
Axiom Pinpointing in General Tableaux

Franz Baader

Theoretical Computer Science, TU Dresden, Germany

baader@inf.tu-dresden.de

Rafael Peñaloza

Intelligent Systems, University of Leipzig, Germany

penaloza@informatik.uni-leipzig.de

Corresponding address:
Technische Universität Dresden
Fakultät Informatik
Institut für Theoretische Informatik
D-01062 Dresden
Germany

Abstract

Axiom pinpointing has been introduced in description logics (DLs) to help the user to under-

stand the reasons why consequences hold and to remove unwanted consequences by computing

minimal (maximal) subsets of the knowledge base that have (do not have) the consequence in

question. Most of the pinpointing algorithms described in the DL literature are obtained as ex-

tensions of the standard tableau-based reasoning algorithms for computing consequences from DL

knowledge bases. Although these extensions are based on similar ideas, they are all introduced

for a particular tableau-based algorithm for a particular DL.

The purpose of this paper is to develop a general approach for extending a tableau-based

algorithm to a pinpointing algorithm. This approach is based on a general definition of “tableau

algorithms,” which captures many of the known tableau-based algorithms employed in DLs, but

also other kinds of reasoning procedures.

Keywords. explanation, tableau methods, automated reasoning, pinpointing

1 Introduction

Description logics (DLs) [3] are a successful family of logic-based knowledge representation formalisms,

which can be used to represent the conceptual knowledge of an application domain in a structured

and formally well-understood way. They are employed in various application domains, such as natural

language processing, configuration, databases, and bio-medical ontologies, but their most notable

success so far is the adoption of the DL-based language OWL [17] as standard ontology language for

the semantic web. As a consequence of this standardization, several ontology editors support OWL

[21, 26, 20], and ontologies written in OWL are employed in more and more applications. As the size of

such ontologies grows, tools that support improving the quality of large DL-based ontologies become

more important. Standard DL reasoners [16, 13, 32] employ tableau-based algorithms [8], which

can be used to detect inconsistencies and to infer other implicit consequences, such as subsumption

relationships between concepts or instance relationships between individuals and concepts.

For a developer or user of a DL-based ontology, it is often quite hard to understand why a certain

consequence holds,1 and even harder to decide how to change the ontology in case the consequence is

unwanted. For example, in the current version of the medical ontology SNOMED [33], the concept

Amputation-of-Finger is classified as a subconcept of Amputation-of-Hand. Finding the six axioms

that are responsible for this among the more than 350,000 terminological axioms of SNOMED without

support by an automated reasoning tool is not easy.

As a first step towards providing such support, Schlobach and Cornet [30] describe an algorithm

for computing all the minimal subsets of a given knowledge base that have a given consequence. To

be more precise, the knowledge bases considered in [30] are so-called unfoldable ALC-terminologies,

and the unwanted consequences are the unsatisfiability of concepts. The algorithm is an extension

of the known tableau-based satisfiability algorithm for ALC [31], where labels keep track of which

axioms are responsible for an assertion to be generated during the run of the algorithm. The authors

also coin the name “axiom pinpointing” for the task of computing these minimal subsets. Following

Reiter’s approach for model-based diagnosis [28], Schlobach [29] uses the minimal subsets that have

a given consequence together with the computation of Hitting Sets to compute maximal subsets of

a given knowledge base that do not have a given (unwanted) consequence.2 Whereas the minimal

subsets that have the consequence help the user to comprehend why a certain consequence holds, the

maximal subsets that do not have the consequence suggest how to change the knowledge base in a

1Note that this consequence may also be the inconsistency of the knowledge base or the unsatisfiability of a concept
w.r.t. the knowledge base.

2Actually, he considers the complements of these sets, which he calls minimal diagnoses.

1

minimal way to get rid of a certain unwanted consequence.

The problem of computing minimal (maximal) subsets of a DL knowledge base that have (do

not have) a given consequence was actually considered earlier in the context of extending DLs by

default rules. In [5], Baader and Hollunder solve this problem by introducing a labeled extension

of the tableau-based consistency algorithm for ALC-ABoxes [14], which is very similar to the one

described later in [30]. The main difference is that the algorithm described in [5] does not directly

compute minimal subsets that have a consequence, but rather a monotone Boolean formula, called

clash formula in [5], whose variables correspond to the axioms of the knowledge bases and whose

minimal satisfying (maximal unsatisfying) valuations correspond to the minimal (maximal) subsets

that have (do not have) a given consequence.3

The approach of Schlobach and Cornet [30] was extended by Parsia et al. [27] to more expressive

DLs, and the one of Baader and Hollunder [5] was extended by Meyer et al. [22] to the case of ALC-

terminologies with general concept inclusions (GCIs), which are no longer unfoldable. The choice of

the DL ALC in [5] and [30] was meant to be prototypical, i.e., in both cases the authors assumed

that their approach could be easily extended to other DLs and tableau-based algorithms for them.

However, the algorithms and proofs are given for ALC only, and it is not clear to which of the known

tableau-based algorithms the approaches really generalize. For example, the pinpointing extension

described in [22] follows the approach introduced in [5], but since GCIs require the introduction of

so-called blocking conditions into the tableau-based algorithm to ensure termination, there are some

new problems to be solved.

Thus, one can ask to which DLs and tableau-based algorithms the approaches described in [5, 30]

apply basically without significant changes, and with no need for a new proof of correctness. This paper

is a first step towards answering this question. We develop a general approach for extending a tableau-

based algorithm to a pinpointing algorithm, which is based on the ideas underlying the pinpointing

algorithm described in [5]. To this purpose, we define a general notion of “tableau algorithm,” which

captures many of the known tableau-based algorithms for DLs and Modal Logics,4 but also other

kinds of decision procedures, like the polynomial-time subsumption algorithm for the DL EL [1] or the

congruence closure algorithm [24], which decides the word problem for finite sets of ground identities.

This notion is simpler than the tableau systems introduced in [4] in the context of translating tableaux

into tree automata, and in its most general form it is not restricted to tableau-based algorithms that

3In this paper, we call a formula with these properties a pinpointing formula; the term clash formula is used for the
formula computed by our pinpointing algorithm.

4Note that these algorithms are decision procedures, i.e., always terminate. Currently, our approach does not cover
semi-decision procedures like tableau procedures for first-order logic.

2

generate tree-like structures. However, it turns out that, in order to ensure termination of the pinpoint

extension of a tableau or to model tableaux that employ blocking, we need to restrict our general

framework to tableaux that generate forest-like structures.

In the next section, we define the notions of minimal (maximal) sets having (not having) a given

consequence in a general setting, and show some interesting connections between these two notions.

In Section 3 we introduce our general notion of a tableau, and in Section 4 we show how to obtain a

pinpointing extension of such a tableau. The main result shown in Section 4 is that this pinpointing

extension is correct in the sense that the clash formula computed by a terminating run of it is indeed

a pinpointing formula. Unfortunately, however, termination need not transfer from a given tableau

to its pinpointing extension. To overcome this problem, Section 5 introduces ordered forest tableaux,

which are guaranteed to terminate. The main result of Section 5 is that the pinpointing extension

of an ordered forest tableau also terminates on all inputs, and thus always computes a pinpointing

formula. Tableau-based decision procedures for DLs that can deal with general concept inclusion

axioms (GCIs) or transitive roles are not “naturally” terminating; instead, termination is achieved by

employing the so-called blocking technique, which under certain conditions blocks the application of

an otherwise applicable rule. In Section 6, we introduce blocking tableaux, which use this technique.

We show that the pinpointing extension of such tableaux is correct and always terminates.

This paper is an extended and improved version of [6]. In contrast to [6], the present paper contains

detailed proofs of the results of Section 4, and the results of Sections 5 and 6 are new.

2 Basic definitions

Before we can define our general notion of a tableau algorithm, we need to define the general form of

inputs to which these algorithms are applied, and the decision problems they are supposed to solve.

Definition 2.1 (Axiomatized input, c-property) Let I be a set, called the set of inputs, and T

be a set, called the set of axioms, and let Padmis(T) ⊆Pfin(T) be a set of finite subsets of T such that

T ∈Padmis(T) implies T ′ ∈Padmis(T) for all T ′ ⊆ T . An axiomatized input for I and Padmis(T)

is of the form (I, T) where I ∈ I and T ∈Padmis(T). A consequence property (c-property) is a set

P ⊆ I×Padmis(T) such that (I, T) ∈ P implies (I, T ′) ∈ P for every T ′ ∈Padmis(T) with T ′ ⊇ T .

