
An Automated Negotiation Framework
for Application-Aware Transport Network Services

Antonio Marsicoa,∗, Marco Savib, Domenico Siracusab, Elio Salvadorib

aBritish Telecom, Adastral Park, Ipswich, UK
bFondazione Bruno Kessler, Trento, Italy

Abstract

Application-centric networking proposes a novel approach to provision connec-

tivity services in transport networks based on application-specific requirements.

By exploiting this paradigm, an application can request a service with several re-

quirements to a generic control and management plane, which can leverage this

information to differentiate a service on the overall network layers. However, an

application-centric provisioning can lead to higher blocking probability when

satisfying multiple requirements at the same time, thus impacting negatively

both network operators and applications. This paper proposes a framework for

the negotiation of connectivity services between a transport network and the

applications running on top. In particular, an application can communicate

its requirements to it and, in case of resource scarcity (either in term of band-

width, latency, availability, etc.), the network can offer alternative solutions

with a degraded service quality. The effectiveness of the proposed approach is

proved by the lower blocking probability experienced by the service requests

against a standard approach lacking negotiation capabilities, without in turn

causing significant service degradation to the applications. In addition, the pa-

per describes the software architecture behind the negotiation framework and

∗Corresponding author
Email address: antonio.marsico@bt.com (Antonio Marsico)

1The research leading to these results has received funding from the European H2020
Framework Programme under grant agreement no. 645127 ACINO project.

2A preliminary version of this paper appeared in 2018 Optical Fiber Communication Con-
ference (OFC) [1].

Preprint submitted to Optical Switching and Networking May 3, 2020

its implementation on top of the ONOS SDN controller.

Keywords: Network Optimization; Service Negotiation; Software-Defined

Networking; Transport Networks.

1. Introduction

Applications for industry verticals with diverse and stringent requirements

are characterizing modern Internet traffic. Banking systems, smart cities and

grids are a few examples of this plethora of applications [2]. Their internet

traffic is extremely heterogeneous and characterized by diverse requirements in

terms of bandwidth, latency, availability, etc., defining the type of connectivity

service that a network should be able to provide.

In this context, transport networks are required to offer ad-hoc connec-

tivity services and adapt their configuration based on specific application re-

quirements. To this end, the application-centric networking [3] is an emerging

paradigm that aims at catering to multiple application requirements during

the provisioning of a connectivity service. The applications can communicate

their requirements to a generic control and management plane (i.e. a Software-

Defined Networking (SDN) network controller), which offers provisioning algo-

rithms for satisfying the application requirements over the different network

layers (i.e. IP/MPLS and optical). The communication between the appli-

cations and the SDN controller can be performed by means of a well-defined

North-bound Interface (NBI) (i.e. an Intent-based interface [4]).

Recent studies (e.g. [5, 3, 6, 7, 8, 9]) show how application-centric net-

working can be pursued in multi-layer transport networks by means of joint

configuration/optimization of IP/MPLS and optical layers, in order to pro-

vide a tailored service throughout the network stack. Specifically, [6] shows

the advantages of considering a number of application requirements in addition

to simple bandwidth when applications’ service requests must be provisioned.

This work proves that it is possible to achieve service blocking probabilities

similar to an application-unaware scheme in low network load, while also en-

2

suring that application needs are met. In this way, the network can ultimately

deliver added-value services to customers at roughly the same cost. However,

when facing high network utilization, the service acceptance ratio experiences

a reduction that negatively impacts on the revenues of both network operators,

which cannot accommodate new service requests while meeting all the applica-

tion requirements, and customers, which have their service blocked.

In this work, we introduce a novel interaction between applications and

networks that allows the reduction of the service blocking probability based on

application feedback. We define this interaction as application-aware service

negotiation. The negotiation scheme offers the possibility to find an agreement

between applications and networks for the provisioning of a downgraded service

with looser requirements. In particular, the considered application requirements

are the bandwidth (b), the latency (l), and the availability (a), but the scheme

could be easily extended to consider additional ones. The enhanced provisioning

algorithm offers several alternative solutions to the application, based on the

current status of the network. The application can analyze the solutions and

provide a feedback to the network. In this way, an application can receive a

predictable service degradation and avoid a block of its request.

The contributions of this paper can be summarized as follows:

• Definition of a intent-based negotiation scheme between applications and

networks. We propose a negotiation scheme based on the degradation of

application requirements. We extend an algorithm for the provisioning

of Application-Aware services in order to support the negotiation scheme

and to search for alternative provisioning solutions for applications. In

addition, we propose an algorithm to let the applications automatically

select or reject the alternative solutions offered by the network.

• Implementation of the negotiation scheme on top of the ONOS SDN

network controller [10]. We rely on the ONOS Intent Framework [11]

REST APIs to support the negotiation scheme. We evaluate the process-

ing time of our implementation and we demonstrate a limited overhead.

3

Being a fully working proof of concept, we have released its code as open

source [12], publicly available for researchers and experimenters that are

willing to test it or further enrich it. This code is part of the software

outcome of the EU H2020 ACINO project [13].

• Evaluation of the application-aware negotiation scheme performance on

both the network and the application sides in a simulation environment.

We show that (i) our negotiation scheme is able to significantly reduce net-

work service blocking probability while leading to predictable (application-

endorsed) downgrades in service quality and (ii) jointly relaxing multiple

application requirements can lead to counter intuitive effects on how each

of them is impacted by the relaxation of the others.

This paper is structured as follows: the state of the art is described in

Section 2, while Section 3 proposes the network and application algorithms

and the negotiation scheme. The software architecture is proposed in Section 4.

Then, Section 5 shows the performance evaluation of our negotiation mechanism

on top of a real Internet Service Provider (ISP) transport network by means of

simulations and the ONOS implementation. Section 6 closes the paper.

2. Related Work

The negotiation of application-centric services requires (i) a strategy to re-

duce the service blocking probability in a network by means of service (or appli-

cation) requirements degradation, (ii) a negotiation model to find an agreement

between applications and networks on such requirements, and (iii) a communi-

cation system that provides a proper interaction between the involved parties.

In the state of the art, there are several works that independently discuss all

these aspects. In the following paragraphs, we discuss the main related work

for each one of them.

4

2.1. Degradation of service requirements

This strategy has been proposed to increase the number of service request

that can be accommodated in the network. The application requirements can

be degraded to looser values than the initial request. Different works [14, 15,

16, 17] propose some service admission strategies based on the degradation of

the sole bandwidth requirement in the case of network failures and/or network

congestion. However, all these works propose a degradation that is unilaterally

decided by the network without any feedback from applications. In addition,

evaluating the degradation of bandwidth without considering other application-

specific requirements is a common limitation of these works. In this paper, we

try to fill both these gaps.

2.2. Negotiation models

In the state of the art, there are a few examples of negotiation mechanisms,

with strong focus on cloud computing. In [18], the authors propose a band-

width negotiation mechanism based on a price/service trade-off depending on

network congestion. An application chooses an alternative solution (in terms

of guaranteed bandwidth) based on a utility function. However, this work does

not consider any other requirement rather than the bandwidth (e.g., availability,

latency, etc.). Another type of negotiation model that can be found in litera-

ture is the auction [19, 20]. The users can create economical offers to request

the provisioning e.g. of computational resources in public clouds. When the

time for bidding is concluded, the cloud controller decides which are the best

offers to be provisioned based on the current resource status. Another work

proposes SNAP [21], a Service Level Agreement (SLA) negotiation protocol to

allocate computational resources (e.g., CPU, RAM, etc.) and execute tasks on

a cloud computing environment. Yet another type of negotiation mechanism is

presented in [22]. In this work, the authors propose a scheme for negotiating

computational resources based on the Alternate Offers Protocol [23], where a

requester can make a counter offer to a resource manager system. The negotia-

tion finishes when the application and the resource manager find an agreement

5

for the execution of the requested task.

