
Noname manuscript No.
(will be inserted by the editor)

Smart Contracts for Service-Level Agreements in
Edge-to-Cloud Computing

Petar Kochovski · Vlado Stankovski ·
Sandi Gec · Francescomaria Faticanti ·
Marco Savi · Domenico Siracusa ·
Seungwoo Kum

Received: date / Accepted: date

Abstract The management of Service-Level Agreements (SLAs) in Edge-to-Cloud
computing is a complex task due to the great heterogeneity of computing infra-
structures and networks and their varying runtime conditions, which influences
the resulting Quality of Service (QoS). SLA-management should be supported by
formal assurances, ranking and verification of various microservice deployment op-
tions. This work introduces a novel Smart Contract (SC) based architecture that
provides for SLA management among relevant entities and actors in a decentralised
computing environment: Virtual Machines (VMs), Cloud service consumers and
Cloud providers. Its key components are especially designed SC functions, a trust-
less Smart Oracle (Chainlink) and a probabilistic Markov Decision Process. The
novel architecture is implemented on Ethereum ledger (testnet). The results show
its feasibility for SLA management including low costs operation within dynamic
and decentralised Edge-to-Cloud federations.

Keywords SLA Management · Edge · Fog · Cloud · Blockchain · Smart Contract ·
Smart Oracle

P. Kochovski · V. Stankovski (corresponding author) · S. Gec
Faculty of Computer and Information Science
University of Ljubljana, Ljubljana, Slovenia
E-mail: vlado.stankovski@fri.uni-lj.si

M. Savi
University of Milano-Bicocca
Milan, Italy

F. Faticanti · M. Savi · D. Siracusa
Fondazione Bruno Kessler
Trento, Italy

F. Faticanti
University of Trento
Trento, Italy

S. Kum
Korea Electronics Technology Institute
Seongnam-si, Republic of Korea

petako_bt@hotmail.com
Typewritten text
This is a pre-print of an article published in the Journal of Grid Computing.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10723-020-09534-y

2 Petar Kochovski et al.

1 Introduction

Today, smart applications are being developed for many domains including smart
homes, cities and communities, robotics, industry 4.0, construction and similar
[23, 29, 30]. Various Artificial Intelligence (AI) methods are used in order to provide
intelligent features to such smart applications. Due to the greatly varying require-
ments that may dynamically change, the technology basis for smart applications
is increasingly represented by the Internet of Things (IoT), the Cloud technology
and blockchain. There are many expected benefits of using these technologies,
such as improved Quality of Service (QoS) in conditions of dynamic operation
and heterogeneity, higher utilisation of resources, and lower operational costs. In
order to address various non-functional requirements of smart applications, Cloud
computing today is stretched to the Edge of the network, and Fog generally refers
to heterogeneous, geographically distributed Cloud computing offer.

Moreover, the IoT, AI and Cloud technologies alone are not enough to sup-
port dynamic application scenarios across broad geographic areas, for instance,
when equipment, robots, cars or smartphones move from one place to another. In
many scenarios, the applications are time-critical and it is therefore paramount to
achieve high QoS operation of the applications. Therefore, stipulating Service Level
Agreements (SLAs) between application users and infrastructure providers would
provide certain level of guarantee that the required QoS of their AI application
will be maintained above threshold at all times. This study addresses the problem
of achieving high QoS by designing and implementing a new SLA management
architecture, which operates promptly and transparently and is particularly suit-
able for smart multi-component applications deployed across the Edge-to-Cloud
computing continuum.

Currently, the key problems when deploying compute- and network-intensive
AI applications in the Edge-to-Cloud continuum are the great heterogeneity of
possible application deployment options coupled with dynamically changing op-
erational conditions [8]. Few possibilities for achieving high QoS in the Edge-Fog
context is by increasing the redundancy, for example, by federating several com-
puting resources [24], and then, by providing an orchestrator and a load balancing
capability to dynamically (re)deploy AI containers from one computing resource
to another in view of maintaining high QoS [22].

The goal of the present study is to design a new SLA management architecture
that achieves high QoS operation through federation and orchestration of Edge-
Fog computing offer, and is particularly suitable for the deployment of specific AI
components in Edge-to-Cloud environments. This study is motivated by the emer-
gence of blockchain, in particular its constructs and mechanisms such as Smart
Contracts (SCs) and trustless Smart Oracles [16], and can be used to implement
mechanisms for the dynamic federation of computing resources (e.g. VMs) coupled
with transparent and traceable orchestration.

In addition to the above, our novel architecture utilises resource provisioning
and application placement methods, which are based on Markov Decision Process
(MDP) to model both internal and external (contextual information) metrics that
affect the resulting QoS of the individual AI applications [15]. Since the runtime
conditions can dynamically change, an automaton – a model derived by using an
MDP – can be used in order to obtain QoS assurances, ranking and verification of
available deployment options. All these three aspects can be used for transparent

petako_bt@hotmail.com
Typewritten text
This is a pre-print of an article published in the Journal of Grid Computing.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10723-020-09534-y

Smart Contracts for Service-Level Agreements in Edge-to-Cloud Computing 3

and trusted SLA management. Our hypothesis is that implementing such prob-
abilistic assurances on blockchain can contribute to achieving trust relationships
among the participating entities. The research value of the present work is the
integration of the MDP method with Edge-to-Cloud resource federation and or-
chestration mechanisms implemented through the use of SCs and Smart Oracles.
This study aims thus at showing that this novel approach can be used for SLA
management in dynamic Edge-to-Cloud environments.

In summary, the contributions of this study are as follows:

– a novel blockchain-based SLA management system for federated Edge-to-Cloud
computing environments;

– an unique combination of Smart Contracts and Smart Oracles, which substi-
tutes third party trust authorities for transparent and traceable SLA manage-
ment;

– the integration of a stochastic MDP method for QoS-aware orchestration of
resources, which is designed as a plug-and-play software component;

– the implementation of a proof-of-concept SLA management scenario for the
DECENTER Fog and Brokerage Platform [24], involving registration of trusted
deployment options (i.e. trusted Edge-to-Cloud computing clusters), deploy-
ment, redeployment of applications and trusted and transparent management
of the service payment process.

The rest of the paper is organised as follows. Section 2 identifies the gap
addressed by the present study. Section 3 describes the motivation for develop-
ing SLA management architecture that introduces implementation of probabil-
istic decision-making methods and blockchain technologies for reliable SLA Man-
agement. Section 4 provides an architecture overview of the proposed solution
alongside with proof-of-concept application (re)deployment scenarios implemented
within the study. Section 5 discusses the results of the experimental evaluation.
Section 6 concludes the study and presents future improvements of the proposed
architecture.

2 Background

This study builds on recent developments in three areas, starting from computing
opportunities in the Edge-to-Cloud continuum based on virtualisation, trusted
SLA management and blockchain technologies. These developments are discussed
briefly in the following three subsections.

