have a tool for comparing two strings. Therefore, we first
develop an efficient algorithm to compare two GD strings, and then, as proof of concept,
we apply this algorithm to compute all palindromes in a GD string.

In a standard string, a palindrome is a sequence that reads the same from left to
right and from right to left. Detection of palindromic factors in texts is a classical and
well-studied problem in algorithms on strings and combinatorics on words with a lot of
variants arising out of different practical scenarios. A string X = X[0]X[1] . . . X[n− 1]
is said to have an initial palindrome of length k if its prefix of length k is a palindrome.
Manacher first discovered an on-line algorithm that finds all initial palindromes in a

Ŝ = {A} ·

{
GC

AG

}
·


TCT

CGA

TCA

 · {A} ·

TCTC

GCTC

CGCA

 · {G}
Figure 4.2: GD string obtained from the local gapless alignment of Figure 4.1.

67

string [264]. Later Apostolico et al. observed that the algorithm given by Manacher is
actually able to find all maximal palindromic factors in the string in O(n) time [32].
Gusfield gave an off-line linear-time algorithm to find all maximal palindromes in
a string and also discussed the relation between biological sequences and gapped
palindromes [184].

With uncertain sequences, we first need to have an algorithm for efficient string
comparison, where automata provide the following baseline. Let X̂ and Ŷ be two GD
(or two ED) strings of total sizes N and M , respectively. We first construct the non-
deterministic finite automaton (NFA) A of X̂ and the NFA B of Ŷ in time O(N +M).
We then construct the product NFA C such that L(C) = L(A)∩L(B) in time O(NM).
The non-emptiness decision problem, namely, checking if L(C) 6= ∅, is decidable in time
linear in the size of C, using breadth-first search (BFS). Hence the comparison of X̂
and Ŷ can be done in time O(NM). It is known that if there existed faster methods for
obtaining the automata intersection, then significant improvements would be implied to
many long standing open problems [251]. Hence an immediate reduction to the problem
of NFA intersection does not particularly help. For GD strings, specifically, we show
that we can construct an ad-hoc deterministic finite automaton (DFA) for X̂ and Ŷ ,
so that the intersection can be performed efficiently, but this simple solution cannot
achieve O(N +M) time for integer alphabets as its cost is alphabet-dependent.

Our Contribution. Our first result is an O(N +M)-time algorithm for deciding
whether the intersection of two GD strings of sizes N and M , respectively, over a
constant-sized alphabet is non-empty. We show this by means of DFAs (see Section 4.3).
This result is based on a combinatorial result of independent interest: although the
intersection of two GD strings can be exponential in the total size of the two strings,
it can be represented in linear space. We next present an efficient implementation of
this result in the standard word RAM model with word size w = Ω(log(N +M)) that
works also for integer alphabets. Specifically, we show an O(N +M)-time algorithm for
deciding whether the intersection of two GD strings of sizes N and M , respectively, over
an integer alphabet is non-empty (see Section 4.4). We then apply our string comparison
tool to compute palindromes in GD strings. We present a simple O(min{W,n2}N)-time
algorithm for computing all palindromes in Ŝ; a proof-of-concept experiment is also
presented (see Section 4.5). Notably, we complement this upper bound with a non-trivial
Ω(n2|Σ|) lower bound under the Strong Exponential Time Hypothesis [207, 208] for
computing all maximal palindromes in Ŝ (see Section 4.6). Let us remark that there
exists an infinite family of GD strings over an integer alphabet of size |Σ| = Θ(N) on
which our algorithm requires time O(n2N), thus matching the conditional lower bound.
We conclude this chapter with some open problems (see Section 4.7).

4.2 Preliminaries

A string P is a palindrome if and only if P =PR. If factor X[i . . j], 0≤ i≤j≤n− 1, of
string X of length n is a palindrome, then i+j

2 is the center of X[i . . j] in X and j−i+1
2

is the radius of X[i . . j]. In other words, a palindrome is a string that reads the same
forward and backward, i.e., a string P is a palindrome if P =YaY R where Y is a string,
Y R is the reversal of Y and a is either a single letter (when the center is an integer) or
the empty string (when it is not). Moreover, X[i . . j] is called a palindromic factor of

68

X. It is said to be a maximal palindrome if there is no other palindrome in X with
center i+j

2 and larger radius. Hence X has exactly 2n − 1 maximal palindromes. A
maximal palindrome P of X can be encoded as a pair (c, r), where c is the center of P
in X and r is the radius of P .

Definition 2. A generalized degenerate string (GD string) Ŝ = Ŝ[0]Ŝ[1] . . . Ŝ[n − 1]
of length n over an alphabet Σ is a finite sequence of n degenerate letters. Every
degenerate letter Ŝ[i] of width ki>0, denoted also by w(Ŝ[i]), is a finite non-empty set
of strings such that Ŝ[i][0], . . . , Ŝ[i][|Ŝ[i]|−1] ∈ Σki . For any GD string Ŝ, we denote by
Ŝ[i] . . . Ŝ[j] the GD substring of Ŝ that starts at position i and ends at position j.

In this work, we generally consider GD strings over an integer alphabet of size
σ=NO(1). We now define some parameters that describe the structure of a GD string.

Definition 3. The total size N and total width W , denoted also by w(Ŝ), of a GD

string Ŝ are respectively defined as N =
∑n−1
i=0 |Ŝ[i]| · ki and W =

∑n−1
i=0 ki.

Example 10. The GD string Ŝ of Figure 4.2 has length n=6, size N=28, and W =12.

Definition 4. Given two degenerate letters X̂ and Ŷ , their Cartesian concatenation is

X̂ ⊗ Ŷ = {xy | x ∈ X̂, y ∈ Ŷ }.

When Ŷ = ∅ (resp. X̂ = ∅) we set X̂⊗ Ŷ = X̂ (resp. = Ŷ). Notice that ⊗ is associative.

Definition 5. Consider a GD string Ŝ of length n. The language of Ŝ is

L(Ŝ) = Ŝ[0]⊗ Ŝ[1]⊗ · · · ⊗ Ŝ[n− 1].

Our goal for GD string comparison is to establish, given two GD strings R̂ and Ŝ,
whether the intersection of their language is non-empty. To this purpose, we define the
notions of chop and active suffixes.

Definition 6. Let X̂ = {xi ∈ Σk} and Ŷ = {yj ∈ Σh} be two degenerate letters on

alphabet Σ. Further let us assume without loss of generality that w(Ŷ) < w(X̂) (i.e.,
h < k). We define the set chop of X̂ and Ŷ and the set active suffixes of X̂ and Ŷ as
follows:

• chopX̂,Ŷ = {yj ∈ Ŷ | yj matches a prefix of some xi ∈ X̂}

• activeX̂,Ŷ = {xi[h . . k − 1] | xi[0 . . h− 1] ∈ chopX̂,Ŷ }

Let w(chopX̂,Ŷ) = min{w(X̂), w(Ŷ)}. When activeX̂,Ŷ = {ε}, we set activeX̂,Ŷ = ∅.
We then have that activeX̂,Ŷ = ∅ either if h=k or if there is no match between any of

the strings in Ŷ and the prefix of a string in X̂; i.e., chopX̂,Ŷ = ∅.

Example 11 (for Definition 6). Consider the following degenerate letters X̂ and Ŷ
where w(Ŷ)<w(X̂). The underlined strings in letter Ŷ are prefixes of strings in letter
X̂, hence they are in chopX̂,Ŷ . The suffixes of such strings in X̂ are the active suffixes
in activeX̂,Ŷ .

69

X̂ =


T C C T A

A T C G A

T C CA C

C A T T A

 Ŷ =


G C A

C A T

T C C

 chopX̂,Ŷ = {C A T , T C C} activeX̂,Ŷ = {T A , A C}

Definition 7. Let R̂ and Ŝ be two GD strings of length r and s, respectively. R̂[0] . . . R̂[i]
is the prefix of R̂ that ends at position i. It is called proper if i 6= r − 1. We say that
R̂[0] . . . R̂[i] is synchronized with Ŝ[0] . . . Ŝ[j] if w(R̂[0] . . . R̂[i]) = w(Ŝ[0] . . . Ŝ[j]). We
call these the shortest synchronized prefixes of R̂ and Ŝ, respectively, when for all i′, j′

such that i′ < i and j′ < j, we have that w(R̂[0] . . . R̂[i′]) 6= w(Ŝ[0] . . . Ŝ[j′]).

Example 12 (for Definition 7). The GD string Ŝ of Figure 4.2 and the GD string
R̂ below have no synchronized proper prefixes, while Ŝ and the GD string T̂ below
have synchronized prefix of length 1 and 6 (because w(Ŝ[0]) = w(T̂ [0]) = 1 and
w(Ŝ[0]Ŝ[1]Ŝ[2]) = w(T̂ [0]T̂ [1]) = 6) , and thus their shortest synchronized prefix has
length 1.

R̂ =


C G C A C

A G C C G

A G C C G

 ·
{
A A T

T A G

}
·


C T C G

G C A G

C T C A

 T̂ =

{
C

A

}
·


C C A C T

G C C C A

T C C T T

 ·
{
A T

A G

}
·


A T C G

A G C T

G G C A


4.3 GD String Comparison for Small Alphabets Us-

ing Automata

In this section we describe a simple algorithm for GD string comparison that is based
on DFAs. It works in linear time for constant-sized alphabets, and it is generalized in
the subsequent section to work for integer alphabets.

Given R̂ and Ŝ of total size N and M , respectively, each degenerate letter of R̂ and
Ŝ can be represented by a trie, where its leaves are collapsed to a single one. For every
two consecutive degenerate letters, the collapsed leaves of the former trie coincide with
the root of the latter trie. An acyclic DFA is obtained in this way, as illustrated in
Example 13 below. We can perform the comparison of R̂ and Ŝ by intersecting their
corresponding DFAs using BFS on their product DFA.

The trivial upper bound on the number of reachable states is O(NM), and the
traditional method for constructing the DFA for L(R̂)∩L(Ŝ) is non-linear, but this can
be improved to O(N +M) by exploiting the structure of the two input DFAs. Each
state in such a DFA has a unique level: the common length of paths from the initial
state. This structure is inherited by the product DFA. In other words, a level-i state in
the product DFA corresponds to a pair of level-i states in the input DFAs. Observe
that a level-i state in one DFA is uniquely represented by the label of the path from
the root of its trie, and for a fixed DFA and level, these labels have uniform lengths.
Considering the two states composing a reachable state in the product DFA, it is easy
to see that the shorter label must be a suffix of the longer label. Hence, the state in
the DFA with longer labels at level i uniquely determines the state in the DFA with

70

r0start

r2

r3

r5 r7 r9 r11

r12

r4 r6 r8 r10r1

A

C

C C

A

A C C

C

C A A

CC

Figure 4.3: The DFA for L(R̂)

s0start

s1 s3

s5

s6 s8

s10 s11

s2 s4 s7 s9

A

C

C

A C

A

C

C

A

C

A

C

C

Figure 4.4: The DFA for L(Ŝ)

shorter labels at level i. Consequently, the number of reachable level-i states in the
product DFA is bounded by the number of level-i states in the input DFAs, and the
size is O(N +M).

Note that computing the product DFA is alphabet-dependent, due to branching
(transition function) on the same letter in the states of the two input DFAs.

Example 13. Say we want to compare the following two GD strings:

R̂ =

{
A C

C C

}
·

{
A C A A C

C A C C C

}
Ŝ =

{
A C A

C C C

}
·

{
A C C

C A A

}
·
{
C
}

We start by constructing the DFA for L(R̂) and the DFA for L(Ŝ), shown in
Figure 4.3 and Figure 4.4, respectively. We then construct their product DFA, shown in
Figure 4.5, which gives the intersection of L(R̂) and L(Ŝ): ACACAAC and CCCACCC.

r0, s0start

r2, s1

r1, s2

r3, s3

r3, s4

r4, s5

r5, s5

r6, s6

r7, s7

r8, s8

r9, s9

r10, s10

r11, s10

r12, s11

A

C

C A C A A

C

C C A C C

C

Figure 4.5: The product DFA for L(R̂) ∩ L(Ŝ)

4.4 GD String Comparison for Integer Alphabets

In this section we describe a more general algorithm for the problem of GD string
comparison addressed also in Section 4.3. Let R̂ and Ŝ be of total size N and M ,

71

respectively. We provide an O(N + M)-time algorithm in the standard word RAM
model with word size w = Ω(log(N +M)) to decide whether the intersection of R̂ and
Ŝ is non-empty, which also works for integer alphabets.

We show that, even if the size of L(R̂) ∩ L(Ŝ) can be exponential in the total sizes
of R̂ and Ŝ (Fact 16), the problem of GD string comparison, i.e., deciding whether
L(R̂) ∩ L(Ŝ) is non-empty, can be solved in time linear with respect to the sum of the
total sizes of the two GD strings (Theorem 18) and is thus of independent interest.

Fact 16. Given two GD strings R̂ and Ŝ, L(Ŝ) ∩ L(R̂) can have size exponential in
the total sizes of R̂ and Ŝ. A trivial example of this is given when R̂ = Ŝ and they are
a sequence of n degenerate letters of, for example, 2 strings of 2 letters each: the total
size of both R̂ and Ŝ is 4n, while |L(Ŝ) ∩ L(R̂)| = |L(R̂)| = 2n.

We next show when it is possible to factorize L(R̂) ∩ L(Ŝ) into a Cartesian concate-
nation.

Lemma 23. Consider two GD strings Ŝ = Ŝ′Ŝ′′ and R̂ = R̂′R̂′′ such that w(Ŝ) = w(R̂).
If Ŝ′ is synchronized with R̂′, then L(R̂) ∩ L(Ŝ) = (L(R̂′) ∩ L(Ŝ′))⊗ (L(R̂′′) ∩ L(Ŝ′′)).

By applying Lemma 23 wherever R̂ and Ŝ have synchronized prefixes, we are then
left with the problem of intersecting GD strings with no synchronized proper prefixes.
We now define an alternative decomposition within such strings (see also Example 14).

Definition 8. Let R̂ and Ŝ be two GD strings of length r and s, respectively, with no
synchronized proper prefixes. We define

c-chain(R̂, Ŝ) = max
q
{0 ≤ q ≤ r + s− 2 | chopq 6= ∅},

where chopi denotes the set chopÂi,B̂i , and (Â0, B̂0), (Â1, B̂1), . . . , (Âq, B̂q), pos(Âi), pos(B̂i)
are recursively defined as follows:

Â0 = R̂[0], B̂0 = Ŝ[0], and pos(Â0) = pos(B̂0) = 0. If chopi−1 6= ∅, for 0 < i ≤ r + s− 2,

Âi =

{
R̂[pos(Âi−1) + 1] and pos(Âi) = pos(Âi−1) + 1 if w(chopi−1) = w(Âi−1)

activeÂi−1,B̂i−1
and pos(Âi) = pos(Âi−1) otherwise

B̂i =

{
Ŝ[pos(B̂i−1) + 1] and pos(B̂i) = pos(B̂i−1) + 1 if w(chopi−1) = w(B̂i−1)

activeÂi−1,B̂i−1
and pos(B̂i) = pos(B̂i−1) otherwise

The generation of pairs (Âi, B̂i) stops at i=q either if q=r+s−2, or when chopq+1 = ∅,
in which case R̂ and Ŝ only match until (Âq, B̂q). Intuitively, Âi (respectively, B̂i)

represents suffixes of the current position of R̂ (respectively, of Ŝ), while pos(B̂i)
(respectively, pos(Âi)) tells which position of R̂ (respectively, Ŝ) we are chopping.

Example 14 (for Definition 8). Consider the following GD strings R̂ and Ŝ with no
synchronized proper prefixes: chop0 is the first red set from the left, chop1 is the first
blue one, chop2 is the second red one, etc. The c-chain(R̂, Ŝ) terminates when q = 7.

72

R̂ =



C G C A C

A G C C G

A A G T C

Â2

Â1

Â0


·



A A T

T A G

Â5

Â4

Â3


·



C T C G

G C A G

C T C A

Â7

Â6


Ŝ =

{
A

B̂0

}
·


G C

A G

B̂1

 ·


T C T

C G A

T CA

B̂3

B̂2


·
{
A

B̂4

}
·



T C T C

G C T C

C G C A

B̂6

B̂5


·
{
G

B̂7

}

Definition 9. Let R̂ and Ŝ be two GD strings of length r and s, respectively, with
w(R̂) = w(Ŝ) and no synchronized proper prefixes. We define GR̂,Ŝ as a directed acyclic
graph with a structure of up to r + s − 1 levels, each node being a set of strings, as
follows, where we assume without loss of generality that w(R̂[0]) > w(Ŝ[0]):

Level k = 0 consists of a single node:
n0 = {x ∈ R̂[0] |x = y0 . . . yq0with yj ∈ chopj ∀j : 0 ≤ j ≤ q0}, where q0 is the index of

the rightmost chop containing suffixes of R̂[0].

Level k > 0 consists of ` = |chopqk−1
| nodes. Assuming without loss of generality that

level k−1 has been built with suffixes of R̂[pos(Âqk−1
)], level k contains suffixes of a

position of Ŝ. Let c0, . . . , c`−1 denote the elements of chopqk−1
. Then, for 0 ≤ i≤`−1,

the i-th node of level k is:
ni={yqk−1+1 . . . yqk | ciyqk−1+1 . . . yqk∈B̂qk−1

with yj ∈chopj ∀j : qk−1+1 ≤ j≤qk}, where

qk is the index of the rightmost chop containing suffixes of Ŝ[pos(B̂qk−1
)].

Every string in level k − 1 whose suffix is ci is the source of an edge having the whole
node ni as a sink.

We define paths(GR̂,Ŝ) as the set of strings spelled by a path in GR̂,Ŝ that starts at n0

and ends at the last level.

Note that the size of GR̂,Ŝ is at most linear in the sum of the sizes of R̂ and Ŝ, as

the nodes contain strings either in R̂ or in Ŝ with no duplications, and each node has
out-degree equal to the number of strings it contains.

Example 15 (for Definition 9). The graph GR̂,Ŝ for the GD strings R̂, Ŝ of Example
14 is the following:

q0 = 2 and the strings in level 0 belong to (chop0 ⊗ chop1 ⊗ chop2) ∩ R̂[0]. Level 1
contains suffixes of strings in B̂2 (and of strings in B̂3 as chop3 = {A, T} and indeed
q1 = 3), level 2 suffixes of strings in Â3 (as q2 = 5), level 3 suffixes of strings in B̂5

73

(q3 = 6), level 4 suffixes of strings in Â6 (q4 = 7). The three paths from level 0 to
level 4 correspond to the three strings in L(R̂) ∩ L(Ŝ): AGCCGAATCTCG, AAGTCAATCTCG,

AAGTCTAGCTCG.

Let Gk
R̂,Ŝ

be GR̂,Ŝ truncated at level k, and let |Gk
R̂,Ŝ
| be the length of the strings it

spells. Let Lk(Ŝ) denote the set of prefixes of length |Gk
R̂,Ŝ
| of L(Ŝ).

Lemma 24. Let R̂, Ŝ be two GD strings with w(R̂)=w(Ŝ)=W and no synchronized
proper prefixes. Then Lk(Ŝ) ∩ Lk(R̂) = paths(Gk

R̂,Ŝ
) for all levels k of GR̂,Ŝ such that

Lk(Ŝ) ∩ Lk(R̂) 6= ∅.

Proof. Again, let us assume without loss of generality that w(R̂[0]) > w(Ŝ[0]). We
prove the result by induction on k.
Level k = 0. By construction, n0 contains strings in R̂[0]∩ (chop0⊗· · ·⊗chopq0), which

have length |G0
R̂,Ŝ
|, and are also in Ŝ[0], and hence belong to both L0(Ŝ) and L0(R̂).

Level k > 0. By inductive hypothesis, we have that Lk−1(Ŝ)∩Lk−1(R̂) = paths(Gk−1

R̂,Ŝ
);

suppose that Lk(Ŝ) ∩ Lk(R̂) 6= ∅, otherwise the graph ends at level k − 1. We first
show that paths(Gk

R̂,Ŝ
) ⊆ Lk(Ŝ) ∩ Lk(R̂): by Definition 9, any z ∈ paths(Gk

R̂,Ŝ
) can

be written as z = z′z′′ with z′ in paths(Gk−1

R̂,Ŝ
) and with z′′ that belongs to some node

at level k of Gk
R̂,Ŝ

reached by an edge leaving a suffix of z′. By inductive hypothesis

z′ ∈ Lk−1(Ŝ) ∩ Lk−1(R̂) and, again by Definition 9, z′′ ∈ chopqk−1+1 ⊗ · · · ⊗ chopqk ;

since Lk(Ŝ) ∩ Lk(R̂) 6= ∅ these chops are not empty, their concatenation contains
the suffix of length |Gk

R̂,Ŝ
| − |Gk−1

R̂,Ŝ
| of strings in both Lk(R̂) and Lk(Ŝ), and hence

z ∈ Lk(Ŝ) ∩ Lk(R̂).
We now show that Lk(Ŝ) ∩ Lk(R̂) ⊆ paths(Gk

R̂,Ŝ
). Consider string u ∈ Lk(Ŝ) ∩ Lk(R̂)

that can be written as u = u′u′′ with u′ the prefix of u having length |Gk−1

R̂,Ŝ
| which then

belongs to Lk−1(Ŝ) ∩ Lk−1(R̂); then, by inductive hypothesis, u′ ∈ paths(Gk−1

R̂,Ŝ
) and,

since u ∈ Lk(Ŝ) ∩ Lk(R̂), then there is an edge linking a suffix of u′ at level k − 1 with
a node at level k of Gk

R̂,Ŝ
containing a |Gk

R̂,Ŝ
| − |Gk−1

R̂,Ŝ
| long suffix u′′ of u, and hence

u ∈ paths(Gk
R̂,Ŝ

).

As a special case of Lemma 24, if L(Ŝ) ∩ L(R̂) 6= ∅, then GR̂,Ŝ is built up to the
last level and the following holds.

Theorem 17. Let R̂, Ŝ be two GD strings having lengths, respectively, r and s, with
w(R̂) =w(Ŝ) and no synchronized proper prefixes. Then GR̂,Ŝ has exactly r + s − 1

levels, and we have that L(Ŝ) ∩ L(R̂) = paths(GR̂,Ŝ).

GR̂,Ŝ is thus a linear-sized representation of the possibly exponential-sized (see

Fact 16) set L(Ŝ) ∩ L(R̂).
We now show an O(N + M)-time algorithm for the standard word RAM model,

denoted by GDSC, that decides whether L(R̂) and L(Ŝ) share at least one string

74

(returns 1) or not (returns 0). GDSC starts with constructing the generalized suffix tree
TR̂,Ŝ of all the strings in R̂ and Ŝ. Then it scans R̂ and Ŝ starting with R̂[0] and Ŝ[0],
storing in chopR̂,Ŝ the latest chopi and in activeR̂,Ŝ the latest activeÂi,B̂i , using TR̂,Ŝ .
To efficiently implement GDSC, rather than explicitly storing suffixes in activeR̂,Ŝ , they

are stored as index positions of R̂[i] or Ŝ[j]. A variable suff is used to keep track of
the starting position of the suffixes. Note that this starting position is the same for

every index that has been stored in activeR̂,Ŝ . Given that w(ˆS[0]) < w(ˆR[0]), the next

comparison is made between the corresponding suffixes of R̂[0] of length w(ˆR[0])− suff
and Ŝ[1], proceeding with the same process. The comparison of letters can be: (i)
between R̂[i] and Ŝ[j]; or (ii) between the corresponding suffixes of activeR̂,Ŝ and R̂[i];

or (iii) between the corresponding suffixes of activeR̂,Ŝ and Ŝ[j]. If the two GD strings

have a synchronized proper prefix, this will result in activeR̂,Ŝ = ∅ at positions i in R̂

and j in Ŝ. At this point, the comparison is restarted with the immediately following
pair of degenerate letters.

Example 16. Consider the GD strings R̂ and Ŝ below. The set L(R̂) ∩ L(Ŝ) contains
the strings ATACGACTAACGTT, ATACGACTAGCACT, TATCCGACTACGTT, TATCCGACTGCACT.

R̂ =

{
A T A

T A T

}
·


G A C C

C C G A

C G A C

 ·

C G

C T

T A

 ·
{
A C G T

G C A C

}
·
{
T
}

Ŝ =


T A T C C

T A T G A

A T A C G

 ·
{
A C T A

G A C T

}
·


G C A

A A T

A C G

 ·

C

A

T

 · {T}
Theorem 18. Algorithm GDSC is correct. Given two GD strings R̂ and Ŝ of total sizes
N and M , respectively, over an integer alphabet, algorithm GDSC requires O(N +M)
time.

Proof. The correctness follows directly from Lemma 23, Lemma 24, and Theorem 17.
As for the complexity, we have the following: constructing the generalized suffix tree

TR̂,Ŝ can be done in time O(N +M) [139]; for the sets pair (Âi, B̂i) as in Definition

8, such that w(Âi) = k and w(Âi) ≤ w(B̂i), we query TR̂,Ŝ with the k-length prefixes

of strings in B̂i; for integer alphabets, instead of spelling the strings from the root of
TR̂,Ŝ , we locate the corresponding terminal nodes for (Âi, B̂i). It then suffices to find
longest common prefixes between these suffixes to simulate the querying process. Since
all suffixes are lexicographically sorted during the construction of TR̂,Ŝ , we can also

have the suffixes considered by pair (Âi, B̂i) lexicographically ranked with respect to
(Âi, B̂i). Hence we do not perform the longest common prefix operation for all possible
suffix pairs, but only for the lexicographically adjacent ones within this group. This
can be done in O(1) time per pair after O(N +M)-time pre-processing over TR̂,Ŝ [47].

chopi is thus populated with the k-length prefixes of strings in B̂i found in Âi. The set
activeÂi,B̂i of active suffixes can be found by chopping the suffixes of the string in B̂i

75

from their prefixes successfully queried in TR̂,Ŝ . This requires time O(|Âi|+ |B̂i|) for

processing (Âi, B̂i).
Let R̂ and Ŝ be of length r and s, respectively. Assume that R̂ and Ŝ have no

synchronized proper prefixes. Then Theorem 17 ensures that the total number of
comparisons cannot exceed r + s− 2: this results in a time complexity of O(N +M +∑r+s−2
i=0 (|Âi|+ |B̂i|)) = O(N +M).

If R̂ and Ŝ have synchronized proper prefixes, we perform the comparison up to the
shortest synchronized prefixes (i.e., the set of active suffixes becomes empty) and then
restart the procedure from the immediately following pair of degenerate letters. Clearly
the total number of comparisons also in this case cannot be more than r + s− 2.

4.5 Computing Palindromes in GD Strings

Armed with the efficient GD string comparison tool, we shift our focus on computing
palindromes in GD strings.

Definition 10. A GD string Ŝ is a GD palindrome if there exists a string in L(Ŝ)
that is a palindrome.

A GD palindrome Ŝ[i] . . . Ŝ[j] in Ŝ, whose total width is w(Ŝ[i] . . . Ŝ[j]), can be

encoded as a pair (c, r), where its center is c = w(Ŝ[0]...Ŝ[i−1])+w(Ŝ[0]...Ŝ[j])−1
2 , when i > 0,

otherwise, c = w(Ŝ[0]...Ŝ[j])−1
2 , when i = 0; its radius is r = w(Ŝ[i]...Ŝ[j])

2 . Ŝ[i] . . . Ŝ[j] is

called maximal if no other GD palindrome (c, r′) exists in Ŝ with r′ > r. Note that
we only consider the GD palindromes Ŝ[i] . . . Ŝ[j] that start with the first letter of
some string X ∈ Ŝ[i] and end with the last letter of some string Y ∈ Ŝ[j], while the
center can be anywhere: in between or inside degenerate letters. That is, in Ŝ there are
2 · w(Ŝ)− 1 = 2W − 1 possible centers.

Example 17 (for Definition 10). In the GD string

Ŝ = {G} ·


A C A

T T T

G T C

 ·

T G

A G

T T

 ·
{
G A

G T

}
·


C A G G C T T T

C C A G T T A C

A T T T C A G G

 · {A}
we have palindrome ACATTGACCAGTTACA (underlined) at Ŝ[1] . . . Ŝ[5] which corresponds
to GD palindome (8.5,8), palindrome TTT at Ŝ[1] (underlined twice) which corresponds
to GD palindrome (2,1.5) and palindrome TGGT at Ŝ[2] . . . Ŝ[3] (overlined) which cor-
responds to GD palindrome (5.5,2). Observe that GD palindrome (5.5,2) is maximal
for center 5.5. Note that CTGGTC does not correspond to a valid GD palindrome as it
neither starts at the beginning of a degenerate letter, nor ends at the end of a degenerate
letter.

In this section, we consider the following problem. Given a GD string Ŝ of length n,
total size N , and total width W , find all GD strings Ŝ[i] . . . Ŝ[j], with 0 ≤ i ≤ j ≤ n− 1,
that are GD palindromes. We give two alternative algorithms: one finds all GD
palindromes seeking them for all (i, j) pairs of starting and ending positions, and the

76

other one finds them starting from all possible centers. The two algorithms have different
time complexities: which one is faster depends on W , N , and n. In fact, they compute
all GD palindromes, but report only the maximal ones.

4.5.1 Algorithms for Computing GD Palindromes

We first describe algorithm MaxPalPairs. For all i, j positions within Ŝ, in order
to check whether Ŝ[i] . . . Ŝ[j] is a GD palindrome, we apply the GDSC algorithm
to Ŝ[i] . . . Ŝ[j] and its reverse, denoted by rev(Ŝ[i] . . . Ŝ[j]); the reverse is defined by
reversing the sequence of degenerate letters and also reversing the strings in every
degenerate letter. GD palindromes are, finally, sorted per center, and the maximal GD
palindromes are reported. Sorting the (i, j) pairs by their centers can be done in O(W)
time using bucket sort, which is bounded by O(N) since N ≥W .

Since there are O(n2) pairs (i, j), and since by Theorem 18 algorithm GDSC takes
time proportional to the total size of Ŝ[i] . . . Ŝ[j] to check whether Ŝ[i] . . . Ŝ[j] is a
GD palindrome, algorithm MaxPalPairs takes O(n2N) time in total. In algorithm
MaxPalCenters, we consider all possible centers c of Ŝ. In the case when c is in
between two degenerate letters we simply try to extend to the left and to the right
via applying GDSC. In the case when c is inside a degenerate letter we intuitively
split the letter vertically into two letters and try to extend to the left and to the right
via applying GDSC. At each extension step of this procedure we maintain two GD
strings L̂ (left of the center) and R̂ (right of the center) such that they are of the same
total width. We consider the reverse of L̂ (similar to algorithm MaxPalPairs) for the
comparison. In the case where c occurs inside a degenerate letter to make sure we do
not identify palindromes which do not exist, for all j split strings of the degenerate
letter, we check that L̂R[0][j][0 . . . k − 1] = R̂[0][j][0 . . . k − 1] where L̂R = rev(L̂) and
k = min(w(LR[0]), w(R̂[0])). If no matches are found, we move onto the next center.
Otherwise, when a match is found, we update rev(L̂) and R̂ with the remainder of the
split degenerate letter (if its length is greater than k), as well as the next degenerate
letters. Algorithm GDSC is applied to compare rev(L̂) and R̂. After a positive
comparison, we overwrite L̂ and R̂ by adding the degenerate letters of the current
extension until w(L̂) = w(R̂) (or until the end of the string is reached). This process is
repeated as long as GDSC returns a positive comparison, that is, until the maximal
GD palindrome with center c is found. The radius reported is then the total sum of
all values of w(L̂). If GDSC returns a negative comparison at center c, we proceed
with the next center, because we clearly cannot have a GD palindrome centered at c
extended further if rev(L̂) ∩ R̂ is empty.

By Theorem 18 and the fact that there are 2W − 1 possible centers, we have that
algorithm MaxPalCenters takes O(WN) time in total. We obtain the following
result.

Theorem 19. Given a GD string of length n, total size N , and total width W ,
over an integer alphabet, all (maximal) GD palindromes can be computed in time
O(min{W,n2}N).

The problem that gained significant attention recently is the factorization of a string
X of length n into a sequence of palindromes [23, 143, 312, 75, 29, 14]. We say that

77

X1, X2, . . . , X` is a (maximal) palindromic factorization of string X, if every Xi is a
(maximal) palindrome, X = X1X2 . . . X`, and ` is minimal. In biological applications
we need to factorize a sequence into palindromes in order to identify hairpins, patterns
that occur in single-stranded DNA or, more commonly, in RNA. Next, we define and
solve the same problem for GD strings.

Alatabbi et al. gave an off-lineO(n)-time algorithm for finding a maximal palindromic
factorization of X [23]. Fici et al. presented an on-line O(n log n)-time algorithm for
computing a palindromic factorization of X [143]; a similar algorithm was presented
by I et al. [204]. In addition, Rubinchik and Shur [312] devised an O(n)-sized data
structure that helps to locate palindromes in a string; they also showed how it can
be used to compute a palindromic factorization of X in O(n log n) time. Borozdin
et al. recently improved this by presenting an O(n)-time algorithm [75]. Alzamel et
al. considered the factorization problem for weighted sequences [29] and Adamczyk et
al. considered the factorization problem with gaps and errors [14]. In what follows, we
define and solve the same problem for GD strings.

Definition 11. A (maximal) GD palindromic factorization of a GD string Ŝ is a
sequence P̂1, . . . , P̂` of GD strings, such that: (i) every P̂i is either a (maximal) GD
palindrome or a degenerate letter of Ŝ; (ii) Ŝ = P̂1 . . . P̂`; (iii) ` is minimal.

After locating all (maximal) GD palindromes in Ŝ using Theorem 19, we are
in a position to amend the algorithm of Alatabbi et al. [23] to find a (maximal)
GD palindromic factorization of Ŝ. We define a directed graph GŜ = (V, E), where

V = {i | 0 ≤ i ≤ n} and E = {(i, j + 1) | Ŝ[i] . . . Ŝ[j] (maximal) GD palindrome
of Ŝ} ∪ {(i, i + 1)|0 ≤ i < n}. Note that V contains a node n that is the sink of
edges representing (maximal) GD palindromes ending at Ŝ[n− 1]. For maximal GD
palindromes, E contains no more than 3W edges, as the maximum number of maximal
GD palindromes is 2W − 1. For GD palindromes, E contains O(n2) edges, as the
maximum number of GD palindromes is O(n2). A shortest path in GŜ from 0 to n gives
a (maximal) GD palindromic factorization. For maximal GD palindromes, the size of
GŜ is O(W), as n ≤W , and so finding this shortest path requires O(W) time using a
standard algorithm. For GD palindromes, the size of GŜ , and thus the time, is O(n2).

Theorem 20. Given a GD string Ŝ of length n, total size N , and total width W , over
an integer alphabet, a (maximal) GD palindromic factorization of Ŝ can be computed in
time O(min{W,n2}N).

Remark 2. As a final remark, notice that a way to check whether a GD string is a GD
palindrome is to compare it with its reverse. Since it is not a simple pattern matching
between two GD strings, one can reduce the number of comparisons by comparing the
r-th string in Ŝ[s] and the r-th string in Ŝ[n− 1− s]R, for all 0 ≤ s ≤ n− 1. It means
that the comparison is not free, but constrained to the positions that contain the first
half of the palindrome contained in Ŝ.

4.5.2 Computing GD Palindromes in Protein Sequences

We have implemented algorithm MaxPalPairs in C++. We present here a proof-of-
concept experiment but we anticipate that the algorithmic tools developed in this
chapter are applicable in a wide range of biological applications.

78

Hypervariable Region
I II

V [366] This chapter [366] This chapter

VkII
18-27 11-36 119-130 118-131

104-113 104-113 169-180 169-180
VkIII 18-27 11-30 132-142 131-145
VλII 63-74 62-81 140-152 140-152
VλIII 51-74 50-75 132-143 131-144
VλV 96-104 95-104 134-141 134-141

Table 4.1: Coordinates of (maximal) palindromes identified within hypervariable regions I
and II.

We first obtained the amino acid sequences of 5 immunoglobulins within the human V
regions [161] and converted these into mRNA sequences [319]. The letters X, S, T, Y, Z, R
and H were replaced by degenerate letters according to IUPAC [211]. Each other
letter, c ∈ {A, C, G, U}, was treated as a single degenerate letter {c}. An average of
47% of the total number of positions within the 5 sequences consisted of one of the
following: X, S, T, Y, Z, R and H. We then used algorithm MaxPalPairs to find all
maximal palindromes in the 5 sequences. Table 4.1 shows the palindromes identified
within hypervariable regions I and II. Our results are in accordance with Wuilmart et
al [366] who presented a statistical (fundamentally different) method to identify the
location of palindromes within regions of immunoglobulin genes. The ranges we report
are greater than or equal to the ones of [366] due to the maximality criterion used in
the computation of GD palindromes by algorithm MaxPalPairs.

4.6 A Conditional Lower Bound under SETH

In this section, we show a conditional lower bound for computing palindromes in
degenerate strings. Let us first define the 2-Orthogonal Vectors problem. Given two sets
A = {α1, α2, . . . , αn} and B = {β1, β2, . . . , βn} of d-bit vectors, where d = ω(log n), the
2-Orthogonal Vectors problem asks the following question: is there any pair αi, βj of

vectors that is orthogonal? Namely, is
∑d−1
k=0 αi[k] ·βj [k] equal to 0 for some i, j ∈ [1, n]?

For the moderate dimension of this problem, we follow [162], assuming n2−εdO(1) ≤ n2d.
The following result is known.

Theorem 21 ([162, 207, 208, 359]). The 2-Orthogonal Vectors problem cannot be solved
in O(n2−ε · dO(1)) time, for any ε > 0, unless the Strong Exponential Time Hypothesis
fails.

We next show that the 2-Orthogonal Vectors problem can be reduced to computing
maximal palindromes in degenerate strings thus obtaining a conditional lower bound
similar to the upper bound obtained in Theorem 19 for computing all GD palindromes.

Theorem 22. Given a degenerate string of length 4n over an alphabet of size σ =
ω(log n), all maximal GD palindromes cannot be computed in O(n2−ε · σO(1)) time, for
any ε > 0, unless the Strong Exponential Time Hypothesis fails.

79

Proof. Let d = σ and consider the alphabet Σ = {0, 1, . . . , σ − 1}. We say that two
subsets of Σ match if they have a common element. Given a d-bit vector α, we define
µ(α) to be the following subset of Σ: s ∈ µ(α) if and only if α[s] = 1. Thus, two vectors
α and β are orthogonal if and only if the sets µ(α) and µ(β) are disjoint. In the string
comparison setting, two degenerate letters µ(α) and µ(β) do not match if and only if α
and β are orthogonal. The reduction works as follows. Given A = {α1, α2, . . . , αn} and
B = {β1, β2, . . . , βn}, we construct the following simple degenerate string of length 4n
in time O(nσ):

S = µ(α1)µ(β1)µ(α2)µ(β2) . . . µ(αn)µ(βn)µ(α1)µ(β1)µ(α2)µ(β2) . . . µ(αn)µ(βn).

· · ·

Then the 2-Orthogonal Vectors problem for the sets A and B has a positive answer
if and only if at any position of S, from 0 to 2n, there does not occur a palindrome
of length at least 2n. All such occurrences can be easily verified from the respective
palindrome centers in time O(n). In other words, if at any position of S there does not
occur a palindrome of length at least 2n, this is because we have a mismatch between a
pair µ(αi), µ(βj) of letters, which implies that there exists a pair αi, βj of orthogonal
vectors. Also, by the construction, all such pairs are to be (implicitly) compared, and
thus, if there exists any pair that is orthogonal, the corresponding mismatch will result
in a palindrome of length less than 2n.

4.7 Concluding Remarks and Open Problems

In this chapter we solved the problem of comparing two GD strings, that is, to decide
whether two GD strings have a non-empty intersection. We then applied our string
comparison tool to devise a simple algorithm for computing all palindromes in a GD
string. We also complemented the latter algorithm by showing a similar conditional
lower bound.

In Section 4.1, we sketched how automata can be used for comparing two ED
strings. Recall that an ED string is a more general notion of degenerate string, where a
degenerate letter generally contains strings of arbitrary lengths as well as the empty
string. For GD strings, we showed that this comparison can be done in linear time
for integer alphabets (Theorem 18). An interesting open problem is whether we can
devise a more efficient (than the O(NM)-time automata-based sketched in Section 4.1)
approach for deciding whether the two languages represented by two ED strings of
sizes N and M have a non-empty intersection; or, more generally, whether they share a
sufficiently long substring.

80

Part II

Phylogenetic Trees

81

Chapter 5

A Rearrangement Distance for
Fully-Labelled Trees

Key Points

Problem. The last decade brought a significant increase in the amount of data and
a variety of new inference methods for reconstructing the detailed evolutionary
history of various types of cancer. This brings the need of designing efficient
procedures for comparing rooted trees representing the evolution of mutations in
tumor phylogenies, a different model from the well-studied classical phylogenetic
trees.

Model. We consider the simplest model of tumor phylogeny: a rooted fully-labelled tree,
i.e., a tree such that nodes are biunivocally associated to a set of mutations. We
introduce a rearrangement distance for fully-labelled trees. This notion originates
from two operations: one that permutes the labels of the nodes, the other that
affects the topology of the tree.

Included Works

This chapter combines the results of two papers: A Rearrangement Distance for
Fully-Labelled Trees [52], which I presented at the 30th Annual Symposium on
Combinatorial Pattern Matching (CPM 2019), and its follow-up, On Two Measures
of Distance Between Fully-Labelled Trees [51], which I presented at the 31st
Annual Symposium on Combinatorial Pattern Matching (CPM 2020).

5.1 Introduction

Phylogenetic trees represent a plausible evolutionary relationship between the most
disparate objects: natural languages in linguistics [176, 352, 283], ancient manuscripts
in archaeology [85], genes and species in biology [200, 202]. The leaves of such trees are

82

labelled by the entities they represent, while the internal nodes are unlabelled and stand
for unknown or extinct items. A great wealth of methods to infer phylogenies have been
developed over the decades [141, 334], together with various techniques to compare
the output of different algorithms, e.g., by building a consensus tree that captures the
similarity between a set of conflicting trees [83, 215, 214, 166] or by defining a metric
between two trees [127, 81, 137, 131, 309, 310].

Fully-labelled trees, in opposition to classical phylogenies, may model an evolutionary
history where the internal nodes, just like the leaves, correspond to extant entities.
An important phenomenon that fits this model well is cancer progression [188, 289].
With the increasing amount of data and algorithms becoming available for inferring
cancer evolution [262, 217, 373, 71, 70], there is a pressing need of methods to provide
a meaningful comparison among the trees produced by different approaches. Besides
the well-studied edit distance for fully-labelled trees [338, 376, 292, 270], a few recent
papers proposed ad-hoc metrics for tumor phylogenies [225, 174, 126, 100]. Taking
inspiration from the existing literature [123, 74, 24, 334] on phylogeny rearrangement,
the study of an operational notion of distance for rearranging a fully-labelled tree is of
great interest, and there are still many unexplored questions to be answered.

In this work, we open the investigation of some notions of the rearrangement
distance for two rooted trees which are fully labelled by the same set of labels. Following
the existing literature [320, 334] on phylogeny rearrangement, we extend to several
operations for rearranging a fully-labelled tree. The distance between a pair of trees
is then the shortest sequence of these operations that transforms the first tree into
the second tree. We consider rooted trees on n nodes labelled with distinct labels
from [n] = {1, 2, . . . , n}, and identify nodes with their labels. The first operation we
introduce is an adaptation of the SPR operation [74] to a fully-labelled tree. We call it
a link-and-cut operation and define it as follows.

• link-and-cut operation: given u, v and w such that v is a child of u and w
is not a descendant of v, the link-and-cut operation v |u → w consists of two
suboperations: cut the edge (v, u) and add the edge (v, w), effectively switching
the parent of v from u to w.

We introduce a second operation that consists of a permutation of the labels of the tree
(notice that such an operation does not really make sense on leaf-labelled phylogenies).
We call this second operation a permutation operation and we define it as follows.

• permutation operation: apply some permutation π : [n]→ [n] to the nodes. If
a node u was a child of v before the operation, then after the operation π(u) is a
child of π(v).

The size |π| of a permutation is the number of elements x s.t. π(x) 6= x.
Two trees T1 and T2 are isomorphic if and only if one can reorder the children

of every node so as to make the trees identical after disregarding the labels. The
permutation distance dπ(T1, T2) between two isomorphic trees is the smallest size |π| of
a permutation π that transforms T1 into T2.

For computing the permutation distance, in Section 5.3 we connect the complexity
to that of calculating the largest cardinality matching in a sparse bipartite graph.
By designing two-way reductions we show that these problems are equivalent, up

83

to polylogarithmic factors. Due to the recent progress in the area of fine-grained
complexity we now know, for many problems that can be solved in polynomial time,
what is essentially the best possible exponent in the running time, conditioned on some
plausible but yet unproven hypothesis [363].

For max-flow, and more specifically maximum matching, this is not the case yet,
although we do have some understanding of the complexity of the related problem of
computing the max-flow between all pairs of nodes [9, 238, 8]. So, even though our
reductions do not tell us what is the best possible exponent in the running time, they
do imply that it is the same as for maximum matching in a sparse bipartite graph.
In particular, by plugging in the asymptotically fastest known algorithm [254], we
obtain an Õ(n4/3+o(1)) time algorithm for computing the permutation distance between
two trees on n nodes. The main technical novelty in our reduction from permutation
distance is that, even though the natural approach would result in multiple instances of
weighted maximum bipartite matching, we manage to keep the graphs unweighted.

The size of a sequence of link-and-cut and permutation operations is the sum of
the number of link-and-cut operations and the total size of all permutations. The
rearrangement distance d(T1, T2) between two (not necessarily isomorphic) trees with
identical roots is the smallest size of any sequence of link-and-cut and permutation
operations that, without permuting the root, transform T1 into T2.

In Section 5.4 we show that computing the rearrangement distance between two
trees is NP-hard, via a reduction from 3-dimensional matching [224]. In Section 5.4.1
we consider the special case where one of the two tree is binary and give a simple
linear-time 4-approximation ratio algorithm. In Section 5.4.2 we design a linear-time
constant-factor approximation algorithm that does not assume that the trees are binary.
The algorithm consists of multiple phases, each of them introducing more and more
structure into the currently considered instance, while making sure that we do not pay
more than the optimal distance times some constant. To connect the number of steps
used in every phase with the optimal distance, we introduce a new combinatorial object
that can be used to lower bound the latter, inspired by the well-known algorithm for
computing the majority [76]. Finally, in Section 5.5 we show that there also exists a
fixed parameter algorithm for the rearrangement distance.

5.2 Preliminaries

Let [n] = {1, 2, . . . , n}. We consider rooted trees and forests on nodes labelled with
distinct labels from [n], and identify nodes with their labels. The parent of u in F is
denoted pF (u), and we use the convention that pF (u) = ⊥ when u is a root in F . F |u
denotes the subtree of F rooted at u, childrenF (u) stands for the set of children of a
node u in F , and levelF (u) is the level of u in F (with the roots being on level 0).

Two trees T1 and T2 are isomorphic, denoted T1 ≡ T2, if and only if there exists a
bijection µ between their nodes such that, for every u ∈ [n] with pT1(u) 6= ⊥, it holds
that µ(pT1(u)) = pT2(µ(u)), implying in particular that µ maps the root of T1 to the
root of T2. Let I(T1, T2) denote the set of all such bijections µ. Given two isomorphic
trees T1 and T2, we seek a permutation π with the smallest possible size that transforms
T1 into T2. This is equivalent to finding µ ∈ I(T1, T2) that maximises the number of
conserved nodes conserved(µ) = {u : u = µ(u)}, as these two values sum up to n.

84

We now give the following notions of distance between trees T1 and T2 labelled by
[n]. Unless otherwise stated, throughout this chapter we will assume that the roots of
T1 and T2 are identical, and cannot participate in any permutation operation.

Definition 12 (link-and-cut distance). The link-and-cut distance d`(T1, T2) is the
length of the shortest sequence of link-and-cut operations which transforms T1 into T2.

The following Lemma ensures that the definition of link-and-cut distance is well
posed.

Lemma 25. Given trees T1 and T2 each labelled by [n], there always exists a sequence
of link-and-cut operations that transforms T1 into T2.

Proof. For any node v, pT1(v) = u, such that pT2(v) = w and w is a descendant of v in
T1 — and thus the operation v|u→ w is not directly applicable — we prove that there
exists a node z on the path from v to w in T1 (including w) such that pT2

(z) is not a
descendant of v in T2 nor a descendant of z in T1. This implies that after applying the
valid operation z|pT1

(z)→ pT2
(z), the operation v|u→ w becomes valid too. There is

always such a node z because, should it not exist, w would be a descendant of v also in
T2, giving rise to the cycle (w → v → · · · → w) and thus contradicting the fact that T2

is a tree.

Definition 13 (permutation distance). The permutation distance dπ(T1, T2) is the
size |π| of the smallest permutation π that transforms T1 into T2.

Definition 14 (rearrangement distance). The rearrangement distance d(T1, T2) is the
smallest size of any sequence of link-and-cut and permutation operations that transforms
T1 into T2.

Clearly, the permutation distance dπ(T1, T2) is defined only when T1 and T2 are
isomorphic, and it is evidently well posed. As a direct consequence of this and Lemma 25,
the definition of rearrangement distance is also well posed. Moreover, since these
operations are invertible, all the above distance measures are symmetric, and they
satisfy by definition the triangle inequality: consider, e.g., the rearrangement distance.
Given T1, T2 and T3 labelled by the same set of labels, let S12 be a sequence that
transforms T1 into T2 such that |S12| = d(T1, T2), S23 a sequence that transforms
T2 into T3 with |S23| = d(T2, T3), S13 a sequence that transforms T1 into T3 and
|S13| = d(T1, T3). It is evident that the concatenation S12S13 of S12 and S23 is a
sequence that transforms T1 into T3, and by Definition 14 its size is larger or equal
to d(T1, T3): thus d(T1, T2) + d(T2, T3) ≥ |S12S23| ≥ d(T1, T3). A similar argument
shows that the triangular inequality also holds for the link-and-cut distance and the
permutation distance.

We next define two structures that capture two fundamental characteristics of the
trees to compare.

Definition 15 (active set). Given trees T1 and T2, we call active the subset X ⊆ [n]
of labels which have different parents in T1 and T2, i.e., v ∈ X iff pT1(v) 6= pT2(v).

Given trees T1 and T2, for each vertex v of the active set X , we can associate with
v the pair (pT1

(v), pT2
(v)) of the parents of v in the two trees. Let P(u,w) be the set

85

Figure 5.1: Trees T1 and T2 labelled by [10]. The link-and-cut distance d`(T1, T2) is 4, given,
for example, by the sequence 4|2→ 3, 5|2→ 3, 6|2→ 3, 10|3→ 2. The rearrangement distance
is 3, given, for example, by the sequence (2 3), 7|3→ 2.

{v : pT1
(v) = u, pT2

(v) = w}: since each vertex has exactly one parent in each tree,
each vertex v ∈ X belongs to one and only one set P(u,w). This fact is formalized in
the following definition and illustrated in Example 18.

Definition 16 (family partition). Let trees T1 and T2 each be labelled by [n]: for each
vertex v ∈ X we denote the set P(u,w) = {v : pT1

(v) = u, pT2
(v) = w}. Then P is

the partition of set X into the nonempty sets P(u,w), u,w ∈ V . Partition P is called
the family partition of the active set X , and we denote its size |P| as the number of
different (non-empty) subsets P(u,w) it is composed of.

Example 18. Consider T1 and T2 of Figure 5.1. The active set is X = {4, 5, 6, 10}.
The family partition is composed of the following sets: P(2,3) = {4, 5, 6}, P(3,2) = {10}.

Note that the family partition encodes the elements of any shortest sequence of
link-and-cut operations for transforming T1 into T2: v ∈ P(u,w) corresponds to operation
v|u → w. It is easy to see, from the proof of Lemma 25, that a shortest sequence of
valid link-and-cut operations can be obtained from P by ordering the set of operations
it encodes with respect to a depth-first traversal (DFT) of T1: u|pT1(u) → pT2(u)
precedes v|pT1

(v)→ pT2
(v) if u precedes v in a DFT of T1. Hence d`(T1, T2) = |X |, i.e.,

the link-and-cut distance is equal to the cardinality of the active set, of which P is a
partition.

In Section 5.4.2, for ease of presentation, instead of the link-and-cut operation we
will work with the cut operation, defined as follows:

• cut operation: let u, v be two nodes such that v is a child of u. The cut operation
(v † u) removes the edge (v, u), effectively making v a root.

The size of a sequence of cut and permutation operations is defined similarly as for a
sequence of link-and-cut and permutation operations. Since a permutation operation
is essentially just renaming the nodes, we can assume that all permutation operations
precede all link-and-cut (or cut) operations, or vice versa. Furthermore, multiple
consecutive permutation operations can be replaced by a single permutation operation
without increasing the total size.

This leads to the notion of rearrangement distance between two forests F1 and
F2. We write F1 ∼ F2 to denote that, for every u ∈ [n], at least one of the following
three conditions holds: (i) pF1(u) = pF2(u), (ii) pF1(u) = ⊥, or (iii) pF2(u) = ⊥.

86

The rearrangement distance d̃(F1, F2) is the smallest size of any sequence of cut and
permutation operations that transforms F1 into F ′1 such that F ′1 ∼ F2. This is the
same as the smallest size of any sequence of cut and permutation operations that
transforms F2 into F ′2 such that F1 ∼ F ′2, as both sizes are equal to the minimum over
all permutations π that fix the original root of the following expression

|{u : π(u) 6= u}|+ |{u : pF1(u) 6= pF2(π(u)) ∧ pF1(u) 6= ⊥ ∧ pF2(π(u)) 6= ⊥}|.

Consequently, d̃ defines a metric. In Section 5.4.2 we connect d(T1, T2) and d̃(T1, T2),
and then work with the latter.

A matching in a bipartite graph is a subset of edges with no two edges meeting at
the same vertex. A maximum matching in an unweighted bipartite graph is a matching
of maximum cardinality, whereas a maximum weight matching in a weighted bipartite
graph is a matching in which the sum of weights is maximised. Given an unweighted
bipartite graph with m edges, the well-known algorithm by Hopcroft and Karp [197]
finds a maximum matching in O(m1.5) time. This has been recently improved by Liu
and Sidford to Õ(m4/3+o(1)) [254].

A heavy path decomposition of a tree T is obtained by selecting, for every non-leaf
node u ∈ T , its heavy child v such that T |v is the largest: there will be some subtlety
in how to resolve a tie in this definition that will be explained in detail later. This
procedure decomposes the nodes of T into node-disjoint paths called heavy paths. Each
heavy path p starts at some node, called its head, and ends at a leaf: headT (u) denotes
the head of the heavy path containing a node u in T . An important property of such
a decomposition is that the number of distinct heavy paths above any leaf (that is,
intersecting the path from a leaf to the root) is only logarithmic in the size of T [328].

5.3 Permutation Distance

Our aim is to find µ ∈ I(T1, T2) that maximises conserved(µ), that is γ(T1, T2) =
max{conserved(µ) : µ ∈ I(T1, T2)}. To make the notation less cluttered, we define
γ(x, y) = γ(T1|x, T2|y). Let us start by describing a simple polynomial time algorithm
which illustrates the basic idea behind the procedure. We will then show how to improve
it to obtain a faster algorithm that uses unweighted bipartite maximum matching.
Finally, we will show a reduction from bipartite maximum matching to computing the
permutation distance, establishing that these two problems are in fact equivalent, up to
polylogarithmic factors.

5.3.1 Polynomial Time Algorithm

We first run the folklore linear-time algorithm of [21] for determining if two rooted trees
are isomorphic. Recall that this algorithm assigns a number from {1, 2, . . . , 2n} to every
node of T1 and T2 so that the subtrees rooted at two nodes are isomorphic if and only
if their numbers are equal. The high-level idea is then to consider a weighted bipartite
graph G(u, v) for each u, v ∈ [n] such that levelT1(u) = levelT2(v) and T1|u ≡ T2|v. The
vertices of G(u, v) are childrenT1(u) and childrenT2(v), and there is an edge of weight
γ(u′, v′) between u′ ∈ childrenT1

(u) and v′ ∈ childrenT2
(v) if and only if T1|u′ ≡ T2|v′

87

and γ(u′, v′) > 0. We call such graphs the distance graphs for T1 and T2 and denote
them collectively by G(T1, T2). See Figure 5.3 for an example.

The weights γ(u, v) are computed as follows, with M(G(u, v)) denoting the weight
of a (not necessarily perfect) maximum weight matching in G(u, v), and Γ : [n]× [n]→
{0, 1} being a function such that Γ(u, v) = 1 if u = v and Γ(u, v) = 0 otherwise.

γ(u, v) =

{
M(G(u, v)) + Γ(u, v) if T1|u ≡ T2|v,
0 otherwise.

(5.1)

The overall number of edges created in all graphs is O(n2). Indeed, for each u ∈ [n]
such that levelT1(u) = levelT2(u) and T1|u ≡ T2|u, and for each pair of ancestors z of u
in T1 and w of u in T2 such that levelT1

(z) = levelT2
(w) and T1|z ≡ T2|w, we possibly

add an edge (z, w) to the graph G(pT1
(z), pT2

(w)). Since there are up to n pairs of
ancestors on the same level for each label, and the labels are n, there are O(n2) edges
overall.

We then start from the deepest level in both trees, and we move up level by level
towards the roots in both trees simultaneously. For each level k, we consider all pairs
of isomorphic subtrees rooted at level k, build the corresponding distance graphs, and
use Equation (5.1) to weigh the edges. After having reached the roots, we return the
value of γ(T1, T2). The correctness of the algorithm is given by the following lemmas,
the first one stating that the permutation distance is equal to the minimum number of
labels that are not conserved by any isomorphic mapping.

Lemma 26. For any two isomorphic trees T1, T2, each labelled by [n], it holds that
dπ(T1, T2) = n− γ(T1, T2).

Proof. Consider an isomorphic mapping µ from T1 to T2 that has the minimum number
of mismatched labels ∆(µ) = n− γ(T1, T2) and consider the set of labels of the vertices
involved in the set of mismatching vertices given by µ.

Clearly, such labels are in a permutation π which rearranges the labels of tree T1

to obtain T2, while, by construction of µ, all the other labels will not be perturbed by
π. Then we need to show that such a permutation rearranges the minimum number
of distinct labels, that is, its size |π| = dπ(T1, T2) is the permutation distance. Indeed,
assume to the contrary that the permutation distance dπ(T1, T2) < |π|. This implies
the existence of a permutation π′ that rearranges fewer labels than π, i.e., |π′| < |π|.
Then we show that there exists an isomorphic mapping µ′ that has mismatch number
less than the one of µ, contradicting the initial assumption.

Indeed, consider the permutation π′ and define the mapping µ′ from T1 to T2

such that µ′(u) = v whenever π′(v) = u The mapping µ′ is an isomorphism by the
construction of π′, since µ′(π′(u)) = u for all nodes u of T1, and with the application of
π′, the two trees are congruent, hence congruency of the labels implies isomorphism of
the two trees. This concludes the proof that µ′ is an isomorphism thus leading to a
contradiction.

Lemma 27. Recursion 5.1 is correct.

Proof. It is essentially a proof by induction. Recall that γ(u, v) is the maximum number
of labels conserved by any isomorphism between T1|u and T2|v. If both u and v are

88

Figure 5.2: T1 and T2 with a possible heavy path decomposition.

leaves, then T1|u ≡ T2|v is trivially true and γ(u, v) = Γ(u, v). When T1|u ≡ T2|v does
not hold, then the permutation distance (thus n− γ(u, v), by Lemma 26) is undefined.

Otherwise, if u and v are internal vertices, and T1|u ≡ T2|v, then let µ be a bijective
mapping from the nodes of T1|u to the nodes of T2|v maximizing conserved(µ). By the
definition of γ and the construction of µ, γ(u, v) =

∑
z∈children(u) γ(z, µ(z)) + Γ(u, v).

By the inductive hypothesis, all values γ(z, µ(z)) are correctly computed; since µ is the
bijective mapping maximizing the conserved labels, no other mapping µ′ can achieve a
larger value of

∑
z∈children(u) γ(z, µ(z)), and so µ(z) is determined by a maximum weight

matching on G(u, v).

The running time is polynomial if we plug in any polynomial-time maximum weight
matching algorithm.

In the next subsection we show how to obtain a better running time by constructing
a different version of distance graphs, so that the total weight of their edges will be
subquadratic, and replacing maximum weight matching with maximum matching.

5.3.2 Reduction to Bipartite Maximum Matching

We start by finding a heavy path decomposition of T1 and T2, with some extra care
in resolving a tie if there are multiple children with subtrees of the same size, as
follows. Recall that we already know which subtrees of T1 and T2 are isomorphic, as
the algorithm of [21] assigns the same number from {1, 2, . . . , 2n} to nodes of T1 and
T2 with isomorphic subtrees. For every u, v ∈ [n] such that T1|u ≡ T2|v, we would like
the heavy child u′ of u in T1 and v′ of v in T2 to be such that T1|u′ ≡ T2|v′. This can
be implemented in linear time: it suffices to group the nodes with isomorphic subtrees
together, and then make the choice just once for every such group.

Consider a graph G(u, v) for some u, v ∈ [n]: the edge corresponding to the heavy
child u′ of u in T1 and the heavy child v′ of v in T2 is called special (note that this edge
might not exist). The key observation is that the properties of heavy path decomposition
allow us to bound the total weight of non-special edges by O(n log n).

Lemma 28. The total weight of all non-special edges in G(T1, T2) is O(n log n).

Proof. Consider any u ∈ [n] such that levelT1(u) = levelT2(u) and T1|u ≡ T2|u. For
each pair of ancestors z of u in T1 and w of u in T2 such that levelT1(z) = levelT2(w),
T1|z ≡ T2|w and either headT1

(z) = z or headT2
(w) = w, u will contribute 1 to the

weight of an edge (z, w) in G(pT1
(z), pT2

(w)). Because there are at most log n heavy
paths above any node of T1 or T2, each label u ∈ [n] contributes 1 to the weight of at
most 2 log n non-special edges, making their total weight O(n log n) overall.

89

Figure 5.3: G(a, a) (type 1), G′(a, a), G′′(a, a) and G(b, c) (type3) for the trees of Figure 5.2.
The special edge in each graph is dashed.

We divide the graphs in G(T1, T2) into three types (see Figure 5.3, left, for an
example):

Type 1: graphs G(u, v) with at least one non-special edge.

Type 2: graphs G(u, v) with no non-special edges, and Γ(u, v) = 1.

Type 3: graphs G(u, v) with no non-special edges, and Γ(u, v) = 0.

We will construct only the graphs of type 1 and 2, and extract from them the
information that the graphs of type 3 would have captured. In what follows we show
how to construct the graphs of type 1 and 2 in O(n log2 n) time.

Constructing the Graphs of Type 1 and 2. The first step is to find all pairs
of nodes that correspond to graphs of type 1 or 2, and store them in a dictionary D
implemented as a balanced search tree with O(log n) access time. The second step is
to find the non-special edges of these graphs, and store them in a separate dictionary,
also implemented as a balanced search tree with O(log n) access time. Note that the
weights will be found at a later stage of the algorithm. We assume that both trees have
been already decomposed into heavy paths, and we already know which subtrees are
isomorphic. This can be preprocessed in O(n) time.

Lemma 29. All graphs of type 1 and 2 can be identified in O(n log2 n) time.

Proof. We consider every u ∈ [n] such that levelT1
(u) = levelT2

(u) and T1|u ≡ T2|u in two
passes. In the first pass, we need to iterate over every ancestor z of u in T1 and w of u in T2

such that levelT1
(z) = levelT2

(w), T1|z ≡ T2|w and either headT1
(z) = z or headT2

(w) =
w, and if additionally T1|pT1(z) ≡ T2|pT2(w) then designate G(pT1(z), pT2(w)) to be
a graph of type 1 and insert it into D. As a non-special edge (z, w) of a graph
G(pT1

(z), pT2
(w)) is such that either z or w are not on the same heavy path as their

parents, this correctly determines all graphs of type 1.
To efficiently iterate over all such z and w given u, we assume that the nodes of

every heavy path of a tree T are stored in an array, so that, given any node u ∈ T ,
we are able to access the node that belongs to the same heavy path as u and whose
level is ` in constant time, if it exists. We denote such operation accessT (u, `). Given
two nodes u ∈ T1 and v ∈ T2 on the same level, the procedure below shows how to
iterate over every ancestor z of u and w of v such that levelT1

(z) = levelT2
(w) and either

headT1
(z) = z or headT2

(w) = w, in O(log n) time, implying that all graphs of type 1
can be identified in O(n log2 n) time.

