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Abstract 

Waste management capacity plays a prominent role in complying with circular economy goals, such 

as reducing municipal waste disposal by landfilling to 10%. We first analyze the imbalance in 

municipal solid waste management across Italy by estimating the quantities of waste to be treated 

using technologies different from those currently in use. Subsequently, we estimate the impact that 

a system compliant with circular economy goals would have on the cost of waste management. Our 

empirical analyses are based on an econometric method. The results suggest that Italy could reduce 

the use of landfill by 11.5%, resulting in a 13% reduction in mechanical-biological treatment. The 

waste-to-energy capacity would rise by 4.6% compared to the current situation, while the organic 

fraction treatment capacity would increase by 8.3%. Besides the positive impact on the 

environment, the potential annual savings on the cost of waste management could reach 0.07%, or 

0.27% when the phase corresponding to treatment and disposal is considered. We provide insights 

into the design of more efficient national waste management plans using a novel approach based on 

best performers.  
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1. Introduction 

An efficient waste management system is essential for moving toward a more circular economy, 

which is increasingly seen as an alternative to the make-use-dispose paradigm (Tisserant et al., 

2017). Since waste management capacity is a prominent topic within the development of circular 

economy policy (Lavee and Nardiya, 2013), an industrial policy aimed at promoting different waste 

management options is the backbone of an efficient waste management system. 

The rates at which countries manage municipal solid waste (MSW) using landfill, waste-to-

energy plants (WtE), or composting facilities differ considerably at the global level (Kaza et al., 

2018). From a techno-environmental point of view, reducing waste is the crucial point. The 

recycling of materials and the composting of biodegradable waste outperform the WtE option, 

which, in turn, is preferable to landfill (Gharfalkar et al., 2015). There is evidence of a trend toward 

convergence in MSW treatment rates (Castillo-Giménez et al., 2019). For example, for recycling 

and composting, the European average is 46%, while the average waste sent to landfill is 25% (Di 

Foggia and Beccarello, 2018). However, according to Directive (EU) 2018/850, by 2035 the 

amount of MSW landfilled should not exceed 10%. The above-mentioned points regarding the 

preference of methods in waste management refer only to MSW. 

From an economic standpoint, there is interest in, and increasing concern about, waste 

management options, with circular economy goals calling for technologically advanced facilities 

that may increase the cost of waste management (Swart and Groot, 2015). Nevertheless, such 

facilities are vital in an integrated waste management system (Cobo et al., 2018). In Italy, the 

concept of integrated waste management emerged from Legislative Decree 152/2006, which 

updated Italian environmental legislation in line with EU waste directives. Given that many regions 

are still struggling to achieve self-sufficiency in waste management, we believe that it is important 

to understand why some regions comply with self-sufficiency principles and others do not. We 

argue that the differences are due to an imbalance in the country’s level of industrialization, which 

is most strikingly characterized by the critical WtE undercapacity in Sicily and Lazio. The 

overcapacity of other regions, including Lombardy and Emilia-Romagna, counterbalances the low 

level of industrialization of the former regions, as noted in the 2019 annual report of the Regulatory 

Authority for Energy, Networks, and Environment (ARERA, 2019). Due to waste exports, this 

situation generates negative environmental and economic externalities. 

The situation is urgent for three main reasons. First, there is a need to achieve the circular 

economy goals regarding landfill disposal and the percentage of sorted waste collection. Second, 

policymakers need information to support them in understanding the nature of the gap and how to 

address it through appropriate industrial policy. Third, there is a need to understand how tariffs can 
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support the development of facilities to ensure optimal capacity at a regional and national level. In 

this connection, we developed research questions to clarify the following crucial issues: the 

imbalance between the amount of waste managed using today’s mix of different treatment options 

and the amount foreseen by circular economy goals, and the economic impact on the cost of 

developing facilities to meet such goals. Therefore, our purpose is twofold. First, we provide a 

simple approach that can be used as a model to quantify waste management capacity needs to 

achieve the circular economy goals by limiting the movement of waste according to the legislation 

in force. Second, we estimate the economic impact of updating the sector’s total treatment capacity, 

including potential savings that may, in turn, be reinvested in the industry for modernization 

purposes. 

Our results have practical implications for policymaking, since we provide insights into 

setting up a waste capacity path and defining policy-oriented tariffs to promote alternative waste 

management options (Scharff, 2014; Schreck and Wagner, 2017). Specifically, our results may 

assist in the development of policies to promote the overall efficiency and cost-effectiveness of the 

service while meeting the environmental objectives of the circular economy package. It is important 

to focus policies on the waste sector’s capacity by selecting and promoting different technologies 

according to deficits or overcapacity, their role within the circular economy strategy, and the 

potential savings that could be invested to modernize the sector. Although we analyze the Italian 

situation, several insights may also be useful for other countries, since European and global data 

indicate heterogeneity in the situations of different countries (Kaza et al., 2018). In terms of 

theoretical implications, this paper’s main contribution to the existing literature is our approach to 

path identification for a waste management system that is circular economy-compliant. 

The remainder of the paper is organized as follows. Section 2 provides a review of related 

research. Section 3 presents the methods used in the paper, the sample, the variables generated for 

analysis, the statistical analysis, and the simulation approach. Section 4 provides the results of the 

analyses. Our results are discussed in Section 5 and conclusions drawn in Section 6. 