Intuitively, c-properties on axiomatized inputs are supposed to model consequence relations in logic,

i.e., the c-property P holds if the input I “follows” from the axioms in T . Such a set of axioms might

be required to satisfy a certain property, which is taken care of by the admissibility restriction. For

3

example, TBoxes in DLs are often not arbitrary sets of terminological axiom, but may be restricted

to being unambiguous and acyclic. The monotonicity requirement on c-properties corresponds to the

fact that we want to restrict the attention to consequence relations induced by monotonic logics. In

fact, for non-monotonic logics, looking at minimal sets of axioms that have a given consequence does

not make much sense.

To illustrate Definition 2.1, assume that I is a countably infinite set of propositional variables, that

T consists of all Horn clauses over these variables, i.e., implications of the form p1 ∧ . . . ∧ pn → q for

n ≥ 0 and p1, . . . , pn, q ∈ I, and Padmis(T) = Pfin(T). Then the following is a c-property according

to the above definition: P := {(p, T) | T |= p}, where T |= q means that all valuations satisfying all

implications in T also satisfy q. As as concrete example, consider Γ := (p, T) where T consists of the

following implications:

ax1: → q, ax2: → s, ax3: s→ q, ax4: q ∧ s→ p (1)

It is easy to see that Γ ∈ P . Note that Definition 2.1 also captures the following variation of

the above example, where I′ consist of tuples (p, T1) ∈ I × Pfin(T) and the c-property is de-

fined as P ′ := {((p, T1), T2) | T1 ∪ T2 |= p}. For example, if we take the axiomatized input Γ′ :=

((p, {ax3, ax4}), {ax1, ax2}), then Γ′ ∈ P ′.

Definition 2.2 Given an axiomatized input Γ = (I, T) and a c-property P, a set of axioms S ⊆ T

is called a minimal axiom set (MinA) for Γ w.r.t. P if (I,S) ∈ P and (I,S′) /∈ P for every S′ ⊂ S.

Dually, a set of axioms S ⊆ T is called a maximal non-axiom set (MaNA) for Γ w.r.t. P if (I,S) /∈ P

and (I,S′) ∈ P for every S′ ⊃ S. The set of all MinA (MaNA) for Γ w.r.t. P will be denoted as

MINP(Γ) (MAXP(Γ)).

Note that the notions of MinA and MaNA are only interesting in the case where Γ ∈ P . In fact,

otherwise the monotonicity property satisfied by P implies that MINP(Γ) = ∅ and MAXP(Γ) = {T }. In

our example, where we have Γ ∈ P , it is easy to see that MINP(Γ) = {{ax1, ax2, ax4}, {ax2, ax3, ax4}}.

In the variant of the example where only subsets of the facts {ax1, ax2} can be taken, we have

MINP′(Γ′) = {{ax2}}.

The set MAXP(Γ) can be obtained from MINP(Γ) by computing the minimal hitting sets of MINP(Γ),

and then complementing these sets [30, 23]. A set S ⊆ T is a minimal hitting set of MINP(Γ) if

it has a nonempty intersection with every element of MINP(Γ), and no strict subset of S has this

property. In our example, the minimal hitting sets of MINP(Γ) are {ax1, ax3}, {ax2}, {ax4}, and thus

4

MAXP(Γ) = {{ax2, ax4}, {ax1, ax3, ax4}, {ax1, ax2, ax3}}. Intuitively, to get a set of axioms that does

not have the consequence, we must remove from T at least one axiom for every MinA, and thus the

minimal hitting sets give us the minimal sets to be removed.

The reduction we have just sketched shows that it is enough to design an algorithm for computing

all MinA, since the MaNA can then be obtained by a hitting set computation. It should be noted,

however, that this reduction is not polynomial: there may be exponentially many hitting sets of a

given collection of sets, and even deciding whether such a collection has a hitting set of cardinality

≤ n is an NP-complete problem [12]. Also note that there is a similar reduction involving hitting sets

for computing the MinA from all MaNA.

Instead of computing MinA or MaNA, one can also compute the pinpointing formula.5 To define

the pinpointing formula, we assume that every axiom t ∈ T is labeled with a unique propositional

variable, lab(t). Let lab(T) be the set of all propositional variables labeling an axiom in T . A monotone

Boolean formula over lab(T) is a Boolean formula using (some of) the variables in lab(T) and only the

connectives conjunction and disjunction. As usual, we identify a propositional valuation with the set

of propositional variables it makes true. For a valuation V ⊆ lab(T), let TV := {t ∈ T | lab(t) ∈ V}.

Definition 2.3 (pinpointing formula) Given a c-property P and an axiomatized input Γ = (I, T),

a monotone Boolean formula φ over lab(T) is called a pinpointing formula for P and Γ if the following

holds for every valuation V ⊆ lab(T): (I, TV) ∈ P iff V satisfies φ.

In our example, we can take lab(T) = {ax1, . . . , ax4} as set of propositional variables. It is easy to see

that (ax1 ∨ ax3) ∧ ax2 ∧ ax4 is a pinpointing formula for P and Γ.

Valuations can be ordered by set inclusion. The following is an immediate consequence of the

definition of a pinpointing formula [5].

Lemma 2.4 Let P be a c-property, Γ = (I, T) an axiomatized input, and φ a pinpointing formula

for P and Γ. Then

MINP(Γ) = {TV | V is a minimal valuation satisfying φ},

MAXP(Γ) = {TV | V is a maximal valuation falsifying φ}.

This shows that it is enough to design an algorithm for computing a pinpointing formula to obtain

all MinA and MaNA. However, like the previous reduction for computing MaNA from MinA, the

reduction suggested by the lemma is not polynomial. For example, to obtain MINP(Γ) from φ, one

5This corresponds to the clash formula introduced in [5]. Here, we distinguish between the pinpointing formula,
which can be defined independently of a tableau algorithm, and the clash formula, which is induced by a run of a
tableau algorithm.

5

can bring φ into disjunctive normal form and then remove disjuncts implying other disjuncts. It

is well-known that this can cause an exponential blowup. This should, however, not be viewed as

a disadvantage of approaches computing the pinpointing formula rather than MINP(Γ). If such a

blowup happens, then the pinpointing formula actually yields a compact representation of all MinAs.

Conversely, the set MINP(Γ) can directly be translated into the pinpointing formula

∨

S∈MINP(Γ)

∧

s∈S

lab(s).

In our example, the set MINP(Γ) = {{ax1, ax2, ax4}, {ax2, ax3, ax4}} yields the pinpointing formula

(ax1 ∧ ax2 ∧ ax4) ∨ (ax2 ∧ ax3 ∧ ax4).

3 A general notion of tableaux

Before introducing our general notion of a tableau-based decision procedure, we want to motivate it by

first modelling a simple decision procedure for the property P introduced in the Horn clause example

from the previous section, and then sketching extensions to the model that are needed to treat more

complex tableau-based decision procedures.

Motivating examples

To decide whether (p, T) ∈ P , we start with the set A := {¬p}, and then use the rule

If {p1, . . . , pn} ⊆ A and p1 ∧ . . . ∧ pn → q ∈ T then A := A ∪ {q} (2)

to extend A until it is saturated, i.e., it can no longer be extended with the above rule. It is easy to

see that (p, T) ∈ P (i.e., T |= p) iff this saturated set contains both p and ¬p. For example, for the

axioms in (1), one can first add s using ax2, then q using ax3, and finally p using ax4. This yields the

saturated set {¬p, p, q, s}.

Abstracting from particularities, we can say that we have an algorithm that works on a set of

assertions (in the example, assertions are propositional variables and their negation), and uses rules

to extend this set. A rule is of the form (B0,S) → B1 where B0, B1 are finite sets of assertions, and

S is a finite set of axioms (in the example, axioms are Horn clauses). Given a set of axioms T and a

set of assertions A, this rule is applicable if B0 ⊆ A, S ⊆ T , and B1 6⊆ A. Its application then extends

6

A to A ∪ B1.
6 Our simple Horn clause algorithm always terminates in the sense that any sequence

of rule applications is finite (since only right-hand sides of implications in T can be added). After

termination, we have a saturated set of assertions, i.e., one to which no rule applies. The algorithm

accepts the input (i.e., says that it belongs to P) iff this saturated set contains a clash (in the example,

this is the presence of p and ¬p in the saturated set).