90

1 while u 6= ⊥ and v 6= ⊥ do
2 if levelT1(headT1(u)) < levelT2(headT2(v)) then
3 output accessT1(u, levelT2(headT2(v))) and headT2(v);
4 v ← pT2

(headT2
(v));

5 if levelT1
(headT1

(u)) > levelT2
(headT2

(v)) then
6 output headT1(u) and accessT2(v, levelT1(headT1(u)));
7 u← pT1(headT1(u));

8 else
9 output headT1

(u) and headT2
(v);

10 u← pT1(headT1(u));
11 v ← pT2(headT2(v));

In the second pass, for each u ∈ [n] such that levelT1
(u) = levelT2

(u) and T1|u ≡ T2|u,
we designate G(u, u) to be a graph of type 2, unless it has been already designated to
be a graph of type 1.

Lemma 30. All graphs of type 1 and 2 can be populated with their edges in O(n log2 n)
time.

Proof. For each such graph G(u, v) such that none of u, v is a leaf, let u′ be the unique
heavy child of u, and v′ be the unique heavy child of v. We add the special edge (u′, v′)
to G(u, v). To find the non-special edges, we again consider every u ∈ [n] such that
levelT1

(u) = levelT2
(u) and T1|u ≡ T2|u: we iterate over the ancestors z of u in T1 and

w of u in T2 such that levelT1
(z) = levelT2

(w), T1|z ≡ T2|w and either headT1
(z) = z or

headT2(w) = w, and if additionally T1|pT1(z) ≡ T2|pT2(w) then add a non-special edge
(z, w) to G(pT1(z), pT2(w)) . This takes O(n log2 n) time overall.

Processing the Graphs of Type 1 and 2. Having constructed the graphs of type
1 and 2 in O(n log2 n) time, we process them level by level. Consider G(u, v): for each
of its edges (u′, v′) corresponding to u′ ∈ childrenT1(u) and v′ ∈ childrenT2(v), we need
to extract its weight γ(u′, v′). If G(u′, v′) is of type 1 or 2, the graph can be extracted
from the dictionary in O(log n) time. Otherwise, G(u′, v′) is of type 3 and we need to
make up for not having processed such graphs.

To this aim, we associate a sorted list of levels with each pair of heavy paths of T1

and T2. The lists are stored in a dictionary indexed by the heads of the heavy paths.
For every u, v ∈ [n] such that G(u, v) is of type 1 or 2, we append the levels of u and v
to the lists associated with the respective heavy paths. The lists can be constructed in
O(n log2 n) time by processing the graphs level by level, and allow us to efficiently use
the following lemma.

Lemma 31. Consider u, v ∈ [n] such that levelT1
(u) = levelT2

(v) and T1|u ≡ T2|v, but
G(u, v) is of type 3. Either both u and v are leaves and γ(u, v) = 0, or the heavy child
of u is u′, the heavy child of v is v′, and γ(u, v) = γ(u′, v′).

Proof. First observe that u 6= v, as otherwise G(u, v) would be of type 2. Becase
T1|u ≡ T2|v, either both u and v are leaves or none of them is a leaf. In the former

91

case, G(u, v) is empty and γ(u, v) = 0. By how we resolve ties in the heavy path
decomposition, in the latter case we have T1|u′ ≡ T2|v′, where u′ is the heavy child of u
and v′ is the heavy child of v. G(u, v) consists of the unique special edge corresponding
to the heavy child u′ of u and v′ of v, so M(G(u, v)) is equal to the cost of the special
edge, and by (5.1) we obtain that γ(u, v) = γ(u′, v′).

Given u, v ∈ [n] such that levelT1
(u) = levelT2

(v) = ` and T1|u ≡ T2|v, we extract
γ(u, v) by accessing the sorted list associated with the heavy paths of u and v: we binary
search for the smallest level `′ ≥ ` such that the heavy paths of u and v respectively
contain a node u′ and v′, both on level `′, with G(u′, v′) of type 1 or 2. Then Lemma 31,
together with the fact that in our heavy path decomposition the subtrees rooted at the
heavy children of two nodes with isomorphic subtrees are also isomorphic, implies that
γ(u, v) = γ(u′, v′).

It remains to describe how to compute M(G(u, v)) for every graph G(u, v) of type
1 and 2. We could have used any maximum weight matching algorithm, but this would
result in a higher running time. Our goal is to plug in a maximum matching algorithm.
This seems problematic as G(u, v) is a weighted bipartite graph, but we will show that
maximum weight matching can be reduced to multiple instances of maximum matching.
However, bounding the overall running time will require bounding the total weight of
all edges belonging to graphs of type 1 and 2. By Lemma 28 we already know that the
total weight of all non-special edges is O(n log n), but such bound doesn’t hold for the
special edges. Therefore, we proceed as follows. Let u′ be the heavy child of u and v′ be
the heavy child of v. We construct G′(u, v) by removing the special edge from G(u, v).
We also construct G′′(u, v) from G(u, v) by removing all the edges incident to u′ and v′

(see Figure 5.3 for an example). Equation (5.1) can then be rewritten as follows:

γ(u, v) = max{M(G′(u, v)),M(G′′(u, v)) + γ(u′, v′)}+ Γ(u, v). (5.2)

This is because a maximum weight matching in G(u, v) either includes the special
edge (u′, v′), implying that no other edges incident to u′ and v′ can be part of the
matching and thus M(G(u, v)) = M(G′′(u, v)) + γ(u′, v′), or it does not include it,
thus M(G(u, v)) =M(G′(u, v)). Since the graphs G′(u, v) and G′′(u, v) contain only
non-special edges, the overall weight of all edges in the obtained instances of maximum
weight matching is O(n log n).

We already know that constructing all the relevant graphs takes O(n log2 n) time. It
remains to analyze the time to calculate the maximum weight matching in every G′(u, v)
and G′′(u, v). We first present a preliminary lemma that connects the complexity
of calculating the maximum weight matching in a weighted bipartite graph to the
complexity of calculating the maximum matching in an unweighted bipartite graph.

Lemma 32 ([220]). Let G be a weighted bipartite graph, and let N be the total weight
of all the edges of G. Calculating the maximum weight matching in G can be reduced in
O(N) time to multiple instances of calculating the maximum matching in an unweighted
bipartite graph, in such a way that the total number of edges in all such graphs is at
most N .

Proof. Using the decomposition theorem of Kao, Lam, Sung, and Ting [220], we can
reduce computing the maximum weight matching in a weighted bipartite graph such

92

that the total weight of all edges is N to multiple instances of calculating the largest
cardinality matching in an unweighted bipartite graph. The total number of edges in
all unweighted bipartite graphs is

∑
imi = N and the reduction can be implemented in

O(N) time by maintaining a list of edges with weight w, for every w = 1, 2, . . . , N .

Theorem 23. Let f(m) be the complexity of calculating the maximum matching in
an unweighted bipartite graph on m edges, and let f(m)/m be nondecreasing. The
permutation distance can be computed in Õ(f(n)) time.

Proof. The total number of edges in all constructed graphs is O(n log n), and the
total time to construct the relevant graphs and extract the costs of their edges is
O(n log2 n). Thus, the total running time is O(n log2 n) plus the time to compute
the maximum weight matching in every graph of type 1 and type 2. Let Ni be
the total weight of all non-special edges in the i-th of these graphs. By Lemma 28,∑
iNi = O(n log n). Additionally, Ni ≤ n. Let mi,j be the number of edges in the j-th

instance of unweighted bipartite matching for the i-th graph. By Lemma 32, the overall
time is hence

∑
i,j f(mi,j), where

∑
i,jmi,j ≤

∑
iNi = O(n log n) and mi,j ≤ Ni ≤ n.

We upper bound
∑
i,j f(mi,j) using the assumption that f(m)/m is nondecreasing as

follows:∑
i,j

f(mi,j) =
∑
i,j

mi,j · f(mi,j)/mi,j ≤
∑
i,j

mi,j · f(n)/n = O(f(n) log n).

Corollary 24. The permutation distance can be computed in Õ(n4/3+o(1)) time.

5.3.3 Reduction from Bipartite Maximum Matching

We complement the algorithm described in Subection 5.3.2 with a reduction from
bipartite maximum matching to computing the permutation distance: see Figure 5.4
for an example.

Theorem 25. Given an unweighted bipartite graph on m edges, we can construct in
O(m) time two trees with permutation distance equal to the cardinality of the maximum
matching.

Proof. We first modify the graph so that the degree of every node is at most 3. This
can be ensured in O(m) time by repeating the following transformation: take a node u
with neighbours v1, v2, . . . , vk, k ≥ 4. Replace u with u′ and u′′ both connected to a
new node v, connect u′ to v1, v2, . . . , vk−2 and u′′ to vk−1, vk. It can be verified that the
cardinality of the maximum matching in the new graph is equal to that in the original
graph increased by 1. By storing, for every node, the incident edges in a linked list, we
can implement a single step of this transformation in constant time, and there are at
most m steps.

We will now first construct two unlabelled trees and then explicitly assign appro-
priate labels to their nodes. Without loss of generality, let the nodes of the graph be
u1, u2, . . . , um and v1, v2, . . . , vm. In the first tree we create m nodes, labelled with
u1, u2, . . . , um, connected to a common unlabelled root. In the second tree we do the
same with nodes v1, v2, . . . , vm. Then, for every edge (ui, vj) of the graph, we attach a

93

�1 �1

�2 �2

�3 �3

�1 �2�� �ℎ� �3 ��2� �1�3

�

��1 �2 ��3 � �� �

�1 �2�� ��� �3 ��2� �1�3

�

ℎ�1 � ��2 � �� �3

Figure 5.4: The two trees built for the graph on the left, according to Theorem 25.

new leaf to ui in the first tree and to vj in the second tree, and assign the same label
to both of them. Finally, we attach enough unlabelled leaves to every ui and vj to
make their degrees all equal to 3. To make both trees fully-labelled on the same set of
labels, we further attach 1 +m+ 3m−m = 3m+ 1 extra leaves to the roots of both
trees. For every unlabelled leaf attached to u1, u2, . . . , um of the first tree, we choose an
unlabelled extra leaf of the second tree, and assign the same label to both of them. We
then assign the same label to the root of the first tree and an extra leaf of the second
tree, and label the last m extra leaves of the second tree with u1, u2, . . . , um. We finally
swap the trees and repeat the same procedure: see Figure 5.4 for an example.

The permutation distance between the two trees is equal to the cardinality of
the maximum matching. Indeed, the trees are clearly isomorphic; moreover, any
isomorphism must match extra leaves with extra leaves, and every ui to a vπ(j), for
some permutation π on [m]. The extra leaves do not contribute to the number of
conserved nodes, while ui and vπ(j) contribute 1 if and only if (ui, vπ(j)) was an edge in
the original graph. Thus, the distance is equal to the maximum over all permutations
π of the number of edges (ui, vπ(j)). This in turn is equal to the cardinality of the
maximum matching in the original graph.

5.4 Rearrangement Distance

We first show that deciding the rearrangement distance between two trees is NP-hard.
We show this by reduction from 3-dimensional matching, one of Karp’s 21 NP-complete
problems [224].

In 3-dimensional matching, we are given three disjoint sets A, B and C, along with
a set T of triples (a, b, c), such that a ∈ A, b ∈ B and c ∈ C: essentially, a 3-uniform
hypergraph H. A matching is then a subset M ⊆ T such that for every two triples
(a, b, c) ∈M, (a′, b′, c′) ∈M, it follows that a 6= a′, b 6= b′ and c 6= c′, that is, all triples
of M are pairwise disjoint. It is then NP-hard to decide for a given k if there is a
matching M of size k [224]. It has been proved that the problem remains NP-hard
even in the case of 3-bounded 1-common 3-dimensional matching, which is a restriction
of the problem where the number of occurrences of an element in the triples is at most
3, and each pair of triples has at most one element in common [216]. We also make use
of the following structure in this proof.

Definition 17 (movements graph). Given trees T1 and T2, the movements graph G
has an edge for every element P(u,w) of the family partition P of T1 and T2, that is,
EG = {(u,w) : P(u,w) ∈ P}, while its vertex set is VG =

⋃
(u,w)∈EG{u,w}.

We now prove that computing the rearrangement distance is NP-hard.

94

Theorem 26. Given trees T1 and T2 and some integer k, it is NP-hard to decide if
d(T1, T2) ≤ k.

Figure 5.5: The trees T1 and T2 given instance H of 3-dimensional matching with A = {a, a′},
B = {b} and C = {c, c′} and T = {s = {a, b, c}, t = {a′, b, c′}} (top), and the corresponding
movements graph for the trees T1 and T2 (bottom).

Proof. Reduction from 3-bounded 1-common 3-dimensional matching. We are given an
instance H of 3-dimensional matching consisting of a set T of m triples (a, b, c) over the
disjoint sets A, B, C. We construct two trees T1 and T2 each with |A|+|B|+|C|+6m+2
vertices, for which the rearrangement distance d(T1, T2) ≤ 3n+ 6(m− n) if and only if
H has a 3-dimensional matching of size n.

Consider such an instance H of 3-dimensional matching as above. In the construction,
the trees T1 and T2 each have a root vertex r, and a vertex for every element of A, B
and C — each of which have r as the parent. To each v ∈ {a, b, c} in T1 and triple t,
we add a set St,v = {t1v, t2v} of two (uniquely labelled) children. In T2, we add the sets
St,v of two children to each of these three vertices, but cyclically shifted, with respect
to T1, i.e., we add St,a to b, St,b to c, St,c back to a again. Note that this induces
in the movements graph G a cycle Ct = {(a, b), (b, c), (c, a)} — see Figure 5.5. Now,
observe that the movements graph G will have cycles of length 3 corresponding to each
triple and two cycles may share one common vertex v if the triples share element v.
A sequence of operations of total size d(T1, T2) will consist of a permutation followed
by a sequence of link-and-cut operations. Observe that any permutation involves for
each cycle Ct an edge, two edges or all three edges. Now, the rearrangement distance
aims to solve cycles in the movements graph in the sense that after the operations, the
movements graph has no edges. Observe that given a cycle Ct of the movements graph
G, then the minimum cost rearrangement to solve Ct consists of applying a permutation
of size 3 involving the three vertices of the cycle, thus of total cost 3. Observe that
two cycles sharing a common vertex cannot both be solved by a permutation that is a
cyclic shift of the vertices of the cycle, that is they cannot be both solved with cost 3.

95

Moreover, permutations of vertices cannot solve more than one vertex of a cycle Ct if
it is not a cyclic shift of the vertices of Ct, as cycles do not share edges. In case of a
cyclic shift of two vertices of Ct, (1) a permutation of size 2 and then four link-and-cut
operations are required. If instead (2) at most a single vertex of Ct is involved in a
permutation, then six link-and-cut operations are required. We now detail how this
implies that d(T1, T2) ≤ 3n+ 6(m− n) if and only if H has a 3-dimensional matching
of size n.

(⇒) Assume that d(T1, T2) ≤ 3n + 6(m − n). By the above observation on how
cycles of the movements graph G are solved by the sequence of permutations, cases (1)
and (2) for solving cycles have the same cost equal to 6. Thus the only possible way to
have a rearrangement distance less than or equal to 3n+6(m−n) is by taking n disjoint
cycles solved by the permutation operation of cost 3. This implies a 3-dimensional
matching of size n.

(⇐) Now, suppose that H has a 3-dimensional matching M ⊆ T of size n. This
implies that there are n triples that are disjoint and thus the movements graph G has
n disjoint cycles. By solving each cycle with a permutation of size 3, m− n cycles are
left in the movements graph. The remaining cycles, in the worst case, share common
vertices with the cycles solved by the permutations, and thus they can be solved with
a cost that is 6 in the worst case. Thus we obtain that d(T1, T2) ≤ 3n + 6(m − n),
completing the proof.

5.4.1 A 4-Approximation Algorithm for Binary Trees

We start by giving a lemma which states that when we apply a permutation to the
labels of T1 obtaining T ′1, the size of the resulting family partition P ′ cannot increase
or decrease too much with respect to the size of P.

Lemma 33. Given trees T1 and T2 with corresponding active set X and family partition
P, if T ′1 is the tree (isomorphic to T1) resulting from the application of permutation π
of the labels of T1, and X ′ and P ′ are the active set and the family partition of T ′1 and
T2, respectively, then |P| − 2|π| ≤ |P ′| ≤ |P|+ 2|π|.

Proof. Let a be some label of T1 which has been perturbed by permutation π, i.e.,
π(a) = b 6= a. The new family partition P ′ is obtained from P by means of deletions,
insertions and substitutions of subsets. The crucial observation is that such an operation
will only affect the neighborhood of a, namely the (possibly empty) set of its children
cT1(a) and its parent pT1(a) in T1. Let us consider each child v ∈ cT1(a) first. We have
the following cases.

• (v ∈ P(a,b) ⊆ X): since π makes b the parent of v, which is exactly the parent of
v in T1, v /∈ X ′ and P(a,b) will be missing from P ′;

• (v ∈ P(a,c) ⊆ X , c 6= b): after applying π, v will belong to set P ′(b,c), thus P(a,c)

will be replaced by P ′(b,c) in P ′;

• (v /∈ X): then v ∈ P ′(b,a) in P ′, thus P ′ might have an extra element with respect
to P.

Consider now the possible effects of π on pT1
(a). There are two possible scenarios:

96

• (b ∈ P(pT1
(b),pT2

(b)) ⊆ X): if pT2
(b) = pT1

(a), then b /∈ X ′ and if b was the
only element of P(pT1

(b),pT2
(b)), the latter will be missing from P ′; else, b ∈

P ′(pT1
(a),pT2

(b)), thus P(p1(b),p2(b)) will be replaced by P ′(pT1
(a),pT2

(b)) in P ′;

• (b /∈ X): then b ∈ P ′(pT1
(a),pT2

(b)) in P ′, thus P ′ might have an extra element with

respect to P.

In summary, P ′ is obtained from P with up to two deletions and two additions of sets
in the family partition for each label involved in the permutation π, thus the result
follows.

In the special case where one of the trees, e.g., T1, is binary, that is, each node
has up to two children, we have the following lemma connecting link-and-cut and
rearrangement distance.

Lemma 34. Given T1 a binary tree, T2 any tree, we have that d`(T1, T2) ≤ 4 ·d(T1, T2).

Proof. Suppose that T2 is optimally obtained from T1 by applying a permutation π of
the labels followed by a number of link-and-cut operations. Let T ′1 be the tree resulting
from the application of permutation π of the labels of T1, X ′ and P ′ the active set and
family partition of T ′1 and T2, respectively. By the construction of the family partition,
the optimal number of link-and-cut operations to obtain T2 from T ′1 is at least |P ′|;
we thus have that d(T1, T2) = |π|+ |X ′| ≥ |π|+ |P ′|. Moreover, Lemma 33 says that

|π| ≥ |P|−|P′|
2 , thus d(T1, T2) ≥ |P|−|P′|

2 + |P ′| = |P|
2 + |P′|

2 ≥ |P|
2 . Now, since T1 is

binary, each set in the family partition P consists of up to two elements (the elements
of P(x,y) are the ones among the children of x in T1 that becomes the children of y
in T2, thus they cannot be more than the number of children of x). It follows that

|X | = d`(T1, T2) ≤ 2 · |P|, hence d(T1, T2) ≥ d`(T1,T2)
4 .

Importantly, we note that Lemma 34 states that the link-and-cut distance algorithm
provides a 4-approximation for the rearrangement distance when at least one of the
trees involved is binary. We now show that we can compute the link-and-cut distance
between two trees in linear time by showing that the family partition can be built in
linear time.

Lemma 35. The link-and-cut distance d`(T1, T2) between trees T1 and T2 each labelled
by [n] can be computed in time O(n).

Proof. Since the link-and-cut distance is |X |, it suffices to demonstrate that the family
partition P can be built in time O(n). The procedure is as follows: we first do a DFT
of tree T1, building an array pT1

(v) of the parents in T1, indexed by the child v. We
build the same array pT2

(v) for tree T2. Then we go through the set [n] of labels, in
some order: at each label v, should pT1

(v) = u 6= pT2
(v) = w, we add v to P(u,w) of the

family partition P. Then we just sum up the sizes of the non-empty subsets P(u,w) of
P in order to obtain |X | = d`(T1, T2). Clearly each tree traversal can be done in time
O(n), as both T1 and T2 have n vertices. In going through the labels, for each label v,
we either add or do not add the single vertex v to P, and so this procedure takes time
O(n).

97

We thus have the following corollary from Lemma 34 and Lemma 35.

Corollary 27. There exists a linear time 4-approximation algorithm for the rearrange-
ment distance problem for binary trees.

5.4.2 A General Constant-Factor Approximation Algorithm

In what follows we do not make any assumptions on the degrees of T1 and T2. We will
actually consider the rearrangement distance generalized to forests, d̃(F1, F2) (see the
definition at Section 5.2), and show how to approximate it within a constant factor.
This allows us to approximate d(T1, T2) within a constant factor using the following
procedure. First, we add n leaves n+ 1, n+ 2, . . . , n attached to the (identical) roots
of T1 and T2 to obtain T ′1 and T ′2, respectively. We call the resulting trees anchored.
Because T1 and T2 are assumed to have the same root that cannot be permuted, we
have d(T1, T2) = d(T ′1, T

′
2). We claim that d̃(T ′1, T

′
2) = d(T ′1, T

′
2).

Lemma 36. For any two anchored trees T1 and T2, d̃(T1, T2) = d(T1, T2).

Proof. Consider a sequence s of link-and-cut and permutation operations that transforms
T1 into T2. We convert it into a sequence s′ of cut and permutation operations by simply
replacing every link-and-cut operation v |u→ w with a cut operation (v † u). Let T ′1 be
the forest obtained after applying s′ on T1. We claim that T ′1 ∼ T2. Consider any v ∈ [n].
Because we can assume that the permutation operation precedes all the link-and-cut
operations in s, if pT ′1(v) 6= ⊥ then we must have pT2

(v) = ⊥ or pT ′1(v) = pT2
(v), as

pT ′1(v) is the same as the parent of v after applying s on T1. This shows that indeed

T ′1 ∼ T2, and so d̃(T1, T2) ≤ d(T1, T2).
For the other direction, we use the assumption that T1 and T2 are anchored trees

on 2n nodes: in both trees r is the root and there are n leaves n + 1, n + 2, . . . , 2n
attached to r. Observe that d̃(T1, T2) < n. We claim that an optimal sequence of
cut and permutation operations doesn’t permute r. Assume otherwise, then for every
u = n+ 1, n+ 2, . . . , n either u is also permuted, or we have a cut operation (u † r), so
the size of the sequence must be at least n. Now, let s be an optimal sequence consisting
of a permutation π and then some cut operations, and let T ′′1 be the tree obtained after
applying s on T1. We obtain a sequence s′ of link-and-cut and permutation operations
from s as follows. For every v ∈ [n], if pT ′′1 (v) = ⊥ and pT2(v) 6= ⊥, we locate the
cut operation (v † u) in s (there must be such operation, as T1 and T2 have the same
root that is not permuted). In s′, we replace this operation with v |u → w, where
w = pT2

(v). Additionally, we reorder all link-and-cut operations to ensure that w is not
a descendant of v, which can be guaranteed by considering v in the decreasing order of
their levels in T2. Let T ′1 be the result of applying s′ on T1, and consider any v ∈ [n]. If
pT ′′1 (v) 6= ⊥ and pT2(v) 6= ⊥ then pT ′1(v) = pT2(v) because T ′′1 ∼ F2, and if pT ′′1 (v) = ⊥
and pT2(v) 6= ⊥ then pT ′1(v) = pT2(v) by the choice of w. This shows that s′ transforms

T1 into T2, thus d(T1, T2) ≤ d̃(T1, T2).

We can thus approximate d̃(T ′1, T
′
2) within a constant factor to obtain a constant

factor approximation of d(T1, T2). In the remaining part of this section we design an
approximation algorithm for d̃(F1, F2), where F1 and F2 are two arbitrary forests.

98

�1

�
1

1

�
2

1

�
3

1

∼�
4

1
�2

AL
G(
1)

ALG(2) ALG(3)

ALG(4)
(,)�̃ �1 �2

(,)
�̃ � 1

1 �
2

(
,

)

� ̃ � 2
1 �

2

Figure 5.6: The four steps of the approximation algorithm.

We start with describing the notation. Consider two forests F1 and F2. For every
i ∈ [n], let a[i] ∈ [n] be the parent of a non-root node i in F1, and a[i] = 0 if i is a root
in F1. Formally, a[i] = pF1

(i) when pF1
(i) 6= ⊥ and a[i] = 0 otherwise; b[i] is defined

similarly but for F2. We think of a and b as vectors of length n.
The algorithm consists of four steps, with step j transforming forest F j−1

1 into F j1
by performing ALG(j) operations, starting from F 0

1 = F1. We will guarantee that
ALG(j) = O(d̃(F j−1

1 , F2)). Then, by triangle inequality and symmetry, d̃(F j1 , F2) ≤
d̃(F j−1

1 , F j1) + d̃(F j−1
1 , F2) ≤ ALG(j) + d̃(F j−1

1 , F2) = O(d̃(F j−1
1 , F2)), so by induction

d̃(F j1 , F2) = O(d̃(F1, F2)). Consequently, ALG(j) = O(d̃(F1, F2)), making the overall
cost

∑
j ALG(j) = O(d̃(F1, F2)). In the j-th step of the algorithm a[i] refers to the

parent of i in F j−1
1 . To analyse each step of the algorithm we will use the following two

structures, the first of which is a streamlined version of family partitions defined in 5.2.

Definition 18 (family partition of two forests). Given two forests F1 and F2, their
family partition P (F1, F2) is the set {(a[i], b[i]) : a[i], b[i] 6= 0 ∧ a[i] 6= b[i]}.

Definition 19 (migrations graph). Given two forests F1 and F2, the migrations graph
MG(F1, F2) consists of edges {(i, j) : a[i], a[j], b[i], b[j] 6= 0 ∧ a[i] = a[j] ∧ b[i] 6= b[j]}.

For a multiset S, let |S| denote its cardinality, that is, the sum of multiplicities of
all distinct elements of S. The mode of S, denoted mode(S), is any element s ∈ S with
the largest multiplicity freqS(s). We will use the following combinatorial lemma.

Lemma 37. Given any multiset S, let f = min{|S| − freqS(mode(S)), b|S|/2c}. All
|S| elements of S can be partitioned into f pairs (x1, y1), . . . , (xf , yf), xi 6= yi, for every
i ∈ [f], and the remaining |S| − 2f elements.

.	.	.	 �|�|−1�1 �|�|−2�2 �3 �|�|�⌊|�|/2⌋��	 �|�|−� .	.	.	

=�� mode(S)

.	.	.	�1 �2 �3 �|�|�⌊|�|/2⌋ .	.	.	� (����(�))����
�

.	.	.	 �⌊|�|/2⌋+1 �⌊|�|/2⌋+2

mode(S)=��

Figure 5.7: Pairing in the case f = |S| − freqS(mode(S)) (left) and f = b|S|/2c (right).

Proof. Number the elements of S so that s1 = . . . = sfreqS(mode(S)) = mode(S) and all of
the others are sorted and numbered from freqS(mode(S)) + 1 to |S| accordingly. Then,
if f = |S|− freqS(mode(S)), pairs (si, s|S|−i+1), i ∈ [f] are s.t. si 6= s|S|−i+1 (Figure 5.7,
left); if f = b|S|/2c, pairs (si, sb|S|/2c+i), i ∈ [b|S|/2c] are s.t. si 6= sb|S|/2c+i (Figure 5.7,
right).

99

5.4.3 Step 1

Roughly speaking, the aim of the first step is to ensure that all nodes that might be
possibly involved in a permutation, i.e., the nodes with different children in F1 and
F2, are roots. This is so that we do not need to worry about the relationship with
their parents. For every i ∈ [n] such that a[i] and b[i] are both defined and different,
we cut the edges from a[i] and b[i] to their parents in F1, thus making both of them
roots. In other words, for every i such that a[i], b[i] 6= 0 and a[i] 6= b[i], we cut edges
(a[i], a[a[i]]) and (b[i], a[b[i]]). The resulting forest F 1

1 has the following property: for
each i ∈ [n] such that the parents of i in F 1

1 and in F2 are both defined and different,
a[a[i]] = a[b[i]] = ⊥.

The number of cuts in this step is by definition at most twice the size of the family
partition P (F1, F2). By Lemma 33 it follows immediately that |P (T1, T2)| ≤ 2d(T1, T2)
for two trees T1 and T2. We show that this still holds for forests and d̃: for completeness,
we provide a self-contained proof.

Lemma 38. |P (F1, F2)| ≤ 2d̃(F1, F2), implying ALG(1) ≤ 4d̃(F1, F2).

Proof. It is enough to verify that applying a single cut operation might decrease the size
of the family partition by at most one, while applying a permutation operation π might
decrease the size of the family partition by at most 2s, where s = |{u : u 6= π(u)}|.

Consider a cut operation (v † u). The only change to a is that a[v] becomes 0, so
indeed the size of the family partition might decrease by at most one.

Now consider a permutation π. After applying π, an edge (i, a[i]) becomes (π(i), π(a[i])),
making π(a[π−1(i)]) the parent of i. This transforms the family partition P into

P ′ = {(π(a[i]), b[π(i)]) : a[i] 6= 0 ∧ b[π(i)] 6= 0 ∧ π(a[i]) 6= b[π(i)]}.

To lower bound the size of |P ′|, we first focus on the subset of P corresponding to the
nodes that are fixed by π. We therefore define

Pf = {(a[i], b[i]) : a[i] 6= 0 ∧ b[i] 6= 0 ∧ a[i] 6= b[i] ∧ π(i) = i}.

By definition, we can equivalently rewrite Pf as

Pf = {(a[i], b[π(i)]) : a[i] 6= 0 ∧ b[π(i)] 6= 0 ∧ a[i] 6= b[π(i)] ∧ π(i) = i}.

Now consider all pairs with the same second coordinate y in Pf : (x1, y), (x2, y), . . . , (xk, y),
where xi 6= y for every i ∈ [k]. P ′ contains all pairs (π(xi), y) such that π(xi) 6= y.
If π(y) = y then π(xi) = y cannot happen and P ′ contains all pairs with the second
coordinate y from Pf ; otherwise, P ′ contains all such pairs except possibly one. Overall,
|P ′| ≥ |Pf | − s, and |Pf | ≥ |P | − s so indeed |P ′| ≥ |P | − 2s.

Example 19. Consider F1 and F2 depicted in Figure 5.8. Step 1 consists of cut
operations (2 † 1) (because, e.g., a[4] 6= b[4] and a[4] = 2), (3 † 1) (because b[4] = 3) and
(7 † 2) (because, e.g., a[11] 6= b[11] and a[11] = 7). The resulting forest F 1

1 is shown in
Figure 5.9a.

100

Figure 5.8: F1 and F2. The family partition is P = {(2, 3), (2, 7), (3, 7), (7, 3), (7, 2)}.

5.4.4 Step 2

Consider u ∈ [n], and let childrenF 1
1
(u) = {v1, . . . , vk}. We define the multiset B(u) =

{b[vi] : b[vi] 6= 0} containing the parents in F2 of the children of u in F 1
1 . Recall that

mode(B(u)) is the most frequent element of B(u) (ties are broken arbitrarily). We cut
all edges (vi, u) such that b[vi] 6= 0 and b[vi] 6= mode(B(u)), and define, for each u ∈ [n],
its representative rep(u) = mode(B(u)). Intuitively, rep(u) is the node that might be
convenient to replace u with using a permutation. Roughly speaking, in this step we
get rid of all of the children of u that would be misplaced after permuting u and rep(u),
for each u ∈ [n]. The resulting forest F 2

1 has the following property: for each u ∈ [n],
for any child v of u in F 2

1 , either b[v] = 0 or b[v] = rep(u), i.e., the children of each node
u of F 2

1 have all the same parent rep(u) in F2.
To bound the number of cuts in this step we first need a technical lemma relating the

rearrangement distance of two forests and the size of any matching in their migrations
graph.

Lemma 39. Consider two forests F1 and F2 and their migrations graph MG(F1, F2).
For any matching M in MG(F1, F2) it holds that |M | ≤ d̃(F1, F2).

Proof. By definition, there is an edge between i and j in MG(F1, F2) if and only if
a[i] = a[j], but b[i] 6= b[j]. Let M be any matching in MG(F1, F2). If |M | > 0 then
d̃(F1, F2) ≥ 1, so it is enough to show that, for a single operation transforming F1 into
F ′1, the graph MG(F ′1, F2) contains a matching M ′ of size at least |M | − s, where s = 1
for a cut operation and s = |{u : u 6= π(u)}| for a permutation operation π.

First, consider a cut operation (v † u). The only change in MG(F ′1, F2) is removing
all edges incident to v. M contains at most one edge incident to v, so we construct M ′

of size at least |M | − 1 from M by possibly removing a single edge. Second, consider a
permutation operation π: we construct M ′ from M by removing every edge (v, w) such
that v 6= π(v) or w 6= π(w). Because there is at most one edge incident to every u such
that u 6= π(u), M ′ contains at least |M | − s edges. M ′ is a matching in MG(F ′1, F2),
as for every (v, w) ∈M ′ we have pF ′1(v) = pF1

(v) and pF ′1(w) = pF1
(w).

Lemma 40. ALG(2) ≤ 2d̃(F 1
1 , F2).

Proof. We consider each u ∈ [n] separately. Let m = freqBu(mode(Bu)) and MGu
be the subgraph of MG(F 1

1 , F2) induced by Bu. We will first construct a matching

101

(a) F 1
1 (b) F 2

1

(c) F 3
1 (d) F 4

1

Figure 5.9: The forests obtained after Step 1 (5.9a), Step 2 (5.9b), Step 3 (5.9c) and Step 4
(5.9d).

of appropriate size in every MGu. We cut every (vi, u) such that b[vi] 6= 0 and
b[vi] 6= mode(Bu), making |Bu| − m cuts. Let f = min(|Bu| − m, b|Bu|/2c). By
Lemma 37, we can partition a subset of Bu into f pairs (b[vi], b[vj]) such that b[vi] 6= b[vj].
We add every edge (vi, vj) to the constructed matching. We claim that |Bu| −m ≤ 2f .
This holds because |Bu| −m ≤ 2(|Bu| −m) and |Bu| −m ≤ |Bu| − 1 ≤ 2b|Bu/2|c for
nonempty Bu.

We take the union of all such matchings to obtain a single matching M . As argued
above, the total number of cuts is at most 2|M |. Together with Lemma 39, this implies
that ALG(2) ≤ 2|M | ≤ 2d̃(F 1

1 , F2).

Example 20. Consider again F1 and F2 of Figure 5.8. B(7) = {3, 3, 3, 2, 7}, thus we
cut (14 † 7) and (15 † 7). B(2) = {3, 3, 7}, implying (6 † 2). The resulting F 2

1 is shown
in Figure 5.9b.

5.4.5 Step 3

If after Step 2 all of the children of a node u of F1 have the same parent rep(u) in F2,
it still may be the case where rep(u) = rep(v) with u 6= v, i.e., all of the children of two
distinct nodes of F1 have the same parent in F2. In this case, it is not clear how to
choose whether to replace u or v with rep(u) = rep(v) in a permutation. This step aims
at resolving this situation by cutting the ambiguous edges.

Consider thus u ∈ [n], and let childrenF2
(u) = {v1, v2, . . . , vk}. We define the

multiset B′(u) = {a[vi] : a[vi] 6= 0} containing the parents in F 2
1 of the children of u in

102

F2. We cut all edges (vi, a[vi]) such that a[vi] 6= 0 and a[vi] 6= mode(B′(u)), breaking
ties arbitrarily, and define rep′(u) = mode(B′(u)). The resulting forest F 3

1 has the
following property: for each u ∈ [n], for any child v of u in F2, we have a[v]) = ⊥ or
a[v] = rep′(u).

We observe that the number of cuts performed by the above procedure is the same
as if we had applied Step 2 on F2 and F 2

1 . Therefore, Lemma 40 implies the following.

Lemma 41. ALG(3) ≤ 2d̃(F 2
1 , F2).

Example 21. Consider again F1 and F2 of Figure 5.8. We have B′(3) = {2, 2, 7, 7, 7},
we thus cut (4 † 2) and (5 † 2). The resulting forest F 3

1 is shown in Figure 5.9c.

Step 4 We summarize the properties of F 3
1 and F2:

1. For each u ∈ [n] such that a[u], b[u] 6= 0 and a[u] 6= b[u], a[u] and b[u] are roots in
F 3

1 .

2. For each u ∈ [n] we can define rep(u) ∈ [n] in such a way that, for any child v of
u in F 3

1 , we have b[v] = 0 or b[v] = rep(u).

3. For each u ∈ [n] we can define rep′(u) ∈ [n] in such a way that, for any child v of
u in F2, we have a[v] = 0 or a[v] = rep′(u).

To finish the description of the algorithm, we show how to find a permutation operation
π of size O(d̃(F 3

1 , F2)) that transforms F 3
1 into F 4

1 such that F 4
1 ∼ F2.

For every u such that a[u], b[u] 6= 0 and a[u] 6= b[u], we require that π(a[u]) = b[u].
Due to Property 1, for every such u we have ensured that a[u] and b[u] are roots of
F 3

1 . So, if we can find a permutation π that satisfies all the requirements and does
not perturb the non-roots of F 3

1 , then it will transform F 3
1 into F 4

1 such that F 4
1 ∼ F2.

Furthermore, if for every x perturbed by π there exists u such that a[u], b[u] 6= 0 and
a[u] 6= b[u] with x = a[u] or x = b[u] then by Lemma 38 |π| ≤ 2|P (F 3

1 , F2)| ≤ 4d̃(F 3
1 , F2)

as required.
To see that there indeed exists such π, observe that due to Property 2 there cannot

be two requirements π(x) = y and π(x) = y′ with y 6= y′. Similarly, due to Property 3
there cannot be two requirements π(x) = y and π(x′) = y with x 6= x′. Thinking of the
requirements as a graph, the in- and out-degree of every node is hence at most 1, so we
can add extra edges to obtain a collection of cycles defining a permutation π that does
not perturb the nodes not participating in any requirement.

Example 22. Consider F1 and F2 of Figure 5.8. π = (3 7) transforms F 3
1 into

F 4
1 ∼ F2. The final F 4

1 is shown in Figure 5.9d.

5.5 Fixed parameter tractability

This section is devoted to showing that computing the rearrangement distance between
trees T1 and T2 is fixed-parameter tractable, essentially via the bounded search tree
technique [152]. In this case, the instance also contains a parameter k: in time

103

O((4k)2k2

n) we (1) determine if d(T1, T2) ≤ k and, if this is the case, (2) find the
minimum sequence of operations transforming T1 into T2.

The main idea of our algorithm is that, since a permutation operation is essentially
just renaming the nodes, we can reorder the sequence of operations that transforms T1

into T2 so that all permutations precede the link-and-cut operations. Let T ∗ be the tree
obtained from T1 using only permutations and such that we can optimally obtain T2

from T ∗ using only link-and-cut operations. Then d(T1, T2) = dπ(T1, T
∗) + d`(T

∗, T2).
Our algorithm consists of showing that dπ(T1, T

∗) is related to the size of the family
partition, and that we can compute d`(T

∗, T2) in linear time. Finding such a tree T ∗ is
easier when we want to determine if the rearrangement distance d(T1, T2) is at most k.

In fact, a consequence of Lemma 33 is that d(T1, T2) ≥ dπ(T1, T
∗) ≥ |P|/2, where P

is the family partition associated with T1 and T2. Notice that any sequence of operations
that transforms T1 into T2 also transforms X into the empty set, and thus P into the
empty partition.

Since d(T1, T2) ≥ |P|/2, the first step of our algorithm is to compute the family
partition P of T1 and T2 and verify that k ≥ |P|/2. If that inequality is not satisfied,
then, since as stated above dπ(T1, T

∗) ≥ |P|/2, it would follow that d(T1, T2) > k.
Hence we can focus on the instances where k ≥ |P|/2, that is |P| ≤ 2k. Since the family
partition is sufficiently small, we can compute all sequences of permutations of at most
k labels of X in time O((4k)2k2

). In fact, each of the permutations involves one of the
22k subsets of vertices of X , and there can be at most (2k)! permutations of a set of 2k

elements. Overall there are at most
(
22k(2k)!

)k
such sequences: it is trivial to organize

them in a search tree that can be generated and traversed in linear time, and some
crude upper bound results in the desired time bound. Let T be the set of trees that are
obtained by applying to T1 the sequence of operations corresponding to a node of the
search tree.

The second part of our algorithm is to compute d`(T, T2) for each tree in T ∈ T ,
which, by Lemma 35, requires O(n) time for each tree, keeping track of the tree T ∗

minimizing dπ(T1, T
∗) + d`(T

∗, T2). The algorithm has therefore O((4k)2k2

n) time
complexity.

104

Chapter 6

MP3: Triplet-Based Similarity
Score for Tumor Phylogenies

Key Points

Problem. The latest advances in cancer sequencing, and the availability of a wide range
of methods to infer the evolutionary history of tumors, have made it important to
evaluate, reconcile and cluster different tumor phylogenies. None of the distance
measures for tumor phylogenies that have been proposed in the literature so far
is able to manage mutations occurring multiple times in the tree, a circumstance
often occurring in real cases.

Model. We design a similarity measure for tumor phylogenies, modelled as fully-
labelled trees that can have multiple labels at each node, and such that each label
can be assigned to multiple nodes. Our measure, that generalizes the notion of
rooted triples similarity for classical phylogenies to tumor phylogenies, is able to
effectively manage cases where multiple mutations can occur at the same time
and mutations can occur multiple times.

Included Works

This chapter is devoted to the paper Triplet-based similarity score for fully
multi-labeled trees with poly-occurring labels [100], presented at the confer-
ence RECOMB-CCB 2020 and published in the journal Bioinformatics.

6.1 Introduction

Recent methods to accurately infer the clonal evolution and progression of cancer have
made it possible to develop targeted therapies for treating the disease. As discussed in
several studies [276, 355], understanding the history of accumulation and the prevalence

105

of somatic mutations during cancer progression is a fundamental step to devise these
treatment strategies.

Given the importance of the task, a multitude of methods for cancer phylogeny
reconstruction have been developed over the years. The increasing number of tools
created has been encouraged by the diversity of data available; for instance, we are
witnessing a shift from bulk sequencing data [188, 189, 70, 71, 373] towards single-cell
data [212, 101, 374, 135] and hybrid approaches [261, 262].

Having many different tools accomplishing the same task requires solid methods to
compare their results. In contrast with classical phylogenetic trees, whose leaves, and
only leaves, are labeled (with the species they represent), the trees that model tumor
phylogenies are fully-labeled, i.e., they also have labels (corresponding to the mutations)
on the internal nodes. While there is a wide range of measures to compare leaf-labeled
trees in the literature, ad-hoc methods for tumor phylogenies are starting to appear
in the last few years [126, 225, 174]; in particular, a detailed study of some notions of
distance [126] has introduced two new measures complementing some more established
definitions used in various cancer inference studies [102, 101]. Those new measures are
more nuanced, in order to capture some aspects of the mutation inheritance process,
while still being very efficient to compute. A common trait of all the latter distances is
their reliance on the analysis of pairs of nodes.

On the other hand, some of the most widely used distances on classical phylogenies
are based on rooted triples [81, 127, 22] (for rooted phylogenies) or quartets [131] (for
unrooted phylogenies) of labeled leaves. Although such metrics have major limitations
for our purposes, as they do not apply directly to fully-labeled trees, they also have
some desirable properties that we would like to transfer in our setting. Specifically,
this kind of metric captures well the differences in the topology of the trees; a feature
that, to the best of our knowledge, lacks in most of the existing methods for tumor
phylogenies. Therefore we expect a triplet-based measures to provide additional insights
on the different evolutionary histories, when applied to cancer progression.

In this chapter, we generalize the notion of rooted triples similarity for classical
phylogenies to tumor phylogenies. Moreover, we further extend this to multi-labeled
trees (that is, where each node is labeled by a set of labels) and poly-occurring labels
(that is, each label can be assigned to more than one node). The latter feature is needed
since recent studies [239, 82] suggest widespread recurrence and loss of mutations,
and more and more methods designed to infer tumor phylogenies considering such a
possibility are starting to appear [135, 102, 101]. In a phylogenetic tree a mutation
loss is represented by a special character in the label, such as a minus sign: the design
of our measure allows to handle such evolutionary events effectively, as they uniquely
correspond to their label like any other kind of mutation.

Through an extensive experimental analysis, we show that our novel measure is able
to overcome the limitations in the existing literature and to provide a better alternative
to both the direct comparison of evolutionary histories and the application to established
clustering techniques, following the approach of [126]. Such a performing measure can
also be incorporated in recent works [19, 174] designed to cluster and build consensus
across multiple cancer progressions.

106

a b c d e f g h m n a c e
Figure 6.1: Rooted triplet on labels (a, c, e). (Left) Tree T where the smallest subtree that
contains all three labels is highlighted. (Right) The minimal topology induced by (a, c, e).

6.2 Methods

A classical phylogenetic tree is a rooted, unordered, leaf-labeled tree. The set of all
the labels occurring in T is denoted by λ(T), and a function N(·) maps each element
of λ(T) to a leaf of T . We denote with LCA(u, v) the Lowest Common Ancestor of
nodes u and v. Given three leaves u, v, z ∈ VT , the minimal tree topology they induce
on T , denoted as MTTT (u, v, z), is the smallest subtree of T that includes the nodes
V u,v,zT = {u, v, z}∪LCA(u, v)∪LCA(v, z)∪LCA(u, z), and where all the nodes with degree
2 not in V u,v,zT are contracted.

The rooted triplet distance measures the dissimilarity between two leaf-labeled trees
with identical labels. It is given by the number of rooted triplets that induce different
minimal topologies (Figure 6.1) in the two trees over the total number of triplets [213].
As tumor progression trees are fully-labeled, such metric cannot be directly applied:
in this section we propose a novel similarity measure, inspired by the triplet distance,
specifically designed for these more general trees.

6.2.1 Extension to fully labeled trees and multi-labeled trees

A tree T on a set VT of n nodes is fully-labeled by a set λ(T) of labels if there is a
bijection N : λ(T) → VT . The definition of minimal topology of three leaves can be
trivially extended to the minimal topology of three nodes: we next show that there are
only five possible configurations (see Figure 6.2).

a

b

c
a b c

a b c

a

b c
a

b

c

Figure 6.2: The five possible configurations for the minimal tree topology induced by three
nodes.

107

Lemma 42. Given nodes u, v, z ∈ VT , there exist only five possible configurations for
MTTT (u, v, z).

Proof. We start by dividing two possible cases: (i) LCA(u, v) = LCA(v, z) = LCA(u, z), or
(ii) just two LCAs are the same, say LCA(v, z) = LCA(u, z). There are no other possibilities,
as LCA(u, v) 6= LCA(v, z) 6= LCA(u, z) is impossible: indeed, suppose without loss of
generality that LCA(u, v) is a descendant of LCA(u, z), LCA(u, v) 6= LCA(u, z): they cannot
be unrelated, as by definition they are both ancestors of u. LCA(u, z) is thus a common
ancestor for v and z. Suppose towards a contradiction that LCA(v, z) 6= LCA(u, z), thus
it is a descendant of LCA(u, z) and an ancestor of LCA(u, v). But then it is an ancestor
of both u an z and it is lower than LCA(u, z), a contradiction.

Case (i) has two subcases: either LCA(u, v) ∈ {u, v, z}, corresponding to the rightmost
configuration in Figure 6.2, or LCA(u, v) /∈ {u, v, z}, corresponding to the second
configuration from the left. Case (ii) has three subcases: either both the distinct LCAs
are in {u, v, z}, or none of the two is, or finally one is in {u, v, z} and the other is
not. The first subcase corresponds to the leftmost configuration in Figure 6.2, the
second subcase to the fourth configuration from the left. For the third subcase, either
the external LCA is an ancestor of all of the three {u, v, z}, corresponding to the third
configuration, or it is an ancestor of two nodes and a descendant of the third one, say
u. In the latter case, though, the external node would be the only child of u, and
thus would be contracted by definition of MTTT (u, v, z), leading again to the rightmost
configuration of Figure 6.2.

In the case of fully-labeled trees, the definition of LCA of two nodes and MTT of three
nodes can trivially be extended to the LCA of two labels and the MTT of three labels,
as there is a one-to-one correspondence between nodes and labels. From now on, for
ease of presentation, given two nodes u and v and their respective labels a and b, we
will use LCA(u, v) and LCA(a, b) interchangeably. When modeling tumor progression,
though, to have a bijection between nodes and labels (i.e., mutations) is quite a strong
assumption, as multiple mutations often appear at the same time in the evolutionary
history of cancer. We thus relax our assumptions and consider multi-labeled instead of
fully-labeled trees.

A rooted, unordered tree T is multi-labeled if there exists a surjective function
N : λ(T) → VT that labels each node of T with a set of labels from λ(T): note that,
in this model, each label is assigned to one and only one node of T . We extend the
definition of lowest common ancestor of two labels for a multi-labeled tree as follows:
if a ∈ λ(T) and b ∈ λ(T) label the same node u, then LCA(a, b) = u; if they label
two distinct nodes u, v, then LCA(a, b) = LCA(u, v). This allows us to straightforwardly
extend the definition of minimal tree topology of three labels for multi-labeled trees.
There are only four possible additional configurations for the minimal tree topology of
multi-labeled trees, shown in Figure 6.3.

Lemma 43. Given T multi-labeled and a, b, c ∈ λ(T), there exist nine configurations
for MTTT (a, b, c).

Proof. Besides the five possible configurations already listed in the proof of Lemma 1,
the multi-labeled model admits four additional configurations, due to the extension of the
definition of LCA of two labels. In the first three additional cases, two labels are assigned

108

a,b

c a,b c

a,b,ca

b,c

Figure 6.3: The four additional possible configurations for the minimal tree topology of
multi-labeled trees induced by three nodes.

to the same node and the third one to a different one. Withouth loss of generality,
suppose that a and b label the same node. These cases are: (i) LCA(a, b) = LCA(b, c) =
LCA(a, c) and the LCA is a node in {a, b, c}, (ii) LCA(a, b) 6= LCA(b, c) = LCA(a, c) and
both LCA are nodes in {a, b, c}, and (iii) LCA(a, b) 6= LCA(b, c) = LCA(a, c) and only
LCA(a, b) is a node in {a, b, c}. The remaining case (iv) is the simplest one in which a,
b, c label the same node of T , implying that LCA(a, b) = LCA(b, c) = LCA(a, c).

Figure 6.3 reports cases (i) to (iv) from left to right.

6.2.2 Extension to poly-occurring labels

We further extend our model of tumor phylogeny by allowing the same label of λ(T)
to be assigned to multiple nodes of T . An element of λ(T) that labels more than one
node of T is said to be a poly-occurring label. To the best of our knowledge, none of
the existing tools is able to handle poly-occurring labels: indeed, although some of
them accept input trees with poly-occurring labels, they simply disregard the multiple
occurrences of a same label.

Since it is often the case where the inferred evolutionary history involves the
appearance of the same mutation in multiple events, a meaningful comparison between
tumor phylogenies cannot overlook such a phenomenon. To consider poly-occurring
labels in our similarity measure, we extend the definition of minimal tree topology.
First, note that if a label occur multiple times in the tree, then N maps each label to
one or more nodes in VT . Then, we define the minimal tree topology of poly-occurring
labels a, b, c, denoted by M, as follows, where t indicates the multiset union:

MT (a, b, c) =
⊔

u∈N(a),v∈N(b),z∈N(c)

MTTT (u, v, z)

In other words, the minimal tree topology of three labels is the multiset of all the
minimal tree topologies of the nodes where a, b, and c appear. We remark that in
this setting MT is a multiset of configurations, thus the same configuration may appear
multiple times in MT .

6.2.3 Similarity measure between trees

We are now able to define a similarity measure between fully-labeled trees with
poly-occurring labels. Let S be a multiset and let |S| be its cardinality. We de-
fine the number of shared configurations of labels a, b, c between two trees T1 and

109

T2 as N(a, b, c) = |MT1
(a, b, c) u MT2

(a, b, c)|, i.e., the cardinality of the multiset in-
tersection, and the maximum number of configurations of the triplet in the trees as
D(a, b, c) = max{|MT1(a, b, c)|, |MT2(a, b, c)|}.

Based on these two values we define multiple variations of the Multi Poly-occurring
labels triplet-based (MP3) similarity measure that we will later combine into a single
score. We define MP3∩ as the similarity computed between triplets of labels shared by
the two trees:

MP3∩ =

∑
(a,b,c)∈I

N(a, b, c)∑
(a,b,c)∈I

D(a, b, c)
(6.1)

where I is the set of triples in λ(T1) ∩ λ(T2). Due to the nature of only considering the
subset of labels that appears in both trees, MP3∩ is a conservative measure, therefore we
present a variation that consider all possible configurations in both trees, thus having a
wider view:

MP3∪ =

∑
(a,b,c)∈J

N(a, b, c)∑
(a,b,c)∈J

D(a, b, c)
(6.2)

where J is the set of triples in λ(T1) ∪ λ(T2). Differently from MP3∩, MP3∪ weighs also
the the labels that appear only in one of the trees. Note that, for every pair of trees,
MP3∪ ≤ MP3∩, as the numerator remains identical in both, while the denominator of
MP3∪ has all the elements in MP3∩ with the addition of the values of D for the triples
present only in one of the input trees.

Although MP3∩ and MP3∪ are closely related, they provide two different views of a
tumor phylogeny. Indeed, on one hand MP3∩ measures how similar the shared history
of two tumor phylogenies is, i.e., it provides an idea of how well the two progressions
can be reduced to the same subsequence of common mutations. On the other hand,
MP3∪ measures how similar the whole history of the two evolutions are, i.e., it considers
the impact of mutations acquired only in one progression.

Since the previous measures capture different aspects of the progressions, we want
to combine them into a single, usable and powerful similarity measure that couples the
strengths of both. The most intuitive method is to simply use a mean. We opted for
the geometric mean: MP3G =

√
MP3∩ · MP3∪.

This function is not completely satisfactory, as a uniform function of 6.1 and 6.2
is not able to comprehensively capture the nuances in the input trees. Therefore
we developed a weighted mean with an intentional bias towards MP3∩ to catch inner
similarities in different trees. Such combination then tends to be closer to MP3∩ when
the trees are similar while moving towards MP3∪ as the trees are less similar:

MP3σ = MP3∪ + σ(MP3∩) ·min{MP3∩ − MP3∪, MP3∪},

where σ(x) = (1 + eµ(x− 1
2))−1 is the classic sigmoid function centered in 1/2 and µ is

used to adjust the slope of the curve; we set µ = 10 in our experimentation. In addition
the sigmoid polarizes the values close to 1/2, thus helping decide whether they are
closer to 1 or 0, therefore moving the final score closer to MP3∩ or MP3∪.

110

While all four measures are available in our implementation, we decided to use MP3σ
as default measure and is denoted simply as MP3. An experimental comparison of all
four measures is shown in Appendix B.

6.3 Results

6.3.1 Simulated Data

To perform our experiments we follow an approach similar to the one performed in [126].
We start from a base tree on which we apply a series of perturbations selected from:
label swapping, label removal, label duplication, node swapping and node removal. Both
the perturbations and the nodes and labels on which they are applied are chosen at
random: our procedure allows to select a user-specified total number of actions and a
probability vector that will be used to select the perturbations from the previous list.

For the measure comparison experiments, we generated 30 perturbations from each
of the 5 base trees, for a total of 150 trees. For the clustering evaluation, 3 base trees
are entirely different from each other, and another 2 are perturbations of two of the
others, to simulate similar sub-families of the same tumor type: we perform a total of
10 perturbations on such 5 trees. More details on the perturbation parameters will be
described in each section, while the entire configuration is available and reproducible at
https://github.com/AlgoLab/mp3treesim supp.

6.3.2 Measures comparison

We compared MP3 against all the different versions of DISC and CASet from [126] and
MLTD [225]. While MP3 and MLTD provide similarity scores, DISC and CASet compute
a dissimilarity score, that we convert into a similarity measure by simply subtracting
their value from 1.

Effect of changes in the tree topology

A key feature a measure on tumor phylogenies should have is to discern changes at
different tree depths; indeed, a change close to the root should be more impactful than
a change towards the leaves. Such a behavior is fundamental, as driver mutations
are often acquired early in the evolutionary history, while less important passenger
mutations usually happen at later stages: to mistake the two types of mutations should
therefore have a high impact on a good similarity measure.

To estimate this effect on all the measures, we start from a linear base tree (T0 in
Figure 6.4 (Left)); we then raise its only leaf one level at the time and compute its
similarity to the base tree, expecting a drop in similarity as the leaf raises to the root,
similarly to experiment proposed in [126]. Figure 6.4 (Left) clearly displays such effect
for MP3, showing that it has the highest similarity decrease among all measures; DISC
and CASet also have similar trends, but to a lower extent. Since the set of labels is
the same for all trees, there is no difference between union and intersection versions of
DISC and CASet. Contrarily, as already observed in [126], MLTD plateaus after the
first change.

111

Figure 6.4: (Left) Effect of a node (highlighted in red) that ascends from leaf to child of the
root, T0 is the base tree to which the others are compared. (Right) Effect of label duplication
on the similarity scores. Similarities are the average of 15 trees generated from the same base
with the specified maximum number of duplications. MLTD was excluded since it failed to
run on instances with poly-occurring labels.

Another interesting aspect to investigate is how the presence of poly-occurring labels
influences the similarity scores, as the more sophisticated the inference tools get, the
more is common to have tumor phylogenies with multiple acquisitions or losses of the
same mutation. To evaluate this aspect we started from a multi-labeled base tree
with all labels occurring only once. We then created 15 perturbed trees for 5 different
configurations. In the first one (on the abscissa 0 in Figure 6.4 (Right)) we allowed
one operation excluding label duplication; for the others we allowed a total of 1, 3,
5 and 7 operations with much higher chance of selecting a label duplication. Since
perturbations occur randomly, we are only sure that at most the specified number of
duplication occurred, and not necessarily to the same label.

Figure 6.4 (Right) shows that CASet∩, CASet∪, DISC∩ and DISC∪ have similar
trends in this setting, MP3 being the only one that differs. In particular, the other
measures assign an higher similarity score to the second configuration than to the
first one, despite they are both obtained with one perturbing operation, allowing label
duplication only in the second one. MP3 is the only measure that positively displays
a monotonic decrease in similarity as the number of poly-occurring labels increases,
being markedly steeper than the others. We believe that a larger steepness will be
more informative than a plateauing curve, since while being true that after many of
poly-occurrences no more information is gained, all the duplications will inevitably add
more and more noise to the tree. Since MLTD assumes that every label appears only
once, it failed to run on this experiment and was therefore excluded.

112

Results on simulated data

To analyze the differences between all measures we designed two experimental settings:
from 5 different base trees (available in Appendix B) we generated 30 perturbations
for each class and computed similarities scores between all the 150 resulting trees. In
the first configuration we allowed a total of 3 operations excluding label duplications,
while in the second one we allowed them. All the parameters and the different proba-
bilities used for applying perturbations are available at our supplementary repository
https://github.com/AlgoLab/mp3treesim supp.

Results for the first configuration are shown in Figure 6.5. The heatmaps (Left)
show that MP3 discerns the best between the trees in the same class (main diagonal) and
the others: the results of DISC∪ are really close to ours, but there is a more noticeable
noise outside the main diagonal. DISC∩ and CASet∪ present even more noise than the
others, but are still mostly able to distinguish the different classes; CASet∩ seems to
struggle the most on this setting, while MLTD displays high values of similarities for
every couple of trees, but it is still able to differentiate between the bases.

The boxplots in Figure 6.5 (Top-Right) show the same result quantitatively: the
crucial feature is to correctly distinguish the different classes. The values represent the
distribution of the similarities between the trees in the same class (Intra-similarity) and
in different classes (Inter-similarity). MP3 differentiates better between intra and inter
similarity, exhibiting the most compact distribution for the inter-similarities scores,
while being a little more dispersed on the intra-similarity due to the action of the
sigmoid, that pulls apart the values around 1/2. Similarly to the previous case, DISC∪,
CASet∪ and MLTD show similar trends, while CASet∩ displays the most overlapping
distributions.

Lastly, in Figure 6.5 (Bottom-Right), we computed a silhouette score from the data
using a hierarchical linkage clustering with cuts from 2 to 15 to simulate a clustering
scenario. Once again, MP3 performs the best expressing the maximum value for 5 cuts,
being the 5 classes. DISC∩, DISC∪ also show the largest value at the same cut. MLTD
was excluded from the plot since it scored values close to −1 for every cut, thus causing
the figure to be hard to interpret.

In the second experimental setting we introduced poly-occurring labels to the
simulation. Figure 6.6 exhibits results very similar to the previous ones. The main
difference is that in the silhouette score (Bottom-Right) MP3, while still having its
maximum value in correspondence of 5 cuts, is slightly lower than the other measures.
On this experiment MLTD, not allowing poly-occurring labels, failed to compute the
score in most of the instances, shown in grey in the heatmaps (Left); it was excluded
from the other plots given the high amount of failed runs.

6.3.3 Application to clustering of trees

A very important application of a tree similarity measure is clustering, e.g., to classify
cancer type of patients by the similarity of their inferred phylogenies. This is of crucial
interest for the development of precision therapies based on the topological structure
and the evolution of mutations. Since to curate such classifications manually would be
unfeasible as the size and the number of mutations increases, a good measure to use in
conjunction with a clustering method is necessary.

113

A B C D E

A

B

C

D

E

MP3

A B C D E

A

B

C

D

E

CASet

A B C D E

A

B

C

D

E

DISC

A B C D E

A

B

C

D

E

CASet

A B C D E

A

B

C

D

E

DISC

A B C D E

A

B

C

D

E

MLTD

0.2 0.4 0.6 0.8 1.0

 MP3 CASet DISC CASet DISC MLTD
Measure

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y
sc

or
e

 Intra-similarity
 Inter-similarity

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Clusters

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Si
lh

ou
et

te
 S

co
re

Measure
MP3
CASet
DISC
CASet
DISC

Figure 6.5: Results for the first experimental configuration: (Left) Heatmaps displaying
the scores between all-pairs 150 simulate trees. (Top-right) Distribution of the similarities
between the trees in the same class (Intra-similarity) and in different classes (Inter-similarity).
(Bottom-right) Silhouette score computed using a hierarchical linkage clustering with cuts from
2 to 15.

To evaluate a similar scenario we started from 3 different bases, then perturbing
two of such trees chosen at random; these new trees are then considered as additional
base trees. Given this 5 bases we created a total of 10 perturbed trees from each class.
The goal was to simulate an experiment with three separate classes, with two of them
further split in two subclasses, to obtain subtypes of the same cancer families. The five
resulting bases are available in Appendix B and the parameters used for the simulations
are in our supplementary repository.

Results for the clustering experiment are reported in Figure 6.7; (a) shows the
clustermaps computed using hierarchical linkage clustering. MP3, DISC∩ and DISC∪
correctly cluster the three main families as well as the two sub-families, while both
versions of CASet struggle the most in this experiment. Figure 6.7 (b) displays the
distribution of intra- and inter-similarity between the five bases; MP3 has the most
compact inter-similarity distribution and is the only method that completely separates
intra- and inter-distributions. The high number of outliers for all methods is due to
the high similarity of the two subclasses. To confirm this hypothesis we computed the
same distributions only for the three main classes, remapping the subclasses to the
original corresponding base class in (d), where we note that the number of outliers is
significantly reduced. Finally, Figure 6.7 (c) shows the silhouette scores for the dataset;
all measures express a higher score with 3 cuts, suggesting that the two subclasses are
very similar to the two main bases they are derived from. The scores are very similar for
all measures, with DISC∪ having a higher value with 3 cuts and MP3 having a slightly
higher with 5 clusters. CASet∩ is the only method that have a much higher score in 5,
however, as shown in (a), the five clusters it reports are not the correct ones. MLTD

114

A B C D E

A

B

C

D

E

MP3

A B C D E

A

B

C

D

E

CASet

A B C D E

A

B

C

D

E

DISC

A B C D E

A

B

C

D

E

CASet

A B C D E

A

B

C

D

E

DISC

A B C D E

A

B

C

D

E

MLTD

0.2 0.4 0.6 0.8 1.0

 MP3 CASet DISC CASet DISC
Measure

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y
sc

or
e

 Intra-similarity
 Inter-similarity

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Clusters

0.0

0.1

0.2

0.3

0.4

Si
lh

ou
et

te
 S

co
re

Measure
MP3
CASet
DISC
CASet
DISC

Figure 6.6: Results for the second experimental configuration: (Left) Heatmaps displaying
the scores between all the 150 simulate trees. (Top-Right) Distribution of the similarities
between the trees in the same class (Intra-similarity) and in different classes (Inter-similarity).
(Bottom-Right) Silhouette score computed using a hierarchical linkage clustering with cuts
from 2 to 15.

was excluded from this experiment because it failed to run on most instances due to
poly-occurring labels.