The negotiation of application-centric services proposed in our paper differs

from these mechanisms for two main reasons: (i) it is specifically tailored to

tranport networking (instead of cloud computing) and (ii) our proposed nego-

tiation scheme is triggered only in the case of resource scarcity.

2.3. Interaction between applications and networks

In the SDN ecosystem, many works discussed how applications and networks

can interact. Specifically, they focus on how it possible to improve the Quality

of Service (QoS) of application-generated traffic by making the network aware

of what are the requested connectivity requirements and by enabling a feedback

mechanism with respect to the experienced traffic treatment. Then, a network

control and management plane (i.e., an SDN controller) can exploit this infor-

mation to change the network configuration in real time to increase the QoS

experienced by applications/users. For instance, paper [24] shows that a video

streaming application experiences a significant increase in the throughput if the

application provides feedback about the left amount of its video buffer. Paper

[25] proposes a framework to ensure high QoS of real-time applications, such

as online gaming. Each real-time application interacts with an SDN controller

when it requires high traffic priority, and the controller is able to modify the net-

work configuration accordingly. In [26], the authors present a framework where

a user can directly interact with a browser-based Graphical User Interface (GUI)

and choose which application traffic, within several pre-defined ones, they want

to prioritize in the network. The SDN controller receives the requests from the

users and translates them into forwarding rules for the network. Finally, paper

[27] proposes a framework to to let the users request specific services from the

network, such as bandwidth limitation or access control (e.g. firewalling), and

the possibility to schedule a request for a certain amount of time. However,

even though such previous work paves the way towards a tight interaction be-

tween applications and networks, all these papers only exploit this interaction

to improve the application QoS, without any focus on network performance.

6

Figure 1: Application/network negotiation scheme and related algorithms.

In our work, we instead propose a scheme where a proper application/network

interaction leads to service blocking probability reduction without substantially

compromising the QoS of applications.

3. Service Negotiation Scheme

This section presents our scheme for the negotiation of application-aware

services. As general model, the negotiation is based on a controlled degradation

of the requested application requirements. The application requests a connec-

tivity service to the network and, in case the service cannot be provisioned, it

gets back several possible alternatives (in terms of guaranteed requirements),

analyzes them and provides a feedback on the best one (according to its prefer-

ences) to be provisioned.

The negotiation scheme is divided into two algorithmic blocks (Fig. 1). On

the network side, we rely on an extended version of the Application-Aware Ser-

vice Provisioning Algorithm [6], which includes the negotiation features. The

algorithm is implemented as part of a generic Control and Management plane

that controls the substrate network, e.g. a hierarchical SDN controller. On the

application side, an algorithm is designed to autonomously decide among the

7

multiple solutions with degraded service offered by the network in the negoti-

ation process (Alternative Solution Selection Algorithm). The communication

between the two blocks can be provided by a well-designed intent-based north-

bound interface[4].

As already mentioned, the applications require connectivity services to the

network in the form of service requests (SR, i.e., intents). We adopt a similar

formalism as the one presented in [6]. It defines every service request as a tuple

SR = {s, d, b, l, a}, in which s and d represent the source/destination node

identifiers (i.e., endpoints), b the minimum required bandwidth, l the maximum

allowed latency and a the minimum tolerable path availability. a is expressed as

(MTBF/(MTBF + MTTR)) · 100, where MTBF is the Mean Time Between

Failures and MTTR is the Mean Time To Repair. b, l and a are the application

requirements. In [6], the Application-Aware Service Provisioning Algorithm

evaluates the application requirements for each service request, and aims at

finding a path meeting all the application requirements (i.e., an application-

aware path). If an application-aware path can be provisioned, the service request

is accepted. Otherwise, the service request is blocked.

Our negotiation scheme extends the algorithm presented in [6] by defining a

new possible outcome of a service request between applications and networks:

when it is not possible to provision an application-aware path for a service

request, meaning that some of the requested application requirements cannot

be guaranteed, a negotiation phase is started. This happens when the limited

network resources have already been provisioned to meet other service requests

with strict requirements.

For example, a service request generated by an application with a stringent

latency requirement may find the shortest paths busy because of traffic gen-

erated by already-provisioned service requests with a similar requirement, but

may be willing to negotiate a looser guaranteed latency instead of having its

request blocked. In this way, the application can achieve a controlled service

degradation and can modify its behavior based to the new guaranteed applica-

tion requirements. In order to inform the network that an application is willing

8

to negotiate, the service request tuple reported above has been extended to carry

also the information on which application requirements are negotiable: the new

considered tuple is SR = {s, d, b, l, a, nb, nl, na}, where the flags nb, nl, na are

associated to b, l and a, respectively. They can be set to true or false to inform

the Application-Aware Service Provisioning Algorithm of which requirements

can be negotiated.

The algorithm thus offers a set of alternative solutions (AS) to the appli-

cation, in which the negotiable application requirements can have looser values

than the ones in the original service request and that the network can meet.

The tuple AS = {AS1, AS2, · · · , ASM} represents all the possible alternative

solutions where, in our specific case, ASj = {bn,j , ln,j , an,j} includes the values

that the network can guarantee for each considered application requirement.

For example, if a service request requires a specific value of l with nl = true,

the algorithm can offer a new value ln > l, meaning that it can provide an

application-aware path meeting such looser latency requirement. For more de-

tails on how the Application-Aware Service Provisioning Algorithm works and

how the alternative solutions are generated see Section 3.1)

On the application side, the alternative solutions need to be analyzed to find

which is the best for the application. This task is performed by the Alternative

Solution Selection Algorithm. In our model, every application maintains a set

of preferable values SRp = (bp, lp, ap) and a set of least-acceptable values SRt =

(bt, lt, at), represented as tuples. The former indicates the preferable values that

the application would like to have guaranteed from the network (which are thus

included in the original service request SR, meaning that b = bp, l = lp and

a = ap), while the second represents the threshold values that the application is

willing to accept in case the negotiation phase is started, and are not disclosed

to the network.

For instance, consider a company (e.g. a bank) that requires a seamless

virtual machine migration between two end-points. Standard virtual machine

migration techniques require a maximum latency of l = lp = 10 ms. However

the virtual machine can be migrated, with reduced performance, also in case of

9

network delays up to lt = 150 ms.

As already explained, an application requirement is negotiable only if the

related flag nb,l,a = true. In that case, the threshold value is looser than prefer-

able one (i.e., bp > bt, lp < lt, ap > at). Conversely, if a requirement is not

negotiable, i.e., nb,l,a = false, the preferable and threshold values are the same

(i.e., bp = bt, lp = lt, ap = at). Starting from the information on preferable and

least acceptable values for the application requirements, the Alternative Solu-

tion Selection Algorithm takes its choice on the best alternative solution (for

more details on how the algorithm works see Section 3.2), or reject all of them.

If all the alternative solutions are rejected, the service request is blocked.

Note that, since the network does not have any knowledge on the least-

acceptable values for the application requirements, it cannot bias its choice

to provide, as unique alternative solution, exactly such looser values to the

application. In this way, the application can potentially experience a lower

service degradation than the least-acceptable one.

In the following subsection, we report the detailed description on how the

Application-Aware Service Provisioning Algorithm and the Alternative Solution

Selection Algorithm work.

3.1. Application-Aware Service Provisioning Algorithm

The Application-Aware Service Provisioning Algorithm presented in this pa-

per extends the algorithm designed in [6] to deal with the negotiation features

proposed above. Such algorithm offers the provisioning of application-aware

services on top of multi-layer IP/optical networks. However, note that our pro-

posed negotiation scheme is not strictly related to multi-layer networks, indeed

it could be adopted to work on top of any different network technology, as long

as a well-designed service provisioning algorithm is provided.