The model of a tableau-based decision procedure introduced so far is too simplistic since it does

not capture two important phenomena that can be found in tableau algorithms for description and

modal logics: non-determinism and assertions with an internal structure. Regarding non-determinism,

assume that instead of Horn clauses we have more general implications of the form p1 ∧ . . . ∧ pn →

q1 ∨ . . . ∨ qm in T . Then, if {p1, . . . , pn} ⊆ A, we need to choose (don’t know non-deterministically)

with which of the propositional variables qj to extend A. In our formal model, the right-hand side

of a non-deterministic rule consists of a finite set of sets of assertions rather than a single set of

assertions, i.e., non-deterministic rules are of the more general form (B0,S) → {B1, . . . , Bm} where

B0, B1, . . . , Bm are finite sets of assertions and S is a finite set of axioms. Instead of working on

a single set of assertions, the non-deterministic algorithm thus works on a finite set M of sets of

assertions. The non-deterministic rule (B0,S)→ {B1, . . . , Bm} is applicable to A ∈ M if B0 ⊆ A and

S ⊆ T , and its application replaces A ∈ M by the finitely many sets A ∪ B1, . . . , A ∪ Bm provided

that each of these sets really extends A. For example, if we replace ax1 and ax2 in (1) by ax5: → p∨s,

then starting with {{¬p}}, we first get {{¬p, p}, {¬p, s}} using ax5, then {{¬p, p}, {¬p, s, q}} using

ax3, and finally {{¬p, p}, {¬p, s, q, p}} using ax4. Since each of these sets contains a clash, the input

is accepted.

Regarding the structure of assertions, in general it is not enough to use propositional literals.

Tableau-based decision procedures in description and modal logic try to build finite models, and thus

assertions must be able to describe the relational structure of such models. For example, assertions in

tableau algorithms for description logics [8] are of the form r(a, b) and C(a), where r is a role name,

C is a concept description, and a, b are individual names. Again abstracting from particularities, a

structured assertion is thus of the form P (a1, . . . , ak) where P is a k-ary predicate and a1, . . . , ak are

constants. As an example of the kind of rules employed by tableau-based algorithms for description

logics, consider the rule treating existential restrictions:

If {(∃r.C)(x)} ⊆ A then A := A ∪ {r(x, y), C(y)}. (3)

6The applicability condition B1 6⊆ A ensures that rule application really extends the given set of assertions.

7

The variables x, y in this rule are place-holders for constants, i.e., to apply the rule to a set of

assertions, we must first replace the variables by appropriate constants. Note that y occurs only on

the right-hand side of the rule. We will call such a variable a fresh variable. Fresh variables must be

replaced by new constants, i.e., a constant not occurring in the current set of assertions. For example,

let A := {(∃r.C)(a), r(a, b)}. If we apply the substitution σ := {x 7→ a, y 7→ c} that replaces x by

a and y by the new constant c, then the above rule is applicable with σ since (∃r.C)(a) ∈ A. Its

application yields the set of assertions A′ = A∪ {r(a, c), C(c)}. Of course, we do not want the rule to

be still applicable to A′. However, to prevent this it is not enough to require that the right-hand side

(after applying the substitution) is not contained in the current set of assertions. In fact, this would

not prevent us from applying the rule to A′ with another new constant, say c′. For this reason, the

applicability condition for rules needs to check whether the assertions obtained from the right-hand

side by replacing the fresh variables by existing constants yields assertions that are already contained

in the current set of assertions.

The formal definition

In the following, V denotes a countably infinite set of variables, and D a countably infinite set of

constants. A signature Σ is a set of predicate symbols, where each predicate P ∈ Σ is equipped

with an arity. A Σ-assertion is of the form P (a1, . . . , an) where P ∈ Σ is an n-ary predicate and

a1, . . . , an ∈ D. Likewise, a Σ-pattern is of the form P (x1, . . . , xn) where P ∈ Σ is an n-ary predicate

and x1, . . . , xn ∈ V . If the signature is clear from the context, we will often just say pattern (assertion).

For a set of assertions A (patterns B), cons(A) (var(B)) denotes the set of constants (variables)

occurring in A (B).

A substitution is a mapping σ : V → D, where V is a finite set of variables. If B is a set of

patterns such that var(B) ⊆ V , then Bσ denotes the set of assertions obtained from B by replacing

each variable by its σ-image. We say that σ : V → D is a substitution on V . The substitution θ on

V ′ extends σ on V if V ⊆ V ′ and θ(x) = σ(x) for all x ∈ V .

Definition 3.1 (Tableau) Let I be a set of inputs and T a set of axioms. A tableau for I and

Padmis(T) is a tuple S = (Σ, ·S ,R, C) where

• Σ is a signature;

• ·S is a function that maps every I ∈ I to a finite set of finite sets of Σ-assertions and every

t ∈ T to a finite set of Σ-assertions;

8

• R is a set of rules of the form (B0,S) → {B1, . . . , Bm} where B0, . . . , Bm are finite sets of

Σ-patterns and S is a finite set of axioms;

• C is a set of finite sets of Σ-patterns, called clashes.

Given a rule R : (B0,S) → {B1, . . . , Bm}, the variable y is a fresh variable in R if it occurs in one of

the sets B1, . . . , Bm, but not in B0.

An S-state is a pair S = (A, T) where A is a finite set of assertions and T a finite set of axioms.

We extend the function ·S to axiomatized inputs by defining

(I, T)S :=
{(
A ∪

⋃
t∈T t

S , T
)
| A ∈ IS

}
.

Intuitively, on input (I, T), we start with the initial set M = (I, T)S of S-states, and then use the

rules in R to modify this set. Each rule application picks an S-state S from M and replaces it by

finitely many new S-states S1, . . . ,Sm that extend the first component of S. IfM is saturated, i.e.,

no more rules are applicable to M, then we check whether all the elements of M contain a clash. If

yes, then the input is accepted; otherwise, it is rejected.

Definition 3.2 (rule application, saturated, clash) Given an S-state S = (A, T), a rule R :

(B0,S) → {B1, . . . , Bm}, and a substitution ρ on var(B0), this rule is applicable to S with ρ if

(i) S ⊆ T , (ii) B0ρ ⊆ A, and (iii) for every i, 1 ≤ i ≤ m, and every substitution ρ′ on var(B0 ∪ Bi)

extending ρ we have Biρ
′ 6⊆ A.

Given a set of S-states M and an S-state S = (A, T) ∈ M to which the rule R is applicable with

substitution ρ, the application of R to S with ρ inM yields the new setM′ = (M\{S})∪{(A∪Biσ, T) |

i = 1, . . . ,m}, where σ is a substitution on the variables occurring in R that extends ρ and maps the

fresh variables of R to distinct new constants, i.e., constants not occurring in A.

IfM′ is obtained fromM by the application of R, then we writeM→R M′, or simplyM→S M′

if it is not relevant which of the rules of the tableau S was applied. As usual, the reflexive-transitive

closure of →S is denoted by
∗
−→S. A set of S-statesM is called saturated if there is no M′ such that

M→S M
′.

The S-state S = (A, T) contains a clash if there is a C ∈ C and a substitution ρ on var(C) such

that Cρ ⊆ A, and the set of S-states M is full of clashes if all its elements contain a clash.

We can now define under what conditions a tableau S is correct for a c-property.

Definition 3.3 (correctness) Let P be a c-property on axiomatized inputs for I and Padmis(T), and

S a tableau for I and Padmis(T). Then S is correct for P if the following holds for every axiomatized

input Γ = (I, T) over I and T:

9

1. S terminates on Γ, i.e., there is no infinite chain of rule applications M0 →S M1 →S M2 →S

. . . starting with M0 := ΓS.

2. For every chain of rule applications M0 →S . . . →S Mn such that M0 = ΓS and Mn is

saturated we have Γ ∈ P iff Mn is full of clashes.

The simple decision procedure sketched in our Horn clause example is a correct tableau in the sense of

this definition. More precisely, it is a tableau with unstructured assertions (i.e., the signature contains

only nullary predicate symbols) and deterministic rules. It is easy to see that the polynomial-time

subsumption algorithm for the DL EL and its extensions introduced in [1] as well as the congruence

closure algorithm [24] can be viewed as correct deterministic tableaux with unstructured assertions.

The standard tableau-based decision procedure for concept unsatisfiability in the DL ALC [31] is a

correct tableau that uses structured assertions and has a non-deterministic rule.

In 2. of Definition 3.3, we require that the algorithm gives the same answer independent of what

terminating chain of rule applications is considered. Thus, the choice of which rule to apply next is

don’t care non-deterministic in a correct tableau. This is important since a need for backtracking over

these choices would render a tableau algorithm completely impractical. However, in our framework

this is not really an extra requirement on correct tableaux: it is built into our definition of rules and

clashes.

Proposition 3.4 Let Γ be an axiomatized input and M0 := ΓS. If M and M′ are saturated sets of

S-states such that M0
∗
−→S M and M0

∗
−→S M′, then M is full of clashes iff M′ is full of clashes.

This proposition is a special case of Lemma 4.12, which will be proved in the next section.

4 Pinpointing extensions of general tableaux

Given a correct tableau, we show how it can be extended to an algorithm that computes a pinpointing

formula. As shown in Section 2, all minimal axiom sets (maximal non-axiom sets) can be derived from

the pinpointing formula φ by computing all minimal (maximal) valuations satisfying (falsifying) φ.