6.3.4 Application to real dataset

To further evaluate our similarity measure, we applied it to two publicly available real
datasets: breast cancer xenoengraftment in immunodeficient mice [134] and ultra-deep-
sequencing of clear cell renal cell carcinoma [168]. Both datasets were previously con-
sidered for analyses by the two cancer phylogeny reconstruction methods LICHeE [300]
and MIPUP [201]. Data from [134] was also used in [126] for evaluation. An interesting
feature of the data in [168] is that most samples in the study present poly-occurring
labels, suggesting recurrent mutations at different evolutionary stages. We recall that
DISC and CASet compute dissimilarity scores, that we convert into a similarity measure
subtracting their value from 1. All the analyzed trees are available in Appendix B.

To evaluate the effectiveness of the measures in real scenarios, we selected the
manually curated trees, published in the corresponding original sequencing studies,
for case SA501 from [134] and for patient RMH002 from [168]. We then computed
similarities between these reference trees and the ones inferred by LICHeE and MIPUP,
as reported in [201].

The reference RMH002 is very similar to the evolutions inferred by LICHeE and
MIPUP, thus most of the measures agree on a high similarity score, as reported in
Figure 6.8 (Left), with the exception of CASet∪. The scores computed by MP3 are
higher than the others, possibly because it is the only method to correctly identify and

115

(�) (�)

(�)

(�)

Figure 6.7: Results for the clustering experiment: (a) Clustermaps of the 50 simulated trees
computed using hierarchical linkage clustering. (b) Distribution of the similarities between the
trees in the same class (Intra-similarity) and in different classes (Inter-similarity) for the 5
classes. The high number of outliers for all methods is due to the high similarity of the two
subclasses. (c) Silhouette score computed using a hierarchical linkage clustering with cuts from
2 to 15. (d) Distribution of the similarities between the trees in the same class (Intra-similarity)
and in different classes (Inter-similarity) for the three main classes, remapping the subclasses
to the original corresponding base. MLTD was excluded from this experiment because it failed
to run on most instances due to the presence of poly-occurring labels.

process poly-occurring labels in the reference trees, due to the discovered recurring
mutations. Differently from the previous analysis, the measures disagree considerably
for SA501, as depicted in in Figure 6.8 (Center). Indeed, MP3 reports a similarity value
close to 0, suggesting that the considered trees are quite different, whereas the other
measures report a higher similarity, especially DISC scoring up to 60% similarity.

To thoroughly investigate this behavior, we defined some näıve approaches used
as a proxy to analyze some basic aspects of the trees, such as the count of pairs of
labels appearing in the same node in both trees. Even with such a näıve measure, the
reference tree for SA501 from [134] and the trees inferred by MIPUP and LICHeE
disagree considerably. The base tree contains only 50 labels, whereas the trees inferred
by LICHeE and MIPUP contain 95 and 158 labels, respectively; of these, the reference
shares a total of 24 label with LICHeE and 37 with MIPUP. Most importantly, only 54
out of 1759 pairs of labels appear in the same node both in the reference and LICHeE
and 124 out of 8424 in MIPUP. Such evaluations, albeit very simplistic, suggest that
the trees are indeed dissimilar and thus a lower score, as provided by MP3, is more
reasonable than a high value of similarity.

To better understand this phenomenon, we created the edge case of a single-node
tree with all the 158 labels from MIPUP, and compared it against the reference SA501.
The resulting values in Figure 6.8 (Right) show a high similarity score for DISC with
values up to 69%, with CASet and MLTD being less influenced by this aspect with
scores up to 11% and 20%. On the other hand, MP3 clearly defines the trees as extremely
dissimilar, with a score of 0.4%. Such results for trees that are clearly extremely different

116

show a strong bias for DISC towards high similarity values.

LICHeE MIPUP
MP3 0.997 0.897
CASet∩ 0.805 0.779
DISC∩ 0.930 0.876
CASet∪ 0.569 0.551
DISC∪ 0.764 0.725
MLTD 0.842 0.807

LICHeE MIPUP
MP3 0.017 0.004
CASet∩ 0.139 0.111
DISC∩ 0.627 0.624
CASet∪ 0.260 0.113
DISC∪ 0.405 0.610
MLTD 0.182 0.205

Edge case
MP3 0.0004
CASet∩ 0.0927
DISC∩ 0.5571
CASet∪ 0.1120
DISC∪ 0.6933
MLTD 0.2046

Figure 6.8: (Left) Similarities between the manually curated tree reported in [168] for patient
RMH002 and the trees inferred by LICHeE and MIPUP. (Center) Similarities between the
manually curated tree reported in [134] for sample SA501 and the trees inferred by LICHeE
and MIPUP. (Right) Similarities between the manually curated tree reported in [134] for
sample SA501 and the edge case with all mutations appearing in a single node.

6.4 Discussion

We identified two major limitations in the existing methods to compare tumor phyloge-
nies: first, they are not sensitive enough to detect even major differences in the topology
of the trees, as we demonstrated with ad-hoc experiments. Second, they are not able to
meaningfully compare trees where the same label is assigned to more than one node.

We addressed the latter by representing tumor phylogenies as multi-labeled trees
with poly-occurring labels. Such model is best suited to cancer progression than the ones
previously adopted, as it allows the same mutation to appear in multiple evolutionary
events, a circumstance often occurring in real applications. Being inspired by the
triplet distance for classical phylogenies, our new similarity measure correctly detects
differences in the topology of the trees.

Our experiments show that our method performs very well both on synthetic and real
data and, unlike the other existing tools, it is able to detect differences regarding poly-
occurring labels and it suitably distinguish trees with different topologies. Moreover,
when applied to hierarchical clustering, it outperforms every other method.

117

Chapter 7

Incomplete Directed Perfect
Phylogeny in Linear Time

Key Points

Problem. Reconstructing the evolutionary relationship of a set of species is a central
task in computational biology. In real data, it is often the case that some infor-
mation is missing: the Incomplete Directed Perfect Phylogeny (IDPP) problem
asks, given a collection of species with some missing information, to complete it
in such a way that the result can be explained with a perfect directed phylogeny.

Model. A rooted phylogenetic tree models the evolutionary history of a set of species:
the leaves are in a one-to-one correspondence with the species, all of which have a
common ancestor represented by the root. We adopt the model describing the
species by a set of binary characters, so that each species is described by the states
of its characters. Such a representation is naturally encoded by a matrix A, ai,j
being the state of character j in species i. A directed perfect phylogeny is such
that the set of all nodes that have the same character state induces a connected
subtree, and on any path from the root to a leaf a character can change its state
from 0 to 1, but the opposite cannot happen. The input of the problem we are
considering is a matrix of character vectors in which some character states are
unknown, and the question is whether it is possible to complete the missing states
in such a way that the result can be explained with a directed perfect phylogeny.

Included Works

This chapter presents the ongoing work Incomplete Directed Perfect Phylogeny
in Linear Time [50].

118

7.1 Introduction

A rooted phylogenetic tree models the evolutionary history of a set of species: the
leaves are in a one-to-one correspondence with the species, all of which have a common
ancestor represented by the root. A way of describing the species is by a set of characters
that can assume several possible states, so that each species is described by the states
of its characters. Such a representation is naturally encoded by a matrix A, ai,j being
the state of character j in species i.

When, for each possible character state, the set of all nodes that have the same state
induces a connected subtree, a phylogeny is called perfect. The problem of reconstructing
a perfect phylogeny from a set of species is known to be linearly-solvable in the case
when the characters are binary [183], and it is NP-hard in the general case [66]. A
popular variant of binary perfect phylogeny requires that the characters are directed,
that is, on any path from the root to a leaf a character can change its state from 0 to 1,
but the opposite cannot happen [87].

In this chapter, we study the Incomplete Directed Perfect Phylogeny problem (IDPP
for short) introduced by Pe’er et al. [293], assuming that the characters are binary,
directed, and can be gained only once. The input of this problem is a matrix of character
vectors in which some character states are unknown, and the question is whether it is
possible to complete the missing states in such a way that the result can be explained
with a directed perfect phylogeny.

Related work. Besides being relevant in its own right [288, 46, 230, 318, 335],
the problem of handling phylogenies with missing data arises in various tasks of
computational biology, like resolving genotypes with some missing information into
haplotypes [228] and inferring tumor phylogenies from single-cell sequencing data
with mutation losses [317]. A generalization of the perfect phylogeny model where a
character can be gained only once and can be lost at most k times, called the k-Dollo
model [69, 185, 70, 135], has also been extensively studied. It should be clear that
different and efficient solutions for the IDPP problem may highlight novel approaches
for the above mentioned computational frameworks.

The approach of Pe’er et al. [293] to the IDPP problem is graph theoretic: their
algorithm relies on maintaining the connected components of a graph under a sequence
of edge deletions. The use of pre-existing dynamic connectivity data structures for this
purpose is the bottleneck in the overall time complexity. A connectivity data structure is
fully-dynamic when both edge insertion and deletion are allowed, and decremental when
only edge deletion is considered. A long line of results brought down the computational
time required for updating the data structure after edge insertions and/or deletions,
and for answering connectivity queries, to roughly logarithmic: the following table
summarizes the results for both fully-dynamic and decremental connectivity on a graph
consisting of N nodes and M edges. For fully-dynamic connectivity we report the
update time required for a single edge insertion or deletion, while for decremental
connectivity we report the overall time required to eventually delete all the edges. All
of the listed results, except for [193], assume that edge deletions can be interspersed
with connectivity queries. The algorithm of Henzinger et al. [193], in contrast, deletes
edges in batches (b0 is the number of batches that do not result in a new component)

119

and connectivity queries can be only asked between one batch of deletions and another.

Fully-Dynamic Update time Query time

Holm et al. [195] O(log2 N), amortized O(logN/ log logN)
Gibb et al. [169] O(log4 N),worst case O(logN/ log logN) w.h.p.
Huang et al. [199] O(logN(log logN)2), exp. amortized O(logN/ log log logN)

Decremental Total update time Query time

Even et al. [138] O(MN) O(1)

Thorup [347] O(min{N2,M logN}+
√
MN log2.5 N), exp. O(1)

Henzinger et al. [193] O(N2 logN + b0 min{N2,M logN}) O(1)

By plugging in an appropriate dynamic connectivity structure, the worst case running
time of the approach of Pe’er et al. [293], given a matrix describing n species and m
characters, becomes deterministic O(nm log2(n+m)) (using fully dynamic connectivity
structure of Holm et al. [195]), expected O(nm log((n+m)2/nm) + (n+m) log3(n+
m) log log(n+m)) (using decremental connectivity structure of Thorup [347]), expected
O(nm log(n+m)(log log(n+m))2) (using fully dynamic connectivity structure of Huang
et al. [199]), or deterministic O((n + m)2 log(n + m)) (using decremental structure
of Henzinger et al. [193]). This should be compared with a lower bound of Ω(nm),
following from the work of Gusfield on directed binary perfect phylogeny [183] (under
the natural assumption that the input is given as a matrix). For n = m, the second
algorithm achieves this lower bound at the expense of randomisation (and being very
complicated), while for the general case the asymptotically fastest solution is still at
least one log factor away from the lower bound.

Inspecting the algorithm of Pe’er et al. [293], we see that it operates on bipartite
graphs and only needs to deactivate nodes on one of the sides. It seems plausible that
some of the known dynamic connectivity structures are actually asymptotically more
efficient on such instances. However, all of them are very complex (with the result of
Holm et al. [195] being the simplest, but definitely not simple), and this is not clear.
Furthermore, recently Fernández-Baca and Liu [142] performed an experimental study
of the algorithm of Pe’er et al. for IDPP [293] with the aim of assessing the impact of
the underlying dynamic graph connectivity data structure on their solution. Specifically,
they tested the use of the data structure of Holm et al. [195] against a simplified version
of the same method, and showed that, in this context, simple data structures perform
better than more sophisticated ones with better asymptotic bounds.

Our results and techniques. We are motivated to look for simple, ad-hoc methods
that make use of the properties of the decremental connectivity as used in IDPP. In
this case, the graph is bipartite, and the required updates are vertex deletions from
just one of the two sides. We thus start by describing a simple data structure that
dynamically maintains the connected components of a bipartite graph with N nodes
on each side, whilst vertices are removed from one side of the graph. The starting
point for our solution is an application of a version of the sparsification technique of
Eppstein et al. [136]: we define a hierarchical decomposition of the graph, and maintain
a forest representing the connected components of each subgraph in this decomposition.

120

Recall that the original description of this technique focused on inserting and deleting
edges, while we are interested in deleting nodes (and only from one side of the graph).
Therefore, the decomposition needs to be appropriately tweaked for this particular use
case. This allows us to obtain an extremely simple data structure with O(N2 logN)
total update time, which we show to imply an O(nm log n) algorithm for IDPP.

The main technical part of this chapter refines this solution to shave the logarithmic
factor and thus obtain an asymptotically optimal algorithm. We stress that while
Eppstein et al. [136] did manage to avoid paying any extra log factors by applying a
more complex decomposition of the graph than a complete binary tree (used in the
conference version of their paper), this does not seem to translate to our setting, as
we operate on the nodes instead of the edges. The high-level idea is to amortize the
time spent on updating the forest representing the components of every subgraph with
the progress in disconnecting its nodes, and re-use the results from the subgraph on
the previous level of the decomposition to update the subgraph on the next level. As a
consequence, the IDPP problem can be solved in time linear in the input size:

Theorem 28. Given an incomplete matrix An×m, the IDPP problem can be solved in
time O(nm).

Under the natural assumption that the input is given as a matrix, this is asymptoti-
cally optimal [183].

Chapter organization. In Section 7.2 we provide a description of the algorithm of
Pe’er et al. [293] and a series of preliminary observations. In Section 7.3 we show a simple
and self-contained dynamic connectivity data structure that implies an O(nm log n) time
solution for the IDPP problem for an incomplete matrix An×m. Finally, in Section 7.4
we present the main result of this chapter and describe a dynamic connectivity data
structure that implies a linear-time algorithm for IDPP.

7.2 Preliminaries

Basic definitions. Let G = (V,E) be a graph. The subgraph induced by V ′ ⊆ V is
the graph GV ′ = (V ′, E ∩ (V ′ × V ′)). We say that a forest F = (V,E′) represents the
connected components of G = (V,E) when the connected components of F and G are the
same (note that we do not require that E′ ⊆ E). Throughout this chapter, we will use
the term node for trees, and vertex for other graphs. We denote by S = {s1, . . . , sn} the
set of species and by C = {c1, . . . , cm} the set of characters. A matrix of character states
An×m = [aij]n×m, where each entry is a state from {0, 1, ?} and the rows correspond
to the species, is said to be incomplete. The state aij of a character j for a species i
is one, zero or ? depending on whether character j is present, absent or unknown for
species i. A completion Bn×m of such An×m is obtained by replacing the ? entries of
An×m with either 0 or 1: formally, Bn×m is a binary matrix with entries bij = aij for
each i, j such that aij 6= ?.

A phylogenetic rooted tree T for a binary matrix Bn×m has the n species of S at
the leaves, and there is a surjection from the set of characters C to the internal nodes
of T such that, if a character cj is associated with a node x, then si belongs to the

121

leaf set of the subtree rooted at x if and only if bij = 1. In other words, all and only
the species in a subtree associated with a character cj have the character cj . We say
that an incomplete matrix admits a phylogenetic tree if there exists a completion of
the matrix that has such a tree. The Incomplete Directed Perfect Phylogeny problem
(IDPP for short), introduced by Pe’er et al. in [293], asks, given an incomplete matrix
A, to find a phylogenetic tree for A, or determine that no such tree exists.

For a character cj , the 1-set (resp. 0-set and ?-set) of cj in an incomplete matrix
A is the set of species {si|aij = 1} (resp. aij = 0 and aij = ?). For a subset S′ ⊆ S
of species, a character c is S′-semiuniversal in A if its 0-set does not intersect S′, that
is, if A[s, c] 6= 0 for all s ∈ S′. It is convenient to represent the character state matrix
as a graph: the vertices are V = S ∪ C and the edges are S × C, partitioned into
E1 ∪E? ∪E0, with Ex = {(si, cj)|aij = x} for x ∈ {0, 1, ?}. The edges of E1, E?, E0 are
called solid, optional, and forbidden, respectively. We denote by G(A) = (S ∪ C,E1)
the bipartite graph consisting only of the solid edges.

Previous solutions. The existence of a phylogenetic tree for A is linked with the
existence, in its graph representation, of a subset of edges with certain properties.
Specifically, Pe’er et al. show that finding a subset D ⊆ (E1 ∪ E?) such that E1 ⊆ D
and (S ∪ C,D) is Σ-free (where a Σ is a path consisting of four edges induced by three
vertices from S and two vertices from C), or determining that such D does not exist, is
equivalent to solving the IDPP problem for A.

Pe’er et al. proposed two algorithms for solving the IDPP problem, both working
on the graph representation of A and relying on some graph dynamic connectivity data
structure, the main difference between the two being the data structure they use. For
ease of presentation, in what follows we will only consider the algorithm they refer to
as Alg A. The algorithm relies on the following key properties: if an incomplete matrix
A admits a phylogenetic tree, and c is a S-semiuniversal character (meaning that there
are no 0s in its column), then the incomplete matrix obtained by setting to 1 all of
the entries of column c still admits a phylogenetic tree. Moreover, given a partition
(K1, . . . ,Kr) of S ∪C where each Ki is a connected component of G(A), the incomplete
matrix obtained by setting to 0 all entries corresponding to the edges between Ki and
Kj , for i 6= j, still admits a phylogenetic tree. Then, there is no interaction between
the species and characters belonging to different connected components, and the whole
reasoning can be repeated on each such component separately.

We denote by S(K) and C(K) the set of species and characters, respectively, of a
connected component K of G(A); A|K denotes the submatrix of A corresponding to
the species and characters in K. Deactivating a character c in G(A) consists in deleting
c together with all its incident edges. At a high level, Alg A works as follows. At each
step, for each connected component Ki of G(A), it computes the S(Ki)-semiuniversal
characters. If, for some Ki, no S(Ki)-semiuniversal character exists, it can be proven
that, for any D ⊆ (E1 ∪ E?) such that E1 ⊂ D, the graph (S ∪ C,D) is not Σ-
free, therefore the process halts and reports that A does not admit a phylogenetic tree.
Otherwise, it sets to 1 all of the entries of A|Ki corresponding to the S(Ki)-semiuniversal
characters, and sets to 0 the entries of A between vertices that lay in different connected
components. It then deactivates all of the S(Ki)-semiuniversal characters and updates
the connected components of G(A) using some dynamic connectivity data structure.

122

Algorithm 10 summarizes the high-level structure of Alg A: for the sake of clarity, we
only included the steps that compute the information needed for determining whether
A has a phylogenetic tree, and we left out the operations that actually reconstruct the
tree. A complete pseudocode and a proof of correctness of the algorithms can be found
in [293].

Algorithm 10: The high-level structure of Alg A [293].

1 while there is at least one character in G(A) do
2 Find the connected components of G(A);
3 for each connected component Ki of G(A) with at least one character do
4 Compute the set U of all characters in Ki which are S(Ki)-semiuniversal

in A;
5 if U = ∅ then return FALSE;
6 Deactivate every c ∈ U ;

7 return TRUE

Preliminary results. Our goal is to improve Alg A by optimizing its bottleneck,
that is maintaining the connected components of G(A). We will represent the connected
components of a bipartite graph G using the following lemma, and call the resulting
representation a list-representation of G.

Lemma 44. The connected components of a bipartite graph G = (S ∪ C,E) can be
represented in O(|S|+ |C|) space so that, given a vertex, we can access its component,
including the size and a pointer to the list of species and characters inside, in constant
time, and move a vertex to another component (or remove it from the graph) also in
constant time.

Proof. Each component of G is represented by a doubly-linked list of its vertices (more
precisely, a list of species and a list of characters), and also stores the size of the list.
An array of length n + m, indexed by the vertices of G, stores a pointer from each
vertex to its component and another pointer from each vertex to its position in the
list of that component. The components are, in turn, organised in a doubly-linked list.
Such representation takes space linear in the number of vertices and allows us to access
all the required information in constant time. Further, removing or moving a vertex to
another component takes constant time.

Given a list-representation of G, we represent its connected components with another
graph F = (V,E′) consisting of rooted stars [324] as follows. For each component K,
we define the central vertex v ∈ K to be the first vertex on the list of K. Then, we add
an edge (u, v) to E′, for any u ∈ K with u 6= v. This construction can be implemented
in O(|V |) time. Observe that we only guarantee that the connected components of G
and F are the same, but E′ is not required to only consist of the edges of G. We can
use the list-representation of G to simulate access to the adjacency lists of F without
constructing it explicitly, as stated by the following lemma.

123

Lemma 45. Given a bipartite graph G = (S ∪C,E) and a list-representation of G, the
access to the adjacency lists of a star forest F representing the connected components of
G can be simulated in constant time without constructing F explicitly.

Proof. To access the adjacency list of a vertex v we first look up its component K
and retrieve the first vertex u on the list of K. By Lemma 44, this operation requires
constant time. If u = v, then the adjacency list of v is the list of vertices of K stored in
the list-representation of G. Otherwise, the adjacency list of v consists only of a single
vertex u.

We are interested in solving the following special case of decremental connectivity:

Problem: (N`, Nr)-DC
Input: a bipartite graph G = (S ∪ C,E) with N` = |S| and Nr = |C|.
Update: deactivate a character c ∈ C.
Query: return the connected components of the subgraph induced by S and the
remaining characters.

When analysing the complexity of (N`, Nr)-DC, we allow preprocessing the input
graph G in O(N`Nr) time, and assume that all characters are eventually deactivated
when analysing the total update time. We can of course deactivate multiple characters
at once by deactivating them one-by-one. The overall time complexity of Algorithm 10
depends on the complexity of (N`, Nr)-DC as follows.

Lemma 46. Consider an n×m incomplete matrix A. If the (n,m)-DC problem can
be solved in f(n,m) total update time and g(n,m) query time, then the IDPP problem
can be solved for A in time O(nm+ f(n,m) + min{n,m} · g(n,m)).

Proof. There are three nontrivial steps in every iteration of the while loop: finding
the connected components in line 2, computing the semiuniversal characters of every
connected component in line 4, and finally deactivating characters in line 6. Every
character is deactivated at most once, so the overall complexity of all deactivations is
O(f(n,m)). We claim that in every iteration of the while loop, except possibly for the
very last, (1) at least one character is deactivated, and (2) there exist two species that
cease to belong to the same connected component. (1) is immediate, as otherwise we have
a connected component Ki with no S(Ki)-semiuniversal characters and the algorithm
terminates. To prove (2), assume otherwise, then we have a connected component Ki

such that S(Ki) does not change after deactivating all S(Ki)-semiuniversal characters.
But then in the next iteration the set of S(Ki)-semiuniversal characters is empty and
the algorithm terminates. (1) and (2) together imply that the number of iterations is
bounded by min{n,m}. The overall complexity of finding the connected components is
thus O(min{n,m} · g(n,m)).

It remains to bound the overall complexity of computing the semiuniversal characters
by O(nm). This has been implicitly done in [293, proof of Theorem 12], but we provide
a full explanation for completeness. For every character c ∈ C, we maintain the count
of solid and optional edges connecting c (in the graph representation of A) with the
species that belong to its same connected component (of G(A)). Assuming that we can

124

indeed maintain these counts, in every iteration all the semiuniversal characters can be
generated in O(m) time, so in O(min{n,m} ·m) = O(nm) overall time.

To update the counts, consider a connected component K that, after deactivating
some characters, is split into possibly multiple smaller components K1,K2, . . . ,Kk.
Note that we can indeed gather such information in O(n+m) time, assuming access to
a representation of the connected components before and after the deactivation. We
assume that the connected components are maintained with the list-representation
described in Lemma 44, and therefore we can access a list of the vertices in every
Ki. Then, we consider every pair i, j ∈ {1, 2, . . . , k} such that i 6= j, C(Ki) 6= ∅ and
S(Kj) 6= ∅. We iterate over every c ∈ Ki and s ∈ Kj , and if (s, c) is an edge in the
graph of A (observe that it cannot be a solid edge, as Ki and Kj are distinct connected
components) we decrease the count of c. By first preparing lists of components Ki

such that C(Ki) 6= ∅ and S(Ki) 6= ∅, this can be implemented in time bounded by the
number of considered possible edges (s, c), and every such possible edge is considered at
most once during the whole execution. Therefore, the overall complexity of maintaining
the counts is O(nm). Additionally, we need O(nm) time to initialise the (n,m)-DC
structure.

Before we proceed to design an efficient solution for the (N`, Nr)-DC problem, we
first show that it is in fact enough to consider the (N,N)-DC problem.

Lemma 47. Assume that the (N,N)-DC problem can be solved in f(N) total update
time and g(N) query time. Then, for any N ′ ≥ N , both the (N,N ′)-DC problem
and the (N ′, N)-DC problem can be solved in O(N ′/N · f(N)) total update time and
O(N ′/N · g(N)) query time.

Proof. We first consider the (N,N ′)-DC problem. We create dN ′/Ne instances of
(N,N)-DC by partitioning C into groups of N vertices (except for the last group that
might be smaller). In each instance we have the same set of species S. Deactivating
a character c ∈ C is implemented by deactivating it in the corresponding instance of
(N,N)-DC. Overall, this takes O(N ′/N · f(N)) time. Upon a query, we query all the
instances in O(N ′/N · g(N)) time. The output of each instance can be converted to a
star forest representing the connected components in O(N) time. We take the union
of all these forests to obtain an auxiliary graph on at most dN ′/Ne · (N − 1) = O(N ′)
edges, and find its connected components in O(N ′) time. Assuming that f(N) ≥ N ,
this takes O(N ′/N · f(N)) overall time and gives us the connected components of the
whole graph.

Now we consider the (N ′, N)-DC problem. We create dN ′/Ne instances of (N,N)-
DC by partitioning S into groups of N vertices, and in each instance we have the
same set of characters C. Thus, deactivating a character c ∈ C is implemented by
deactivating it in every instance. Overall, this takes O(N ′/N · f(N)) time. A query is
implemented exactly as above by querying all the instances and combining the results
in O(N ′/N · f(N)) time.

125

Figure 7.1: The decomposition tree of K4,4.

7.3 (N,N)-DC in O(N 2 logN) Total Update Time and
O(N) Time per Query

Our solution for the (N,N)-DC problem is based on a hierarchical decomposition of
G into multiple smaller subgraphs as in the sparsification technique of Eppstein et
al. [136] (as mentioned in the introduction, appropriately tweaked for our use case).
The decomposition is represented by a complete binary tree DT(G) of depth logN . We
identify the leaves of DT(G) with the characters C. Each node v corresponds to the
set of characters Cv identified with the leaves in the subtree of v, and is responsible
for the subgraph Gv of G induced by Cv and the whole set of species S. Thus, the
root is responsible for the whole G, see Figure 7.1. Each node v explicitly maintains
a list-representation of the connected components of Gv, denoted components(v). We
stress that, while components(v) is explicitly maintained, we do not explicitly store Gv
at every node v. The initial preprocessing required to construct DT(G) together with
components(v) for every node v, given G, takes O(B2) time by the following argument.
First, we construct components(v) for every leaf c. This can be done in O(B) time per
leaf by simply iterating the neighbours of c in G. Second, we proceed bottom-up and
compute components(v) for every inner node v in O(B) time using the following lemma.

Lemma 48. Let v be an inner node of DT(G), and v`, vr be its children. Given
components(v`) and components(vr) we can compute components(v) in O(B) time.

Proof. We construct star forests representing the connected components of components(v`)
and components(vr) in O(B) time and take their union. Then we find the connected
components of this union in O(B) time and save them as components(v).

We proceed to explain how to solve the (N,N)-DC problem in O(N logN) time per
update and O(N) time per query. The query simply returns components(r), where r is
the root of DT(G). The update is implemented as follows. Deactivating a character
c possibly affects components(v) for all ancestors v of the leaf corresponding to c. In

126

particular, components(c) becomes a collection of isolated nodes and can be recomputed
in O(1 + |S|) = O(N) time. We iterate over all proper ancestors v, starting from the
parent of c. For each such v, let v` and vr denote its left and right child, respectively.
We can assume that components(v`) and components(vr) have been already correctly
updated. We compute components(v) from components(v`) and components(vr) by
applying Lemma 48 in O(N) time. When summed over all the ancestors, the update
time becomes O(N logN), so O(N2 logN) over all deactivations.

By Lemmas 46 and 47, this implies that, given an incomplete matrix An×m, the
IDPP problem can be solved in time O(nm log min{n,m}) without using any dynamic
connectivity data structure as a blackbox.

7.4 (N,N)-DC in O(N 2) Total Update Time and O(N)
Time per Query

Our faster solution is also based on a hierarchical decomposition DT(G) of G. As
before, every node v stores components(v), so a query simply returns components(r).
The difference is in implementing an update. We observe that, if for some ancestor v of
the leaf corresponding to c, the only change to components(v) is removing c from its
connected component, then this also holds for all of the subsequent ancestors and they
can be updated in constant time each. This suggests that we should try to amortise the
cost of an update with the progress in splitting components(v) into smaller components.

We will need to compare the situation before and after the update, and so introduce
the following notation. A node v of DT(G) is responsible for the subgraph Gv before the
update and for the subgraph G′v after the update; components(v) and components′(v)
denote the connected components of Gv and G′v, respectively. The crucial observation is
that components′(v) is obtained from components(v) by removing c from its connected
component and, possibly, splitting this connected component into multiple smaller ones,
while leaving the others intact.

Deactivating a character c begins with updating naively components(c) in O(N)
time. Then we iterate over the ancestors of c in DT(G). Let vi+1 be the currently
considered ancestor, vi the ancestor considered in the previous iteration, and ui be
the other child of vi+1 (sibling of vi). Let the component of Gvi containing c be K.
As observed above, the components of G′vi are the same as the components of Gvi ,
except that K is replaced by possibly multiple components K1,K2, . . . ,Kk, where⋃k
j=1Kj = K \ {c}. If k = 1 then we trivially remove c from its connected component

in every Gvj , for j = i + 1, i + 2, . . . and terminate the update, so we can assume
that k ≥ 2. We further assume that, after having updated the components of Gvi , we
obtained a list of pointers to K1,K2, . . . ,Kk. Let L be the connected component of c
in Gvi+1

, with K ⊆ L because the subgraphs are monotone with respect to inclusion
on any leaf-to-root path. Now the goal is to transform Gvi+1

into G′vi+1
, to update its

components (using components′(vi) and components(ui)), and additionally to obtain
a list of pointers to the components obtained by splitting L. See Figure 7.2 for an
illustration.

We start by initialising G′vi+1
to be Gvi+1

, and by removing c from L. As in the proof
of Lemma 48, we will work with an auxiliary graph consisting of the union of two star

127

L

c

K

K1 K2 KkKk−1. . .

Figure 7.2: After having removed c from K to obtain K1,K2, . . . ,Kk, we want to remove c
from L.

forests representing the connected components of G′vi and Gui , respectively. However,
instead of explicitly constructing these forests, we simulate access to the adjacency lists
of every vertex in both forests using components′(vi) and components(ui), as explained
in the proof of Lemma 45. In turn, this allows us to simulate access to the adjacency
list of every vertex in the auxiliary graph. See Figure 7.3 for an example of the auxiliary
graph.

By renaming the components we can assume that |K1| ≥ |K2|, |K3|, . . . , |Kk|. We
will visit the vertices of L in order to determine the new connected components after
the removal of c: when doing so, we will use different colours to represent vertices
whose new connected component contains K1 (red), vertices whose new component is
different from the one of K1 (black) and vertices whose new component is still unknown
(white). Initially, the vertices of K1 are red and all of the other vertices of the auxiliary
graph are white. This initialisation is done implicitly, meaning that we will assume that
all the vertices of K1 are red and the rest are white without explicitly assigning the
colours, and whenever retrieving the colour of a node u we first check if u ∈ K1, and if
so assume that it is red. This allows us to implement the initialisation in constant time
instead of O(N) time. We will perform the visit of L by running the following search
procedure from an arbitrarily chosen vertex of each Kj , for j = 2, 3, . . . , k.

The search procedure run from a vertex x first checks if x is white, and immediately
terminates otherwise. Then, it starts visiting the vertices of the connected component
of x in the auxiliary graph: at any moment, each vertex in such component is either
white or red. As soon as the search encounters a red vertex, it is terminated and all
the vertices visited in the current invocation are explicitly coloured red. Otherwise,
the procedure has identified a new connected component K ′ of G′vi+1

. The vertices of
K ′ are removed from L, all vertices of K ′ are coloured black in the auxiliary graph,
and a new component K ′ of G′vi+1

is created in O(|K ′|) time. Inspect Figure 7.3 for an
example.

Lemma 49. The total time spent on all calls to the search procedure in the current
iteration is O(|L| − |K1|).

Proof. All vertices visited in the current iteration belong to L. The search is terminated
as soon as we encounter a red vertex, and all vertices of K1 are red from the beginning.

128

Therefore, each run of the search procedure encounters at most one vertex of K1,
and we can account for traversing the edge leading to this vertex separately paying
O(k− 1) = O(|L| − |K1|) overall. It remains to bound the number of all other traversed
edges. This is enough to bound the overall time of the traversal, because every edge
is traversed at most twice, and the number of visited isolated vertices is at most
k − 1 = O(|L| − |K1|).

For any other edge e = {u, v}, we have u, v ∈ L but u, v /∈ K1. These edges can be
partitioned into two forests by considering whether they originate from components′(vi)
or components(ui). Consequently, we must analyse the total number of edges in a
union of two forests spanning L \K1. But this is of course O(|L| − |K1|), proving the
lemma.

We now need to analyse the sum of |L| − |K1| over all the iterations. Because⋃k
j=1Kj ⊆ L, we can split this expression into two parts:

1. L \
⋃k
j=1Kj ,

2.
∑k
j=2 |Kj |.

Because the sets L\
⋃k
j=1Kj considered in different iterations are disjoint, the first parts

sum up to O(n). It remains to bound the sum of the second parts. This will be done by
the following argument. Consider an arbitrary Gv corresponding to a subgraph induced
by all the species and a subset of 2d characters. Whenever its connected component K
is split into smaller connected components K1,K2, . . . ,Kk after deactivating a character
c in the subtree of v, the second part

∑k
j=2 |Kj | is distributed among the vertices

of
⋃k
j=2Kj . That is, each node of

⋃k
j=2Kj pays 1. Observe that the size of the

connected component containing such a node decreases by a factor of at least 2, because
|K2|, |K3|, . . . , |Kk| ≤ |K|/2. To bound the sum of second parts, we analyse the total
cost paid by all the nodes of Gv due to deactivating the characters in the subtree of v
(recall that in the end all such characters are deactivated).

Lemma 50. The total cost paid by the nodes of Gv, over all 2d deactivations affecting
v, is O(N · d).

White

Red

Black

Figure 7.3: The auxiliary graph implicitly constructed for a node vi+1 after deactivating c8.
Black edges are used for the star forest of vi, grey edges for the star forest of ui; an inner
circle identifies the central vertices. K1 is the rightmost component; c7 is the next vertex to
be considered, and it will eventually become red.

129

Proof. We claim that in the whole process there can be at most 2t+1 deactivations
incurring a cost from [N/2t+1, N/2t). Assume otherwise, then there exists a vertex x
charged twice by such deactivations. As a result of the first deactivation, the size of
the connected component containing x drops from less than N/2t to below N/2t+1.
Consequently, during the next deactivation that charges x the cost must be smaller
than N/2t+1, a contradiction. As we have 2d deactivation overall, the total cost can be
at most:

d∑
t=0

2t+1 ·N/2t = O(N · d)

as claimed.

To complete the analysis, we observe that there are N/2d nodes of DT(G) such that
we have 2d deactivations affecting v. The sum of the second parts is thus:

logn∑
d=0

N/2d · n · d < N2
∞∑
d=0

d/2d = O(N2).

Overall, the total update time is hence O(N2). By Lemmas 46 and 47, it implies the
following:

Theorem 28. Given an incomplete matrix An×m, the IDPP problem can be solved in
time O(nm).

130

Part III

Appendices

131

Appendix A

Fundamental Definitions and
Data Structures

A.1 Strings

An alphabet Σ of size σ = |Σ| is a nonempty finite set of σ letters. An integer
alphabet is an ordered alphabet whose letters are integers from 1 to σ. A string
T = T [1]T [2] . . . T [|T |] over Σ is a finite sequence of letters from Σ: |T | denotes its
length, ε denotes the empty string. For two positions i and j on T , we denote by
T [i . . j] = T [i] . . . T [j] the substring of T that starts at position i and ends at position
j. A prefix of T is a substring of the form T [1 . . j], and a suffix of T is of the form
T [i . . |T |]. A proper prefix (suffix) of a string is not equal to the string itself. A string
X = X[1]X[2] . . . X[r] is a subsequence of a string T if X can be obtained by deleting
zero or more letters from T . T r denotes the reverse of T , that is, T [|T |]T [|T |−1] . . . T [1].
Σ∗ denotes the set of all possible finite strings over Σ, while Σk is the set of all strings
of length k over Σ.

Given two strings U and V , their concatenation U · V (also simply denoted by UV)
is given by the letters of U followed by the letters of V : the concatenation of k > 1
copies of some string U is denoted by Uk, and we call T = Uk a power of U .

Period. A period of a string X is any integer p ∈ [1, |X|] such that X[i] = X[i+ p]
for every i = 1, 2, . . . , |X| − p, and the period, denoted by per(X), is the smallest such
p. We call a string X periodic if per(X) ≤ |X|/2. The period per(X) can be computed
in O(|X|) time for any string X [113].

Palindrome. A string P is a palindrome if and only if P =PR. If factor X[i . . j],
1 ≤ i ≤ j ≤ |X|, of a string X is a palindrome, then i+j

2 is the center of X[i . . j] in

X and j−i+1
2 is the radius of X[i . . j]. In other words, a string P is a palindrome

if P = YaY R where Y is a string, Y R is the reversal of Y and a is either a single
letter (when the center is an integer) or the empty string (when it is not). Moreover,
X[i . . j] is called a palindromic factor of X, and it is a maximal palindrome if there

132

is no other palindrome in X with center i+j
2 and larger radius. Hence X has exactly

2|X| − 1 maximal palindromes. We say that X1, X2, . . . , X` is a (maximal) palindromic
factorization of string a X if every Xi is a (maximal) palindrome, X = X1X2 . . . X`,
and ` is minimal. A maximal palindromic factorization of X can be computed in O(|X|)
time (see, e.g., [23])

Alignment [259]. An alignment of X = X[1] . . . X[m] ∈ Σ∗ and Y = Y [1] . . . Y [n] ∈
Σ∗ is a pair of strings U = U [1] . . . U [h] and V = V [1] . . . V [h] of length h ∈ [max{m,n}, n+
m] such that X is a subsequence of U , Y is a subsequence of V , U contains h −m
characters –, and V contains h − n characters –, where – is a special character not
appearing in X or Y . Multiple sequence alignment (MSA) is the generalization of
pair-wise alignment to more than two strings.

Hamming distance. Given two strings U and V of equal length, the Hamming
distance dH(U, V) is defined as the number of mismatching letters between U and V .
The time complexity of computing the Hamming distance between two strings of length
n is O(n) [184].

Edit distance. Given any two strings U and V , the edit distance dE(U, V) is defined
as the minimum number of elementary edit operations (letter insertion, deletion, or
substitution) to transform U to V . The edit distance dE between two strings of length
Ω(n) cannot be computed in O(n2−δ) time without violating the Strong Exponential
Time Hypothesis SETH [38], and hence the well-known quadratic-time solution of [245]
for computing the edit distance between two strings of length O(n) is optimal up
to subpolynomial factors. This is also true for weighted edit distance [80], where
each operation (insertion, deletion, substitution and match) has a corresponding fixed
non-negative cost (respectively ci, cd, cs, cm), and the following conditions hold: (i)
ci + cd > cm, (ii) ci + cd > cs, and (iii) cm 6= cs.

Longest common extension. Given two strings X and Y and a pair (i, j), with
1 ≤ i ≤ |X| and 1 ≤ j ≤ |Y |, the longest common extension at (i, j), denoted by
lceX,Y (i, j), is the length of the longest substring of X starting at position i that
matches a substring of Y starting at position j. We define lceX,Y (i, j) = 0 when either
i /∈ {1, 2, . . . , |X|} or j /∈ {1, 2, . . . , |Y |}. For each index pair (i, j), lceX,Y (i, j) queries
can be computed in constant time per query, after an O(|X| + |Y |) time and space
pre-processing [184].

Regular expression [279]. The set of regular expressions over an alphabet Σ is
defined recursively as follows: (I) a ∈ Σ ∪ {ε} is a regular expression. (II) If E and F
are regular expressions, then so are EF , E|F , and E∗, where EF denotes the set of
strings obtained by concatenating a string in E and a string in F , E|F is the union of
the strings in E and F , and E∗ consists of all strings obtained by concatenating zero
or more strings from E. Parentheses are used to override the natural precedence of
the operators, which places the operator ∗ highest, the concatenation next, and the
operator | last. A string T matches a regular expression E, if T is equal to one of the

133

strings in E. Given a string W and a regular expression E, the approximate regular
expression matching problem can be solved in O(|W | · |E|) time [279].

A.2 Graphs and Data Structures

A tree is an undirected connected graph T = (VT , ET) without cycles: its degree-one
vertices are called leaves, while the remaining vertices are called internal nodes. Trees
T1 and T2 are is isomorphic, and we write T1 ≡ T2, if there is a bijective mapping
m : VT1 → VT2 such that (u, v) ∈ ET1 iff (m(u),m(v)) ∈ ET2 . Such a mapping is
referred to as an isomorphic mapping, or an isomorphism. A rooted tree has a special
node, called the root, that implicitly directs the edges, e.g., away from the root. We can
hence define the parent and child relationships as follows: for (u, v) ∈ ET and u on the
path from the root to v, we say that u is the parent of v, and write pT (v) = u, and v is
a child of u, and write v ∈ children(u)). Note that we consider the children children(u)
of some vertex u as a set, hence they are unordered. More generally, we say that a node
u is an ancestor of a node v if u is on the path from the root to v, and conversely, v is a
descendant of u. We extend the above notion of isomorphism to a pair T1, T2 of rooted
trees by adding the condition that m(pT1

(u)) = pT2
(m(u)), implying in particular that

m maps the root of T1 to the root of T2. Moreover, we denote by levelT (u) the level of
u in T , that is, the number of edges on the path from the root to u (with the root itself
being on level 0). A forest is a collection of trees.

Weighted ancestor. For a rooted tree T on n nodes with an integer weight D(v)
assigned to every node u, such that the weight of the root is zero and D(u) < D(v) if u
is the parent of v, we say that a node v is a weighted ancestor of a node v at depth `,
denoted by WAT (u, `), if v is the highest ancestor of u with weight of at least `. Such
queries can be answered in O(log n) time after an O(n) time preprocessing [140].

Lowest common ancestor. For a rooted tree T , the lowest common ancestor
LCAT (u, v) is the lowest (i.e., farthest from the root) node that is an ancestor of
both u and v. Such queries can be answered in O(1) time after an O(n) time prepro-
cessing [47].

Heavy path decomposition. A heavy path decomposition of a tree T is obtained by
selecting, for every non-leaf node u ∈ T , its heavy child v such that T |v is the largest.
This procedure decomposes the nodes of T into node-disjoint paths called heavy paths.
Each heavy path p starts at some node, called its head, and ends at a leaf. An important
property of such a decomposition is that the number of distinct heavy paths above any
leaf (that is, intersecting the path from a leaf to the root) is only logarithmic in the
size of T [328].

Bipartite maximum matching. A bipartite graph is an undirected graph G =
(A ∪B,E), such that there are no edges between vertices in A and there are no edges
between vertices in B. A matching in a bipartite graph is a subset of edges with no two
edges meeting at the same vertex. A maximum matching in an unweighted bipartite

134

graph is a matching of maximum cardinality, whereas a maximum weight matching in a
weighted bipartite graph is a matching in which the sum of weights is maximised. Given
an unweighted bipartite graph with m edges, the well-known algorithm by Hopcroft
and Karp [197] finds a maximum matching in O(m1.5) time. This has been recently
improved by Liu and Sidford to Õ(m4/3+o(1)) [254].

Trie. A trie is a tree in which every edge is labeled with a single letter, and every
two edges outgoing from the same node have different labels. The label of a node u
in such a tree T , denoted by L(u), is defined as the concatenation of the labels of all
the edges on the path from the root of T to u. Thus, the label of the root of T is ε,
and a trie is a representation of a set of strings consisting of the labels of all its leaves.
By replacing each path p consisting of nodes with exactly one child by an edge labeled
by the concatenation of the labels of the edges of p we obtain a compact trie. The
nodes of the trie that are removed after this transformation are called implicit, while
the remaining ones are referred to as explicit.

Suffix Tree. The suffix tree STX of a string X of length n over an alphabet Σ is a
compact trie representing all the suffixes of X$, where $ /∈ Σ is a terminating letter
used for technical purposes. STX has n leaves labelled from 1 to n: a leaf j corresponds
to the suffix X[j . . n − 1]. Each internal node, other than the root, has at least two
children, and each edge is labelled with a non-empty factor of X$ encoded as an [i, j]
interval over [0, n]. No two edges out of a node can have labels beginning with the same
letter. If u is a node of STX , then the string obtained by concatenating the edge labels
along the path from the root to u is the path-label of u, denoted by L(u); the length of
the path-label is the string-depth of node u. For any i ∈ [1, n], the path-label of the
leaf i is precisely the suffix X[i . . n− 1]$. An additional set of edges, called suffix links,
are extremely useful both for constructing STX efficiently and for performing a number
of tasks on STX . Let the label L(u) of the path from the root to an explicit node u be
aU , with a ∈ Σ: there is a suffix link from u to the unique explicit node v such that
L(v) = U (such a node v always exists, as U occurs in X wherever aU occurs and u
is an explicit node of STX). The suffix tree STX of a string X can be constructed in
O(|X|) time for constant-sized and integer alphabets [139], or in O(|X| log |X|) time if
no assumptions on the size of the alphabet are made [313]. The suffix tree for a set of
strings is called generalized suffix tree.

De Bruijn Graph. The weighted de Bruijn graph of order k over a string S of length
n is a directed multigraph GS,k = (VS,k, ES,k), where the set of vertices VS,k is the set
of length-(k − 1) substrings of S and ES,k is the multiset of edges from vertex u to
vertex v for every occurrence of u and v as consecutive length-(k − 1) substrings of S.
More formally, there is a multi-edge (u, v) ∈ ES,k with multiplicity m if and only if
u[0] · v = u · v[k− 2] and this string occurs in S exactly m times. Thus GS,k has exactly
n− k + 1 edges; in general, GS,k contains self-loops and multi-edges (inspect Fig. E.3
for an example).

135

Appendix B

Additional Experiments of
Chapter 6

We show here an experimental comparison of the different versions of MP3, demonstrating
the reason we decided to use MP3 σ as our default measure. We show in Figure B.1 (a)
that MP3 σ combines the best aspect of MP3 ∩ and MP3 ∪ while MP3 G is, as expected,
the average of the two. The same result can be seen in Figure B.1 (b), while Figure B.1
(c) display the effect of the sigmoid, where as the trees become less similar the value
move towards the union.

(�) (�)

(�)

Figure B.1: (a) Heatmaps displaying the scores between all the 150 simulate trees from the
second experimental setting. (b) Distribution of the similarities between the trees in the same
class (Intra-similarity) and in different classes (Inter-similarity) for the 5 classes. (c) Effect of
label duplication on the similarity scores. Similarities are the average of 15 trees generate from
the same base with the specified value of maximum duplication from the previous experiment.

136

B.1 Effect of label sliding

We present a comparison of the measure in the case of a label sliding from left to right
on the lowest level of a binary tree. The trees are compared against the first tree T0.
When the label slide to the same subtree no difference is found for all measure, as
expected. On the other hand we show a higher decrease in similarity for MP3 with
respect to the other measure as the label slides. Interestingly for the last two trees
CASet and DISC collapse to the same value showing no difference between the two.
MLTD express very little difference between the last four trees.

m

d e

i

b
a

hX s

f l

r

c

on

m

d e

i

b
a

Xh s

f l

r

c

on

m

d e

X

b
a

ih s

f l

r

c

on

X

d e

m

b
a

ih

f l

r

c

on s

n

d e

m

b
a

ih

f l

r

c

oX s

n

d e

m

b
a

ih

f l

r

c

Xo s

n

d e

m

b
a

ih

f l

X

c

ro s

n

d e

m

b
a

ih

f l

s

c

ro X

Figure B.2: Effect of a label sliding from left to right on the lowest level of a binary tree.

B.2 Base tree for poly-occurring label experiment

root

D

J

N K,P

B L I,S H A

E,T F,Q M C,R G

Figure B.3: Base tree used for evaluating the effect of poly-occurring labels on the similarity
scores.

137

B.3 Base trees for Exp1 and Exp2

root

A

B,Y C,R,T G

D E,S F L

P,Z Q H

I

M N,X

O

root

D J

A

B,O I N

C

L,P,R

M

E,Q

G

F

H

K

root

A,K,L I

B,N

H J

C

F

D,M

E

G,O

root

C G

A

D I K

B

F J

E

L

H

root

B,L,N,S C,P D,V

A

F G,Q,T I,J,R,U

E,K,O

H

Figure B.4: Base trees used in Experiments 1 and 2.

138

B.4 Base trees for Clustering experiment

root

B N,Q,R

K A O,S

H E,T J M G C,P I

L F

root

C,M I,O,Q A

D,P J G L,N F

E,R H K

root

R

H M

L A

P,X T,V J

N C,Y B G,Z D I E O,W F

K Q,U

root

R

H M

L J

P,X T,V E O F

N C B G,Z D I

K Q,U

root

N,Q,R K A

O,S H E,T J M

G C L F

Figure B.5: Base trees used in the clustering experiment. Tree 4 is a perturbation of Tree 3
and Tree 5 is a perturbation of Tree 1.

139

B.5 Trees for real data experiment

1:86047115, 1:214816224, 2:119751996,
2:128466334, 3:10183865, 3:45000715,

3:134268978, 4:44709934, 6:117841041,
8:73849748, 10:88451726, 13:114566625,
17:42431756, 17:45696476, 17:79632553

1:42048662, 1:149903893, 2:38525435,
3:52595839, 6:132966457, 0:73464783,

10:87407144, 15:65489101, 19:17652964
8:113349840, 19:51219681

3:33099620, 3:52437750, 7:154561175,
8:131140197, 10:104590461, 5:127728882,

8:105263327

3:4878510, 4:10445618, 7:138313028,
10:24820837, 20:30497690

2:80136761, 3:126226811,
19:2226271, 20:41419958

11:6292024, 12:133358952, 22:21328822,
18:18608851, 5:127728882-, 1:214816224-

3:49688508, 4:3189513, 8:17827164,
8:110588046, 11:5221789, 12:40114846,
17:7577018, 18:48513396, 8:105263327-

1:86047115, 2:119751996, 2:128466334, 3:45000715, 3:134268978,
4:44709934, 6:117841041, 8:73849748, 10:88451726, 13:114566625,

17:45696476, 17:79632553

8:113349840, 19:51219681
1:42048662, 1:149903893, 2:38525435,

3:52595839, 6:132966457, 10:73464783,
10:87407144, 15:65489101, 19:17652964

3:33099620, 3:52437750, 7:154561175,
8:131140197, 10:104590461

2:80136761, 3:126226811,
19:2226271, 20:41419958

3:4878510, 4:10445618,
10:24820837, 20:30497690

3:49688508, 4:3189513, 8:17827164, 8:110588046,
11:5221789, 12:40114846, 17:7577018, 18:48513396

11:6292024, 12:133358952,
22:21328822, 18:18608851

1:86047115, 2:119751996, 2:128466334,
3:45000715, 3:134268978, 4:44709934,

6:117841041, 8:73849748, 10:88451726,
13:114566625, 17:45696476, 17:79632553

8:113349840, 19:51219681 3:33099620, 3:52437750, 7:154561175,
8:131140197, 10:104590461

1:42048662, 1:149903893, 2:38525435,
3:52595839, 6:132966457, 10:73464783,
10:87407144, 15:65489101, 19:17652964

2:80136761, 3:126226811,
19:2226271, 20:41419958

3:4878510, 4:10445618,
10:24820837, 20:30497690

11:6292024, 12:133358952,
22:21328822, 18:18608851

3:49688508, 4:3189513, 8:17827164,
8:110588046, 11:5221789, 12:40114846,

17:7577018, 18:48513396

Figure B.6: Trees used in the experiment on real data from [168]. The upper tree is the base
tree proposed in [168] for patient RMH002, the second one is the tree inferred by LICHeE, and
the last one is the tree inferred by MIPUP (ipd parameter). We crafted the first tree starting
from the supplementary material of the corresponding paper whereas we built the other two
considering the trees reported in the MIPUP github repository.

140

1:86047115, 1:214816224, 2:119751996,
2:128466334, 3:10183865, 3:45000715,

3:134268978, 4:44709934, 6:117841041,
8:73849748, 10:88451726, 13:114566625,
17:42431756, 17:45696476, 17:79632553

1:42048662, 1:149903893, 2:38525435,
3:52595839, 6:132966457, 0:73464783,

10:87407144, 15:65489101, 19:17652964
8:113349840, 19:51219681

3:33099620, 3:52437750, 7:154561175,
8:131140197, 10:104590461, 5:127728882,

8:105263327

3:4878510, 4:10445618, 7:138313028,
10:24820837, 20:30497690

2:80136761, 3:126226811,
19:2226271, 20:41419958

11:6292024, 12:133358952, 22:21328822,
18:18608851, 5:127728882-, 1:214816224-

3:49688508, 4:3189513, 8:17827164,
8:110588046, 11:5221789, 12:40114846,
17:7577018, 18:48513396, 8:105263327-

1:86047115, 2:119751996, 2:128466334, 3:45000715, 3:134268978,
4:44709934, 6:117841041, 8:73849748, 10:88451726, 13:114566625,

17:45696476, 17:79632553

8:113349840, 19:51219681
1:42048662, 1:149903893, 2:38525435,

3:52595839, 6:132966457, 10:73464783,
10:87407144, 15:65489101, 19:17652964

3:33099620, 3:52437750, 7:154561175,
8:131140197, 10:104590461

2:80136761, 3:126226811,
19:2226271, 20:41419958

3:4878510, 4:10445618,
10:24820837, 20:30497690

3:49688508, 4:3189513, 8:17827164, 8:110588046,
11:5221789, 12:40114846, 17:7577018, 18:48513396

11:6292024, 12:133358952,
22:21328822, 18:18608851

1:86047115, 2:119751996, 2:128466334,
3:45000715, 3:134268978, 4:44709934,

6:117841041, 8:73849748, 10:88451726,
13:114566625, 17:45696476, 17:79632553

8:113349840, 19:51219681 3:33099620, 3:52437750, 7:154561175,
8:131140197, 10:104590461

1:42048662, 1:149903893, 2:38525435,
3:52595839, 6:132966457, 10:73464783,
10:87407144, 15:65489101, 19:17652964

2:80136761, 3:126226811,
19:2226271, 20:41419958

3:4878510, 4:10445618,
10:24820837, 20:30497690

11:6292024, 12:133358952,
22:21328822, 18:18608851

3:49688508, 4:3189513, 8:17827164,
8:110588046, 11:5221789, 12:40114846,

17:7577018, 18:48513396

Figure B.7: Trees used in the experiment on real data from [134]. The upper tree is the
base tree proposed in [134] for case SA501, the second one is the tree inferred by LICHeE, and
the last one is the tree inferred by MIPUP. We obtained these trees from the supplementary
material of [126]

141

1:18702842, 1:55929709, 1:78032946, 1:115615286, 1:154513581, 1:159043124, 1:161693298,
1:170404350, 1:186261383, 1:188927398, 1:248869969, 10:55582495, 10:71707093, 10:103881502,

10:105971797, 10:107030673, 10:133486157, 11:7924520, 11:36903890, 11:107750898,
11:128218739, 12:988858, 12:2285637, 12:14856407, 12:50859599, 12:86618610, 12:103526870,

12:106824456, 13:23226901, 13:101175612, 13:109847060, 14:23826560, 14:24458172, 14:32870929,
14:59333125, 14:74664338, 14:74753190, 14:94089175, 14:96707335, 14:96742405, 14:104445157,

15:98864731, 16:775813, 16:6059533, 16:64214991, 17:6153515, 17:7576897, 17:26851545,
18:35515066, 18:55021734, 19:1119929, 19:4033507, 19:19459707, 19:31962121, 19:37858870,

19:51485601, 19:54968069, 2:28791757, 2:37229508, 2:45941842, 2:54570864, 2:84931243,
2:97582958, 2:116269918, 2:210594921, 2:214486670, 2:242741301, 20:19953277, 20:32746910,

20:49487061, 20:59270170, 20:61957466, 21:43645837, 21:45413779, 22:19710966, 22:38071713,
22:45283999, 3:17768519, 3:123987727, 3:138223058, 4:44939148, 4:73935291, 4:91375841,
4:102470176, 4:137852235, 4:153690908, 4:169182097, 5:9570250, 5:15310341, 5:20445228,

5:127728855, 5:135388634, 5:156642298, 6:1102387, 6:3248228, 6:11213615, 6:24547529,
6:32549416, 6:43410792, 6:79509700, 6:111211499, 7:4296130, 7:29976211, 7:47819651,

7:51204012, 7:63755160, 7:65601792, 7:80054858, 7:82545108, 7:121096062, 7:141223355,
8:371036, 8:442404, 8:1975748, 8:2557388, 8:2745345, 8:24429322, 8:29332085, 8:53791614,

8:135303945, 9:1576946, 9:16917400, 9:35609023, 9:120700669, 9:127990318, X:2408374,
X:107378732, X:138867418, X:154436740, 1:245582899, 11:81631517, 15:98818617, 16:3283716,

17:1554124, 2:30143399, 20:3209183, 6:34950925, 8:40962969, 8:143714924, 10:123340263,
2:12789692, 2:131799024, 2:162688700, 20:11639405, 3:49847839, 3:49847840, 3:54008933,
3:185238946, 4:26526103, 5:58033578, 5:140431090, 7:38471807, 8:95470606, 9:14775852,

X:89177381, 11:59132274, 17:38652607, 4:187838926

Figure B.8: Edge case tree used in the experiment on real data from [134]. We obtained
such a tree by collapsing all nodes of the MIPUP’s tree from Figure B.7 in a single node.

B.6 Example of computation of MP3

To better understand how to compute MP3, in this section we report a detailed example
on trees with repeated labels.

In Figure B.9 we present two trees: the tree on the left, that we will refer to as Tree
A, is composed of six nodes and does not include any repeated label, whereas the tree
on the right, that we will refer to as Tree B, is composed of six nodes and only five
distinct labels.

In Figure B.10 we report the 20 possible MTTs of Tree A and in Figure B.11 we
report the 20 possible MTTs of Tree B.

Note that the MTTs of Tree A are unique, whereas the MTTs of Tree B are not.
Indeed, since the label c appears twice, two MTTs of Tree B have the same labels (a,
c, and f) and, by chance, the same shape (top right of Figure B.11). Notice that the
same MTT is in the multiset of MTTs of Tree A (top right of Figure B.10) but appears
only once.

In Figure B.12 we report the set of MTTs shared between Tree A and Tree B. This
set is composed of seven MTTs and note that the MTT of the triplet (a, c, f) appears
only once. This means that the MTT of that triplet will appear twice in MB(a, c, f),
once in the MA(a, c, f) u MB(a, c, f), and once MB(a, c, f) \MA(a, c, f).

Overall, we have the following (we refer the reader to Section 2.2 of the main
document for the notation):

• |λ(A)| = 6

• |λ(B)| = 5

• |I| = 10, i.e., the number of the triplets over the multiset {a, b, c, e, f}

142

• |J | = 35, i.e., the number of the triplets over the multiset {a, b, c, c, d, e, f}

• MP3∩ = 7/10 = 0.7

• MP3∪ = 7/35 = 0.2

• MP3σ = 0.2 + σ(0.7)×min{0.7− 0.2, 0.2} ' 0.22384

a

b c

fd e

a

b

fc

e

c

Figure B.9: Two tumor progression trees. Tree A (left) is composed of six nodes and six
different labels, whereas Tree B (right) is composed of 6 nodes and five distinct labels.

a

b c

a

b

d

a

b e

a

b

f

a

d c

a

c

e

a

f c

a

d e

a

d f

a

f e b c

d

b c

e

b c

f

b e

d

b

d f b e

f

d c

e

c

fd

f c

e

e

fd

Figure B.10: Minimal tree topology of each triplet of nodes in Tree A.

143

a

b

c

a

b e

a

b

f

a

c e

a

c f

a

f e b

c

e

b

c f b

f

e

fc

e

a

e

c

a

b c

a

f c

a

c c b e

c

c e

c

f e

c

b

c

c

fc

cb

f

c

Figure B.11: Minimal tree topology of each triplet of nodes in Tree B.

a

b e

a

b

f

a

c f

a

f e

b

f

e

a

b cb

f

c

Figure B.12: Minimal tree topologies shared between Tree A and Tree B. Note that the
MTT of the triplet (a, c, f) appears only once.

144

Appendix C

Combinatorial String
Dissemination

Key Points

Problem. String data are often disseminated to support applications such as location-
based service provision or DNA sequence analysis. This dissemination is likely
to expose sensitive patterns that model confidential knowledge. We consider the
problem of sanitizing a string by concealing the occurrences of sensitive patterns,
while maintaining data utility.

Model. We seek for a string, to be disseminated in place of the original one, that
preserves the order of appearance and frequency of all non-sensitive patterns,
while sensitive patterns are concealed with the aid of an extra alphabet letter. We
consider two settings. In the first one, we construct a minimal-length string that
has the desired properties. In the second setting, we construct a string that is at
minimal edit distance from the original string, in addition to preserving the order
of appearance and frequency of all non-sensitive patterns. Since the extra alphabet
letter may reveal the positions where some sensitive patterns originally were, we
also tackle the problem of replacing such new letters with carefully selected letters
of the original alphabet, so that sensitive patterns are not reinstated, implausible
patterns are not introduced, and occurrences of spurious patterns are prevented.

Included Works

This chapter presents the paper Combinatorial Algorithms for String Saniti-
zation [54], accepted for publication in ACM Transactions on Knowledge Discovery
from Data (TKDD). This paper is the journal extension of String Sanitization: A
Combinatorial Approach [53], which has been presented at the European Confer-
ence on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases(ECML/PKDD, 2019).

145

C.1 Introduction

A large number of applications, in domains ranging from transportation to web analytics
and bioinformatics feature data modeled as strings. For instance, a string may represent
the history of visited locations of one or more individuals, with each letter corresponding
to a location. Similarly, it may represent the history of search query terms of one or
more web users, with letters corresponding to query terms, or a medically important
part of the DNA sequence of a patient, with letters corresponding to DNA bases.
Analyzing these data is key in applications including location-based service provision,
product recommendation, and DNA sequence analysis. Therefore, such strings are often
disseminated beyond the party that has collected them. For example, location-based
service providers often outsource their data to data analytics companies who perform
tasks such as similarity evaluation between strings [253], and retailers outsource their
data to marketing agencies who perform tasks such as mining frequent patterns from
the strings [256].