2. Literature review 

Fast-paced exploitation of natural resources has resulted in their limited availability, while the 

growing need to safeguard the ecosystem makes it necessary to move toward a circular economy 

(Di Foggia and Beccarello, 2018; Ghisellini et al., 2014; Kirchherr et al., 2017). In recent years, as 

sustainability drivers have prompted governments to commit to moving toward a circular economy, 

the role of waste management facilities has become a theme in the policy debate (Gullì and Zazzi, 

2011; Makarichi et al., 2018; Tisserant et al., 2017; Zeller et al., 2019). By the same token, the role 
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of waste separation has gained importance; empirical results show, for example, that the separate 

collection of the recyclable fraction leads to reduced processing costs at intermediate treatment 

facilities (Chifari et al., 2017). Waste management facilities have gained importance owing to the 

increasing complexity of the waste management chain, which moves from waste collection to 

recovery, recycling, and disposal through various methods and technologies. The selection of waste 

management approach and technology hinges on the local context in terms of investments, ongoing 

management (Yao and Van Woerden, 2018), and existing facilities. The same is true for the 

benefits, which reflect first and foremost on the local context.  

As such benefits embed environmental, social, and economic spheres (Blagojević and 

Tufegdžić, 2016; Loures, 2015), a consistent waste management policy will integrate these three 

dimensions, considering their benefits for future decision making (Allesch and Brunner, 2014). As 

with other local infrastructure (Agrawal, 2001), development projects for waste management should 

be sustainable and should have clearly defined long-term goals (Abdallah et al., 2018; Molinos-

Senante et al., 2010). In this regard, a recent study of the links between waste management system 

design and economic sustainability has focused on the synergy between internal waste recovery and 

outside solutions (Tomić and Schneider, 2020). 

Despite the implications for growth demonstrated by econometric studies, significant under-

investment persists in the area of waste management (Amann et al., 2016). For example, WtE plants 

play a prominent role in progressing toward a circular economy, as they prevent landfill and 

generate energy. A recent study has emphasized that by upgrading WtE processes and resource, 

LCA would help in selecting a cost-effective option to improve exergy efficiency (Fujii et al., 

2019). Previous studies have discussed the advantages and disadvantages of this treatment 

technology from an economic perspective, confirming the importance of thermal treatments in an 

integrated waste management cycle. Indeed, waste incineration has attracted the interest of 

economists, especially in terms of external costs and benefits and concerns about market failures 

associated with the provision of thermal treatment of waste (Massarutto, 2015). Given that landfill 

is still the main option used to treat and dispose of MSW worldwide, some experts agree that the 

introduction of mechanical-biological treatment (MBT) is to be recommended for developing 

countries (Trulli et al., 2018). However, such facilities often face significant opposition from local 

communities and policymakers (Liu et al., 2019). 

Similarly, although WtE plants produce fewer negative environmental externalities than 

landfill, policymakers have often opposed such facilities (Bocken et al., 2014). Broadly speaking, 

by reducing the amount of waste sent to landfill, it is possible to recycle more material and enable 

energy recovery. However, this depends on the availability of suitable alternatives. In this context, a 
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recurring theme is the so-called not-in-my-backyard effect, when a project is undesirable because it 

is considered a threat to health or safety or is associated with a deterioration of a geographical area 

(Malinauskaite et al., 2017). This effect can lead to an inefficient allocation of resources as, 

regardless of the distributed benefits, the environmental cost is concentrated in the area where the 

plant is located. When considering MBT, another noteworthy aspect is the relationship between the 

efficiency of MBT facilities and the quality of the sorted and unsorted waste. Moreover, by 

implementing MBT before landfill, the environmental impact and waste mass are reduced by up to 

30% (Trulli et al., 2018).  

The development and strengthening of waste management facilities within an industrial 

development path for the waste management sector is necessary for achieving circular economy 

goals (Beccarello and Di Foggia, 2016; Liu et al., 2019; Malinauskaite et al., 2017). A shortage of 

waste management facilities generates inefficient brokerage mechanisms, unjustifiably increasing 

the cost to taxpayers and negatively impacting the economy. These costs can be funded according to 

different approaches (Alzamora and Barros, 2020).  

Policymakers should find an equilibrium between different options to achieve circular 

economy goals at a sustainable cost (Beccarello and Di Foggia, 2018; Tisserant et al., 2017), 

especially when the recovery of materials is maximized (Zaman, 2016) in the context of the 

growing need to incentivize secondary raw material markets (Schreck and Wagner, 2017). These 

considerations explain the broad agreement on the desirability of policymakers securing resources 

for the waste industry to ensure adequate waste management capacity. Policymakers have a set of 

policy tools at their disposal (Roumboutsos et al., 2014) to support the necessary upgrading. Such 

tools can be categorized as market-based or command and control, where command and control 

tools can precede and complement market-based instruments (Böcher, 2012). The underlying 

paradigm of market-based instruments is the achievement of socially efficient use of environmental 

resources by shifting the cost of negative externalities associated with resource use to users or 

polluters (Greiner, 2013). Our results will provide policymakers with reliable information about 

setting up a waste capacity industrialization path, supporting them in developing policies aimed at 

promoting the overall efficiency and cost-effectiveness of the service while meeting the 

environmental targets set by the circular economy package. 