As substrate network, the Application-Aware Service Provisioning Algo-

rithm adopted in this paper considers a 2-layer physical network composed of

a transparent Dense Wavelength-Division Multiplexing (DWDM) optical layer

and an IP/MPLS packet layer. The optical layer is composed of ROADM nodes

10

(i.e., reconfigurable optical add-drop multiplexers) that are interconnected by

fiber links supporting multiple wavelengths. At the IP/MPLS layer, the nodes

(i.e., IP/MPLS routers) are interconnected by IP adjacencies (i.e., links) that

are realized through lightpaths, i.e., transparent optical connections.

As general concept, the algorithm first attempts to find an application-aware

path for every service request by only considering the existing lightpaths (i.e.,

already-established IP adjacencies). Then, if no application-aware path is found,

it includes in the investigation multiple potential lightpaths (i.e., lightpaths that

have not been established yet, but that could be established if needed, since

enough optical resources are available): this second stage increases the chance

of finding a suitable solution at the expense of establishing new optical resources.

For path computation, the algorithm exploits an auxiliary graph [28], including

as nodes the IP/MPLS nodes. Such graph allows to represent the 2-layer net-

work (including its state) on a single-layer topology. The algorithm works as

follows, and is executed every time a service request SR = {s, d, b, l, a, nb, nl, na}

needs to be provisioned (for more details please refer to [6]):

1. All the existing lightpaths are added as edges to the auxiliary graph. The

edges not meeting the bandwidth requirements b of the service request are

pruned from the graph.

2. The Kip-Shortest Path (SP) algorithm is executed on top of the auxiliary

graph between s and d. The weight for each edge is the physical length of

the corresponding existing lightpath.

3. Up to Kip candidate paths are computed, all meeting the b requirement.

4. The algorithm prunes all the candidates paths not meeting l and a returns

the first in the list (i.e., the shortest) and allocates resources. A path does

not meet l (a) if the sum (product) of latency (availability) contributions

on the path is greater than l (a) [28].

5. If the list of candidate paths is empty after step 4, the algorithm augments

the auxiliary graph by including a multiple potential lightpaths computed

11

at the optical layer, and steps 2, 3 and 4 are executed again. If a path is

found, the algorithm allocates resources. Otherwise, in the original version

of the algorithm, the request is blocked.

We extended the Application-Aware Service Provisioning Algorithm de-

scribed above to support the negotiation phase in case no application-aware

path can be found on the augmented auxiliary graph, instead of blocking the

service request. The extended version is able to compute a set of M alterna-

tive solutions, in which the negotiable application requirements can have looser

and network-achievable values than the ones specified in the service request. In

particular, in the negotiation phase the algorithm works as follows:

6. A copy of the service request is created and all the negotiable parameters

are neglected.

7. Such modified service request is used as input for steps 1-5 described

above.

8. In this phase, if the algorithm does not find any path, the service request

is blocked. Otherwise, in steps 4, instead of returning the first path in

the list, the algorithm stores the guaranteed requirements for each of the

(up to) Kip computed alternative candidate paths (i.e., the guaranteed

bandwidth, the guaranteed latency, and the guaranteed availability).

9. The number of candidate paths can be high, if there are many negotiable

parameters and a high value of Kip is used. The algorithm thus keeps

only the best path for each of the negotiable requirements. For exam-

ple, if all of b, l and a are negotiable, the algorithm stores a maximum

of three alternative solutions: the ones corresponding to the paths 1)

with maximum residual bandwidth (AS1 = {bn,1, ln,1, an,1}), 2) minimum

guaranteed latency (AS2 = {bn,2, ln,2, an,2}), and 3) maximum guaranteed

latency (AS3 = {bn,3, ln,3, an,3}).

10. The M alternative solutions computed in step 9 are sent to the application,

12

that can run the Alternative Solution Selection Algorithm described in the

next subsection.

3.2. Alternative Solution Selection Algorithm

The Alternative Solution Selection Algorithm is in charge of automatically

selecting the best alternative solution for each application, according to its

needs. The algorithm works as follows:

1. The application receives M alternative solutions, as computed by the ser-

vice provisioning algorithm in the negotiation phase.

2. The algorithm prunes all the solutions that have at least one requirement

looser than the values specified in the SRt tuple (e.g. if bn,j < bt, prune

the solution j).

3. If there is no alternative solution meeting all the requirements specified in

SRt, the service request is blocked. Conversely, the algorithm calculates

the weighted normalized Euclidean distance d between SRp and every

ASj , as defined in Eq. 1:

d(SRp, ASj) =

√√√√ N∑
i=1

wi

(
SRp,i −ASj,i

SRp,i − SRt,i

)2

(1)

where the index i refers to each one of the N application requirements

included in SRp, SRt and ASj , while wi represent a weight for the appli-

cation requirements i. By properly tuning the weights wi, the application

can specify a different prioritization for any application requirement. For

example, if latency is the most important requirement among the nego-

tiable ones, the weight wi related to latency will be set bigger than the

weights for the other requirements. Clearly,
∑N

i=1 wi = 1.

4. After evaluating every weighted normalized Euclidean distance, the al-

gorithm selects the best alternative solution, i.e., the one leading to the

13

minimum one:

ASbest = ASj : ASj = argmin
j

[d(SRp, ASj), j ∈M] (2)

5. ASbest is sent to the control and management plane, which allocates re-

sources on the associated path.

4. Software Architecture

This section describes the implementation of the negotiation scheme pre-

sented in Section 3 by exploiting a real SDN controller, which performs all the

needed control and management plane functions (see Fig. 1). We discuss the

functional requirements of the SDN controller components/modules and how

the negotiation scheme is implemented.

From a high level view, the negotiation scheme demands some mandatory

components from an SDN controller: (i) a RESTful API to simplify the submis-

sion of the service requests (in the form of intents) from the applications, (ii) an

intent compiler, which perform the translation of such intents into forwarding

rules, and (iii) a network resource manager, which keeps track of the available

resources in the network.

We chose to implement our negotiation scheme by relying on the ONOS

SDN controller [10]. ONOS offers a modular architecture in which external

software modules, i.e., OSGi bundles [29], can be added and removed at runtime.

The modules can exploit many Services, which use Java APIs, to interact with

the ONOS Core software and the underlying substrate network. The modular

architecture allowed us to implement the negotiation scheme by leveraging such

Services, without the need of modifying the inner parts of the ONOS software

(i.e., the ONOS Core).

Fig. 2 depicts the overall software architecture, including all the relevant

ONOS Services and APIs. In the following subsections, we describe in details

such Services and APIs, how they have been modified to support the negotiation

scheme, and how the negotiation workflow is implemented in ONOS.

14

Resource
Service

IntentInstaller

ONOS Intent Framework

REST API

O
N

O
S

ACiIntent

Network
Config

ACI IntentACI IntentACiIntent

IntentService Path
Service

Network Substrate

ACiIntentCompiler
2

3

4 1

Application

Southbound APIs

AA Service Provisioning

Alternative Solution
Selection

Figure 2: Negotiation scheme implemented in the ONOS controller.

4.1. ONOS Services and APIs

The negotiation scheme, as shown in Fig. 2, exploits the following Services

and APIs from the ONOS controller.

• ONOS Intent Framework [11]. The ONOS controller provides a compre-

hensive intent framework, which manages the intent submission, compilation

and the installation of the corresponding forwarding rules in the network de-

vices (e.g. switches). The intents can be submitted via the IntentService,

which exposes appropriate Java APIs for intent submission. The ONOS in-

tent framework adopts several intent compilers, each one in charge of the

compilation for a specific type of intent. The intent compilers interact with

the other ONOS Services to obtain the required information for intent trans-

lation into specific forwarding rules. For instance, ONOS provides a set of

pre-defined intents (and respective compilers) representing how to provide

network connectivity, such as the HostToHostIntent [30]. Specifically, this in-

15

tent represents the request for a point-to-point connection between two hosts

in a network. When a compiler finishes the computation of the forwarding

rules, it requests to the IntentInstaller their installation.