However, disseminating a string intact may result in the exposure of confidential
knowledge, such as trips to mental health clinics in transportation data [346], query
terms revealing political beliefs or sexual orientation of individuals in web data [284],
or diseases associated with certain parts of DNA data [263]. Thus, it may be necessary
to sanitize a string prior to its dissemination, so that confidential knowledge is not
exposed. At the same time, it is important to preserve the utility of the sanitized
string, so that data protection does not outweigh the benefits of disseminating the
string to the party that disseminates or analyzes the string, or to the society at large.
For example, a retailer should still be able to obtain actionable knowledge in the form
of frequent patterns from the marketing agency who analyzed their outsourced data;
and researchers should still be able to perform analyses such as identifying significant
patterns in DNA sequences.

C.1.1 Model and Settings

Motivated by the discussion above, we introduce the following model which we call
Combinatorial String Dissemination (CSD). In CSD, a party has a string W that it
seeks to disseminate, while satisfying a set of constraints and a set of desirable properties.
For instance, the constraints aim to capture privacy requirements and the properties
aim to capture data utility considerations (e.g., posed by some other party based on
applications). To satisfy both, W must be transformed to a string by applying a
sequence of edit operations. The computational task is to determine this sequence of
edit operations so that the transformed string satisfies the desirable properties subject
to the constraints. Clearly, the constraints and the properties must be specified based
on the application.

Under the CSD model, we consider two specific settings addressing practical consid-
erations in common string processing applications; the Minimal String Length (MSL)
setting, in which the goal is to produce a shortest string that satisfies the set of con-
straints and the set of desirable properties, and the Minimal Edit Distance (MED)
setting, in which the goal is to produce a string that satisfies the set of constraints and
the set of desirable properties and is at minimal edit distance from W . In the following,

146

we discuss each setting in more detail.

MSL Setting In this setting, the sanitized string X must satisfy the following
constraint C1: for an integer k > 0, no given length-k substring (also called pattern)
modeling confidential knowledge should occur in X. We call each such length-k substring
a sensitive pattern. We aim at finding the shortest possible string X satisfying the
following desired properties: (P1) the order of appearance of all other length-k substrings
(non-sensitive patterns) is the same in W and in X; and (P2) the frequency of these
length-k substrings is the same in W and in X. The problem of constructing X in this
setting is referred to as TFS (Total order, Frequency, Sanitization). Note that it is
straightforward to hide substrings of arbitrary lengths from X, by setting k equal to
the length of the shortest substring we wish to hide, and then setting, for each of these
substrings, any length-k substring as sensitive.

The MSL setting is motivated by real-world applications involving string dissemina-
tion. In these applications, a data custodian disseminates the sanitized version X of
a string W to a data recipient, for the purpose of analysis (e.g., mining). W contains
confidential information that the data custodian needs to hide, so that it does not
occur in X. Such information is specified by the data custodian based on domain
expertise, as in [13, 72, 172, 256]. At the same time, the data recipient specifies P1
and P2 that X must satisfy in order to be useful. These properties map directly to
common data utility considerations in string analysis. By satisfying P1, X allows
tasks based on the sequential nature of the string, such as blockwise q-gram distance
computation [179], to be performed accurately. By satisfying P2, X allows computing
the frequency of length-k substrings and hence mining frequent length-k substrings [297]
with no utility loss. We require that X has minimal length so that it does not contain
redundant information. For instance, the string which is constructed by concatenating
all non-sensitive length-k substrings in W and separating them with a special letter
that does not occur in W satisfies P1 and P2 but is not the shortest possible. Such
a string X would have a negative impact on the efficiency of any subsequent analysis
tasks to be performed on it.

MED Setting In this setting, the sanitized version XED of string W must satisfy
the properties P1 and P2, subject to the constraint C1, and also be at minimal
edit distance from string W . Constructing such a string XED allows many tasks that
are based on edit distance to be performed accurately. Examples of such tasks are
frequent pattern mining [321], clustering [218], entity extraction [358] and range query
answering [257], which are important in domains such as bioinformatics [321], text
mining [358], and speech recognition [130].

Note, existing works for sequential data sanitization (e.g., [72, 172, 187, 256, 354])
or anonymization (e.g., [16, 73, 98]) cannot be applied to our settings (see Section C.2
for details).

C.1.2 Our Contributions

We define the TFS problem for string sanitization and a variant of it, referred to
as PFS (Partial order, Frequency, Sanitization), which aims at producing an even

147

shorter string Y by relaxing P1 of TFS. We also develop algorithms for TFS and PFS.
Our algorithms construct strings X and Y using a separator letter #, which is not
contained in the alphabet of W , ensuring that sensitive patterns do not occur in X or
Y . The algorithms repeat proper substrings of sensitive patterns so that the frequency
of non-sensitive patterns overlapping with sensitive ones does not change. For X, we
give a deterministic construction which may be easily reversible (i.e., it may enable
a data recipient to construct W from X), because the occurrences of # reveal the
exact location of sensitive patterns. For Y , we give a construction which breaks several
ties arbitrarily, thus being less easily reversible. We further address the reversibility
issue by defining the MCSR (Minimum-Cost Separators Replacement) problem and
designing an algorithm for dealing with it. In MCSR, we seek to replace all separators,
so that the location of sensitive patterns is not revealed, while preserving data utility.
In addition, we define the problem of constructing XED in the MED setting, which is
referred to as ETFS (Edit-distance, Total order, Frequency, Sanitization), and design
an algorithm framework to solve it.

Our work makes the following specific contributions:

1. We design an algorithm, TFS-ALGO, for solving the TFS problem in O(kn) time,
where n is the length of W . In fact, we prove that O(kn) time is worst-case optimal by
showing that the length of X is in Θ(kn) in the worst case. The output of TFS-ALGO
is a string X consisting of a sequence of substrings over the alphabet of W separated by
(see Example 23 below). An important feature of our algorithm, which is useful in
the efficient construction of Y discussed next, is that it can be implemented to produce
an O(n)-sized representation of X with respect to W in O(n) time. See Section C.4.

Example 23. Let W = aabaaacbcbbbaabbacaab, k = 4, and the set of sensitive
patterns be {baaa, bbaa}. The string X = aabaa#aaacbcbbba#baabbacaab consists of
three substrings over the alphabet {a, b, c} separated by #. Note that no sensitive pattern
occurs in X, while all non-sensitive substrings of length k = 4 have the same frequency
in W and in X (e.g., aaba appears once), and they appear in the same order in W
and in X (e.g., aaba precedes abaa). Also, note that any string shorter than X would
either create sensitive patterns or change the frequencies of the non-sensitive ones (e.g.,
removing the last letter of X creates a string in which caab no longer appears).

2. We define the PFS problem relaxing P1 of TFS to produce shorter strings that are
more efficient to analyze. Instead of a total order (P1), we require a partial order (Π1)
that preserves the order of appearance only for sequences of consecutive non-sensitive
length-k substrings that overlap by k−1 letters. In other words, Π1 requires preserving
the order of appearance of any two non-sensitive length-k substrings U , V for which
two conditions hold: (I) U and V occur consecutively in W , and (II) the length-(k − 1)
suffix of U is the same as the length-(k − 1) prefix of V . This makes sense because
the order of two consecutive non-sensitive length-k substrings with no length-(k − 1)
overlap has anyway been “interrupted” (by one or more sensitive patterns). We exploit
this observation to shorten the string further. Specifically, we design an algorithm that
solves PFS in the optimal O(n + |Y |) time, where |Y | is the length of Y , using the
O(n)-sized representation of X. See Section C.5.

Example 24. (Cont’d from Example 23) Recall that W = aabaaacbcbbbaabbacaab.
A string Y is aaacbcbbba#aabaabbacaab. The order of aaba and abaa is preserved in

148

Y as they are consecutive, non-sensitive, and the length-3 suffix of aaba is the same as
the length-3 prefix of abaa (i.e., they have an overlap of k−1=3 letters). The order of
abaa and aaac, which are consecutive non-sensitive, is not preserved since they do not
have an overlap of k−1=3 letters.

3. We define the MCSR problem, which seeks to produce a string Z, by deleting or
replacing all separators in Y with letters from the alphabet of W so that: no sensitive
patterns are reinstated in Z; occurrences of spurious patterns that may not be mined
from W but can be mined from Z, at a given support threshold τ , are prevented; and
the distortion incurred by the replacements in Z is bounded. The first requirement is
to preserve privacy and the next two to preserve data utility. We show that MCSR is
NP-hard and propose a heuristic to attack it. We also show how to apply the heuristic,
so that letter replacements do not result in implausible patterns that may reveal the
location of sensitive patterns. An implausible pattern is a string which is unlikely
to occur in Z as a substring. For example, such a pattern may correspond to an
impossible or unlikely trip in a sanitized movement dataset Z. When an occurrence
of an implausible pattern is identified in Z, it becomes easier to identify the letter
that replaced a # in the implausible pattern, and thus recover the sensitive pattern.
To prevent this, we first define an implausible pattern as a statistically unexpected
string. Our definition is based on a statistical significance measure computed over a
reference dataset [77, 308, 25]. Specifically, an implausible pattern is a substring whose
frequency in W is significantly smaller than its expected frequency in W . Then, we
modify MCSR-ALGO, so that it does not replace any occurrence of # with letters
that create implausible patterns. See Section C.6.

Example 25. (Cont’d from Example 24) Recall that the output of PFS is Y =
aaacbcbbba#aabaabbacaab. Let τ = 1. A string Z = aaacbcbbbacaabaabbacaab is
produced by replacing letter # with letter c. Note that Z contains no sensitive pattern,
nor a non-sensitive pattern of length-4 substring that could not be mined from W at a
support threshold τ (i.e., a pattern that does not occur in W). In addition, Z contains
no implausible pattern, such as bbab, which is not expected to occur in W , according to
an established statistical significance measure for strings [77, 308, 25].

4. We design an algorithm for solving the ETFS problem. The algorithm, called
ETFS-ALGO, is based on a connection between ETFS and the approximate regular
expression matching problem [279]. Given a string W and a regular expression E, the
latter problem seeks to find a string T that matches E and is at minimal edit distance
from W . ETFS-ALGO solves the ETFS problem in O(k|Σ|n2) time, where |Σ| is the
size of the alphabet of W . See Section C.7.

Example 26. Let W = aaaaaab, k = 4, and the set of sensitive patterns be {aaaa, aaab}.
TFS-ALGO constructs string X = ε, where ε is the empty string, with dE(W,X) = 7.
On the contrary, ETFS-ALGO constructs string XED = aaa#aab with dE(W,XED) =
1 < 7. Clearly, string XED is more suitable for applications based on measuring sequence
similarity.

5. For the MSL setting, we implemented our combinatorial approach for sanitizing a
string W (i.e., the aforementioned algorithms implementing the pipeline W → X →

149

Y → Z) and show its effectiveness and efficiency on real and synthetic data. We also
show that it possible to produce a string Z that does not contain implausible patterns,
while incurring insignificant additional utility loss. The experiments are reported in
Section C.8.

6. For the MED setting, we implemented ETFS-ALGO and experimentally compared it
with TFS-ALGO. Interestingly, we demonstrate that TFS-ALGO constructs optimal
or near-optimal solutions to the ETFS problem in practice. This is particularly
encouraging because TFS-ALGO is linear in the length of the input string n, whereas
ETFS-ALGO is quadratic in n. See Section C.8.

C.2 Related Work

We review related work in data sanitization (a.k.a. knowledge hiding) and data
anonymization, two of the main topics in the area of privacy-preserving data min-
ing [17, 68]. Data sanitization aims at concealing confidential knowledge, so that it is
not easily discovered by mining a disseminated dataset [351, 13, 172]. For example,
data sanitization may be used by a business to prevent a recipient of a dataset from
inferring that a specific set of products (e.g., baking powder and flour) is purchased by
many customers of the business [351]. This set of products needs to be concealed, as it
provides competitive advantage to the business.

On the other hand, data anonymization [16, 275, 133] aims at preventing a data
recipient from inferring information about individuals whose information is contained
in the input dataset [153]. This includes inferences about the identity of an individual
(identity disclosure), about whether or not an individual’s information is contained
in the output dataset (membership disclosure), as well as inferences that generally
depend on an individual’s information (inferential disclosure). For example, data
anonymization works are used to prevent a data recipient from inferring the identity of
an individual based on the products purchased by the individual, or from inferring that
the individual has purchased a sensitive product (e.g., a medicine revealing their health
condition) [369].

C.2.1 Data Sanitization

Existing data sanitization approaches can be classified, based on the type of data they
are applied to, into those applied to a collection of records and others applied to a single
sequence.

We first discuss data sanitization approaches that are applied to a collection of
records. A record can be a set of values (itemset) [351, 337, 285], a trajectory [13], or a
sequence [13, 172, 187]. In set-valued (transaction) datasets, the confidential knowledge
to be hidden is typically modeled as a set of itemsets [337], association rules [351], or
classification rules [285]. In trajectory datasets, the confidential knowledge is modeled
as a set of subtrajectories [13]. Last, in sequential datasets, the confidential knowledge
is modeled as a set of sequential patterns occurring in the dataset [13, 172, 187].

In what follows, we review three data sanitization approaches [13, 172, 187], which
are applied to a collection of sequences, since they are the most relevant to our work.

150

The key difference of these approaches from our work is that they aim to hide sensitive
patterns occurring as subsequences (not only as substrings) in the input collection (not
in a single, long string). Moreover, they aim to hide sensitive patterns when these are
sufficiently frequent; i.e., when a sensitive pattern occurs as a subsequence of least τ
records, where τ is a given minimum frequency threshold. The hiding of a sensitive
pattern is then performed by modifying some of the records in the collection (e.g., by
letter deletion [13]), so that fewer than τ records contain the sensitive pattern as a
subsequence. In our work, C1 implies that no occurrence of a sensitive pattern exists
in the sanitized sequence.

The problem of sanitizing a collection of sequences was first proposed by Abul et
al. [13]. The authors developed a heuristic that applies deletion of letters contained
in sensitive patterns. The heuristic aims to minimize the number of deleted letters
in the collection. However, it does not focus on minimizing changes to the set of
non-sensitive frequent sequential patterns that are incurred by deletions. In response,
Gkoulalas-Divanis et al. [172] developed a heuristic that avoids such changes, hence
improving data utility for frequent sequential pattern mining and tasks based on it. The
heuristic of [172] first selects a sufficiently large subset of records to sanitize, favoring
records that can be sanitized with few deletions. Then, it sanitizes each selected record
by constructing a graph that represents the matchings between the record and sensitive
patterns, and searching for graph nodes corresponding to good letters to delete. However,
due to the fact that graph search is computationally inefficient, the heuristic searches
only a small part of the graph.

Gwadera et al. [187] proposed a heuristic, called Permutation Hiding (PH). PH
addresses the limitation of [13], as it aims to minimize changes to the set of non-sensitive
frequent sequential patterns. Also, it addresses the limitation of [172], as it avoids
the expensive graph search. Furthermore, PH employs both letter permutation and
deletion to hide sensitive patterns. Permuting the letters of a sensitive pattern hides
the pattern but may change the set of non-sensitive frequent sequential patterns. Thus,
PH explores the space of possible permutations of the letters of a sensitive pattern
to find a permutation that minimizes the number of such changes. When this is not
possible, PH resorts to letter deletion.

Thus, in summary, our approach differs from existing approaches that are applied
to a collection of sequences [13, 172, 187], in terms of: (I) input dataset (a collection of
strings vs. a single string); (II) occurrences of a sensitive pattern that must be hidden
(occurrences as a subsequence vs. occurrences as a substring); (III) data modification
strategy (deletion and/or permutation vs. copying of non-sensitive substrings and letter
replacement); (IV) utility considerations (no guarantees on minimizing changes to non-
confidential frequent sequential patterns vs. guarantees on utility properties). Although
these data sanitization methods were designed for the general case of a collection of
sequences, they could in principle be applied to a single string. Through the following
example, we illustrate this point and also highlight the difference with respect to the
goals of our methods.

Example 27. Let W = aabaaacbcbbbaabbacaab, k = 4, and the set of sensitive
patterns be {baaa, bbaa}. Consider applying the PH heuristic [187] using a minimum
frequency threshold τ = 1. PH constructs a string I = aaba**cbcbbb**bb*ca*b,
deleting six letters of W that are represented by the special letter * for the sake of clarity.

151

PH also creates non-sensitive length-k substrings that can be mined from W but cannot
be mined from Z at frequency threshold τ (e.g., abaa), as well as non-sensitive length-k
substrings that cannot be mined from W but can be mined from Z at frequency threshold τ
(e.g., bacb). These substrings are referred to as τ -lost and τ -ghost patterns, respectively.
Specifically, as shown in Table C.1, PH created 11 τ -lost and 6 τ -ghost patterns. On
the other hand, applying our approach (i.e., the pipeline TFS-ALGO→ PFS-ALGO→
MCSR-ALGO) with τ = 1 produces a string Z = aaacbcbbbacaabaabbacaab with
neither τ -lost nor τ -ghost patterns, as mentioned in Example 25. The reader can perhaps
share the intuition that string Z is more useful than string I, as Z preserves the set of
non-sensitive frequent sequential patterns that can be mined at τ = 1.

The main reason PH incurs substantially more τ -lost and τ -ghost patterns than
our method is because it hides the sensitive patterns when they occur as subsequences
of the input string. That is, it hides all occurrences of each sensitive pattern in the
string, albeit only occurrences comprised of consecutive letters (i.e., substrings) need to
be hidden in our setting. For instance, two occurrences of the letter a have been deleted
from the suffix bbacaab of W to prevent the sensitive pattern bbaa from occurring as
a subsequence (the subsequence is comprised of the underlined letters in W). Note,
however, that pattern bbaa does not occur as a substring in this suffix of W .

τ -lost τ -ghost

PH [187] {abaa, aaac, aacb, bbba, baab, aabb,
abba, bbac, baca, acaa, caab}

{abac, bacb, bbbb,
bbbc,bbca, bcab}

Our method ∅ ∅

Table C.1: The τ -lost and τ -ghost patterns, for τ = 1, created by applying the PH heuris-
tic [187] and our method on the string of Example 27.

In what follows, we review three data sanitization approaches [256, 73, 354], which
are applied to a single sequence.

The work of Loukides et al. [256] is applied to a single event-sequence, in which
each event is a multi-set of letters associated with a timestamp. Their work aims to
hide sensitive patterns comprised of a single letter. Each such pattern is considered
hidden when its relative frequency in any prefix of the event-sequence is sufficiently
low. The hiding is performed by a dynamic-programming algorithm that applies letter
deletion, while preserving the distribution of events across the sequence. The approach
of [256] cannot be readily extended to hide sensitive patterns of length k > 1, which is
our privacy objective. Moreover, it has a different utility criterion than our work, and
it does not guarantee the satisfaction of the utility properties we consider here.

The work of Bonomi et al. [72] is applied to a single sequence and aims to prevent an
attacker, who has background knowledge about the frequency distribution of sensitive
patterns in the input sequence, from gaining additional knowledge about the frequency
distribution of sensitive patterns by observing the sanitized sequence. This is performed
by limiting the mutual information between the frequency distribution of sensitive
patterns in the original and sanitized sequence. In other words, sensitive patterns are
protected when their frequencies are similar in the input and in the sanitized sequence.

152

On the other hand, in our work, we consider a setting where sensitive patterns are
unknown to the attacker and aim to prevent the attacker from observing their presence
in the sanitized sequence. The hiding of sensitive patterns in [72] is performed by
heuristics which aim to apply a small amount of generalization [315]. Generalization
replaces a letter with an aggregate letter that is not part of the sequence alphabet,
thereby introducing uncertainty. Thus, the work of [72] aims to produce sanitized data
with a low level of uncertainty and does not focus on guaranteeing the accuracy of
mining frequent substrings comprised of the letters of the alphabet.

The work of Wang et al. [354] is applied to an event-sequence, in which each event
is a single letter associated with a timestamp. Their work considers the problem of
deleting events in a given sequence, so as to reduce the ability of an attacker to detect
sensitive patterns, while maximizing the detection of non-sensitive patterns. A pattern
is detected when it occurs as a subsequence within a specified time window of the
sequence. To solve this problem, the approach of [354] deletes events from the sequence
in order to maximize a weighted utility function expressed as a sum of terms. An
occurrence of a non-sensitive (respectively, sensitive) pattern in the sequence contributes
a positive (respectively, negative) term to this function. Thus, [354] considers protecting
sensitive patterns that occur as subsequences rather than as substrings, and it aims to
achieve a good balance between matching non-sensitive patterns and preventing the
matching of sensitive patterns.

C.2.2 Data Anonymization

Data anonymization is a different direction in privacy-preserving data mining than data
sanitization [17, 12]. Data anonymization has been the focus of many research works
(see [17, 156] for surveys). This includes works for anonymizing string data [16, 15, 73, 98].
The works of Aggarwal and Yu [16, 15] aim to enforce k-anonymity [315] on a collection
of strings. This is performed by first grouping strings, so that each group contains at
least k similar strings, and then replacing the strings in each group with a carefully
constructed synthetic string. The work of [73] aims to release differentially private [133]
top-k frequent substrings from a collection of strings, where k denotes the number of
frequent substrings required. This is performed by building a noisy summary data
structure that represents the collection and then mining the top-k frequent substrings
from the data structure. The work of [98] aims to release a differentially private collection
of strings. This is performed by exploiting the variable-length n-gram model [266] and
calibrating the noise needed to enforce differential privacy based on the model.

The aforementioned anonymization methods aim to prevent privacy threats other
than eliminating sensitive substrings from a string to prevent their mining. The threats
they are dealing with, following the terminology of [153], are: identity disclosure
for [16, 15] and membership as well as inferential disclosure for [73, 98]. Thus, our
work is related to anonymization approaches in that it shares the general objective of
protecting string data with [16, 15] and that of protecting data while supporting string
mining with the work of [73].

153

C.3 Preliminaries

In this section, we start with providing some preliminary definitions. Then, we define
our problems and introduce our main results. A summary of the acronyms introduced
in the chapter is in Table C.2.

Acronym Meaning

CSD Combinatorial String Dissemination model
MSL Minimal String Length setting
MED Minimal Edit Distance setting
TFS Total order, Frequency, Sanitization problem
PFS Partial order, Frequency, Sanitization problem

MCSR Minimum-Cost Separators Replacement problem
ETFS Edit-distance, Total order, Frequency, Sanitization problem
PH Permutation Hiding heuristic [187]

MCK Multiple Choice Knapsack problem [227]
FO-SSM Fixed-Overlap Shortest String with Multiplicities problem

SCS Shortest Common Superstring problem [160]

Table C.2: Acronyms used throughout

By FreqV (U) we denote the number of occurrences of string U in string V . Given
two strings U and V we say that U has a suffix-prefix overlap of length ` > 0 with
V if and only if the length-` suffix of U is equal to the length-` prefix of V , i.e.,
U [|U | − ` . . |U | − 1] = V [0 . . `− 1].

We fix a string W of length n over an alphabet Σ = {1, . . . , nO(1)} and an integer
0 < k < n. We refer to a length-k string or a pattern interchangeably. An occurrence of
a pattern is uniquely represented by its starting position. Let S be a set of positions
over {0, . . . , n− k} with the following closure property: for every i ∈ S, if there exists j
such that W [j . . j + k− 1] = W [i . . i+ k− 1], then j ∈ S. That is, if an occurrence of a
pattern is in S, then all its occurrences are in S. A substring W [i . . i+ k − 1] of W is
called sensitive if and only if i ∈ S. S is thus the set of occurrences of sensitive patterns.
The difference set I = {0, . . . , n − k} \ S is the set of occurrences of non-sensitive
patterns.

For any string U , we denote by IU the set of occurrences of non-sensitive length-k
strings over Σ in U (we have that IW = I). We call an occurrence i the t-predecessor
of another occurrence j in IU if and only if i is the largest element in IU that is less
than j. This relation induces a strict total order on the occurrences in IU . We call i the
p-predecessor of j in IU if and only if i is the t-predecessor of j in IU and U [i . . i+k−1]
has a suffix-prefix overlap of length k − 1 with U [j . . j + k − 1]. This relation induces a
strict partial order on the occurrences in IU . We call a subset J of IU a t-chain (resp.,
p-chain) if for all elements in J except the minimum one, their t-predecessor (resp.,
p-predecessor) is also in J . For two strings U and V , chains JU and JV are equivalent,
denoted by JU ≡ JV , if and only if |JU | = |JV | and U [u . . u+ k− 1] = V [v . . v+ k− 1],
where u is the jth smallest element of JU and v is the jth smallest of JV , for all
j ≤ |JU |.

154

Problem Statements and Main Results We define the following problem for the
MSL setting.

Problem 1 (TFS). Given W , k, S and IW , construct the shortest string X:

C1 X does not contain any sensitive pattern.
P1 IW ≡ IX , i.e., the t-chains IW and IX are equivalent.
P2 FreqX(U) = FreqW (U), for all U ∈ Σk \ {W [i . . i+ k − 1] : i ∈ S}.

TFS requires constructing the shortest string X in which all sensitive patterns from
W are concealed (C1), while preserving the order (P1) and the frequency (P2) of all
non-sensitive patterns. Our first result is the following.

Theorem 29. Let W be a string of length n over Σ = {1, . . . , nO(1)}. Given k < n
and S, TFS-ALGO solves Problem 1 in O(kn) time, which is worst-case optimal. An
O(n)-sized representation of X can be built in O(n) time.

P1 implies P2, but P1 is a strong assumption that may result in long output strings
that are inefficient to analyze. We thus relax P1 to require that the order of appearance
remains the same only for sequences of consecutive non-sensitive length-k substrings
that also overlap by k − 1 letters (p-chains). This leads to the following problem for
the MSL setting.

Problem 2 (PFS). Given W , k, S, and IW construct a shortest string Y :

C1 Y does not contain any sensitive pattern.
Π1 There exists an injective function f from the p-chains of IW to the p-chains of IY

such that f(JW) ≡ JW for any p-chain JW of IW .
P2 FreqY (U) = FreqW (U), for all U ∈ Σk \ {W [i . . i+ k − 1] : i ∈ S}.

Our second result, which builds on Theorem 29, is the following.

Theorem 30. Let W be a string of length n over Σ = {1, . . . , nO(1)}. Given k < n
and S, PFS-ALGO solves Problem 2 in the optimal O(n+ |Y |) time.

To arrive at Theorems 29 and 30, we use a special letter (separator) # /∈ Σ when
required. However, the occurrences of # may reveal the locations of sensitive patterns.
We thus seek to delete or replace the occurrences of # in Y with letters from Σ. The
new string Z should not reinstate sensitive patterns or create implausible patterns.
Given an integer threshold τ > 0, we call a pattern U ∈ Σk a τ -ghost in Z if and only
if FreqW (U) < τ but FreqZ(U) ≥ τ . Moreover, we seek to prevent τ -ghost occurrences
in Z by also bounding the total weight of the letter choices we make to replace the
occurrences of #. This is the MCSR problem. We show that already a restricted
version of the MCSR problem, namely, the version when k = 1, is NP-hard via the
Multiple Choice Knapsack (MCK) problem [295].

Theorem 31. The MCSR problem is NP-hard.

Based on this connection, we propose a non-trivial heuristic algorithm to attack the
MCSR problem for the general case of an arbitrary k.

We define the following problem for the MED setting.

155

Problem 3 (ETFS). Given W , k, S, and I, construct a string XED which is at
minimal edit distance from W and satisfies the following:

C1 XED does not contain any sensitive pattern.
P1 IW ≡ IXED , i.e., the t-chains IW and IXED are equivalent.
P2 FreqXED

(U) = FreqW (U), for all U ∈ Σk \ {W [i . . i+ k − 1] : i ∈ S}.

We show how to reduce any instance of the ETFS problem to some instance of the
approximate regular expression matching problem. In particular, the latter instance
consists of a string of length n (string W) and a regular expression E of length O(k|Σ|n).
We thus prove the claim of Theorem 32 by employing the O(|W | · |E|)-time algorithm
of [279].

Theorem 32. Let W be a string of length n over an alphabet Σ. Given k < n and S,
ETFS-ALGO solves Problem 3 in O(k|Σ|n2) time.

C.4 TFS-ALGO

We convert the input string W into a string X over alphabet Σ ∪ {#}, # /∈ Σ, by
reading the letters of W , from left to right, and appending them to X while enforcing
the following two rules:

R1: When the last letter of a sensitive substring U is read from W , we append # to X
(essentially replacing this last letter of U with #). Then, we append the succeeding
non-sensitive substring (in the t-predecessor order) after #.
R2: When the k − 1 letters before # are the same as the k − 1 letters after #, we
remove # and the k − 1 succeeding letters (inspect Fig. C.1).

R1 prevents U from occurring in X, and R2 reduces the length of X (i.e., allows to
hide sensitive patterns with fewer extra letters). Both rules leave unchanged the order
and frequencies of non-sensitive patterns. It is crucial to observe that applying the idea
behind R2 on more than k − 1 letters would decrease the frequency of some pattern,
while applying it on fewer than k − 1 letters would create new patterns. Thus, we need
to consider just R2 as-is.

Figure C.1: Sensitive patterns are underlined in red; non-sensitive patterns are overlined in
blue; X̃ is obtained by applying R1; and X by applying R1 and R2. In green we highlight an
overlap of k − 1 = 3 letters.

Let C be an array of size n that stores the occurrences of sensitive and non-sensitive
patterns: C[i] = 1 if i ∈ S and C[i] = 0 if i ∈ I. For technical reasons we set the last
k−1 values in C equal to C[n−k]; i.e., C[n−k+1] := . . . := C[n−1] := C[n−k]. Note
that C is constructible from S in O(n) time. Given C and k < n, TFS-ALGO efficiently

156

constructs X by implementing R1 and R2 concurrently as opposed to implementing
R1 and then R2 (see the proof of Lemma 51 for details of the workings of TFS-ALGO
and Fig. C.1 for an example). We next show that string X enjoys several properties.

Lemma 51. Let W be a string of length n over Σ. Given k < n and array C,
TFS-ALGO constructs the shortest string X such that the following hold:

(I) There exists no W [i . . i+ k − 1] with C[i] = 1 occurring in X (C1).

(II) IW ≡ IX , i.e., the order of substrings W [i . . i+k−1], for all i such that C[i] = 0,
is the same in W and in X; conversely, the order of all substrings U ∈ Σk of X
is the same in X and in W (P1).

(III) FreqX(U) = FreqW (U), for all U ∈ Σk \ {W [i . . i+ k − 1] : C[i] = 1} (P2).

(IV) The occurrences of letter # in X are at most bn−k+1
2 c and they are at least k

positions apart (P3).

(V) 0 ≤ |X| ≤ dn−k+1
2 e · k + bn−k+1

2 c and these bounds are tight (P4).

TFS-ALGO(W ∈ Σn, C, k,# /∈ Σ)

22 X ← ε; j ← |W |; `← 0;
44 j ← min{i|C[i] = 0}; /* j is the leftmost pos of a non-sens. pattern */

66 if j + k − 1 < |W | then /* Append the first non-sens. pattern to X */

88 X[0 . . k − 1]←W [j . . j + k − 1]; j ← j + k; `← `+ k;

1010 while j < |W | do /* Examine two consecutive patterns */

1212 p← j − k; c← p+ 1;
1414 if C[p] = C[c] = 0 then /* If both are non-sens., append the last letter of

the rightmost one to X */

1616 X[`]←W [j]; `← `+ 1; j ← j + 1;

1818 if C[p] = 0 ∧ C[c] = 1 then /* If the rightmost is sens., mark it and advance

j */

2020 f ← c; j ← j + 1;

2222 if C[p] = C[c] = 1 then j ← j + 1; /* If both are sens., advance j */

2424 if C[p] = 1 ∧ C[c] = 0 then /* If the leftmost is sens. and the rightmost is

not */

2626 if W [c . . c+ k − 2] = W [f . . f + k − 2] then /* If the last marked sens.

pattern and the current non-sens. overlap by k − 1, append the last letter of

the latter to X */

2828 X[`]←W [j]; `← `+ 1; j ← j + 1;

3030 else /* Else append # and the current non-sens. pattern to X */

3232 X[`]← #; `← `+ 1;
3434 X[` . . `+ k − 1]←W [j − k + 1 . . j]; `← `+ k; j ← j + 1;

3636 report X

157

Proof. C1: Index j in TFS-ALGO runs over the positions of string W ; at any moment
it indicates the ending position of the currently considered length-k substring of W .
When C[j − k + 1] = 1 (Lines 18-22 of the pseudocode) TFS-ALGO never appends
W [j], i.e., the last letter of a sensitive length-k substring, implying that, by construction
of C, no W [i . . i+ k − 1] with C[i] = 1 occurs in X.

P1: When C[j − k] = C[j − k + 1] = 0 (Lines 14-16) TFS-ALGO appends W [j]
to X, thus the order of W [j − k . . j − 1] and W [j − k + 1 . . j] is clearly preserved.
When C[j − k] = 0 and C[j − k + 1] = 1, index f stores the starting position on
W of the (k − 1)-length suffix of the last non-sensitive substring appended to X (see
also Fig. C.1). C1 ensures that no sensitive substring is added to X in this case, nor
when C[j − k] = C[j − k + 1] = 1. The next letter will thus be appended to X when
C[j − k] = 1 and C[j − k + 1] = 0 (Lines 24-34). The condition on Line 26 is satisfied
if and only if the last non-sensitive length-k substring appended to X overlaps with
the immediately succeeding non-sensitive one by k − 1 letters: in this case, the last
letter of the latter is appended to X by Line 28, clearly maintaining the order of the
two. Otherwise, Line 34 will append W [j − k + 1 . . j] to X, once again maintaining the
length-k substrings’ order. Conversely, by construction, any U ∈ Σk occurs in X only
if it equals a length-k non-sensitive substring of W . The only occasion when a letter
from W is appended to X more then once is when Line 34 is executed: it is easy to
see that in this case, because of the occurrence of #, each of the k − 1 repeated letters
creates exactly one U /∈ Σk, without introducing any new length-k string over Σ nor
increasing the occurrences of a previous one. Finally, Line 28 does not introduce any
new U ∈ Σk except for the one present in W , nor any extra occurrence of the latter,
because it is only executed when two consecutive non-sensitive length-k substrings of
W overlap exactly by k − 1 letters.

P2: It follows from the proof for C1 and P1.
P3: Letter # is added only by Line 32, which is executed only when C[j − k] = 1

and C[j − k + 1] = 0. This can be the case up to dn−k+1
2 e times as array C can have

alternate values only in the first n− k + 1 positions. By construction, X cannot start
with # (Lines 4-8), and thus the maximal number of occurrences of # is bn−k+1

2 c. By
construction, letter # in X is followed by at least k letters (Line 34): the leftmost
non-sensitive substring following a sequence of one or more occurrences of sensitive
substrings in W .

P4:Upper bound. TFS-ALGO increases the length of string X by more than one
letter only when letter # is added to X (Line 32). Every time Lines 32-34 are executed,
the length of X increases by k + 1 letters. Thus the length of X is maximized when
the maximal number of occurrences of # is attained. This length is thus bounded by
dn−k+1

2 e · k + bn−k+1
2 c.

Tightness. For the lower bound, let W = an and ak be sensitive. The condition at
Line 6 is not satisfied because no element in C is set to 0: j = n. Then the condition
on Line 10 is also not satisfied because j = n, and thus TFS-ALGO outputs the empty
string. A de Bruijn sequence of order k over an alphabet Σ is a string in which every
possible length-k string over Σ occurs exactly once as a substring. For the upper bound,
let W be the order-(k − 1) de Bruijn sequence over alphabet Σ, n − k be even, and
S = {1, 3, 5, . . . , n − k − 1}. C[0] = 0 and so Line 8 will add the first k letters of W
to X. Then observe that C[1] = 1, C[2] = 0;C[3] = 1, C[4] = 0, . . ., and so on; this

158

sequence of values corresponds to satisfying Lines 24 and 18 alternately. Line 18 does
not add any letter to X. The if statement on Line 26 will always fail because of the
de Bruijn sequence property. We thus have a sequence of the non-sensitive length-k
substrings of W interleaved by occurrences of # appended to X. TFS-ALGO thus
outputs a string of length dn−k+1

2 e · k + bn−k+1
2 c (see Example 28).

We finally prove that X has minimal length. Let Xj be the prefix of string X
obtained by processing W [0 . . j]. Let jmin = min{i|C[i] = 0}+ k − 1. We will proceed
by induction on j, claiming that Xj is the shortest string such that C1 and P1-P4
hold for W [0 . . j], ∀ jmin ≤ j ≤ |W | − 1. We call such a string optimal.

Base case: j = jmin. By Lines 6-8 of TFS-ALGO, Xj is equal to the first non-
sensitive length-k substring of W , and it is clearly the shortest string such that C1 and
P1-P4 hold for W [0 . . j].

Inductive hypothesis and step: Xj−1 is optimal for j > jmin. If C[j − k] = C[j −
k + 1] = 0, Xj = Xj−1W [j] and this is clearly optimal. If C[j − k + 1] = 1, Xj = Xj−1

thus still optimal. Finally, if C[j − k] = 1 and C[j − k + 1] = 0 we have two subcases:
if W [f . . f + k − 2] = W [j − k + 1 . . j − 1] then Xj = Xj−1W [j], and once again Xj is
evidently optimal. Otherwise, Xj = Xj−1#W [j − k + 1 . . j]. Suppose by contradiction
that there exists a shorter X ′j such that C1 and P1-P4 still hold: either drop # or
append less than k letters after #. If we appended less than k letters after #, since TFS-
ALGO will not read W [j] ever again, P2-P3 would be violated, as an occurrence of
W [j−k+1 . . j] would be missed. Without #, the last k letters of Xj−1W [j−k+1] would
violate either C1 or P1 and P2 (since we suppose W [f . . f +k−2] 6= W [j−k+ 1 . . j−1]).
Then Xj is optimal.

Example 28 (Illustration of P3). Let k = 4. We construct the order-3 de Bruijn
sequence W = baaabbbaba of length n = 10 over alphabet Σ = {a, b}, and choose
S = {1, 3, 5}. TFS-ALGO constructs:

X = baaa#aabb#bbba#baba.

The upper bound of dn−k+1
2 e · k + bn−k+1

2 c = 19 on the length of X is attained.

Let us now show the main result of this section.

Theorem 29. Let W be a string of length n over Σ = {1, . . . , nO(1)}. Given k < n
and S, TFS-ALGO solves Problem 1 in O(kn) time, which is worst-case optimal. An
O(n)-sized representation of X can be built in O(n) time.

Proof. For the first part inspect TFS-ALGO. Lines 4-8 can be realized in O(n) time.
The while loop in Line 10 is executed no more than n times, and every operation
inside the loop takes O(1) time except for Line 26 and Line 34 which take O(k) time.
Correctness and optimality follow directly from Lemma 51 (P4).

For the second part, we assume that X is represented by W and a sequence of
pointers [i, j] to W interleaved (if necessary) by occurrences of #. In Line 34, we can
use an interval [i, j] to represent the length-k substring of W added to X. In all other
lines (Lines 8, 16 and 28) we can use [i, i] as one letter is added to X per one letter of
W . By Lemma 51 we can have at most bn−k+1

2 c occurrences of letter #. The check
at Line 26 can be implemented in constant time after linear-time pre-processing of W

159

for longest common extension queries [113]. All other operations take in total linear
time in n. Thus there exists an O(n)-sized representation of X and it is constructible
in O(n) time.

C.5 PFS-ALGO

Lemma 51 tells us that X is the shortest string satisfying constraint C1 and properties
P1-P4. If we were to drop P1 and employ the partial order Π1 (see Problem 2), the
length of X = X1# . . .#XN would not always be minimal: if a permutation of the
strings X1, . . . , XN contains pairs Xi, Xj with a suffix-prefix overlap of length ` = k−1,
we may further apply R2, obtaining a shorter string.

To find such a permutation efficiently and construct from W a string Y shorter
than X, we propose PFS-ALGO. The crux of our algorithm is an efficient method
to solve a variant of the classic NP-complete Shortest Common Superstring (SCS)
problem [160]. Specifically, our algorithm: (I) Computes the string X using Theorem 29.
(II) Constructs a collection B′ of strings, each of two letters (two ranks); the first (resp.,
second) letter is the lexicographic rank of the length-` prefix (resp., suffix) of each
string in the collection B = {X1, . . . , XN}. (III) Computes a shortest string containing
every element in B′ as a distinct substring. (IV) Constructs Y by mapping back each
element to its distinct substring in B. If there are multiple possible shortest strings,
one is selected arbitrarily.

Example 29 (Illustration of the workings of PFS-ALGO). Let ` = k − 1 = 3 and

X = aabaa#aaacbcbbba#baabbacaab.

The collection B is comprised of the following substrings: X1 = aabaa, X2 =
aaacbcbbba, and X3 = baabbacaab. The collection B′ is comprised of the following
two-letter strings: 23, 14, 32. To construct B′, we first find the length-3 prefix and the
length-3 suffix of each Xi, i ∈ [1, 3], which leads to a collection {aab, baa, aaa, bba}.
Then, we sort the collection lexicographically to obtain {aaa, aab, baa, bba}, and last we
replace each Xi, i ∈ [1, 3], with the lexicographic ranks of its length-3 prefix and length-3
suffix. For instance, X1 is replaced by 23. After that, a shortest string containing all
elements of B′ as distinct substrings is computed as: 14 · 232. This shortest string is
mapped back to the solution Y = aaacbcbbba#aabaabbacaab. Note, Y contains one
occurrence of # and has length 23, while X contains 2 occurrences of # and has length
27.

We now present the details of PFS-ALGO. We first introduce the Fixed-Overlap
Shortest String with Multiplicities (FO-SSM) problem: Given a collection B of strings
B1, . . . , B|B| and an integer `, with |Bi| > `, for all 1 ≤ i ≤ |B|, FO-SSM seeks to find a
shortest string containing each element of B as a distinct substring using the following
operations on any pair of strings Bi, Bj :

(I) concat(Bi, Bj) = Bi ·Bj ;

(II) `-merge(Bi, Bj) = Bi[0 . . |Bi| − 1− `]Bj [0 . . |Bj | − 1] = Bi[0 . . |Bi| − 1− `] ·Bj .

160

Any solution to FO-SSM with ` := k− 1 and B := X1, . . . , XN implies a solution to
the PFS problem, because |Xi| > k − 1 for all i’s (see Lemma 51, P3)

The FO-SSM problem is a variant of the SCS problem. In the SCS problem, we are
given a set of strings and we are asked to compute the shortest common superstring
of the elements of this set. The SCS problem is known to be NP-complete, even for
binary strings [160]. However, if all strings are of length two, the SCS problem admits a
linear-time solution [160]. We exploit this crucial detail positively to show a linear-time
solution to the FO-SSM problem in Lemma 53. In order to arrive to this result, we first
adapt the SCS linear-time solution of [160] to our needs (see Lemma 52) and plug this
solution into Lemma 53.

Lemma 52. Let Q be a collection of q strings, each of length two, over an alphabet
Σ = {1, . . . , (2q)O(1)}. We can compute a shortest string containing every element of Q
as a distinct substring in O(q) time.

Proof. We sort the elements of Q lexicographically in O(q) time using radixsort. We
also replace every letter in these strings with their lexicographic rank from {1, . . . , 2q}
in O(q) time using radixsort. In O(q) time we construct the de Bruijn multigraph G
of these strings [89]. Within the same time complexity, we find all nodes v in G with
in-degree, denoted by IN(v), smaller than out-degree, denoted by OUT(v). We perform
the following two steps:

Step 1 While there exists a node v in G with IN(v) < OUT(v), we start an arbitrary
path (with possibly repeated nodes) from v, traverse consecutive edges and delete them.
Each time we delete an edge, we update the in- and out-degree of the affected nodes.
We stop traversing edges when a node v′ with OUT(v′) = 0 is reached: whenever
IN(v′) = OUT(v′) = 0, we also delete v′ from G. Then, we add the traversed path
p = v . . . v′ to a set P of paths. The path can contain the same node v more than once.
If G is empty we halt. Proceeding this way, there are no two elements p1 and p2 in P
such that p1 starts with v and p2 ends with v; thus this path decomposition is minimal.
If G is not empty at the end, by construction, it consists of only cycles.

Step 2 While G is not empty, we perform the following. If there exists a cycle c that
intersects with any path p in P, we splice c into p, update p with the result of splicing,
and delete c from G. This operation can be efficiently implemented by maintaining
an array A of size 2q of linked lists over the paths in P: A[α] stores a list of pointers
to all occurrences of letter α in the elements of P. Thus in constant time per node of
c we check if any such path p exists in P and splice the two in this case. If no such
path exists in P, we add to P any of the path-linearizations of the cycle, and delete
the cycle from G. After each change to P, we update A and delete every node u with
IN(u) = OUT(u) = 0 from G.

The correctness of this algorithm follows from the fact that P is a minimal path
decomposition of G. Thus any concatenation of paths in P represents a shortest string
containing all elements in Q as distinct substrings.

Lemma 53. Let B be a collection of strings over an alphabet Σ = {1, . . . , ||B||O(1)}.
Given an integer `, the FO-SSM problem for B can be solved in O(||B||) time.

161

Proof. Consider the following renaming technique. Each length-` substring of the
collection is assigned a lexicographic rank from the range {1, . . . , ||B||}. Each string in
B is converted to a two-letter string as follows. The first letter is the lexicographic
rank of its length-` prefix and the second letter is the lexicographic rank of its length-`
suffix. We thus obtain a new collection B′ of two-letter strings. Computing the ranks
for all length-` substrings in B can be implemented in O(||B||) time by employing
radixsort to sort Σ and then the well-known LCP data structure over the concatenation
of strings in B [113]. The FO-SSM problem is thus solved by finding a shortest string
containing every element of B′ as a distinct substring. Since B′ consists of two-letter
strings only, we can solve the problem in O(|B′|) time by applying Lemma 52. The
statement follows.

Thus, PFS-ALGO applies Lemma 53 on B := X1, . . . , XN with ` := k − 1 (recall
that X1# . . .#XN = X). Note that each time the concat operation is performed, it
also places the letter # in between the two strings.

Lemma 54. Let W be a string of length n over an alphabet Σ. Given k < n and array
C, PFS-ALGO constructs a shortest string Y with C1, Π1, and P2-P4.

Proof. C1 and P2 hold trivially for Y as no length-k substring over Σ is added or
removed from X. Let X = X1# . . .#XN . The order of non-sensitive length-k substrings
within Xi, for all i ∈ [1, N], is preserved in Y . Thus there exists an injective function f
from the p-chains of IW to the p-chains of IY such that f(JW) ≡ JW for any p-chain
JW of IW (Π1 is preserved). P3 also holds trivially for Y as no occurrence of #
is added. Since |Y | ≤ |X|, for P4, it suffices to note that the construction of W in
the proof of tightness in Lemma 51 (see also Example 28) ensures that there is no
suffix-prefix overlap of length k− 1 between any pair of length-k substrings of Y over Σ
due to the property of the order-(k − 1) de Bruijn sequence. Thus the upper bound of
dn−k+1

2 e · k + bn−k+1
2 c on the length of X is also tight for Y .

The minimality on the length of Y follows from the minimality of |X| and the
correctness of Lemma 53 that computes a shortest such string.

Let us now show the main result of this section.

Theorem 30. Let W be a string of length n over Σ = {1, . . . , nO(1)}. Given k < n
and S, PFS-ALGO solves Problem 2 in the optimal O(n+ |Y |) time.

Proof. We compute the O(n)-sized representation of string X with respect to W
described in the proof of Theorem 29. This can be done in O(n) time. If X ∈ Σ∗,
then we construct and return Y := X in time O(|Y |) from the representation. If
X ∈ (Σ ∪ {#})∗, implying |Y | ≤ |X|, we compute the LCP data structure of string
W in O(n) time [113]; and implement Lemma 53 in O(n) time by avoiding to read
string X explicitly: we rather rename X1, . . . , XN to a collection of two-letter strings
by employing the LCP information of W directly. We then construct and report Y in
time O(|Y |). Correctness follows directly from Lemma 54.

162

C.6 MCSR Problem, MCSR-ALGO, and Implausi-
ble Pattern Elimination

In the following, we introduce the MCSR problem and prove that it is NP-hard (see
Section C.6.1). Then, we introduce MCSR-ALGO, a heuristic to address this problem
(see Section C.6.2). Finally, we discuss how to configure MCSR-ALGO in order to
eliminate implausible patterns (see Section C.6.3).

C.6.1 The MCSR Problem

The strings X and Y , constructed by TFS-ALGO and PFS-ALGO, respectively, may
contain the separator #, which reveals information about the location of the sensitive
patterns in W . Specifically, a malicious data recipient can go to the position of a #
in X and “undo” Rule R1 that has been applied by TFS-ALGO, removing # and
the k − 1 letters after # from X. The result could be an occurrence of the sensitive
pattern. For example, applying this process to the first # in X shown in Figure C.1
results in recovering the sensitive pattern abab. A similar attack is possible on the
string Y produced by PFS-ALGO, although it is hampered by the fact that substrings
within two consecutive #s in X often swap places in Y .

To address this issue, we seek to construct a new string Z, in which #s are either
deleted or replaced by letters from Σ. To preserve data utility, we favor separator
replacements that have a small cost in terms of occurrences of τ -ghosts (patterns with
frequency less than τ in W and at least τ in Z) and incur a level of distortion bounded
by a parameter θ in Z. The cost of an occurrence of a τ -ghost at a certain position is
given by function Ghost, while function Sub assigns a distortion weight to each letter
that could replace a #. Both functions will be described in further detail below.

To preserve privacy, we require separator replacements not to reinstate sensitive
patterns. This is the MCSR problem, a restricted version of which is presented in
Problem 4. The restricted version is referred to as MCSRk=1 and differs from MCSR in
that it uses k = 1 for the pattern length instead of an arbitrary value k > 0. MCSRk=1

is presented next for simplicity and because it is used in the proof of Lemma 55. Lemma
55 implies Theorem 31.

Problem 4 (MCSRk=1). Given a string Y over an alphabet Σ ∪ {#} with δ > 0
occurrences of letter #, and parameters τ and θ, construct a new string Z by substituting
the δ occurrences of # in Y with letters from Σ, such that:

(I)
∑

i:Y [i]=#, FreqY (Z[i])<τ
FreqZ(Z[i])≥τ

Ghost(i, Z[i]) is minimum, and (II)
∑

i:Y [i]=#

Sub(i, Z[i]) ≤ θ.

Lemma 55. The MCSRk=1 problem is NP-hard.

Proof. We reduce the NP-hard Multiple Choice Knapsack (MCK) problem [326] to
MCSRk=1 in polynomial time. In MCK, we are given a set of elements subdivided
into δ mutually exclusive classes, C1, . . . , Cδ, and a knapsack. Each class Ci has |Ci|
elements. Each element j ∈ Ci has an arbitrary cost cij ≥ 0 and an arbitrary weight

163

wij . The goal is to minimize the total cost (Eq. C.1) by filling the knapsack with one
element from each class (constraint II), such that the weights of the elements in the
knapsack satisfy constraint I, where constant b ≥ 0 represents the minimum allowable
total weight of the elements in the knapsack:

min
∑
i∈[1,δ]

∑
j∈Ci

cij · xij (C.1)

subject to the constraints: (I)
∑
i∈[1,δ]

∑
j∈Ci wij · xij ≥ b, (II)

∑
j∈Ci xij = 1, i =

1, . . . δ, and (III) xij ∈ {0, 1}, i = 1, . . . , δ, j ∈ Ci.
The variable xij takes value 1 if the element j is chosen from class Ci, 0 otherwise

(constraint III). We reduce any instance IMCK to an instance IMCSRk=1
in polynomial

time, as follows:

(I) Alphabet Σ consists of letters αij , for each j ∈ Ci and each class Ci, i ∈ [1, δ].

(II) We set Y = α11α12 . . . α1|C1|# . . .#αδ1αδ2 . . . αδ|Cδ|#. Every element of Σ occurs
exactly once: FreqY (αij) = 1. Letter # occurs δ times in Y . For convenience, let
us denote by µ(i) the ith occurrence of # in Y .

(III) We set τ = 2 and θ = δ − b.

(IV) Ghost(µ(i), αij) = cij and Sub(µ(i), αij) = 1− wij . The functions are otherwise
not defined.

This is clearly a polynomial-time reduction. We now prove the correspondence
between a solution SIMCK to the given instance IMCK and a solution SIMCSRk=1

to the
instance IMCSRk=1

.
We first show that if SIMCK

is a solution to IMCK, then SIMCSRk=1
is a solution

to IMCSRk=1
. Since the elements in SIMCK

have minimum
∑
i∈[1,δ]

∑
j∈Ci cij · xij ,

FreqY (αij) = 1, and τ = 2, the letters α1, . . . , αδ corresponding to the selected elements
lead to a Z that incurs a minimum∑

i∈[1,δ]

∑
j=µ(i):FreqY (Z[j])<τ

FreqZ(Z[j])≥τ

Ghost(j, Z[j]). (C.2)

In addition, each letter Z[j] that is considered by the inner sum of Eq. C.2
corresponds to a single occurrence of #, and these are all the occurrences of #. Thus
we obtain that

∑
i∈[1,δ]

∑
j=µ(i):FreqY (Z[j])<τ

FreqZ(Z[j])≥τ

Ghost(j, Z[j]) =
∑

i:Y [i]=#, FreqY (Z[i])<τ
FreqZ(Z[i])≥τ

Ghost(i, Z[i]) (C.3)

(i.e., condition I in Problem 4 is satisfied). Since the elements in SIMCK have total
weight

∑
i∈[1,δ]

∑
j∈Ci wij ·xij ≥ b, the letters α1, . . . , αδ, they map to, lead to a Z with∑

i∈[1,δ]

∑
j∈Ci(1− Sub(µ(i), αi)) · xij ≥ δ − θ, which implies

164

∑
i∈[1,δ]

∑
j∈Ci

Sub(µ(i), αij) · xij =
∑

i:Y [i]=#

Sub(i, Z[i]) ≤ θ (C.4)

(i.e., condition II in Problem 4 is satisfied). SIMCSRk=1
is thus a solution to IMCSRk=1

.
We finally show that, if SIMCSRk=1

is a solution to IMCSRk=1
, then SIMCK

is a
solution to IMCK. Since each #i, i ∈ [1, δ], is replaced by a single letter αi in SIMCSRk=1

,
exactly one element will be selected from each class Ci (i.e., conditions II-III of MCK
are satisfied). Since the letters in SIMCSRk=1

satisfy condition I of Problem 4, every
element of Σ occurs exactly once in Y , and τ = 2, their corresponding selected
elements j1 ∈ C1, . . . , jδ ∈ Cδ will have a minimum total cost. Since SIMCSRk=1

satisfies∑
i:Y [i]=# Sub(i, Z[i]) =

∑
i∈[1,δ]

∑
j∈Ci Sub(µ(i), αij) · xij ≤ θ, the selected elements

j1 ∈ C1, . . . , jδ ∈ Cδ that correspond to α1 . . . , αδ will satisfy
∑
i∈[1,δ]

∑
j∈Ci(1− wij) ·

xij ≤ δ − b, which implies
∑
i∈[1,δ]

∑
j∈Ci wij · xij ≥ b (i.e., condition I of MCK is

satisfied). Therefore, SIMCK
is a solution to IMCK. The statement follows.

Lemma 55 implies the main result of this section.

Theorem 31. The MCSR problem is NP-hard.

The cost of τ -ghosts is captured by a function Ghost. This function assigns a cost to
an occurrence of a τ -ghost, which is caused by a separator replacement at position i, and
is specified based on domain knowledge. For example, with a cost equal to 1 for each
gained occurrence of each τ -ghost, we penalize more heavily a τ -ghost with frequency
much below τ in Y and the penalty increases with the number of gained occurrences.
Moreover, we may want to penalize positions towards the end of a temporally ordered
string, to avoid spurious patterns that would be deemed important in applications based
on time-decaying models [111].

The replacement distortion is captured by a function Sub which assigns a weight
to a letter that could replace a # and is specified based on domain knowledge. The
maximum allowable replacement distortion is θ. Small weights favor the replacement
of separators with desirable letters (e.g., letters that reinstate non-sensitive frequent
patterns) and letters that reinstate sensitive patterns are assigned a weight larger than
θ that prohibits them from replacing a #. As will be explained in Section C.6.3, weights
larger than θ are also assigned to letters which would lead to implausible substrings
[187] if they replaced #s.

C.6.2 MCSR-ALGO

We next present MCSR-ALGO, a non-trivial heuristic that exploits the connection
of the MCSR and MCK [295] problems. We start with a high-level description of
MCSR-ALGO:

(I) Construct the set of all candidate τ -ghost patterns (i.e., length-k strings over Σ
with frequency below τ in Y that can have frequency at least τ in Z).

165

(II) Create an instance of MCK from an instance of MCSR. For this, we map the
ith occurrence of # to a class Ci in MCK and each possible replacement of the
occurrence with a letter j to a different item in Ci. Specifically, we consider all
possible replacements with letters in Σ and also a replacement with the empty
string, which models deleting (instead of replacing) the ith occurrence of #. In
addition, we set the costs and weights that are input to MCK as follows. The cost
for replacing the ith occurrence of # with the letter j is set to the sum of the
Ghost function for all candidate τ -ghost patterns when the ith occurrence of # is
replaced by j. That is, we make the worst-case assumption that the replacement
forces all candidate τ -ghosts to become τ -ghosts in Z. The weight for replacing
the ith occurrence of # with letter j is set to Sub(i, j).

(III) Solve the instance of MCK and translate the solution back to a (possibly subopti-
mal) solution of the MCSR problem. For this, we replace the ith occurrence of
with the letter corresponding to the element chosen by the MCK algorithm
from class Ci, and similarly for each other occurrence of #. If the instance
has no solution (i.e., no possible replacement can hide the sensitive patterns),
MCSR-ALGO reports that Z cannot be constructed and terminates.

Lemma 56 below states the running time of an efficient implementation of MCSR-
ALGO.

Lemma 56. MCSR-ALGO runs in O(|Y |+ kδσ+ T (δ, σ)) time, where T (δ, σ) is the
running time of the MCK algorithm for δ classes with σ + 1 elements each.

Proof. It should be clear that if we conceptually extend Σ with the empty string,
our approach takes into account the possibility of deleting (instead of replacing) an
occurrence of #. To ease comprehension though we only describe the case of letter
replacements.

Step 1 Given Y , Σ, k, δ, and τ , we construct a set C of candidate τ -ghosts as follows.
The candidates are at most (|Y | − k + 1− kδ) + (kδσ) = O(|Y |+ kσδ) distinct strings
of length k. The first term corresponds to all substrings of length k over Σ occurring
in Y (i.e., if Y did not contain #, we would have |Y | − k + 1 such substrings; each
of the δ # causes the loss of k such substrings). The second term corresponds to all
possible substrings of length k that may be introduced in Z but do not occur in Y . For
any string U from the set of these O(|Y |+ kδσ) strings, we want to compute FreqY (U)
and its maximal frequency in Z, denoted by max FreqZ(U), i.e., the largest possible
frequency that U can have in Z, to construct set C. Let Sij denote the string of length
2k − 1, containing the k consecutive length-k substrings, obtained after replacing the
ith occurrence of # with letter j in Y .

(I) If FreqY (U) ≥ τ , U by definition can never become τ -ghost in Z, and we thus
exclude it from C. FreqY (U), for all U occurring in Y , can be computed in O(|Y |)
total time using the suffix tree of Y [113].

(II) If max FreqZ(U) < τ , U by definition can never become τ -ghost in Z, and we thus
exclude it from C. max FreqZ(U) can be computed by adding to FreqY (U) the

166

maximum additional number of occurrences of U caused by a letter replacement
among all possible letter replacements. We sum up this quantity for each U and
for all replacements of occurrences of # to obtain max FreqZ(U). To do this, we
first build the generalized suffix tree of Y, S11, . . . , Sδσ in O(|Y |+ kδσ) time [113].
We then spell Si1, . . . , Siσ, for all i, in the generalized suffix tree in O(kσ) time
per i. We exploit suffix links to spell the length-k substrings of Sij in O(k) time
and memorize the maximum number of occurrences of U caused by replacing the
ith occurrence of # among all j. We represent set C on the generalized suffix tree
by marking the corresponding nodes, and we denote this representation by T (C).
The total size of this representation is O(|Y |+ kσδ).

Step 2 We now want to construct an instance of the MCK problem using T (C). We
first set letter j as element αij of class Ci. We then set cij equal to the sum of the
Ghost function cost incurred by replacing the ith occurrence of # by letter j for all (at
most k) affected length-k substrings that are marked in T (C). The main assumption
of our heuristic is precisely the fact that we assume that this letter replacement will
force all of these affected length-k substrings becoming τ -ghosts in Z. The computation
of cij is done as follows. For each (i, j), i ∈ [1, δ] and j ∈ [1, σ], we have k substrings
whose frequency changes, each of length k. Let U be one such pattern occurring at
position t of Z, where µ(i)− k + 1 ≤ t ≤ µ(i) and µ(i) is the ith occurrence of # in Y .
We check if U is marked in T (C) or not. If U is not marked we add nothing to cij . If
U is marked, we increment cij by Ghost(t, U). We also set wij = Sub(i, j) (as stated
above, any letter that reinstates a sensitive pattern is assigned a weight Sub > θ, so
that it cannot be selected to replace an occurrence of # in Step 3). Similar to Step 1,
the total time required for this computation is O(|Y |+ kδσ).

Step 3 In Step 2, we have computed cij and wij , for all i, j, i ∈ [1, δ] and j ∈ [1, σ].
We thus have an instance of the MCK problem. We solve it and translate the solution
back to a (suboptimal) solution of the MCSR problem: the element αij chosen by the
MCK algorithm from class Ci corresponds to letter j and it is used to replace the ith
occurrence of #, for all i ∈ [1, δ]. The cost of solving MCK depends on the chosen
algorithm and is given by a function T (δ, σ).

Thus, the total cost of MCSR-ALGO is O(|Y |+ kδσ + T (δ, σ)).

C.6.3 Eliminating Implausible Patterns

We present the notion of implausible substring and explain how we can ensure that
implausible patterns do not occur in Z, as a result of applying the MCSR-ALGO
algorithm to string Y .

Consider, for instance, an input string Y = . . . a#c . . . that models the movement
of an individual, and the string abc, which is created as a substring of Z when we
replace # with b. Consider further that an individual can, generally, not go from a to
c through b, or that it is highly unlikely for them to do so. We call a substring such as
abc implausible. Clearly, if abc occurs in Z, it may be possible for an attacker to infer
that b replaced #, and then infer a sensitive pattern by “undoing” R1 as explained in
Section C.6.1. In order to effectively model this scenario, we define implausible patterns

167

based on a statistical significance measure for strings [77, 308, 25]. The measure is
defined as follows [77]:

zW (U) =
FreqW (U)− EW [U]

max(
√
EW [U], 1)

,

where U is a string with |U | > 2, W is the reference string, and

EW [U] =

{
FreqW (U [0. .|U |−2])·FreqW (U [1. .|U |−1])

FreqW (U [1. .|U |−2]) , FreqW (U [1 . . |U | − 2]) > 0

0, otherwise

is the expected frequency of U in W , computed based on an independence assumption
between the event “U [0 . . |U | − 1] occurs in W” and “U [1 . . |U | − 1] occurs in W”.
The measure zW is a normalized version of the standard score of U , based on the fact
that the variance VarW [U] ≈

√
EW [U] [308]. A small zW (U) indicates that U occurs

less likely than expected, and hence it can naturally be considered as an artefact of
sanitization.

Given a user-defined threshold ρ < 0, we define a string U as ρ-implausible if
zW (U) < ρ. The set of ρ-implausible substrings of W can be computed in the optimal
O(|Σ| · |W |) time [25]. We use W as the reference string, assuming that it is a good
representation of the domain; e.g., a trip (substring) that is ρ-implausible in W is also
implausible in general. Alternatively, one could use any other string as reference, impose
length constraints on implausible patterns [255, 342], or even directly specify substrings
that should not occur in Z based on domain knowledge.

Given the set U of (ρ-)implausible patterns, we ensure that no # replacement creates
U = U1αU2 ∈ U in Z, where α is the letter that replaces #, by assigning a weight
Sub(i, Z[i]) > θ, for each Z[i] such that Y [i] = # and U1 ·Z[i] ·U2 ∈ U . This guarantees
that no replacement leading to an artefact occurrence of an element of U is performed
by MCSR-ALGO. Note, however, that a ρ-implausible pattern may occur in Z as
a substring, either because it occurred in a part of W that was copied to Z (e.g., a
non-sensitive pattern), or due to the change of frequency of some substrings that are
created in Z after the replacement of a #. However, since such ρ-implausible patterns
did not contain a # in the first place, they cannot be exploited by an attacker seeking
to reverse the construction of Z.