At the European level, Directive 2008/98/EC and Regulation 2014/955/EU define the strategy 

for achieving the circular economy goals through the hierarchical principles of waste management: 

prevention, preparation for reuse, recycling, recovery, and landfill as a last resort. In Italy, the 

concept of integrated waste management originates from Legislative Decree 152/2006, which also 

confirms that recovery and disposal plants are to be considered of overriding national interest for 
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the country’s modernization and development. Significant aspects to take into consideration include 

the cost-effectiveness of different waste management options, how regulators can recognize 

efficient costs to design cost-reflective tariffs of waste management, and the identification of 

empirical data to support the sustainability of environmental and economic policies. 

3. Methods 

Our research methodology stems from the need to merge regional-level potential drivers of 

efficiency with nationwide economic impacts. By optimal allocation of facilities, we mean the mix 

of waste management options operating in a region so that the region itself is compliant with 

circular economy goals. We attempt to answer the following two research questions:  

RQ1: Is there a gap between the waste management capacity across the Italian regions and 

the optimal level? 

RQ2: What is the impact on waste management cost of the efficient allocation of waste 

management capacity? 

The sample used in this paper was obtained through probability sampling, that is, stratified random 

sampling through which a large population can be divided into smaller groups that do not overlap. 

The stratification took into consideration all Italian municipalities with more than 1,000 inhabitants. 

This is because waste data in smaller municipalities are collected by groups of municipalities, 

making it difficult to attribute exact data to each municipality. The analyses are based on data for 

4,723 municipalities spread across the country, comprising 84.4% of the Italy’s population and 

59.4% of its municipalities. Note that most of the missing municipalities are small villages. Indeed, 

while municipalities with less than 3,000 inhabitants represent 57% of the total (4,410 

municipalities), they cover only 9.21% of the population. The data refer to 2018, the most recent 

year available. 

Economic data were obtained from official statements on waste tax revenues, indicated in 

the environmental declaration model, which is updated annually by municipalities and other 

delegated entities, typically in-house companies that manage the waste tax collection service. The 

computation of costs per ton of waste was based on data published by the Italian Institute for 

Environmental Protection and Research (ISPRA). Demographic and morphological data were 

obtained from the Italian National Statistics Institute (ISTAT) databases. We used primary data 

retrieved from the above-mentioned official open sources. Figure 1 shows that waste management 

facilities are unevenly dispersed (see Table A1 for additional information). 
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Figure 1. Distribution of waste management facilities across Italy. Source: ISPRA.  

Of the approximately 30 million tons of MSW produced in Italy annually, roughly 2 million 

tons are managed in regions other than where the MSW was generated. The northern regions import 

12% of municipal waste from central and southern regions and send roughly 10% of total waste 

managed to landfill. The central regions export around 16% of their municipal waste, with the share 

sent to landfill making up 36%. The southern regions export 7% of their waste, with 29% of MSW 

sent to landfill; see Table A1 for an analytical breakdown of waste facilities by region. Table 1 

provides an overview, by region and by population, of the Italian statistics for MSW produced, the 

share of sorted waste, per capita waste production, and the MSW cost per ton of waste. It reveals 

consistently significant differences in the information regarding the uneven spread of the facilities 

across the country, as indicated in Table A1. Recent trends show an increasing production of waste 

associated with decreasing treatment capacity, generating growth in waste exports and handling 

outside the production regions. 

 

Region 

Pop. 

(m) 

Waste produced 

(m ton) 

Sorted waste 

(%) 

Waste per capita 

(kg) 

Cost per ton 

(€) 

latitude 

Piedmont 4.35 2.17 61.31 497.67 335.80 North 

Aosta Valley 0.12 0.08 62.32 597.26 305.70 North 

Lombardy 10.1 4.81 70.73 478.20 291.30 North 

Trentino-A A 1.07 0.54 72.52 505.72 267.50 North 

Veneto 4.90 2.36 73.83 481.72 381.60 North 

Friuli-V G 1.21 0.60 66.61 494.76 257.70 North 

Liguria 1.55 0.83 49.75 536.77 432.50 North 
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Emilia-R 4.45 2.95 67.36 660.46 265.90 North 

Tuscany 3.73 2.28 56.17 612.43 338.80 Center 

Umbria 0.88 0.46 63.45 521.97 364.00 Center 

Marche 1.52 0.81 68.64 531.13 306.80 Center 

Lazio 5.87 3.03 47.33 514.92 419.20 Center 

Abruzzo 1.31 0.60 59.65 460.17 354.00 South 

Molise 0.30 0.12 38.44 380.84 331.20 South 

Campania 5.80 260 52.72 448.62 444.20 South 

Apulia 4.02 1.89 45.48 470.93 394.30 South 

Basilicata .056 0.19 47.39 354.30 438.60 South 

Calabria 1.94 0.79 45.27 403.37 382.10 South 

Sicily 5.00 2.29 29.55 457.86 382.50 South 

Sardinia 1.64 0.75 67.07 457.40 419.60 South 

Italy 60.3 30.19 57.22 493.33 350.10  

Table 1. Key figures on waste production and costs. Source: Own elaboration based on data published by 

ISPRA. 

The information contained in Table 1 corroborates the preliminary considerations on which RQ1 

and RQ are based. The percentage of sorted waste differs significantly between different regions, 

ranging from 29.55% to 73.95%. 