Recall that, in the definition of the pinpointing formula, we assume that every axiom t ∈ T is labeled

with a unique propositional variable, lab(t). The set of all propositional variables labeling an axiom

in T is denoted by lab(T). In the following, we assume that the symbol ⊤, which always evaluates

to true, also belongs to lab(T). The pinpointing formula is a monotone Boolean formula over lab(T),

i.e., a Boolean formula built from lab(T) using conjunction and disjunction only.

10

To motivate our pinpointing extension of general tableaux, we first describe such an extension of

the simple decision procedure sketched for our Horn clause example. The main idea is that assertions

are also labeled with monotone Boolean formulae. In the example, where T consists of the axioms

of (1) and the axiomatized input is (p, T), the initial set of assertions consists of ¬p. To be more

precise, we have pS = {{¬p}} and tS = ∅ for all t ∈ T . The label of the initial assertion ¬p is ⊤

since its presence depends only on the input p, and not on any of the axioms. By applying the rule

(2) using axiom ax2, we can add the assertion s. Since the addition of this assertion depends on the

presence of ax2, it receives label ax2. Then we can use ax3 to add q. Since this addition depends

on the presence of ax3 and of the assertion s, which has label ax2, the label of this new assertion

is ax2 ∧ ax3. There is, however, also another possibility to generate the assertion q: apply the rule

(2) using axiom ax1. In a “normal” run of the tableau algorithm, the rule would not be applicable

since it would add an assertion that is already there. However, in the pinpointing extension we need

to register this alternative way of generating q. Therefore, the rule is applicable using ax1, and its

application changes the label of the assertion q from ax2 ∧ ax3 to ax1 ∨ (ax2 ∧ ax3). Finally, we can

use ax4 to add the assertion p. The label of this assertion is ax4 ∧ ax2 ∧ (ax1 ∨ (ax2 ∧ ax3)) since the

application of the rule depends on the presence of ax4 as well as the assertions s and q. The presence

of both p and ¬p gives us a clash, which receives label ⊤∧ax4∧ax2∧(ax1∨(ax2∧ax3)). This so-called

clash formula is the output of the extended algorithm. Obviously, it is equivalent to the pinpointing

formula (ax1 ∨ ax3) ∧ ax2 ∧ ax4 that we have constructed by hand in Section 2.

The formal definition

Given a tableau S = (Σ, ·S ,R, C) that is correct for the c-property P , we show how the algorithm for

deciding P induced by S can be modified to an algorithm that computes a pinpointing formula for P .

Given an axiomatized input Γ = (I, T), the modified algorithm also works on sets of S-states, but now

every assertion a occurring in the assertion component of an S-state is equipped with a label lab(a),

which is a monotone Boolean formula over lab(T). We call such S-states labeled S-states. In an initial

S-state (A, T) ∈ (I, T)S , an assertion a ∈ A is labeled with ⊤ if a ∈ IS and with
∨

{t∈T |a∈tS} lab(t)

otherwise.

The definition of rule application must also take the labels of assertions and axioms into account.

Let A be a set of labeled assertions and ψ a monotone Boolean formula. We say that the assertion

a is ψ-insertable into A if (i) either a /∈ A, or (ii) a ∈ A, but ψ 6|= lab(a). Given a set B of

assertions and a set A of labeled assertions, the set of ψ-insertable elements of B into A is defined

11

as insψ(B,A) := {b ∈ B | b is ψ-insertable into A}. By ψ-inserting these insertable elements into A,

we obtain the following new set of labeled assertions: A⋒ψ B := A∪ insψ(B,A), where each assertion

a ∈ A \ insψ(B,A) keeps its old label lab(a), each assertion in insψ(B,A) \ A gets label ψ, and each

assertion b ∈ A ∩ insψ(B,A) gets the new label ψ ∨ lab(b).

Definition 4.1 (pinpointing rule application) Given a labeled S-state S = (A, T), a rule R :

(B0,S) → {B1, . . . , Bm}, and a substitution ρ on var(B0), this rule is pinpointing applicable to S

with ρ if (i) S ⊆ T , (ii) B0ρ ⊆ A, and (iii) for every i, 1 ≤ i ≤ m, and every substitution ρ′ on

var(B0 ∪Bi) extending ρ we have insψ(Biρ
′, A) 6= ∅, where ψ :=

∧
b∈B0

lab(bρ) ∧
∧
s∈S lab(s).

Given a set of labeled S-states M and a labeled S-state S = (A, T) ∈ M to which the rule R is

pinpointing applicable with substitution ρ, the pinpointing application of R to S with ρ in M yields

the new setM′ = (M\{S})∪{(A⋒ψBiσ, T) | i = 1, . . . ,m}, where the formula ψ is defined as above

and σ is a substitution on the variables occurring in R that extends ρ and maps the fresh variables of

R to distinct new constants.

If M′ is obtained from M by the pinpointing application of R, then we write M →Rpin M′, or

simply M→Spin M′ if it is not relevant which of the rules of the tableau S was applied. As before,

the reflexive-transitive closure of →Spin is denoted by
∗
−→Spin . A set of labeled S-states M is called

pinpointing saturated if there is no M′ such that M→Spin M′.

To illustrate the definition of rule application, let us look back at the example from the beginning of

this section. There, we have looked at a situation where the current set of assertions is A := {¬p, s, q}

where lab(¬p) = ⊤, lab(s) = ax2, and lab(q) = ax2 ∧ ax3. In this situation, the rule (2) is pinpointing

applicable using ax1. In fact, in this case the formula ψ is simply ax1. Since this formula does not

imply lab(q) = ax2 ∧ ax3, the assertion q is ψ-insertable into A. Its insertion changes the label of q to

ax1 ∨ (ax2 ∧ ax3).

Consider a chain of pinpointing rule applicationsM0 →Spin . . .→Spin Mn such thatM0 = ΓS for

an axiomatized input Γ andMn is pinpointing saturated. The label of an assertion inMn expresses

which axioms are needed to obtain this assertion. A clash in an S-state of Mn depends on the joint

presence of certain assertions. Thus, we define the label of the clash as the conjunction of the labels of

these assertions. Since it is enough to have just one clash per S-state S, the labels of different clashes

in S are combined disjunctively. Finally, since we need a clash in every S-state of Mn, the formulae

obtained from the single S-states are again conjoined.

Definition 4.2 (clash set, clash formula) Let S = (A, T) be a labeled S-state and A′ ⊆ A. Then

A′ is a clash set in S if there is a clash C ∈ C and a substitution ρ on var(C) such that A′ = Cρ. The

12

label of this clash set is ψA′ :=
∧
a∈A′ lab(a).

LetM = {S1, . . . ,Sn} be a set of labeled S-states. The clash formula induced byM is defined as

ψM :=

n∧

i=1

∨

A′ clash set in Si

ψA′ .

Recall that, given a set T of labeled axioms, a propositional valuation V induces the subset

TV := {t ∈ T | lab(t) ∈ V} of T . Similarly, for a set A of labeled assertions, the valuation V

induces the subset AV := {a ∈ A | V satisfies lab(a)}. Given a labeled S-state S = (A, T) we define

its V-projection as V(S) := (AV , TV). The notion of a projection is extended to sets of S-states M

in the obvious way: V(M) := {V(S) | S ∈ M}. The following lemma is an easy consequence of the

definition of the clash formula:

Lemma 4.3 Let M be a finite set of labeled S-states and V a propositional valuation. Then we have

that V satisfies ψM iff V(M) is full of clashes.

Proof. Assume that V(M) is full of clashes. Then we know that, for every S-state Si ∈ M, the

projection V(Si) contains a clash. Thus, for all i there is a clash set Ai in Si such that lab(a) is

satisfied by V for every assertion a ∈ Ai. This shows that V satisfies ψAi
. Hence, V satisfies the

formula
∨

A′ clash set in Si

ψA′ .

Since this holds for every Si ∈M, the valuation V satisfies the clash formula ψM.

Conversely, assume that V(M) is not full of clashes, i.e., there is a Si ∈ M such that V(Si)

contains no clash. Thus, for every clash set A′ in Si, there must be an assertion a ∈ A′ such that V

does not satisfy lab(a). Consequently, V does not satisfy the label ψA′ of any of the clash sets A′ in

Si, and thus this valuation cannot satisfy the disjunction of these labels. This shows that V does not

satisfy the clash formula.

There is also a close connection between pinpointing saturatedness of a set of labeled S-states and

saturatedness of its projection:

Lemma 4.4 Let M be a finite set of labeled S-states and V a propositional valuation. If M is

pinpointing saturated, then V(M) is saturated.

Proof. Suppose that there is an S-state S = (A, T) ∈ M, and a rule R : (B0,S) → {B1, . . . , Bm}

such that R is applicable to V(S) with substitution ρ. This means that S ⊆ TV , B0ρ ⊆ AV , and for

every i, 1 ≤ i ≤ m and every substitution ρ′ on var(B0 ∪Bi) extending ρ, we have Biρ
′ 6⊆ AV .