C.7 ETFS-ALGO

Let U and V be two non-sensitive length-k substrings of W such that U is the t-
predecessor of V . Since U and V must occur in the same order in the solution string
XED, the main choice we have to make in order to solve the ETFS problem is whether
to:

(I) “merge” U and V when the length-(k−1) suffix of U and the length-(k−1) prefix
of V match; or

(II) “interleave” U and V with a carefully selected string over Σ ∪ {#}.

168

Among operations I and II, for every such pair U and V , we must select the operation
that globally results in the smallest number of edit operations. Operations I and II can
naturally be expressed by means of a regular expression E. In particular, this implies
that any instance of the ETFS problem can be reduced to an instance of approximate
regular expression matching and thus an algorithm for approximate regular expression
matching between E and W [279] can be employed. More formally, given a string W
and a regular expression E, the approximate regular expression matching problem is to
find a string T that matches E with minimal dE(W,T). The following result is known.

Theorem 33 ([279]). Given a string W and a regular expression E, the approximate
regular expression matching problem can be solved in O(|W | · |E|) time.

In the following, we define a specific type of a regular expression E. Let us first
define the following regular expression:

Σ<k = ((a1|a2| . . . |a|Σ||ε) . . . (a1|a2| . . . |a|Σ||ε)︸ ︷︷ ︸
k − 1 times

),

where Σ = {a1, a2, . . . , a|Σ|} is the alphabet of W and k > 1. We also define the
following regular-expression gadgets, for a letter # /∈ Σ:

⊕ = #(Σ<k#)∗, 	 = (Σ<k#)∗, ⊗ = (#Σ<k)∗.

Intuitively, the gadget ⊕ represents a string we may choose to include in the output
in an effort to minimize the edit distance between W and the solution string XED. It
should be clear that the length of ⊕ is in O(k|Σ|) and that ⊕ cannot generate any
length-k substring over Σ. Furthermore, inserting ⊕ in E cannot create any sensitive or
non-sensitive pattern due to the occurrences of # on both ends of ⊕. The gadgets 	 and
⊗ are similar to ⊕. They are added in the beginning and at the end of E, respectively.
This is because E should not start or end with # as this would only increase the edit
distance to W . As it will be explained later, to construct E, we also make use of the |
operator. Intuitively, the | operator represents the choice we make between operation
“merge” or “interleave”.

We are now in a position to describe ETFS-ALGO, an algorithm for solving the
ETFS problem. ETFS-ALGO starts by constructing E. Let (N1, N2 . . . , N|I|) be the
sequence of non-sensitive length-k substrings as they occur in W from left to right. We
first set E = 	N1 and then process the pairs of non-sensitive length-k substrings Ni and
Ni+1, for all i ∈ {1, |I| − 1}. At the ith step, we examine whether or not Ni and Ni+1

can be merged. If they can, we append to E a regular expression (A| ⊕Ni+1), where A
is obtained by chopping-off the length-(k − 1) prefix of Ni+1 (that is, the remainder of
Ni+1 after merging it with Ni). Otherwise, we append ⊕Ni+1 to E. Intuitively, using A
corresponds to choosing “merge” and ⊕Ni+1 to choosing “interleave”. After examining
each pair Ni and Ni+1, we append ⊗ to E. This concludes the construction of E. Note
how, for any combination of choices, Ni+1 will always appear in the string obtained.

Next, ETFS-ALGO employs Theorem 33 to construct XED. In particular, it finds
a string T that matches E with minimal dE(W,T). Last, it sets XED = T . We arrive
at the main result of this section.

169

Theorem 32. Let W be a string of length n over an alphabet Σ. Given k < n and S,
ETFS-ALGO solves Problem 3 in O(k|Σ|n2) time.

Proof. Constructing E can be done in O(n+ kn+ |E|) = O(k|Σ|n) time, since: (I) The
non-sensitive length-k substrings of W can be obtained in O(n) time, by reading W
from left to right and checking S. (II) Checking whether Ni and Ni+1 are mergeable
takes O(k) time via letter comparisons, and it is performed in each of the O(n) steps.
(III) The length is |E| = O(kn + k|Σ|n) = O(k|Σ|n). This is because E contains at
most n occurrences of non-sensitive length-k substrings, at most n occurrences of ⊕,
and one occurrence of each of 	 and ⊗ and because the lengths of ⊕, 	 and ⊗ are
O(k|Σ|).

Computing T from W and E can be performed in O(|W | · |E|) = O(n · |E|) time
using Theorem 33. Thus ETFS-ALGO takes O(k|Σ|n2) time in total.

The correctness of ETFS-ALGO follows from the fact that by construction: (I)
T does not contain any sensitive pattern, so C1 is satisfied; (II) T satisfies P1 and
P2 as no length-k substring over Σ (other than the non-sensitive ones) is inserted in
E; (III) All strings satisfying C1, P1 and P2 can be obtained by E, since they must
have the same t-chain of non-sensitive patterns over Σ∗ as W , interleaved by length-k
substrings that are on (Σ∪#)∗ but not on Σ∗; and (IV) the minimality on edit distance
is guaranteed by Theorem 33. The statement follows.

A factor of |Σ| can be shaved from O(k|Σ|n2) via dynamic programming [56], albeit
it seems unlikely to yield a strongly subquadratic time bound [38]. In any case, as
our experiments show, TFS-ALGO, which runs in O(kn) time, outputs optimal or
near-optimal solutions in practice.

Example 30 (Illustration of the workings of ETFS-ALGO). Let W = aaabbaabaccbbb,
k = 4, and the set of sensitive patterns be {aabb, abba, bbaa, baab, ccbb}. The sequence
of non-sensitive patterns is thus (N1, . . . , N6) = (aaab, aaba, abac, bacc, accb, cbbb).
Given that k = 4 and Σ = {a, b, c}, ETFS-ALGO constructs the following gadgets,

⊕ = #(Σ<4#)∗ = #(((a|b|c|ε)(a|b|c|ε)(a|b|c|ε))#)∗

	 = (Σ<4#)∗ = (((a|b|c|ε)(a|b|c|ε)(a|b|c|ε))#)∗

⊗ = (#Σ<4)∗ = (#((a|b|c|ε)(a|b|c|ε)(a|b|c|ε)))∗

and sets E = 	N1 = 	aaab. Then, it iterates over each pair of consecutive non-
sensitive length-k substrings in the order they appear in W (i.e., pair (Ni, Ni+1) is
considered in Step i ∈ [1, 5]) and the regular expression E is updated, as detailed below.

In Step 1, ETFS-ALGO considers the pair (N1, N2) = (aaab, aaba). Observe
that in this case N1 and N2 can be merged, since the length-3 suffix of N1 and the
length-3 prefix of N2 match. Thus, (A|N2) = (a| ⊕ aaba) is appended to E. Recall that
when merging, we chop off the length-(k − 1) prefix of Ni+1 = N2 (because we have
merged it already) and write down what is left of N2 (a in this case) before |. Thus,
E = 	aaab(a| ⊕ aaba).

In Step 2, ETFS-ALGO considers (N2, N3) = (aaba, abac). Again, N2 and N3

can be merged. Thus, (c| ⊕ abac) is appended into E, which leads to E = 	aaab(a| ⊕
aaba)(c| ⊕ abac).

170

In Steps 3 and 4, ETFS-ALGO considers the pairs (N3, N4) = (abac, bacc) and
(N4, N5) = (bacc, accb), respectively. Since the patterns in each pair can be merged,
the algorithm appends into E the regular expression (c| ⊕ bacc) and (b| ⊕ accb), for the
first and second pair, respectively. This leads to E = 	aaab(a| ⊕ aaba)(c| ⊕ abac)(c| ⊕
bacc)(b| ⊕ accb).

In Step 5, ETFS-ALGO considers the last pair (N5, N6) = (accb, cbbb), which
cannot be merged, and appends ⊕cccb to E. Since there is no other pair to be considered,
⊗ is also appended to E, leading to:

E = 	aaab(a|⊕aaba)(c| ⊕ abac)(c| ⊕ bacc)(b| ⊕ accb)⊕cbbb⊗ .

At this point, ETFS-ALGO employs Theorem 33 to find the following string T that
matches E (the choices that were made in the construction of T are underlined in E
and 	, ⊕, ⊗ are matched by the empty string):

T = aaab#aabaccb#cbbb,

with minimal dE(T,W) = 4. Last, ETFS-ALGO returns XED = T .

Note that XED = T in Example 30 does not contain any sensitive pattern and
that all non-sensitive patterns of W appear in T in the same order and with the same
frequency as they appear in W . Note also that, for the same instance, TFS-ALGO
would return string X =aaabaccb#cbbb with dE(W,X) = 5 > dE(W,XED) = 4 and
|X| = 13 < |XED| = 17.

C.8 Experimental Evaluation

We evaluate our algorithms in terms of effectiveness and efficiency. Effectiveness is
measured based on data utility and number of implausible patterns. Efficiency is
measured based on runtime.

Evaluated Algorithms First, we consider the pipeline TFS-ALGO→ PFS-ALGO→
MCSR-ALGO, referred to as TPM. Given a string W over Σ, TPM sanitizes W by
applying TFS-ALGO, PFS-ALGO, and then MCSR-ALGO. MCSR-ALGO uses
the O(δσθ)-time algorithm of [295] for solving the MCK instances. The final output is
a string Z over Σ. MCSR-ALGO is configured with an empty set U (i.e., it may lead
to implausible patterns that are created in Z after the replacement of a #).

Among the related works discussed in Section C.2.1, we compared TPM against the
PH heuristic [187]. This is because we found PH to be the closest to our setting, and,
moreover, because it outperforms other related sequence sanitization methods [13, 172]
(see Section C.2.1 for details). We also compared TPM against a greedy baseline
referred to as BA, in terms of data utility and efficiency. BA initializes its output
string ZBA to W and then considers each sensitive pattern R in ZBA, from left to right.
For each R, BA replaces the letter r of R that has the largest frequency in ZBA with
another letter r′ that is not contained in R and has the smallest frequency in ZBA,
breaking all ties arbitrarily. Note that this letter replacement should not introduce any
other sensitive pattern in ZBA. If no such r′ exists, r is replaced by # to ensure that a

171

solution is produced (even if it may reveal the location of a sensitive pattern). Each
replacement removes the occurrence of R and aims to prevent τ -ghost occurrences by
selecting an r′ that will not substantially increase the frequency of patterns overlapping
with R. Note that BA does not preserve the frequency of non-sensitive patterns, and
thus, unlike TPM, it can incur τ -lost patterns. We also implemented a similar baseline
that replaces the letter in R that has the smallest frequency in ZBA with another letter
that is not contained in R and has the largest frequency in ZBA, but omit its results as
it was worse than BA.

In addition, we consider the pipelines TFS-ALGO→MCSR-ALGO and TFS-
ALGO→MCSRI-ALGO, referred to as TM and TMI, respectively. With MCSRI-
ALGO we refer to the configuration of MCSR in which there is a non-empty set U
of ρ-implausible patterns that must not occur in the output string Z. We omit PFS-
ALGO from the TM and TMI pipelines to avoid the elimination of some implausible
patterns due to re-ordering of blocks of non-sensitive patterns that is performed by
PFS-ALGO.

Last, we consider ETFS-ALGO, which we compare to TFS-ALGO, to demonstrate
that the latter is a very effective heuristic for the ETFS problem.

Experimental Data We considered the following publicly available datasets used
in [13, 172, 187, 256, 55]: Oldenburg (OLD), Trucks (TRU), MSNBC (MSN), the
complete genome of Escherichia coli (DNA), and synthetic data (uniformly random
strings, the largest of which is referred to as SYN). See Table F.1 for the characteristics
of these datasets and the parameter values used in experiments, unless stated otherwise.

Dataset Domain Length |Σ| # sensitive # sensitive Pattern Implaus. pat.
n patterns positions |S| length k threshold ρ

OLD Movement 85,563 100 [30, 240] (60) [600, 6103] [3, 7] (4) [−2,−0.1] (−1)
TRU Transport. 5,763 100 [30, 120] (10) [324, 2410] [2, 5] (4) [−3,−0.1] (−4)
MSN Web 4,698,764 17 [30, 120] (60) [6030, 320480] [3, 8] (4) [−6,−3] (−1)
DNA Genomic 4,641,652 4 [25, 500] (100) [163, 3488] [5, 15] (13) [−4.5,−2.5] (−2.5)
SYN Synthetic 20,000,000 10 [10, 1000] (1000) [10724, 20171] [3, 6] (6)

SYNbin Synthetic 1,000 2 [4, 32] (16) [16, 128] [4, 7] (4) -

Table C.3: Characteristics of datasets and values used (default values are in bold).

Experimental Setup The sensitive patterns were selected randomly among the
frequent length-k substrings at minimum support τ following [172, 187, 256]. We used
the fairly low values (τ = 10 for TRU, SYN, and SYNbin; τ = 20 for OLD and DNA;
and τ = 200 for MSN), to have a wider selection of sensitive patterns. In MCSR-
ALGO, we used a uniform cost of 1 for every occurrence of each τ -ghost, a weight of
1 (resp., ∞) for each letter replacement that does not (resp., does) create a sensitive
pattern, and we further set θ = δ. This setup treats all candidate τ -ghost patterns
and all candidate letters for replacement uniformly, to facilitate a fair comparison with
BA which cannot distinguish between τ -ghost candidates or favor specific letters. In
MCSRI-ALGO, we instead set a weight ∞ for each letter replacement that does not
create a sensitive pattern or an implausible pattern of length k.

In PH, we used a minimum frequency threshold of τ = 1 to ensure that sensitive
patterns will not occur as subsequences (and hence nor as substrings) in the output. We

172

also transformed the input string into a collection of strings and provided the collection
as input to PH. This is because, although in principle PH can be applied to a single
string, as in Example 27, this was not possible for any of the datasets of Table F.1. In
fact, as it will be shown later, PH did not terminate within 12 hours, even for very
short strings of length 25 that took milliseconds to be sanitized by our algorithms. The
reason is that PH requires finding all occurrences of every sensitive pattern in the string
and computing changes to the set of non-sensitive frequent sequential patterns incurred
by permutation and deletion. When τ = 1 and for reasonably long strings, this is a
very computationally intensive task. This observation agrees with the findings in [187]
and similar findings were reported for other sanitization algorithms [13, 172].

Therefore, to be able to compare with PH, we converted a long string to a collection of
short strings (i.e., the type of dataset that PH was designed for). Specifically, we created
a collection of strings W1,W2, . . . ,Wm from a string W , such that W = W1 ·W2 ·. . .·Wm

and |Wi| = r, for i ∈ [1,m], and then we applied PH to the collection. In our
experiments, we varied r in [5, 25] and used r = 15 as the default value. The smallest
value r = 5 was selected to enable the hiding of sensitive patterns of length k = 5 that
we used; the largest value r = 25 was selected empirically. PH took much longer as we
increased r and did not terminate within 12 hours for r = 25. After applying PH, we
obtained a sanitized collection of strings W ′1,W

′
2, . . . ,W

′
m and constructed a final string

I = W ′1 ·W ′2 · . . . ·W ′m by concatenating the strings in the sanitized collection. Note
that we favor PH by neglecting the possibility that sensitive patterns may be created
when concatenating the strings in the sanitized collection.

To capture the utility of sanitized data, we used the (frequency) distortion measure∑
U

(FreqW (U)− FreqZ(U))2,

where U ∈ Σk is a non-sensitive pattern. The distortion measure quantifies changes
in the frequency of non-sensitive patterns with low values suggesting that Z remains
useful for tasks based on pattern frequency (e.g., identifying motifs corresponding to
functional or conserved DNA [297]).

We also measured the number of τ -ghost and τ -lost patterns in Z following [172, 187,
256], where a pattern U is τ -lost in Z if and only if FreqW (U) ≥ τ but FreqZ(U) < τ .
That is, τ -lost patterns model knowledge that can no longer be mined from Z but could
be mined from W , whereas τ -ghost patterns model knowledge that can be mined from
Z but not from W . A small number of τ -lost/ghost patterns suggests that frequent
pattern mining can be accurately performed on Z [172, 187, 256]. Unlike BA, by design
TPM does not incur any τ -lost pattern, as TFS-ALGO and PFS-ALGO preserve
frequencies of non-sensitive patterns, and MCSR-ALGO can only increase pattern
frequencies.

To examine the benefit of using MCSRI-ALGO instead of MCSR-ALGO when
implausible patterns need to be eliminated, we measured the percentage of ρ-implausible
patterns of length k that may occur in Z, when a letter replaces a #. Clearly, the
percentage is 0 when MCSRI-ALGO is used, and a large percentage for MCSR-ALGO
implies that it is beneficial to use MCSRI-ALGO instead.

To capture the effectiveness of TFS-ALGO in terms of constructing a string X that
is at small edit distance from W (see the ETFS problem), we used the Edit Distance

173

Relative Error, defined as
dE(W,X)− dE(W,XED)

dE(W,XED)
.

All experiments ran on a Desktop PC with an Intel Xeon E5-2640 at 2.66GHz and
16GB RAM. Our source code is written in C++ and is accessible from

https://bitbucket.org/stringsanitization/stringsanitizationtkdd/

The code for PH is also written in C++ and was provided by the authors of [187]. The
results presented below have been averaged over 10 runs.

C.8.1 TPM vs. PH

Data Utility. We first demonstrate that TPM substantially outperformed PH in
terms of distortion. This suggests that TPM is a much better method for preserving
utility in tasks based on the frequency of substrings (e.g., [297]). Fig. C.2a shows that,
for varying number of sensitive patterns, TPM incurred on average 477 (and up to
1045) times lower distortion than PH did. These results are expected because PH
applies permutation and/or deletion to eliminate all occurrences of a sensitive pattern
as a subsequence from the sanitized output, whereas only the occurrences in which
the pattern is comprised of consecutive letters (i.e., the sensitive pattern occurs as a
substring) should be eliminated. This “overprotection” incurs distortion unnecessarily
and severely harms utility, particularly when there are more sensitive patterns. Indeed,
Fig. C.2a shows that PH becomes less effective as the number of sensitive patterns
increases. In addition, TPM incurred substantially less distortion than PH for all
tested values of k. Fig. C.2b shows that TPM incurred on average 78 (and up to
169) times lower distortion than PH. This is again because our setting calls for hiding
occurrences of sensitive patterns as substrings and, in this setting, PH overprotects
data unnecessarily.

We now demonstrate that TPM allows substantially more accurate frequent substring
mining than PH. Fig. C.2c shows that, for varying number of sensitive patterns, the
number of τ -lost and τ -ghost patterns for TPM was on average 376 (and up to 586
times) lower compared to that of PH. Quantitatively similar results were obtained for
varying k, as can be seen in Fig. C.2d. Specifically, the number of τ -lost and τ -ghost
patterns for TPM was at least 21 (and up to 234) times lower than that of PH. Note
that TPM creates no τ -lost patterns by design and it created no more than 2 τ -ghost
patterns in the experiments of Fig. C.2d, while PH created up to 234 τ -lost and 1107
τ -ghost patterns.

Impact of r on Efficiency We demonstrate the runtime of PH as a function of
r, the length of records in the collection of records W1,W2, . . . ,Wm that was created
from a string dataset W and given as input to PH. As can be seen in Fig. C.3a, the
runtime of PH increased from 4 seconds when r = 5 to 2.5 hours when r = 20. Also,
PH did not terminate within 12 hours for r = 25. This shows why it was not feasible to
apply PH directly to an entire string dataset of Table F.1, and we needed to construct
a collection of sequences instead. As mentioned in “Experimental setup” above, the

174

0 ⋅ 10
+0

1 ⋅ 10
+5

2 ⋅ 10
+5

3 ⋅ 10
+5

30
324

60
756

90
1355

120
2410

sensitive patterns
|S|

D
is

to
rt

io
n

TPM
PH

(a) TRU

0 ⋅ 10
+0

1 ⋅ 10
+4

3 ⋅ 10
+4

5 ⋅ 10
+4

2
342

3
105

4
100

5
100

k
|S|

D
is

to
rt

io
n

TPM
PH

(b) TRU

270

 1500

0

 18

535

 2487

0

 16

630

 2888

0

 6

758

 3194

0

 7
0

1000

2000

3000

4000

30
324

60
756

90
1355

120
2410

sensitive patterns
|S|

L
o

s
t

a
n

d
 G

h
o

s
t

TPM
PH

(c) TRU

21

 86

0

 0

31

 221

0

 0

86

 549

0

 1

234

 1107

0

 2

1

10

100

1000

10000

2
342

3
105

4
100

5
100

k
|S|

L
o
s
t
a
n
d
 G

h
o
s
t
(l
o
g
s
c
a
le

)

TPM
PH

(d) TRU

Figure C.2: Distortion vs. (a) number of sensitive patterns and their total number |S| of
occurrences in W (first two lines on the X axis), and (b) length of sensitive patterns k (and
|S|). Total number of τ -lost and τ -ghost patterns vs. (c) length of sensitive patterns k, and
(d) length of sensitive patterns k (and |S|). xy on the top of each bar denotes x τ -lost and y
τ -ghost patterns.

reason is that PH needs much time to hide all occurrences of sensitive patterns as
subsequences for large strings, particularly when τ = 1, which is needed to reduce the
frequency of sensitive patterns (substrings) to zero. On the other hand, TPM required
less than a second to process W . Note that the results reported for TPM are the same
for all values of r, because r is not an input parameter to TPM.

Impact of r on Data Utility We demonstrate that TPM substantially outperforms
PH, for all tested values of r, both in terms of distortion and number of τ -lost and
τ -ghost patterns. Specifically, TPM incurred on average 169 (and up to 201) times
lower distortion than PH. Also, it created only 1 τ -lost pattern, while PH created
at least 29 τ -lost and 421 τ -ghost patterns. The reason that PH gets worse when r
increases is because a longer record implies that there are generally more occurrences
of sensitive patterns (as subsequences) that PH needs to hide, and this requires more
substantial changes to the input data. Note that the results reported for TPM are the
same for all values of r, because r is not an input parameter to TPM.

175

Length of record

R
u
n
ti
m

e
 (

lo
g
s
c
a
le

)
(s

)

5 10 15 20 25

1
0

−
1

1
0

0
1

0
1

1
0

2
1

0
3

1
0

4
PH

TPM

(a) TRU

0 ⋅ 10
+0

1 ⋅ 10
+4

2 ⋅ 10
+4

3 ⋅ 10
+4

5 10 15 20 25
Length of record

D
is

to
rt

io
n

TPM
PH

(b) TRU

29

 177

0

 1

32

 421

0

 1

86

 549

0

 1

114

 655

0

 1

0

 1
0

200

400

600

800

1000

5 10 15 20 25
Length of record

L
o
s
t
a
n
d
 G

h
o
s
t

TPM
PH

(c) TRU

Figure C.3: (a) Runtime, (b) distortion, and (c) total number of τ -lost and τ -ghost patterns
vs. length of the records of the input dataset to PH. Note that PH did not terminate within
12 hours when r = 25.

C.8.2 TPM vs. BA

Data Utility We first demonstrate that TPM incurs very low distortion. Fig. C.4
shows that, for varying number of sensitive patterns, TPM incurred on average 18.4
(and up to 95) times lower distortion than BA over all experiments. Also, Fig. C.4
shows that TPM remains effective even in challenging settings, with many sensitive
patterns (e.g., the last point in Fig. C.4b where about 42% of the positions in W are
sensitive). Fig. C.5 shows that, for varying k, TPM caused on average 7.6 (and up to
14) times lower distortion than BA over all experiments.

Next, we demonstrate that TPM permits accurate frequent pattern mining : Fig. C.6
shows that TPM led to no τ -lost or τ -ghost patterns for the TRU and MSN datasets.
This implies no utility loss for mining frequent length-k substrings with threshold τ . In
all other cases, the number of τ -ghosts was on average 6 (and up to 12) times smaller
than the total number of τ -lost and τ -ghost patterns for BA. BA performed poorly
(e.g., up to 44% of frequent patterns became τ -lost for TRU and 27% for DNA). Fig.
C.7 shows that, for varying k, TPM led to on average 5.8 (and up to 19) times fewer
τ -lost/ghost patterns than BA. BA performed poorly (e.g., up to 98% of frequent
patterns became τ -lost for DNA).

We also demonstrate that PFS-ALGO reduces the length of the output string X of
TFS-ALGO substantially, creating a string Y that contains less redundant information
and allows for more efficient analysis. Fig. C.8a shows the length of X and of Y and
their difference for k = 5. Y was much shorter than X and its length decreased with
the number of sensitive patterns, since more substrings had a suffix-prefix overlap of
length k− 1 = 4 and were removed (see Section C.5). Interestingly, the length of Y was
close to that of W (the string before sanitization). A larger k led to less substantial
length reduction as shown in Fig. C.8b (but still few thousand letters were removed),
since it is less likely for long substrings of sensitive patterns to have an overlap and be
removed.

Efficiency We finally measured the runtime of TPM using prefixes of the synthetic
string SYN whose length n is 20 million letters. Fig. C.8c (resp., Fig. C.8d) shows

176

0 ⋅ 10
+0

5 ⋅ 10
+4

1 ⋅ 10
+5

30
606

60
1254

120
2667

240
6103

sensitive patterns
|S|

D
is

to
rt

io
n

TPM
BA

(a) OLD

0 ⋅ 10
+0

1 ⋅ 10
+4

2 ⋅ 10
+4

30
324

60
756

90
1355

120
2410

sensitive patterns
|S|

D
is

to
rt

io
n

TPM
BA

(b) TRU

0 ⋅ 10
+0

5 ⋅ 10
+6

1 ⋅ 10
+7

2 ⋅ 10
+7

30
6030

60
12128

90
18276

120
24502

sensitive patterns
|S|

D
is

to
rt

io
n

TPM
BA

(c) MSN

0 ⋅ 10
+0

5 ⋅ 10
+4

1 ⋅ 10
+5

2 ⋅ 10
+5

25
163

100
607

200
1167

500
3061

sensitive patterns
|S|

D
is

to
rt

io
n

TPM
BA

(d) DNA

Figure C.4: Distortion vs. number of sensitive patterns and their total number |S| of
occurrences in W (first two lines on the X axis).

177

0 ⋅ 10
+0

2 ⋅ 10
+3

4 ⋅ 10
+3

6 ⋅ 10
+3

3
600

4
1935

6
621

7
671

k
|S|

D
is

to
rt

io
n

TPM
BA

(a) OLD

0 ⋅ 10
+0

1 ⋅ 10
+3

3 ⋅ 10
+3

5 ⋅ 10
+3

7 ⋅ 10
+3

2
342

3
105

4
100

5
100

k
|S|

D
is

to
rt

io
n

TPM
BA

(b) TRU

0 ⋅ 10
+0

1 ⋅ 10
+8

3 ⋅ 10
+8

5 ⋅ 10
+8

7 ⋅ 10
+8

3
64105

4
62868

6
320480

8
71979

k
|S|

D
is

to
rt

io
n

TPM
BA

(c) MSN

0 ⋅ 10
+0

1 ⋅ 10
+5

2 ⋅ 10
+5

11
3140

13
3607

14
3703

15
3488

k
|S|

D
is

to
rt

io
n

TPM
BA

(d) DNA

Figure C.5: Distortion vs. length of sensitive patterns k (and |S|).

178

9

 0

22

 0

22

 0

37

 0

0

10

20

30

40

50

30
606

60
1254

120
2667

240
6103

sensitive patterns
|S|

L
o
s
t
a
n
d
 G

h
o
s
t TPM

BA

(a) OLD

18

 0
16

 0

6

 0

7

 0

0

10

20

30

30
324

60
756

90
1355

120
2410

sensitive patterns
|S|

L
o
s
t
a
n
d
 G

h
o
s
t

TPM
BA

(b) TRU

13

15

28

40

30

59

35

82

0

50

100

150

30
6030

60
12128

90
18276

120
24502

sensitive patterns
|S|

L
o

s
t

a
n

d
 G

h
o

s
t

TPM
BA

(c) MSN

1

0

9

0

14

0

47

0

0

20

40

60

25
163

100
607

200
1167

500
3061

sensitive patterns
|S|

L
o

s
t

a
n

d
 G

h
o

s
t

TPM
BA

(d) DNA

Figure C.6: Total number of τ -lost and τ -ghost patterns vs. number of sensitive patterns
(and |S|). xy on the top of each bar for BA denotes x τ -lost and y τ -ghost patterns.

179

8

 1

19

 0
15

 0
10

 0

0

10

20

30

40

3
600

4
1935

6
621

7
671

k
|S|

L
o

s
t

a
n

d
 G

h
o

s
t TPM

BA

(a) OLD

0

 0

6

 0

11

 0
10

 0

0

10

20

30

2
342

3
105

4
100

5
100

k
|S|

L
o

s
t

a
n

d
 G

h
o

s
t TPM

BA

(b) TRU

6

25

16

37

15

10

15

13

0

20

40

60

80

3
64105

4
62868

6
320480

8
71979

k
|S|

L
o
s
t
a
n
d
 G

h
o
s
t

TPM
BA

(c) MSN

233

0

71

0
55

0

47

0

0

50

100

150

200

250

11
3140

13
3607

14
3703

15
3488

k
|S|

L
o
s
t
a
n
d
 G

h
o
s
t TPM

BA

(d) DNA

Figure C.7: Total number of τ -lost and τ -ghost patterns vs. length of sensitive patterns k
(and |S|). xy on the top of each bar for BA denotes x τ -lost and y τ -ghost patterns.

that TPM scaled linearly with n (resp., k), as predicted by our analysis in Section C.6
(TPM takes O(n+ |Y |+ kδσ + δσθ) = O(kn+ kδσ + δσθ) time, since the algorithm
of [295] was used for MCK instances). In addition, TPM is efficient, with a runtime
similar to that of BA and less than 40 seconds for SYN.

C.8.3 TM vs. TMI

We compare TM with TMI based on data utility and the number of implausible patterns
incurred. The objective of these experiments is to show that TMI is able to produce a
string Z that does not contain implausible patterns, while being comparable to TM in
terms of the amount of distortion and number of ghost patterns incurred.

We do not report the results of comparing TM with TMI in terms of efficiency,
because the runtime of TMI was almost identical to that of TM.

Impact of |S| We first demonstrate that many implausible patterns may occur as a
result of replacing #s with letters, when MCSR is used. This can be seen from Figs.
C.9a, C.9b, and C.9c, which show the percentage of implausible patterns incurred by
TM, for varying |S| in OLD, TRU, and MSN, respectively. The percentage is on
average 33.08% (and up to 35.63%). The percentage for DNA is 0% (omitted), because

180

38K

118K

222K

271K

309K

|W|

4.7 ⋅ 10
6

4.8 ⋅ 10
6

4.9 ⋅ 10
6

5 ⋅ 10
6

5.1 ⋅ 10
6

40
45053

60
77248

80
113597

100
153508

120
196084

#sensitive patterns
|S|

L
e
n
g
th

Length of X
Length of Y

(a) DNA

32K 42K

8K

2K
1K

|W|

4.7 ⋅ 10
6

4.8 ⋅ 10
6

4.9 ⋅ 10
6

5 ⋅ 10
6

10
44405

11
44070

13
44720

14
44993

15
44204

k
|S|

L
e
n
g
th

Length of X
Length of Y

(b) DNA

n

R
u
n
ti
m

e
 (

s
)

5M 10M 15M 20M

1
0

2
0

3
0

4
0

5
0

BA
TPM
linear with n

(c) Substr. of SYN
k

R
u
n
ti
m

e
 (

s
)

3 4 5 6

1
0

2
0

3
0

4
0

BA
TPM

(d) SYN

Figure C.8: Length of X and Y (output of TFS-ALGO and PFS-ALGO, resp.) for varying:
(a) number of sensitive patterns (and |S|), (b) length of sensitive patterns k (and |S|). On the
top of each pair of bars we plot |X| − |Y |. Runtime on synthetic data for varying: (c) length n
of string and (d) length k of sensitive patterns. Note that |Y | = |Z|.

181

0

10

20

30
606

60
1254

120
2667

240
6130

sensitive patterns
|S|

Im
p
la

u
s
ib

le
 P

a
tt
e
rn

s
 (

%
)

TM

(a) OLD

0

10

20

30
324

60
756

90
1355

120
2410

sensitive patterns
|S|

Im
p
la

u
s
ib

le
 P

a
tt
e
rn

s
 (

%
)

TM

(b) TRU

0

10

20

30

30
6030

60
12128

90
18276

120
24502

sensitive patterns
|S|

Im
p
la

u
s
ib

le
 P

a
tt
e
rn

s
 (

%
)

TM

(c) MSN

Figure C.9: Percentage of implausible patterns vs. number of sensitive patterns (and |S|).
The percentages of implausible patterns for DNA are all 0%.

this dataset has a very small alphabet size. Thus, in this experiment, MCSR-ALGO
and MCSRI-ALGO are essentially the same algorithm. Since TMI is guaranteed to
eliminate implausible patterns, its corresponding percentages are zero (omitted).

We then demonstrate that TMI eliminates implausible patterns without incurring
substantial utility loss compared to TM. Figs. C.10 and C.11 show that TMI incurred
a comparable amount of distortion to TM. Specifically, TMI incurred 8% and 1% less
distortion in the case of OLD and TRU datasets and 37% more distortion in the case
of MSN. TMI also incurred a similar number of ghosts than TM. Specifically, TMI
incurred 7.1% fewer ghosts in the case of TRU and 54% more ghosts in the case of
MSN. Note that no τ -ghost patterns were incurred in the case of OLD (for both TM
and TMI). The worse performance of TMI in the case of the MSN dataset is attributed
to its relatively small alphabet size, which makes it more difficult to select a letter
replacement that does not incur implausible patterns.

0

5 ⋅ 10
+2

1 ⋅ 10
+3

1.5 ⋅ 10
+3

2 ⋅ 10
+3

30
606

60
1254

120
2667

240
6130

sensitive patterns
|S|

D
is

to
rt

io
n

TMI
TM

(a) OLD

0 ⋅ 10
+0

2 ⋅ 10
+3

5 ⋅ 10
+3

8 ⋅ 10
+3

1 ⋅ 10
+4

30
324

60
756

90
1355

120
2410

sensitive patterns
|S|

D
is

to
rt

io
n

TMI

TM

(b) TRU

0

5 ⋅ 10
+6

1 ⋅ 10
+7

1.5 ⋅ 10
+7

2 ⋅ 10
+7

30
6030

60
12128

90
18276

120
24502

sensitive patterns
|S|

D
is

to
rt

io
n

TMI
TM

(c) MSN

Figure C.10: Distortion vs. number of sensitive patterns and their total number |S| of
occurrences in W (first two lines on the X axis).

Impact of k Fig. C.12a shows that the percentage of implausible patterns incurred by
TM for the OLD dataset was on average 4.3% (and up to 9.6%). Again, this confirms
the need to eliminate implausible patterns in practice. The results for TRU, MSN, and
DNA are qualitatively similar and omitted from all remaining experiments.

We now demonstrate that TMI eliminates implausible patterns, while incurring a
comparable amount of distortion and ghosts (on average) compared to TM. Specifically,

182

0

2

4

6

30
324

60
756

90
1355

120
2410

sensitive patterns
|S|

G
h
o
s
t

TMI

TM

(a) TRU

0

30

60

90

30
6030

60
12128

90
18276

120
24502

sensitive patterns
|S|

G
h

o
s
t

TMI

TM

(b) MSN

Figure C.11: Number of τ -ghost patterns (the number of τ -lost patterns is zero by design)
vs. number of sensitive patterns (and |S|). The number of τ -ghost patterns for OLD is 0.

0.0

2.5

5.0

7.5

10.0

3
600

4
1935

6
621

7
671

k
|S|

Im
p
la

u
s
ib

le
 P

a
tt
e
rn

s
 (

%
)

TM

(a) OLD

16016

179058

546 2052
0

5 ⋅ 10
+4

1 ⋅ 10
+5

1.5 ⋅ 10
+5

2 ⋅ 10
+5

3
600

4
1935

6
621

7
671

k
|S|

D
is

to
rt

io
n

TMI
TM

(b) OLD

27

16

1

5

0

10

20

30

3
600

4
1935

6
621

7
671

k
|S|

G
h

o
s
t

TMI
TM

(c) OLD

Figure C.12: (a) Percentage of implausible patterns vs. k (and |S|). (b) Distortion vs. k
(and |S|). (c) Number of τ -ghost patterns vs. k (and |S|).

the distortion for TMI was 17% lower than TM on average (see Fig. C.12b), and the
number of τ -ghost patterns for TMI was 16.2% lower on average (see Fig. C.12c).

Impact of ρ We demonstrate that TMI can eliminate implausible patterns, while
preserving data utility as well as TM does. This can be seen from Fig. C.13a, which
shows that the percentage of implausible patterns incurred by TM was 4.1% on average
(and up to 5.3%), and from Figs. C.13b and C.13c, which show that TMI caused on
average 19.5% lower distortion and 9.4% fewer τ -ghosts, respectively, compared to TM.

C.8.4 TFS-ALGO vs. ETFS-ALGO

We demonstrate that TFS-ALGO is a very effective heuristic for the ETFS problem.
Specifically, it constructs a string X that is either an optimal solution to the problem
or it is at slightly larger edit distance from W compared to the exact solution string
XED that is constructed by ETFS-ALGO. This can be seen from Fig. C.14a (resp.,
C.14b), which shows that TFS-ALGO constructed optimal solutions (i.e., Edit Distance
Relative Error was 0) in 98% (resp., 93%) of the tested strings, on average. These strings
are uniformly random and have the same length and alphabet as SYNbin. Qualitatively
similar results were obtained for uniformly random strings of different lengths and
alphabet sizes (omitted). In addition, the effectiveness of TFS-ALGO can be seen

183

0

2

4

−2 −1 −0.5 −0.1
ρ

Im
p

la
u

s
ib

le
 P

a
tt

e
rn

s
 (

%
) TM

(a) OLD

0

5 ⋅ 10
+4

1 ⋅ 10
+5

1.5 ⋅ 10
+5

2 ⋅ 10
+5

−2 −1 −0.5 −0.1
ρ

D
is

to
rt

io
n

TMI
TM

(b) OLD

0

5

10

15

20

−2 −1 −0.5 −0.1
ρ

G
h
o
s
t

TMI

TM

(c) OLD

Figure C.13: (a) Distortion, (b) number of τ -ghost patterns, and (c) percentage of implausible
patterns vs. ρ.

from Figs. C.14c and C.14d, which show that the Edit Distance Relative Error in TRU
was no more than 2.8%. These results are encouraging because, unlike ETFS-ALGO,
TFS-ALGO is applicable to large strings such as OLD, MSN, and DNA (recall that
its time complexity is linear instead of quadratic in |W |).

String id

E
d

it
 D

is
t.

 R
e

l.
 E

rr
o

r

10
+0

1.5 ⋅ 10
+3

3 ⋅ 10
+3

5 ⋅ 10
+30

.0
0

0
.1

0
0
.2

0

k=4

k=5

k=6

k=7

(a) SYNbin

String id

E
d

it
 D

is
t.

 R
e

l.
 E

rr
o

r

10
+0

1.5 ⋅ 10
+3

3 ⋅ 10
+3

5 ⋅ 10
+3

0
.0

0
.5

1
.0

1
.5 |S|=16

|S|=32

|S|=64

|S|=128

(b) SYNbin

0.012

0

0.028

0
0

1 ⋅ 10
−2

2 ⋅ 10
−2

3 ⋅ 10
−2

2
342

3
105

4
100

5
100

k
|S|

E
d
it
 D

is
t.
 R

e
l.
 E

rr
o
r

TFS−ALGO vs. ETFS−ALGO

(c) TRU

0.013

0.006
0.005

0.01

0

5 ⋅ 10
−3

1 ⋅ 10
−2

1.5 ⋅ 10
−2

30
324

60
756

90
1355

120
2410

#sensitive patterns
|S|

E
d
it
 D

is
t.
 R

e
l.
 E

rr
o
r

TFS−ALGO vs. ETFS−ALGO

(d) TRU

Figure C.14: Edit Distance Relative Error vs. (a) k (and |S|), and (b) number of sensitive
patterns (and |S|) for each of the 50, 000 random strings. Edit Distance Relative Error vs. (c)
k (and |S|), and (d) number of sensitive patterns (and |S|) for TRU.

184

Appendix D

String Sanitization Under Edit
Distance

Key Points

Problem. We consider again the problem of sanitizing a string by concealing the
occurrences of sensitive patterns, while maintaining data utility.

Model. Like in the previous chapter, we seek for a string, to be disseminated in place
of the original one, that preserves the order of appearance and frequency of all
non-sensitive patterns, while sensitive patterns are concealed with the aid of an
extra alphabet letter. We consider the setting in which we aim to construct a
string that is at minimal edit distance from the original string, in addition to
preserving the order of appearance and frequency of all non-sensitive patterns.
We manage to improve the algorithm presented in the previous chapter and we
reduce the edit distance problem, which is known to admit the same conditional
lower bound, to our problem.

Included Works

This chapter presents the work String Sanitization Under Edit Distance [56], that
improves the results of the previous chapter. This paper has been presented at the 31st
Annual Symposium on Combinatorial Pattern Matching (CPM 2020).

D.1 Introduction

In Chapter C we introduced the Combinatorial String Dissemination (CSD) model to
provide privacy and utility guarantees. In CSD, we are given a string W and the aim is
to apply a sequence of edit operations to W , so that the resulting counterpart X of W
satisfies a set of privacy constraints and a set of utility properties. Specifically, in this
chapter we consider the following CSD problem, referred to as ETFS (Edit distance,

185

Total order, Frequency, Sanitization). Given W of length n over an alphabet Σ, a
positive integer k, and a set S of sensitive length-k substrings of W modeling confidential
information, construct a string X such that: X does not contain any sensitive length-k
substring (C1); the order (and thus the frequency) of all other length-k substrings over
Σ in W is the same as in X (P1); and X is at minimal edit distance from W . The
constraint C1 ensures that no sensitive length-k substring occurs in X. The property
P1 ensures that X incurs minimal utility loss for tasks based on the sequential nature
of length-k non-sensitive substrings of W , as well as on their frequency.

Strings constructed by means of solving ETFS can be used, with minimal utility loss,
in tasks that are based on edit distance as a similarity measure. Examples of such tasks
are frequent pattern mining [321], clustering [218], entity extraction [358] and range
query answering [257]. To solve ETFS, in Chapter C we proposed an O(k|Σ|n2)-time
algorithm. Such algorithm is based on solving a specific instance of approximate regular
expression matching, essentially applying the algorithm of Myers and Miller [279] on an
appropriate regular expression that models all strings satisfying C1 and P1 to finally
pick the one that is at minimal edit distance to W .

Note that, to have a solution to ETFS, we may need to insert in W a letter # /∈ Σ.
Indeed, inserting (or replacing letters of W with) any letter of Σ could violate P1 and/or
possibly create new occurrences of sensitive length-k substrings. We thus generally have
that XED (a solution of ETFS) is over Σ ∪ {#}.

Example 31. Let W = babaaaaabbbab, Σ = {a, b}, k = 3, and the set of sensitive
substrings be {aba, baa, aaa, aab, bba}. Then XED = bab#aa#abbb#bab. Note that
XED satisfies C1 and P1. XED is a string closest to W in terms of edit distance.

In Section D.2, we show the following theorem improving the result of Chapter C
by a factor of |Σ|.

Theorem 34. The ETFS problem can be solved in O(kn2) time.

Our algorithm is based on a non-trivial modification of the classic dynamic program-
ming algorithm for computing the edit distance between two given strings. In particular,
the modification is based on the fact that in ETFS we are given a single string W , and
we are asked to construct a string XED that satisfies C1 and P1 and that is closest to W .
We thus actually fill in the dynamic programming matrix that computes the minimum
edit distance between W and a regular expression that is a suitable abstraction of XED;
our algorithm encodes in its recurrence formulae the choices that specify the instance
of the regular expression that we eventually output.

In Section D.3, we also show that ETFS cannot be solved in strongly subquadratic
time unless the Strong Exponential Time Hypothesis (SETH) [208, 207] is false. This
is the most technically involved part of the chapter.

Theorem 35. The ETFS problem cannot be solved in O(n2−δ) time, for any δ > 0,
unless SETH is false.

To arrive at this theorem, we reduce the weighted edit distance problem, which is
known to admit the same conditional lower bound [38, 80], to the ETFS problem. In
particular, given two strings P and Q of length Θ(n), we construct an instance of ETFS
of length O(n) from the output of which we can infer the insertions corresponding to

186

some optimal alignment of P and Q with respect to the weighted edit distance. Using
another suitable instance of ETFS, we can determine the corresponding deletions. That
gives us an optimal alignment of P and Q, from which we can compute the weighted
edit distance of P and Q in O(n) time.

D.2 ETFS-DP: AnO(kn2)-time Algorithm for ETFS

Refer to Section C.3 for the definitions of this chapter. We report here for convenience
the formal definition of ETFS.

Problem 5 (ETFS). Given a string W of length n, an integer k > 1, and a set S
(and thus set I), construct a string XED which is at minimal (weighted) edit distance
from W and satisfies the following:

C1 XED does not contain any sensitive pattern.
P1 IW ≡ IXED

, i.e., the t-chains IW and IXED
are equivalent.

In this section we describe ETFS-DP, a dynamic programming algorithm that solves
ETFS faster than the algorithm proposed in Chapter C. We describe our algorithm for
the unweighted edit distance model for simplicity, but it should be clear that it can be
extended to the weighted edit distance model in a straightforward way and with no
additional cost. Intuitively, since we are looking for a string XED that contains all the
non-sensitive patterns of W , and in the same order, for each pair (U, V) of non-sensitive
patterns of W such that U is the t-predecessor of V , we can (i) merge U and V into
U · V [k− 1] when U and V have a suffix-prefix overlap of length k− 1; or (ii) interleave
U and V constructing a string UY V , where Y is a carefully selected string over Σ∪{#},
where # /∈ Σ.

Let us start by reporting the definition of the regular expression gadget ⊕, which
encodes all candidate strings that can be used to interleave two non-sensitive patterns
while respecting C1, and the two similar gadgets 	 and ⊗. We will make use of the
following regular expression:

Σ<k = ((a1|a2| . . . |a|Σ||ε) . . . (a1|a2| . . . |a|Σ||ε)︸ ︷︷ ︸
k − 1 times

),

where Σ = {a1, a2, . . . , a|Σ|} is the alphabet of W . Given a letter # /∈ Σ, we define

⊕ = #(Σ<k#)∗, 	 = (Σ<k#)∗, ⊗ = (#Σ<k)∗.

Let N0, N1, . . . , N|I|−1 be the sequence of non-sensitive patterns as they occur
in W from left to right. In the algorithm of Chapter C, XED was built by finding
an optimal alignment between W and a regular expression R constructed as follows.
First, set R = 	N0 and then process pairs of non-sensitive patterns Ni and Ni+1,
for all i ∈ {1, . . . , |I| − 2}: in the i-th step, if Ni and Ni+1 can be merged, append
(Ni+1[k− 1] | ⊕Ni+1) to R. Otherwise, append ⊕Ni+1 to R. After processing all pairs,
conclude by appending ⊗ to R. The length of R is O(k|Σ|n).

The general idea in Algorithm ETFS-DP is to simulate the alignment of W to R
without constructing R explicitly. Instead, we use a string T = �N0�N1 · · ·�N|I|−1�,

187

where �, � and � are length-1 placeholders for 	, ⊕ and ⊗, respectively. The length
of T is thus only (k + 1)|I|+ 1 = O(kn), leading to an O(kn2)-time algorithm when
aligned to W , |W | = n.

D.2.1 Dynamic Programming

In a preprocessing phase, we compute a binary array M of length |I| so that M [`] = 1 if
the `-th and the (`−1)-th non-sensitive patterns (in the order given by their occurrences
in W) can be merged. We set M [0] = 0 for completeness. More formally, for all
0 < ` ≤ |I| − 1, M [`] = 1 if N`−1[1 . . k − 1] = N`[0 . . k − 2], and M [`] = 0 otherwise.

We then solve ETFS in a dynamic programming fashion by filling in an (|I|(k +
1) + 1)× (|W |+ 1) matrix E. The rows of E correspond to string T , and the columns
to string W . We denote by E[i][·] and E[·][j] the i-th row and the j-th column of E,
respectively.

Entry E[i][j], for all 0 ≤ i ≤ |I|(k + 1) and 0 ≤ j ≤ |W |, contains the edit distance
between (the regular expression corresponding to) T [0 . . i] and W [0 . . j − 1]. Rows
corresponding to �, i.e., rows with index i = `(k+ 1) for some ` ∈ [1, |I| − 1], implicitly
represent a regular expression gadget and must be filled in with ad hoc rules; we will
refer to them as gadgets rows. In turn, we will name possibly mergeable the rows with
index i = `(k + 1) − 1 for some ` ∈ [1, |I| − 1], as they must be filled in taking into
account the option of merging the corresponding pattern with the preceding one, should
it be possible. All other rows of E will be called ordinary. In what follows, I is a
function such that I[T [i] 6= W [j − 1]] = 1 if T [i] 6= W [j − 1], and 0 otherwise. We give
below the recursive formulae that constitute the core of our dynamic programming
algorithm.

Initialization. Entry E[0][j] contains the edit distance between 	 and W [0 . . j − 1]
for j ≥ 1, while E[0][0] = 0. Because of the definition of 	, it is only possible to
match up to k − 1 consecutive letters, after which a mismatch due to # occurs,
and hence E[0][j] = dj/ke.
E[i][0] stores the edit distance between T [0 . . i] and the empty prefix ε of W . This
distance is minimized by the shortest possible string in each regular expression
prefix, obtained by always merging when allowed, and picking the shortest possible
string encoded by ⊕ when not. This leads to the following formula, where
` ∈ [0, |I| − 1].

E[i][0] =

{
E[i− k − 1][0] + 1, if i = (`+ 1)(k + 1)− 1 ∧M [`] = 1 (merge)

E[i− 1][0] + 1, otherwise (no merge)

(D.1)

Ordinary Rows: i 6≡ 0 mod (k + 1) and i 6≡ −1 mod (k + 1). The formula is
the same as in the standard algorithm for edit distance [245]: recall that E[·][j]

188

correspond to W [j − 1].

E[i][j] = min


E[i− 1][j] + 1, (insert)

E[i][j − 1] + 1, (delete)

E[i− 1][j − 1] + I[T [i] 6= W [j − 1]], (match or substitute)

(D.2)

Possibly Mergeable Rows: i ≡ −1 mod (k + 1). These rows correspond to the
last letter of a non-sensitive pattern. The first three options of Equation D.3
encode the case where we do not merge, regardless of the value of M [`]. The last
two options, instead, require M [`] = 1, as a merge does take place. This means
that the letters corresponding to the k rows above will not appear in the output
string XED, and thus play no role in the edit distance computation. We thus
read the values of row i− k − 1, corresponding to the last letter of the previous
non-sensitive pattern.

E[i][j] = min



E[i− 1][j] + 1, (insert)

E[i][j − 1] + 1, (delete)

E[i− 1][j − 1] + I[T [i] 6= W [j − 1]], (match or substitute)

E[i− k − 1][j] + 1, if M [`] = 1 (insert and merge)

E[i− k − 1][j − 1] + I[T [i] 6= W [j − 1]], if M [`] = 1 (match or sub. and merge)

(D.3)

Gadget Rows: i ≡ 0 mod (k + 1). A gadget row encodes the possibility of inter-
leaving two non-sensitive patterns with a string that preserves C1 and P1 and
minimizes the edit distance. Because of the form of the regular expression gadgets,
a # can either be inserted or substituted directly after a non-sensitive pattern, or
be preceded by another # no more than k positions earlier. This results in the
following formula:

E[i][j] = min


E[i− 1][j] + 1, (insert)

E[i− 1][j − 1] + 1, (substitute)

E[i][j − 1] + 1, . . . , E[i][max{0, j − k}] + 1, (delete or extend gadget)

(D.4)

The following lemma states that the above formulae correctly compute the edit
distance between prefixes of T and prefixes of W .

Lemma 57. E[i][j] = dE(T [0 . . i],W [0 . . j−1]), for all 0≤ i< |I|(k+1) and 0<j≤|W |,
and E[i][0] = dE(T [0 . . i], ε).

Proof. The correctness of the equations that describe how to fill in entries E[0][j] and
E[i][0] follows from the explanation in paragraph “Initialization”, and the correctness
of Equation D.2 follows from the standard dynamic programming algorithm for edit
distance [245]. Let us focus on the case of possibly mergeable rows (Equation D.3):
when merging is not possible, the equation is the same as in the standard algorithm,
and therefore it is correct. When merging is possible, we must pick the minimum

189

value among all possible edit operations when we actually choose to merge and among
all possible operations when we do not merge, even if we could. The first three rows
of Equation D.3 correspond to the three possible operations when we do not merge,
and are again the same possibilities as the standard algorithm for edit distance; the
last two rows correspond to the case where we merge. When we merge, we append
the letter corresponding to the possibly mergeable row to the previous non-sensitive
pattern. If we were to run the standard algorithm for computing the edit distance
between such string and W , the row above, where we had to read the values for insertion
and match or substitution, would be the one corresponding to the last letter of the
previous non-sensitive pattern. These are precisely the values of the last two rows of
Equation D.3, that are therefore correct.

Consider now the gadget rows. An entry E[i][j] on a gadget row should contain the
value of an optimal alignment between W [0 . . j − 1] and a prefix of XED that ends with
a #: since # /∈ Σ, it cannot match with any letter of W , therefore I[T [i] 6= W [j − 1]] = 1
always holds. As previously observed, a # can either be inserted or substituted directly
after a non-sensitive pattern, or be preceded by another # no more than k positions
earlier. Moreover, it is easy to see that, if an optimal alignment between W and
the regular expression R involves a local alignment between W [i . . j] and #S# with
|S| = j − i − 1 < k, then S = W [i + 1 . . j − 1]: this is because any alignment with
S 6= W [i+1 . . j−1] can be improved by replacing S with W [i+1 . . j−1]. Equation D.4
follows from the two observations above: the first two lines compute the cost of appending
a # directly after a non-sensitive pattern, that always entails either an insertion or a
substitution.

The third row of the equation considers the possibility of interleaving two non-
sensitive patterns with a whole string encoded by ⊕, or deleting #.

Note that Lemma 57 refers to rows 0 ≤ i < |I|(k + 1). Let us now look at the last
row: even if it was filled in like any other gadget row, since it corresponds to ⊗ instead
of ⊕, its values need to be interpreted in a different way. Namely, the value stored
in E[|I|(k + 1)][j], for all 0 ≤ j ≤ |W |, is the cost of an optimal alignment between
W [0 . . j + ej − 1] and a string in R whose length-(ej + 1) suffix is #W [j . . j + ej − 1],
where ej = min{k − 1, |W | − j}.

Unlike in the standard edit distance algorithm [245], the edit distance between
W and any string matching the regular expression R is not necessarily found in its
bottom-right entry E[|I|(k+1)][|W |]. Instead, it is found among the rightmost k entries
of the last row (in case XED ends with a string in ⊗), and the rightmost entry of the
second-last row (when XED ends with the last letter of the last non-sensitive pattern).
We thus obtain the following.

Lemma 58. Let XED be a solution to ETFS. Then

dE(XED,W) = min
{
E
[
|I|(k + 1)− 1

][
|W |

]
, E
[
|I|(k + 1)

][
|W |

]
,

E
[
|I|(k + 1)

][
|W | − 1

]
, . . . , E

[
|I|(k + 1)

][
|W | − k + 1

]}
.

(D.5)

D.2.2 Construction of XED

Once we have computed the edit distance d according to Lemma 58, we need to
construct a string XED that matches R and is at edit distance d from W . To do so,

190

when computing each entry E[i][j] of the matrix for i, j ≥ 1, we store, in an array A, a
pointer 〈i′, j′〉 to an entry from which the minimum value for E[i][j] was obtained. We
then build XR

ED by following any path from an entry E [̄ı][̄] where the global optimum
is stored to E[0][0].

At any step of the construction, let E[i′][j′] be the endpoint of the pointer stored for
E[i][j] currently considered, i.e., A[i][j] = 〈i′, j′〉. If ı̄ = |I|(k + 1), i.e., if the minimum
is in the last row of E, we initialize XR

ED with W [̄ . . |W | − 1]R; otherwise, we just
initialize it with the empty string ε. We then enforce the following rules:

If i′ < i, we append T [i] to XR
ED when i is not a gadget row and # otherwise. Indeed,

the condition is fulfilled when the edge in the path is either diagonal (a match or
a substitution in the alignment) or vertical (an insertion in W). Moreover, i′ can
either be equal to i− 1 or to i− k− 1 (when we merge two non-sensitive patterns).

If i′ = i and i ≡ 0 mod (k + 1), we append # to XR
ED followed by W [j′ . . j − 2]R.

Because this happens when we follow a horizontal edge on a gadget row, the
solution must include the corresponding substring, that is composed of # and
j − j′ − 1 letters of W .

If none of the two cases above happens, we do not write anything, because a
horizontal edge in the path corresponds to a deletion in W . We denote the above
procedure by Algorithm XED-construct. Lemma 59 guarantees that this construction
produces a string that satisfies C1 and P1.

Lemma 59. XED returned by Algorithm XED-construct satisfies C1 and P1.

Proof. Let us start by proving that Algorithm XED-construct satisfies C1. XR
ED (and

thus XED) is obtained by appending either consecutive letters of TR (case i′ < i for all
but gadget rows) or a letter # (all cases for gadget rows) or a number of consecutive
letters of WR (case i′ = i for gadget rows and initialization of XR

ED when the minimum
is on the last row of E): since T does not contain any sensitive patterns by construction
and # /∈ Σ, we only need to verify that no more than k − 1 consecutive letters read
directly from WR can ever be appended to XR

ED. Inspect case i′ = i for gadget rows:
j − j′ − 1 is the number of entries between entry E[i][j] and the endpoint of the
corresponding horizontal pointer A[i][j]. The last line of Equation D.4 exhibits the only
possibilities for a pointer to point a non-adjacent entry on the same row, thus j′ ≥ j− k
and consequently j − j′ − 1 ≤ k− 1. Since both when the path leaves a gadget row and
when it goes on on a gadget row a # is appended to XR

ED, no sensitive patterns can be
created and therefore XED satisfies C1.

Let us now show that P1 is satisfied as well, i.e., N0, N1, . . .N|I|−1 occur in XED in
the same order as they appear in W , and no other length-k string over Σ is a substring
of XED. Consider a letter N`[h] = T [i]. If 0 ≤ h < k−1, i is an ordinary row. Since any
optimal path goes from the entry of E where the minimum is stored to E[0][0], and by
construction to leave a row the pointers can only point to an entry in the row directly
above the current one (ordinary rows) or in the (k+ 1)-th row above (merge case in the
possibly mergeable rows, see Equations D.2 and D.3), there are only two possibilities:
either the path goes through row i, i.e., there exists j such that A[i][j] = 〈i − 1, j′〉
is part of the optimal path, or row i is skipped by the path, and thus there exists j

191

such that A[i+ k − h− 1][j] = 〈i− h− 2, j′〉. Let us observe that in the latter case, all
of the rows from i− h− 1 to i+ k − h− 2 are skipped by the path, while in the first
case A[i+ k − h− 1][j] = 〈i+ k − h− 2, j′〉 and no rows are skipped up to i− h− 2.
In the first case, Algorithm XED-construct will append N`[h] to XR

ED after N`[h+ 1]
for all 0 ≤ h ≤ k − 1, then a # right after N`[0], that prevents the making of spurious
length-k strings over Σ in XED. In the second case, N`[h] is not explicitly appended
to the string: instead, after appending N`[k − 1] to XR

ED, the algorithm goes to row
i − h − 2, corresponding to N`−1[k − 1]. Nevertheless, this only happens when the
merge condition is satisfied, i.e., when N`−1[1 . . k − 1] = N`[0 . . k − 2], implying that
N`[h] = N`−1[h+ 1] will be appended next to N`[h+ 1] = N`−1[h+ 2] after k − h− 1
steps. The order in which N0, N1, . . .N|I|−1 appear in XED is by construction the
same as they appear in T , which in turn is the same as the order they appear in W . In
no other parts of the algorithm a length-k string over Σ is created in XED. It follows
that P1 is preserved.

D.2.3 Wrapping up

Lemma 60. Algorithm ETFS-DP runs in O(kn2) time.

Proof. We first construct string T and array M in O(kn) time and initialize the first
row and the first column of matrix E in O(kn) time. There are O(kn) “ordinary”, O(n)
“possibly mergeable” and O(n) “gadget rows”, each of size O(n). Each entry (and its
corresponding pointer) on the “ordinary” and “possibly mergeable” rows takes constant
time to compute, while the entries (and pointers) on the gadget rows require O(k) time
each. Thus, we can compute all entries and pointers in O(kn2) time. Tracing back the
pointers and constructing string XED takes again O(kn) time. This results in a total
time complexity of O(kn2).

Lemmas 57-60 imply Theorem 34.

D.3 A Conditional Lower Bound for ETFS

We prove that, assuming SETH introduced in [208] and [207], ETFS cannot be solved
in strongly subquadratic time. We do so by a reduction from the classical edit distance
problem, and using the following known conditional lower bound for it: for all δ > 0,
the edit distance dE between two strings of length Ω(n) cannot be computed in O(n2−δ)
time without violating SETH [38], and hence the well-known quadratic-time solution
of [245] for computing the edit distance between two strings of length O(n) is optimal
up to subpolynomial factors. Bringmann and Künnemann [80] proved that this is also
true for weighted edit distance, where each operation (insertion, deletion, substitution
and match) has a corresponding fixed non-negative cost (respectively ci, cd, cs, cm), and
the following conditions, which we will call the BK conditions, hold: (i) ci + cd > cm,
(ii) ci + cd > cs, and (iii) cm 6= cs.

Let P and Q be two arbitrary strings over Σ, both of length Θ(n), and without
loss of generality 1 ≤ |P | ≤ |Q|. We would like to compute the weighted edit distance
between P and Q with the following associated costs: ci = 2.5, cd = 2.5, cs = 1, cm = 0.

192

These costs satisfy the BK conditions. Let c = (ci, cd, cs, cm) and dc be the weighted
edit distance with associated costs c. Assuming SETH is true, there is no algorithm
for computing d(2.5,2.5,1,0)(P,Q) in O(n2−δ) time, for any δ > 0 [80]. In order to prove
that ETFS cannot be solved in strongly subquadratic time either, we will compute
d(2.5,2.5,1,0)(P,Q), by solving two instances of ETFS on a string of length O(n) and

using an additional O(n) number of operations. Thus if ETFS is solvable in O(n2−δ)
time, for any δ > 0, SETH is false.

Let us now show the first instance of the ETFS. We define a new alphabet
Σ′ = Σ t {a, b, c1, c2, c3, d, e, f, g} and a new string U(P,Q) = F1F2F3F4 over Σ′

as follows:

F1 = (aab)2x+1aae, F2 =

|P |−1∏
i=0

c1dP [i]c2c3, F3 = (aae)2x−1aa, F4 =

|Q|−1∏
i=0

c1fQ[i]c2c3

where x = 2|Q|, and the product denotes the concatenation operation on strings. We
also set k = 5 and define the set I of non-sensitive pattern occurrences over U as follows:

I = {0, 3, 6, 9, . . . , 6x} ∪ {6x+ 6, 6x+ 11, 6x+ 16, . . . , 6x+ 1 + 5|P |}.

In particular, U(P,Q) is the string input to the first instance of ETFS. The construction
above gives us the following sequence of non-sensitive patterns:

aabaa, aabaa, aabaa, . . . , aabaa (2x+ 1 occurrences)

c1dP [0]c2c3, c1dP [1]c2c3, c1dP [2]c2c3, . . . , c1dP [|P | − 1]c2c3 (|P | occurrences).

It is easy to verify that the set I of occurrences of non-sensitive patterns (and thus
the complementary set S) has the closure property requested by ETFS. The resulting
regular expression R is

R = 	 aabaa⊕aabaa⊕. . .⊕aabaa⊕c1dP [0]c2c3⊕c1dP [1]c2c3⊕. . .⊕c1dP [|P |−1]c2c3 ⊗.

We will prove that it is optimal to align the first x+ 1 patterns with F1, a gadget ⊕
with F2, the next x patterns with F3 and the final |P | patterns with F4. Then, we will
show that the alignment of those last patterns with F4 corresponds to an alignment of
P and Q.