 On the basis of previous studies that identified the determinants of the cost of waste 

management (Deus et al., 2019; Di Foggia and Beccarello, 2020a, 2018; Jacobsen et al., 2013; 

Massarutto, 2015), the following alphabetically sorted variables were identified: alt, the altitude of 

the municipalities (logarithm of meters above sea level); cec, circular economy firm total assets per 

ton of waste; den, population density; geo, an ordinal variable where 1 stands for south, 2 stands for 

center, and 3 stands for north; lan, the percentage of waste sent to landfill; mbt, the percentage of 

waste sent to MBT; org, the percentage of waste treated using composting, anaerobic digestion, and 

integrated treatment; sea, denoting a seaside municipality; sor, the percentage of sorted waste; was, 

the waste produced (kg per capita); wmc, the MSW management cost (€ per ton); and wte, the 

percentage of waste sent to waste-to-energy. See Table A2 for key statistics of the variables 

presented in Table 2, which shows the correlations between those variables. 

 wmc alt den sea sor was mtb lan wte org cec 

wmc 1           

alt .060** 1          

den -.164** -.367** 1         

sea .231** -.358** .108** 1        

sor -.253** -.171** .218** -.223** 1       

was -.243** -.258** .080** .254** -.086** 1      

mtb .530** .092** -.143** .269** -.524** -.185** 1     

lan .305** .164** -.287** .242** -.468** -.144** .658** 1    
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wte -.340** 0.028 .252** -.240** .253** .107** -.490** -.559** 1   

org -.475** -.251** .085** -.199** .428** .070** -.521** -.307** .255** 1  

cec -.542** -.084** .063** -.240** .309** .347** -.693** -.457** .423** .449** 1 

Table 2. Correlations between variables used in the models. Source: Own elaboration.  

Note: ** Correlation is significant at the 0.01 level (two tails). 

Some empirical evidence can be drawn from Table 2, especially on the relationship between 

the three types of facilities that are the focus of this paper. First, a complementarity between WtE 

and landfill (–0.559) and between WtE and MBT (–0.490) emerges, reflecting the fact that the two 

technologies are complementary and are positioned at the base of the waste hierarchy. This 

complements the graphical evidence in Figure 1 showing that WtE plants are concentrated in areas 

where there are few landfills, and vice versa. The second correlation shows that as the percentage of 

waste treated in WtE plants increases, the percentage of waste treated using MBT decreases; the 

meaning of this is not apparent while the relationship between landfill and MBT is positive (0.657). 

Econometric analysis can be used to estimate the impact of different facilities on waste 

management costs and to simulate waste management capacity deficits at the regional level. Here, 

we use regression analysis, as it is acknowledged as helpful to waste management planners and 

policymakers in understanding how to improve existing waste management systems, how to define 

regulations, and how to evaluate current waste management strategies (Al-Khatib et al., 2016). We 

assume that there is room for major improvements resulting from the appropriate location of waste 

management facilities. We also predict that although treatment facilities generally have higher 

operating costs than landfill, the optimal allocation of waste management facilities will generate 

savings that can be invested in technological innovation. 

Several studies have investigated environmental, economic, and social waste management 

indicators (Deus et al., 2019) in the economics of MSW management, including the variables that 

impact waste processing profitability (Rajendran et al., 2018). In addition to typical cost drivers that 

influence waste management costs, we focus on the implications of different plant types on such 

costs. Based on previous evidence, the hypothesis is that the availability of facilities other than 

landfill reduces negative environmental externalities and may reduce the cost of waste management. 

The research framework consists of three variable clusters. The first cluster captures 

territorial features, namely the density den, the altitude alt, and seaside location sea. In addition to 

geographical features, the second cluster contains variables that capture the service’s characteristics 

in terms of the share of sorted waste, sor, and waste produced per capita, was. The third cluster 

contains variables related to waste management facilities. Two additional variables were used to run 

the analysis: geo and cec. 
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Waste management cost (total cost, disposal cost, or treatment cost) is a function of the 

independent variables as in Eq. (1): 

 𝑐𝑜𝑠𝑡 = 𝑓 {
𝑡𝑒𝑟𝑟𝑖𝑡𝑜𝑟𝑖𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠: 𝑑𝑒𝑛, 𝑎𝑙𝑡, 𝑠𝑒𝑎   

𝑠𝑒𝑟𝑣𝑖𝑐𝑒: 𝑠𝑜𝑟, 𝑤𝑎𝑠                            
𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠: 𝑚𝑏𝑡, 𝑙𝑎𝑛, 𝑤𝑡𝑒, 𝑜𝑟𝑔               

 (1) 

To determine the influence of treatment and disposal options on waste management costs, it is 

appropriate to perform an econometric analysis using a multiple regression model as in Eq. (2). 

Multiple regression can predict the value of a variable based on the value of two or more other 

variables (Wooldridge, 2020), using the ordinary least squares estimators widely used to estimate 

the parameter of linear regression models. In Eq. (2), Y is the dependent variable: 

 𝑌 =∝ +𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽𝑛𝑋𝑛 +  𝜀  (2) 

The multiple regression models are formalized in Eq. (3), while Eq. (4) and Eq. (5) represent a 

special case. Eq. (4) models only the treatment and disposal cost and thus excludes the variable org. 

In contrast, Eq. (5) includes the recovery costs and, consequently, excludes the variables lan and 

wte: 

 𝑤𝑚𝑐 =∝ +𝛽1𝑎𝑙𝑡 + 𝛽2𝑑𝑒𝑛 + 𝛽3𝑠𝑜𝑟 + 𝛽4𝑤𝑎𝑠 + 𝛽5𝑚𝑏𝑡 + 𝛽6𝑙𝑎𝑛 + 𝛽7𝑤𝑡𝑒 + 𝛽8𝑜𝑟𝑔 + 𝛽9𝑐𝑒𝑐 + 𝜀  (3) 

In the same way, Eq. (4) formalizes the model related to disposal costs: 

 𝑑𝑖𝑠 =∝ +𝛽1𝑎𝑙𝑡 + 𝛽2𝑑𝑒𝑛 + 𝛽3𝑠𝑜𝑟 + 𝛽4𝑤𝑎𝑠 + 𝛽5𝑚𝑏𝑡 + 𝛽6𝑙𝑎𝑛 + 𝛽7𝑤𝑡𝑒 + 𝛽8𝑐𝑒𝑐 + 𝜀  (4) 

Eq. (5) formalizes the model related to recovery costs: 

 𝑟𝑒𝑐 =∝ +𝛽1𝑎𝑙𝑡 + 𝛽2𝑑𝑒𝑛 + 𝛽3𝑠𝑜𝑟 + 𝛽4𝑤𝑎𝑠 + 𝛽5𝑚𝑏𝑡 + 𝛽6𝑜𝑟𝑔 + 𝛽7𝑐𝑒𝑐 + 𝜀  (5) 

From the results of the model formalized in Eq. (3), it is possible to develop a simulation 

and quantify the technical and economic variables bearing in mind the targets: minimization of 

landfill and maximization of separate collection. To estimate potential imbalances in waste 

management capacity, an analysis was carried out using reference data from the best-performing 

regions in the two target areas: 65% separate collection and 10% of municipal waste sent to landfill, 

see Fig. 2. In what follows, this is referred to as the frontier.  



11 
 

 

Figure 2. Summary of the simulation approach. Source: Own elaboration. 

The frontier values were calculated using data from the best-performing regions as in Table 3. For 

comparison purposes, we developed three frontier scenarios according to the number of regions 

included. Then, the percentages of waste treated by each type of plant located in the best-

performing regions were averaged. Given that such regions are relatively close to, or have already 

achieved, the goals, it is fair to suppose that the more backward regions may aim to converge 

toward the best-performing regions 

Frontier Org WtE  Landfill MBT 

3 38.01 25.12 07.24 21.41 

4 33.81 23.03 12.13 21.92 

5 30.32 25.02 11.03 21.43 

Avg. 34.04 24.39 10.13 21.58 

Table 3. Average share of waste treated by facilities in best-performing regions. Source: Own 

elaboration. 

4. Results 

We aimed to understand the imbalance between the amount of waste treated by the current mix of 

facilities in the Italian regions and the amount that could be treated if the optimal allocation of 

facilities to comply with circular economy goals were achieved. Consequently, we wanted to 

estimate the economic impact of an industrial policy aimed at steering sector industrialization to 

meet those goals. Therefore, we designed a two-step analysis process. Tables 4 and 5 present the 
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results of the first step. The outputs of the econometric analysis in Table 4 provide particularly 

interesting insights. In column (1), the model refers to the total cost of waste management, and the 

variables related to facilities are noteworthy. Whereas landfill (–0.664***) and WtE (–0.436***) 

reduce the cost of waste management, MBT increases the cost to 1.215***. This is a significant 

item of information given that, as anticipated, the regions with severe imbalances make greater use 

of these technologies to process waste that is subsequently exported, with the associated negative 

economic and environmental externalities. Furthermore, it can be observed that the cost of services 

tends to decrease as the use of integrated treatment, anaerobic digestion, and composting facilities 

increases. 

Variables WM cost Disposal Recovery 

 (1) (2) (3) 

alt -4.902*** -3.355*** -1.258 

 (1.057) (0.867) (1.402) 

den -11.73*** -9.339*** -0.503 

 (1.007) (0.867) (1.296) 

sea 41.82*** 11.32*** -4.613 

 (4.895) (4.203) (6.805) 

sor 0.236*** 0.776*** -0.512*** 

 (0.0773) (0.0657) (0.108) 

was -0.114*** -0.0318*** -0.0504*** 

 (0.0103) (0.00894) (0.0142) 

mbt 1.215*** 0.582*** 0.427*** 

 (0.0959) (0.0804) (0.124) 

lan -0.664*** -0.550***  

 (0.0824) (0.0712)  

wte -0.436*** -0.193**  

 (0.0973) (0.0851)  

org -1.631***  -0.351*** 

 (0.0893)  (0.122) 

cec -0.215*** -0.0819*** -0.0333 

 (0.0165) (0.0141) (0.0223) 

Constant 526.3*** 201.6*** 126.0*** 

 (13.74) (11.47) (19.18) 

    

Observations 4,702 4,534 3,940 

R-squared 0.426 0.098 0.050 

Table 4. Econometric analysis. Source: Own elaboration.  

Note: Standard error in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. (1) total cost of waste 

management service, (2) treatment and disposal, (3) treatment and recovery. See Table A3 for 

additional information on robust standard errors and confidence intervals. 
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In addition to the considerations in Table 4 on the impact of treatment facility costs, further 

valuable information can be found. Altitude is associated with lower costs (–4.902***), probably 

because the inclusion of fewer productive activities leads to greater homogeneity of waste. 

Organizing separate collection involves an increase in costs (0.236***). There are fewer constraints 

on the organization of the service compared to urbanized areas. Greater population density implies a 

cost reduction (–11.73***), as does the waste produced per capita (–0.114***). This is partly 

because the load factor of the vehicles used to run the service is optimized. It is noteworthy that 

coastal municipalities tend to have higher costs (41.82***). From the regression analysis, it was 

possible to derive the factors shown in Table 5, which represent the percentage change of cost as a 

1% increase in the use of the facility types, implying an elasticity of cost. 

Facility  Percentage change 

WtE –0.14% 

Lan –0.21% 

MBT 0.38% 

Org –0.52% 

Table 5. Percentage change of cost on the percentage of waste treated in different facilities. Source: 

Own elaboration.  

Given that the average cost per ton of waste is €316.51, Table 5 shows the percentage 

changes in waste management costs for waste treated or disposed of in different facilities. The 

values in the table were obtained by applying to the average cost of the service the impact on such 

costs according to the percentage of use of the various waste management options, as shown in the 

parameters of Table 4. When considering the cost per ton of waste, a 1% increase in waste treated 

by WtE plants corresponds to a 0.14% decrease in cost. A 1% increase in waste sent to landfill 

corresponds to a –0.21% decrease in cost. An increase of 1% in waste treated at facilities for 

organic waste corresponds to a –0.52% decrease in cost. Finally, a 1% increase in waste treated in 

MBT plants leads to a 0.38% increase in cost. 

Based in Table 3 data, Table 6 contains a simulation of quantities and economic impact of 

an optimized WM system according to our analyses. Clear indications emerge from the simulation 

scenarios in Table 6, confirming that an imbalance arises from a suboptimal allocation of waste to 

treatment facilities. This imbalance differs according to the frontier that is taken as a reference. For 

simplicity, average values are considered in the discussion and conclusion of this paper. Tables 6 is 

divided into 6 section depending on type of information and unite of measure as reported in the 

section headers. 
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Frontier Org WtE Landfill MBT Total 

Quantities: waste treatment balance: tons 
 Org WtE landfill MBT  

3 3.68 1.60 -4.33 -3.95  
4 2.41 0.98 -2.83 -3.82  
5 1.37 1.58 -3.19 -3.94  
avg. 2.23 1.24 -3.74 -3.53  

Quantities: waste management balance (%) 
 Org WtE landfill MBT  

3 12.20% 5.30% -14.40% -13.10%  
4 8.00% 3.30% -9.40% -12.70%  
5 4.60% 5.30% -10.60% -13.10%  
avg. 8.30% 4.60% -11.50% -13.00%  

Potential savings (€m) 
 Org WtE Landfill MBT total 

3 -6.00 -0.70 2.88 -4.80 -8.62 

4 -3.93 -0.43 1.88 -4.64 -7.12 

5 -2.24 -0.69 2.12 -4.79 -5.61 

avg. -4.06 -0.61 2.29 -4.74 -7.11 

Potential saving: full cost of WM (i.e., waste tax) (%) 
 Org WtE Landfill MBT total 

3 -0.06% -0.01% 0.03% -0.05% -0.09% 

4 -0.04% 0.00% 0.02% -0.05% -0.07% 

5 -0.02% -0.01% 0.02% -0.05% -0.06% 

avg. -0.04% -0.01% 0.02% -0.05% -0.07% 

Potential saving: WM service (%) 
 Org WtE Landfill MBT total 

3 -0.08% -0.01% 0.04% -0.06% -0.12% 

4 -0.05% -0.01% 0.03% -0.06% -0.10% 

5 -0.03% -0.01% 0.03% -0.06% -0.08% 

avg. -0.05% -0.01% 0.03% -0.06% -0.10% 

Potential saving: treatment phase cost (%) 
 Org WtE Landfill MBT total 

3 -0.23% -0.03% 0.11% -0.18% -0.33% 

4 -0.15% -0.02% 0.07% -0.18% -0.27% 

5 -0.09% -0.03% 0.08% -0.18% -0.22% 

avg. -0.16% -0.02% 0.09% -0.18% -0.27% 

Table 6. Simulation of quantities and economic impact of an optimized WM system. Source: Own 

elaboration.  

Table 6 shows that the use of landfill should be reduced by 11.5% or 3.7 million tons, which 

would result in a reduction of 13% (3.53 million tons) in waste sent to MBT. Ceteris paribus, this 

reduction would be compensated by an increase of 4.6%, corresponding to 1.2 million tons of WtE 

capacity, and an increase of 8.3% in the organic fraction plants corresponding to 2.23 million tons. 
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From an economic standpoint, it is also possible to infer from Table 6 that the three scenarios 

correspond to savings ranging from €5.61 million to €8.62 million per year, an average of €7.11m. 

The potential saving is better contextualized in terms of the €10.04 billion total cost of waste 

management services; the annual saving is 0.07%. Considering the phase corresponding to 

treatment and disposal, the annual saving would amount to 0.27%. 

5. Discussion 

The results make it possible to formulate several considerations that are useful in understanding 

how to design policies to promote the overall efficiency and cost-effectiveness of waste 

management systems while meeting environmental objectives. It is also essential to focus policies 

on the sector’s infrastructural capacity by selecting and promoting different waste management 

facilities according to the current situation.  

We have used a simulation based on empirical data to answer the proposed RQs. First, in 

response to RQ1, there is an imbalance in plant equipment in the Italian regions, and we calculate 

this imbalance for each plant type. Second, in response to RQ2, we estimate the economic impact of 

convergence toward the frontier of efficiency. Specifically, the viability of the investments needed 

to implement an industrial policy that involves the reprogramming of waste management facilities 

could be facilitated by the potential savings achieved through optimal allocation of plants. These 

answers to the research questions are highly significant because we provide useful evidence for 

policymakers, who can use our results to support industrial and environmental policy to maximize 

the efficiency of the waste management system and its compliance with circular economy goals.  

In light of the results of our econometric analysis, it is appropriate to consider MBT, given 

its impact on the cost of waste management services. A 1% increase in waste treated by MBT 

facilities increases the cost of the waste management service by €1.215 per ton of waste. Figure 3 

presents an overview of the waste management chain, showing the cost of the phase concerning the 

total cost of waste management services and the destination of the waste processed in MBT 

facilities. (See Table A1 for a breakdown of the data by region.) 
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Figure 3. The waste management chain in Italy. Source: Own elaboration based on data retrieved 

from ISPRA.  

Note: “Other” includes further treatment, sewage treatment plant, storage of materials, and landfill-

covering soil. 

According to the information in Figure 3, 55.5% of the waste treated in MBT facilities is sent to 

landfill, 30.9% goes to WtE plants, and 18.4% reaches other facilities; just 1.3% is sent to recovery 

and recycling facilities (see Figure A1 for further details). Although some limitations relate to the 

fact that this paper is based on MSW only, our results can be trusted, given the size of the sample, 

the sources of the data, the partial corroboration of previous studies, and the importance of data-

driven evidence to the policy debate. Furthermore, the Breusch–Pagan test for heteroscedasticity 

with Ho: Constant variance provided the following values: chi2(1) = 282.68, prob > chi2 = 0.000. 

We can therefore reject the null hypothesis and conclude that heteroscedasticity is present in the 

data.  

Thus, our results provide policymakers with information for setting up a waste capacity 

industrialization path, and regulators with support regarding how and to what extent they should 

define tariffs for the use of facilities (Scharff, 2014; Schreck and Wagner, 2017). Specifically, and 

consistently with previous studies, these results can support policymakers to design policies that 

promote the overall efficiency and cost-effectiveness of the service while meeting the 

environmental objectives set by the circular economy package (Di Foggia and Beccarello, 2020a). It 

is also important to focus policies on the waste sector’s infrastructural capacity by selecting and 

promoting different waste management facilities. However, for this to happen, a national strategy 
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should be in place and, if necessary, should take precedence over local plans. This would not be a 

straightforward process, given the complexities of securing permits to build new facilities and the 

management of consensus by political decision-makers.  

At present, the use of MBT plants represents a step toward exporting waste produced in one 

region to other regions by changing the classification of the waste processed in these facilities from 

municipal waste to special waste. Therefore, to maximize the social benefits that result from the 

combined environmental and economic benefits, policymakers should design policies aimed at 

rationalizing the flow of waste toward the most suitable facilities, as well as policies aimed at 

increasing the sorted share of waste through gain-sharing mechanisms that encourage people to be 

part of a virtuous system (Di Foggia and Beccarello, 2020b). From this perspective, it can be argued 

that the main inefficiency lies in the governance model and in the powers attributed to central 

government and the regions at the planning stage. The law provides that each region is self-

sufficient in waste management, but this constitutes an important barrier to the development of new 

plants. Moreover, in some regions, there is both deep-rooted political opposition to and strong 

public opinion against WtE in particular.  

6. Conclusion 

The need to understand how and to what extent waste management systems are to be upgraded to 

comply with circular economy directives such as Directive EU 2018/850, according to which MSW 

landfill should be reduced to 10% of MSW, justifies our research questions. Using empirical data at 

the local level, we have highlighted an imbalance in waste management capacity in Italy. We have 

estimated the quantities of waste that will have to be treated using technologies different from those 

currently used, along with the impact that a system compliant with circular economy goals would 

have on the cost of services. 

Our results confirm that landfill use should be reduced by 11.5%, which would result in a 

13% reduction in the use of MBT plants. However, it will be necessary to increase the treatment 

capacity in WtE plants by 4.6% compared to the current situation. Furthermore, an 8.3% increase in 

organic fraction facilities is essential.  

From an economic point of view, our estimates suggest potential annual savings of up to 

€8.62 million per year. These potential savings can be better contextualized by comparing them to 

the total cost of the waste management service, which amounts to €10.04 billion; the annual saving 

would be 0.07%. However, when considering the phase corresponding only to treatment and 

disposal, and excluding the collection and transport phase and the general costs not directly 

attributable to the treatment and disposal of waste, the annual savings would come to 0.27%. 
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Our results are particularly important for the assistance they provide to policymakers in 

defining an industrial policy to create the technological assumptions underlying a country’s ability 

to achieve circular economy goals. Future research should investigate the use of a comparative 

perspective on the cost-effectiveness of the different facilities and the regulatory role, examining 

how the tariff for sending waste to facilities can have a signaling function. It would also be useful to 

apply a cross-country approach to the comparison of waste management capacity mix. Likewise, 

the present findings should be complemented by the identification of empirical data that support 

policies for environmental and economic sustainability. 
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Appendices 

Table A1 contains information that is supplementary to the main body of the paper with reference to 

waste management facilities across Italy. Table A1 contains additional information regarding the 

breakdown of waste treatment to gain a view on how such facilities are spread across the country.  

Figure A1 helps to better understand the destination of the waste treated in MBT facilities in light of 

the importance of their role within the Italian waste management system. Table A2 shows key 

statistics of variables used in the econometric model presented in Table 4 while Table A3 contains 

Table 4 results in details.  

Table A1 shows a breakdown of waste management facilities by region and typology. For example, 

what emerges clearly from Table A1 is that densely populated regions, such as Sicily and Lazio, do 

not have enough WtE capacity. 

Table A1. Waste management facilities across Italy by region and type 

Region Composting Anaerobic dig. MBT Landfill WtE 

Piedmont 18 6 11 13 2 

Aosta Valley 2 0 0 2 0 

Lombardy 64 14 8 8 18 

Trentino-A A 11 6 1 6 1 

Veneto 44 10 6 12 3 

Friuli-V G 13 2 3 1 1 

Liguria 8 1 5 5 0 

Emilia-R 13 8 9 9 9 

Tuscany 16 0 15 7 6 

Umbria 4 4 5 4 0 

Marche 6 0 6 9 0 

Lazio 20 0 11 5 1 

Abruzzo 6 0 5 6 0 

Molise 2 1 3 3 1 

Campania 4 2 7 2 1 

Apulia 9 1 11 9 2 

Basilicata 0 0 1 5 2 

Calabria 6 1 9 4 1 

Sicily 19 1 9 11 0 

Sardinia 16 1 6 6 1 

Italy 281 58 131 127 49 

Source: own elaboration based on data published by ISPRA. Note: “WtE” includes co-incinerators. 

“Anaerobic digestion” includes integrated treatment. 
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Figure A1 shows destination of the waste treated in MBT facilities. It seems quite clear that the role 

of MBT facilities is not constantly instrumental in achieving circular economy goals. 

Figure A1. Output of MBT facilities according to waste destination.  

 

Source: Own elaboration. Note: “Other” includes further treatment, sewage treatment plant, storage 

of materials, and landfill-covering soil. 

Table A2 and Table A3 present key statistical information regarding the variables used in our 

analyses. First, Table A2 gives the mean, standard deviation, minimum, and maximum of the 

variables used in the econometric model (see Table 4) in order better contextualize the variables 

within the Italian case. 

Table A2. Regressors key statistics 

Variable Obs. Mean Std. Dev. Min Max 

alt 4,702 5.089 1.321 0 7.504 

cec 4,723 267.384 101.339 103.355 477.112 

den 4,703 5.249 1.255 1.764 9.380 

lan 4,723 21.499 20.211 3.602 92.531 

mbt 4,723 29.349 20.554 0 83.422 

org 4,723 27.885 15.803 0 64.17618 

sea 4,703 0.083 0.2761 0 1 

sor 4,723 62.411 18.326 10.036 89.935 

was 4,723 447.546 126.476 199.771 1041.407 

wmc 4,723 316.593 99.390 124.210 601.1 

wte 4,723 20.481 14.596 0 69.324 
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Table A3 presents crucial information concerning the econometric outputs summarized in Table 4. 

In the top section, the output of the main econometric model with the dependent variable is the 

waste management cost. Similarly, the middle and bottom sections present the output for the two 

special cases that take account of treatment and disposal costs and recovery costs, respectively. 

 

wmc Coef. Std. Err. t P>t [95% Conf. Interval] 

Table 4 (1) 

alt -4.902 1.057 -4.640 0.000 -6.974 -2.830 

den -11.735 1.007 -11.650 0.000 -13.709 -9.761 

sea 41.820 4.895 8.540 0.000 32.224 51.417 

sor 0.236 0.077 3.060 0.002 0.085 0.388 

was -0.114 0.010 -11.000 0.000 -0.134 -0.094 

mbt 1.215 0.096 12.670 0.000 1.027 1.403 

lan -0.664 0.082 -8.060 0.000 -0.826 -0.503 

wte -0.436 0.097 -4.480 0.000 -0.626 -0.245 

org -1.631 0.089 -18.270 0.000 -1.806 -1.456 

cec -0.215 0.016 -13.010 0.000 -0.247 -0.182 

_cons 526.295 13.740 38.310 0.000 499.359 553.231 

Table 4 (2) 

alt -3.355 0.867 -3.870 0.000 -5.055 -1.654 

den -9.339 0.867 -10.770 0.000 -11.039 -7.639 

sea 11.321 4.203 2.690 0.007 3.081 19.562 

sor 0.776 0.066 11.800 0.000 0.647 0.904 

was -0.032 0.009 -3.560 0.000 -0.049 -0.014 

mbt 0.582 0.080 7.240 0.000 0.424 0.739 

lan -0.550 0.071 -7.720 0.000 -0.690 -0.410 

wte -0.193 0.085 -2.260 0.024 -0.359 -0.026 

cec -0.082 0.014 -5.830 0.000 -0.109 -0.054 

_cons 201.585 11.468 17.580 0.000 179.102 224.069 

Table 4 (3) 

alt -1.258 1.402 -0.900 0.370 -4.008 1.491 

den -0.503 1.296 -0.390 0.698 -3.044 2.037 

sea -4.613 6.805 -0.680 0.498 -17.954 8.729 

sor -0.512 0.108 -4.720 0.000 -0.725 -0.299 

was -0.050 0.014 -3.550 0.000 -0.078 -0.023 

mbt 0.427 0.124 3.430 0.001 0.183 0.671 

org -0.351 0.122 -2.880 0.004 -0.590 -0.112 

cec -0.033 0.022 -1.490 0.135 -0.077 0.010 

_cons 126.015 19.183 6.570 0.000 88.406 163.624 

Table A3. Additional information based on the output of Table 4. Source: Own elaboration. 

 