In order to support the negotiation scheme in the ONOS intent framework, we

added a new type of intent and its compiler: the Application-Centric Intent

(ACiIntent, encoding a service request) and the ACiIntentCompiler. The for-

mer represents a request for a point-to-point connection between two network

endpoints including the specific set of application requirements described in

Section 3 (i.e., b, l, a), while the latter implements the path pruning logic

of the Application-Aware Service Provisioning Algorithm, and all the logic

required to manage the installation of an ACiIntent in the network.

• PathService [31]. This service represents the Path Computation Element

(PCE) of ONOS. All the modules can query this service to obtain the short-

est paths between two endpoints of a network. By default, the PathService

returns all the shortest paths that have the same cost between a source and

a destination. The ACiIntentCompiler exploits this service to discover the

shortest paths between the two network endpoints included in the ACiIntent.

Then, it provides this information as input for the path pruning logic of the

Application-Aware Service Provisioning Algorithm, implemented in the same

module.

• ResourceService [32]. This service provides a database to keep track of all

the available network resources (e.g., links, the ports of a device, etc.), their

characteristics (e.g., capacity, latency, availability, etc.) and consumption.

All the ONOS modules can use this service-specific APIs to interact with the

service both to query or update the consumption of resources. Only particular

types of resources can be consumed, such as the capacity of a device port, an

IP address (e.g. in the case of a DHCP server), etc. For instance, consider an

intent requiring a bandwidth requirement of 100 Mbps between two endpoints.

Its intent compiler first queries the PathService and receives the shortest

path(s) connecting the two endpoints. Then, it checks whether all the devices’

16

ports associated to the path can support the requested capacity. Finally, if

so, it records the intent in the ResourceService as a resource consumer of

those ports’ capacity. Thus, as en example, the capacity left for a port of

1000 Mbps is 900 Mbps.

The Application-Aware Service Provisioning Algorithm logic implemented in

the ACiIntentCompiler uses the information provided by the ResourceService

to check whether a path can guarantee the application requirements and,

when negotiation is triggered, to compute the guaranteed requirements for

any alternative solution.

• NetworkConfig [33]. This service allows to set or configure network devices

and connected links specific parameters with custom values. For example, it

can be used to configure the capacity of a device port or to annotate on a

link its physical properties, such as latency or availability. This information

is then provided to the ONOS ResourceService, so that it can be queried by

other modules.

• Southbound APIs. One or more Southbound APIs are needed to commu-

nicate with the devices in the Network Substrate. These APIs can be Open-

Flow [34], NETCONF [35], etc. Specifically, in this paper, we use OpenFlow.

4.2. Service Negotiation in ONOS

This subsection provides an overview on how we have defined the workflow

implementing the negotiation scheme in the ONOS controller. We refer to the

arrows depicted in Fig. 2 to describe the overall process, which is roughly di-

vided in three main phases: Intent Submission, Intent Compilation and Intent

Negotiation.

• Intent Submission. An application submits an ACiIntent including the

preferable application requirements (i.e., SRp, as defined in Section 3) via a

REST API interface. The ONOS controller receives the ACiIntent and sub-

mits it to the IntentService for the compilation (arrow 1). The IntentService

assigns an identifier to the ACiIntent, defined as key.

17

• Intent Compilation. The Intent Framework sends the submitted intent to

the ACiIntentCompiler, which starts the compilation phase. First, the com-

piler requests to the PathService all the possible shortest paths between the

two intent endpoints (arrow 2). Then, for every found path, the compiler

queries the ResourceService and sends the information to the Application-

Aware Service Provisioning Algorithm path pruning logic. The algorithm

prunes the paths not meeting the application requirements and checks whether

the intent can be satisfied by at least one path (arrow 3). If such a path is

found, it is converted into forwarding rules and sent to the IntentInstaller.

Otherwise, the negotiation phase starts, and the application is notified that

its original submitted AciIntent is in a negotiation required status.

• Intent Negotiation. The paths that were previously found by the PathSer-

vice are analyzed again. The Application-Aware Service Provisioning Algo-

rithm queries the ResourceService to find the guaranteed requirements (i.e.,

bn, ln, an) for each of the computed paths. For each path, an ACiIntent

(including the computed guaranteed requirements) is generated by the ACi-

IntentCompiler, submitted to the REST API and delivered to the application,

to let it choose an alternative solution among all the generated ACiIntents

(arrow 4), by means of the Alternative Solution Selection Algorithm.

Note that the application, to make the communication of the alternative so-

lutions from the ONOS controller happen, once notified about the negotiation

required status, queries a specific URL of the REST API to receive the alter-

native solutions in JSON format.

5. Performance Evaluation

In this section, we present simulation and experimental results for a compre-

hensive evaluation of the negotiation scheme. They are divided into two different

types: (i) analysis of network sensitivity, performed on a network simulator, and

(ii) evaluation of the ONOS controller implementation in an emulated environ-

ment.

18

5.1. Network Sensitivity Analysis via Simulations

The sensitivity tests allows us to show what is the large-scale impact of

negotiation on both networks and applications in different scenarios. Network

sensitivity tests are performed on Net2Plan [36], an open source tool for network

planning and simulation. Both the Application-Aware Service Provisioning Al-

gorithm and the Alternative Solution Selection Algorithm have been developed

on Net2Plan, exploiting its event-driven simulation features.

5.1.1. Simulation Setup

The sensitivity tests are based on a real multi-layer network topology and

non-uniform traffic matrix provided by the Telefónica Spain ISP. The topology

is a multi-layer network composed of 30 ROADMs and 56 bi-directional fiber

links carrying up to 80 wavelengths, with a capacity of 100 Gbps each at the

optical layer. We doubled the propagation delay of each fiber to simulate a

larger network, and we consider as node/link availability realistic random values

ranging from 99.9% to 99.999%. At the IP layer, 14 IP/MPLS routers can be

interconnected by lightpaths provisioned at the optical layer [37]. The traffic

generation is performed by using the provided non-uniform traffic matrix, in

which most of traffic is routed to/from the capital city.

Net2Plan offers a discrete event simulator composed of an event generator

and an event processor. The event generator generates service requests accord-

ing to a Poisson process, with exponentially-distributed inter-arrival times and

holding times. After the expiration of the holding time, the allocated network

resources (i.e., bandwidth on the links) for the considered service request are

released. In our simulations, we simulate 5 × 105 service requests, while the

statistics start to be collected after 2× 104 events, to exclude the initial transi-

tory phase.

We consider as application requirements, for each service request, the band-

width (b), the latency (l) and the availability (a). The application requirements

are randomly chosen from the following sets: b = {1, 2, 5, 10} Gbps, l = {10}

ms, and a = {99.6} %, and the values generated this way are the preferred val-

19

ues for the service request. The b values provide a reasonable set of bandwidth

connectivity services that may be provided by an ISP. l and a were chosen as

constraining values based on the network topology and the traffic matrix un-

der test. The s and d parameters are instead generated accordingly to the

non-uniform traffic matrix.

5.1.2. Sensitivity Test Methodology

We performed three experiments to evaluate how the negotiation scheme

influences the network behavior:

• Experiment 1) All the application requirements can be negotiated at the

same time for all the service requests;

• Experiment 2) All the application requirements can be negotiated at the

same time, but only part of the service requests are willing to negotiate;

• Experiment 3) Only one specific application requirement can be negotiate

for all the service requests.

