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Abstract—Internet traffic is generated by a multitude of
applications, each one with diverse service requirements in terms
of bandwidth, latency, reliability, etc. Today traffic engineering
techniques can provide service differentiation at the IP/MPLS
layer, but not at the optical layer. In this paper we propose
a framework where application service requirements drive a
dynamic multi-layer (IP/MPLS and optical) resource allocation
and optimization. We compare by means of simulations such
application-aware algorithmic framework with a multi-layer but
application-unaware strategy. Results show that the application-
aware approach, unlike the application-unaware one, is always
able to guarantee the specified service requirements to those
applications whose generated traffic is accepted by the network.
In addition, the application-aware strategy does not consume
more network resources than the application-unaware one, but
only requires a network that is more dynamic and responsive.

I. INTRODUCTION

In modern telecommunication networks Internet traffic is
generated by a huge number of diverse applications (e.g.
online gaming, financial transactions, video streaming etc.),
each one with its own requirements in terms of bandwidth,
latency, reliability, security etc. In the last years, a lot of effort
has been made to improve traffic engineering and provide
service differentiation at the IP/Multi Protocol Label Switching
(MPLS) packet layer. However, such effort is limited by the
fact that IP/MPLS traffic is eventually groomed in the same
few large optical connections, where no service differentiation
is achieved.

A novel and more comprehensive approach to provide a full
differentiation down to the optical network is thus needed.
First, the network must be able to gather information from
applications about their requirements, then it must be able
to steer traffic according to such requirements (i.e., in an
application-aware fashion) at both IP/MPLS and optical layers
(i.e., in a multi-layer fashion). The former aspect can be
enabled by the novel intent-based networking paradigm [1],
according to which the applications provide to the network,
through an intent-based interface, what they want to achieve
in terms of requirements (i.e., the intent) without specifying to
the network how to achieve it. The network is then responsible
to autonomously attain the latter aspect, i.e., to allocate both
IP/MPLS and optical resources in an application-aware way.

The most straightforward solution to pursue these objectives
is to deploy a centralized entity that i) has the global multi-
layer vision of the network and ii) is able to control, provision
and optimize resources on both IP/MPLS and optical layers. In

the H2020 ACINO project [2] we exploit the Software-Defined
Networking (SDN) paradigm to build an SDN network orches-
trator as the connecting component and intelligence between
the applications and the underlying network infrastructure
[3][4]. Every time a service request (i.e., intent) is delivered to
the orchestrator through a northbound intent-based interface,
the orchestrator is in charge of computing a path in the network
satisfying the intent (i.e., an application-aware path). To do
so, it requests the resources (IP ports and spectrum slices) to
an SDN control platform such as OpenDaylight [5] or ONOS
[6], which in turn establish connections through the IP/MPLS
and optical controllers. In case the orchestrator cannot satisfy
the intent due to insufficient network resources, it is also
able to exploit the intent-based interface to negotiate with the
application until the intent can be satisfied.

In such a dynamic situation, it is key that the network
orchestrator features a good resource allocation and network
optimization component that is able i) to provide application-
aware paths to the applications jointly at IP/MPLS and op-
tical layers and ii) to periodically re-optimize the network
connections in order to limit the fragmentation of IP/MPLS
and optical resources. In this paper we present a modular
algorithmic framework for dynamic appliction-aware multi-
layer resource allocation and optimization that we call ACINO
framework. Our scheme will be implemented as part of
the ACINO SDN orchestrator. We then compare it with a
benchmark dynamic multi-layer strategy that lacks application-
awareness (AppUnaware strategy) to show how the ACINO
approach can significantly improve network performance from
a service differentiation perspective.

The remainder of this paper is structured as follows. In
Section II we recall some related work. In Section III we
present the ACINO framework and highlight the differences
with the AppUnaware strategy we use as benchmark. In
Section IV we describe the application-aware policies and
classes that we have identified as the most interesting for
the assessment of the ACINO framework. In Section V we
report and comment our simulation results, while Section VI
concludes the paper.