2.1 Computing in the Edge-to-Cloud continuum

The broad diffusion of IoT devices has significantly influenced multiple domains,
therefore introducing a plethora of automation opportunities [1, 14, 33]. Such
environments usually produce large quantities of data (e.g. sensor measurements,
images or video streams) that should be processed and responded upon in a timely
manner. However, performing various operations over large quantities of data that
continuously move from the field sensor devices to the Cloud computing infra-
structures, can lead to low QoS that can be due to connectivity performance issues

petako_bt@hotmail.com
Typewritten text
This is a pre-print of an article published in the Journal of Grid Computing.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10723-020-09534-y

4 Petar Kochovski et al.

between the field devices and the Cloud infrastructures. As a result, more distrib-
uted computing paradigms that are in close proximity to data sources, such as
Edge and Fog computing, have emerged as a means to address such requirements.
Edge computing is a highly distributed approach that performs computational
operations on multiprocessor devices (e.g. Raspberry Pi, BeagleBoard) that op-
erate in proximity of the sensor devices [26]. Fog computing is similar to Cloud
computing, only that it lies somewhere between the IoT devices and the Cloud
computing data centres [2]. However, organisations that are adopting the new IoT
concepts and migrating their computing power to the Edge-to-Cloud computing
continuum are still facing difficulties in situations when they need to guarantee the
high QoS of their applications, which are often deployed across multiple computing
infrastructures from various providers.

2.2 Blockchain essentials

Blockchain (BC) technology is a distributed ledger technology that can be used
to address several requirements of distributed and decentralised systems. These
include autonomy, data management, privacy, security, transparency and traceab-
ility. The blockchain technology has the role to replace third party trusted and
centralised entities (i.e. certified middleman) by distributing trust in a decentral-
ised network. In order to fully exploit its potential, system architects must carefully
define the requirements of the distributed and decentralised system. In particu-
lar, they must focus on the agreement policy among the sub-systems and select
the adequate blockchain topology ecosystem that offers additional advanced func-
tionalities, such as SCs. Thus, in order to ensure trust, an agreement policy (i.e.
consensus protocol) has to be satisfied. For example, the majority of blockchain
network participants have to agree, through the voting system, on the modification
of the blockchain ledger properties or rules.

The first practical implementation of blockchain is Bitcoin [21], whose sim-
plicity of exchanging digital assets encouraged many researchers and blockchain
enthusiasts to develop their blockchain cryptocurrencies. Vitalik et al. [3] com-
plemented the exciting blockchain concept by introducing Turing complete SCs
that are similar to general (notary) contracts with limited, but at the same time
sufficient functionalities to cover a wide range of use-cases.

Using blockchain and SCs within existing Cloud architectures has much po-
tential. Carminati et al. [5] investigated blockchain as a platform for secure inter-
organisational business processes management. Zhang et al. [34] presented TOWN
CRIER (TC) aiming to provide trustworthy (trustful) data to SCs through a
middleman service (TC Server). Furthermore, Smart Oracles are useful means
that reduce the necessity of costly operations on a blockchain, such as storing
and using data within SCs. In particular, external data that is provided by Smart
Oracles can be used within an SC in order to decide, if a deployment option can
satisfy the requested QoS, and consequently used to deploy an AI container on the
deployment option automatically [16]. Advanced Smart Oracle solutions, such as
Provable1 (rebranded Oraclize2) provide Smart Contract templates, which ensure

1 https://provable.xyz/
2 http://www.oraclize.it/

petako_bt@hotmail.com
Typewritten text
This is a pre-print of an article published in the Journal of Grid Computing.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10723-020-09534-y

Smart Contracts for Service-Level Agreements in Edge-to-Cloud Computing 5

Table 1: Positioning of the present approach among related works

Work Objective Trust
Evaluation
Method

Use of
Smart
Oracles

Computing
paradigm

Gill et al. [10] SLA-Management Self-
Management

N/A Cloud

Labidi et
al. [17]

SLA-Management Third-Party
Service

N/A Cloud

Li et al. [18] Resource
Matchmaking

Third-Party
Service

N/A Cloud

Zhang et
al. [35]

SLA-Management Third-Party
Service

N/A Cloud

Zhou et
al. [36]

SLA-Enforcement Blockchain 7 Cloud

Zhou et
al. [37]

SLA-Enforcement Blockchain &
SC

7 Cloud

Proposed
Approach

SLA-Management Blockchain &
SC

3 Edge-to-
Cloud

Oracle correct data flow. Another Smart Oracle solution is the Ethereum based
Chainlink network3 that provides reliable tamper-proof inputs and outputs for
SCs on any blockchain and at the same time overcomes the limitation of the Prov-
able transparency of the Smart Oracle running instance(s). To be more concrete,
Chainlink enables running one’s own Smart Oracle dockerized instances with cus-
tom cost policy (e.g. the request price determined in LINK tokens may be set).
These few useful studies form the basis for the SLA management with SC in the
present work.

2.3 Related works on SLA Management

SLAs play vital role in the management of service delivery among different parties.
In particular, SLAs are essential in mediation of applications between systems. In
the context of Cloud computing, an SLA is often considered as a set of constraints
that ensure costumer’s benefit when the agreement is violated by the infrastruc-
ture provider. For instance, SLAs are very important when defining requirements,
such as availability and reliability. A suitable definition of SLA was presented by
Buyya et al. [4]: SLA is an officially exchanged document that describes (or tries to
express) in measurable (and maybe qualitative) terms the service being presented to
a customer. Any metrics involved in an SLA should be capable of being controlled
on a systematic basis and the SLA should record by whom.

A typical SLA lifecycle is composed of several phases, such as: service use,
modelling, SLA management, SLA enforcement and SLA conclusion. According
to a systematic survey [19] on SLA in IoT, the SLA management, though, is an
important phase that covers multiple aspects (i.e. SLA definition, SLA modelling,
SLA negotiation) that has received less research attention. A relevant challenge in
SLA management is the trust between engaged parties, particularly the authority
that detects SLA violation. In commercial solutions, often the provider handles the

3 https://chain.link/

petako_bt@hotmail.com
Typewritten text
This is a pre-print of an article published in the Journal of Grid Computing.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10723-020-09534-y

6 Petar Kochovski et al.

monitoring and violation detection (e.g. Amazon CloudWatch4). Since each service
provider has its own monitoring and violation detection policies, proving an SLA
violation can be a very complex operation for service costumers. Thus, establishing
a trustful relationship between the service providers and consumers is very import-
ant. Gill et al. [10] presented a framework for self-management of cloud resources,
whose software components are described in few consecutive studies [27], [28] and
[11]. Their framework provisions and schedules cloud resources, whilst maintain-
ing SLAs and reducing SLA violation rate. In their studies, the SLA management
resides on the side of the service providers. On the other hand, to improve the
trust that the consumers have in the service providers, some studies provide tools
that assist them in monitoring the SLA. For instance, Muller et al. [20] proposed
a third party SLA management platform that generates comprehensive SLA vi-
olation’s explanations in order to aid the user to renegotiate SLAs. In addition,
Labidi et al. [17] described a monitoring approach complemented with semantic
SLA modeling, which provides the consumers with comprehensible models of SLA
documents.

To avoid biased SLA management, some studies propose approaches that guar-
antee trustful SLA management by including a third party to handle the SLA man-
agement. For instance, authors of [18] designed a service operator trust scheme for
resource matchmaking across multiple Clouds and proposed a trust evaluation
method based on information entropy. Similar approach was also proposed by
Zhang et al. [35], whose SLA management framework utilises a third-party aud-
itor to ensure the benefit of consumers. In particular, their auditor is designed to
verify and resolve the violations that can appear between a service provider and
its consumers. However, in such schemata, all participants are obliged to trust
a centralised third-party broker. Since trusting a third-party SLA management
system can be difficult in reality, a blockchain-based SLA management system
can aid to overcome that problem [36, 37], where the blockchain offers complete
transparency and SLAs are precisely declared in the SC. In addition, blockchain
integration into SLA management systems can lead towards a automated, simpli-
fied and less expensive sharing of infrastructures using SLA [13] and compensation
between providers and consumers in case of SLA violation [25].

Our work complements and improves on the above efforts by delivering a new
architecture for efficient SLA management in the Edge-to-Cloud where third party
trust authorities are substituted with SC functions that automate the process and
enhance trust between service providers and consumers in a loosely coupled, dy-
namic system. In contrast to previous studies, the proposed architecture integrates
the triumvirate of technologies: blockchain, multi-objective decision making and
multi-tier monitoring to assure automated and transparent interactions among
humans and artificial agents across the complete Edge-to-Cloud continuum. Fur-
thermore, this architecture addresses the limitations of existing blockchain-based
SLA management solutions, particularly, it works based on less costly off-chain
data which is facilitated through the use of Smart Oracles. Finally, a proof of
concept and a feasibility evaluation of the proposed SLA management architec-
ture is presented by investigating the trade-off between execution time and cost
of the overall process.

4 https://aws.amazon.com/cloudwatch/

petako_bt@hotmail.com
Typewritten text
This is a pre-print of an article published in the Journal of Grid Computing.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10723-020-09534-y

Smart Contracts for Service-Level Agreements in Edge-to-Cloud Computing 7

3 Motivation

The motivation for this study is derived from the latest trends in software en-
gineering, which are based on building flexible and reusable AI applications by
implementing a multi-tier application architecture. However, splitting AI methods
into several computing tiers, such as into Front and Rear parts of Deep Learning
Neural Networks, may lead to greater privacy and security of the information when
it is being executed in the Fog [6].

Tier 1 Microservices

AI Application

IoT Devices

AI Model

Container
Deployment

Container
Deployment

Forward Data

AI Method

Tier 2 Microservices

AI ModelAI Method

AI
Processing

Data
Postprocessing

Data Analysis
Visualisation

Storage

Data
Preprocessing

Data
Ingestion

Tier 1: Cloud-Fog

Communication Protocols

Sensor Stream Data

Tier 2: Edge

AI
Processing

Data
Postprocessing

Data
Preprocessing

Data
Ingestion

Figure 1: Video surveillance application implemented in a two-tier architecture.

In this study, we focus on a two-tier AI application, which is designed for
video surveillance and is necessary to satisfy high QoS standards, thus respect
SLAs. However, the overall approach is applicable to AI applications designed by
following different design patterns. The European Union - Korea DECENTER
project5, in which we participate, currently implements several use case scenarios
in which Deep Learning Neural Networks are applied to video streams. These
scenarios include smart street crossings, smart construction, robotic vision and
smart homes. For example, a two-tiered AI application can be used in the area of
the smart construction sector in order to detect various safety violations, such as
detecting if workers wear safety equipment. The execution of the Front part of the
Deep Neural Network close to the Edge may contribute to greater privacy, while
the execution of the Rear part in a more powerful Fog computing resource can be
used to improve the QoS.

This generic two-tiered application design is depicted in Figure 1. The applic-
ation is composed of several containerised components, which are organised for
deployment onto two different tiers. The first tier is composed of Cloud computing
resources that allow executing software components that require greater comput-
ing power. For instance, the first tier is capable of executing the Rear part of deep
learning methods (e.g. TensorFlow) in order to analyse the incoming already pre-
processed video frames. The second tier represents the Edge computing resources
that execute the software component near the video surveillance data sources. Here
the sensor data is preprocessed and an AI method is executed in order to perform
time-critical data analysis.

The decision upon a deployment option for this application is a complex prob-
lem. There exist various internal and external metrics that could influence the

5 https://www.decenter-project.eu/

petako_bt@hotmail.com
Typewritten text
This is a pre-print of an article published in the Journal of Grid Computing.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10723-020-09534-y

8 Petar Kochovski et al.

resulting QoS of the application. For example, a definitive QoS metric for the
application is considered to be its response time, that is, the time for a video
frame to pass from the tier-two components up to the end of the tier-one compon-
ents pipeline. This resulting QoS can be influenced by network related conditions
(e.g. attributes like latency, throughput, packet loss and similar) and computing
resource related operational conditions (e.g. CPU cores and available memory).

In our practical use case, the second tier is located in Ljubljana, Slovenia,
and is composed of five deployment options, whereas the first tier is composed of
40 deployment options that are spread across Europe, Asia, Australia and North
America. All deployment options are enlisted in Table 2 within Section 5.

In order to achieve high QoS in its operation, the smart AI application should
be capable of immediate reaction in case of a high probability of an SLA violation.
This means that the software engineer may set this probability in a way that a
redeployment of the application component in the first tier will happen whenever
the probability of not withholding the required QoS threshold is too high. In
our study, the SLA management and the redeployment process is performed in
a transparent, traceable and autonomous manner. These properties are achieved
through the use of blockchain-based technologies, including SCs and Smart Oracles
as elaborated in the following.

4 Blockchain-based SLA Management

In the following, we elaborate our novel SLA management architecture and system
implementation that is designed to provide high QoS operation to DECENTER’s
smart applications. The goal of our proposed SLA management architecture is to
facilitate an automated and transparent decision-making process for (re)deploy-
ment of two-tier applications in the Edge-to-Cloud computing continuum.

The proposed architecture implements MDP methods that aid to automatic-
ally rank the available deployment options according to prior usage information,
current monitoring data and QoS requirements that are precisely defined within
the SLA.

In order to achieve these technical goals, the proposed architecture allows re-
gistering available deployment options by providers, definition of SLA user re-
quirements and autonomous deployment and redeployment of applications among
the available deployment options. The architecture can be observed through three
scenarios, which are the following: (1) registering a certified deployment option,
(2) automated deployment of applications and (3) automated redeployment of
applications. These three scenarios are elaborated in the following subsections.

4.1 QoS-aware SLA assessment

In order to develop our proof-of-concept QoS models and provide autonomous SLA
management, the proposed architecture utilises infrastructure- and application-
level metrics. Infrastructure-level metrics show the current status of the deploy-
ment options; thus, they are necessary to successfully perform the deployment pro-
cess. The application-level metrics are accumulated once a deployment is finished;

petako_bt@hotmail.com
Typewritten text
This is a pre-print of an article published in the Journal of Grid Computing.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10723-020-09534-y

Smart Contracts for Service-Level Agreements in Edge-to-Cloud Computing 9

Service
Consumer

Service
Provider

Smart
Contract

Smart
Contract

Register a deployment option Automated deployment of applications Automated redeployment of applications

GUI

Smart
Oracles

TIER 1
Fog-Cloud

TIER 2
Edge

À À
ÀÀ

Application Layer Blockchain Layer Decision-Making
Layer

Edge-to-Cloud
Computing Layer

1

1

2

2 3

3

4 5
6

4
Decision-Making

Algorithms

Monitoring
System

Monitoring
Server

Monitoring
Agents

Monitoring
Probes

Alarm Trigger

Orchestration
System

Blockchain
Ledger

B

A
5

6

9
7

8

10

13

11

12

14 15

1

2

3

4

Figure 2: Architecture for SLA management and detailed design of loosely coupled
system components.

thus, they are used as additional metrics for performing redeployment operations.
The used attributes for the (re)deployment processes are as follows:

1. Infrastructure-level attributes:
– Network throughput (Mb/s) – the rate at which data is transferred between

two endpoints. At this level the endpoints are the source of data on one
side and the deployment options on other side;

– Network latency (ms) – the time required for a packet to be transferred
between the source of data and the deployment options;

– Cost ($/month) – cost for monthly use of a deployment option;
– Amount of memory – amount of memory that a deployment option offers;
– Amount of CPU cores – amount of CPU cores that a deployment option

offers.
2. Application-level attributes:

– Throughput (Mb/s) – the rate at which data is transferred between the
two tiers of deployment options;

– Latency (ms) – the time required for a packet to be transferred between
the two tiers of deployment options.