13

We show that R is pinpointing applicable to S with the same substitution ρ. Since S ⊆ TV ⊆ T

and B0ρ ⊆ AV ⊆ A, the first two conditions of the definition of “pinpointing applicable” are satisfied.

For the third condition, consider an i and a substitution ρ′ on var(B0∪Bi) extending ρ. We must show

that insψ(Biρ
′, A) 6= ∅, where ψ :=

∧
b∈B0

lab(bρ) ∧
∧
s∈S lab(s). Note that S ⊆ TV and B0ρ ⊆ AV

imply that V satisfies ψ. Since Biρ
′ 6⊆ AV , there is a b ∈ Bi such that bρ′ 6∈ AV . Thus bρ′ 6∈ A or

V does not satisfy lab(bρ′). In the first case, bρ′ is clearly ψ-insertable into A. In the second case,

ψ 6|= lab(bρ′) since V satisfies ψ, and thus bρ′ is again ψ-insertable into A.

Given a tableau that is correct for a property P , its pinpointing extension is correct in the sense

that the clash formula induced by the pinpointing saturated set computed by a terminating chain of

pinpointing rule applications is indeed a pinpointing formula for P and the input.

Theorem 4.5 (correctness of pinpointing) Let P be a c-property on axiomatized inputs for I

and Padmis(T), and S a correct tableau for P. Then the following holds for every axiomatized input

Γ = (I, T) for I and Padmis(T):

For every chain of rule applicationsM0 →Spin . . .→Spin Mn such thatM0 = ΓS andMn

is pinpointing saturated, the clash formula ψMn
induced by Mn is a pinpointing formula

for P and Γ.

To prove this theorem, we want to consider projections of chains of pinpointing rule applications

to chains of “normal” rule applications. Unfortunately, things are not as simple as one might hope for

since in general M→Spin M′ does not imply V(M)→S V(M′). First, the assertions and axioms to

which the pinpointing rule was applied inM may not be present in the projection V(M) since V does

not satisfy their labels. Thus, we may also have V(M) = V(M′). Second, a pinpointing application of

a rule may change the projection (i.e., V(M) 6= V(M′)), although this change does not correspond to a

normal application of this rule to V(M). For example, consider the tableau rule (3) treating existential

restrictions in description logics, and assume that we have the assertions (∃r.C)(a) with label ax1 and

r(a, b), C(b) with label ax2. Then the rule (3) is pinpointing applicable, and its application adds the

new assertions r(a, c), C(c) with label ax1, where c is a new constant. If V is a valuation that makes

ax1 and ax2 true, then the V-projection of our set of assertions contains (∃r.C)(a), r(a, b), C(b). Thus

rule (3) is not applicable, and no new individual c is introduced. To overcome this second problem, we

define a modified version of rule application, where the applicability condition (iii) from Definition 3.2

is removed.

14

Definition 4.6 (modified rule application) Given an S-state S = (A, T), a rule R : (B0,S) →

{B1, . . . , Bm}, and a substitution ρ on var(B0), this rule is m-applicable to S with ρ if (i) S ⊆ T and

(ii) B0ρ ⊆ A. In this case, we write M→Sm M′ if S ∈ M and M′ = (M\ {S}) ∪ {(A ∪ Biσ, T) |

i = 1, . . . ,m}, where σ is a substitution on the variables occurring in R that extends ρ and maps the

fresh variables of R to distinct new constants.

The next lemma relates modified rule application with “normal” rule application, on the one hand,

and pinpointing rule application on the other hand. Note that “saturated” in the formulation of the

first part of the lemma means saturated w.r.t. →S , as introduced in Definition 3.2.

Lemma 4.7 Let Γ = (I, T) be an axiomatized input and M0 = ΓS.

1. Assume that M0
∗
−→S M and M0

∗
−→Sm M′ and that M and M′ are saturated finite sets of

S-states. Then M is full of clashes iff M′ is full of clashes.

2. Assume thatM andM′ are finite sets of labeled S-states, and that V is a propositional valuation.

Then M →Spin M′ implies V(M) →Sm V(M′) or V(M) = V(M′). In particular, this shows

that M0
∗
−→Spin M implies V(M0)

∗
−→Sm V(M).

Proof. To show the second statement, assume that M →Spin M′, i.e., there is an S-state S =

(A, T) ∈ M and a rule R : (B0,S) → {B1, . . . , Bm} such that R is pinpointing applicable to S with

substitution ρ, andM′ = (M\{S})∪{(A⋒ψBiσ, T) | 1 ≤ i ≤ m} where σ and ψ are as in the definition

of pinpointing application. Take one of the newly added S-states Si = (A ⋒ψ Biσ, T) ∈ M′. By the

definition of ψ-insertion, we know that every assertion a ∈ A \ insψ(Biσ,A) keeps its old label lab(a),

each newly added assertion in insψ(Biσ,A) \ A gets label ψ, and each assertion b ∈ A ∩ insψ(Biσ,A)

gets the modified label ψ ∨ lab(b).

Thus, if V satisfies ψ, then we have (A ⋒ψ Biσ)V = AV ∪ Biσ since the labels ψ of the newly

added assertions and the modified labels are satisfied by V . This implies that V(M) →Sm V(M′)

since conditions (i) and (ii) of the definition of m-applicability follow from the fact that V satisfies ψ.

On the other hand, if V does not satisfy ψ, then (A⋒ψ Biσ)V = AV since the labels ψ of the newly

added assertions are not satisfied by V , and the disjunction with ψ does not change the evaluation of

the modified labels under V . Thus, in this case V(M) = V(M′).

The proof of the first statement of the lemma is more involved. We defer it till we have shown

that this lemma indeed implies Theorem 4.5.

Given this lemma, we can easily prove Theorem 4.5. Let Γ = (I, T) be an axiomatized input, and

assume that M0 →Spin . . . →Spin Mn such that M0 = ΓS and Mn is pinpointing saturated. We

15

must show that the clash formula ψ := ψMn
is a pinpointing formula for the property P . This is an

immediate consequence of the next two lemmas.

Lemma 4.8 If (I, TV) ∈ P then V satisfies ψ.

Proof. Let N0 := (I, TV)S . Since S terminates on every input, there is a saturated set N such that

N0
∗
−→S N . Since S is correct for P and (I, TV) ∈ P , we know that N is full of clashes. By 2. of

Lemma 4.7, M0
∗
−→Spin Mn implies V(M0)

∗
−→Sm V(Mn). In addition, we know that V(M0) = N0,

and Lemma 4.4 implies that V(Mn) is saturated. Thus, 1. of Lemma 4.7, together with the fact that

N is full of clashes, implies that V(Mn) is full of clashes. By Lemma 4.3, this implies that V satisfies

ψ = ψMn
.

Lemma 4.9 If V satisfies ψ then (I, TV) ∈ P.

Proof. Consider again a chain of rule applications N0 = (I, TV)S
∗
−→S N where N is saturated. We

have (I, TV) ∈ P if we can show that N is full of clashes. As in the proof of the previous lemma, we

have that V(M0)
∗
−→Sm V(Mn), V(M0) = N0, and V(Mn) is saturated. Since V satisfies ψ = ψMn

,

Lemma 4.3 implies that V(Mn) is full of clashes. By 1. of Lemma 4.7, this implies that N is full of

clashes.

To complete the proof of Theorem 4.5, it remains to show the first part of Lemma 4.7. Before

proving this result, we introduce the notion of a sub-state. An S-state S is a sub-state of an S-state S′

if every assertion and axiom in S also occurs S′. However, we need to make the notion more general

by allowing for different constants to be used in the S-states as long as there is a “renaming” from

the constants of S into the ones of S′ such that the desired inclusion between their sets of assertions

holds.

Definition 4.10 (sub-state) The S-state S = (A, T) is a sub-state of S
′ = (A′, T ′), denoted

as S � S′, if T ⊆ T ′ and there exists a renaming function f : cons(A) → cons(A′) such that

P (a1, . . . , ak) ∈ A implies P (f(a1), . . . , f(ak)) ∈ A′.

It is important to notice that, for every pair of S-states S = (A, T) and S′ = (A′, T ′) such that

S � S′, the following holds: if there is a set B of patterns and a substitution ρ on var(B) such that

Bρ ⊆ A, then ρ′ := ρ ◦ f (where f is the renaming function that yields S � S′) satisfies Bρ′ ⊆ A′. In

particular, this implies that S′ contains a clash whenever S does.

16

Lemma 4.11 Let N and N0 be sets of S-states, S ∈ N , S0 ∈ N0, with N0 saturated. If S � S0,

then for every N →Rm N ′ there is S′ ∈ N ′ such that S′ � S0.

Proof. If N ′ is obtained by the application of R to an S-state different from S, then S ∈ N ′ and thus

nothing needs to be shown. Suppose now that the rule R : (B0,S) → {B1, . . . , Bm} is applied to S

with substitution ρ to obtain N ′, and let S = (A, T) and S0 = (A0, T0). Since S � S0, this implies

that S ⊆ T ⊆ T0 and there is a substitution ρ′ on var(B0) such that B0ρ
′ ⊆ A0. Thus, conditions (i)

and (ii) of the definition of rule applicability are satisfied for S0, R, and ρ′. Since N is saturated, R

actually cannot be applicable to S0 with ρ′; hence, condition (iii) cannot hold. This means that there

must exist an i, 1 ≤ i ≤ m and a substitution ς on var(B0 ∪Bi) extending ρ′ such that Biς ⊆ A0.

On the other hand, a substitution σ extending ρ is used to construct the new set N ′ through the

application of the rule R to S. Let S′ := (A ∪ Biσ, T). Since σ maps the fresh variables of R to

distinct new constants, we can extend the renaming function f to f ′ : cons(A ∪ Biσ) → cons(A0)

by setting f ′(σ(x)) := ς(x) for every fresh variable x of R appearing in Bi. This defines a complete

renaming function f ′ for the constants in A ∪Biσ, and by definition this function satisfies σ ◦ f ′ = ς.

We show that S′ � S0 with the renaming function f ′. Thus, assume that P (a1, . . . , ak) is in A ∪

Biσ. If this assertion belongs to A, then P (f ′(a1), . . . , f
′(ak)) = P (f(a1), . . . , f(ak)) ∈ A0 since S �

S0 with the renaming function f . If P (a1, . . . , ak) ∈ Biσ, then P (a1, . . . , ak) = P (σ(x1), . . . , σ(xk))

for variables x1, . . . , xk ∈ var(B0 ∪Bi). Since σ ◦ f ′ = ς, we have

P (f ′(a1), . . . , f
′(ak)) = P (ς(a1), . . . , ς(ak)) ∈ Biς ⊆ A0.

This completes our proof that S
′ � S0.

The following lemma generalizes both Proposition 3.4 and the first part of Lemma 4.7.

Lemma 4.12 Let Γ be an axiomatized input and M0 := ΓS. If M and M′ are saturated sets of

S-states such that M0
∗
−→Sm M and M0

∗
−→Sm M′, then M is full of clashes iffM′ is full of clashes.

Proof. Note that the application of a rule to a set of S-states removes one of these S-states, and adds

a finite number of S-states that extend the removed one. Thus, for every S-state S ∈ M′, there is an

S-state S0 ∈M0 such that S0 � S.

Consider the chain of (modified) rule applications M0 →Sm M1 →Sm . . . →Sm Mn = M that

leads from M0 to M. Since M′ is saturated, Lemma 4.11 yields that, for every S ∈ M′, there is an

S-state S1 ∈ M1 such that S1 � S. By iterating this argument, we obtain that, for every S ∈ M′,

there is an element Sn ∈M such that Sn � S.

17

Now, assume thatM is full of clashes, i.e., every element ofM contains a clash. To show thatM′

is full of clashes, consider S ∈ M′. Then there is an element Sn ∈ M such that Sn � S. The fact

that Sn contains a clash then implies that S also contains a clash. This proves the implication from

left to right of the lemma. A symmetric argument can be used to prove the converse direction.

This completes the proof of Theorem 4.5. The theorem considers a terminating chain of pinpointing

rule applications. Unfortunately, termination of a tableau S in general does not imply termination of

its pinpointing extension. The reason is that a rule may be pinpointing applicable in cases where it

is not applicable in the normal sense (see the discussion above Definition 4.6). This can occur even if

the tableau contains purely deterministic rules, as shown in the following example.

Example 4.13 Consider the tableau S that has the following three rules

R1 : ({P (x)}, {ax1})→ {{r(y, y, y), Q1(y), Q2(y)}},

R2 : ({P (x)}, {ax2})→ {{r(y, y, y), Q1(y), Q2(y)}},

R3 : ({Q1(x), Q2(y)}, ∅)→ {{r(x, y, z), Q1(y), Q2(z)}},

where the function ·S maps every input I ∈ I to the singleton set {{P (a)}}, and every axiom from

T = {ax1, ax2} to the empty set. We assume that every subset of T is admissible. For any axiomatized

input Γ = (I, T), we have ΓS = {({P (a)}, T)}. Depending on which axioms are contained in T , the

rules R1 and/or R2 may be applicable, but R3 is not. Notice that R1 and R2 have the same right-hand

side, and thus application of R1 or R2 to ΓS leads to the same S-state, modulo the chosen new constant

introduced for the fresh variable y. Suppose we apply one of these two rules, introducing b as the new

constant. Then the resulting S-state is be given by S = (A, T) where

A = {P (a), Q1(b), Q2(b), r(b, b, b)}.

No rule is applicable to S. In fact, in order to apply rule R1 or R2, the only way to satisfy Condition (ii)

in the definition of rule application is to use a substitution that maps x to the constant a. Extending

this substitution to map y to b violates Condition (iii) of the definition of rule application since the

assertions Q1(b), Q2(b) and r(b, b, b) were already introduced by the first rule application. To satisfy

Condition (ii) for rule R3, we must choose the substitution ρ that maps x and y to b. Thus, extending

ρ by mapping z to b violates Condition (iii). This shows that S indeed terminates on every axiomatized

input.

18

However, it is possible to construct an infinite chain of pinpointing rule applications starting with

ΓS = {({P (a)}, {ax1, ax2})} where lab(P (a)) = ⊤. We can first apply rule R1 leading to the S-state S

described above, where all the assertions, except for P (a), are labeled with ax1. Rule R2 is pinpointing

applicable to S: although there is an extension of the corresponding substitution such that all the

assertions exist already in S, these assertions are labeled with the formula ax1, which is not implied by

ax2. The pinpointing application of R2 to S adds the assertions Q1(c), Q2(c), r(c, c, c) with label ax2.

We can now apply R3 to the resulting S-state S′ with the substitution ρ mapping x and y to b and c,

respectively. Since the S-state S′ does not contain any assertion of the form r(b, c,), Condition (iii)

is not violated. This rule application adds the assertions r(b, c, d), Q2(d) with label ax1∧ax2. It is easy

to see that the rule R3 can now be applied repeatedly, thus producing an infinite chain of pinpointing

rule applications.

This example shows that the termination of a tableau S does not necessarily imply the termination

of its pinpointing extension. One way to overcome this problem could be to find sufficient conditions

under which termination transfers from a tableau to its pinpointing extension. However, finding such

a condition that is independent of the reason why a tableau terminates has turned out to be quite

hard. For this reason, the next section follows a different approach: we introduce a class of terminating

tableaux whose pinpointing extensions terminate as well.

5 A class of terminating tableaux

One of the reasons why tableau algorithms for certain DLs terminate is that they create a tree structure

for which the out-degree and the depth of the tree are bounded by a function of the size of the input

formula. The nodes of these trees are labeled, but the input determines a finite number of possible

labels. A typical example is the tableau-based decision procedure for satisfiability of ALC-concepts

[31, 8]. This algorithm generates sets of assertions of the form r(a, b) where r is a so-called role and

C(a) where C is an ALC-concept description. The tree structure is induced by role assertions, and

the nodes are labeled by sets of concepts, i.e., node a is labeled with {C1, . . . , Cn} if C1(a), . . . , Cn(a)

are all the concept assertions involving a. The main reasons why the algorithm terminates are:

• the depth of the tree structure is bounded by the size n of the input, i.e., the maximal length m

of chains r1(a0, a1), r2(a1, a2), . . . , rm(am−1, am) in a set of assertions generated by the algorithm

is bounded by n;

• the out-degree of the tree structure is bounded by n , i.e., the maximal number m of assertions

19

r1(a0, a1), r2(a0, a2), . . . , rm(a0, am) in a set of assertions generated by the algorithm is bounded

by n;

• for every assertion C(a) occurring in a set of assertions generated by the algorithm, C is a

sub-description of the input concept description.

If we look at the extension of this algorithm to one that decides consistency of ALC-ABoxes (see,

e.g., [14, 8]), then things are a bit more complicated: rather than a single tree one obtains a forest,

more precisely, several trees growing out of the input ABox. But these trees satisfy the restrictions

mentioned above, which is enough to show termination.

Basically, we want to formalize this reason for termination within the general framework of tableaux

introduced in this paper. However, to be as general as possible, we do not want to restrict assertions to

be built from unary predicates (concepts) and binary predicates (roles) only. For this reason, we allow

for predicates of arbitrary arity, but restrict our assertions such that states (i.e., sets of assertions)

induce graph-like structures.

In order to have a graph-like structure, we must be able to distinguish between nodes and edges.