These tests cover a comprehensive performance sensitivity analysis of our

negotiation scheme. However, additional tests could be performed, also consid-

ering different types of application classes.

In each proposed experiment, we study the trade-off that the negotiation

scheme offers in terms of gain on the number of service requests accepted and

degradation of requirements experienced by applications. All the different ex-

periment results are compared with the case in which the negotiation scheme is

not adopted.

5.1.3. Discussion

Experiment 1). In this experiment, the service requests are always willing

to negotiate b, l and a with the network. We define multiple Negotiation Levels

(NLs), representing the maximum allowed degradation for each service request.

The threshold values bt, lt and at are set as reported in Table 1. According

20

Table 1: Negotiation Level values

(b− bt)/b · 100 (%) lt (ms) at (%)

NL1 10% 15 99.5

NL2 20% 20 99.4

NL3 30% 25 99.2

NL4 40% 30 99

to the defined Negotiation Levels, each service request can always tolerate a

relaxation of b, l and a: the maximum bandwidth tolerated degradation is set

in terms of degradation percentage, the maximum latency tolerated degrada-

tion is set in terms of a higher delay (in ms), while the maximum availability

degradation is set in terms of a lower value (in %). A higher Negotiation Level

subscript is always associated to higher tolerance to requirement degradation.

We perform a simulation for every Negotiation Level, in which all the service

requests belong to it.

Fig. 3 and Fig. 4 show an overview on the trade-off between the gain in ser-

vice request acceptance (in terms of blocking probability reduction) and service

request average bandwidth, latency and availability degradation, for the nego-

tiated service requests, as a function of network load and Negotiation Level. In

Fig. 4, the degradation values are normalized between 0% and 100%, in which

0% means no degradation, while 100% corresponds to the maximum allowed

degradation specified by the threshold values, for the considered application re-

quirement, as specified for each Negotiation Level. In the case of a network load

of 6000 Erlang, the blocking probability decreases of about an order of magni-

tude between the No negotiation and NL4 cases (Fig. 5a), while the bandwidth

(Fig. 4a), the latency (Fig. 4b), and availability (Fig. 4c) experience the 35%,

2% and 1% of their maximum allowed degradation, respectively. Thus, the ap-

plications experience much less than the maximum tolerated degradation, while

the network significantly increases the number of service requests provisioned.

21

10-5

10-4

10-3

10-2

10-1

 6000 6500 7000 7500 8000

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Load [Erlang]

No negotiation
NL1
NL2
NL3
NL4

(a)

10-4

10-3

10-2

10-1

 6000 6500 7000 7500 8000

N
eg

ot
ia

tio
n

Pr
ob

ab
ilit

y

Load [Erlang]

NL1
NL2
NL3
NL4

(b)

 0

 20

 40

 60

 80

 100

6000
6200

6400
6600

6800
7000

7200
7400

7600
7800

8000

N
eg

ot
ia

tio
n

Fa
ilu

re
 P

ro
ba

bi
lit

y
[%

]

Load [Erlang]

NL1
NL2
NL3
NL4

(c)

Figure 3: (Experiment 1) Evaluation of service request blocking probability (a), negotiation

probability (b) and negotiation failure probability (c).

The bandwidth degradation (Fig. 4a) increases both with respect to network

load and Negotiation Level. In fact, with higher loads, the network is only able

to offer alternative solutions with more degraded bandwidth on average, since

the average network utilization is higher. As opposed to bandwidth degrada-

tion, latency degradation (Fig. 4b) decreases with respect to network load and

Negotiation Level. The reason is that, in our assumptions, each service request

can have b, l and a degraded at the same time: thus, the higher b degradation

is, both as a function of load and Negotiation Level, the easier finding spare

resources on shortest paths is. Furthermore, a degradation is constant with

respect to the network load, while decreases as the Negotiation Level increases:

this happens because availability does not strictly depend on the length of the

22

 0

 10

 20

 30

 40

 50

 60

6000
6200

6400
6600

6800
7000

7200
7400

7600
7800

8000

Av
er

ag
e

Ba
nd

w
id

th
 D

eg
ra

da
tio

n
[%

]

Load [Erlang]

NL1
NL2
NL3
NL4

(a)

 0

 2

 4

 6

 8

 10

6000
6200

6400
6600

6800
7000

7200
7400

7600
7800

8000

Av
er

ag
e

La
te

nc
y

D
eg

ra
da

tio
n

[%
]

Load [Erlang]

NL1
NL2
NL3
NL4

(b)

 0

 2

 4

 6

 8

 10

6000
6200

6400
6600

6800
7000

7200
7400

7600
7800

8000

Av
er

ag
e

Av
ai

la
bi

lit
y

D
eg

ra
da

tio
n

[%
]

Load [Erlang]

NL1
NL2
NL3
NL4

(c)

Figure 4: (Experiment 1) Evaluation of the average degradation of bandwidth (a), latency

(b) and availability (c) experienced by service requests.

paths, as latency does. This behavior importantly points out how multiple ap-

plication requirements experience different degradation trends when they can

be relaxed at the same time, and how they mutually influence their trends.

Figs. 3b-3c show the service request negotiation probability (i.e., the prob-

ability that the network starts the negotiation phase for a service request) and

the negotiation failure probability (i.e., the probability that the negotiation fails

because no alternative solution suits the least-acceptable values for the applica-

tion requirements) as a function of network load and Negotiation Level. Fig. 3b

shows that the service request negotiation probability is, as expected, similar to

the blocking probability of No negotiation: it increases as the network load in-

creases and it is only slightly dependent on the Negotiation Level. As expected,

23

10-5

10-4

10-3

10-2

10-1

 6000 6500 7000 7500 8000

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Load [Erlang]

No negotiation
20%
40%
60%
80%

100%

(a)

10-4

10-3

10-2

10-1

 6000 6500 7000 7500 8000

N
eg

ot
ia

tio
n

Pr
ob

ab
ilit

y

Load [Erlang]

20%
40%
60%
80%

100%

(b)

 0

 20

 40

 60

 80

 100

6000
6200

6400
6600

6800
7000

7200
7400

7600
7800

8000

N
eg

ot
ia

tio
n

Fa
ilu

re
 P

ro
ba

bi
lit

y
[%

]

Load [Erlang]

20%
40%
60%
80%

100%

(c)

Figure 5: (Experiment 2) Evaluation of service request blocking probability (a), negotiation

probability (b) and negotiation failure probability (c).

the negotiation failure probability (Fig. 3c) is higher (i) when the Negotiation

Level is lower and (ii) as the load increases, i.e., in all the cases where network

utilization is higher.

Experiment 2). This experiment aims at showing the impact of negotiation

when a different amount of service requests are willing to negotiate all their

application requirements. The amount of negotiable service requests is expressed

as a percentage, which represents the ratio between the negotiable and the total

number of service requests in the simulation. The maximum allowed degradation

is fixed for b, l and a to NL3, since it roughly represents the average value of

degradation within all the performed experiments.

Fig. 5 offers an overview of the negotiation performance in terms of service

24

Table 2: (Experiment 2) Degradation of the Application Requirements

Low Load (6000 Erlang) High Load (8000 Erlang)

b (%) l (%) a (%) b (%) l (%) a (%)

20% 30 1.86 1.45 54 0.27 0.91

40% 31 1.77 1.35 56 0.24 0.92

60% 33 1.68 1.00 57 0.2 0.92

80% 34 1.77 1.21 58 0.2 0.87

100% 36 1.64 1.35 57 0.27 0.85

request blocking probability (Fig. 5a), negotiation probability (Fig. 5b) and ne-

gotiation failure probability (Fig. 5c) as a function of the network load and

the percentage of negotiable requests. As expected, the service request blocking

probability considerably reduces as the number of negotiable service requests in-

creases. Moreover, all the three metrics increase with respect the network load,

and negotiation/negotiation failure probabilities slightly increase as the percent-

age of negotiable service requests increases. This is mainly due to fact that, at

higher loads, a negotiable service request has a higher probability to enter the

negotiation phase and to fail it, since less resources are available. In Table 2, we

report the experienced average application requirement (b, l, a) degradation (in

percentage) at low and high network loads (i.e., 6000 and 8000 Erlang). Any ap-

plication requirement degradation is more affected by an increase in the network

load than in the average number of negotiable service requests. This means that

having more applications that are willing to negotiate gives benefits to both the

network and applications, since more service requests can be accepted without

any substantial additional application requirement degradation.