The proposed architecture in this study is not limited to the specific set of QoS
metrics and non functional requirements, because it supports any quantitative
attribute that may be of interest to the software engineer.

4.2 Architecture overview

This section presents the high-level architecture design for SLA management that
implements SCs to automate the deployment process which is depicted on Fig-
ure 2. The designed multi-level architecture follows the interoperability standards
set by organisations such as the Cloud Native Computing Foundation (CNCF)6,

6 https://www.cncf.io/

petako_bt@hotmail.com
Typewritten text
This is a pre-print of an article published in the Journal of Grid Computing.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10723-020-09534-y

10 Petar Kochovski et al.

OpenFog Consortium7 and Edge Computing Consortium Europe (ECCE)8. Each
architecture level is described in the following.

1. Application Layer is an application with an intuitive graphical user interface
(GUI). It is an entry point that the software engineer uses to define QoS require-
ments, which are incorporated into SLA. This layer is directly communicates
with the Blockchain Layer, which is the Ethereum ecosystem. Thus, it allows
the user to trigger a SC execution.
In order for the Application Layer to communicate with the Ethereum (ETH)
ecosystem, it implements ETH bridge called Metamask9, which plays pivotal
role in the process. Primarily, Metamask is an Ethereum wallet that allows
users to: (1) create and switch accounts that can be used in various ETH
networks (e.g. Main ETH network, Ropsten, Kovan or Rinkeby); (2) perform
transactions between accounts. It facilitates the interaction with the Ethereum
ecosystem by injecting a Javascript library called web3.js [9].

2. Blockchain Layer is necessary to automate the SLA management process and
empower fairness between the involved parties (i.e. service providers and con-
sumers) and executes traceable and transparent transactions on the Block-
chain.
The blockchain implementation is based on public Ethereum ledger as a public
blockchain environment, because it is composed of two main components: SC
templates and Smart Oracles. There are two main types of SC utilised in the
system: SCs for registration of deployment options on the blockchain and SCs
for automated (re)deployment of applications.
The deployment of the SCs occurs on demand through the blockchain service
which plays the role of a non-biased system that executes the SC and pays
the service provider in case the SLA is not violated. However, in case there is
an SLA violation, the SC terminates, pays the service provider for the service
provided until the moment of the SLA violation, whilst compensating the ser-
vice consumer for the remaining of time. A more detailed overview of the SCs
work and the SLA management workflow is elaborated in the sections bellow.
However, SCs by default cannot act outside the blockchain, thus they are not
capable to retrieve off-chain data. Since SCs in this SLA management system
have to communicate with external services, such as computing nodes, QoS
monitoring system or decision-making mechanisms, Smart Oracles had to be
implemented. The Smart Oracles are trusted third-party services that provide
means for SCs to communicate with registered APIs from the external services.
This approach results in enhanced integrity of the functions that verify the
correctness of the API queries by using unique API keys and thus avoid calls
from potential malicious SCs.

3. Decision-Making Layer estimates the optimal deployment option for deploy-
ment of containerised software components and initiates the container deploy-
ment process. In order to estimate an optimal deployment option, this layer
queries a Smart Oracle from the Blockchain Layer to retrieve monitoring data
and prior usage knowledge only for deployment options, which are registered on
the blockchain. This layer is composed of components that are products of our

7 https://www.openFogconsortium.org/
8 https://ecconsortium.eu/
9 https://metamask.io/

petako_bt@hotmail.com
Typewritten text
This is a pre-print of an article published in the Journal of Grid Computing.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10723-020-09534-y

Smart Contracts for Service-Level Agreements in Edge-to-Cloud Computing 11

earlier research work. In particular, the Decision-Making Layer is composed of
three systems: decision-making mechanism [15], monitoring system [31] and an
orchestration system [22].
The implemented decision-making mechanism is based on the Markov De-
cision Process (MDP) that generates a probabilistic finite automaton that is
built for each microservice. MDP utilises the automaton to derive utility value
for each deployment option. These values are later used to produce a rank-
ing list, where the first ranked deployment option is considered as an optimal
deployment option and returned as an output result that satisfies the engin-
eer’s QoS requirements. The MDP automaton contains: a set of states (i.e.
deployment options); a set of actions (i.e. deployment actions applicable to
the set of states); a set of transition probabilities, which represent the trans-
ition probability between states due to the available deployment actions; and
a set of rewards, which represent the expected reward for transitioning from
one state to another. Transition probabilities, which are estimated from prior
usage experience of the deployment options and state rewards, which are es-
timated from the monitoring metrics are essential when calculating the utility
of each state. A detailed description of the algorithm including the calculation
of rewards and transition probabilities is available elsewhere [15].
The monitoring system constantly gathers QoS data from the deployment op-
tions that are registered on the blockchain. Each of those deployment options
run Monitoring Agents and Monitoring Probes, which accumulate the QoS
metrics and forward them to the Monitoring Server. In addition, the mon-
itoring system contains an Alarm Trigger, which is a rule-based entity that
continuously verifies the incoming monitoring data. If the Alarm Trigger ex-
periences abnormal behaviour (i.e. SLA violation) it is responsible to initiate
the redeployment process.
The orchestration is performed by automatically with an orchestration system
such as Kubernetes. Once the decision-making mechanism delivers an optimal
deployment solution and a SC is successfully executed, the orchestrator receives
deployment instructions (i.e. YAML script) that provide information on the
deployment infrastructure, applications for deployment, backup and replication
policies.

4. Edge-to-Cloud Computing Layer is composed of deployment options, which
are registered on the blockchain by the service providers. The deployment op-
tions are used for deployment of the containerised two-tier applications, where
each tier of deployment options play a different role. For instance, the Edge-
based deployment options are responsible for running the software components
that require less computing power, whereas the other components run on the
Cloud/Fog-based deployment options.

4.3 Process workflow

The proposed system consists of two types of SC: (1) a SC for registering deploy-
ment options on the BC and (2) a SC for executing (re)deployment operations
through the blockchain whilst following the SLA. The workflow of the proposed
architecture can be presented with three correlated scenarios. A high level rep-
resentation of the interactions between architecture components is presented in

petako_bt@hotmail.com
Typewritten text
This is a pre-print of an article published in the Journal of Grid Computing.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10723-020-09534-y

12 Petar Kochovski et al.

Figure 2. In addition, the detailed flow of interactions between the fundamental
components in the presented system within the three scenarios are depicted in
Figure 3.

The first scenario is registration of certified deployment options. It allows in-
frastructure providers to register via blockchain their available deployment options
in the pool of certified deployment options. In order to do so, the infrastructure
provider (1-2) invokes a SC to execute methods for (3) registration a deployment
option on the BC. Because the deployment options are off-chain data, (4) BC
communicates with them through a Smart Oracle and (5) assigns to the specific
deployment option a public address (i.e. digital wallet). When the public address
is assigned, the SC registers the new public address onto the BC. Finally, (6) the
provider verifies the public address of the deployment option.

The second scenario is automated deployment of applications. It performs SLA
assessment, preparation, negotiation, contracting and deployment of software com-
ponents on the optimal deployment options. This scenario is executed in the fol-
lowing 15 consecutive steps: (1) the software engineer defines application QoS
requirements and preferred usage-time for the deployment option; (2) the GUI
through the triggerSC() method invokes the SC through the Metamask Ethereum
bridge; (3) the SC initiates deployment process and (4) triggers the Smart Or-
acle through the selectDO() method; (5) the Smart Oracle gathers information
on blockchain-certified deployment options and (6) triggers the decision-making
mechanism; (7) the decision-making mechanism retrieves prior usage data and cur-
rent monitoring metrics for the available deployment options from the Monitoring
System, (8) estimates the optimal option and (9) returns the results to the Smart
Oracle, which (10) triggers the SC to (11–13) verify the wallet address, executes
the deployment process; (14) the Smart Oracle triggers the Kubernetes Orches-
trator cluster to (15) deploy the two-tier application on the selected deployment
options.

The third scenario extends the second scenario by adding the automated re-
deployment functionality. The monitoring system, which is a part of the Decision-
Making Layer, contains an Alarm Trigger that constantly examines the monitor-
ing data for threshold violations (1). Once a violation is detected it triggers the
decision-making mechanism to reassess the probability of achieving high QoS (2).
In case the probability for QoS violation is high (i.e. above certain threshold),
the decision-making mechanism retrieves a new optimal deployment option. The
decision-making mechanism then directly forwards the solution to the SC through
its public address that is dedicated for the redeployment process (3-4). Once the
SC is triggered, it initiated the compensation process through the initiateRefund()
function that is represented within the alternative scenario (i.e. alt) from Figure 3.
In particular, the SC responsible for the initial deployment estimates the amount
of time the deployment option was utilised and pays the service provider, whilst
the service consumer is reimbursed for the remaining time for which the deploy-
ment option remained unused through the SC event FundsReleaseEvent(). After
the compensation is finished, the SC has the same workflow as for the deployment
scenario, which is: price determination, reaching consensus, executing payment
and deployment of the application.

petako_bt@hotmail.com
Typewritten text
This is a pre-print of an article published in the Journal of Grid Computing.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10723-020-09534-y

Smart Contracts for Service-Level Agreements in Edge-to-Cloud Computing 13

User Blockchain
Monitoring

System
Orchestration

System
Deployment
Options Pool

Decision-Making
Method

Smart Oracle

triggerSC()

selectDO()

returnMDPResult()

Smart Oracle response

determinePrice()

determinePrice()

determinePrice()

consensusFinished()

consensusFinished()

requestPayment()

requestPayment()

sessionStartNotification()

sessionStartNotification()

payService()

payService()

deploy()

deploy()

event startService()

event startService()

triggerDeployment()

updateDeployment()

deploymentNotification()

deploymentNotification()

event priceNotification()

event priceNotification()

event priceNotification()

triggerMDP()

requestMonitoringData()

returnMonitoringData()

returnMonitoringData()

calculateMDP()

initiateRefund()

calculateMDP()

triggerAlarm()

requestAvailableDO()

getAvailableDO()

D
e

p
lo

y
m

e
n

t
s
c
e

n
a

ri
o

R
e

d
e

p
lo

y
m

e
n

t
s
c
e

n
a

ri
o

thresholdBreach == true

triggerStop()

Quit service condition
satisfied requestStopService()

requestStopService()

terminatedSessionNotification() terminatedSessionNotification()

checkLockState()

(SCduration >=currentTime) || (initiateRefund == true)

else

alt

event FundsReleaseEvent()

triggerSC()

Figure 3: Sequence diagram of the deployment and redeployment scenarios.

4.4 Smart Contract implementation details for SLA Management

This subsection will provide implementation details about the SCs that were de-
signed for the SLA management scenario. For the purposes of this study, two SC
were designed: SC “A” that is necessary to register deployment options on the BC
and SC “B” that is responsible for the (re)deployment scenarios. Both SCs follow
a design pattern that allows one version of the SCs to be deployed and used mul-
tiple times until destroying them. The design of the SCs follows the Oracle pattern
proposed by Wöhrer et al. [32] and best practices presented in the OpenZeppelin
framework10. Contracts are available in the following public repository11.

10 https://openzeppelin.org/
11 https://bitbucket.org/friljubljanaslovenia/smart-contracts-for-sla/

petako_bt@hotmail.com
Typewritten text
This is a pre-print of an article published in the Journal of Grid Computing.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10723-020-09534-y

14 Petar Kochovski et al.

The developed SC “A” allows service providers to register their deployment
options on the Blockchain. This will allow to have transparent information for
each deployment option. In particular, only deployment options registered on BC
through this SC will be used during the decision-making process. SC “A” is com-
posed of two pillar functions registerDO() and deleteDO() where the first func-
tion is used by the service provider to register a deployment option on BC with
requested requirements passed as an input to the SC function. The second func-
tion deleteDO() is use to remove the existing deployment options from the set of
available ones, ordinary due to the significant change of the requirements or the
deprecation of the deployment option.

The developed SC “B” deals with the (re)deployment scenario. The SC contains
functions for managing the deployment process, based on the Chainlink Smart
Oracle that accesses information from the decision-making mechanism. In addition,
the SC “B” is responsible to compensate the service consumers if the SLA is
violated, by implementing dynamic price business model. In particular, the service
consumer knows the total cost that is needed for the deployment option utilisation
and once an agreement is reached, consumer’s funds are locked by the SC. If the
maximum utilisation time limit is reached then the funds are unlocked and the
service provider is fully paid. However, if there is an SLA violation, the service
provider receives funds only for the time their deployment option was used and the
rest of the funds are refunded to the service consumer. This SC refund approach
make it possible to automate and facilitate the monetising process among the
service provider and the service consumer.

In the context of the deployment, the Smart Oracle plays the crucial role of
managing the data flow between the Smart Contract consisting of on-chain data
and the dedicated services (e.g. orchestration service) consisting of off-chain data.
By doing that we preserve high level of traceability and at the same time the
condition fulfilment checks are increased. To fully exploit the Smart Oracle capab-
ilities it is recommended to run all Smart Oracle triggered services on a dedicated
hardware to preserve full auditing and data verification of all the triggered data
through the services.

5 Experimental evaluation

The goal of the experimental evaluation is to show that the proposed architecture
for SLA management with smart contracts is fully functional and can be used to
perform (re)deployment operations in order to maintain high QoS at all times. The
experimental evaluation consists of evaluating the probabilistic decision-making
method and the blockchain performance. The proposed solution in this study was
tested by a user (software engineer) that is based in Ljubljana, Slovenia, who used
the system to deploy an AI application on an optimal deployment option. Due
to the variability of the monitored metrics (i.e. networking, infrastructure and
application metrics), an optimal deployment option at one instance in time may
not be an optimal solution in another instance in time.

The engineer could deploy his application on one out of 42 available deployment
options within Tier 1 (Fog-Cloud) and on one out of 5 deployment options within
Tier 2 (Edge). The Tier 2 deployment options were hosted on the network edge,
near to the sources of data, and were not subject to experimentation. On the

petako_bt@hotmail.com
Typewritten text
This is a pre-print of an article published in the Journal of Grid Computing.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10723-020-09534-y

Smart Contracts for Service-Level Agreements in Edge-to-Cloud Computing 15

Table 2: Experimental testbed Edge-to-Cloud infrastructures used for the deploy-
ment process

Deployment option CPU cores vRAM Location Cost [$/month] id
arnes-0 1 4 Ljubljana 0 0

g1-small 1 1.7

Frankfurt, London,
Tokyo, Sydney, Oregon

16.56; 16.56;
16.45; 18.24; 13.13

1-5

n1-standard 1 1 3.75
31.27; 31.27;
31.17; 34.45; 24.27

6-10

n1-standard 2 2 7
62.55; 62.55;
62.34; 68.9; 48.55

11-15

n1-standard 4 4 15
125.09; 125.09;
124.68; 137.8; 97.09

16-20

n1-standard 8 8 30
250.19; 250.19;
249.37; 275.6; 194.18

21-24

a1.medium 1 2
Frankfurt, Tokyo,
Sydney, Oregon

21.31; 23.50;
24.38; 18.67

25-29

a1.large 2 4
42.61; 47.0;
48.76; 37.34

30-33

a1.xlarge 4 8
85.21; 93.99;
97.51; 74.67

34-37

a1.2xlarge 8 16
170.41; 187.98;
195.01; 149.33

38-41

other hand, the available deployment options from Tier 1 were hosted on Google
Cloud Platform12, Amazon AWS EC213 and ARNES14, at 6 different locations:
Ljubljana, Frankfurt, London, Tokyo, Sydney and Oregon. The current properties
of the utilized deployment options are listed in Table 2. The network performance
of the available deployment options is depicted in Figure 4 and Figure 5, where it
can be seen that geolocation plays important role in the network performance. In
particular, all deployment options that are located geographically closer to Tier
2 show significantly better network performance regarding the latency threshold.
Therefore, the (re)deployment in this scenario will also consider parameters such
as the network performance between the two tiers.

Tier 2 deployment options have normally attached on-field sensors and cam-
eras that produces the data for the AI application. Therefore, the deployment of
software components on Tier 2 deployment options in this scenario mainly depends
on previously determined hard constraints by the software engineer (e.g. sensor
type of data, sensor location, data context and similar). Therefore, our evaluation
related to (re)deployment techniques is focused on Tier 1 deployment options.

5.1 Probabilistic decision-making evaluation

The probabilistic model for the deployment process was generated by using multi-
level monitoring and usage data that was collected in a period of one month, prior
to the experimental evaluation.

For the needs of the experimental evaluation, the software engineer had an AI
application that had to process high-resolution video surveillance data, therefore

12 https://cloud.google.com/
13 https://aws.amazon.com/ec2/
14 https://arnes.splet.arnes.si/

petako_bt@hotmail.com
Typewritten text
This is a pre-print of an article published in the Journal of Grid Computing.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10723-020-09534-y

16 Petar Kochovski et al.

Figure 4: Latency between the source of data and the deployment options.

Figure 5: Throughput between the source of data and the deployment options.

the following QoS requirements were selected: CPU cores more than or equal to
4, vRAM more than or equal to 4GB, cost less than or equal to 100$/month,
application level latency less than or equal to 65 ms and throughput more than or
equal to 8 Mb/s. The implemented MDP considers the QoS requirements as soft
constraints, thus the MDP solution may not satisfy all constraints, but will tend to
choose the option with the lowest amount of threshold violations. For the purposes

petako_bt@hotmail.com
Typewritten text
This is a pre-print of an article published in the Journal of Grid Computing.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10723-020-09534-y

Smart Contracts for Service-Level Agreements in Edge-to-Cloud Computing 17

of the SLA Management, the software engineer also selected the following Service
Level Objectives (SLOs): application level latency less than 100 ms, application
level throughput higher than 6 Mb/s, deployment option’s memory utilisation less
than 80% and deployment option’s CPU utilisation less than 90%.

Figure 6: Monitoring data comparison before and after the redeployment process.
The MDP method’s probabilistic assurances are provided as confidence levels and
are used to make a decision on redeployment. When such decision is taken the
MDP decision-making method is used to choose a new deployment option based
on the available pool of resources.

Once a deployment decision takes place, the deployment option was monitored
using the Prometheus Monitoring System15 against the defined SLOs. Then, artifi-
cial network latency (see Figure 6) on the chosen deployment option was gradually
applied, using the network emulator NetEm16, which forced the alarm trigger to
react. When the alarm trigger [31] detects a violation, it notifies the probabilistic
model to perform probabilistic evaluation and estimate the redeployment con-
fidence level in order to initiate redeployment process. Each time the MDP can
provide a new deployment result. The results, presented in Table 3 show the scores
of the top five ranked deployment options for deployment and redeployment of the
AI applications. In both scenarios, deployment and redeployment the top ranking
deployment options were the ones that satisfied the highest amount of QoS re-
quirements and were located geographically closer to Tier 1. In this case, for both
scenarios deployment an redeployment, the mechanism chose deployment options
that satisfied all QoS requirements. Although the deployment option with id=0
was in closes proximity to Tier 1, during the evaluation process it did not met the
requirement for CPU cores amount, thus with one threshold violation was ranked
fifth during the redeployment scenario.

Figure 6 depicts the difference in the monitoring values before and after the
redeployment took place during the experimental evaluation. The moment when

15 https://prometheus.io/
16 http://man7.org/linux/man-pages/man8/tc-netem.8.html

petako_bt@hotmail.com
Typewritten text
This is a pre-print of an article published in the Journal of Grid Computing.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10723-020-09534-y

18 Petar Kochovski et al.

Table 3: Deployment and redeployment ranking results of top five deployment
options

Deployment Redeployment

Rank
Deployment
option

ID Score
Deployment
option

ID Score

I a1.xlarge 34 167.96 a1.large 30 161.57
II a1.2xlarge 38 159.22 n1-standard-8 21 157.31
III a1.large 30 158.21 n1-standard-4 16 157.09
IV n1-standard-8 21 158.03 n1-standard-2 11 151.85
V n1-standard-4 16 152.84 arnes-0 0 150.98

the monitoring values of a1.xlarge with id=34 were close to violate the SLA agree-
ment, the system had a high level of redeployment confidence that led towards
initiating the redeployment process and selection of a1.large with id=30 as op-
timal deployment option.

5.2 Blockchain performance evaluation

SCs have an important role in the system architecture, therefore the individual
functions including the SC deployment have to be efficient in terms of cost and
execution performance. In comparison to the traditional SCs interacting fully with
on-chain data, our SCs “A” and “B” presented in Section 4.4 include Smart Oracle
mechanisms that increase the data interaction on an off-chain level but at the same
time slightly increase the overall cost of the Smart Oracle enabled functions.

In our experimental environment we used the Ethereum testing environment
Rinkeby and we presented the averaged results of 10 executions, running own
Chainlink nodes with the determined Smart Oracle cost per interaction of 0.001
LINK tokens, which is equivalent to the main Ethereum environment of approx-
imate 0.037 USD. The evaluated SCs (“A” and “B”) from the gas consumption
metric are depicted in Figure 7. The results indicate that the most expensive func-
tions are constructors and following the Smart Oracle enabling functions. Since the
deployment of the SC “A” is performed only once and the deployment of the SC
“B” once per service consumer, the SCs are costly feasible. Moreover, the major-
ity of the functions is triggered by the Service Provider stakeholders (e.g. Service
owner, Cloud providers, etc.), while only 4 functions (triggerSC, payService, check-
LockState and triggerStop) are executed from Service Consumer stakeholder. The
Service Consumer SC functions are relatively unexpensive and thus make the SCs
overall costly acceptable.

It is known that the execution of SCs is possible within one block or multiple
ones. We focused on the main three functionalities registration, deployment and
redeployment. The results shown in Table 4 indicate that the fastest operation
is registration, due to the simplicity of the SC functions, but the deployment
and redeployment execution time varies from 1 to 2 blocks depends on Ethereum
network load and used transaction fee. In the case of low execution time it is used
high transaction fee of 20 ·10−9 ETH, otherwise in the case of high execution time
it is used low transaction fee of 1 · 10−9 ETH [7]. Even though the performance of

petako_bt@hotmail.com
Typewritten text
This is a pre-print of an article published in the Journal of Grid Computing.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10723-020-09534-y

Smart Contracts for Service-Level Agreements in Edge-to-Cloud Computing 19

Figure 7: Gas consumption of all SC functions in SC ”A” and SC ”B”.

the SC functionalities are consuming and it is not possible to reduce the execution
below one block (that is approximate 15 seconds), the trust benefits among the
involved entities prevail.

Table 4: Performance analysis for registration, deployment and redeployment op-
erations.

Operation
Low Execution High Execution
Time [sec] Time [sec]

Registration 12 15
Deployment 14 24
Redeployment 13 18

5.3 Critical Analysis

The proposed SLA management system was fully tested and evaluated. Our eval-
uation addressed the performance of the probabilistic decision-making and the
implemented blockchain solutions. The MDP-based decision-making method de-
rived the ranking of the deployment options based on current monitoring data and
prior usage data that was aggregated within the duration of one month. In both
cases, that is, deployment and redeployment, the method provides correct output
by ranking first the deployment options that satisfy the highest number of soft QoS
requirements. Hence, the decision-making method proves useful for the design of
an SLA management system. Furthermore, the blockchain implementation was
evaluated in terms of cost and execution performance, because these criteria have
an essential role, if we intend to achieve business value. Our results shown that
the blockchain operations take at average no more than 24 seconds to execute,
thus allowing the system to timely address any SLA violations, while at the same
time satisfying high security and trust related standards that are offered by this
technology. On the other hand, the transaction fees for the operations depend on
the amount of traffic that the blockchain is experiencing and the required execu-
tion time for each operation. In other words, the faster the operations need to be

petako_bt@hotmail.com
Typewritten text
This is a pre-print of an article published in the Journal of Grid Computing.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10723-020-09534-y

20 Petar Kochovski et al.

executed, the more expensive it will be. Although, as described in Section 5.2, the
transaction fees are significantly low during the evaluation process, there is still
space to further optimise the performance of our blockchain implementation. In
summary, the proposed SLA management approach is able to deliver QoS-aware
deployment operations, whilst at the same time maintaining trust relationships
among the involved entities.

6 Conclusion and future scope

The motivation of the present study is to address the requirements of computa-
tionally, memory and network intensive microservices. With Edge-to-Cloud com-
puting offer it is necessary to find new and dynamic means for the management
of SLAs in view of achieving high QoS operation of the microservices. This study
explores the possibility of using Blockchain and Smart Contracts and presents a
new architecture that is, to the best of our knowledge, the first of its kind.

Based on our implementation and presented experimentation, we may conclude
that our proposed Smart Contract-based architecture and system achieves feder-
ation of resources and automated deployment and redeployment of applications
in a dynamic and decentralised way. It is particularly suitable for two- (or even
multi-) tier AI applications that are engineered as groups of containers (pods),
for example, front and rare parts of Deep Neural Networks, including pre- and
post-processing methods.

The MDP method can be used for automated decision-making based on the
probability of achieving high QoS. Based on various QoS metrics and prior us-
age data, the MDP method is used to build an automaton (probabilistic model).
Its states represent all available deployment options, and its transitions contain
probabilities for maintaining an idle state or (re)deployment of the software com-
ponents from one deployment option to another. This happens when a QoS metric
is violated. Then, the automaton is used to: (1) assess the probability that the QoS
will be maintained above the threshold (assurances), (2) rank the available Cloud
deployment options, and (3) verify the results. It was shown that the developed
blockchain-based architecture and system can be used (1) to federate computing
resources close to each other, thus increasing the available deployment options,
and (2) to manage the SLAs in an automated and stochastic way.

The experimental evaluation was performed using 43 deployment options from
the Fog/Cloud (Tier 1), 5 deployment options from the Edge (Tier 2), and 7
QoS-related metrics. The results from the experimental evaluation show that the
proposed architecture can be used to rapidly resolve QoS threshold violations,
thus offering solution that will satisfy SLAs and compensate the service consumer
when necessary. This design study forms an integral part of the design of the
DECENTER’s Fog Computing Platform.

With the emergence of new paradigms and technologies, such as IoT, Block-
chain and AI, the Edge-to-Cloud computing transforms towards intelligent com-
puting and becomes more complex overall. A recent study in this context has ana-
lysed the transformative effects of related technologies and paradigms on cloud
computing, and revealed new trends and challenges for energy management, re-
source management, fault tolerance, security, privacy and many more topics that
will be addressed in future research [12].

petako_bt@hotmail.com
Typewritten text
This is a pre-print of an article published in the Journal of Grid Computing.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10723-020-09534-y

Smart Contracts for Service-Level Agreements in Edge-to-Cloud Computing 21

Our future work priorities go into the following directions. First, we need to
improve the MDP method and to consider various blockchain-based architectures.
The MDP method will be further evaluated and improved for various redeploy-
ment scenarios in multi-tier architectures, such as consolidating pairs of Edge and
Fog deployment options as pairs within the states of the automaton. The Block-
chain Layer, on the other hand can be furthermore improved by introducing more
Smart Contracts model, interledger support, which can allow transactions between
different types of ledgers and additionally reduce the cost over the blockchain op-
erations. Finally, our new Horizon 2020 Research and Innovation Action ONTO-
CHAIN (Trusted, traceable and transparent ontological knowledge on blockchain)
aims at achieving trust in highly decentralised environments by means of integ-
ration between Semantic Web and Blockchain technologies and its novel set of
protocols will be directly useful to achieve trusted SLAs across the computing
continuum.

Acknowledgements The research and development reported in this paper have received
funding from the European Union’s Horizon 2020 Research and Innovation Programme under
grant agreement no. 815141 (DECENTER: Decentralised technologies for orchestrated Cloud-
to-Edge intelligence) and grant agreement no. 957338 (ONTOCHAIN: Trusted, traceable and
transparent ontological knowledge on blockchain).

References

1. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) Inter-
net of things: A survey on enabling technologies, protocols, and applications.
IEEE Communications Surveys & Tutorials 17(4):2347–2376

2. Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in
the internet of things. In: Proceedings of the first edition of the MCC workshop
on Mobile cloud computing, ACM, pp 13–16

3. Buterin V (2013) Ethereum white paper. GitHub repository,
https://github.com/ethereum/wiki/wiki/White-Paper

4. Buyya R, Garg SK, Calheiros RN (2011) Sla-oriented resource provisioning
for cloud computing: Challenges, architecture, and solutions. In: 2011 inter-
national conference on cloud and service computing, IEEE, pp 1–10

5. Carminati B, Ferrari E, Rondanini C (2018) Blockchain as a platform for
secure inter-organizational business processes. 2018 IEEE 4th International
Conference on Collaboration and Internet Computing (CIC) pp 122–129

6. Castillo EA, Ahmadinia A (2017) Distributed deep convolutional neural net-
work for smart camera image recognition. In: Proceedings of the 11th Inter-
national Conference on Distributed Smart Cameras, pp 169–173

7. Chen S, Choo KR, Fu X, Lou W, Mohaisen A (eds) (2019) Security and
Privacy in Communication Networks - 15th EAI International Conference,
SecureComm 2019, Orlando, FL, USA, October 23-25, 2019, Proceedings, Part
I, Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, vol 304, Springer

8. Dastjerdi A, Gupta H, Calheiros R, Ghosh S (2016) Chapter 4—fog computing:
Principles, architectures, and applications. ininternet of things: Principles and
paradigms, ed. r. buyya, and av dastjerdi, 61–75

petako_bt@hotmail.com
Typewritten text
This is a pre-print of an article published in the Journal of Grid Computing.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10723-020-09534-y

22 Petar Kochovski et al.

9. Ethereum core team (2016) web3.js-ethereum javascript api v.1.2.7. ht-
tps://web3js.readthedocs.io/en/v1.2.7/

10. Gill SS, Buyya R (2019) Resource provisioning based scheduling framework
for execution of heterogeneous and clustered workloads in clouds: from funda-
mental to autonomic offering. Journal of Grid Computing 17(3):385–417

11. Gill SS, Chana I, Singh M, Buyya R (2018) Chopper: an intelligent qos-aware
autonomic resource management approach for cloud computing. Cluster Com-
puting 21(2):1203–1241

12. Gill SS, Tuli S, Xu M, Singh I, Singh KV, Lindsay D, Tuli S, Smirnova D,
Singh M, Jain U, et al. (2019) Transformative effects of iot, blockchain and
artificial intelligence on cloud computing: Evolution, vision, trends and open
challenges. Internet of Things 8:100118

13. Hang L, Kim DH (2019) Sla-based sharing economy service with smart
contract for resource integrity in the internet of things. Applied Sciences
9(17):3602

14. Kochovski P, Stankovski V (2018) Supporting smart construction with de-
pendable edge computing infrastructures and applications. Automation in
Construction 85:182–192

15. Kochovski P, Drobintsev PD, Stankovski V (2019) Formal quality of service
assurances, ranking and verification of cloud deployment options with a prob-
abilistic model checking method. Information and Software Technology DOI
https://doi.org/10.1016/j.infsof.2019.01.003

16. Kochovski P, Gec S, Stankovski V, Bajec M, Drobintsev PD (2019) Trust man-
agement in a blockchain based fog computing platform with trustless smart
oracles. Future Generation Computer Systems 101:747–759

17. Labidi T, Mtibaa A, Gaaloul W, Tata S, Gargouri F (2017) Cloud sla mod-
eling and monitoring. In: 2017 IEEE International Conference on Services
Computing (SCC), IEEE, pp 338–345

18. Li X, Ma H, Zhou F, Gui X (2014) Service operator-aware trust scheme for
resource matchmaking across multiple clouds. IEEE transactions on parallel
and distributed systems 26(5):1419–1429

19. Mubeen S, Asadollah SA, Papadopoulos AV, Ashjaei M, Pei-Breivold H,
Behnam M (2017) Management of service level agreements for cloud services
in iot: A systematic mapping study. IEEE Access 6:30184–30207

20. Müller C, Oriol M, Franch X, Marco J, Resinas M, Ruiz-Cortés A, Rodŕıguez
M (2013) Comprehensive explanation of sla violations at runtime. IEEE Trans-
actions on Services Computing 7(2):168–183

21. Nakamoto S (2019) Bitcoin: A peer-to-peer electronic cash system. Tech. rep.,
Manubot

22. Paščinski U, Trnkoczy J, Stankovski V, Cigale M, Gec S (2018) Qos-aware
orchestration of network intensive software utilities within software defined
data centres. Journal of Grid Computing 16(1):85–112

23. Rawat DB, Brecher C, Song H, Jeschke S (2017) Industrial Internet of Things:
Cybermanufacturing Systems. Springer

24. Savi M, Santoro D, Di Meo K, Pizzolli D, Pincheira M, Giaffreda R, Cretti
S, Kum Sw, Siracusa D (2020) A blockchain-based brokerage platform for
fog computing resource federation. In: Conference on Innovation in Clouds,
Internet and Networks

Smart Contracts for Service-Level Agreements in Edge-to-Cloud Computing 23

25. Scheid EJ, Rodrigues BB, Granville LZ, Stiller B (2019) Enabling dynamic
sla compensation using blockchain-based smart contracts. In: 2019 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM), IEEE, pp
53–61

26. Shi W, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing: Vision and
challenges. IEEE Internet of Things Journal 3(5):637–646

27. Singh S, Chana I (2016) Resource provisioning and scheduling in clouds: Qos
perspective. The Journal of Supercomputing 72(3):926–960

28. Singh S, Chana I, Buyya R (2017) Star: Sla-aware autonomic management of
cloud resources. IEEE Transactions on Cloud Computing

29. Song H, Rawat DB, Jeschke S, Brecher C (2016) Cyber-physical systems:
foundations, principles and applications. Morgan Kaufmann

30. Song H, Fink GA, Jeschke S (2017) Security and Privacy in Cyber-Physical
Systems. Wiley Online Library

31. Taherizadeh S, Stankovski V (2019) Dynamic multi-level auto-scaling rules for
containerized applications. The Computer Journal 62(2):174–197

32. Wöhrer M, Zdun U (2018) Design patterns for smart contracts in the ethereum
ecosystem. In: 2018 IEEE International Conference on Internet of Things (iTh-
ings) and IEEE Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart
Data (SmartData), pp 1513–1520

33. Zanella A, Bui N, Castellani A, Vangelista L, Zorzi M (2014) Internet of things
for smart cities. IEEE Internet of Things journal 1(1):22–32

34. Zhang F, Cecchetti E, Croman K, Juels A, Shi E (2016) Town crier: An au-
thenticated data feed for smart contracts. Cryptology ePrint Archive, Report
2016/168, https://eprint.iacr.org/2016/168

35. Zhang H, Ye L, Shi J, Du X, Guizani M (2014) Verifying cloud service-level
agreement by a third-party auditor. Security and Communication Networks
7(3):492–502

36. Zhou H, Ouyang X, Ren Z, Su J, de Laat C, Zhao Z (2019) A blockchain
based witness model for trustworthy cloud service level agreement enforce-
ment. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communic-
ations, IEEE, pp 1567–1575

37. Zhou H, Ouyang X, Su J, de Laat C, Zhao Z (2019) Enforcing trustworthy
cloud sla with witnesses: A game theory–based model using smart contracts.
Concurrency and Computation: Practice and Experience p e5511