For this reason, we now assume that the signature Σ is partitioned into the sets Λ and ∆, where each

predicate name P ∈ Λ is equipped with an arity n, while every predicate name r ∈ ∆ is equipped with

a double arity 0 < m < n. Strictly speaking, the arity of r ∈ ∆ is n; however, the first m argument

positions are grouped together, as are the last n−m. Intuitively, the elements of Λ correspond to DL

concepts and form the nodes of the graph-like structure, whereas the elements of ∆ correspond to DL

roles and induce the edges.

If a pattern/assertion p starts with a predicate from ∆ (Λ), we say that p is a ∆-pattern/assertion

(Λ-pattern/assertion), and write p ∈ ∆̂ (p ∈ Λ̂). In our ALC example, the set Λ consists of all ALC-

concepts, which have arity 1, and ∆ consists of all role names, which have double arity 1, 2. For the rest

of this paper, assertions and patterns in Λ̂ will be denoted using capital letters (P,Q,R, . . .), and those

in ∆̂ using lower-case letters (r, s, t, . . .). Given a predicate p ∈ ∆ with double arity m,n, the sets of

parents and descendants of the pattern r = p(x1, . . . , xm, xm+1, . . . , xn) are given by←−r = {x1, . . . , xm}

and −→r = {xm+1, . . . , xn}, respectively.

In our ALC example, the nodes of the tree are the constants occurring in the set of assertions, and

the concept assertions give rise to the labels of these nodes. In the general case, nodes are not single

constants, but rather sets of assertions built over a connected set of constants.

Definition 5.1 (connected) Let B be a set of Σ-patterns (Σ-assertions), and x, y ∈ var(B) (a, b ∈

cons(B)). We say that x and y (a and b) are B-connected, denoted as x ∼B y (a ∼B b), if there are

20

variables x0, x1, . . . , xn ∈ var(B) (constants a0, a1, . . . , an ∈ cons(B)) and patterns P1, . . . , Pn ∈ B ∩ Λ̂

(assertions P1, . . . , Pn ∈ B ∩ Λ̂) such that x = x0, y = xn (a = a0, b = an) and for every 1 ≤ i ≤ n it

holds that {xi−1, xi} ⊆ var(Pi) ({ai−1, ai} ⊆ cons(Pi)).

We say that B is connected if, for every x, y ∈ var(B) (a, b ∈ cons(B)), we have x ∼B y (a ∼B b).

If B is clear from the context, we will simply write x ∼ y to represent x ∼B y.

Connected sets of assertions can be viewed as bundles that join the constants contained in them.

Nodes will be formed by maximal sets of assertions from Λ̂. An assertion from ∆̂ will be treated

as a (directed) edge that connects a node containing its parent constants with a node containing its

descendant constants.

Definition 5.2 (graph structure) Let B be a set of assertions. A maximal connected subset N ⊆

B ∩ Λ̂ is called a node in B. An assertion r ∈ B ∩ ∆̂ is called an edge in B if there are two nodes

N1 and N2 in B such that ←−r ⊆ cons(N1) and cons(N2) ⊆
−→r . In this case, we say that r connects N1

to N2. The set B is a graph structure if every r ∈ B ∩ ∆̂ is an edge. If B is a graph structure, the

corresponding B-graph GB contains one vertex vN for every node N , and an edge (vN , vM) if there

is an edge connecting N to M . The notion of a graph structure and of the corresponding graph can

be extended to states S = (B, T) in the obvious way: S is a graph structure if B is one, and in this

case GS := GB .

If a set of assertions B is a graph structure, then the set of nodes forms a partition of B ∩ Λ̂, and

each of its elements either belongs to a node or is a (directed) edge. Observe, however, that an edge

r ∈ ∆̂ may connect a node with more than one successor node. For example, consider the set of

assertions B = {P (a), Q(b), R(c), r(a, b, c)} where P,Q,R ∈ Λ are unary, and r ∈ ∆ has double arity

1, 3. This set forms a graph structure consisting of the nodes N1 := P (a), N2 := Q(b), N3 := R(c)

and the edge r(a, b, c). This single edge connects N1 to both N2 and N3. GB is then the graph

({v1, v2, v3}, {(v1, v2), (v1, v3)}). This will create no problem in our proofs, but must be kept in mind

when dealing with graph-structures and their corresponding graphs.

Recall that the tableau-based decision procedure for consistency of ALC-ABoxes [14, 8] starts with

an ABox, which can be viewed as a graph, but then extends this ABox by trees that grow out of the

nodes of this graph. The following definition introduces forest tableaux, which show a similar behavior,

but are based on the more general notion of a graph structure introduced above.

Definition 5.3 (forest tableau) The tableau S = (Σ, ·S ,R, C) is called a forest tableau if for every

axiomatized input Γ and every S ∈ ΓS, the state S is a graph structure, every clash C ∈ C is a

21

connected subset of Λ̂, and the following conditions hold for every rule (B0,S) → {B1, . . . , Bm} and

every 1 ≤ i ≤ m:

1. for every Σ-pattern r ∈ B0 ∩ ∆̂, there exists a Σ-pattern P ∈ B0 ∩ Λ̂ such that ←−r ⊆ var(P) or

−→r ⊆ var(P).

2. for every Σ-pattern r ∈ Bi ∩ ∆̂, there exists a Σ-pattern P ∈ B0 ∩ Λ̂ such that ←−r ⊆ var(P).

3. for every Σ-pattern r ∈ Bi ∩ ∆̂, we have −→r ∩ var(B0) = ∅.

4. if r, s ∈ Bi ∩ ∆̂ are distinct patterns, then −→r ∩ −→s = ∅.

5. for every Σ-pattern P ∈ Bi ∩ Λ̂, either

(i) there is a Σ-pattern r ∈ (B0 ∪Bi) ∩ ∆̂ such that var(P) ⊆ −→r or var(P) ⊆ ←−r , or

(ii) there is a Q ∈ B0 ∩ Λ̂ with var(P) ⊆ var(Q).

6. if B0 ∩ ∆̂ 6= ∅, then Bi ∩ ∆̂ = ∅.

7. B0 ∩ Λ̂ is connected.

A few intuitive explanations for these conditions are in order. Condition 1 ensures that every edge

triggering a rule application is connected to a node, which may be either a parent or a descendant node

of this edge. Condition 2 makes sure that for every newly introduced edge, a parent node was present

before the rule is applied. This implies that rule application cannot add a new parent for a node, and

that newly introduced nodes are not disconnected from the rest of the graph structure. Both of these

properties are vital for obtaining forest structures. Condition 3 states that every newly generated edge

has only new constants in its descendant set. In other words, new edges cannot connect old nodes,

but only generate new nodes as descendant. Condition 4 ensures that, even if several edges are added

by a single rule application, these edges connect different nodes with the parent node, avoiding this

way that a node is connected by multiple edges to a parent node. Condition 5 makes sure that we

alway have a connected graph. It states that, whenever a non-edge assertion is added, it must either

belong to an old node, or belong to a descendant node added by the creation of a new edge within

the same rule application. Condition 6 states that the addition of new edges must only depend on

the assertions belonging to the parent nodes, but never on the presence of other edges. In particular,

this ensures that each descendant is created independently from its siblings, as long this is done in

distinct rule applications. Finally, Condition 7 ensures that the non-edge assertions triggering a rule

application all belong to the same node.

22

The different (disjunctive) options stated in Conditions 1 and 5(i) require an additional explana-

tion. They allow the tableau rules to propagate information not just to successor nodes, but also to

predecessor nodes in the trees. The main reason for including this possibility in our framework is that

it makes it general enough to deal with constructors such as inverse roles in DLs. The price to pay

for this is that more cases must be analyzed in the proofs.

Clearly, just ensuring that all states generated by a tableau have forest structure is not sufficient

to yield termination. We must also ensure that the trees in the forest cannot grow indefinitely (i.e.,

that the overall number of nodes that can be generated is bounded), and that the same is true for the

nodes (i.e., that the number of assertions making up a single node is bounded). The next definition

deals with the second condition.

Definition 5.4 (cover) Let S = (Σ, ·S ,R, C) be a tableau and T a set of axioms. A set Ω ⊆ Σ is

called a T -cover if, for every rule R : (B0,S) → {B1, . . . , Bn} such that S ⊆ T and B0 contains only

predicates from Ω, the sets Bi for i = 1, ..., n also contain only predicates from Ω. The tableau S is

covered if, for every axiomatized input Γ = (I, T), there is a finite T -cover ΩΓ such that every S-state

in ΓS contains only predicates from ΩΓ.

Given such a covered tableau, every state that can be reached from an initial state in ΓS by applying

rules from S contains only predicates from ΩΓ. We will see that this ensures that nodes cannot grow

indefinitely. To prevent the trees from growing indefinitely (i.e., to bound the number of nodes), it

is enough to enforce finite branching and finite paths in the trees. Finite branching actually already

follows from the conditions we have stated so far.