Experiment 3). In this experiment, the applications are willing to nego-

tiate only one application requirement at a time, while the others cannot be

negotiated. This allows to evaluate how the negotiation of a single applica-

tion requirement influences the service requests blocking probability and the

25

10-5

10-4

10-3

10-2

10-1

 6000 6500 7000 7500 8000

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Load [Erlang]

No Negotiation
Availability
Bandwidth

Latency
All Negotiable

(a)

 0

 20

 40

 60

 80

 100

6000
6200

6400
6600

6800
7000

7200
7400

7600
7800

8000

Av
er

ag
e

Pa
ra

m
et

er
 D

eg
ra

da
tio

ns
 [%

]

Load [Erlang]

Bandwidth
Latency

Availability

(b)

 0

 20

 40

 60

 80

 100

6000
6200

6400
6600

6800
7000

7200
7400

7600
7800

8000

Av
er

ag
e

Pa
ra

m
et

er
 D

eg
ra

da
tio

ns
 [%

]

Load [Erlang]

Bandwidth
Latency

Availability

(c)

Figure 6: (Experiment 3) Evaluation of service request blocking probability (a), average

degradation for a single negotiable (b) and all negotiable requirements cases (c).

experienced degradation. The maximum allowed degradation of the negotiable

application requirement (either b, or l, or a) is set to the one of NL3 for that

specific requirement. We compare the results with the ones of Experiment 1

where all the application requirements can be negotiated with the maximum

degradation of NL3 (called All Negotiable in the figures).

The service request blocking probability (Fig. 6a) shows almost overlapping

values between b, l and a cases. This shows that there is not a predominant

application requirement that can lead to a substantial requests blocking proba-

bility improvement with respect to the others. In addition, the blocking proba-

bility for all the analyzed cases is between the No Negotiation and All negotiable

values. This means that by negotiating only one application requirement at a

26

10-5

10-4

10-3

10-2

10-1

 6000 6500 7000 7500 8000

N
eg

ot
ia

tio
n

Pr
ob

ab
ilit

y

Load [Erlang]

Availability
Bandwidth

Latency
All Negotiable

Figure 7: (Experiment 3) Negotiation probability.

Table 3: (Experiment 3) Negotiation Failure Probability

b (%) l (%) a (%)

Low Load (6000 Erlang) 47.67 0 0

Medium Load (7000 Erlang) 52.38 0 0

High Load (8000 Erlang) 58.87 0 0

time, the negotiation still shows some improvement with respect to the case in

which no negotiation scheme is adopted, but it becomes more difficult for the

network to find alternative solutions that satisfy the other two non-negotiable

application requirements at the same time.

Additionally, in the case of only l or a negotiable, we found that the 100%

of blocked service requests is caused by the impossibility to find any alterna-

tive solution by the Application-Aware Service Provisioning Algorithm. This

is different from the case of only b negotiable, in which the algorithm always

finds an alternative solution. This is also supported by Fig. 7, which depicts

the negotiation probability as a function of the network load. The negotiation

probability is similar to the All negotiable case when b is negotiable, while lower

in the case of l or a negotiable since, if no alternative solution can be found, the

service request is blocked and no negotiation phase is started.

27

On the application side, in the case of l or a negotiable and that at least

one alternative solution has been found by the network, the negotiation never

fails (see Table 3). It means that, among the proposed alternative solutions,

the application can always find one better than either lt or at. This is instead

not true in the case of b negotiable, as shown in the same Table, where the

negotiation failure probability is close to 60% in case of high load.

The application requirement degradation, normalized between 0% and 100%,

is depicted in Fig. 6b as a function of the network load. The figure report results

in which the degradation can be experienced only by the application requirement

chosen as negotiable. In the case of b negotiable, the degradation is almost

constant between 6000 and 8000 Erlang. Fig. 6c show instead the degradation

experienced by the application requirements when all of them can be negotiated

at the same time (as per Experiment 1). In this case, b experiences an increasing

degradation as the network load increases, but it is always lower than the case

in which only b can be negotiated (Fig. 6b). This because a degradation of also

l and a influences the discovery of the alternative solutions, making it easier

to find spare resources on shortest paths. Also in the case of l or a negotiable

(Fig. 6b), these requirements present a higher degradation with respect to the

case of all the application requirements negotiable (Fig. 6c). This means that

an application willing to negotiate multiple requirements will experience, in

average, a lower degradation for each one of the negotiable requirements with

respect to an application only willing to negotiate one single requirement.

5.2. Evaluation of the ONOS-based Scheme in an Emulated Scenario

The tests performed on our ONOS implementation of the negotiation scheme

provide an overview of the processing times required to handle the negotiation

process on a real implementation. We evaluate both the ONOS SDN con-

troller and applications processin times for the different phases of the nego-

tiation scheme, when a different number of service requests has been already

provisioned in the network.

28

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 100 1000

C
um

ul
at

ive
 P

ro
ba

bi
lit

y

Processing Time [ms]

Provisioned SRs:
1

500
1000
1500

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10 100 1000

C
um

ul
at

ive
 P

ro
ba

bi
lit

y

Processing Time [ms]

Provisioned SRs:
1

500
1000
1500

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 100 1000

C
um

ul
at

ive
 P

ro
ba

bi
lit

y

Processing Time [ms]

Provisioned SRs:
1

500
1000
1500

(c)

Figure 8: Cumulative distribution of processing times for Solution generation (a), Compilation

(b), and Overall negotiation (c).

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500

Pr
oc

es
in

g
Ti

m
e

[m
s]

Provisioned Intents

Solution generation
Overall negotiation

Compilation

Figure 9: Average processing times of the different negotiation processes.

5.2.1. Test Setup

The ONOS implementation of the SDN controller is tested on top of Mininet [38],

a well-know network emulator. This software offers the possibility to generate

29

big network topologies and control them by exploiting SDN interfaces. For these

performance tests, we reproduced the Telefónica’s IP network topology, com-

posed of 14 IP/MPLS nodes, which is described in detail in [37] and already

used for the sensitivity tests of the previous subsection. The ONOS controller

manages the overall network devices by exploiting the OpenFlow [34] protocol.

The capacity of the device ports and the information about the links (i.e., la-

tency, availability) are annotated in a JSON configuration file and loaded into

the NetworkConfig module.

We implemented a Java software artifact that emulates the application be-

havior. It generates the service requests in the form of ACiIntents and submits

them through the REST API interface of the SDN controller. It also handles

their negotiation status and includes the Alternative Solution Selection Algo-

rithm.

The ONOS implementation and the Mininet instance run on an Intel Quad

Core i7-5600U CPU @ 2.60GHz with 16 GB of RAM.

5.2.2. Test Methodology

We evaluate the time required by the SDN controller (i) to generate the al-

ternative solutions (Solution generation), (ii) to compile a service request (i.e.,

translating an ACiIntent into commands for the network devices, Compilation)

and (iii) the overall time required by the negotiation, from a service request

submission to the end of the compilation phase (Overall negotiation), thus ex-

cluding any time required by the network devices to process the commands,

since it strongly depends on the substrate network characteristics. We evaluate

these processing times as a function of the number of already-provisioned service

requests in the network, which gives an indication on the processing load on the

SDN controller. The amount of already-provisioned service requests varies from

1 to 1500.

The application generates all the service requests between two fixed end-

points in the network, which are the farthest in terms of number of hops on their

shortest path. This poses us in the worst-case scenario, allowing us to evaluate

30

the time required to process any negotiation request by considering the high-

est amount of crossed network devices and links in a nearly-congested scenario.

In order to emulate a scenario where negotiation is needed and triggered, we

generate and provision different service requests by appropriately varying their

bandwidth requirement to saturate the network resources after our considered

number of already-provisioned requests (i.e., from 1 to 1500) has been reached,

and let the SDN controller trigger the negotiation scheme for the subsequent

ones. The already-provisioned service requests leave enough resources to allow

the SDN controller finding minimum two alternative solutions for every service

request under negotiation. The tests are executed 1000 times for every SDN

controller processing load.

5.2.3. Discussion

Fig. 9 provides an overview of the considered processing times as a function

of the number of already-provisioned service requests in the network, i.e., Solu-

tion generation, Compilation and Overall negotiation. All the processing times

linearly increase as the number of already-provisioned service request requests

increases, since the SDN controller has to manage a higher processing load for

the service request to be provisioned.

The Solution generation time is mainly affected by the ResourceService

database query, since the database keeps track of all the provisioned resources

associated to every service request (e.g. crossed links and their consumed band-

width). A higher number of provisioned service requests means a higher number

of entries in this database and thus more time is required to retrieve the amount

of free resources for the execution of the Application-Aware Service Provisioning

Algorithm. Fig. 8a shows the cumulative distribution of processing times for

the Solution generation process.

The Compilation time is affected by both the ResourceService and the over-

all controller load. In fact, during the compilation process, the compilation

algorithm checks again the availability of resources to avoid that another con-

current request has modified it. Then, the compilation algorithm saves the

31

resources consumed by the service request in elaboration into the ResourceSer-

vice database and translates them into the specific forwarding rules required by

the network devices. In these tests, the number of rules varies based on the

selected path, but no more than 8 rules are generated for a specific service re-

quest. The cumulative distribution of compilation times is depicted in Fig. 8b,

showing how the compilation times are much shorter for 1 already-provisioned

service request than for 500, 1000 and 1500. In fact, when the SDN controller

is unloaded, the ACiIntentCompiler does not experience any delay caused by

accessing the ResourceService database, since it is almost empty and the time

to query it is negligible.

The Overall negotiation curve is steeper than the curve obtained by the sum

of the Solution generation and Compilation ones. This happens because the

overall negotiation time includes also other time contributions, such as (i) the

communication time between the application emulator and the SDN controller

(in this case negligible, ∼1 ms), (ii) the conversion between JSON and Java

classes and (iii) the alternative solution selection processing time. This last

time contribution has also been evaluated, but it is always much less than 1

ms (and thus negligible) on average, so results are not reported for the sake

of conciseness. Specifically, Fig. 9 clearly shows how the Solution generation

and Compilation times dominate in the Overall negotiation time with respect

to all the other aforementioned time contributions. Finally, Fig. 8c shows the

cumulative distribution of the overall negotiation time. Note also that in the

case that the negotiation scheme is not implemented (i.e., No negotiation), the

overall service request processing time is comparable to the sole Compilation

time.

In general, from the obtained results, we can state that our implementation

of the negotiation scheme in the ONOS controller shows some overhead in terms

of processing times. with respect to the case in which the negotiation scheme is

not implemented. Indeed, the highest overall negotiation times happen in the

case of 1500 already-provisioned service requests in the network, and they have

an average value of 320 ms. However, this time is still some order of magnitude

32

lower than the time required by the hardware (e.g. optical transponders), which

requires from tens of seconds to minutes. This time should be taken into account

anyway in the deployment of a service request (even in the case our negotiation

scheme was not adopted).

6. Conclusion

In this work, we proposed an interaction between applications and networks

that enables the negotiation of application-aware connectivity services. The

application can request a connectivity service with several constraints, such as

bandwidth, latency and availability between two transport network endpoints.

The network, when the request cannot be fully satisfied, proposes several alter-

native solutions with looser requirements. Finally, applications can automati-

cally provide a feedback on which is the best solution to accept by exploiting

the Solution Selection Algorithm.

Both applications and networks can take advantage of a negotiation mecha-

nism. Specifically, the applications that negotiate accept a degradation of their

service requests, while (i) avoiding a complete block of their request and (ii)

obtaining a predictable degradation of a service. Moreover, an application can

use the degradation information to modify its traffic behavior within the net-

work. On the other side, network operators can accommodate a higher number

of services on their transport network while increasing the revenues. A fully

working proof of concept of the application-aware negotiation framework has

been implemented on top of the ONOS SDN controller. The related code has

been released as open source and made publicly available [12] to researchers and

experimenters for further testing and enhancements.

The effectiveness of the solution proposed has been demonstrated by means

of simulations. The performance evaluation has shown a lower blocking proba-

bility of service requests on the network side and a limited degradation of service

constraints on the application side. Moreover, the implementation on top of the

ONOS controller has demonstrated a limited overhead.

33

In the next future, we plan to extend the negotiation framework with a

cost/pricing model. Such model is under definition, and we plan to evaluate the

trade-off between the experienced service degradation and service cost/price.

References

[1] A. Marsico, M. Savi, D. Siracusa, E. Salvadori, An automated service-

downgrade negotiation scheme for application-centric networks, in: 2018

Optical Fiber Communications Conference and Exposition (OFC), 2018.

[2] S. Borkar, H. Pande, Application of 5G next generation network to Internet

of Things, in: 2016 International Conference on Internet of Things and

Applications (IOTA), Pune, India, 2016.

[3] O. Gerstel, V. Lopez, D. Siracusa, Multi-layer orchestration for application-

centric networking, in: 2015 International Conference on Photonics in

Switching (PS), Florence, IT, 2015.

[4] M. Pham, D. B. Hoang, SDN applications - The intent-based Northbound

Interface realisation for extended applications, in: 2016 IEEE NetSoft Con-

ference and Workshops (NetSoft), 2016.

[5] V. Lopez, D. Konidis, D. Siracusa, C. Rozic, I. Tomkos, J. P. Fernandez-

Palacios, On the Benefits of Multilayer Optimization and Application

Awareness, Journal of Lightwave Technology 35 (6) (2017) 1274–1279.

[6] M. Savi, D. Siracusa, Application-aware service provisioning and restora-

tion in SDN-based multi-layer transport networks, Journal of Optical

Switching and Networking 30 (2018) 71 – 84.

[7] L. Velasco, A. Asensio, J. Berral, A. Castro, V. López, Towards a carrier

sdn: an example for elastic inter-datacenter connectivity, Optical Express

22 (1) (2014) 55–61.

URL http://www.opticsexpress.org/abstract.cfm?URI=oe-22-1-55

34

http://www.opticsexpress.org/abstract.cfm?URI=oe-22-1-55
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-1-55
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-1-55

[8] A. Dixit, B. Lannoo, G. Das, D. Colle, M. Pickavet, P. Demeester, Dynamic

bandwidth allocation with sla awareness for qos in ethernet passive optical

networks, IEEE/OSA Journal of Optical Communications and Networking

5 (3) (2013) 240–253.

[9] S. Choi, J. Park, Sla-aware dynamic bandwidth allocation for qos in epons,

IEEE/OSA Journal of Optical Communications and Networking 2 (9)

(2010) 773–781. doi:10.1364/JOCN.2.000773.

[10] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,

B. O’Connor, P. Radoslavov, W. Snow, G. Parulkar, ONOS: Towards an

Open, Distributed SDN OS, in: Proceedings of the Third Workshop on Hot

Topics in Software Defined Networking, Chicago, Illinois, USA, 2014.