We call the occurrences of aabaa and c1dP [i]c2c3 in the regular expression R, or
in any string in the regular language corresponding to R, AB-patterns and P-patterns,
respectively. Notice that these non-sensitive patterns are substrings of F1 and F2 and
that we cannot merge any two consecutive non-sensitive patterns.

Recall that the output XED of ETFS is a string with minimal edit distance to U in
that language. One alignment of U and R, which we denote by AU/R and that we will
later show to be optimal under unit cost for insertion, deletion and substitution and
zero cost for match, is as follows:

• We align F1 with the first x + 1 AB-patterns interleaved by #’s as illustrated
below. The cost of this alignment is x+ 1 substitutions.

aabaabaabaabaabaabaabaab . . .aabaae
aabaa#aabaa#aabaa#aabaa#. . .aabaa#

193

• We align F2 with a single gadget ⊕ suitably expanded as shown below. The cost
of this alignment is |P | substitutions. Recall that we have to use a # after every
k − 1 = 4 letters, so as not to introduce any new length-k substrings that would
violate property P1.

c1dP [0]c2c3c1dP [1]c2c3c1dP [2]c2c3c1dP [3]c2c3...c1dP [|P | − 1]c2c3
c1dP [0]c2# c1dP [1]c2# c1dP [2]c2# c1dP [3]c2# ...c1dP [|P | − 1]c2#

• We align F3 with the remaining x AB-patterns interleaved by #’s as illustrated
below. The cost of this alignment is 2x− 1 substitutions.

aaeaaeaaeaaeaaeaaeaaeaae . . .aaeaa
aabaa#aabaa#aabaa#aabaa#. . .aabaa

• We align F4 with the final |P | P-pattern occurrences according to an optimal
alignment AP/Q of P and Q with respect to cost c. Let p and q denote placeholders
for letters of P and Q, respectively. For each edit operation in AP/Q (insertion of
q, deletion of p, substitution or match between p and q), we align in AU/R the
corresponding fragment of F4 and the P-pattern of R as follows.

Insertion Deletion Substitution or Match
c1f q c2c3 - - - - - - - c1f q c2c3
f q c2c3 # c1d p c2c3 # c1d p c2c3

When inserting a letter of Q, rather than paying 5 consecutive gaps opposite
to fragment c1fqc2c3 of F4, we extend the gadget ⊕ of R with #fqc2c3, to pay
only one (unavoidable) substitution for #. Deleting a letter of P , instead, results
in 6 gaps in AU/R. Finally, substitutions and matches in AP/Q result in the
same alignment in AU/R, with the cost being, respectively, 3 and 2 according to
whether q = p or not. Therefore, it turns out that the cost of this last fragment
of alignment AU/R equals d(1,6,3,2)(P,Q).

We next show that it is possible to express d(1,6,3,2)(P,Q) in terms of d(2.5,2.5,1,0)(P,Q),
because symmetry will greatly simplify things later on, when we swap P and Q.

Lemma 61. Let c and c′ be two costs. We write c ∼ c′ if for any alphabet Σ and for
all P,Q ∈ Σ∗, the set of optimal alignments of P and Q with respect to cost c is equal
to the set of optimal alignments of P and Q with respect to cost c′. Then

1. c ∼ αc for all α ∈ R>0.

2. c ∼ (ci + α, cd, cs + α, cm + α) for all α ∈ R.

3. c ∼ (ci, cd + α, cs + α, cm + α) for all α ∈ R.

Proof. Let the number of insertions, deletions, substitutions and matches in some
alignment of P and Q be ni, nd, ns and nm respectively. We know that ni+ns+nm = |Q|
and nd + ns + nm = |P |. So the transformations 1, 2, and 3 of c given in the lemma
statement change the costs of alignments from d to αd, d+α|Q| and d+α|P | respectively.
The costs of alignments are all strictly increasing in d, so the optimal alignments are
preserved.

194

By applying transformation 2 of Lemma 61 with α = 1.5 and then transformation 3
of Lemma 61 with α = −3.5, we obtain

d(1,6,3,2)(P,Q) = d(2.5,2.5,1,0)(P,Q)− 1.5|Q|+ 3.5|P |. (D.6)

By summing up the costs of the alignment AU/R detailed above and using Equation
D.6, we get

dE(U,XED) ≤ 4.5(|P |+ |Q|) + d(2.5,2.5,1,0)(P,Q), (D.7)

which we can bound by 3|P |+ 7|Q|, because d(2.5,2.5,1,0)(P,Q) ≤ 2.5(|Q| − |P |) + |P |,
corresponding to the cost of deleting the (|Q| − |P |) extra letters of Q (recall that
|P | ≤ |Q|) and substituting the remaining |P | letters. In Lemma 62 we prove that
alignment AU/R is indeed optimal and equality holds in Equation D.7.

Lemma 62. Alignment AU/R is optimal. Moreover, from any output XED of ETFS
on U we can obtain a supersequence P ′ of P in O(|Q|) time such that dc(P,Q) =
|P ′| − |P |+ dc(P

′, Q) and there exists an optimal alignment of P ′ and Q, which does
not use any insertions.

The reader can probably share the intuition that alignment AU/R is optimal, at least
for the part F1F2F3 of string U . We prove that indeed no AB-pattern is aligned to any
part of F4 and that no P -pattern is aligned to F1F2F3 (see Example 32). The proof
of Lemma 62 consists of a case analysis combined with basic counting and bounding
arguments.

Example 32. Let P = KITTEN and Q = SITTING over Σ = {E, G, I, K, N, S, T}. We
define a new alphabet Σ′ = Σ t {a, b, c1, c2, c3, d, e, f, g} and a new string U(P,Q) =
F1F2F3F4 over Σ′ as follows (recall that x = 2|Q|, so 2x+ 2 = 4Q+ 2 = 30):

F1 = aabaabaabaabaabaabaabaab . . . aabaae

F2 = c1dKc2c3c1dIc2c3c1dTc2c3c1dTc2c3c1dEc2c3c1dNc2c3

F3 = aaeaaeaaeaaeaaeaaeaaeaae . . . aaeaa

F4 = c1fSc2c3c1fIc2c3c1fTc2c3c1fTc2c3c1fIc2c3c1fNc2c3c1fGc2c3

We also set k = 5 and define the set I of non-sensitive pattern occurrences over U as
follows:

I = {0, 3, 6, 9, . . . , 6x} ∪ {6x+ 6, 6x+ 11, 6x+ 16, . . . , 6x+ 1 + 5|P |}.

We thus have the following sequence of occurrences of non-sensitive patterns:

aabaa, aabaa, aabaa, . . . , aabaa (29 occurrences)

c1dKc2c3, c1dIc2c3, c1dTc2c3c1dTc2c3, c1dEc2c3, c1dNc2c3 (6 occurrences).

Therefore, the corresponding regular expression R is

R = 	 aabaa⊕. . .⊕aabaa⊕c1dKc2c3⊕c1dIc2c3⊕c1dTc2c3c1dTc2c3⊕c1dEc2c3⊕c1dNc2c3 ⊗.

We now show the crucial fragment of alignment AU/R: how F4 is aligned with the
P -patterns.

195

-c1fSc2c3-c1fIc2c3-c1fTc2c3-c1fTc2c3-c1fIc2c3-c1fNc2c3c1fGc2c3
#c1dKc2c3#c1dIc2c3#c1dTc2c3#c1dTc2c3#c1dEc2c3#c1dNc2c3# fGc2c3

Observe that the cost of the above alignment under unit cost equals to 15: the cost of 4
P -pattern matches (8), plus the cost of 2 P -pattern substitutions (6), plus the cost of 1
gadget insertion (1). It can be readily verified that d(1,6,3,2)(KITTEN, SITTING) = 15.

Lemma 62 implies the following result.

Corollary 36. dE(U,XED) = 4.5(|P |+ |Q|) + d(2.5,2.5,1,0)(P,Q).

Given that constructing U takes O(n) time, Corollary 36 tells us that, if we can
compute dE(U,XED) in strongly subquadratic time, then we can also compute dc
between any two strings in strongly subquadratic time contradicting SETH. In fact, to
prove that the output string of ETFS cannot be computed in strongly subquadratic
time either, we show that d(2.5,2.5,1,0) can be obtained by solving ETFS twice and O(n)
additional operations.

By Lemma 62, from the output XED of the ETFS algorithm, we can obtain a
supersequence P ′ of P in O(n) time such that dc(P,Q) = dc(P, P

′) + dc(P
′, Q) and no

insertions are required to optimally align P ′ and Q. There also exists a supersequence
Q′ of Q such that dc(P,Q) = dc(P, P

′) + dc(Q
′, Q) + dc(P

′, Q′) and some optimal
alignment of P ′ and Q′ which aligns each P ′[i] with Q′[i] through either a match or a
substitution. One such Q′ is the string obtained by taking the alignment of P ′ and Q
given by ETFS and inserting aligned letters of P ′ into the gaps of Q. The edit distance
of Q and P is

dc(P, P
′)+dc(Q,Q

′)+d(P ′, Q′) = |P ′|−|P |+ |Q′|−|Q|+
|P ′|−1∑
i=0

I[P ′[i] 6= Q′[i]], (D.8)

which can be computed in O(n) time once we know P ′ and Q′.
Note that by using ETFS on U(Q,P ′), we could find a supersequence Q′′ of Q such

that dc(P,Q) = dc(P, P
′) + dc(Q,Q

′′) + dc(P
′, Q′′) and no deletions are required to

optimally align P ′ and Q′′. It is not necessarily the case that we do not need any more
insertions, though, as optimal alignments are not unique. We now show that we can
still compute an appropriate Q′ by changing c.

Let Qc be the set of supersequences Q′′ of Q with minimal dc(Q
′′, Q)+dc(P

′, Q′′) and
no deletions needed in the alignment of P ′ and Q′′. Note that there exists some Q′ ∈ Qc
such that |P ′| = |Q′|. Increasing the cost of deletion by ε, dc(Q

′′, Q) + dc(P
′, Q′′)

increases by at least ε(|P ′| − |Q|) with equality if and only if |Q′′| = |P ′|. Since
|Q′| = |P ′|, no deletions implies no insertions. Therefore it suffices to find the insertions,
when aligning P ′ and Q with weights c′ = (2.5, 2.5 + ε, 1, 0) for some ε > 0. We find
these insertions by running the ETFS algorithm on U(G(Q), G(P ′)) with k = 5, where

G(V) =
∏|V |−1
i=0 (V [i]g) for any string V ∈ (Σ t {a, b, c1, c2, c3, d, e, f})∗, and with the

set of non-sensitive pattern occurrences

I = {0, 3, 6, 9, . . . , 6x′} ∪ {6x′ + 6, 6x′ + 11, 6x′ + 16, . . . , 6x′ + 1 + |Q|},

where x′ = 2|G(P ′)|. The solution to this new problem corresponds to an optimal
alignment of G(Q) and G(P ′) with c = (2.5, 2.5, 1, 0), which in its turn corresponds to

196

an optimal alignment of Q and P ′ with weights c′ = (5, 5, 1, 0) ∼ (2.5, 2.5 + 5, 1, 0) by
Lemma 61. We first carefully define what properties such a corresponding alignment
should satisfy, and then prove that all optimal alignments of G(Q) and G(P ′) are indeed
of this form.

Definition 20. The alignment of G(P ′) and G(Q) corresponding to an alignment
AP ′/Q of P ′ and Q is defined as follows:

• If P ′[i] is aligned with Q[i] in AP ′/Q, then G(P ′)[2i] and G(P ′)[2i+ 1] are aligned
with G(Q)[2i] and G(Q)[2i+ 1], respectively.

• If P ′[i] is deleted in AP ′/Q, then G(P ′)[2i] and G(P ′)[2i+ 1] are deleted.

• If Q[i] is inserted in AP ′/Q, then G(Q)[2i] and G(Q)[2i+ 1] are inserted.

Lemma 63. Let P ′, Q ∈ Σ∗ such that there exits an optimal alignment of P ′ and Q
which does not include any insertions. Each optimal alignment of G(P ′) and G(Q) with
respect to cost c = (2.5, 2.5, 1, 0) corresponds to an optimal alignment of P ′ and Q with
weights c′ = (5, 5, 1, 0).

Proof. Let the number of insertions, deletions, substitutions and matches in some
optimal alignment AP ′/Q of P ′ and Q be w, x, y and z respectively. The cost of AP ′/Q
with respect to c′ is 5w + 5x + y. The corresponding alignment of G(P ′) and G(Q)
has 2w insertions, 2x deletions, y substitutions and 2z + y matches, and its cost with
respect to c is (2w) · 2.5 + (2x) · 2.5 + y · 1 + (2z + y) · 0 = 5w + 5x + y. Therefore
dc(G(P ′), G(Q)) ≤ dc′(P ′, Q). It remains to be shown that equality holds.

Consider an optimal alignment AG(P ′)/G(Q) of G(P ′) and G(Q). We will show that
we can transform AG(P ′)/G(Q) into one corresponding to an alignment of P ′ and Q
without increasing the edit distance. Consider the rightmost P ′[i] and Q[j] where the
corresponding alignment fails, and call them x and y. There are 13 possibilities for
their alignment:

Blue letters are original letters of G(Q), red letters are deleted letters from G(P ′), dots
are arbitrary strings and dashes denote gaps. Note that configurations 1, 7 and 13 are
already properly aligned. Moreover, the cost can be reduced for configurations 2, 3, 4,
5, 6, 8, 9, 11 and 12 by deleting red letters and shifting blue ones. This only leaves
configuration 10. Here there are 3 subcases:

• If x is aligned with an x, there must be a g between x and y. We can align this
g with G(P ′)[2i] and move to configuration 13 without increasing the cost nor
changing letters.

• If x is aligned with an x, we move an adjacent inserted letter to this place and
reduce the cost, which is a contradiction.

197

• Otherwise, x is aligned with a different letter. In this case we can realign it with
y without increasing the cost or changing letters.

Since there is a corresponding alignment for the output string, equality holds.

Therefore the output string is equal to G(Q′) for some Q′ ∈ Qc. We can infer Q′ in
O(n) time and compute dc(P,Q) using Equation D.8. However, since dc(P,Q) could
not be computed in strongly subquadratic time given SETH, we conclude that ETFS
cannot be computed in strongly subquadratic time either, unless SETH is false, thus
proving Theorem 35.

D.4 Final Remarks

The following questions remain unanswered. Can ETFS be solved in O(n2) time? Can
ETFS be solved in strongly subquadratic time when |S| = O(1)?

198

Appendix E

Reverse-Safe Text Indexing

Key Points

Problem. Data structures are the workhorse of many data analysis applications, that
are often fueled by data collected from individuals and have led to justified privacy
concerns. It is thus necessary to guarantee that using data structures does not
lead to the reconstruction of the stored individuals’ data.

Model. We consider a setting where a large group of users want to query a dataset
directly via a data structure which prevents the reconstruction of the data. To
this end, we introduce a novel encoding model that enables the construction of
reverse-safe data structures (RSDSs). These are data structures that prevent the
reconstruction of the data they encode (i.e., they cannot be easily reversed). The
aim of an RSDS is to make the reconstruction of a dataset sufficiently unlikely, so
that an adversary cannot infer the dataset based on the query answers, but at
the same time the RSDS stores as many answers to useful queries as possible. In
addition, the RSDS should be constructed efficiently and have size close to the
size of the original dataset it encodes.

Included Works

This chapter presents the results of the paper Reverse-Safe Text Indexing, submitted
to the Journal of Experimental Algorithmics. This paper is an extension of Reverse-
Safe Data Structures for Text Indexing [55], which I presented at the SIAM
Symposium on Algorithm Engineering and Experiments (ALENEX 2020).

E.1 Introduction

Data structures organize data allowing for their efficient access and modification. They
are thus the workhorse of many data analysis applications, such as clustering and outlier
detection (e.g., through indexes for k-nearest neighbors join queries [67]), frequent
pattern mining (e.g., through FP-trees [190]), document retrieval (e.g., through inverted

199

indexes [265]), graph pattern matching (e.g., through graph indexes [356]), and range
search in databases (e.g., through R-trees [186]).

These applications are often fueled by data collected from individuals, such as
location, genomic, or customer data, and have led to justified privacy concerns [329].
To alleviate these concerns and comply with legislation such as HIPAA [125] in the
US and GDPR [291] in the EU, it is necessary to guarantee that using data struc-
tures does not lead to the reconstruction of the stored individuals’ data. This is a
fundamentally different privacy goal than that of existing privacy-preserving techniques,
such as anonymization [99, 98, 368, 191], sanitization [354, 172, 187, 72, 256, 53], query
auditing [282], or access control [61]. Anonymization aims at preventing the disclosure
of individuals’ identities and/or sensitive information. Sanitization aims at preventing
the mining of confidential knowledge. Query auditing aims at preventing answering
aggregate queries that leak private information. Access control is the selective restriction
of access to some parts of a database. Our privacy goal is also different from that
of encryption techniques, such as searchable encryption [62, 247, 303], which aim to
prevent unauthorized parties from accessing the data.

We consider a setting where a large group of users want to query a dataset directly
via a data structure which prevents the reconstruction of the data. To this end, we
introduce a novel encoding model that enables the construction of reverse-safe data
structures (RSDSs). The ultimate aim of an RSDS is to make the reconstruction of a
dataset sufficiently unlikely, so that an adversary cannot infer the dataset based on
the query answers, but at the same time the RSDS stores as many answers to useful
queries as possible in order to support applications. In addition, the RSDS should be
constructed efficiently and have size close to the size of the original dataset it encodes.
Our idea is inspired by encoding data structures (EDSs) [305]. The ultimate aim of an
EDS is to break the information-theoretical lower bound, which is required to store a
dataset, by storing only the answers to useful queries (e.g., range queries [149, 177] or
nearest largest value queries [194]).

Given a data structure D, we denote by AD its set of consistent datasets: all datasets
with the same set of answers as the answers stored by D. Let us denote αD = |AD|.
Given an integer threshold z > 1, which we call the privacy threshold, we say that D
is z-RSDS if and only if αD ≥ z. A large z implies strong data privacy because an
adversary cannot distinguish between the αD ≥ z consistent datasets, which implies
that it is less likely that the adversary infers the dataset used to construct D in the
first place. Still, it could be the case that D stores answers to many useful queries.

The notion of z-RSDS is related to the privacy notion of z-anonymity [316]. This
notion was introduced in the context of a relational database, where each record
corresponds to a different individual. The notion of z-anonymity dictates that at least
z > 1 records of the database must have the same values over a set of attributes that
may lead to the disclosure the identity of individuals in the database. The privacy
goal is to prevent an adversary from distinguishing an individual among at least z
individuals in the database.

In this work, we consider string data (sometimes called text, word, or document
depending on the context). A string is a sequence of letters from an alphabet. A string
may represent various types of confidential information about individuals, including
their movement history [346], diagnosed diseases [339], purchased products [342], or

200

DNA sequence [263]. Our goal is to construct a z-RSDS for string data which allows for
decision and counting pattern matching queries to be accurately and efficiently answered.
Decision queries are fundamental for intrusion detection [250], activity monitoring [354],
as well as for cataloguing human genetic variation [48], while counting queries are
fundamental for pattern mining that is central in application domains ranging from
bioinformatics [321] to marketing [256] and to public health [41].

Pattern matching queries in strings are answered efficiently by means of indexing
data structures. These structures enable fast access to the substrings of a string, which
is important in many data analysis applications [184]. The main idea behind indexing a
string S for efficient substring querying is that every substring of S is a prefix of some
suffix of S. Indexing data structures thus arrange the suffixes of S lexicographically in
an ordered tree data structure. One popular such data structure is the suffix tree [357].
The suffix tree of S is the compacted trie of all the suffixes of S. The term compacted
refers to the fact that it reduces the number of nodes by replacing each maximal
branchless path segment with a single edge, and it uses intervals over S to store the
labels of these edges. This ensures that the suffix tree has size linear in |S|: it has no
more than 2|S| nodes. Importantly, the suffix tree answers several types of pattern
matching queries over S in optimal time; see [184] for a nice exposition.

However, the suffix tree of S, which provides (random) access to all substrings of
S, is not a z-RSDS, because it uniquely represents S. The privacy-utility trade-off
we consider here is thus to provide access only to the substrings of S whose length is
at most d, for some d ∈ [1, |S|). In particular, we want our z-RSDS to support the
following types of on-line queries.

Decision Query: check if a string P of length m ≤ d is a substring of S.

Counting Query: count the occurrences of a string P of length m ≤ d in S.

Given a string S and a privacy threshold z, the computational challenge is to
compute the maximal d for which a z-RSDS for indexing S can be constructed. The
maximality of d offers data utility, since any query for a substring of S of length d or less
has the same answer, irrespectively of whether it is posed on S or on the z-RSDS. The
fact that the data structure is z-reverse-safe offers data privacy, since the probability
that an adversary infers S, based solely on knowledge of the z-RSDS, is no more than
1/z.

We are now in a position to formally define the main computational problem
considered in this chapter1.

Problem 1. Given a string S of length n and a privacy threshold 1 < z ≤ nc, for
some constant c ≥ 1, construct a z-RSDS that answers decision and counting pattern
matching queries for any pattern of length m ≤ d, such that d is maximal, or output
FAIL if no such d exists.

In Problem 1, d is maximal and uniform for all queries. Another related problem
definition would be to maximize the total number of supported queries, not necessarily
of uniform maximal length.

1The problem of inferring a string from a text indexing data structure (see [223] and references
therein) is conceptually related but fundamentally different to the problem investigated here.

201

Our Contributions. We consider the word-RAM model of computations with w-bit
machine words, where w = Ω(log n), for stating our results. The main theoretical result
of this chapter is the following, where ω denotes the matrix multiplication exponent2.

Theorem 37. Given a string S of length n, there exists an O(nω log d)-time algorithm
to construct an O(n)-sized z-RSDS over S for a maximal d that answers decision and
counting pattern matching queries, for any pattern of length m ≤ d, in the optimal
O(m) time per query. The algorithm outputs FAIL if no such d exists.

The main ingredients of our construction algorithm include (truncated) suffix
trees [280, 357], a combinatorial theorem on de Bruijn graphs [203, 221], and fast
matrix multiplication [362, 242]. To the best of our knowledge we are the first to
combine these ingredients. We show that, despite the nω factor, our engineered imple-
mentation can construct z-RSDSs over million-letter texts in only a few minutes. To
achieve this practical performance, we rely on further theoretical insight. We also show
that plugging our method in data analysis applications gives insignificant or no data
utility loss. Furthermore, we show how our technique can be extended at no extra cost
to construct a z-RSDS that supports applications under two realistic adversary models:
one with positive adversarial knowledge (an adversary knows a pattern that occurs
in S); and the other with negative adversarial knowledge (an adversary knows that a
pattern does not occur in S). We also show how the z-RSDS for both adversary models
can be generalized to an arbitrary number of patterns. Both positive and negative
adversarial knowledge have been studied in the context of z-anonymity [249, 35]. The
works in [249] and [35] have a different privacy goal than ours (preventing the disclosure
of identities of individuals and/or their sensitive information vs. preventing dataset
reconstruction) and do not consider a string but a relational and a set-valued dataset,
respectively. Finally, we show a different z-RSDS for decision pattern matching queries,
whose size can be sublinear in n.

Organization of the Chapter. The basic definitions and notation are introduced in
Section E.2. In Section E.3, we propose a z-RSDS for text indexing. In Section E.4, we
present our construction algorithm. We then describe a series of practical improvements
in Section E.5. In Section E.6, we present our implementation and extensive experimental
results. In Section E.7, we discuss how to construct an adapted version of our z-RSDS
under two different adversary models. In Section E.8, we show a different z-RSDS for
answering decision pattern matching queries. We conclude this chapter in Section E.9
with some final remarks and open problems.

E.2 Preliminaries

We fix a string S = S[0] · · ·S[n − 1] over Σ = {1, . . . , nO(1)}. We will assume that S
contains at least two different letters, otherwise the problem considered in this chapter
is trivial. Given a positive integer k, we denote by (S)k,i the length-k substring of S
starting at position i, i.e., (S)k,i = S[i . . i+ k− 1], for all 0 ≤ i < n− k+ 1. A string P

2At the time of writing this thesis, ω < 2.373 [362, 242].

202

has an occurrence in S or, more simply, it occurs in S if P = (S)|P |,i, for some i. An
occurrence of P is thus characterized by its starting position i in S.

We will denote by GS,k = (VS,k, ES,k) the weighted de Bruijn graph of order k over
S: a formal definition can be found in Section A.2 (inspect Fig. E.3 for an example).

E.3 A z-RSDS for Text Indexing

Let S be a string of length n. For a positive integer d, we define a d-substring of S as a
substring of length d of S, or a suffix of S whose length is less than d.

The d-truncated suffix tree of a string S, denoted by Td(S), is a path-compacted
trie representing every d-substring of S [280]. We make use of a terminating letter
/∈ Σ for technical purposes. Formally, Td(S) is a rooted tree satisfying the following
conditions (see Fig. E.1 for an example):

1. Each edge is labeled with a non-empty substring of string S# encoded as an [i, j]
interval over [0, n].

2. Each internal node v, except possibly the root, has at least two children. The
labels of edges from v to its children start with distinct letters.

3. Let L(v) denote the string obtained by concatenating labels on the path from the
root to node v. For every d-substring U , there is exactly one leaf w such that
U = L(w) (if |U | = d) or U# = L(w) (if |U | < d). For each leaf w, there is at
least one d-substring U such that L(w) = U or L(w) = U#.

4. Each node v other than the root has a counter that stores the number of substrings
of string S# that are equal to L(v).

Therefore, the number of leaves is at most n and the total number of nodes is less
than 2n. Recall that the label of the edge between a node u and its child v, denoted by
label(u, v), is represented implicitly by an interval over [0, n]. Thus the space occupied
by Td(S) is O(n). The children of internal nodes are indexed by the alphabet letters
using perfect hashing to ensure O(1)-time access [154]. Importantly, Td(S) supports
the following on-line pattern matching operations:

Decision Query: Check if a string P of length m ≤ d is a substring of S in O(m)
time.

Counting Query: Count the occurrences of a string P of length m ≤ d in S in O(m)
time.

Theorem 38 ([280, 95]). Given a string S of length n and 0 < d ≤ n, Td(S) has size
O(n) and it can be constructed in O(n) time. Td(S) answers decision and counting
pattern matching queries, for any pattern of length m ≤ d, in the optimal O(m) time
per query.

The following off-line operations are also supported:

Frequent Substrings: Find all most frequent substrings, for all lengths 1, 2, . . . , d, in
O(n) time.

203

Figure E.1: Td(S) for S = abaabbabba and d = 3. We omit edges whose labels start with
letter # for clarity.

Figure E.2: Let S = abaabbabba and S′ = abbaabbaba. S ∼3 S′ ⇐⇒ TRIE3(S) =
TRIE3(S′).

Repeated Substrings: Find all longest repeated substrings of length at most d in
O(n) time.

Unique Substrings: Find all shortest unique substrings of length at most d in O(n)
time.

We next consider a different representation of Td(S) towards defining the notion
of z-reverse-safe data structure. If label(u, v) is represented explicitly by a string we
denote the resulting data structure by TRIEd(S). In this case, string S is not part of
the data structure, and thus TRIEd(S) does not, generally, define S uniquely.

Definition 21 (d-Equivalent Strings). Given the set of all possible strings of length n
over an alphabet Σ and an integer d, string S is d-equivalent to string S′ if and only

204

if TRIEd(S) = TRIEd(S
′). In this case, we write S ∼d S′ and say that S′ is consistent

with Td(S).

See Fig. E.2 for an example. We can now formally define a z-reverse-safe data
structure for text indexing.

Definition 22 (z-RSDS for Text Indexing). Given an integer z > 1, Td(·) is called
z-reverse-safe if and only if there exist at least z distinct strings that are consistent with
Td(·).

In what follows, we denote the set of strings that are consistent with Td(S) by Ad(S),
and |Ad(S)| by αd(S), for d ∈ [1, n]. We omit (S) when this is clear from the context,
and we also set α0(S) =∞ for completeness.

E.4 Constructing z-RSDS

Clearly, Tn(S), the (non-truncated) suffix tree of S, has αn = 1 (i.e., it uniquely
represents S), so it can never be a solution to Problem 1 since z > 1, by definition.

The following lemma is important for efficiency.

Lemma 64. The sequence α0, α1, . . . , αn is monotonically non-increasing.

Proof. Let Ad be the set of strings consistent with Td, d ∈ [1, n], and αd = |Ad|. Further
let S be any element of Ad. By construction, if U is a d-substring of S, then U = L(w)
or U# = L(w), for some leaf w of Td. Every (d− 1)-substring S[i . . i+ d− 2] of S is a
prefix of the d-substring S[i . . i+ d− 1] of S. Thus string S is consistent with Td−1, the
path-compacted trie that represents every such (d− 1)-substring, and thus S ∈ Ad−1.
This implies the following relation: An ⊆ An−1 ⊆ · · · ⊆ A1. The statement follows
directly from this relation and the fact that α0 =∞.

By Lemma 64, for increasing d, Td(S) generally decreases αd and increases utility.
We thus need an algorithm to compute the maximum possible d that results in a z-RSDS.
We next provide an algorithm, called z-RC (for z-RSDS Construction), to find this d.

As can be seen in the pseudocode, z-RC performs binary search on n (the length of
S), computing αd until d results in a z-RSDS and d is maximal. An alternative is to
perform exponential search instead of binary search. We refer to this variation of z-RC
as z-RCE (for z-RSDS Construction Exponential). At this point, the z-RSDS Td(S′) is
output, where S′ is an element of Ad chosen at random, and the algorithm terminates.
If ` > 0 and α`−1 = z, then α`−1 is the rightmost element that equals z. Even if such
an element is not found, n− ` is the number of elements that are smaller than z.

The computational challenge is thus to implement the check of Line 5 efficiently and
to find a consistent S′ when this is possible (Line 11). To this end, we start with the
following simple yet crucial observation.

Observation 39. Given two strings X and Y , X is d-equivalent to Y if and only if
X and Y have the same multisets of substrings of length i, for every i ∈ [1, d].

In the terminology of combinatorics on words, d-equivalence is known as d-abelian
equivalence [222]. We report a lemma from [222], which gives several equivalent condi-
tions that characterize d-equivalence.

205

Algorithm 12: z-RC

Input: string S of length n and integer z > 1
Output: d and Td(S′), for some S′ ∈ Ad, or FAIL

1 `← 0; r ← n;
2 if ` ≥ r then
3 go to Line 10;

4 d← b `+r2 c;
5 if αd(S) ≥ z then
6 `← d+ 1;
7 else
8 r ← d;
9 go to Line 2;

10 if ` > 0 then
11 output d← `− 1 and Td(S′), for some S′ ∈ Ad
12 else
13 output FAIL

Lemma 65 ([222]). Let X and Y be two strings of length at least d that have the same
multiset of substrings of length d. The following are equivalent:

1. X and Y have the same multiset of substrings of length i for every 1 ≤ i ≤ d;

2. X and Y have the same prefix of length d− 1 and the same suffix of length d− 1;

3. X and Y have the same prefix of length d− 1;

4. X and Y have the same suffix of length d− 1.

Lemma 65 tells us that we should rely on the construction of weighted de Bruijn
graphs over string S in order to compute αd(S). The weighted de Bruijn graph of order
d over string S is denoted by GS,d = (VS,d, ES,d). Recall that its set of vertices VS,d is
the set of distinct substrings of S of length d − 1 (we implicitly identify a vertex by
the string it represents) and there is an edge (u, v) ∈ ES,d with multiplicity m if and
only if u[0] · v = u · v[d− 2] and this string occurs in S exactly m times. We borrow the
terminology used in [229]. Let d−(u) and d+(u) be, respectively, the in- and out-degree
of vertex u of GS,d. Let s and t be the vertices of GS,d corresponding, respectively, to
the prefix and to the suffix of length d− 1 of S. Since any weighted de Bruijn graph is
either Eulerian (if s = t) or semi-Eulerian (if s 6= t), we have that d+(u) = d−(u) for
all u with the possible exception of the two nodes s and t for which d−(s) = d+(s)− 1
and d+(t) = d−(t) − 1, if s 6= t. Clearly, S corresponds to an Eulerian path in GS,d
that starts at s and ends at t 6= s (if s = t, then it corresponds to an Eulerian cycle
starting from s). The graph GS,d may contain other Eulerian paths (resp. cycles).
Notice, however, that if two distinct Eulerian paths (resp. cycles) traverse the vertices
of GS,d in the same order, but the edges in different order, then they give rise to the
same string. We call these Eulerian paths (resp. cycles) equivalent. We summarize these
observations into the following statement, which is crucial for the correctness of the
z-RC algorithm.

206

Figure E.3: GS,d with S = abaabbabba and d = 3 (on the left); and the set of d-equivalent
strings (on the right).

Observation 40. (a) If S ∼d S′, then S′ corresponds to an Eulerian path in GS,d
that starts from vertex s and ends at vertex t 6= s (if s = t, then it corresponds to an
Eulerian cycle starting from s). (b) The number of distinct strings that are d-equivalent
to S is the number of non-equivalent Eulerian paths (resp. cycles) in GS,d.

The number of non-equivalent Eulerian paths (resp. cycles) in GS,d can be computed
via the following theorem, which is attributed to Hutchinson [203].

Theorem 41 ([203], cf. [229, 221]). Let A = (auv) be the adjacency matrix of the
weighted de Bruijn graph GS,d = (VS,d, ES,d), with both auv > 1 (multi-edges) and
auu > 0 (self-loops) allowed. Let ru = d+(u) + 1 if u = t or ru = d+(u) otherwise. The
number of non-equivalent Eulerian paths starting at s and ending at t (resp. the number
of non-equivalent Eulerian cycles starting at s, when t = s) is given by

(detLS,d) ·

(∏
u∈VS,d

(ru − 1)!

)
·

(∏
(u,v)∈ES,d

auv!

)−1

, (E.1)

where LS,d = (luv) is the |VS,d| × |VS,d| matrix with luu = ru − auu and luv = −auv.

Let us denote by |S|x the number of occurrences of a string x in S. Since, by
definition, ru = |S|u and auv = |S|u·v[k−2] = |S|u[0]·v, Eq. E.1 is equivalent to

(detLS,d) ·

(∏
u∈VS,d

(|S|u − 1)!

)
·

(∏
a∈Σ

|S|ua!

)−1

. (E.2)

Eq. E.2, together with a combinatorial study of the strings that belong to the same
d-equivalence class, can be found in [221]. An example is provided with Fig. E.3.

It is, however, not immediate that Eq. E.1 (or the equivalent Eq. E.2), involved in
the check of Line 5 in algorithm z-RC, can be computed efficiently. We show this next,
starting with a known fact on de Bruijn graphs.

Fact 42 ([89]). Given a string S of length n and d < n, its weighted de Bruijn graph
GS,d can be constructed in O(n) time.

Lemma 66. detA of an n× n non-singular matrix A can be computed in O(nω) time.

207

Proof. The decomposition of a non-singular matrix A = LU , where L and U is a lower
and upper triangular matrix, respectively, is known as LU decomposition and can be
computed in the same time as matrix multiplication [84]. Given this decomposition,
the determinant can be computed as detA = detL · detU =

∏n
i=1 lii ·

∏n
i=1 uii. This is

because the determinant of any triangular matrix (such as L and U) is the product of
its diagonal entries.

Lemma 67. Given detLS,d, the check of Line 5 in algorithm z-RC can be performed
in O(n log n) time.

Proof. We unfold all factorials involved in the two products of Eq. E.1. Let us first
consider the leftmost product. Observe that the total number of multiplications involved
is no more than n because the sum of out-degrees over all nodes of GS,d is no more than
n. Moreover, observe that each factor of the product is represented by log n bits because
its value is no more than n. We assume a word-RAM algorithm that takes O(n1 + n2)
arithmetic operations to multiply an n1-bit integer by an n2-bit integer [232] resulting in
an (n1 + n2)-bit integer. Using a log n-depth divide and conquer, we can multiply these
n integers in time O(n21 20 log n + n

22 21 log n + . . . + n
2logn 2logn−1 log n) = O(n log n).

Using an analogous argument, the rightmost product can be computed in O(n log n)
time, because GS,d has no more than n edges, which implies that the product has at
most n factors.

The leftmost product results in an (n log n)-bit integer (we multiply n log n-bit
integers). By Hadamard’s inequality [175] an upper bound on the value of detLS,d is
Bn ·nn/2, where B is an upper bound on the values in LS,d. Since here B ≤ n, an upper
bound on detLS,d is nn · nn/2 = n3n/2, which can be expressed using log(n3n/2) =
1.5n log n bits. Multiplying detLS,d by the leftmost product is thus done in O(n log n)
time. The rightmost product also results in an (n log n)-bit integer, which we multiply
by z. Since z ≤ nc is a c log n-bit integer, this is done in O(n log n) time. Thus, Line 5
is checked in O(n log n) time if detLS,d is known.

We arrive at the main theoretical result.

Theorem 37. Given a string S of length n, there exists an O(nω log d)-time algorithm
to construct an O(n)-sized z-RSDS over S for a maximal d that answers decision and
counting pattern matching queries, for any pattern of length m ≤ d, in the optimal
O(m) time per query. The algorithm outputs FAIL if no such d exists.

Proof. The correctness of z-RC algorithm follows by Lemma 64 and Observation 40.
The correctness of querying follows by the definition of d-equivalent strings.

The construction time follows by Fact 42, Lemmas 66-67, Theorem 38, and the
binary search cost over [0, n]. Specifically, the check of Line 5 is implemented in O(nω)
time by Fact 42 and Lemmas 66-67. If we find a valid d, we choose an Eulerian path
(resp. cycle) of GS,d to construct a string S′ and then construct Td(S′) using Theorem 38
in O(n) time (Line 11). The z-RSDS size and the time per query follow by Theorem 38.
If no such d exists the algorithm outputs FAIL.

If we apply exponential search (instead of binary search) as in z-RCE, we get an
O(nω log d)-time construction.

208

Colbourn et al. [106] gave an algorithm allowing for sampling of a random arbores-
cence rooted at a given node to be carried out in the same time as counting all such
arborescences, which forms the basis of counting Eulerian paths and cycles in directed
multigraphs. Hence, by plugging the algorithm of Colbourn et al. in our construction
algorithm (Line 11), we can also choose a string S′ ∼d S randomly in the same time
complexity.

E.5 Engineering the z-RC Algorithm

In what follows we describe a series of practical improvements, which are based on
theoretical insight.

E.5.1 Improvement I: Reducing the BS Interval

Lemma 68. Let S be a string and r(S) be the length of a longest substring of S
occurring at least twice in S. Td(S) cannot be a z-RSDS over S if d ≥ r(S) + 2.

Proof. Let I be the set of substrings of length r(S) + 2 of string S. Having set I is a
sufficient condition for the unique reconstruction of S from I [145, 88]. This implies
that, if d ≥ r(S) + 2, Td(S) defines S in a unique way (i.e., αd = 1), and thus Td(S)
cannot be a z-RSDS (since by definition z > 1).

Note that the upper bound of r(S) + 1 can be computed in O(n) time using the
suffix tree of S [139], which is much faster than computing the bounds found by an
exponential search. This is because exponential search takes O(nω) time for each of its
iterations. As a consequence of Lemma 68, we can reduce the binary search interval
from [0, n] to [0, r(S) + 1] in O(n) time. Furthermore, it is known that r(S) tends to
log|Σ| n as n tends to infinity under a Bernoulli i.i.d. model (cf. [145]).

E.5.2 Improvement II: Checking Prefixes of S

Lemma 69. Let S be a string and P be a prefix of S. Further, let Ad(P) (respectively,
Ad(S)) be the set of strings that are consistent with Td(P) (respectively, with Td(S)). It
holds that αd(P) ≤ αd(S).

Proof. We show the lemma by showing that for any string X and any letter a, αd(X) ≤
αd(Xa). This implies that αd(P) ≤ αd(S). Indeed, by Lemma 65, it follows that if X ′

is d-equivalent to X, then X ′a is d-equivalent to Xa.

Lemma 69 lets us implement the check in Line 5 of the z-RC algorithm by operating
on the prefixes of S. The length of a longest substring of every prefix P of S occurring
at least twice in P can be computed by means of the longest previous factor (LPF)
array [115]. The LPF array gives, for each position i in S, the length of a longest
substring occurring both at i and to the left of i in S. We can thus construct an array
R, where R[i] stores the length of a longest substring occurring at least twice in the
prefix P = S[0 . . i] of S, by traversing the LPF array. Then, we only need to perform
the check αd(P) ≥ z when d < R[i] + 2. This is because of applying Improvement I

209

on P . The LPF array, and thus array R, can be computed both in O(n) time [115].
Note that R[i] ≤ R[i+ 1]. Thus, having R, we can find (whether there exists) a prefix
P = S[0 . . i] satisfying d < R[i] + 2, for all d, in O(n) time in total.

E.5.3 Improvement III: Sparse LU Decomposition

Let GS,d = (VS,d, ES,d) be the weighted de Bruijn graph for which we must compute
the determinant detLS,d. LS,d is a |VS,d| × |VS,d| non-singular matrix, where |VS,d|
is the number of distinct substrings of length d − 1 occurring in S. Hence we have
that |VS,d| ≤ min(|Σ|d−1, n− d+ 1). If |VS,d| = O(n1/ω), then detLS,d is computed in
O(n) time by Lemma 66. If |VS,d| = Θ(n), then LS,d is sparse: it has no more than
|VS,d|+n−d+1 non-zero elements, because in the worst case there is a non-zero element
for each edge and there are n − d + 1 edges with multiplicity 1. Thus, in any case,
LS,d cannot contain more than 2n− d+ 1 non-zero elements. We can therefore employ
highly-optimized algorithms for sparse LU decomposition (e.g., [171, 124]) to compute
detLS,d efficiently. Let flops(XY) be the number of multiplications of non-zero elements
performed while computing the product XY by conventional matrix multiplication.
The algorithm of [171], for instance, takes O(flops(LU) +m) time to compute the LU
decomposition of a matrix with m non-zero elements. Thus, in our case, computing
detLS,d takes O(flops(LU) + n) time.

E.6 Implementations and Experiments

E.6.1 Implementations

We have implemented the following algorithms in C++: (I) z-RC with Improvement III;
(II) z-RCB (for Binary search interval reduction), which implements Improvements
I and III; (III) z-RCE with Improvement III; and (VI) z-RCBP (for Binary search
interval reduction and Prefix checking), which implements Improvements I, II, and III.
Our implementation is available at: https://www.dropbox.com/s/rt5z50ro2o37h2s/
rsds_code.zip?dl=0 3. We have omitted the results of the versions of the algorithms
without Improvement III, because they were too slow to be practical.

For Improvement II, we have combined the idea described in Section E.5.2 with
exponential search: we start from an initial prefix P0 of S that has length |P0| = κ
and use it to perform the check in Line 5 of our algorithm in Section E.4. Due to
Lemma 69, we know that αd(P0) ≥ z implies αd(S) ≥ z; we thus check if αd(P0) ≥ z,
because this is clearly more efficient than checking αd(S) ≥ z. If αd(P0) < z, αd(S) ≥ z
may or may not hold. In this case, we consider a longer prefix of S that has length
|P1| = 21 · κ and proceed similarly. Clearly, significant computational savings can be
brought when the last considered prefix Pi has small length |Pi| = 2i · κ, while in the
worst case Pi = S, and the total cost of our algorithm with Improvement II is twice
the cost of the algorithm without it due to doubling. We also apply Improvement I
on these prefixes: if d ≥ R[i] + 2 for prefix Pi, we do not check αd(Pi) ≥ z, because
Lemma 68 already ensures that αd(Pi) = 1 < z.

3Our implementation will be made publicly available upon acceptance.

210

https://www.dropbox.com/s/rt5z50ro2o37h2s/rsds_code.zip?dl=0
https://www.dropbox.com/s/rt5z50ro2o37h2s/rsds_code.zip?dl=0

0

500

1000

10
1

10
2

10
3

10
4

10
5

z

d

z−RCBP

(a) EC

0

200

400

10
1

10
2

10
3

10
4

10
5

z

d

z−RCBP

(b) MSN

1195

1197

1197

1197

1e+02

1e+05

1e+08

1e+11

0 1 2 3
w

#
 f
re

q
.
p
a
tt
e
rn

s
 l
o
g
 s

c
a
le

z−RCBP

(c) EC

37

38
41

41

1e+02

1e+05

1e+08

1e+11

0 1 2 3
w

#
 c

lo
s
e
d
 f
re

q
.
p
a
tt
e
rn

s
 l
o
g
 s

c
a
le

z−RCBP

(d) EC

Figure E.4: Length d for different z values for (a) EC and (b) MSN. Number of (c) frequent
patterns and (d) closed frequent patterns with up to w ∈ [0, 3] wildcards mined from EC using
minSup = 1.8 · 10−6. The length of the longest mined pattern is on the top of each bar.

For Improvement III, we used the Sparse LU decomposition function of the open-
source Eigen library (v. 3.3.7) [330], which is based on the algorithm of [124], to compute
detLS,d.

E.6.2 Experimental Setup and Datasets

We have evaluated z-RC, z-RCB, z-RCE and z-RCBP in terms of data utility and
efficiency. We do not compare our methods to existing approaches, because they are
not alternatives to our work as mentioned in Section E.1.

We used the following publicly available datasets: MSNBC (MSN), which contains
page categories visited by users on msnbc.com over a 24-hour period; the complete
genome of Escherichia coli (EC); and a dataset containing 27 Primate mitochondrial
genomes (PR). MSN was used in [172, 187, 256], EC was used in [53], and PR was used
in [343]. We also generated a uniformly random string of length 50M over an alphabet
of size 10, and used its prefixes of length 1M, . . . , 50M as synthetic datasets, referred to
as SYN1M, . . . ,SYN50M, respectively. Each dataset contains a single string, except for
PR which contains 27 strings (one for each mitochondrial genome). In PR, we applied
our methods to each string independently. Table E.1 summarizes the characteristics of
the datasets.

To evaluate data utility, we report the length d found by our methods for different

211

msnbc.com

Dataset Data Total Alphabet
domain length n size |Σ|

MSN Web 4,698,764 17
EC Genomic 4,641,652 4
PR Genomic 446,246 (27 strings) 4
SYN Synthetic 50,000,000 10

Table E.1: Characteristics of datasets used.

values of z, and also investigate the accuracy of performing two classes of data analysis
applications: pattern mining [375] and phylogenetic tree reconstruction [343]. Unlike
decision and counting pattern matching queries of length at most d, which are answered
exactly using the z-RSDS constructed by our methods, these applications are not
guaranteed to be performed accurately on the output encoding. Yet, we show that
plugging in our approach gives insignificant or no data utility loss in these applications.

We now discuss each of these applications.
(Closed) Frequent Pattern Mining. Frequent patterns and closed frequent patterns in
string datasets model knowledge that aids decision making [33, 321] and can be used for
data classification and clustering [375]. Given a string S and a user-specified threshold
minSup, a pattern is frequent if its relative frequency in S, also referred to as support, is
at least minSup. A frequent pattern of S is closed if none of its superstrings has the
same relative frequency in S. Closed frequent patterns are typically fewer than the
frequent ones and they are mined much more efficiently. Their benefit is that they
uniquely determine the set of frequent patterns and their exact frequency. Our methods
allow mining the frequent and closed frequent patterns of length at most d and only
those. Thus, our methods preserve data utility well when the d computed is sufficiently
large for low minSup values. In our experiments, we used the algorithm of [33] to mine
a more general class of frequent and closed frequent patterns having up to w ∈ [0, 3]
occurrences of a wildcard letter �. A pattern with wildcards occurs in a string S if it is
a subtring of S after replacing the wildcard letters with alphabet letters (e.g., pattern
a��e occurs in S = babdeb). Mining patterns with wildcards poses a further challenge
to our approach, since (closed) frequent patterns with wildcards are a superset of the
(closed) frequent patterns and are typically longer.
Phylogenetic Tree Reconstruction. A phylogenetic tree illustrates the evolutionary
relationships among a set of species. To reconstruct phylogenetic trees, we applied
the methodology in [343] on the PR dataset. That is, we compute the pairwise
Average Common Substring with k mismatches (k-ACS) distance [349, 244] between
the 27 strings in PR, using the ALFRED-G [343] algorithm, and then apply the
neighbor-joining (NJ) algorithm [314] to reconstruct the phylogenetic tree. We apply
the methodology to S and to S′ ∼d S, S′ 6= S: intuitively, data utility is preserved
well when the phylogenetic tree for S is similar to the one for S′. Following [343], we
measured similarity using the normalized Robinson-Foulds (nRF) distance [310].

Unless otherwise stated, we used z = 100 and κ = 1000. All experiments ran on a
machine with an Intel Xeon E5-2640 at 2.66GHz and 160GB RAM.

212

280

280

280

281

1e+02

1e+05

1e+08

0 1 2 3
w

#
 f
re

q
.
p
a
tt
e
rn

s
 l
o
g
 s

c
a
le

z−RCBP

(a) MSN

280

280

280

281

1e+02

1e+05

1e+08

0 1 2 3
w

#
 c

lo
s
e
d
 f
re

q
.
p
a
tt
e
rn

s
 l
o
g
 s

c
a
le

z−RCBP

(b) MSN

0.00

0.05

0.10

0.15

0.20

0 1 2 3 4 5 6 7 8 9

k

n
R

F
 d

is
ta

n
c
e

z−RCBP

(c) PR

Figure E.5: Number of (a) frequent patterns and (b) closed frequent patterns with up to
w ∈ [0, 3] wildcards mined from MSN using minSup = 3.1 · 10−3. The length of the longest
mined pattern is on the top of each bar. (c) nRF distance vs. k between phylogenetic trees
constructed for S and for S′ ∼d S, S′ 6= S, using the k-ACS distance.

213

E.6.3 Data Utility

Recall that our approach allows for answering pattern matching queries of length at
most d in optimal time, and at the same time it prevents the reconstruction of the
original dataset. In this section, we demonstrate that z-RCBP (and z-RC, z-RCB,
which by design create the same output as z-RCBP), allow for other meaningful data
analysis tasks to be applied with insignificant or no utility loss.

Length d.

We first show that z-RCBP provides access to very long substrings of the original
dataset (i.e., the output length d is large). Figs. E.4a and E.4b show d for different
values of the privacy threshold z in EC and MSN, respectively. As expected, d decreases
when z increases. However, d is in the order of several hundreds, even when z is set to
100, 000. This implies (I) no accuracy loss for applying the pattern matching queries
described in Section E.3 on very long substrings and (II) strong privacy against dataset
reconstruction.

Frequent Pattern Mining.

We demonstrate that z-RCBP allows for accurately mining frequent and closed frequent
patterns with up to w ∈ [0, 3] wildcard letters at very low minSup values. To this aim, we
have computed the smallest possible value of minSup such that the mined frequent and
closed frequent patterns have length no more than d. We denote this value by τ . Clearly,
our method has no data utility loss for any minSup ≥ τ . For EC, the smallest such
minSup value (up to 8 decimal digits) was τ = 1.8 · 10−6. Figs. E.4c and E.4d show the
number and the maximal length of the mined patterns with minSup = τ = 1.8 · 10−6 for
EC. For MSN, the smallest such minSup value (up to 4 decimal digits) was τ = 3.1·10−3.
The results for mining MSN with minSup = τ = 3.1 · 10−3 in Figs. E.5a and E.5b are
qualitatively similar to those in Figs. E.4c and E.4d, respectively. The plots show that a
large number of (potentially interesting) patterns can still be mined from the randomly
selected S′, even if some of them occur a small number of times in S (since τ was very
low). Thus, our method permits the fundamental task of frequent pattern mining to be
performed accurately.

Phylogenetic Tree Reconstruction.

We next demonstrate that z-RCBP leads to phylogenetic trees constructed from S′ ∼d S,
S′ 6= S, which are either the same or very similar with respect to the nRF distance to
the phylogenetic trees constructed from S. Fig. E.5c shows the nRF distance between
these trees. The trees were obtained using the k-ACS distance for different k values in
[0, 9] and the NJ algorithm as in [343]. Note that the tree constructed from S was the
same to the one constructed from S′ in six out of ten cases, implying no data utility
loss, and in the remaining four cases the nRF had a very small value of 0.04, implying
insignificant data utility loss for this fundamental bioinformatics task.

214

(a) SYN1M, . . . ,SYN50M

0

300

600

900

10
1

10
2

10
3

10
4

10
5

10
6

z

R
u

n
ti
m

e
(s

)

z−RCBP
z−RCB
z−RCE

(b) SYN20M

0

200

400

600

10
1

10
2

10
3

10
4

10
5

2 ⋅ 10
7

κ

R
u
n

ti
m

e
(s

)

z−RCBP

(c) SYN20M

0.0

0.1

0.2

0.3

0.4

10
1

10
2

10
3

10
4

10
5

z

d
is

re
g
a

rd
e

d
 p

re
fi
xe

s

MSN
EC

(d) MSN and EC

Figure E.6: Runtime vs. (a) n (z-RC did not finish within 48 hours for SYN10M, . . . ,SYN50M).
Runtime vs. (b) z and (c) κ. (d) Ratio of disregarded prefixes vs. z.

E.6.4 Runtime

In this section, we show that, despite the nω factor, z-RCBP takes only a few minutes to
finish for million-letter texts. Fig. E.6a shows the runtime of z-RC, z-RCB, z-RCE, and
z-RCBP using the synthetic datasets as input. Recall that the largest synthetic dataset
is SYN and the other datasets are prefixes of SYN. z-RCBP was substantially more
efficient than all other algorithms and scaled better with the dataset size, confirming
the necessity of Improvements I and II for being able to apply our methodology to large
texts. On the other hand, z-RC was the slowest, and it did not finish within 48 hours
for SYN10M, . . . ,SYN50M. Note that z-RCE was more efficient than z-RC, since it
performs fewer iterations. The reason is that d < 20 for these datasets. In addition,
z-RCE was comparable to z-RCB. The reason is that d was very close to r(S) + 1.

We also measured the runtime of z-RCB, z-RCE, and z-RCBP for different z values
(see Fig. E.6b). We do not report the runtime of z-RC because it did not finish within
48 hours. The runtime of z-RCBP is much less when z is small, because z-RCBP
considered fairly short prefixes. Specifically, z-RCBP was two times faster than z-RCB
on average, and three times faster when z = 10. The runtime of z-RCB and of z-RCE
was not affected substantially by z. This is because these algorithms output the same d
as z-RCBP for all z values (i.e., they construct the same output) but operate on the
entire string S. z-RCB was comparable to z-RCE, for the reason explained above.

Next, we studied the impact of the initial prefix length κ on the runtime of z-RCBP,

215

Dataset z-RCB z-RCE z-RC z-RCBP

MSN 438.49 421.96 659.17 347.34
EC 364.84 725.26 571.8 339.18

Table E.2: Runtime (in seconds) for all algorithms on MSN and EC.

the only method that uses Improvement II (see Fig. E.6c). The runtime of z-RCBP
decreased when κ increased, but only up to κ = 1000. Until then, prefixes were too
short (i.e., the condition αd(S

′) ≥ z did not hold), so longer prefixes were considered.
For κ > 1000, z-RCBP took more time because it is more expensive to check the
condition on longer prefixes (e.g., z-RCBP took 40% more time when κ = |S| compared
to when κ = 1000).

Similar results were observed for the other datasets. For example, as can be seen
in Table E.2, in the case of MSN, z-RCBP was again the fastest algorithm, z-RC
the slowest, and z-RCB and z-RCE performed similarly. In the case of EC dataset,
however, z-RCE was the slowest of all algorithms. The reason is that EC led to a
larger d than that of MSN, so z-RCE had to perform more iterations.

E.6.5 Disregarded Prefixes

Last, we demonstrate that, applying Improvement I on the prefixes of S, which are used
in Improvement II, allows for disregarding a large ratio of them from the computation.
That is, we often avoid computing αd(P) for a prefix P of S, because when d ≥ r(P)+2,
we have that αd(P) = 1 < z by Lemma 68. Specifically, Fig. E.6d shows that the
ratio of disregarded prefixes over all prefixes considered for MSN and EC is at least
0.38. The benefit of the improvement when this ratio is large is time efficiency, since
computing αd(P) to check whether αd(P) ≥ z can be expensive particularly for a long
prefix P of S.

E.7 Application to Adversary Models

In this section, we discuss adapted versions of our z-RSDS that can be applied to
two different adversary models, in which an adversary possesses positive and negative
knowledge, respectively. In the context of z-anonymity, positive adversarial knowledge
has been considered in [341, 255, 301, 274, 340] and negative adversarial knowledge
in [249, 35]. Unlike our work, none of these works considers adversarial knowledge in
the context of a string.

E.7.1 Adversary Model I: Positive Adversarial Knowledge

Our privacy goal is to limit the probability of inferring string S when the adversary
possesses the following knowledge.

Definition 23 (Positive Adversarial Knowledge). A pair K = (Td(S′), S̃), where
S′ ∼d S and S̃ is a (possibly empty) substring of S.

216

The adversarial knowledge K is comprised of Td(S′), which is accessible by the
adversary, and of S̃ which is the adversary’s background knowledge. Background
knowledge is obtained by an adversary, typically from external data sources and/or
communication with individuals represented in the input dataset [341, 255, 301, 274, 340].
As it will become clear later, such knowledge may make a z-RSDS more likely to be
reversed. Thus, when certain background knowledge is known or can be assumed, it
should be modeled and taken into account in the construction of a z-RSDS to ensure
that the z-RSDS remains sufficiently unlikely to reverse.

We model the background knowledge as a substring to capture manifested at-
tacks [255, 340] in which the adversary observes an individual’s actions within a
time-frame. The actions are represented by S̃. For example, when S models the
diagnoses in an individual’s electronic health record, S̃ models the diagnoses assigned to
the individual during a hospital visit, which may be known by a hospital employee [255].
Similarly, when S models an individual’s credit card purchases, S̃ models the products
purchased by the individual during a visit to a shop, which may be known by a shop
employee [340]. S̃ may be specified by the data provider [53] or the data custodian [342],
according to policies. Note that from Td(S′), the adversary can also learn (see Fig. E.1):
the length n = |S|, the maximal string depth d, and the suffixes of S of length at most
d− 1. Thus, we did not include such information in K explicitly.

An adversary may not be able to uniquely infer S, based on their knowledge K. This
is because they have to distinguish S among the set of strings that are d-equivalent to
S and have S̃ as substring. In fact, the probability that the adversary infers S, based
solely on their knowledge K, is defined as follows.

Definition 24 (Inference Probability of S). The inference probability of S, based on
the knowledge K, is defined as P(IS | K) = 1/|AK|, where IS is the event “the adversary
infers S” and AK is the set of strings consistent with Td(S′) having S̃ as substring.

P(IS | K) is defined based on: (I) The fact that the adversary can construct all
strings that are consistent with Td(S′) and contain S̃ as substring (see Section E.7.1).
(II) The random worlds assumption [37] (i.e., each such instance is equally likely). This
assumption is followed by most related works (see [367] and references therein).

We aim at constructing a Td(S′), for some S′ ∼d S chosen at random, that an
adversary cannot use to infer S with sufficiently large P(IS | K). We also require Td(S′)
to have maximal d in order to support the operations discussed in Section E.3 on larger
substrings, thereby providing higher utility. This leads to the following computational
problem.

Problem 2. Given a string S of length n, a substring S̃ of S, and a privacy threshold
1 < z ≤ nc, for some constant c ≥ 1, construct a Td(S′) such that: (I) S′ ∼d S, (II) d
is maximal, and (III) P(IS | K) ≤ 1

z , for K = (Td(S′), S̃); or output FAIL if no such d
exists.

Construction Algorithm

We next show how the z-RC algorithm for constructing a z-RSDS can be applied in an
extended way to solve Problem 2. In this case, we need to account for AK, a modified
version of Ad: a string S′ is in AK if and only if it is d-equivalent to S and contains S̃

217

as a substring. In the graph formulation of the problem, we need to ensure that a path
representing S̃ must always be visited. Thus, we modify the z-RC algorithm as follows.

Let αK = |AK|. Consider a binary search iteration for some value of d, in which we
must check whether αK ≥ z. We first construct the weighted de Bruijn graph GS,d. If

|S̃| ≤ d all strings in Ad contain S̃ as a substring by construction and so we do not
need to modify the algorithm for such an S̃. Intuitively, in this case, knowledge of S̃
is of no use to the adversary. We thus consider the case when |S̃| > d. A substring S̃
of length |S̃| is represented by a path v1v2 . . . vh in GS,d, with h = |S̃| − d+ 2, as the

first node v1 represents a prefix of |S̃| of length d− 1, and each traversed edge appends
one letter to this prefix. We remove the edges of a path v1v2 . . . vh in GS,d representing

some occurrence of S̃ in S, |S̃| > d. (There may be multiple such paths). We add a
shortcut edge eS̃ = (v1, vh) directed from node v1 to node vh to represent an occurrence

of string S̃. We refer to this procedure as collapsing the path v1v2 . . . vh. Let us denote
the resulting graph by GS,d,S̃ (see Fig. E.7 vs. Fig. E.3).

Lemma 70. (a) If S ∼d S′ and S̃ is a substring of S′, then S′ corresponds to an
Eulerian path in GS,d,S̃ that starts from vertex s and ends at vertex t 6= s (if s = t, then
it corresponds to an Eulerian cycle starting from s). (b) αK is equal to the number of
non-equivalent Eulerian paths (resp. cycles) in GS,d,S̃.

Proof. (a) Trivial. (b) We first observe that GS,d,S̃ is Eulerian (resp. semi-Eulerian) by
construction, because GS,d is Eulerian (resp. semi-Eulerian) and the procedure above
does not change the parity of any vertex. Indeed, consider path v1v2 . . . vh in GS,d
representing the string S̃, which we replace with a shortcut edge eS̃ . Exactly one
outgoing and one incoming edge is removed from each v2, . . . , vh−1; one outgoing edge is
removed from v1 and replaced with outgoing edge eS̃ , one incoming edge is removed from
vh and replaced with eS̃ incoming. Moreover, since the multiplicity of any substring
U of length d is given by the multiplicity of the edge from node U [0 . . d− 2] to node
U [1 . . d− 1], the multiplicities of d-substrings are not affected by this transformation.

To show that the number of non-equivalent Eulerian paths (resp. cycles) in GS,d,S̃
is at most αK, consider any Eulerian path (resp. cycle) in GS,d,S̃ . By definition, there

is at least one occurrence of S̃ given by edge eS̃ , and it thus represents a string that
belongs to AK. Symmetrically, to show that αK is at most the number of non-equivalent
Eulerian paths (resp. cycles) in GS,d,S̃ , consider a string U ∈ AK. Among the (possibly
multiple) Eulerian paths (resp. cycles) in GS,d that represent U , consider one that
has v1v2 . . . vh as subpath as representative of its equivalence class: such path exists
because of Observation 40 and the properties of weighted de Bruijn graphs. This path
corresponds to the path in GS,d,S̃ , where v1v2 . . . vh is replaced with v1vh.

Theorem 43. Problem 2 can be solved in O(nω log d) time.

Proof. The correctness of the construction algorithm follows by Lemma 70 and the fact
that it is correct to apply binary or exponential search due to the monotonicity of αK
(the monotonicity proof is almost identical to that of Lemma 64 and is thus omitted).

For a given d, finding a path v1v2 . . . vh in GS,d and replacing it with v1vh can be
done while constructing GS,d at no extra cost. Recall that v1v2 . . . vh represents some

218

ba

bbab

aa

ab b a a b a bb a
ab b a bb a a b a
ab a a b b a bb a
ab a bb a a b b a

Figure E.7: GS,d,S̃ with S = abaabbabba, d = 3, S̃ = babb, and αK = 4.

occurrence of string S̃ in S, and that all occurrences of S̃ in S can be found in O(n)
time using the suffix tree of S [357]. The time complexity thus follows from the proof
of Theorem 37.

E.7.2 Adversary Model II: Negative Adversarial Knowledge

In this section, we consider the case where an adversary possesses negative knowledge.
The adversary model is somewhat dual to the one defined in Section E.7.1. Specifically,
in our model, the adversary possesses the following negative knowledge.

Definition 25 (Negative Adversarial Knowledge). A pair K̄ = (Td(S′), R), where
S′ ∼d S and R is a nonempty string that does not occur in S.

It should be clear that the background knowledge in Definition 25 may be used to
reverse the z-RSDS, and it should therefore be modeled and taken into account in the
construction of a z-RSDS. A procedure that is entirely analogous to the one described
in Section E.7.1 can be used to ensure that the z-RSDS remains sufficiently unlikely to
reverse, as we explain next.