II. RELATED WORKS

In literature, there is a number of works dealing with multi-
layer resource orchestration architectures. Ref. [7] describes
ABNO, an IETF-defined orchestration framework that en-
ables multi-layer and multi-technology network automation
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Fig. 1. ACINO resource allocation and optimization framework

and programmability by using IETF standard protocols and
components. Ref. [8] then assesses two resource orchestration
architectures based on ABNO concepts. Even though such
works take a significant step forward automatic multi-layer
orchestration and provisioning, they do not focus on the
application-awareness concept, i.e., they do not guarantee that
multi-layer orchestration is performed in such a way that
multiple and diverse application-specific requirements are met
in allocating network resources. This paper fills such gap.

Some works also deal with the design of multi-layer dy-
namic resource allocation algorithms. Ref. [9] proposes an al-
gorithm for dynamic traffic grooming in multi-layer networks,
while Refs. [10] and [11] define two dynamic algorithms for
multi-layer virtual network mapping onto an SDN network
substrate. Even though the last two works are mainly focused
on the specific problem of virtual network mapping, they can
be adapted to the subproblem of resources allocation on end-
to-end connections (i.e., link mapping). In this work we exploit
the methodologies adopted by these papers, and we push them
on an application-awareness direction.

Finally, many works can be found on multi-layer network
optimization. For example, Ref. [12] presents a multi-layer
planning algorithm that is able to consistently reduce costs
with respect to sequential (i.e., separate) planning in the
IP/MPLS and optical layers. However, none of such works
aims at dynamically and on-the-fly re-optimizing the network
to save cost and network resources. The framework we present
in this paper will also fill this gap.

III. ACINO RESOURCE ALLOCATION AND OPTIMIZATION

In this section we present our ACINO framework. Note that
a first preliminary description of the framework can be found
in [13]. The main idea behind it is to exploit the differences
between IP and optical layers in terms of capacity provisioning
and connection setup speed. In fact, every time a new end-to-
end optical connection needs to be established, a new lightpath
has to be set up between a couple of transceivers, which in
turn need to be powered on. This operation can take tens of
seconds, meaning that the optical network has a quite low
time-responsiveness. On the opposite, setup times for new
IP/MPLS connections are usually in the order of hundreds
of milliseconds, making the IP/MPLS layer very responsive.
Note also that a new IP/MPLS layer connection will use only

the previously-setup optical connections as its constituent IP
links.

Because the IP/MPLS layer is much more time-responsive
than the optical layer, whenever possible, a service request
will be accommodated in the IP/MPLS layer, since no new
optical connection must be established in this case. Other-
wise, if the demanded service requirements (e.g., bandwidth,
latency, availability etc.) cannot be satisfied, the framework
will resort to the optical layer, trying to meet the demanded
service requirements by establishing new optical connections.
This logic guides our resource allocation procedure, which is
composed of three modules: IP Provisioning (IPP), IP Opti-
mization (IPOPT), and Optical Provisioning (OPP). IPP tries
to satisfy the service request by using available resources at the
IP/MPLS layer only. IPOPT dynamically changes the existing
routes in the IP/MPLS layer to achieve an optimization goal.
OPP adds new lightpaths, which are then used as IP links.

Figure 1 shows the overall ACINO framework. As a general
model, we assume that a service request r is represented
by a r(s, d, b, l, a, p) tuple, where s and d are the IDs of
the source and destination IP/MPLS routers for the service
request, b is the requested bandwidth, l is the maximum
tolerable end-to-end latency, a is the minimum tolerable end-
to-end path availability and p specifies whether the application
traffic associated to the service request must be protected
or not. The network must then provide connectivity to the
application requesting the service by computing one (or, in
case of protection, two) application-aware path(s), i.e., an end-
to-end path that satisfies all of the requirements b, l, a, p.

After a service request r is received by the orchestrator,
it tries to set up an application-aware path by using IPP.
The path is then forwarded to the IP/MPLS controller, unless
there have been M successful accommodations using IPP. In
that case, or if IPP fails, IPOPT is called to rearrange the
IP layer connections to free up unneeded transceivers. This
IP layer re-optimization can reduce power consumption (if
freed-up transceivers are eventually turned off, as assumed in
this paper), or optimize the network for another objective. By
calling IPOPT after M successful IPP calls, we assure that
the network is re-optimized at least every the provisioning
of M service request and resource fragmentation is avoided.
Otherwise, if it is not possible to accommodate the service re-
quest even after having re-arranged the IP connections though



IPOPT, OPP is called to set-up new optical connections.
Finally, IPOPT is called again to re-arrange IP connections
considering the new IP topology. Next, we describe some
algorithmic details of each module.

A. IP Provisioning Module (IPP)

IPP first constructs an Auxiliary Graph (AG) (see [14]) by
creating a copy of the IP layer topology, which consists of the
sufficiently capacitated IP links for the specific service request
that is considered (i.e., the links meeting b). Next, the AG link
weights are set equal to the physical length of the IP links.
Then, IPP produces candidate paths using Kip-Shortest Path
(SP) algorithm on the AG between s and d, and pruning those
paths not meeting l and a. The first path (or first IP disjoint
path couple, if protection p is considered) that meets each
service requirement is selected, and the required bandwidth
allocated on its links. For more details on IPP algorithmic
aspects, the reader is referred to [15].

B. IP Optimization Module (IPOPT)

IPOPT tries to improve the routing over the network by
minimizing a cost function. It tries alternative routings for each
established IP/MPLS connection and accepts changes only
when the cost function is improved. Note that this is a local
optimization approach, in the sense that the solution found
converges to a local optimum. However, since the connections
over the network continuously and dynamically change, a
later call of IPOPT will break out of this local optimum.
The cost function tries to satisfy three main objectives: i)
that no service requests are unsatisfied, ii) that the number
of IP links is minimum, and iii) that the utilization of the
ip links is balanced. An important consideration in the algo-
rithm selection for IPOPT is that the changes suggested in
rearranging IP/MPLS connections should be implemented on
the network in a hitless way. To facilitate this, a list of changes
is maintained in the order that they can be implemented, and
only the changes that are possible without affecting other
connections are considered. When the final, improved, state is
determined, these changes are implementable on the network
in the specified order without any service interruption.

C. Optical Provisioning Module (OPP)

OPP is similar to IPP. It constructs an AG from the IP
topology but augments it by also considering potential IP links.
For each IP/MPLS node pair, a potential IP link is added if and
only if there is no IP link for the pair in the AG. Each potential
IP link is associated to a potential lightpath. To build such a
lightpath, the Kwdm-SP First-Fit (FF) routing and spectrum
assignment (we assume no wavelength conversion) is run in
the optical layer. Then, when the Kwdm-SP FF algorithm has
found free spectrum for the associated potential lightpath, the
spectrum is reserved but not allocated yet. Next, the Kip-SP
algorithm is run over the AG and the candidate paths not
meeting the service requirements are pruned, as happens in
IPP. Next, IPOPT is run again to find the optimal IP/MPLS
routes for all the service requests in the network. Finally, the

potential lightpaths that have been added by OPP and carry
traffic are allocated the spectrum, and the bandwidth for the
new service request is allocated in the IP/MPLS layer. For
more details on OPP the reader is referred to [15].

D. AppUnaware strategy description

After having described in detail the ACINO framework,
in this section we shortly describe the AppUnaware strategy
we consider as benchmark. AppUnaware consists of the same
modules of the ACINO framework (i.e., IPP, IPOPT and OPP),
and its flow diagram is the same as the one depicted in Fig. 1.
The main difference between ACINO and AppUnaware is in
the implementation of IPP, IPOPT and OPP modules. In fact,
AppUnaware does not consider any latency l or availability a
requirement in the provisioning and optimization of a service
request r, but only guarantees the bandwidth b. This means
that, if a path meeting the b requirement is found in the
IP/MPLS layer by running IPP, the resources are allocated
and the service request is provisioned. Otherwise, IPOPT is
called to re-arrange IP/MPLS connections without caring of
l and a. Finally, if IPOPT fails to find a path for the service
request, OPP is called to provision new optical resources and
IPOPT is called again to find the optimal IP/MPLS routes for
the service requests.

Note that such an AppUnaware strategy is inherently multi-
layer and able to re-optimize the network, as ACINO does. The
only feature it misses with respect to ACINO is the capability
of provisioning an application-aware path (or two, in case of
protection p) for each service request. For this reason, even
though it can alone be considered as an improvement over the
current practices, we believe that it is a good benchmark to
disclose the ACINO benefits from an application-awareness
perspective.

IV. APPLICATION-AWARE POLICIES AND CLASSES

As shown in the previous section, in order to implement
the ACINO application-aware features, specific optimization
algorithms and decision polices have been implemented in all
three modules, IPP, IPOPT and OPP. In this section we de-
scribe more in detail such different application-aware policies
(related to the service requirements l, a, p) and how, according
to such policies, multiple application-aware classes can be
defined. If no service requirement (other than the bandwidth
b) is defined for the incoming requests, then these are treated
as best effort traffic, and the ACINO strategy operates as
the AppUnaware one. The following three application-aware
policies have been defined:

• Latency awareness (l): Latency relates with the propa-
gation delay and processing delay in IP/MPLS nodes.
Optical nodes introduce no latency. The framework can
support multiple latency values, thus allowing, for exam-
ple, classes of services with strict latency requirements,
other with average requirements and other with no spe-
cific requirements.

• Availability (a): Actual link and node failure statistics are
used in order to determine the probability of a failure in
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the network. A service with high availability requirements
is allocated over paths with reduced overall probability
of failure both at IP/MPLS and optical layer.

• IP/MPLS Protection (p): For applications with IP/MPLS
protection service requirement, a disjoint IP/MPLS path
couple must be found. Such paths must also simultane-
ously follow separate optical links in any part of the end-
to-end route.

Such policies are only some of the possible ones that can
be considered by ACINO. In fact, the framework can be
easily extended to take into consideration other policies,
e.g. related to optical encryption or security. According to
the three application-aware policies described above, multiple
application-aware classes can be defined by combining them.
In this paper, we consider the following three classes:

• Latency-sensitive, high-availability and protected class
(Gold class): This class asks for the most stringent
requirements, and is related to very sensitive applications
(e.g. financial transactions).

• Latency-sensitive class (Silver class): This class is related
to all those applications that require a latency-sensitive
service (e.g. database synchronization between datacen-
ters).

• Best effort class: No specific requirement is needed, just
bandwidth b.

Note that the Gold and Silver classes are application-aware
classes, while best effort is not. In the following we will eval-
uate the ACINO and the AppUnaware strategies by assuming
that the network traffic always belongs to one of these classes.

V. SIMULATION RESULTS

To evaluate the ACINO and AppUnaware strategies we
implemented them using the Online Simulation Tool of
Net2Plan [16]. For our tests, we used the Telefonica Spain
national network topology, with 30 all-optical nodes (Optical
Cross-Connects, OXCs), 56 bi-directional fiber links and 14
IP/MPLS routers. We considered a realistic (non-uniform)
traffic matrix provided by the national provider, where most
of the traffic is routed from/to IP/MPLS routers around the
capital city. As latency contributions, we consider the fiber
links propagation delay and we assume that each IP/MPLS
router adds a queuing delay of 0.5 ms. Moreover, nodes/links
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availabilities are randomized and uniformly distributed among
the following three values: 99.9%, 99.99% and 99.999%. For
each service request, the requested bandwidth b is uniformly
chosen in the interval [10 Gbit/s, 100 Gbit/s]. A service request
can belong to one of the three classes described in Section IV.
For the Gold class, a latency l of 6 ms and a path availability
a of 99.95% must be guaranteed (other than the traffic must
be protected, p). For the Silver class a latency requirement
l of 6 ms must be met only. Service requests are generated
according to a Poisson process, with an exponential holding
time: once a service request expires, the resources allocated
to it are released.

In our evaluation, we focus on four different performance
metrics:

• IP links in the network: monitors the resource occupation
in terms of IP links (i.e., lightpaths and transponders).

• OPP-added IP links: counts the cumulative number of IP
links that have been added by the OPP module.

• Blocking percentage: evaluates the percentage of blocked
service requests because it is not possible to find one
(or two, in case of protected traffic) application-aware
path(s) (ACINO) or one (two) simple multi-layer path(s)
(AppUnaware) for it.

• Violation percentage: evaluates the percentage of service
requests provisioned by a path that do not meet one or
more service requirements.

Figure 2 shows the number of IP links in the network when
50% of the traffic is application-aware (25% Gold and 25%
Silver) for both ACINO and AppUnaware. The number of IP
links stabilizes after around 10000 time units. Then the number
hovers around 350, i.e. +/- cca 30 IP links, for both ACINO
and AppUnaware strategies, which activate more or less the
same number of IP links. This means that ACINO is as good
as AppUnaware from a resource occupation perspective, i.e.,
on average no more transponders must be turned on to support
ACINO resource allocation and optimization with respect to
the benchmark scenario.

Figure 3 shows instead the percent increment in the number
of OPP-added IP links by ACINO compared to AppUnaware.
In the long term, ACINO requires up to 30% more OPP-
added IP links than AppUnaware. This means that to maintain
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the circa 350 IP links active (the same as the AppUnaware,
as shown in Fig. 2) ACINO has to add and remove them
more frequently. This is something expected, since finding an
application-aware path through IPP or IPOPT is harder than
just finding an AppUnaware multi-layer path, and thus the
ACINO strategy has to rely on OPP more often. As a result, the
more dynamic ACINO network needs an orchestrator to handle
the frequent turn on/turn off operations without disrupting
the running services. In return, ACINO can offer a more
sophisticated service to the customer, as shown in Fig. 4.

Figure 4 depicts the blocking and violation percentages for
ACINO and AppUnaware as a function of the percentage
of application-aware traffic (equally split between Gold and
Silver classes). As expected, no violation is experienced by
ACINO, since the algorithmic framework is designed to never
violate. On the opposite, AppUnaware leads to high violations,
especially when the traffic is mostly application-aware (18%
of violations for 90% of application-aware traffic). On the
other hand, the blocking percentage is about twice as large
for ACINO than for AppUnaware. This happens because
ACINO blocks the service requests if it cannot guarantee to the
applications all the service requirements, while AppUnaware
blocks only in case of a lack of resources (i.e., bandwidth).
The blocking percentage increases when the application-aware
traffic increases, mainly because more protected traffic (be-
longing to Gold) must be allocated, leading to higher resource
occupation and higher blocking for lack of resources. How-
ever, it is clear how the number of mistreated service requests
(blocking+violation percentage) is always much higher for
AppUnaware than for ACINO, confirming the benefits of the
ACINO approach from an application-awareness perspective.

VI. CONCLUSION

In this paper we proposed a multi-layer network resource
allocation and optimization framework, based on the properties
of the IP and optical layers, which is application-aware, i.e.,
able to always meet multiple service requirements as requested
by the applications. Then, we benchmarked such framework
against a strategy that is multi-layer but application-unaware.
Simulation on a test network with realistic application traffic
shows that the application-aware strategy mistreats much less

service requests than the application-unaware one, since it
is always able to allocate resources according to application
needs. In addition, the application-aware and application-
unaware strategies have a similar behaviour in terms of re-
source occupation, meaning that the application-aware strategy
does not require the provisioning of any more IP/MPLS and
optical resources than the application-unaware one. However,
the application-aware strategy increases the dynamicity of the
network, since equipment turn on/turn off operations are more
frequent. This makes it necessary the adoption of a network
resource orchestrator to speed up such operations.
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