[11] ONOS Intent Framework, last access 30-08-2018.

URL https://wiki.onosproject.org/display/ONOS/Intent+

Framework

[12] ACINO Multi-layer Network Orchestrator.

URL https://github.com/ACINO-H2020/network-orchestrator

[13] EU H2020 ACINO, last access 30-11-2018.

URL https://cordis.europa.eu/project/rcn/194286_en.html

[14] S. S. Savas, M. F. Habib, M. Tornatore, B. Mukherjee, Exploiting degraded-

service tolerance to improve performance of telecom networks, in: OFC

2014, San Francisco, CA, USA, 2014, pp. 1–3.

[15] Z. Zhong, J. Li, N. Hua, G. B. Figueiredo, Y. Li, X. Zheng, B. Mukherjee,

On qos-assured degraded provisioning in service-differentiated multi-layer

elastic optical networks, in: 2016 IEEE Global Communications Conference

(GLOBECOM), 2016, pp. 1–5.

[16] R. Roy, B. Mukherjee, Degraded-Service-Aware Multipath Provisioning in

Telecom Mesh Networks, in: OFC/NFOEC 2008 - 2008 Conference on

35

http://dx.doi.org/10.1364/JOCN.2.000773
https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://github.com/ACINO-H2020/network-orchestrator
https://github.com/ACINO-H2020/network-orchestrator
https://cordis.europa.eu/project/rcn/194286_en.html
https://cordis.europa.eu/project/rcn/194286_en.html

Optical Fiber Communication/National Fiber Optic Engineers Conference,

2008, pp. 1–3.

[17] H. Y. Chang, A Multipath Routing Algorithm for Degraded-Bandwidth

Services under Availability Constraint in WDM Networks, in: 2012 26th

International Conference on Advanced Information Networking and Appli-

cations Workshops, 2012, pp. 881–884.

[18] X. Wang, H. Schulzrinne, Integrated resource negotiation, pricing, and QoS

adaptation framework for multimedia applications, IEEE Journal on Se-

lected Areas in Communications 18 (12) (2000) 2514–2529.

[19] Amazon EC2 Spot Instances (2017).

URL https://aws.amazon.com/ec2/spot/

[20] Google Preemptible Virtual Machines (2017).

URL https://cloud.google.com/preemptible-vms/

[21] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, S. Tuecke, SNAP:

A Protocol for Negotiating Service Level Agreements and Coordinat-

ing Resource Management in Distributed Systems, in: D. G. Feitelson,

L. Rudolph, U. Schwiegelshohn (Eds.), Job Scheduling Strategies for Par-

allel Processing, Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, pp.

153–183.

[22] S. Venugopal, X. Chu, R. Buyya, A negotiation mechanism for advance

resource reservations using the alternate offers protocol, Enschede, NL,

2008.

[23] A. Rubinstein, Perfect equilibrium in a bargaining model, Econometrica

50 (1) (1982) 97–109.

[24] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, P. Tran-Gia, SDN-Based

Application-Aware Networking on the Example of YouTube Video Stream-

ing, in: 2013 Second European Workshop on Software Defined Networks,

Berlin, DE, 2013.

36

https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
https://cloud.google.com/preemptible-vms/
https://cloud.google.com/preemptible-vms/

[25] S. Gorlatch, T. Humernbrum, F. Glinka, Improving QoS in real-time inter-

net applications: from best-effort to Software-Defined Networks, in: 2014

International Conference on Computing, Networking and Communications

(ICNC), Honolulu, HI, USA, 2014.

[26] Y. Yiakoumis, S. Katti, T. Huang, N. McKeown, K. Yap, R. Johari, Putting

home users in charge of their network, in: Proceedings of the 2012 ACM

Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 2012.

[27] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, S. Krishnamurthi, Par-

ticipatory networking: An api for application control of sdns, SIGCOMM

Comput. Commun. Rev. 43 (4) (2013) 327–338.

[28] H. Zhu, H. Zang, K. Zhu, B. Mukherjee, Dynamic traffic grooming in WDM

mesh networks using a novel graph model, in: Global Telecommunications

Conference (IEEE GLOBECOM), Tapei, Taiwan, 2002.

[29] OSGi Alliance.

URL https://www.osgi.org/

[30] ONOS PointToPoint Intent, last access 30-08-2018.

URL http://api.onosproject.org/1.11.0/org/onosproject/net/

intent/HostToHostIntent.html

[31] ONOS Interface PathService, last access 30-08-2018.

URL http://api.onosproject.org/1.11.0/org/onosproject/net/

topology/PathService.html

[32] ONOS ResourceService, last access 30-08-2018.

URL http://api.onosproject.org/1.11.0/org/onosproject/net/

resource/ResourceService.html

[33] ONOS Network Configuration, last access 30-08-2018.

URL https://wiki.onosproject.org/display/ONOS/The+Network+

Configuration+Service

37

https://www.osgi.org/
https://www.osgi.org/
http://api.onosproject.org/1.11.0/org/onosproject/net/intent/HostToHostIntent.html
http://api.onosproject.org/1.11.0/org/onosproject/net/intent/HostToHostIntent.html
http://api.onosproject.org/1.11.0/org/onosproject/net/intent/HostToHostIntent.html
http://api.onosproject.org/1.11.0/org/onosproject/net/topology/PathService.html
http://api.onosproject.org/1.11.0/org/onosproject/net/topology/PathService.html
http://api.onosproject.org/1.11.0/org/onosproject/net/topology/PathService.html
http://api.onosproject.org/1.11.0/org/onosproject/net/resource/ResourceService.html
http://api.onosproject.org/1.11.0/org/onosproject/net/resource/ResourceService.html
http://api.onosproject.org/1.11.0/org/onosproject/net/resource/ResourceService.html
https://wiki.onosproject.org/display/ONOS/The+Network+Configuration+Service
https://wiki.onosproject.org/display/ONOS/The+Network+Configuration+Service
https://wiki.onosproject.org/display/ONOS/The+Network+Configuration+Service

[34] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, J. Turner, OpenFlow: Enabling Innovation in Cam-

pus Networks, SIGCOMM Comput. Commun. Rev. 38 (2) (2008) 69–74.

[35] J. Schönwälder, M. Björklund, P. Shafer, Network Configuration Manage-

ment Using NETCONF and YANG, Comm. Mag. 48 (9) (2010) 166–173.

[36] P. Pavon-Marino, J.-L. Izquierdo-Zaragoza, Net2plan: An open source net-

work planning tool for bridging the gap between academia and industry,

IEEE Network 29 (5) (2015) 90–96.

[37] F. Rambach, B. Konrad, L. Dembeck, U. Gebhard, M. Gunkel,

M. Quagliotti, L. Serra, V. Lopez, A multilayer cost model for metro/core

networks, IEEE/OSA Journal of Optical Communications and Networking

5 (3) (2013) 210–225.

[38] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, N. McKeown, Repro-

ducible Network Experiments Using Container-based Emulation, in: Pro-

ceedings of the 8th International Conference on Emerging Networking Ex-

periments and Technologies, Nice, France, 2012.

38

	Introduction
	Related Work
	Degradation of service requirements
	Negotiation models
	Interaction between applications and networks

	Service Negotiation Scheme
	Application-Aware Service Provisioning Algorithm
	Alternative Solution Selection Algorithm

	Software Architecture
	ONOS Services and APIs
	Service Negotiation in ONOS

	Performance Evaluation
	Network Sensitivity Analysis via Simulations
	Simulation Setup
	Sensitivity Test Methodology
	Discussion

	Evaluation of the ONOS-based Scheme in an Emulated Scenario
	Test Setup
	Test Methodology
	Discussion

	Conclusion