We now have to account for AK̄, which is again a modified version of Ad: a string
S′ is in AK̄ if and only if it is d-equivalent to S and does not contain R as a substring.
The inference probability P(IS | K̄), based on the negative knowledge K̄, is defined in
much the same way as the one for positive adversarial knowledge: P(IS | K̄) = 1/|AK̄ |.
Once again, the problem is to construct a Td(S′) such that S′ ∼d S, d is maximal and
P(IS | K̄) ≤ 1/z.

Problem 3. Given a string S of length n, a string R that does not occur in S, and a
privacy threshold 1 < z ≤ nc, for some constant c ≥ 1, construct a Td(S′) such that:
(I) S′ ∼d S, (II) d is maximal, and (III) P(IS | K̄) ≤ 1

z , for K̄ = (Td(S′), R); or output
FAIL if no such d exists.

Let αK̄ = |AK̄|, and consider a binary search iteration for some value of d, in which
we must check whether αK̄ ≥ z. We construct a graph GS,d,R exactly as if R was
required to occur in S′, as described in Section E.7.1. By definition, all the strings
corresponding to non-equivalent Eulerian paths in GS,d,R contain at least one occurrence
of R: the complement of such set in Ad is the set of d-equivalent strings that do not
contain any occurrence of R, which is precisely what we aim at. The following lemma
thus connects αK̄ with the number of non-equivalent Eulerian paths (resp. cycles) in
GS,d and GS,d,R. The proof is similar to the one of Lemma 70 and is therefore omitted.

219

ab bb

ba aa

ab b a a b b a ba
ab b a a b b aba

Figure E.8: GS,d,R with S = abaabbabba, d = 3, R = baba, and so αK̄ = αd−αK = 6−2 = 4.

Lemma 71. αK̄ is equal to the difference between the number αd of non-equivalent
Eulerian paths (resp. cycles) in GS,d and the number αK of non-equivalent Eulerian
paths (resp. cycles) in GS,d,R.

Notice that, in contrast with the case of positive adversarial knowledge, it may
happen that R is not represented by any path in GS,d: in this case, we simply set
αK̄ = αd, as no string S′ ∼d S has R as a substring. Figure E.8 illustrates an example
where R is actually represented in GS,d: the four strings S′ ∼d S that do not have R as
a substring are, in fact, the ones depicted in Figure E.7. The following theorem can be
proved much the same way as Theorem 43.

Theorem 44. Problem 3 can be solved in O(nω log d) time.

E.7.3 Generalization to a Collection of Patterns

Both the model of positive and the model of negative adversarial knowledge can be
straightforwardly extended to the case of multiple disjoint pattern occurrences in S.
We begin by defining the notion of disjoint pattern occurrences in S, as follows:

Definition 26 (Disjoint Pattern Occurrences). Given a string S and a pair of strings
(S1, S2), we call (i1, i2) disjoint pattern occurrences of S1 and S2 in S, when S1 occurs
at position i1 in S, S2 occurs at position i2 in S, and the intervals [i1, i1 + |S1| − 1] and
[i2, i2 + |S2| − 1] are disjoint.

Formally, in the positive adversarial knowledge model, the adversary possesses the
following knowledge: a collection S of k patterns such that there exists an ordering
S1, S2, . . . , Sk of these patterns that forms a sequence of pairwise disjoint pattern
occurrences in S.

The case of multiple disjoint pattern occurrences we consider is of practical im-
portance. It can correspond to a collection of adversary observations within multiple
disjoint time-frames; each time-frame corresponds to a pattern, and thus the patterns
satisfy Definition 26. In fact, the examples of attacks discussed in Section E.7.1 naturally
generalize to multiple patterns. For example, Si can model the diagnoses assigned to
an individual during the i-th hospital visit of the individual.

It can be readily verified that a solution for the case when an adversary possesses a
collection S can be obtained by repeating the procedure of collapsing patterns in the de
Bruijn graph to obtain GS,d,S : this is possible because all such patterns are edge-wise

220

ba

bbab

aa

ab aa b b a bb a

Figure E.9: GS,d,S1,S2 with S = abaabbabba, d = 3, S1 = babb, S2 = abaa and so the only
Eulerian path in the graph spells S itself.

disjoint, thanks to the condition that any two patterns have disjoint pattern occurrences
in S. In the example of Figure E.9 the knowledge of two non-overlapping substrings
of S is sufficient to uniquely identify S, thus to make the construction algorithm fail
for any z > 1. Note that in this example the adversary knows an additional string
S2 compared to the example of Figure E.7, and this additional knowledge makes the
construction algorithm fail.

The negative adversarial knowledge model can be extended in a similar way. In
this case, the adversary possesses the following knowledge: a collection of patterns
R = {R1, R2, . . . , Rk} such that no permutation of these patterns occurs in S with
pairwise disjoint occurrences. Since this condition is precisely complementary to the
positive knowledge for multiple patterns, we follow the same strategy as for the negative
knowledge model for one pattern: we construct the graph GS,d,R, compute the number
of non-equivalent Eulerian paths in this graph, and subtract it from αd.

E.8 A z-RSDS for Decision Queries

Let us recall that a nonempty string R that does not occur in a string S is called
absent from S, and it is called minimal absent if furthermore all the proper substrings
of R do occur at least once in S. Minimal absent words (MAWs) are used in many
applications [325, 302, 145, 163, 90, 290, 119] and their theory is well developed [273,
144, 146], also from an algorithmic and data structure point of view [272, 114, 43, 94,
93, 36, 155, 44, 117]. For example, it is well known that, given two strings S and S′,
one has S = S′ if and only if S and S′ have the same set of MAWs [273].

We now prove that all strings in the same d-equivalence class have precisely the
same set of MAWs of length up to d (and therefore any two distinct d-equivalent strings
must have some longer MAW not in common).

Lemma 72. Let S be a string and R a minimal absent word of S of length at most
d. If S′ is d-equivalent to S, then R is a minimal absent word of S′.

Proof. Let us first assume that the length of R is exactly d. Given a de Bruijn graph G
of order d, we call edge (u, v) fake-feasible if it does not exist in G but it could exist in
G, i.e., if u and v overlap by d− 2 letters. It holds that a string R of length d is a MAW
of S if and only if R = u · v[d − 2] and (u, v) is a fake-feasible edge in the de Bruijn
graph G of order d of string S. This follows by the definition of MAWs: all proper

221

substrings of R (in particular its longest proper prefix u and suffix v) do occur in S but
R does not. Since all strings in the d-equivalence class of S have the same G, it follows
that they have the same set of fake feasible edges and hence the same set of MAWs of
length d. The statement follows from the fact that if two strings are d-equivalent, then
they are also (d− 1)-equivalent [222].

Example 33. All strings in Fig. E.3 have the same MAWs of length up to 3, namely
aaa and bbb. Let us remark that Lemma 72 is not a characterization of a d-equivalence
class: aaa and bbb are also the MAWs of length up to 3 of string aabaababba, which is
not d-equivalent to the strings of Fig. E.3.

Let us now describe an application of Lemma 72. We start with a straightforward
fact.

Fact 45. A string X occurs in a string Y if and only if no minimal absent word of
Y occurs in X. Equivalently, a string X does not occur in a string Y if and only if a
minimal absent word of Y occurs in X.

Let S be a string of length n and d be an integer so that the number of distinct
strings that are d-equivalent to S is at least z. (Note that S is d-equivalent to itself.)
Then Lemma 72 and Fact 45 tell us that the set of MAWs of S of length up to d suffices
to construct a z-RSDS over S for d that answers decision pattern matching queries of
length m ≤ d in the optimal O(m) time per query. In particular, we can construct the
Aho-Corasick (AC) automaton [20, 129] of the set of MAWs of S of length up to d in
O(M) time, where M is the total length of these MAWs. Then, given a string P of
length m, we check if any MAW of S of length up to d occurs in P in O(m) time. By
Fact 45, we give a positive answer if no MAW of S of length up d occurs in P . The size
of this z-RSDS is the size of the AC automaton, which is O(M) and can be sublinear in
|S| = n. Note that M can be computed in O(n) time using the data structure presented
in [94]. Thus, if M < n, we can construct the AC automaton instead of the z-RSDS
presented in Section E.3. The data structure of [94] can also enumerate the set of
MAWs of S of length up to d in the optimal O(n+M) time.

Let us conclude this section with an example.

Example 34. Recall that all strings in Fig. E.3 have the same MAWs of length up
to d = 3, namely aaa and bbb, and let z = 6. The AC automaton of {aaa, bbb} is
a z-RSDS over S answering decision pattern matching queries of length m ≤ d = 3.
Given, for instance, query P = aba, we check that the AC automaton does not locate
any occurrence of {aaa, bbb} in P , and thus we return a positive answer. Given query
Q = aaa, we check that the AC automaton locates an occurrence of aaa from {aaa, bbb}
at position 0 of Q, and thus we return a negative answer. Note that M = 6 < n = 10.

E.9 Final Remarks

We have introduced the notion of z-reverse-safe data structures (z-RSDSs) and presented
such data structures for text indexing. Let us remark that our encoding model can be
used in conjunction with other privacy-preserving techniques (e.g., [53]) to ensure that
certain privacy-utility trade-offs are maintained. Let us also remark that the algorithmic

222

contribution of this chapter is computing d and constructing a string S′ ∼d S. With
S′ at hand, one could construct any compressed index over S′ (e.g., [180, 237]). Such
an index would answer queries of length m ≤ d, and output FAIL for queries of length
m > d by storing d using log d extra bits.

There are at least four directions for future work:

1. Improve the time complexity of the construction (Theorem 37).

2. Improve the time complexity of the construction (Theorem 37) for certain values
of z.

3. In Problem 1, the z-RSDS is truncated at a maximal uniform string depth d.
Another related problem definition would be to truncate the z-RSDS at maximal
non-uniform string depths.

4. In Section E.8, we proposed a small z-RSDS for decision pattern matching queries
of length at most d, when d is given. An open problem is to efficiently compute
the maximal such d.

223

Appendix F

Hide and Mine in Strings

Key Points

Problem. Current methods for string sanitization, like the ones presented in Chap-
ters C and D, hide confidential patterns introducing, however, a number of
spurious patterns that may harm the utility of frequent pattern mining. The
main computational problem we address in this chapter is to minimize this harm,
based on the fundamental relation between data sanitization and frequent pattern
mining in the context of sequential (string) data.

Model. We consider strings output by string sanitization methods like the ones pre-
sented in Chapters C and D, where substrings over a fixed alphabet Σ are separated
by a special letter # /∈ Σ. As noted in Chapter C, the occurrences of # reveal the
locations of confidential patterns and thus must be ultimately replaced by letters of
the original alphabet Σ. However, this replacement may create spurious patterns
that could not be mined from the input at a minimum frequency threshold τ
but would be mined from the output at the same frequency threshold. These
patterns are referred to as τ -ghosts. We investigate the crucial interplay between
replacements and τ -ghosts, seeking to replace the #’s with letters in Σ so that
the number of τ -ghosts in the resulting string is minimized.

Included Works

This chapter presents the results of the paper Hide and Mine in Strings: Hardness
and Algorithms, to be submitted to the journal Hide and Mine in Strings: Hardness
and Algorithms. A short version of this paper [57] has been accepted to the 20th IEEE
International Conference on Data Mining (ICDM 2020).

F.1 Introduction

A string is a sequence of letters over some alphabet Σ. Strings are commonly used to
represent individuals’ data in domains ranging from transportation to web analytics and

224

bioinformatics. For example, a string can represent a user’s location profile, with each
letter corresponding to a visited location [370], a user’s purchasing history, with each
letter corresponding to a purchased product [18], or a patient’s genome sequence, with
each letter corresponding to a DNA base [233]. Mining patterns from such strings is thus
useful in a gamut of applications. For instance, mining patterns from location history
data helps route planning [97]; mining patterns of co-purchased products from market-
basket data improves business decision making [18]; mining patterns from genome
sequences can improve clinical diagnostics [233]. To support these applications while
preserving privacy, strings representing individuals’ data are often being disseminated
after sanitization [365, 13] or anonymization [16].

In this chapter, we study the fundamental relation between data sanitization [365, 13,
53] (also known as knowledge hiding) and frequent pattern mining [268, 226, 267, 322].
The objective of frequent pattern mining in strings is to obtain all patterns occurring
frequently enough (according to a given frequency threshold τ) in a string, or in a
collection of strings. There may also be constraints for the mined strings (e.g., to be of
fixed length k [33, 112]). In string sanitization, the privacy objective is to transform a
string to ensure that a given set of sensitive patterns, modeling confidential knowledge,
does not occur in the sanitized version of the string; sensitive patterns are selected based
on domain expertise [365, 172, 53]. Typically, this transformation incurs some utility
loss that should be minimized. Recently published methods achieve this goal using
combinatorial algorithms [53, 56]. Let W be the input string over Σ, k be a positive
integer, and S be the set of sensitive length-k substrings. These methods construct a
string X such that (I) X contains no element of S as a substring; (II) the total order
and thus the frequency of all non-sensitive length-k substrings of W is preserved in X;
and (III) the length of X is minimized [53], or the edit distance between W and X is
minimized [56]. These methods work by copying carefully selected substrings of W into
X and separating them by a special letter # /∈ Σ.

Example 35. Let W = GACAAAAACCCAT, k = 3, and the set of sensitive patterns S =
{ACA, CAA, AAA, AAC, CCA}. Further, let XTR = GAC#ACC#CCC#CAT, XMIN = GACCC#CAT

and XED = GAC#AA#ACCC#CAT be three sanitized strings. All three strings contain no
sensitive pattern and preserve the total order and thus the frequency of all non-sensitive
length-3 patterns of W : XTR is the trivial solution of interleaving the non-sensitive
length-3 patterns of W with #; XMIN is the shortest possible such string [53]; and XED

is a string closest to W in terms of edit distance [56].

Unfortunately, as noted in [53], the occurrences of # reveal the locations of sensitive
patterns and thus must be ultimately replaced by letters of the original alphabet Σ.
This replacement gives rise to another string over Σ, which we denote by Z. However,
this replacement may create spurious patterns that could not be mined from X at a
minimum frequency threshold τ but would be mined from Z at the same frequency
threshold. These patterns are referred to as τ -ghosts.

We investigate the crucial interplay between # replacements and τ -ghosts, posing
here the following question that, to the best of our knowledge, has not been addressed:
Given a string X containing #’s, a positive integer k, and a positive integer τ , how
should we replace the #’s in X with letters in Σ, so that the number of length-k τ -ghosts
in the resulting string Z is minimized? This question helps preserving the accuracy

225

of frequent pattern mining and tasks based on it (e.g., pattern-based clustering [182]
and classification [306], as well as sequential rule mining [332]) that we may not know a
priori.

The above question is also of quite general interest, as it applies to sequential
datasets that may have occurrences of a special letter for a variety of reasons beyond
data sanitization. This special letter, denoted here by # for consistency, represents some
information that is missing from these datasets. For instance, in genome sequencing
data, # corresponds to an unknown DNA base [211]; in databases, # represents a
value that has not been recorded [64, 148]; and in masked data outputted by other
privacy-preserving methods [63], # is introduced deliberately to achieve their privacy
goal.

Like in data outputted by sanitization methods, the occurrences of # in other string
datasets often have to be replaced. For example, since the DNA alphabet consists
of four letters (A, C, G, and T), off-the-shelf algorithms for processing DNA data use
a two-bits-per-base encoding to represent the DNA alphabet. In order to use these
algorithms with input strings containing unknown bases, we would have to amend them
to work on the extended alphabet {A, C, G, T, #}. This solution may have a negative
impact on the time efficiency of the algorithms or the space efficiency of the data
structures they use. Thus, instead, in several state-of-the-art DNA data processing
tools (e.g., [248, 246]), the occurrences of # are replaced by an arbitrarily chosen letter
from the DNA alphabet, so that off-the-shelf algorithms can be directly employed. This,
however, may introduce a large number of spurious patterns, negatively affecting the
accuracy of DNA analyses.

Replacing the occurrences of # in a database is often needed to be able to perform
frequent pattern mining with off-the-shelf algorithms [148]. To this end, the occurrences
of # are commonly replaced by some statistical estimate, such as the most frequent
value [148, 181]. However, such a replacement does not generally maintain the accuracy
of frequent pattern mining, since it may introduce many spurious patterns [148].

Example 36. Let again W=GACAAAAACCCAT, k=3, and S = {ACA, CAA, AAA, AAC, CCA}.
Further, let the frequency threshold be τ = 2. Note that the frequency of all non-
sensitive length-3 patterns in W is preserved in all three sanitized strings XTR =
GAC#ACC#CCC#CAT, XMIN = GACCC#CAT, and XED = GAC#AA#ACCC#CAT. Replacing,
however, all #’s with G would create τ -ghost GAC both in XTR and in XED.

Contributions. To our knowledge, there does not exist a general solution to the
question we pose here that simultaneously guarantees effectiveness and efficiency. In
this work, we provide compelling evidence as to why this is the case. Within the string
sanitization context, we also provide algorithms for answering this question. Specifically:
1) We embark on a theoretical study to understand the relation between replacing #’s
and creating τ -ghosts. In particular, we define the following problems and examine
their hardness:

• HMd (Hide and Mine decision): This is the core decision version of the problem
asking whether or not we can replace all #’s in X, so that no sensitive pattern and
no τ -ghost occurs in Z. Deciding this may allow for sanitizing X with no utility
loss in frequent pattern mining. We show that HMd is strongly NP-complete
via a reduction from a variant of the well-known Bin Packing problem [164] (see

226

Section F.4). This is the most technically involved part of the chapter, as the
provided reduction is highly non-trivial.

• HM (Hide and Mine): This is the optimization version of HMd asking how we can
replace all #’s, while ensuring that no sensitive patterns and a minimal number
of τ -ghosts occur in Z. This would minimize the utility loss in frequent pattern
mining. HM is clearly NP-hard as a consequence of HMd being NP-complete,
but we also show that it is hard to approximate.

• HMmt (Hide and Mine minimum threshold): Given a parameter τ , this problem
asks for the minimum frequency threshold τ1 ≥ τ for which no sensitive pattern
and no τ1-ghost occurs in Z. Solving HMmt would imply no utility loss in frequent
pattern mining at a higher frequency threshold τ1 that is as close as possible to τ .
We show that HMmt is (NP-hard and) hard to approximate.

The hardness (see Section F.4) and inapproximabilty (see Section F.5) results for our
problems provide solid evidence for the lack of exact polynomial-time or approximation
algorithms for these problems and motivate our next contributions.
2) We develop exact algorithms for HMd and HM that require polynomial time, under
certain realistic assumptions on the problem parameters. We also develop an efficient
and effective heuristic for HM. In particular, we develop the following:

• Exact algorithms based on an Integer Linear Programming (ILP) formulation of
HMd. The main idea is to identify all length-k strings over Σ in X that may
potentially become τ -ghosts in Z, and then decide whether each of the #’s can
be replaced by a letter in Σ without creating any τ -ghost pattern or any sensitive
pattern in Z. We prove that HMd is fixed-parameter tractable [121] in most cases
encountered in practice (e.g., when the number of distinct letters in the string
and the length k of sensitive patterns are upper bounded by a constant).

• Exact algorithms based on an ILP formulation of HM. This ILP formulation
differs from the HMd formulation in that it takes into account the number of
τ -ghosts created by replacing #’s, so as to minimize their number. We prove
that HM is fixed-parameter tractable in many cases encountered in practice (e.g.,
when the length k of sensitive patterns and the number of distinct patterns that
may become τ -ghosts are upper bounded by a constant).

• A greedy heuristic that replaces the #’s from left to right, while avoiding the
creation of non-sensitive patterns that may become τ -ghosts. The heuristic has
three variants which aim to minimize different measures based on: the number of
newly created patterns with frequency f < τ , the sum of (τ − f)−1, or the max
of (τ − f)−1, where frequency f is taken over the newly created patterns.

The ILP-based algorithms are presented in Section F.6 and the greedy heuristic in
Section F.7.
3) We conduct an extensive experimental study (see Section F.8). We show that our
methods: (I) allow for frequent length-k pattern mining with no or insignificant utility
loss (i.e., they create zero or few τ -ghosts); (II) incur very low distortion; and (III) are

227

practical, requiring, for instance, less than 2.5 seconds to process a 20-million letter
string.
Outlook. Frequent pattern mining is also applied on data types other than strings,
such as graphs, trees, itemsets etc. [322]. Given the fact that string is the most basic
and perhaps most widely used data type, our hardness results support the intuition
that replacing missing values with no utility loss for frequent pattern mining in these
more complex data types may not be possible in polynomial time; based on our results,
we further anticipate that it might even be hard to approximate such solutions in
polynomial time. Given the successful deployment of ILP in string representations
presented in this chapter, ILP might be a promising strategy to be applied for replacing
missing values in other data representations and settings. Thus, this work may inspire
further research on the topic of replacing missing values for frequent pattern mining.

F.2 Related Work

Our work focuses on sanitization, a privacy-preserving data mining technique aiming to
prevent the mining of confidential knowledge from published data [365, 13, 256, 53, 56].
Data sanitization approaches are typically applied to a collection of transactions [365,
173, 333], a collection of sequences [13, 172], or a single sequence [256]. These approaches
employ integer programming [173, 333], dynamic programming [256], or heuristics [365,
13, 172, 187]. The objective of these approaches is twofold: to reduce the frequency
(support) of sensitive patterns, so that they cannot be mined at a given frequency
threshold τ ; and to preserve data utility, often by preserving the set of frequent patterns
that can be mined at threshold τ [173, 333, 365, 172, 187]. The patterns considered in
these approaches are: itemsets in [365, 173, 333], subsequences in [13, 172, 187], and
single letters in [256]. Unlike our work, these approaches do not aim at hiding sensitive
strings, nor at minimizing changes to the set of frequent substrings.

As discussed in Introduction, there are two recently proposed approaches for string
sanitization [53, 56]. In these approaches, #’s must be ultimately replaced so that the
locations of sensitive patterns are not exposed. To this end, [53] considered the problem
of replacing #’s so as to minimize the total weight of τ -ghost occurrences. It further
showed that this problem is NP-hard and proposed a heuristic inspired by algorithms
for Multiple-Choice Knapsack. Note that HM, the problem of minimizing the total
number of τ -ghosts we consider here, is fundamentally different from the problem of
minimizing the total weight of τ -ghost occurrences, and it cannot be reduced from
Multiple-Choice Knapsack, because no arbitrary weights or costs are involved. On the
hardness side, this makes our hardness proof considerably more challenging. On the
algorithmic side, our algorithms significantly outperform the heuristic of [53], as shown
in our experiments.

As discussed in Introduction, our work is also related to missing value treatment,
which is often required to improve the quality of obtained statistics [252], query an-
swers [64], and data mining models (e.g., association rules [86, 6], sequential pat-
terns [148], clustering [348], and classification [128]). To deal with these problems,
existing works remove [252] or replace missing values [128, 348, 64], or alternatively
utilize interestingness measures that are suited to mining patterns with missing val-
ues [86, 148]. Hence these works are tailored to specific settings and cannot deal with

228

our problem; they do not aim at minimizing the impact of replacing missing values in a
string on frequent pattern mining.

F.3 Preliminaries and Problem Statement

We consider alphabets Σ and Σ# = Σ ∪ {#}, where # is a special letter not in Σ. We
fix a string X = X[0] · · ·X[n − 1] of length |X| = n over Σ#. FreqX(U) denotes the
number of occurrences (starting positions) of string U as a substring of X. A dictionary
over Σ is a set of strings over Σ. The dictionary used in our work is a set of length-k
strings that do not occur in X; we refer to these strings as sensitive patterns. Any
element of Σk that is not in this dictionary is referred to as a non-sensitive pattern. In
combinatorics on words, such a dictionary is known as antidictionary and the sensitive
patterns are known as forbidden patterns (e.g., [118]).

Problem 4 (Hide & Mine (HM)). Given an integer k > 0, a string X = X0#X1# · · ·#Xδ

of length n over an alphabet Σ#, with |Xi| ≥ k−1, for all i ∈ [0, δ], a dictionary S ⊆ Σk

such that no S ∈ S occurs in X, and an integer τ > 0, compute a function g : [δ]→ Σ
such that the following hold for string Z = X0g(1)X1g(2) · · · g(δ)Xδ:

I The number of strings U ∈ Σk, with FreqX(U) < τ and FreqZ(U) ≥ τ in Z, is
minimized.

II No S ∈ S occurs in Z.

Note that function g replaces each # by exactly one letter from Σ. Condition
|Xi| ≥ k − 1 means that any two #’s in X are at least k positions apart. Thus, any
length-k substring X[i . . i+ k − 1] of X is affected by at most one # replacement. The
sanitization method of [53, Lemma 1] produces an X satisfying this condition, for any
given set S, to guarantee that the frequency of every non-sensitive pattern is preserved
in X. Thus, HM is directly applicable to the output of [53].

A string U ∈ Σk with FreqX(U) < τ and FreqZ(U) ≥ τ is referred to as τ -ghost. To
prove NP-completeness, we consider the decision variant HMd of HM, which asks to
decide if there exists any function g : [δ]→ Σ such that the following hold:

I No τ -ghost pattern occurs in Z.

II No S ∈ S occurs in Z.

F.4 HMd is NP-complete

Problem HMd is clearly in NP. In this section, we show that HMd is strongly NP-
complete via exhibiting a reduction from a variant of the Bin Packing problem [164].
As a consequence, HM is NP-hard. Notice that, since HM assumes that any two
occurrences of # are at least k positions apart, then clearly, the more general problem
(the question posed in Introduction), in which this restriction is waived, is also NP-hard.

229

F.4.1 The Unique-Weights Bin Packing problem

The Bin Packing (BP) problem is defined as follows. Given three positive integers,
M (number of bins), B (capacity of every bin), and N (number of items), as well as
a vector [w1, . . . , wN] of positive integers representing the weights of the items, the
BP problem asks whether we can partition the items into M subsets (bins) without
exceeding the capacity of any bin. Formally, we need to decide whether there exists a
function f : [N]→ [M], assigning items to bins, such that:

∀i ∈ [M],
∑

j∈[N],f(j)=i

wj ≤ B.

It is crucial to remark that BP is strongly NP-complete [164], i.e., it is NP-complete
even when weights and bin capacities are bounded by a polynomial function of N
and M . In the following, we will consider this case, and use gadgets whose size is
proportional to the numerical values in IBP, as if we were representing those numbers
in unary notation.

We will assume that no two items have the same weight.1 We refer to this variant
of BP as the Unique-Weights Bin Packing (UWBP) problem. To justify the
assumption, we show that the UWBP variant is still strongly NP-complete by a
polynomial-time reduction from standard BP.

Lemma 73. UWBP is strongly NP-complete.

Proof. Consider an instance IBP = M,B,N,w1, . . . , wN of BP with possibly duplicated
weights, where all values are polynomial in the size of IBP: we will construct, in
polynomial time, an instance I ′BP = M ′, B′, N ′, w′1, . . . , w

′
N ′ of UWBP (where no two

weights are the same) that has polynomial values, and has a positive answer if and only
if IBP does.

To obtain I ′BP we proceed as follows. Firstly, set M ′ = M , N ′ = N and B′ =
B ·N2 + (N2 − 1). To obtain the weights w′i multiply each by N2, then add “flavoring”
by taking groups of items with the same weight one by one and, for each group, adding
0 to its first item, 1 to the second, 2 to the third, and so on. Essentially, we increase
the scale of the numbers (a 1-weight item becomes N2-weight) so much that we can
make all weights different without affecting the way groups of items fit in bins: the
extra (N2 − 1) capacity in B′ does not allow to fit an extra unit of item-weight (that
is N2 weight), but is enough to account for the flavoring of any set of items. Indeed,
in the worst case (when all items have the same weight), the cumulative amount of
flavoring added to all N items is 0 + 1 + 2 + . . .+N − 1 < N2/2. Hence, an assignment
of items to bins is valid for IBP if and only if it is valid for I ′BP.

F.4.2 Overview of the Reduction from UWBP to HMd

We now show that for any UWBP instance, we can produce in polynomial time an
instance of HMd that has positive answer if and only if the UWBP instance has
positive answer. To this end, we will introduce several gadgets which will serve to

1The assumption is not strictly necessary, but it simplifies the reduction.

230

model the different constraints of UWBP. Each gadget consists of a string of length
2k− 1 over a specific alphabet, with a # in the middle. We will explain how all UWBP
constraints are linked to the gadgets. It will then suffice to concatenate the gadgets
into one long string, to obtain an instance of HMd that implies a solution of UWBP.

First, we will consider gadgets tij , which model whether item j is placed in bin i.
The structure of these gadgets will ensure that the maximum capacity B of the bins is
not exceeded. Then, gadgets uij will be introduced. The structure of these second kind
of gadgets, together with tij , ensures that each item is placed in some bin.

The set of sensitive patterns S and the threshold τ will be carefully chosen to build
and link these gadgets. Sensitive patterns will be used to force a specific subset of
letters to replace a # (by forbidding the length-k strings obtained from unwanted
replacements). The threshold is essential in linking the gadgets and modelling the
capacity of the bins: since no pattern that occurs fewer than τ times is allowed to
exceed that same threshold after the replacements, we will repeat the pattern in the
string so as to bound the number of its additional occurrences that can be created by
replacing a #.

F.4.3 Construction of an Instance of HMd

The alphabet of the string X of the instance of HMd will be made of letters #, x, y, $,
and a letter bi for each i ∈ [M].

For i ∈ [M], j ∈ [N], and a suitable value of k to be fixed later, we define the
gadgets tij and uij as follows:

tij = bi x . . . x︸ ︷︷ ︸
k−1−wj

bi . . . bi︸ ︷︷ ︸
wj−1

bi . . . bi︸ ︷︷ ︸
k−1

uij = bi x . . . x︸ ︷︷ ︸
k−1−wj

bi . . . bi︸ ︷︷ ︸
wj−1

y . . . y︸ ︷︷ ︸
wj

x . . . x︸ ︷︷ ︸
k−wj−2

y

For the sake of readability, from now on we will write U ` to denote U . . . U︸ ︷︷ ︸
`

; i.e., `

concatenations of a string U starting with the empty string. We then define S, the set
of sensitive patterns, as the union of the following sets:

1. {bi′bk−1
i | i, i′ ∈ [M], i′ 6= i} which forbids putting a bi′ to replace the # in any

tij if i′ 6= i.

2. {biybk−2
i | i ∈ [M]}, which forbids putting a y to replace the # in a tij .

3. {bi$bk−2
i | i ∈ [M]}, which forbids putting a $ to replace the # in a tij .

4. {biywjxk−wj−2y | i ∈ [M], j ∈ [N]}, which forbids putting any bi to replace the
in a uij .

5. {bi$ywjxk−wj−2 | i ∈ [M], j ∈ [N]}, which forbids putting a $ to replace the # in
a uij .

231

As explained below, we will use tij and uij to construct an instance of string X. By
this definition of S, the # in a tij can only be replaced with bi or x, and the # in a uij
only with x or y, so that X does not contain sensitive patterns.

We model the size B of the bins using the threshold τ : specifically, we link the filling
of the ith bin with the number of occurrences of a specific non-sensitive pattern (namely,
bki). However, this is not the only pattern we need to constrain: we have many different
length-k substrings that come into play, all of which need specific thresholds. Thus, a
common threshold τ for all non-sensitive patterns is too restrictive. We implement this
by choosing τ high enough, and artificially lowering the allowed occurrences of each
specific non-sensitive pattern by adding an appropriate amount of extra copies of the
non-sensitive pattern itself at the end of the string. This way we can choose a different
threshold for each non-sensitive pattern.

In accordance with this reasoning, we choose k = maxj wj+3 and τ = max{M,B}+1.
We finally construct the string X as a concatenation of the following components,
separated by $$ as follows:

1. tij , ∀i, j

2. uij , ∀i, j

3. τ −B − 1 occurrences of bki , ∀i

4. τ − 2 occurrences of bix
k−wj−1b

wj−1
i x, ∀i, j

5. τ −M occurrences of ywj+1xk−wj−2y, ∀j.

Component (3) ensures that a valid solution of this instance cannot add more than
B occurrences of any bki . Each time we replace the # in a tij with bi (intuitively
corresponding to assigning item j to bin i), we introduce wj additional occurrences of
bki : this models the consumption of space in each bin, and the limit B ensures that no
bin overflows.

By Component (4), for each i, j, only one additional occurrence of bix
k−wj−1b

wj−1
i x

can be created, either by replacing the # with x in a tij or in a uij . This ensures that,
if we substitute x for # in one of the two gadgets, then we cannot do the same in the
other one. Let us consider a specific item j; if we do not place it in bin i, then we
are forced to substitute y for # in uij , creating an occurrence of length-k substring
ywj+1xk−wj−2y. Since, by Component (5), we can only add M−1 occurrences of this
latter pattern over all M bins, there must be an i such that the # in uij is replaced
with x. The corresponding # in tij is then forced to be replaced with a bi, ensuring
that item j is assigned to some bin.

F.4.4 Correctness

We have shown how to construct in polynomial time an instance IHMd from any
given instance IUWBP. We now prove that IHMd has a positive answer if and only if
IUWBP does. For the sake of readability, let us refer to the # in tij and uij as #t

ij

and #u
ij , respectively. The solution to IHMd can then be expressed via a function

g : {#t
ij ,#

u
ij , ∀i, j} → Σ. Let f : [N] → [M] be a solution for a given IUWBP. We

232

create the corresponding solution to IHMd in the following manner, for each item j ∈ [N]
and bin i ∈ [M]:

f(j) = i⇒ g(#t
ij) = bi and g(#u

ij) = x;

f(j) 6= i⇒ g(#t
ij) = x and g(#u

ij) = y.

For a given item j such that f(j) = i, we get wj occurrences of bki , one occur-

rence of bix
k−wj−1b

wj−1
i x, and for all h 6= i one occurrence of bhx

k−wj−1b
wj−1
h x and

ywj+1xk−wj−2y. Since the bin capacity in the solution of UWBP is not overflown, we
added at most B copies of bki for each i. Finally, since each element is taken once in
UWBP, we created exactly (M − 1) occurrences of ywj+1xk−wj−2y and one occurrence

of bix
k−wj−1b

wj−1
i x. We thus do not create τ -ghosts, and we have a valid solution for

HMd.
Vice versa, given a solution g to our HMd instance, to obtain the solution to the

original UWBP it suffices to prove that the following two claims are satisfied:

1. We do not overload any bin; formally

∀i ∈ [M]
∑

j∈[N] s.t. g(#t
ij)=bi

wj ≤ B.

2. Each item is assigned to some bin; formally

∀j ∈ [N] |{i ∈ [M] s.t. g(#t
ij) = bi}| ≥ 1.

If these claims are satisfied, we can extract an assignment for UWBP: for every item j
we choose an arbitrary bin i such that g(#t

ij) = bi, and set f(j) = i. By construction of
the instance of HMd, these claims are satisfied. By Lemma 73, we obtain the following
result.

Theorem 46. HMd is strongly NP-complete.

F.5 HM is Hard to Approximate

Given the hardness of HMd, in this section, we shift our focus on checking whether an
approximately optimal solution of HM can be obtained instead. Given any instance
IM of a minimization problem, an algorithm is called an α-approximation, for some
α ≥ 1, if it runs in polynomial time in the size of IM and always outputs a solution
value Γ ≤ α ·OPT, where OPT denotes the optimal value for IM . We start with the
following result.

Theorem 47. There is no α-approximation algorithm for HM, for any α ≥ 1, unless
P=NP.

Proof. Suppose by contradiction that an α-approximation algorithm A existed for
minimizing the number of τ -ghosts in HM. We could then use A to solve HMd: the
answer to HMd would be positive (i.e., there would exist a function g that creates 0
τ -ghosts) if and only if the answer of A was Γ = 0 ≤ α ·OPT = 0, which contradicts
Theorem 46.

233

The reader may now wonder whether the problem becomes easier should one relax
the requirement for a fixed threshold τ . Thus, the following problem arises naturally.

Problem 5 (HMmt). Given an integer k > 0, a string X = X0#X1# · · ·#Xδ of
length n over alphabet Σ#, with |Xi| ≥ k − 1, for all i ∈ [0, δ], a dictionary S ⊆ Σk

such that no S ∈ S occurs in X, and an integer τ0 > 0, compute the smallest integer
τ1 ≥ τ0 so that there exists a function g : [δ]→ Σ, such that the following hold for string
Z = X0g(1)X1g(2) · · · g(δ)Xδ:

I No U ∈ Σk, with FreqX(U) < τ1 and FreqZ(U) ≥ τ1 occurs in Z.

II No S ∈ S occurs in Z.

The practical rationale for considering HMmt is that it could be useful if, for
instance, τ1 is only slightly larger than τ in a given HM instance. Unfortunately, we
show that HMmt is NP-hard, and it is even hard to approximate.

Theorem 48. HMmt is NP-hard.

Proof. We reduce HMd to HMmt as follows. Let IHMd be the instance of HMd we
would like to solve for some threshold τ . We construct an instance of HMmt consisting
of the X, k, and S from IHMd, and we also set τ0 = τ . We denote this instance by
IHMmt. The reduction takes linear time in the size of HMd. We seek to find the
minimum threshold τ1 ≥ τ0 such that no length-k substring of Z is a τ1-ghost. Then
IHMd has a positive answer if and only if the answer τ1 of IHMmt is equal to τ0 = τ .
The statement thus follows.

Observe that a pattern U is a τ -ghost if and only if τ ∈ (FreqX(U),FreqZ(U)].
Therefore, the minimal number of τ -ghosts is not monotonous in τ . On the contrary, the
minimal number of τ -ghosts is zero when τ = 0 and all patterns are already frequent (i.e.,
they appear at least τ times), or when τ > n and the threshold is so high that no pattern
can ever become a τ -ghost. In between, the minimal number of τ -ghosts increases
whenever τ equals the frequency of some patterns in X, and then slowly decreases again.
We will use this behavior, and the fact that HMd is NP-hard, to construct a string for
which we cannot determine in polynomial time whether τ1 = τ0 or τ1 > ατ0 (and for
which we can prove that τ1 6∈ [τ0 + 1, ατ0]), implying inapproximability.

Theorem 49. There is no α-approximation algorithm for HMmt, for any α ≥ 1,
unless P=NP.

Proof. Let X be an arbitrary string and S be the set of sensitive patterns as defined
in HMd. Further, let T be the length-(k − 2) suffix of X and Z be a string obtained
by replacing the #’s of X. From this instance of HMd, we will construct an instance
of HMmt consisting of a string Y and a set S ′ of sensitive patterns, so that if an
α-approximation algorithm existed for HMmt, we could decide HMd in polynomial
time. We define Y over Σ ∪ {#,&} to be

Y = X(&&T)τ0&(#T&)d(α−1)τ0e.

Let R be the set of all strings &sT , with s ∈ Σ. We define the dictionary of sensitive
patterns be S ′ = S ∪R. Note that we need to replace all #’s in (#T&)d(α−1)τ0e by &’s

234

in order not to introduce any sensitive patterns. However, doing so increases the number
of &T& patterns (and all other newly created patterns) from τ0 to dατ0e. Therefore, if
τ = τ0, then the number of τ -ghosts in Z equals that in Z(&&T)τ0&(&T&)d(α−1)τ0e,
because the additional new patterns were already occurring at least τ times in Y .
However if τ0 < τ ≤ dατ0e, then there will always be at least one τ -ghost, namely
&T&. Recall that deciding HMd is NP-complete. Therefore it is NP-complete to decide
whether or not τ1 = τ0 or τ1 > dατ0e. We conclude that there exists no α-approximation
algorithm for HMmt, unless P=NP.

F.6 Exact Algorithms for HM

We resort to ILP to design exact algorithms for HMd and HM. In particular, we
show that both problems are fixed-parameter tractable for several combinations of
parameters.

We say that the length-(k−1) substring U preceding an occurrence of # in X, and
the length-(k−1) substring V following it, form its context UV . Recall that there are δ
occurrences of # in X, and that any two occurrences are at least k letters apart, so
UV is in Σ2k−2. We assign to every context UV a unique identifier (id). We write #i

for # in X if its context UV has id i. A string N ∈ Σk is critical if it may become a
τ -ghost, i.e., if an additional occurrence of N can be created by replacing some # by a
letter in Σ and FreqX(N) ∈ [τ − kδ, τ − 1]. This is because the frequency of N cannot
increase by more than kδ, and the frequency of N in X must be less than τ for N to
become τ -ghost. We assign to each critical string N a unique id `, and denote it by N`.
We introduce the following parameters:

γ number of distinct contexts present in X;

δi number of occurrences of letter #i in X, for i ∈ [γ];

λ number of distinct critical length-k strings;

αi
`,j additional number of occurrences of N` introduced by replacing a #i with a letter

j ∈ Σ, for ` ∈ [λ];

e` difference (τ − 1)− FreqX(N`), for ` ∈ [λ].

Intuitively, e` is the budget we have for N`: the number of its additional occurrences we
can afford. Since replacing an occurrence of #i by j ∈ Σ adds k new strings in Σk, αi

`,j

counts how many of them are equal to N`. Let xi,j be the number of times we replace
#i by j ∈ Σ, and let F ⊆ [γ]×Σ be the set of forbidden replacements: (i, j) ∈ F if and
only if replacing #i by j introduces a sensitive pattern. To determine whether there
exists a way of replacing all #’s with letters without introducing any sensitive patterns
nor τ -ghosts, we need to find a solution x ∈ Zγ×|Σ| to the following problem:

xi,j ≥ 0 ∀(i, j) ∈ [γ]× Σ

xi,j = 0 ∀(i, j) ∈ F∑
i∈[γ],j∈Σ αi`,jxi,j ≤ e` ∀` ∈ [λ]∑
j∈Σ xi,j = δi ∀i ∈ [γ]

(F.1)

235

The first and fourth constraints ensure that each # is replaced by exactly one letter,
the second constraint that we do not reinstate any sensitive patterns, and the third
constraint that we do not introduce any τ -ghosts. This is clearly an ILP with m = γ|Σ|
variables and at most 2m+λ+γ constraints. The well-known algorithm by Megiddo [271]
solves the ILP problem in linear time in the number constraints (resp. variables) when
the number of variables (resp. constraints) is upper bounded by a constant. Hence,
although HMd is NP-complete in general, if appropriate subsets of parameters are
bounded by a constant, we can count on polynomial-time solutions.

To show that HMd takes polynomial time in certain cases, let us start with a
general preprocessing step. We construct a static dictionary with O(1) access time
of the letters in X and the letters in strings of S. The value (id) of each key (letter)
is chosen from {1, . . . , k|S|+ n}. This construction can be done in O(n+ k|S|) time
using perfect hashing [154]. We can thus lexicographically sort all length-k substrings
of X and all length-k strings in S (viewed as strings over letter id’s) using radix sort in
O(nk + |S|k) time, and construct two dictionaries, one for X and one for S, as follows.
For X, we construct a trie of all its non-sensitive length-k substrings. The value of each
key (non-sensitive pattern) is its multiplicity in X. We also construct a trie of all strings
in S in a similar fashion (no multiplicities are relevant here, so no values are stored).
We store in both tries, for every node, the first letter on each of its outgoing edges in a
static dictionary with O(1) access time [154]. Thus both trie dictionaries support O(k)
access time: if a length-k string Q is given as a query, we first convert it to a string
I(Q) of id’s in O(k) time using the letter dictionary, and then search for I(Q) from the
root of the tries in O(k) time. The total construction time is O(nk + |S|k).

When δ = O(1), the brute-force algorithm checking all possible ways to replace the
#’s with letters of Σ runs in polynomial time. There are |Σ|δ ways to replace the #’s.
Each of these ways generates δk new length-k strings for which we have to check if they
are sensitive or create a τ -ghost. Checking if they are sensitive can be done using the
trie of S in O(k) time per each length-k string. Counting the additional number of
occurrences of each length-k substring of X can be done using the trie of X in O(k)
time. Counting the number of occurrences of each length-k string that does not occur
in X can be done by constructing a trie of all such strings (we have at most δk of them
per way), similar to the preprocessing step. This gives O(nk + |S|k + |Σ|δδk2) time in
total.

A problem with parameters p and q is fixed-parameter tractable (FPT) in p if there
exists a function f and a polynomial P such that the problem has time complexity
O(f(p) · P (q)) [121]. The following theorem shows three scenarios where an FPT
algorithm exists for HMd.

Theorem 50. HMd is fixed-parameter tractable if

(a) |Σ| = O(1) and γ = O(1); or

(b) |Σ| = O(1) and k = O(1); or

(c) k = O(1) and λ = O(1).

Proof. We first perform the above-mentioned preprocessing. (a) We will solve this case
by constructing and solving the ILP in Eq. F.1. We can count the number of occurrences

236

of each length-k substring of X using the trie of X (and thus determine e` for these
strings) in O(nk) time. The id i of each context #i and its number δi of occurrences
can be determined within the same complexity using a similar preprocessing: this is
possible because the length of every context is 2k − 2 = O(k). Finally, the αi`,j ’s and

F can be computed in O(γ|Σ|k2) total time as follows. For a context #i and a letter
j ∈ Σ, we create k new length-k strings when replacing #i with j, each of which is
either sensitive (in which event we add (i, j) to F) or non-sensitive (we increase αi`,j
by 1). Checking if they are sensitive can be done using the trie of S in O(k) time per
length-k string. Counting the additional number of occurrences of a critical length-k
substring of X can be done using the trie of X in O(k) time. Counting the number of
occurrences of a critical length-k string that does not occur in X (note that e` = τ − 1
for these strings) can be done by constructing a trie of all such strings, similar to the
preprocessing step. The ILP is thus constructed in O(nk + |S|k + γ|Σ|k2) total time.
Since the number of variables in the ILP is m = γ|Σ| = O(1) and solving ILP’s is
fixed-parameter linear in the number of variables [271], HMd is FPT if γ and |Σ| are
fixed.

(b) Since every context has length 2k − 2 and also |Σ| = O(1) and k = O(1), we
have that γ ≤ |Σ|2k−2 = O(1). Thus, if k and |Σ| are fixed, we are in case (a), and
HMd is FPT.

(c) If k = O(1) and λ = O(1), the numbers of constraints and variables in the ILP
are not necessarily upper bounded by a constant. Therefore, we cannot directly solve the
ILP in polynomial time. However, since the λ critical length-k strings contain overall at
most λk different letters, we actually only need to distinguish among a bounded number
of letters. Since we do not need to consider explicitly the remaining letters, we rather
represent them by a single special letter. Let σ ⊆ Σ denote the set of letters contained
in critical length-k strings. Note that critical length-k strings can be determined as
described in part (a). Thus σ can be specified and indexed using perfect hashing [154]
within the same time complexity. We introduce a new letter $ representing all the
letters in Σ \ σ, and we denote by F|$ the set of forbidden replacements where all pairs
(i, j) ∈ F with j ∈ Σ \ σ are collapsed in a single pair (i, $). We thus need to find a
solution x ∈ Zγ×(|σ|+1) for:

xi,j ≥ 0 ∀i ∈ [γ], j ∈ σ ∪ {$}
xi,j = 0 ∀(i, j) ∈ F|$∑
i∈[γ],j∈σ αi`,jxi,j ≤ e` ∀` ∈ [λ]∑
j∈σ∪{$} xi,j = δi ∀i ∈ [γ]

(F.2)

This new ILP can be constructed in O(nk + |S|k + γ|Σ|k2) time, like Eq. F.1. Since
the ILP has only γ(|σ|+ 1) = O(1) variables, HMd is FPT for fixed k and λ [271]. We
can obtain a solution to the original problem by replacing $ by any letter in Σ \ σ that
does not create a sensitive pattern.

We can decide in polynomial time if HM has a solution: we check all |Σ| letter
replacements at each of the δ positions where a # occurs. If, at each position, there
exists at least one letter replacement that does not create a sensitive pattern, then
HM has a solution. Thus, without loss of generality we assume that HM always has a
solution. To minimize τ -ghosts in Z, we define a binary variable z`, ` ∈ [λ], which is

237

equal to 1 (resp. 0) when N` has (resp. has not) become τ -ghost. The ILP formulation
for HM is to find x ∈ Zγ×|Σ| so as to:
Minimize

∑λ
`=1 z` subject to

xi,j ≥ 0 ∀(i, j) ∈ [γ]× Σ

xi,j = 0 ∀(i, j) ∈ F
z` ≥ 0 ∀` ∈ [λ]∑
i∈[γ],j∈Σ αi`,jxi,j − kδz` ≤ e` ∀` ∈ [λ]∑
j∈Σ xi,j = δi ∀i ∈ [γ]

(F.3)

Note that, in the ILP of Eq. F.3,
∑
i∈[γ],j∈Σ α

i
`,jxi,j − kδz` ≤ e` if and only if N` is

not a τ -ghost or z` = 1.

Theorem 51. HM is fixed-parameter tractable if

(a) |Σ| = O(1), γ = O(1), and λ = O(1); or

(b) k = O(1) and λ = O(1).

Proof. (a) We can obtain the ILP of Eq. F.3 in O(λ) time from the ILP of Eq. F.1,
which can be constructed in O(nk+ |S|k+γ|Σ|k2) time; see the proof of Theorem 50(a).
The ILP of Eq. F.3 has at most 2m+ 2λ+ γ constraints and m+λ = |Σ|γ+λ variables.
Therefore HM is FPT if |Σ|, γ and λ are fixed [271].

(b) Similar to the ILP of Eq. F.2 (see Theorem 50(c)), we can reduce the alphabet Σ
to the letters of the critical length-k strings and a special letter $. This new minimization
ILP has γ(|σ|+ 1) + λ ≤ (kλ+ 1)2k−1 + λ = O(1) variables. Therefore HM is FPT if k
and λ are fixed [271].

F.7 Greedy Heuristic for HM

Our heuristic aims to minimize τ -ghosts by controlling the number and frequency of
length-k strings that may become τ -ghosts. It performs two left-to-right passes over
X. In the first pass, it computes statistics on the number FreqX(U) of occurrences
of every length-k substring U of X. It also indexes all (at most δ|Σ|k) non-sensitive
patterns that may occur in Z but do not occur in X using a trie dictionary. In the
second pass, it constructs Z by greedily replacing the occurrences of #, based on the
statistics maintained on-line.

Consider the ith occurrence of # and let Zi be the current version of Z, in which
the first i− 1 occurrences of # have already been replaced. For each letter j ∈ Σ, let
Sj be the set of length-k substrings of string U · j · V that do not contain any sensitive
pattern (otherwise if at least one length-k substring of U · j · V is sensitive Sj = ∅),
where UV is the context of the ith occurrence of #. Further, let S<τj be the subset of

strings Y ∈ Sj with FreqZi
(Y) < τ ; S<τj is undefined if Sj = ∅.

The heuristic has the following three variants differing in how they choose j to
replace the ith occurrence of #:

• count : it minimizes |S<τj |;

238

• min-dist-sum: it minimizes
∑
Y ∈S<τj

[τ − FreqZi
(Y)]−1;

• min-dist-max : it minimizes max
Y ∈S<τj

[τ − FreqZi
(Y)]−1.

After replacing # by j, the statistics on FreqZi
are updated with the strings from

Sj . If i+ 1 ≤ δ, the (i+ 1)th occurrence of # is replaced in Zi+1. Otherwise, Z = Zi is
returned.

Our heuristic takes O(nk + |S|k + δ|Σ|k2) time. The first two terms of the sum
come from a pre-processing analogous to that in Section F.6. The last one is because,
for each of the δ replacements and for every letter in Σ, we process (and also index) k
strings of length k to choose letter j.

F.8 Experiments

Experimental Setup and Datasets. The string sanitization method of [53] takes as
input a string W over Σ, a positive integer k, and a set S of sensitive patterns, and
then it performs the following three steps: (I) It constructs the shortest string X over
Σ# such that X contains no sensitive pattern and the order (and thus frequency) of all
non-sensitive patterns in X and W is the same (see Section F.1). (II) It further tries to
minimize the length of X by preserving the exact frequency of non-sensitive patterns
but waiving their order property. The output of this step is a string Y over Σ#. (III)
It replaces #’s in Y by the Multiple-Choice Knapsack based heuristic (see Section F.2).
The output of this step is a string Z over Σ.

We compare the ILP formulation in Eq. F.3 (denoted by ILP) and the variant
min-dist-sum of our heuristic (denoted by HEU) to Step (III) of [53] (denoted by TPM),
both in terms of data utility and runtime. We omit the results for the other variants of
our heuristic because HEU outperformed them.

The utility of a sanitized string Z is measured by:

1. The number of τ -ghosts in Z; i.e., the size of the set {U ∈ Σk : FreqX(U) <
τ and FreqZ(U) ≥ τ}. All tested methods are guaranteed to create no τ -lost,
i.e., the set {U ∈ Σk : FreqX(U) ≥ τ and FreqZ(U) < τ} is empty. Clearly, zero
τ -lost and τ -ghost patterns imply no utility loss for frequent length-k substring
mining.

2. The Distortion measure [53], which is defined as
∑
U (FreqW (U) − FreqZ(U))2,

where U ∈ Σk is a non-sensitive pattern. This measure penalizes changes in the
frequency of non-sensitive patterns; low values imply high utility for frequency-
based tasks [298].

We used publicly available datasets that were also used in the evaluation of [53]:
Oldenburg (OLD) [1], Trucks (TRU) [2], MSNBC (MSN) [3], and the complete genome
of Escherichia coli (DNA) [4]. We also used synthetic data (uniformly random strings,
the largest of which is referred to as SYN). See Table F.1a for the characteristics of
these datasets.

239

Dataset length alphabet no sens no sens pattern threshold
n size |Σ| patterns |S| positions |P| length k τ

OLD 85,563 100 [60, 320] [926, 5673] [3, 6] [3, 15]
TRU 5,763 100 [10, 70] [363, 3813] [2, 5] [5, 30]
MSN 4,698,764 17 [60, 480] [16792, 133590] [3, 8] [100, 300]
DNA 4,641,652 4 [30, 60] [715, 1617] [9, 15] [5, 30]
SYN 20,000,000 10 [10, 1000] [1967, 2001226] [3, 6] [5, 20]

(a)

Dataset no sens patterns pattern length threshold
|S| k τ

OLD 120 6 10
TRU 30 3 20
MSN 240 8 200
DNA 50 11 20
SYN 100 5 10

(b)

Table F.1: (a) Dataset characteristics. (b) Default values used.

The configuration of parameters was performed as in [53] (see Table F.1b for default
values). That is, the sensitive patterns were selected randomly among the frequent length-
k substrings of minimum support τ and the weight, costs, and θ parameters in TPMwere
configured as in [53]. Our code was written in C++ and is available at https://

anonymous.4open.science/r/d5b692e0-b6f4-432a-9961-a0928e8bc3fb/. The code
of TPMwas also written in C++ and is available at [5]. We used the Gurobi solver v.
9.0.1 (single-thread configuration) to solve ILP instances. All experiments ran on an
Intel i7-3770 CPU @ 3.40GHz with 16GB RAM, which indicates the low computational
requirements of the methods.

(a) OLD (b) TRU (c) MSN (d) DNA

Figure F.1: Number of τ -ghosts for each dataset and varying τ (on the top of each bar, we
show the number of τ -ghosts). (|P | is the total number of positions where a sensitive pattern
occurs in the input string.)

Data Utility. We show that our methods: (I) allow for frequent length-k pattern
mining with no or insignificant utility loss (i.e., they create zero or few τ -ghosts), in
contrast to TPM, and (II) incur substantially lower distortion than TPM.

Number of τ -ghosts. We examined the impact of τ , k, and |S| on τ -ghosts, in
Figs. F.1, F.2, and F.3, respectively. As can be seen, ILP created no τ -ghosts, while
TPM created tens or hundreds in all settings, for all datasets except DNA. In DNA,
ILP outperformed TPM by 72% on average. HEU created no τ -ghosts in all datasets
except OLD and DNA. Also, HEU outperformed TPM by 99% (respectively, 38%)

240

https://anonymous.4open.science/r/d5b692e0-b6f4-432a-9961-a0928e8bc3fb/
https://anonymous.4open.science/r/d5b692e0-b6f4-432a-9961-a0928e8bc3fb/

(a) OLD (b) TRU (c) MSN (d) DNA

Figure F.2: Number of τ -ghosts for each dataset and varying pattern length k (on the top
of each bar, we show the number of τ -ghosts). (|P | is the total number of positions where a
sensitive pattern occurs in the input string.)

(a) OLD (b) TRU (c) MSN (d) DNA

Figure F.3: Number of τ -ghosts for each dataset and varying number of sensitive patterns
|S| (on the top of each bar, we show the number of τ -ghosts). (|P | is the total number of
positions where a sensitive pattern occurs in the input string.)

(a) OLD (b) OLD (c) OLD (d) TRU (e) MSN (f) DNA

Figure F.4: Distortion for varying: (a) τ , (b) k, and (c) number of sensitive patterns |S|.
Distortion for varying |S|. (|P | is the total number of positions where a sensitive pattern
occurs in the input string.)

on average on OLD (respectively, DNA). DNA was challenging to sanitize with few
τ -ghosts. This is because its small alphabet size makes it difficult to find letters that
replace #’s without creating τ -ghosts. Our results show that both our methods allow
for substantially more accurate frequent pattern mining than TPM and indicate that
the method of replacing #’s used in TPM (see Section F.2) is ineffective to minimize
τ -ghosts.

Distortion. We examined the impact of τ , k and |S| on Distortion, in Fig. F.4. Our

241

(a) Substr. of SYN (b) SYN (c) SYN

Figure F.5: Runtime on SYN for varying: (a) n, (b) k, and (c) number of sensitive patterns.
(|P | is the total number of positions where a sensitive pattern occurs in the input string.)

methods outperformed TPMsubstantially, which is very encouraging because TPM is
specifically designed to minimize Distortion (by preserving the frequency of length-k
non-sensitive patterns). A benefit of HEU is that it incurs lower distortion than ILP
(25% on average).
Runtime. We examined the impact of input string length n, k, τ , and |S| on runtime.
As can be seen in Fig. F.5a, our methods are practical, requiring less than 2.5 seconds to
process a 20-million letter string. They also remained efficient when sanitizing patterns
of different length (Fig. F.5b) or of minimum frequency threshold τ , as well as when
sanitizing a large number of sensitive patterns (Fig. F.5c). Overall, ILP was the fastest
and HEU took roughly the same time as TPM.

242

Bibliography

[1] https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm.

[2] https://bitbucket.org/stringsanitization/stringsanitizationpkdd19/

src/master/truck_char.txt.

[3] http://archive.ics.uci.edu/ml/datasets/msnbc.com+anonymous+web+

data.

[4] http://bacteria.ensembl.org/Escherichia_coli_str_k_12_substr_

mg1655/.

[5] https://bitbucket.org/stringsanitization/stringsanitizationpkdd19/

src/master/.

[6] A. A. Ragel and B. Crémilleux. Treatment of missing values for association rules.
In 2nd PAKDD, pages 258–270, 1998.

[7] A. Abboud, A. Backurs, and V. Williams. If the current clique algorithms are
optimal, so is Valiant’s parser. In 56th FOCS, pages 98–117, 2015.

[8] A. Abboud, L. Georgiadis, G. F. Italiano, R. Krauthgamer, N. Parotsidis, O. Tra-
belsi, P. Uznanski, and D. Wolleb-Graf. Faster algorithms for all-pairs bounded
min-cuts. In 46th ICALP, pages 7:1–7:15, 2019.

[9] A. Abboud, R. Krauthgamer, and O. Trabelsi. New algorithms and lower bounds
for all-pairs max-flow in undirected graphs. In 31st SODA, pages 48–61, 2020.

[10] A. Abboud and V. Williams. Popular conjectures imply strong lower bounds for
dynamic problems. In 55th FOCS, pages 434–443, 2014.

[11] K. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–1051,
1987.

[12] O. Abul. Knowledge hiding in emerging application domains. In Privacy-Aware
Knowledge Discovery: Novel Applications and New Techniques. CRC Press, 2010.

[13] O. Abul, F. Bonchi, and F. Giannotti. Hiding sequential and spatiotemporal
patterns. TKDE, 22(12):1709–1723, 2010.

243

https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
https://bitbucket.org/stringsanitization/stringsanitizationpkdd19/src/master/truck_char.txt
https://bitbucket.org/stringsanitization/stringsanitizationpkdd19/src/master/truck_char.txt
http://archive.ics.uci.edu/ml/datasets/msnbc.com+anonymous+web+data
http://archive.ics.uci.edu/ml/datasets/msnbc.com+anonymous+web+data
http://bacteria.ensembl.org/Escherichia_coli_str_k_12_substr_mg1655/
http://bacteria.ensembl.org/Escherichia_coli_str_k_12_substr_mg1655/
https://bitbucket.org/stringsanitization/stringsanitizationpkdd19/src/master/
https://bitbucket.org/stringsanitization/stringsanitizationpkdd19/src/master/

[14] M. Adamczyk, M. Alzamel, P. Charalampopoulos, C. S. Iliopoulos, and J. Ra-
doszewski. Palindromic decompositions with gaps and errors. In 12th CSR, pages
48–61, 2017.

[15] C. C. Aggarwal and P. S. Yu. On anonymization of string data. In 7th SDM,
pages 419–424, 2007.

[16] C. C. Aggarwal and P. S. Yu. A framework for condensation-based anonymization
of string data. DMKD, 16(3):251–275, 2008.

[17] C. C. Aggarwal and P. S. Yu. Privacy-Preserving Data Mining: Models and
Algorithms. Springer, 2008.

[18] R. Agrawal and R. Srikant. Mining sequential patterns. In 11th ICDE, pages
3–14, 1995.

[19] N. Aguse, Y. Qi, and M. El-Kebir. Summarizing the solution space in tumor
phylogeny inference by multiple consensus trees. Bioinformatics, 35(14):i408–i416,
2019.

[20] A. V. Aho and M. J. Corasick. Efficient string matching: An aid to bibliographic
search. Commun. ACM, 18(6):333–340, 1975.

[21] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

[22] A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman. Inferring a tree from
lowest common ancestors with an application to the optimization of relational
expressions. SIAM J. Comput., 10(3):405–421, 1981.

[23] A. Alatabbi, C. S. Iliopoulos, and M. S. Rahman. Maximal palindromic factoriza-
tion. In 18th PSC, pages 70–77, 2013.

[24] B. L. Allen and M. Steel. Subtree transfer operations and their induced metrics
on evolutionary trees. Annals of Combinatorics, 5(1):1–15, 2001.

[25] Y. Almirantis, P. Charalampopoulos, J. Gao, C. S. Iliopoulos, M. Mohamed, S. P.
Pissis, and D. Polychronopoulos. On avoided words, absent words, and their
application to biological sequence analysis. Algorithms for molecular biology :
AMB, 12, 2017.

[26] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

[27] M. Alzamel, L. Ayad, G. Bernardini, R. Grossi, C. Iliopoulos, N. Pisanti, S. Pissis,
and G. Rosone. Degenerate string comparison and applications. In 18th WABI,
pages 21:1–21:14, 2018.

[28] M. Alzamel, L. A. Ayad, G. Bernardini, R. Grossi, C. S. Iliopoulos, N. Pisanti, S. P.
Pissis, and G. Rosone. Comparing degenerate strings. Fundamenta Informaticae,
175(1-4):41–58, 2020.

244

[29] M. Alzamel, J. Gao, C. S. Iliopoulos, C. Liu, and S. P. Pissis. Efficient computation
of palindromes in sequences with uncertainties. In 18th EANN, pages 620–629.
2017.

[30] A. Amir, M. Lewenstein, and E. Porat. Faster algorithms for string matching
with k mismatches. J. Algorithms, 50(2):257–275, 2004.

[31] K. Aoyama, Y. Nakashima, T. I, S. Inenaga, H. Bannai, and M. Takeda. Faster
online elastic degenerate string matching. In 29th CPM, pages 9:1–9:10, 2018.

[32] A. Apostolico, D. Breslauer, and Z. Galil. Parallel detection of all palindromes in
a string. Theoretical Computer Science, 141(1):163–173, 1995.

[33] H. Arimura and T. Uno. An efficient polynomial space and polynomial delay algo-
rithm for enumeration of maximal motifs in a sequence. Journal of Combinatorial
Optimization, 13(3):243–262, 2007.

[34] V. Arlazarov, E. Dinic, M. Kronrod, and I. Faradžev. On economical construc-
tion of the transitive closure of a directed graph. Soviet Mathematics Doklady,
11(5):1209–1210, 1970.