To bound the length of paths, we additionally require the predicates occurring in rules to be

decreasing. Given a strict partial order < on predicates, we extend it to patterns (assertions) by

defining P < Q if the predicate of the pattern (assertion) P is smaller than the predicate of the

pattern (assertion) Q.

Definition 5.5 (ordered tableaux) A covered tableau S is called an ordered tableau if, for every

axiomatized input Γ, there is a strict partial ordering <Γ on the predicate names in ΩΓ ∩Λ such that,

for every rule (B0,S) → {B1, . . . , Bn}, every 1 ≤ i ≤ n, and every P ∈ B0 ∩ Λ̂ and Q ∈ Bi ∩ Λ̂, we

have Q <Γ P .

For example, the tableau-based decision procedure for consistency of ALC-ABoxes is an ordered

tableau. It is covered since rule application only adds concept assertions C(a) (role assertions r(a, b))

where C is a sub-description of a concept description occurring in the input ABox A0 (where r is a role

23

occurring in the input ABox A0). Thus one can take the set of sub-descriptions of concept descriptions

occurring in A0 together with the roles occurring in A0 as a cover. In addition, rule application only

adds concept assertions of a smaller role-depth (i.e., nesting of existential and value-restrictions) than

the one that triggered it. Thus, ordering concept descriptions by their role-depth yields the desired

partial order.

Ordered tableaux have the property that, if applied to an axiomatized input Γ, none of the trees in

the generated forest can have a depth greater than the cardinality of the cover ΩΓ. This easily follows

from the next lemma. We will actually look at modified rule application rather than normal one since

we want to show not only termination of the tableau itself, but also of its pinpointing extension.

Lemma 5.6 Let S be an ordered forest tableau, Γ an axiomatized input, and S0 →Sm S1 →Sm · · ·

a sequence of modified rule applications starting with S0 ∈ ΓS. Then, for every Si = (Ai, T) and

P ∈ Ai∩Λ̂, either cons(P) ⊆ cons(A0) or there are r ∈ Ai∩∆̂ and Q ∈ Ai∩Λ̂ such that ←−r ⊆ cons(Q),

cons(P) ⊆ −→r , and P <Γ Q.

Proof. The proof is by induction on i. For S0 the result is trivial. Suppose now that it holds for

Si, and that the rule R : (B0,S)→ {B1, . . . , Bn} is applied to Si to obtain Si+1 = (Ai+1, T), where

Ai+1 = Ai ∪ Bjσ for some substitution σ and some j, 1 ≤ j ≤ n. Let P ∈ Ai+1 ∩ Λ̂. If P ∈ Ai, then

by the induction hypothesis and the fact that Ai ⊆ Ai+1, the result holds. Otherwise, P was added

by the application of R. By Condition 5 of Definition 5.3, we have either (i) an r ∈ (B0 ∪ Bj)σ ∩ ∆̂

with cons(P) ⊆ −→r or cons(P) ⊆ ←−r , or (ii) there is a Q ∈ B0σ ∩ Λ̂ with cons(P) ⊆ cons(Q).

We will analyze Case (ii) first. Since the rule was applied with substitution σ, we have B0σ ⊆ Ai,

and thus Q ∈ Ai ∩ Λ̂. Since S is ordered, we also know that P <Γ Q. By the induction hypothesis,

either cons(Q) ⊆ cons(A0), or ←−r ⊆ cons(Q′), cons(Q) ⊆ −→r , and Q <Γ Q
′ for assertions r,Q′ ∈ Ai. In

both cases, transitivity of <Γ and of ⊆ yield the desired result.

We focus now on Case (i). Suppose first that cons(P) ⊆ −→r . If r ∈ Bjσ, then Condition 2 of

Definition 5.3 ensures that there is a Q ∈ B0σ ⊆ Ai such that ←−r ⊆ cons(Q). Since S is ordered, we

also have P <Γ Q, which completes the proof for the case where cons(P) ⊆ −→r and r ∈ Bjσ.

Next, we consider the case where cons(P) ⊆ −→r and r ∈ B0σ. Then, by Condition 1 of Definition 5.3,

there must exist a Q ∈ B0σ such that ←−r ⊆ cons(Q) or −→r ⊆ cons(Q). In the former case, the proof is

analogous to the one for the first part of this case. In the latter case, we have cons(P) ⊆ −→r ⊆ cons(Q),

which is an instance of Case (ii).

Finally, suppose that cons(P) ⊆ ←−r . We can assume without loss of generality that there is no

Q ∈ B0σ ∩ Λ̂ such that cons(P) ⊆ cons(Q). In fact, if it existed, we would be in Case (ii) analyzed

24

above. Consequently, r cannot belong to Biσ since this would violate Condition 2 of Definition 5.3.

Hence, r ∈ B0σ and there must exist a Q ∈ B0σ ∩ Λ̂ such that ←−r ⊆ cons(Q) or −→r ⊆ cons(Q).

In the first case, we have cons(P) ⊆ ←−r ⊆ cons(Q), which brings us back to Case (ii) analyzed

above. In the other case, we know that P <Γ Q and Q ∈ Ai. Thus, by the induction hypothesis, the

statement of the lemma holds for Q.

If cons(Q) ⊆ cons(A0), then—since we have assumed for this case that −→r ⊆ cons(Q)—we also

have −→r ⊆ cons(A0). This means that r was not added by any previous rule application as otherwise

this would violate Condition 3 of Definition 5.3. Thus, r must have been already present in A0, which

implies ←−r ⊆ cons(A0). Since cons(P) ⊆ ←−r , it also holds that cons(P) ⊆ cons(A0).

Now, assume that cons(Q) 6⊆ cons(A0). By the induction hypothesis, there exist s ∈ Ai ∩ ∆̂ and

R ∈ Ai ∩ Λ̂ such that ←−s ⊆ cons(R), cons(Q) ⊆ −→s , and Q <Γ R. Since cons(Q) 6⊆ cons(A0), we know

that Q and s were added by a (previous) rule application. We claim that r = s. In fact, we have

∅ 6= −→r ⊆ cons(Q) ⊆ −→s . If we had r 6= s, then this would violate Condition 3 or 4 of Definition 5.3,

where Condition 3 covers the case where r and s are introduced by different rule applications, and

Condition 4 covers the case where these two assertions are added by the same rule application.

Overall, we thus know that cons(P) ⊆ ←−r ⊆ cons(R) and P <Γ R. Since R ∈ Ai, by the induction

hypothesis, we have once again that either cons(R) ⊆ cons(A0) or there exist r′ ∈ Ai∩∆̂ andQ′ ∈ Ai∩Λ̂

such that
←−
r′ ⊆ cons(Q′), cons(R) ⊆

−→
r′ , and R <Γ Q

′. In both cases, the fact that cons(P) ⊆ cons(R)

and P <Γ R, together with the transitivity of ⊆ and <Γ, yields the desired result.

An easy consequence of this lemma is that a path consisting of m new edges in a state generated by

rule applications from a state in ΓS implies a decreasing sequence w.r.t. <Γ of the same same length.

Consequently, the length of such paths is bounded by the number of predicate symbols occurring in

the finite cover ΩΓ.

Proposition 5.7 Let S0
∗
−→Sm S where S0 = (A0, T) ∈ ΓS and S = (A, T). Suppose that A contains

edges r1, . . . , rm and nodes N0, . . . , Nm such that for all i, 1 ≤ i ≤ m, ri /∈ A0 and ri connects Ni−1

with Ni. Then, there exist assertions Q1, . . . , Qm ∈ A such that Q1 >Γ Q2 >Γ . . . >Γ Qm.

Proof. Since ri connects Ni−1 with Ni for i = 1, . . . ,m, we know by Definition 5.2 that ←−ri ⊆

cons(Ni−1) and cons(Ni) ⊆
−→ri . This implies that ←−ri ⊆

−−→ri−1 for all i, 1 < i ≤ m.

For each of the edges ri we have assumed that it is new, i.e., ri /∈ A0. Thus, ri must have been

added by some rule application. Condition 3 of Definition 5.3 entails then that, for every 1 ≤ i ≤ m,

−→ri ∩ cons(A0) = ∅, and thus, for every 1 < i ≤ m it also holds that ←−ri ∩ cons(A0) = ∅, as ←−ri ⊆
−−→ri−1.

25

Since rm was added by a rule application, by Condition 2 of Definition 5.3, there must be an

assertion Qm ∈ A ∩ Λ̂ such that ←−rm ⊆ cons(Qm). Hence, cons(Qm) 6⊆ cons(A0). By Lemma 5.6, there

exist r ∈ A∩∆̂ and Qm−1 ∈ A∩Λ̂ such that←−r ