
An Interactive Intent-based Negotiation Scheme
for Application-Centric Networks

Antonio Marsico, Michele Santuari,
Marco Savi, Domenico Siracusa
FBK CREATE-NET, Trento, Italy

Abdul Ghafoor, Stéphane Junique,
Pontus Sköldström

RISE ICT/Acreo, Kista, Sweden

Abstract—The demonstration presents the first implementation
of a resource negotiation scheme between users and a network for
the provisioning of application-aware connectivity services. This
active interaction enables the users, who request connectivity
services with multiple application requirements, to select an
alternative solution when the network does not have enough
resources to satisfy the original requests.

Index Terms—Software-Defined Networking; ONOS; Resource
Negotiation.

I. INTRODUCTION

The application-centric networking paradigm proposes a
novel provisioning process to differentiate connectivity ser-
vices based on application-specific requirements. Every ap-
plication is characterized by a multitude of requirements,
such as bandwidth, latency, availability, etc., defining the
type of connectivity Service Request (SR) that the network
should satisfy. These SRs can be communicated to an SDN
orchestrator by exploiting an intent-based interface, where an
intent is a human-readable abstracted policy used to specify
the application requirements. The SDN orchestrator evaluates
the application SR based on the current network state and
tries to provision an application-aware path, satisfying all the
application requirements.

In a previous work [1], we showed that considering multiple
requirements during service provisioning may lead to a high
SR blocking probability in the case of high network load
conditions. The authors of [2] shows that lower SR blocking
probabilities can be obtained by performing a degradation of
the bandwidth requirement for the provisioned services. This
solution, however, does not consider other application require-
ments, and the service degradation is enforced unilaterally by
the network.

In this work, we introduce the concept of negotiation
of application SRs, which offers the possibility to find a
common agreement between users deploying applications and
the underlying network for the provisioning of application-
aware traffic flows. The proposed demonstration shows how
a user can interact with the SDN orchestrator when an SR
meeting all the specified requirements cannot be found. In this
case, the SDN orchestrator offers several Alternative Solutions
(AS) with downgraded/upgraded application requirements and
the user can choose his/her preferred one, which will be finally
installed by the SDN orchestrator.

Fig. 1. SDN orchestrator architecture.

II. ARCHITECTURE

The system architecture is depicted in Fig. 1. We proposed
NetStratos as SDN orchestrator, which relies on the ONOS
SDN controller [3].

The intent-based North-Bound Interface is provided by
DISMI [4] to handle application SRs. A GUI client is pro-
vided to the users for interacting with DISMI via an HTTP
RESTful API. The ONOS intent framework has been extended
to implement the application-aware service provisioning and
negotiation algorithm. This algorithm relies both (i) on an
enhanced version of the ONOS Intent Framework and (ii)
on the ONOS Resource Manager, which provides a database
that maintains the information about network resources (e.g.,
the bandwidth of a link, latency, etc.) and their usage (i.e.,
which intent is allocated on which links and the respective
amount of consumed resources). When the user communicates
a new SR through DISMI, the ONOS Intent Framework tries
to find a path that meets all the application requirements by
executing the application-aware service provisioning algorithm
and exploiting the ONOS Resource Manager. If a path with the
given requirements cannot be found, instead of blocking the
SR, the negotiation algorithm tries to find several ASs based
on (i) looser application requirements (e.g. a lower bandwidth
and/or a higher latency) or on (ii) a reallocation of already-
provisioned SRs to satisfy the original SR.

However, the reallocation of SRs may imply a disruption of
already-provisioned services that do not have high availability
constraints, while the others must always be migrated in a
hitless manner. This operation thus comes with a cost for the
network, since some users will experience some connectivity
disruption and the hitless reallocation requires additional re-
sources to be temporarily allocated in the network (i.e., by
following the make-before-break paradigm). Therefore, we



(a) AS1: Higher latency (b) AS2: Lower bandwidth (c) AS3: Upgraded availability (reallocation)

Fig. 2. Set of ASs proposed by the negotiation algorithm for the provisioning of SR3.

extend the ONOS Intent Framework with a non-disruptive
reallocation mechanism to avoid any connectivity downtime
of a SR under a high-availability constraint.

As substrate network, we consider a real testbed com-
posed of 3 Juniper routers MX240, in a triangular topology
configuration. The South-Bound Interface uses NETCONF
as communication protocol, and implements an extension to
support Juniper devices. The testbed links have a fixed capacity
of 1 Gbit/s and a latency of ∼1 ms.

III. DEMONSTRATION

In our scenario, the user can create via the client GUI
an application SR. For the sake of clarity, we refer to
a DISMI SR as a tuple SR = {s, d, b, l, ha}, where s
and d represent the connection endpoints, b the requested
bandwidth, l the maximum allowed latency, and ha the
high-availability flag (i.e., it informs the network whether
a SR requires high availability, ha = true, or not). Two
SRs have already been provisioned in the network. They
are defined as SR1 = {R1, R2, 0.6 Gbps,∞, true} and
SR2 = {R1, R2, 0.5 Gbps,∞, false}, where ∞ means that
the latency is not constrained. SR1 has been provisioned on
the shortest path between R1 and R2, while SR2 on the
longest path.

The demonstration is performed in three steps as follows:
1) The user requests a new SR via the provided GUI to the

SDN orchestrator. The new service request is defined as
SR3 = {R1, R2, 0.5 Gbps, 1 ms, false}. However, the
current network status does not offer the possibility to
allocate the new SR, because between R1 and R2 (i) the
longest path offers 2 ms of latency, thus, it does not meet
the latency requirement of SR3 and (ii) the shortest path
satisfies the latency requirement but not the bandwidth
one, since the available capacity is 0.4 Gbps only.

2) The service provisioning and negotiation algorithm pro-
vides two ASs based on the degradation of application
requirements, as shown in Fig. 2a-2b. The former offers
AS1 = {0.5 Gbps, 2 ms, false}, while the latter AS2 =
{0.4 Gbps, 1 ms, false}. In addition, the algorithm pro-
vides a third AS (AS3) that does not require any require-
ment degradation, since a reallocation of SR1 and SR2

would allow the provisioning of the original SR. Unlike
SR1, SR2 does not have a high-availability constraint, so
the algorithm can swap the paths between SR1 and SR2

(Fig. 2c) with a hitless migration of SR1 and a temporary
disruption of SR2. SR1 cannot be migrated in a hitless
way without disrupting SR2 because on the longest path
there is not enough spare capacity to accommodate it.
However, once SR2 is disrupted and SR1 is migrated
on the longest path, enough resources are freed on the
shortest path to both reallocate SR2 and provision SR3.
AS3 is offered to the user with an upgrade in the high-
availability constraint: AS3 = {0.5 Gbps, 1 ms, true}.
This choice is made by the network as an additional
reward for the reallocation effort (i.e., SR2 disruption),
since stricter requirements imply a higher price for users.

3) The user evaluates on the GUI the new proposed solutions
and he/she interactively chooses the one that better suits
its needs. Finally, the SDN orchestrator modifies the
network configuration accordingly.

IV. CONCLUSION

This work demonstrated a bi-directional negotiation scheme
between users and an SDN orchestrator for the provisioning
of application-aware service requests. In the case of lack
of network resources, the SDN orchestrator offers several
alternative solutions, based on a downgrade/upgrade of the
specified requirements, to the users. They, they can choose
the preferred solution and avoid the blocking of the request.

ACKNOWLEDGMENTS

This work has received funding from the EU H2020 Research and
Innovation program, ACINO project, grant agreement no. 645127.

REFERENCES

[1] M. Savi et al., “An Application-Aware Multi-Layer Service Provisioning
Algorithm based on Auxiliary Graphs,” in Proceedings of the OFC
Conference, Los Angeles, USA, 19-23 Mar. 2017.

[2] Z. Zhong et al., “On QoS-Assured Degraded Provisioning in Service-
Differentiated Multi-Layer Elastic Optical Networks,” in Proceedings of
IEEE GLOBECOM Conference, Seoul, South Korea, 6-10 Jun. 2016.

[3] P. Berde et al., “ONOS: Towards an Open, Distributed SDN OS,” in ACM
HotSDN, Chicago, USA, 22 Aug. 2014.

[4] P. Sköldström et al., “DISMI - An intent interface for application-centric
transport network services,” Proceedings of the ICTON 2017 Conference,
2017, to appear.


	Introduction
	Architecture
	Demonstration
	Conclusion
	References