[35] M. Atzori, F. Bonchi, F. Giannotti, and D. Pedreschi. Anonymity preserving
pattern discovery. VLDB J., 17(4):703–727, 2008.

[36] L. A. K. Ayad, G. Badkobeh, G. Fici, A. Héliou, and S. P. Pissis. Constructing
antidictionaries in output-sensitive space. In 29th DCC, pages 538–547, 2019.

[37] F. Bacchus, A. J. Grove, J. Y. Halpern, and D. Koller. From statistical knowledge
bases to degrees of belief. Artificial Intelligence, 87(1-2):75–143, 1996.

[38] A. Backurs and P. Indyk. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). In 47th STOC, pages 51–58, 2015.

[39] A. Backurs and P. Indyk. Which regular expression patterns are hard to match?
In 57th FOCS, pages 457–466, 2016.

[40] R. A. Baeza-Yates and C. H. Perleberg. Fast and practical approximate string
matching. Inf. Process. Lett., 59(1):21–27, 1996.

[41] I. Banerjee, K. Li, M. Seneviratne, M. Ferrari, T. Seto, J. D. Brooks, D. L. Rubin,
and T. Hernandez-Boussard. Weakly supervised natural language processing for
assessing patient-centered outcome following prostate cancer treatment. Journal
of the American Medical Informatics Association Open, 2(1):150–159, 2019.

[42] N. Bansal and R. Williams. Regularity lemmas and combinatorial algorithms. In
50th FOCS, pages 745–754, 2009.

[43] C. Barton, A. Héliou, L. Mouchard, and S. P. Pissis. Linear-time computation of
minimal absent words using suffix array. BMC Bioinformatics, 15:388, 2014.

245

[44] C. Barton, A. Héliou, L. Mouchard, and S. P. Pissis. Parallelising the computation
of minimal absent words. In 11th PPAM. Revised Selected Papers, Part II, pages
243–253, 2015.

[45] C. Barton, C. Liu, and S. P. Pissis. On-line pattern matching on uncertain
sequences and applications. In 10th COCOA, pages 547–562, 2016.

[46] A. Bashir, C. Ye, A. L. Price, and V. Bafna. Orthologous repeats and mammalian
phylogenetic inference. Genome Research, 15(7):998–1006, 2005.

[47] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In 4th LATIN,
pages 88–94, 2000.

[48] D. R. Bentley. Whole-genome re-sequencing. Current Opinion in Genetics &
Development, 16(6):545–552, 2006.

[49] J. Bentley. Multidimensional binary search trees used for associative searching.
Commun. ACM, 18(9):509–517, 1975.

[50] G. Bernardini, P. Bonizzoni, and P. Gawrychowski. Incomplete directed perfect
phylogeny in linear time. arXiv:2010.05644, 2020.

[51] G. Bernardini, P. Bonizzoni, and P. Gawrychowski. On Two Measures of Distance
Between Fully-Labelled Trees. In 31st CPM, pages 6:1–6:16, 2020.

[52] G. Bernardini, P. Bonizzoni, G. D. Vedova, and M. Patterson. A rearrangement
distance for fully-labelled trees. In 30th CPM, pages 28:1–28:15, 2019.

[53] G. Bernardini, H. Chen, A. Conte, R. Grossi, G. Loukides, N. Pisanti, S. P. Pissis,
and G. Rosone. String sanitization: A combinatorial approach. In ECML/PKDD,
pages 627–644, 2019.

[54] G. Bernardini, H. Chen, A. Conte, R. Grossi, G. Loukides, N. Pisanti, S. P. Pissis,
G. Rosone, and M. Sweering. Combinatorial algorithms for string sanitization.
TKDD, 2020.

[55] G. Bernardini, H. Chen, G. Fici, G. Loukides, and S. P. Pissis. Reverse-safe data
structures for text indexing. In 22nd ALENEX, pages 199–213, 2020.

[56] G. Bernardini, H. Chen, G. Loukides, N. Pisanti, S. P. Pissis, L. Stougie, and
M. Sweering. String sanitization under edit distance. In 31st CPM, pages 7:1–7:14,
2020.

[57] G. Bernardini, A. Conte, G. Gourdel, R. Grossi, G. Loukides, N. Pisanti, S. P.
Pissis, G. Punzi, L. Stougie, and M. Sweering. Hide and mine in strings: Hardness
and algorithms. In 20th ICDM, 2020.

[58] G. Bernardini, P. Gawrychowski, N. Pisanti, S. P. Pissis, and G. Rosone. Even
Faster Elastic-Degenerate String Matching via Fast Matrix Multiplication. In
46th ICALP, pages 21:1–21:15, 2019.

246

[59] G. Bernardini, N. Pisanti, S. P. Pissis, and G. Rosone. Pattern matching on
elastic-degenerate text with errors. In 24th SPIRE, pages 74–90, 2017.

[60] G. Bernardini, N. Pisanti, S. P. Pissis, and G. Rosone. Approximate pattern
matching on elastic-degenerate text. Theor. Comput. Sci., 812:109–122, 2020.

[61] E. Bertino, G. Ghinita, and A. Kamra. Access Control for Databases: Concepts
and Systems. Now Foundations and Trends, 2011.

[62] B. Bezawada, A. X. Liu, B. Jayaraman, A. L. Wang, and R. Li. Privacy preserving
string matching for cloud computing. In 35th ICDCS, pages 609–618, 2015.

[63] E. Bier, R. Chow, P. Golle, T. H. King, and J. Staddon. The rules of redaction:
Identify, protect, review (and repeat). IEEE Secur. Priv., 7(6):46–53, 2009.

[64] F. Biessmann, D. Salinas, S. Schelter, P. Schmidt, and D. Lange. “deep” learning
for missing value imputationin tables with non-numerical data. In 27th CIKM,
pages 2017–2025, 2018.

[65] P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and O. Weimann.
Random access to grammar-compressed strings and trees. SIAM J. Comput.,
44(3):513–539, 2015.

[66] H. L. Bodlaender, M. R. Fellows, M. T. Hallett, H. T. Wareham, and T. J. Warnow.
The hardness of perfect phylogeny, feasible register assignment and other problems
on thin colored graphs. Theoretical Computer Science, 244(1-2):167–188, 2000.

[67] C. Böhm and F. Krebs. The k-nearest neighbour join: Turbo charging the kdd
process. Knowledge and Information Systems, 6(6):728–749, 2004.

[68] F. Bonchi and E. Ferrari. Privacy-Aware Knowledge Discovery: Novel Applications
and New Techniques. CRC Press, 2010.

[69] P. Bonizzoni, C. Braghin, R. Dondi, and G. Trucco. The binary perfect phylogeny
with persistent characters. Theoretical Computer Science, 454:51–63, 2012.

[70] P. Bonizzoni, S. Ciccolella, G. Della Vedova, and M. Soto. Beyond perfect
phylogeny: Multisample phylogeny reconstruction via ilp. In 8th ACM-BCB,
pages 1–10, 2017.

[71] P. Bonizzoni, S. Ciccolella, G. Della Vedova, and M. Soto. Does relaxing the
infinite sites assumption give better tumor phylogenies? an ilp-based comparative
approach. IEEE/ACM Trans. Comput. Biology Bioinform., 16(5):1410–1423,
2018.

[72] L. Bonomi, L. Fan, and H. Jin. An information-theoretic approach to individual
sequential data sanitization. In 9th WSDM, pages 337–346, 2016.

[73] L. Bonomi and L. Xiong. A two-phase algorithm for mining sequential patterns
with differential privacy. In 22nd CIKM, pages 269–278, 2013.

247

[74] M. Bordewich and C. Semple. On the computational complexity of the rooted
subtree prune and regraft distance. Annals of Combinatorics, 8(4):409–423, 2005.

[75] K. Borozdin, D. Kosolobov, M. Rubinchik, and A. M. Shur. Palindromic Length
in Linear Time. In 28th CPM, pages 23:1–23:12, 2017.

[76] R. S. Boyer and J. S. Moore. MJRTY: A fast majority vote algorithm. In
Automated Reasoning: Essays in Honor of Woody Bledsoe, pages 105–118, 1991.

[77] V. Brendel, J. S. Beckmann, and E. N. Trifonov. Linguistics of nucleotide
sequences: Morphology and comparison of vocabularies. Journal of Biomolecular
Structure and Dynamics, 4(1):11–21, 1986.

[78] K. Bringmann, F. Grandoni, B. Saha, and V. Williams. Truly sub-cubic algorithms
for language edit distance and RNA-folding via fast bounded-difference min-plus
product. In 56th FOCS, pages 375–384, 2016.

[79] K. Bringmann, A. Grønlund, and K. Larsen. A dichotomy for regular expression
membership testing. In 58th FOCS, pages 307–318, 2017.

[80] K. Bringmann and M. Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In 56th FOCS, pages 79–97, 2015.

[81] G. S. Brodal, R. Fagerberg, T. Mailund, C. N. Pedersen, and A. Sand. Efficient
algorithms for computing the triplet and quartet distance between trees of arbitrary
degree. In 24th SODA, pages 1814–1832, 2013.

[82] D. Brown, D. Smeets, B. Székely, D. Larsimont, A. M. Szász, P.-Y. Adnet,
F. Rothé, G. Rouas, Z. I. Nagy, Z. Faragó, A.-M. Tokés, M. Dank, G. Szentmártoni,
N. Udvarhelyi, G. Zoppoli, L. Pusztai, M. Piccart, J. Kulka, D. Lambrechts,
C. Sotiriou, and C. Desmedt. Phylogenetic analysis of metastatic progression
in breast cancer using somatic mutations and copy number aberrations. Nature
Communications, 8:14944 EP –, 2017.

[83] D. Bryant. A classification of consensus methods for phylogenetics. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, 61:163–184,
2003.

[84] J. R. Bunch and J. E. Hopcroft. Triangular factorization and inversion by fast
matrix multiplication. Mathematics of Computation, 28(125):231–236, 1974.

[85] P. Buneman. The recovery of trees from measures of dissimilarity. Mathematics
in the Archaeological and Historical Sciences, 1971.

[86] T. Calders, B. Goethals, and M. Mampaey. Mining itemsets in the presence of
missing values. In 22nd SAC, pages 404–408, 2007.

[87] J. H. Camin and R. R. Sokal. A method for deducing branching sequences in
phylogeny. Evolution, pages 311–326, 1965.

[88] A. Carpi and A. de Luca. Words and special factors. Theoretical Computer
Science, 259(1-2):145–182, 2001.

248

[89] B. Cazaux, T. Lecroq, and E. Rivals. Linking indexing data structures to de bruijn
graphs: Construction and update. Journal of Computer and System Sciences,
104:165–183, 2019.

[90] S. Chairungsee and M. Crochemore. Using minimal absent words to build phy-
logeny. Theoret. Comput. Sci., 450:109–116, 2012.

[91] T. Chan. Speeding up the four Russians algorithm by about one more logarithmic
factor. In 26th SODA, pages 212–217, 2015.

[92] Y.-J. Chang. Hardness of RNA folding problem with four symbols. In 27th CPM,
pages 13:1–13:12, 2016.

[93] P. Charalampopoulos, M. Crochemore, G. Fici, R. Mercas, and S. P. Pis-
sis. Alignment-free sequence comparison using absent words. Inf. Comput.,
262(Part):57–68, 2018.

[94] P. Charalampopoulos, M. Crochemore, and S. P. Pissis. On extended special
factors of a word. In 25th SPIRE, pages 131–138, 2018.

[95] P. Charalampopoulos, C. S. Iliopoulos, C. Liu, and S. P. Pissis. Property suffix
array with applications in indexing weighted sequences. ACM J. Exp. Algorithmics,
25(1), 2020.

[96] K. Chatterjee, B. Choudhary, and A. Pavlogiannis. Optimal Dyck reachability
for data-dependence and alias analysis. In 45th POPL, pages 30:1–30:30, 2018.

[97] M. Chen, X. Yu, and Y. Liu. Mining moving patterns for predicting next location.
54(C):156–168, 2015.

[98] R. Chen, G. Acs, and C. Castelluccia. Differentially private sequential data
publication via variable-length n-grams. In 19th CCS, pages 638–649, 2012.

[99] R. Chen, B. C. Fung, B. C. Desai, and N. M. Sossou. Differentially private transit
data publication: A case study on the montreal transportation system. In 18th
KDD, pages 213–221, 2012.

[100] S. Ciccolella, G. Bernardini, L. Denti, P. Bonizzoni, M. Previtali, and G. Della Ve-
dova. Triplet-based similarity score for fully multilabeled trees with poly-occurring
labels. Bioinformatics, 2020.

[101] S. Ciccolella, M. S. Gomez, M. Patterson, G. Della Vedova, I. Hajirasouliha, and
P. Bonizzoni. Gpps: an ilp-based approach for inferring cancer progression with
mutation losses from single cell data. In 8th ICCABS, 2018.

[102] S. Ciccolella, M. S. Gomez, M. Patterson, G. Della Vedova, I. Hajirasouliha,
and P. Bonizzoni. Inferring cancer progression from single-cell sequencing while
allowing mutation losses. Bioinformatics, 2018.

[103] A. Cislak and S. Grabowski. Sopang 2: online searching over a pan-genome
without false positives. CoRR, abs/2004.03033, 2020.

249

[104] A. Cis lak, S. Grabowski, and J. Holub. SOPanG: online text searching over a
pan-genome. Bioinformatics, 34(24):4290–4292, 2018.

[105] P. Clifford and R. Clifford. Simple deterministic wildcard matching. Inf. Process.
Lett., 101(2):53–54, 2007.

[106] C. J. Colbourn, W. J. Myrvold, and E. Neufeld. Two algorithms for unranking
arborescences. Journal of Algorithms, 20(2):268–281, 1996.

[107] R. Cole and R. Hariharan. Verifying candidate matches in sparse and wildcard
matching. In 34th STOC, pages 592–601, 2002.

[108] T. C. P.-G. Consortium. Computational pan-genomics: status, promises and
challenges. Briefings in Bioinformatics, pages 1–18, 2016.

[109] U. consortium et al. The uk10k project identifies rare variants in health and
disease. Nature, 526(7571):82–90, 2015.

[110] J. Cooley and J. Tukey. An algorithm for the machine calculation of complex
Fourier series. Mathematics of Computation, 19(90):297–301, 1965.

[111] G. Cormode, F. Korn, and S. Tirthapura. Exponentially decayed aggregates on
data streams. In 25th ICDE, pages 1379–1381, 2008.

[112] N. Cristianini and M. W. Hahn. Introduction to computational genomics - a case
studies approach. Cambridge University Press, 2007.

[113] M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on strings. Cambridge
University Press, 2007.

[114] M. Crochemore, A. Héliou, G. Kucherov, L. Mouchard, S. P. Pissis, and Y. Ra-
musat. Absent words in a sliding window with applications. Inf. Comput., 270,
2020.

[115] M. Crochemore, L. Ilie, C. S. Iliopoulos, M. Kubica, W. Rytter, and T. Walen.
Computing the longest previous factor. Eur. J. Comb., 34(1):15–26, 2013.

[116] M. Crochemore, C. S. Iliopoulos, T. Kociumaka, J. Radoszewski, W. Rytter, and
T. Walen. Covering problems for partial words and for indeterminate strings.
Theor. Comput. Sci., 698:25–39, 2017.

[117] M. Crochemore, F. Mignosi, and A. Restivo. Automata and forbidden words.
Information Processing Letters, 67:111–117, 1998.

[118] M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. Text compression using
antidictionaries. In 26th ICALP, volume 1644, pages 261–270, 1999.

[119] M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. Data compression using
antidictionaries. Proceedings of the IEEE, (11):1756–1768, 2000.

[120] M. Crochemore and D. Perrin. Two-way string matching. J. ACM, 38(3):651–675,
1991.

250

[121] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer Publishing
Company, Incorporated, 1st edition, 2015.

[122] A. Czumaj and A. Lingas. Finding a heaviest vertex-weighted triangle is not
harder than matrix multiplication. SIAM J. Comput., 39(2):431–444, 2009.

[123] B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, and L. Zhang. On distances
between phylogenetic trees. In 8th SODA, pages 427–436, 1997.

[124] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A
supernodal approach to sparse partial pivoting. SIAM Journal on Matrix Analysis
and Applications, 20(3):720–755, 1999.

[125] U. Department of Health & Human Services. Health Insurance
Portablility and Accountability Act. https://aspe.hhs.gov/report/

health-insurance-portability-and-accountability-act-1996, 1996.

[126] Z. DiNardo, K. Tomlinson, A. Ritz, and L. Oesper. Distance measures for tumor
evolutionary trees. Bioinformatics, 2019.

[127] A. J. Dobson. Comparing the shapes of trees. In Combinatorial Mathematics III,
pages 95–100. Springer, 1975.

[128] B. Dong, S. Xie, J. Gao, W. Fan, and P. S. Yu. Onlinecm: Real-time consensus
classification with missing values. In 15th SDM, pages 685–693, 2015.

[129] S. Dori and G. M. Landau. Construction of aho corasick automaton in linear time
for integer alphabets. Inf. Process. Lett., 98(2):66–72, 2006.

[130] J. Droppo and A. Acero. Context dependent phonetic string edit distance for
automatic speech recognition. In 35th ICASSP, pages 4358–4361, 2010.

[131] B. Dudek and P. Gawrychowski. Computing quartet distance is equivalent to
counting 4-cycles. In 51st STOC, pages 733–743, 2019.

[132] J. Duval. Factorizing words over an ordered alphabet. J. Algorithms, 4(4):363–381,
1983.

[133] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity
in private data analysis. In 3rd TCC, pages 265–284, 2006.

[134] P. Eirew, A. Steif, J. Khattra, G. Ha, D. Yap, H. Farahani, K. Gelmon, S. Chia,
C. Mar, A. Wan, et al. Dynamics of genomic clones in breast cancer patient
xenografts at single-cell resolution. Nature, 518(7539):422–426, 2015.

[135] M. El-Kebir. Sphyr: tumor phylogeny estimation from single-cell sequencing data
under loss and error. Bioinformatics, 34(17):i671–i679, 2018.

[136] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification—a
technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696,
1997.

251

https://aspe.hhs.gov/report/health-insurance-portability-and-accountability-act-1996
https://aspe.hhs.gov/report/health-insurance-portability-and-accountability-act-1996

[137] G. F. Estabrook, F. McMorris, and C. A. Meacham. Comparison of undirected
phylogenetic trees based on subtrees of four evolutionary units. Systematic Zoology,
34(2):193–200, 1985.

[138] S. Even and Y. Shiloach. An on-line edge-deletion problem. J. ACM, 28(1):1–4,
1981.

[139] M. Farach. Optimal suffix tree construction with large alphabets. In 38th FOCS,
pages 137–143, 1997.

[140] M. Farach-Colton and S. Muthukrishnan. Perfect hashing for strings: formalization
and algorithms. In 7th CPM, pages 130–140, 1996.

[141] J. Felsenstein and J. Felenstein. Inferring phylogenies, volume 2. Sinauer Associates
Sunderland, MA, 2004.

[142] D. Fernández-Baca and L. Liu. Tree compatibility, incomplete directed perfect
phylogeny, and dynamic graph connectivity: An experimental study. Algorithms,
12(3):53, 2019.

[143] G. Fici, T. Gagie, J. Kärkkäinen, and D. Kempa. A subquadratic algorithm for
minimum palindromic factorization. Journal of Discrete Algorithms, 28:41–48,
2014.

[144] G. Fici and P. Gawrychowski. Minimal absent words in rooted and unrooted trees.
In 26th SPIRE, pages 152–161. Springer, 2019.

[145] G. Fici, F. Mignosi, A. Restivo, and M. Sciortino. Word assembly through minimal
forbidden words. Theoretical Computer Science, 359(1-3):214–230, 2006.

[146] G. Fici, A. Restivo, and L. Rizzo. Minimal forbidden factors of circular words.
Theoret. Comput. Sci., 792:144–153, 2019.

[147] N. Fine and H. Wilf. Uniqueness theorems for periodic functions. Proceedings of
the American Mathematical Society, 16(1):109–114, 1965.

[148] C. Fiot, A. Laurent, and M. Teisseire. Approximate sequential patterns for
incomplete sequence database mining. In FUZZ, pages 1–6, 2007.

[149] J. Fischer and V. Heun. Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM Journal on Computing, 40(2):465–492, 2011.

[150] M. Fischer and A. Meyer. Boolean matrix multiplication and transitive closure.
In 12th SWAT/FOCS, pages 129–131, 1971.

[151] M. Fischer and M. Paterson. String matching and other products. In 7th SIAM-
AMS Complexity of Computation, pages 113–125, 1974.

[152] J. Flum. Rg downey and mr fellows. parameterized complexity. monographs in
computer science. springer, new york, berlin, and heidelberg, 1999, xv+ 533 pp.
Bulletin of Symbolic Logic, 8(4):528–529, 2002.

252

[153] S. Foresti. Microdata protection. In Encyclopedia of Cryptography and Security,
2nd Ed, pages 781–783. Springer, 2011.

[154] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1)
worst case access time. Journal of the ACM, 31(3):538–544, 1984.

[155] Y. Fujishige, Y. Tsujimaru, S. Inenaga, H. Bannai, and M. Takeda. Computing
dawgs and minimal absent words in linear time for integer alphabets. In 41st
MFCS, pages 38:1–38:14, 2016.

[156] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data
publishing: A survey of recent developments. ACM Comput. Surv., 42(4), 2010.

[157] M. Furman. Application of a method of fast multiplication of matrices in the
problem of finding the transitive closure of a graph. Soviet Mathematics Doklady,
11(5):1252, 1970.

[158] T. Gagie, P. Gawrychowski, and S. J. Puglisi. Faster approximate pattern matching
in compressed repetitive texts. In 22nd ISAAC, pages 653–662, 2011.

[159] T. Gagie and S. J. Puglisi. Searching and indexing genomic databases via
kernelization. Frontiers in Bioengineering and Biotechnology, 3:12, 2015.

[160] J. Gallant, D. Maier, and J. A. Storer. On finding minimal length superstrings.
J. Comput. Syst. Sci., 20(1):50–58, 1980.

[161] J. A. Gally and G. M. Edelman. The genetic control of immunoglobulin synthesis.
Annual Review of Genetics, 6(1):1–46, 1972.

[162] J. Gao and R. Impagliazzo. Orthogonal vectors is hard for first-order properties
on sparse graphs. Electronic Colloquium on Computational Complexity (ECCC),
23:53, 2016.

[163] S. P. Garcia, O. J. Pinho, J. M. O. S. Rodrigues, C. A. C. Bastos, and P. J. S. G.
Ferreira. Minimal absent words in prokaryotic and eukaryotic genomes. PLoS
ONE, 6, 2011.

[164] M. R. Garey and D. S. Johnson. “Strong” NP-completeness results: Motivation,
examples, and implications. J. ACM, 25(3):499–508, 1978.

[165] P. Gawrychowski, S. Ghazawi, and G. M. Landau. On indeterminate strings
matching. In 31st CPM, pages 23:1–23:12, 2020.

[166] P. Gawrychowski, G. M. Landau, W. Sung, and O. Weimann. A faster construction
of greedy consensus trees. In 45th ICALP, pages 63:1–63:14, 2018.

[167] P. Gawrychowski and P. Uznanski. Towards unified approximate pattern matching
for Hamming and L1 distance. In 45th ICALP, pages 62:1–62:13, 2018.

[168] M. Gerlinger, S. Horswell, J. Larkin, A. J. Rowan, M. P. Salm, I. Varela, R. Fisher,
N. McGranahan, N. Matthews, C. R. Santos, et al. Genomic architecture and
evolution of clear cell renal cell carcinomas defined by multiregion sequencing.
Nature genetics, 46(3):225, 2014.

253

[169] D. Gibb, B. Kapron, V. King, and N. Thorn. Dynamic graph connectivity with
improved worst case update time and sublinear space. arXiv:1509.06464, 2015.

[170] D. Gibney. An efficient elastic-degenerate text index? not likely. In International
Symposium on String Processing and Information Retrieval, pages 76–88. Springer,
2020.

[171] J. R. Gilbert and T. Peierls. Sparse partial pivoting in time proportional to
arithmetic operations. SIAM Journal on Scientific Computing, 9(5):862–874,
1988.

[172] A. Gkoulalas-Divanis and G. Loukides. Revisiting sequential pattern hiding to
enhance utility. In 17th KDD, pages 1316–1324, 2011.

[173] A. Gkoulalas-Divanis and V. S. Verykios. Exact knowledge hiding through
database extension. TKDE, 21(5):699–713, 2009.

[174] K. Govek, C. Sikes, and L. Oesper. A consensus approach to infer tumor evolu-
tionary histories. In 9th BCB, pages 63–72, 2018.

[175] I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and products.
Elsevier/Academic Press, Amsterdam, seventh edition, 2007.

[176] R. D. Gray, A. J. Drummond, and S. J. Greenhill. Language phylogenies reveal
expansion pulses and pauses in pacific settlement. Science, 323(5913):479–483,
2009.

[177] R. Grossi, J. Iacono, G. Navarro, R. Raman, and S. R. Satti. Asymptotically
optimal encodings of range data structures for selection and top-k queries. ACM
Transactions on Algorithms, 13(2):28:1–28:31, 2017.

[178] R. Grossi, C. S. Iliopoulos, C. Liu, N. Pisanti, S. P. Pissis, A. Retha, G. Rosone,
F. Vayani, and L. Versari. On-line pattern matching on similar texts. In 28th
CPM, pages 9:1–9:14, 2017.

[179] R. Grossi, C. S. Iliopoulos, R. Mercas, N. Pisanti, S. P. Pissis, A. Retha, and
F. Vayani. Circular sequence comparison: algorithms and applications. AMB,
11:12, 2016.

[180] R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM J. Comput., 35(2):378–
407, 2005.

[181] J. W. Grzymala-Busse and M. Hu. A comparison of several approaches to missing
attribute values in data mining. In 3rd RSCTC, pages 378–385, 2001.

[182] V. Guralnik and G. Karypis. A scalable algorithm for clustering sequential data.
In 1st ICDM, pages 179–186, 2001.

[183] D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks,
21(1):19–28, 1991.

254

[184] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, New York, NY, USA, 1997.

[185] D. Gusfield. Persistent phylogeny: a galled-tree and integer linear programming
approach. In 6th ACM-BCB, pages 443–451, 2015.

[186] A. Guttman. R-trees: A dynamic index structure for spatial searching. In
SIGMOD, pages 47–57, 1984.

[187] R. Gwadera, A. Gkoulalas-Divanis, and G. Loukides. Permutation-based sequential
pattern hiding. In 13th ICDM, pages 241–250, 2013.

[188] I. Hajirasouliha, A. Mahmoody, and B. J. Raphael. A combinatorial approach
for analyzing intra-tumor heterogeneity from high-throughput sequencing data.
Bioinformatics, 30(12):i78–i86, 2014.

[189] I. Hajirasouliha and B. J. Raphael. Reconstructing Mutational History in Multiply
Sampled Tumors Using Perfect Phylogeny Mixtures, pages 354–367. Lecture Notes
in Computer Science. Springer Nature, 2014.

[190] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
SIGMOD Record, 29(2):1–12, May 2000.

[191] R. D. Heatherly, G. Loukides, J. C. Denny, J. L. Haines, D. M. Roden, and
B. A. Malin. Enabling genomic-phenomic association discovery without sacrificing
anonymity. PLOS ONE, 8:1–13, 02 2013.

[192] M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak. Unifying and
strengthening hardness for dynamic problems via the online matrix-vector multi-
plication conjecture. In 47th STOC, pages 21–30, 2015.

[193] M. R. Henzinger, V. King, and T. Warnow. Constructing a tree from homeomor-
phic subtrees, with applications to computational evolutionary biology. Algorith-
mica, 24(1):1–13, 1999.

[194] M. Hoffmann, J. Iacono, P. K. Nicholson, and R. Raman. Encoding nearest larger
values. Theoretical Computer Science, 710:97–115, 2018.

[195] J. Holm, K. De Lichtenberg, and M. Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and
biconnectivity. J. ACM, 48(4):723–760, 2001.

[196] J. Holub, W. F. Smyth, and S. Wang. Fast pattern-matching on indeterminate
strings. J. Discrete Algorithms, 6(1):37–50, 2008.

[197] J. E. Hopcroft and R. M. Karp. An n2.5 algorithm for maximum matchings in
bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

[198] L. Huang, V. Popic, and S. Batzoglou. Short read alignment with populations of
genomes. Bioinformatics, 29(13):361–370, 2013.

255

[199] S.-E. Huang, D. Huang, T. Kopelowitz, and S. Pettie. Fully dynamic connectivity
in O(log n(log log n)2) amortized expected time. In 28th SODA, pages 510–520,
2017.

[200] K. T. Huber and V. Moulton. Phylogenetic networks from multi-labelled trees.
Journal of Mathematical Biology, 52(5):613–632, 2006.

[201] E. Husić, X. Li, A. Hujdurović, M. Mehine, R. Rizzi, V. Mäkinen, M. Milanič, and
A. I. Tomescu. Mipup: minimum perfect unmixed phylogenies for multi-sampled
tumors via branchings and ilp. Bioinformatics, 35(5):769–777, 2019.

[202] D. H. Huson and D. Bryant. Application of phylogenetic networks in evolutionary
studies. Molecular Biology and Evolution, 23(2):254–267, 2006.

[203] J. P. Hutchinson. On words with prescribed overlapping subsequences. Utilitas
Mathematica, 7:241–250, 1975.

[204] T. I, S. Sugimoto, S. Inenaga, H. Bannai, and M. Takeda. Computing palindromic
factorizations and palindromic covers on-line. In 25th CPM, pages 150–161, 2014.

[205] C. S. Iliopoulos, R. Kundu, and S. P. Pissis. Efficient pattern matching in
elastic-degenerate texts. In 11th LATA, pages 131–142, 2017.

[206] C. S. Iliopoulos and J. Radoszewski. Truly subquadratic-time extension queries
and periodicity detection in strings with uncertainties. In 27th CPM, pages
8:1–8:12, 2016.

[207] R. Impagliazzo and R. Paturi. On the complexity of k-SAT. Journal of Computer
and Systems Sciences, 62(2):367–375, 2001.

[208] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

[209] P. Indyk. Faster algorithms for string matching problems: Matching the convolu-
tion bound. In 39th FOCS, pages 166–173, 1998.

[210] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. In 9th STOC,
pages 1–10, 1977.

[211] IUPAC-IUB Commission on Biochemical Nomenclature. Abbreviations and
symbols for nucleic acids, polynucleotides, and their constituents. Biochemistry,
9(20):4022–4027, 1970.

[212] K. Jahn, J. Kuipers, and N. Beerenwinkel. Tree inference for single-cell data.
Genome Biology, 17:86, 2016.

[213] J. Jansson and R. Rajaby. A More Practical Algorithm for the Rooted Triplet
Distance. Journal of Computational Biology, 2016.

[214] J. Jansson, R. Rajaby, C. Shen, and W.-K. Sung. Algorithms for the majority
rule (+) consensus tree and the frequency difference consensus tree. IEEE/ACM
Trans. Comput. Biology Bioinform., 15(1):15–26, 2016.

256

[215] J. Jansson, C. Shen, and W.-K. Sung. Improved algorithms for constructing
consensus trees. Journal of the ACM, 63(3):1–24, 2016.

[216] H. Jiang, J. Ma, J. Luan, and D. Zhu. Approximation and nonapproximability
for the one-sided scaffold filling problem. In 21st COCOON, pages 251–263, 2015.

[217] W. Jiao, S. Vembu, A. G. Deshwar, L. Stein, and Q. Morris. Inferring clonal
evolution of tumors from single nucleotide somatic mutations. BMC bioinformatics,
15(1):35, 2014.

[218] L. Jin, C. Li, and R. Vernica. Sepia: estimating selectivities of approximate string
predicates in large databases. The VLDB Journal, 17(5):1213–1229, 2008.

[219] A. Kalai. Efficient pattern-matching with don’t cares. In 13th SODA, pages
655–656, 2002.

[220] M. Kao, T. W. Lam, W. Sung, and H. Ting. A decomposition theorem for
maximum weight bipartite matchings. SIAM J. Comput., 31(1):18–26, 2001.

[221] J. Karhumäki, S. Puzynina, M. Rao, and M. A. Whiteland. On cardinalities of
k-abelian equivalence classes. Theoretical Computer Sciene, 658:190–204, 2017.

[222] J. Karhumäki, A. Saarela, and L. Q. Zamboni. On a generalization of abelian
equivalence and complexity of infinite words. Journal of Combinatorial Theory,
Series A, 120(8):2189–2206, 2013.

[223] J. Kärkkäinen, M. Piatkowski, and S. J. Puglisi. String Inference from Longest-
Common-Prefix Array. In 44th ICALP, pages 62:1–62:14, 2017.

[224] R. M. Karp. Reducibility among combinatorial problems. In Complexity of
computer computations, pages 85–103. Springer, 1972.

[225] N. Karpov, S. Malikic, M. K. Rahman, and S. C. Sahinalp. A multi-labeled
tree dissimilarity measure for comparing ”clonal trees” of tumor progression.
Algorithms for Molecular Biology, 14(1):17, 2019.

[226] U. Keich and P. A. Pevzner. Finding motifs in the twilight zone. Bioinformatics,
18(10):1374–1381, 2002.

[227] H. Kellerer, U. Pferschy, and D. Pisinger. The Multiple-Choice Knapsack Problem,
pages 317–347. Springer Berlin Heidelberg, 2004.

[228] G. Kimmel and R. Shamir. The incomplete perfect phylogeny haplotype problem.
Journal of Bioinformatics and Computational Biology, 3(02):359–384, 2005.

[229] C. Kingsford, M. C. Schatz, and M. Pop. Assembly complexity of prokaryotic
genomes using short reads. BMC Bioinformatics, 11(1):21, 2010.

[230] B. Kirkpatrick and K. Stevens. Perfect phylogeny problems with missing val-
ues. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
11(5):928–941, 2014.

257

[231] D. Knuth, J. M. Jr., and V. Pratt. Fast pattern matching in strings. SIAM J.
Comput., 6(2):323–350, 1977.

[232] D. E. Knuth. The art of computer programming, Volume II: Seminumerical
Algorithms, 3rd Edition. Addison-Wesley, 1998.

[233] D. C. Koboldt, K. M. Steinberg, D. E. Larson, R. K. Wilson, and E. R. Mardis.
The next-generation sequencing revolution and its impact on genomics. Cell,
155(1):27–38, 2013.

[234] T. Kociumaka, S. P. Pissis, and J. Radoszewski. Pattern matching and consensus
problems on weighted sequences and profiles. In 27th ISAAC, pages 46:1–46:12,
2016.

[235] T. Kociumaka, J. Radoszewski, W. Rytter, and T. Waleń. Internal pattern
matching queries in a text and applications. In 26th SODA, pages 532–551, 2015.

[236] T. Kopelowitz and R. Krauthgamer. Color-distance oracles and snippets. In 27th
CPM, volume 54, pages 24:1–24:10, 2016.

[237] D. Kosolobov and N. Sivukhin. Compressed Multiple Pattern Matching. In 30th
CPM, pages 13:1–13:14, 2019.

[238] R. Krauthgamer and O. Trabelsi. Conditional lower bounds for all-pairs max-flow.
ACM Trans. Algorithms, 14(4):42:1–42:15, 2018.

[239] J. Kuipers, K. Jahn, B. J. Raphael, and N. Beerenwinkel. Single-cell sequencing
data reveal widespread recurrence and loss of mutational hits in the life histories
of tumors. Genome Research, 2017.

[240] G. M. Landau and U. Vishkin. Introducing efficient parallelism into approximate
string matching and a new serial algorithm. In 18th STOC, pages 220–230, 1986.

[241] K. Larsen, I. Munro, J. Nielsen, and S. Thankachan. On hardness of several string
indexing problems. Theor. Comput. Sci., 582:74–82, 2015.

[242] F. Le Gall. Powers of tensors and fast matrix multiplication. In 39th ISSAC,
pages 296–303, 2014.

[243] L. Lee. Fast context-free grammar parsing requires fast boolean matrix multipli-
cation. J. ACM, 49(1):1–15, 2002.

[244] C.-A. Leimeister and B. Morgenstern. Kmacs: the k-mismatch average com-
mon substring approach to alignment-free sequence comparison. Bioinformatics,
30(14):2000–2008, 2014.

[245] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady, 10:707, 1966.

[246] H. Li and R. Durbin. Fast and accurate long-read alignment with burrows-wheeler
transform. Bioinform., 26(5):589–595, 2010.

258

[247] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou. Fuzzy keyword search
over encrypted data in cloud computing. In 29th INFOCOM, pages 1–5, 2010.

[248] R. Li, C. Yu, Y. Li, T. W. Lam, S. Yiu, K. Kristiansen, and J. Wang. SOAP2: an
improved ultrafast tool for short read alignment. Bioinformatics, 25(15):1966–1967,
2009.

[249] T. Li and N. Li. Injector: Mining background knowledge for data anonymization.
In G. Alonso, J. A. Blakeley, and A. L. P. Chen, editors, 24th ICDE, pages
446–455, 2008.

[250] P.-C. Lin, Y.-D. Lin, Y.-C. Lai, and T.-H. Lee. Using string matching for deep
packet inspection. IEEE Computer, 41(4):23–28, 2008.

[251] R. J. Lipton. On The Intersection of Finite Automata, pages 145–148. Springer
US, Boston, MA, 2010.

[252] R. J. Little and D. B. Rubin. Statistical Analysis with Missing Data (3rd ed.).
John Wiley & Sons, Inc., USA, 2019.

[253] A. Liu, K. Zhengy, L. Liz, G. Liu, L. Zhao, and X. Zhou. Efficient secure similarity
computation on encrypted trajectory data. In 31st ICDE, pages 66–77, 2015.

[254] Y. P. Liu and A. Sidford. Faster divergence maximization for faster maximum
flow. arXiv preprint arXiv:2003.08929, 2020.

[255] G. Loukides, A. Gkoulalas-Divanis, and B. Malin. Anonymization of electronic
medical records for validating genome-wide association studies. Proceedings of
the National Academy of Sciences USA, 107(17):7898–7903, 2010.

[256] G. Loukides and R. Gwadera. Optimal event sequence sanitization. In 15th SDM,
pages 775–783, 2015.

[257] W. Lu, X. Du, M. Hadjieleftheriou, and B. C. Ooi. Efficiently supporting edit
distance based string similarity search using b+-trees. TKDE, 26(12):2983–2996,
2014.

[258] S. Maciuca, C. del Ojo Elias, G. McVean, and Z. Iqbal. A natural encoding of
genetic variation in a burrows-wheeler transform to enable mapping and genome
inference. In 16th WABI, pages 222–233, 2016.

[259] V. Mäkinen, D. Belazzougui, F. Cunial, and A. I. Tomescu. Genome-scale
algorithm design. Cambridge University Press, 2015.

[260] V. Mäkinen, B. Cazaux, M. Equi, T. Norri, and A. I. Tomescu. Linear time
construction of indexable founder block graphs. In 20th WABI, pages 7:1–7:18,
2020.

[261] S. Malikic, K. Jahn, J. Kuipers, S. C. Sahinalp, and N. Beerenwinkel. Integrative
inference of subclonal tumour evolution from single-cell and bulk sequencing data.
Nature Communications, 10(1):2750, 2019.

259

[262] S. Malikic, F. R. Mehrabadi, S. Ciccolella, M. K. Rahman, C. Ricketts,
E. Haghshenas, D. Seidman, F. Hach, I. Hajirasouliha, and S. C. Sahinalp.
Phiscs: a combinatorial approach for subperfect tumor phylogeny reconstruction
via integrative use of single-cell and bulk sequencing data. Genome Research,
29(11):1860–1877, 2019.

[263] B. Malin and L. Sweeney. Determining the identifiability of DNA database entries.
In AMIA, pages 537–541, 2000.

[264] G. Manacher. A new linear-time “on-line” algorithm for finding the smallest
initial palindrome of a string. Journal of the ACM, 22(3):346–351, 1975.

[265] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information
Retrieval. Cambridge University Press, 2008.

[266] C. D. Manning and H. Schütze. Foundations of Statistical Natural Language
Processing. MIT Press, Cambridge, MA, USA, 1999.

[267] L. Marsan and M. Sagot. Algorithms for extracting structured motifs using a suffix
tree with an application to promoter and regulatory site consensus identification.
J. Comput. Biol., 7(3-4):345–362, 2000.

[268] H. M. Martinez. An efficient method for finding repeats in molecular sequences.
Nucleic Acids Research, 11(13):4629–4634, 1983.

[269] J. Matoušek. Computing dominances in En. Inf. Process. Lett., 38(5):277–278,
1991.

[270] M. McVicar, B. Sach, C. Mesnage, J. Lijffijt, E. Spyropoulou, and T. De Bie.
Sumoted: An intuitive edit distance between rooted unordered uniquely-labelled
trees. Pattern Recognition Letters, 79:52–59, 2016.

[271] N. Megiddo. Linear programming in linear time when the dimension is fixed. J.
ACM, 31(1):114–127, 1984.

[272] T. Mieno, Y. Kuhara, T. Akagi, Y. Fujishige, Y. Nakashima, S. Inenaga, H. Bannai,
and M. Takeda. Minimal unique substrings and minimal absent words in a sliding
window. In 46th SOFSEM, pages 148–160, 2020.

[273] F. Mignosi, A. Restivo, and M. Sciortino. Words and forbidden factors. Theor.
Comput. Sci., 273(1-2):99–117, 2002.

[274] N. Mohammed, B. C. M. Fung, P. C. K. Hung, and C.-K. Lee. Centralized
and distributed anonymization for high-dimensional healthcare data. ACM
Transactions on Knowledge Discovery from Data, pages 18:1–18:33, 2010.

[275] A. Monreale, D. Pedreschi, R. G. Pensa, and F. Pinelli. Anonymity preserving
sequential pattern mining. Artif. Intell. Law, 22(2):141–173, 2014.

[276] A. S. Morrissy, L. Garzia, and others. Divergent clonal selection dominates
medulloblastoma at recurrence. Nature, 529:351 EP –, 01 2016.

260

[277] I. Munro. Efficient determination of the transitive closure of a directed graph.
Inf. Process. Lett., 1(2):56–58, 1971.

[278] E. W. Myers. Approximate matching of network expressions with spacers. Journal
of Computational Biology, 3(1):33–51, 1996.

[279] E. W. Myers and W. Miller. Approximate matching of regular expressions. Bulletin
of Mathematical Biology, 51(1):5–37, 1989.

[280] J. C. Na, A. Apostolico, C. S. Iliopoulos, and K. Park. Truncated suffix trees and
their application to data compression. Theoretical Computer Science, 304(1):87–
101, 2003.

[281] J. C. Na, H. Kim, S. Min, H. Park, T. Lecroq, M. Léonard, L. Mouchard, and
K. Park. Fm-index of alignment with gaps. Theor. Comput. Sci., 710:148–157,
2018.

[282] S. U. Nabar, K. Kenthapadi, N. Mishra, and R. Motwani. A survey of query
auditing techniques for data privacy. In Privacy-Preserving Data Mining: Models
and Algorithms, pages 415–431. Springer US, 2008.

[283] L. Nakhleh, T. Warnow, D. Ringe, and S. N. Evans. A comparison of phyloge-
netic reconstruction methods on an indo-european dataset. Transactions of the
Philological Society, 103(2):171–192, 2005.

[284] A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse
datasets. In S&P, pages 111–125, 2008.

[285] J. Natwichai, X. Li, and M. Orlowska. Hiding classification rules for data sharing
with privacy preservation. In 7th DaWaK, pages 468–477, 2005.

[286] G. Navarro. Nr-grep: a fast and flexible pattern-matching tool. Softw., Pract.
Exper., 31(13):1265–1312, 2001.

[287] G. Navarro. Indexing highly repetitive collections. In 23rd IWOCA, pages 274–279,
2012.

[288] M. Nikaido, A. P. Rooney, and N. Okada. Phylogenetic relationships among
cetartiodactyls based on insertions of short and long interpersed elements: hip-
popotamuses are the closest extant relatives of whales. Proceedings of the National
Academy of Sciences, 96(18):10261–10266, 1999.

[289] P. C. Nowell. The clonal evolution of tumor cell populations. Science, 194(4260):23–
28, 1976.

[290] T. Ota and H. Morita. On the adaptive antidictionary code using minimal
forbidden words with constant lengths. In ISITA 2010, pages 72–77, 2010.

[291] E. Parliament. General Data Protection Regulation. http://data.consilium.

europa.eu/doc/document/ST-9565-2015-INIT/en/pdf.

261

http://data.consilium.europa.eu/doc/document/ST-9565-2015-INIT/en/pdf
http://data.consilium.europa.eu/doc/document/ST-9565-2015-INIT/en/pdf

[292] M. Pawlik and N. Augsten. Efficient computation of the tree edit distance. ACM
Transactions on Database Systems, 40(1):1–40, 2015.

[293] I. Pe’er, T. Pupko, R. Shamir, and R. Sharan. Incomplete directed perfect
phylogeny. SIAM Journal on Computing, 33(3):590–607, 2004.

[294] N. Pisanti, H. Soldano, M. Carpentier, and J. Pothier. A relational extension
of the notion of motifs: Application to the common 3d protein substructures
searching problem. Journal of Computational Biology, 16(12):1635–1660, 2009.

[295] D. Pissinger. A minimal algorithm for the multiple-choice knapsack problem. Eur
J Oper Res, 83(2):394–410, 1995.

[296] S. Pissis and A. Retha. Dictionary matching in elastic-degenerate texts with
applications in searching VCF files on-line. In 17th SEA, volume 103 of LIPIcs,
pages 16:1–16:14, 2018.

[297] S. P. Pissis. MoTeX-II: structured MoTif eXtraction from large-scale datasets.
BMC Bioinformatics, 15:235, 2014.

[298] S. P. Pissis. Motex-ii: structured motif extraction from large-scale datasets. BMC
Bioinform., 15:235, 2014.

[299] S. P. Pissis and A. Retha. Dictionary matching in elastic-degenerate texts with
applications in searching VCF files on-line. In 17th SEA, pages 16:1–16:14, 2018.

[300] V. Popic, R. Salari, I. Hajirasouliha, D. Kashef-Haghighi, R. B. West, and
S. Batzoglou. Fast and scalable inference of multi-sample cancer lineages. Genome
biology, 16(1):91, 2015.

[301] G. Poulis, S. Skiadopoulos, G. Loukides, and A. Gkoulalas-Divanis. Apriori-based
algorithms for km-anonymizing trajectory data. Transactions on Data Privacy,
7(2):165–194, 2014.

[302] D. Pratas and J. M. Silva. Persistent minimal sequences of SARS-CoV-2. Bioin-
formatics, 07 2020. btaa686.

[303] H. Qin, H. Wang, X. Wei, L. Xue, and L. Wu. Privacy-preserving wildcards
pattern matching protocol for iot applications. IEEE Access, 7:36094–36102, 2019.

[304] R. Rahn, D. Weese, and K. Reinert. Journaled string tree - a scalable data structure
for analyzing thousands of similar genomes on your laptop. Bioinformatics,
30(24):3499–3505, 2014.

[305] R. Raman. Encoding data structures. In 9th WALCOM, pages 1–7, 2015.

[306] S. Rangavittal, R. S. Harris, M. Cechova, M. Tomaszkiewicz, R. Chikhi, K. D.
Makova, and P. Medvedev. RecoverY: k-mer-based read classification for Y-
chromosome-specific sequencing and assembly. Bioinformatics, 34(7):1125–1131,
2017.

262

[307] M. Rautiainen, V. Makinen, and T. Marschall. Bit-parallel sequence-to-graph
alignment. Bioinformatics, 2019.

[308] M. Régnier and M. Vandenbogaert. Comparison of statistical significance criteria.
J. Bioinformatics and Computational Biology, 4(2):537–552, 2006.

[309] D. F. Robinson and L. R. Foulds. Comparison of weighted labelled trees. In
Combinatorial Mathematics VI, pages 119–126. Springer, 1979.

[310] D. F. Robinson and L. R. Foulds. Comparison of phylogenetic trees. Mathematical
Biosciences, 53(1-2):131–147, 1981.

[311] L. Roditty and U. Zwick. On dynamic shortest paths problems. In 12th ESA,
pages 580–591, 2004.

[312] M. Rubinchik and A. M. Shur. Eertree: An efficient data structure for processing
palindromes in strings. In 27th IWOCA, volume 9538 of Springer LNCS, pages
321–333. 2015.

[313] M. Ružić. Constructing efficient dictionaries in close to sorting time. In 35th
ICALP, volume 5125 of Springer LNCS, pages 84–95, 2008.

[314] N. Saitou and M. Nei. The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Molecular Biology and Evolution, 4(4):406–425, 07
1987.

[315] P. Samarati and L. Sweeney. Generalizing data to provide anonymity when
disclosing information (abstract). In 17th PODS, page 188, 1998.

[316] P. Samarati and L. Sweeney. Generalizing data to provide anonymity when
disclosing information (abstract). In 17th ACM SIGACT-SIGMOD-SIGART,
page 188, 1998.

[317] G. Satas, S. Zaccaria, G. Mon, and B. J. Raphael. Scarlet: Single-cell tumor
phylogeny inference with copy-number constrained mutation losses. Cell Systems,
10(4):323–332, 2020.

[318] R. V. Satya and A. Mukherjee. The undirected incomplete perfect phylogeny
problem. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
5(4):618–629, 2008.

[319] R. T. Schuh. Major patterns in vertebrate evolution. Systematic Biology, 27(2):172,
1978.

[320] C. Semple, M. Steel, et al. Phylogenetics, volume 24. Oxford University Press on
Demand, 2003.

[321] J. Shang, J. Peng, and J. Han. MACFP: Maximal approximate consecutive
frequent pattern mining under edit distance. In 16th SDM, pages 558–566, 2016.

[322] W. Shen, J. Wang, and J. Han. Sequential Pattern Mining. Springer, 2014.

263

[323] S. T. Sherry, M.-H. Ward, M. Kholodov, J. Baker, L. Phan, E. M. Smigielski, and
K. Sirotkin. dbsnp: the ncbi database of genetic variation. Nucleic acids research,
29(1):308–311, 2001.

[324] Y. Shiloach and U. Vishkin. An o(log n) parallel connectivity algorithm. J.
Algorithms, 3(1):57–67, 1982.

[325] R. M. Silva, D. Pratas, L. Castro, A. J. Pinho, and P. J. S. G. Ferreira. Three
minimal sequences found in Ebola virus genomes and absent from human DNA.
Bioinformatics, 31(15):2421–2425, 2015.

[326] P. Sinha and A. A. Zoltners. The multiple-choice knapsack problem. Operations
Research, 27(3):431–627, 1979.

[327] J. Sirén. Indexing variation graphs. In 19th ALENEX, pages 13–27, 2017.

[328] D. Sleator and R. Tarjan. A data structure for dynamic trees. J. Comput. Syst.
Sci., 26(3):362–391, 1983.

[329] H. J. Smith, T. Dinev, and H. Xu. Information privacy research: An interdisci-
plinary review. MIS Quarterly, 35(4):989–1015, 2011.

[330] Software. Eigen library. http://eigen.tuxfamily.org, 2020.

[331] H. Soldano, A. Viari, and M. Champesme. Searching for flexible repeated patterns
using a non-transitive similarity relation. Pattern Recognition Letters, 16(3):233–
246, 1995.

[332] M. Spiliopoulou. Managing interesting rules in sequence mining. In 3rd PKDD,
pages 554–560, 1999.

[333] E. C. Stavropoulos, V. S. Verykios, and V. Kagklis. A transversal hypergraph
approach for the frequent itemset hiding problem. Knowl. Inf. Syst., 47(3):625–645,
June 2016.

[334] M. Steel. Phylogeny: discrete and random processes in evolution. SIAM, 2016.

[335] K. Stevens and D. Gusfield. Reducing multi-state to binary perfect phylogeny
with applications to missing, removable, inserted, and deleted data. In 10th WABI,
pages 274–287. Springer, 2010.

[336] P. H. Sudmant, T. Rausch, E. J. Gardner, R. E. Handsaker, A. Abyzov, J. Hud-
dleston, Y. Zhang, K. Ye, G. Jun, M. H.-Y. Fritz, et al. An integrated map of
structural variation in 2,504 human genomes. Nature, 526(7571):75–81, 2015.

[337] X. Sun and P. S. Yu. A border-based approach for hiding sensitive frequent
itemsets. In 5th ICDM, pages 426–433, 2005.

[338] K.-C. Tai. The tree-to-tree correction problem. Journal of the ACM, 26(3):422–433,
1979.

264

http://eigen.tuxfamily.org

[339] A. Tamersoy, G. Loukides, M. E. Nergiz, Y. Saygin, and B. Malin. Anonymization
of longitudinal electronic medical records. IEEE Transactions on Information
Technology in Biomedicine, 16(3):413–423, 2012.

[340] M. Terrovitis and N. Mamoulis. Privacy preservation in the publication of
trajectories. In 9th MDM, pages 65–72, 2008.

[341] M. Terrovitis, N. Mamoulis, and P. Kalnis. Local and global recoding methods
for anonymizing set-valued data. The VLDB Journal, 20(1):83–106, 2011.

[342] M. Terrovitis, G. Poulis, N. Mamoulis, and S. Skiadopoulos. Local suppression
and splitting techniques for privacy preserving publication of trajectories. IEEE
Transactions on Knowledge and Data Engineering, 29(7):1466–1479, 2017.

[343] S. V. Thankachan, S. P. Chockalingam, Y. Liu, A. Krishnan, and S. Aluru.
A greedy alignment-free distance estimator for phylogenetic inference. BMC
Bioinformatics, 18(8):238:1–238:8, 2017.

[344] The 1000 Genomes Project Consortium. A global reference for human genetic
variation. Nature, 526(7571):68–74, 2015.

[345] The Computational Pan-Genomics Consortium. Computational pan-genomics:
status, promises and challenges. Briefings in Bioinformatics, 19(1):118–135, 2018.

[346] G. Theodorakopoulos, R. Shokri, C. Troncoso, J. Hubaux, and J. L. Boudec.
Prolonging the hide-and-seek game: Optimal trajectory privacy for location-based
services. In 13th WPES, pages 73–82, 2014.

[347] M. Thorup. Decremental dynamic connectivity. Journal of Algorithms, 33(2):229–
243, 1999.

[348] J. Tuikkala, L. Elo, O. Nevalainen, and T. Aittokallio. Missing value imputation
improves clustering and interpretation of gene expression microarray data. BMC
Bioinform., 9, 2008.

[349] I. Ulitsky, D. Burstein, T. Tuller, and B. Chor. The average common substring
approach to phylogenomic reconstruction. Journal of Computational Biology,
13(2):336–350, 2006.

[350] L. Valiant. General context-free recognition in less than cubic time. J. Comput.
Syst. Sci., 10(2):308–315, Apr. 1975.

[351] V. S. Verykios, A. K. Elmagarmid, E. Bertino, Y. Saygin, and E. Dasseni. Associ-
ation rule hiding. TKDE, 16(4):434–447, 2004.

[352] R. S. Walker, S. Wichmann, T. Mailund, and C. J. Atkisson. Cultural phylogenetics
of the tupi language family in lowland south america. PLOS One, 7(4), 2012.

[353] S. Wandelt and U. Leser. String searching in referentially compressed genomes.
In 4th KDIR, pages 95–102, 2012.

265

[354] D. Wang, Y. He, E. Rundensteiner, and J. F. Naughton. Utility-maximizing event
stream suppression. In 39th SIGMOD, pages 589–600, 2013.

[355] J. Wang, E. Cazzato, E. Ladewig, V. Frattini, D. I. S. Rosenbloom, S. Zairis,
F. Abate, Z. Liu, O. Elliott, Y.-J. Shin, J.-K. Lee, I.-H. Lee, W.-Y. Park, M. Eoli,
A. J. Blumberg, A. Lasorella, D.-H. Nam, G. Finocchiaro, A. Iavarone, and
R. Rabadan. Clonal evolution of glioblastoma under therapy. Nature Genetics,
48:768 EP –, 06 2016.

[356] J. Wang, N. Ntarmos, and P. Triantafillou. Indexing query graphs to speedup
graph query processing. In 19th EDBT, pages 41–52, 2016.

[357] P. Weiner. Linear pattern matching algorithms. In 14th SWAT/FOCS, pages
1–11, 1973.

[358] Z. Wen, D. Deng, R. Zhang, and R. Kotagiri. 2ed: An efficient entity extraction
algorithm using two-level edit-distance. In 35th ICDE, pages 998–1009, 2019.

[359] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its
implications. Theor. Comput. Sci, 348(2-3):357–365, 2005.

[360] V. Williams and R. Williams. Finding a maximum weight triangle in n3−δ time,
with applications. In 38th STOC, pages 225–231, 2006.

[361] V. Williams and R. Williams. Subcubic equivalences between path, matrix and
triangle problems. In 51st FOCS, pages 645–654, 2010.

[362] V. V. Williams. Multiplying matrices faster than Coppersmith-Winograd. In 44th
STOC, pages 887–898, 2012.

[363] V. V. Williams. On some fine-grained questions in algorithms and complexity. In
International Congress of Mathematicians, 2018.

[364] S. Wu and U. Manber. Agrep – a fast approximate pattern-matching tool. In
USENIX Technical Conference, pages 153–162, 1992.

[365] Y. Wu, C. Chiang, and A. L. P. Chen. Hiding sensitive association rules with
limited side effects. TKDE, 19(1):29–42, 2007.

[366] C. Wuilmart, J. Urbain, and D. Givol. On the location of palindromes in
immunoglobulin genes. Proceedings of the National Academy of Sciences of
the United States of America, 74(6):2526–2530, 1977.

[367] X. Xiao, Y. Tao, and N. Koudas. Transparent anonymization: Thwarting ad-
versaries who know the algorithm. ACM Transactions on Database Systems,
35(2):8:1–8:48, 2010.

[368] S. Xu, X. Cheng, S. Su, K. Xiao, and L. Xiong. Differentially private fre-
quent sequence mining. IEEE Transactions on Knowledge and Data Engineering,
28(11):2910–2926, 2016.

266

[369] Y. Xu, K. Wang, A. W. Fu, and P. S. Yu. Anonymizing transaction databases for
publication. In 24th KDD, pages 767–775, 2008.

[370] J. J. Ying, W. Lee, T. Weng, and V. S. Tseng. Semantic trajectory mining for
location prediction. In 19th SIGSPATIAL, pages 34–43, 2011.

[371] H. Yu. An improved combinatorial algorithm for boolean matrix multiplication.
In 42nd ICALP, volume 9134 of Springer LNCS, pages 1094–1105, 2015.

[372] H. Yu. An improved combinatorial algorithm for boolean matrix multiplication.
Inf. Comput., 261(Part):240–247, 2018.

[373] K. Yuan, T. Sakoparnig, F. Markowetz, and N. Beerenwinkel. Bitphylogeny:
a probabilistic framework for reconstructing intra-tumor phylogenies. Genome
Biology, 16(1):36, 2015.

[374] H. Zafar, A. Tzen, N. Navin, K. Chen, and L. Nakhleh. Sifit: inferring tumor
trees from single-cell sequencing data under finite-sites models. Genome Biology,
18(1):178, 2017.

[375] M. J. Zaki, W. M. Jr, and W. Meira. Data mining and analysis: fundamental
concepts and algorithms. Cambridge University Press, 2014.

[376] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between
trees and related problems. SIAM J. Comput., 18(6):1245–1262, 1989.

[377] U. Zwick. All pairs shortest paths using bridging sets and rectangular matrix
multiplication. J. ACM, 49(3):289–317, 2002.

267

	Introduction
	Part I
	Part II
	Roadmap and Synopsis of the Publications
	Elastic-Degenerate String Matching via Matrix Multiplication
	Approximate Pattern Matching on Elastic-Degenerate Text
	Comparing Degenerate Strings
	A Rearrangement Distance for Fully-Labelled Trees
	Triplet-Based Similarity Score for Tumor Phylogenies
	Incomplete Directed Perfect Phylogeny in Linear Time

	List of Publications

	I Degenerate Strings
	Elastic-Degenerate String Matching via Matrix Multiplication
	Introduction
	Preliminaries
	AP Conditional Lower Bound
	EDSM Conditional Lower Bound
	An (nm-1+N)-time Algorithm for EDSM
	Type 1 Strings
	Type 2 Strings
	Type 3 Strings
	Wrapping Up

	Final Remarks

	Approximate Pattern Matching on Elastic-Degenerate Text
	Introduction
	Preliminaries
	An Algorithm for kE-EDSM
	Algorithm kE-bord
	Algorithm kE-ext

	An Algorithm for kH-EDSM
	Extension to General Integer Alphabets
	Final Remarks

	Comparing Degenerate Strings
	Introduction
	Preliminaries
	GD String Comparison for Small Alphabets Using Automata
	GD String Comparison for Integer Alphabets
	Computing Palindromes in GD Strings
	Algorithms for Computing GD Palindromes
	Computing GD Palindromes in Protein Sequences

	A Conditional Lower Bound under SETH
	Concluding Remarks and Open Problems

	II Phylogenetic Trees
	A Rearrangement Distance for Fully-Labelled Trees
	Introduction
	Preliminaries
	Permutation Distance
	Polynomial Time Algorithm
	Reduction to Bipartite Maximum Matching
	Reduction from Bipartite Maximum Matching

	Rearrangement Distance
	A 4-Approximation Algorithm for Binary Trees
	A General Constant-Factor Approximation Algorithm
	Step 1
	Step 2
	Step 3

	Fixed parameter tractability

	MP3: Triplet-Based Similarity Score for Tumor Phylogenies
	Introduction
	Methods
	Extension to fully labeled trees and multi-labeled trees
	Extension to poly-occurring labels
	Similarity measure between trees

	Results
	Simulated Data
	Measures comparison
	Application to clustering of trees
	Application to real dataset

	Discussion

	Incomplete Directed Perfect Phylogeny in Linear Time
	Introduction
	Preliminaries
	(N,N)-DC in O(N2logN) Total Update Time and O(N) Time per Query
	(N,N)-DC in O(N2) Total Update Time and O(N) Time per Query

	III Appendices
	Fundamental Definitions and Data Structures
	Strings
	Graphs and Data Structures

	Additional Experiments of Chapter 6
	Effect of label sliding
	Base tree for poly-occurring label experiment
	Base trees for Exp1 and Exp2
	Base trees for Clustering experiment
	Trees for real data experiment
	Example of computation of MP3

	Combinatorial String Dissemination
	Introduction
	Model and Settings
	Our Contributions

	Related Work
	Data Sanitization
	Data Anonymization

	Preliminaries
	TFS-ALGO
	PFS-ALGO
	MCSR Problem, MCSR-ALGO, and Implausible Pattern Elimination
	The MCSR Problem
	MCSR-ALGO
	Eliminating Implausible Patterns

	ETFS-ALGO
	Experimental Evaluation
	TPM vs. PH
	TPM vs. BA
	TM vs. TMI
	TFS-ALGO vs. ETFS-ALGO

	String Sanitization Under Edit Distance
	Introduction
	ETFS-DP: An bold0mu mumu O(kn2)O(kn2)subappendixO(kn2)O(kn2)O(kn2)O(kn2)-time Algorithm for ETFS
	Dynamic Programming
	Construction of bold0mu mumu XEDXEDsubsubappendixXEDXEDXEDXED
	Wrapping up

	A Conditional Lower Bound for ETFS
	Final Remarks

	Reverse-Safe Text Indexing
	Introduction
	Preliminaries
	A z-RSDS for Text Indexing
	Constructing z-RSDS
	Engineering the z-RC Algorithm
	Improvement I: Reducing the BS Interval
	Improvement II: Checking Prefixes of S
	Improvement III: Sparse LU Decomposition

	Implementations and Experiments
	Implementations
	Experimental Setup and Datasets
	Data Utility
	Runtime
	Disregarded Prefixes

	Application to Adversary Models
	Adversary Model I: Positive Adversarial Knowledge
	Adversary Model II: Negative Adversarial Knowledge
	Generalization to a Collection of Patterns

	A z-RSDS for Decision Queries
	Final Remarks

	Hide and Mine in Strings
	Introduction
	Related Work
	Preliminaries and Problem Statement
	HMd is NP-complete
	The Unique-Weights Bin Packing problem
	Overview of the Reduction from UWBP to HMd
	Construction of an Instance of HMd
	Correctness

	HM is Hard to Approximate
	Exact Algorithms for HM
	Greedy Heuristic for HM
	Experiments

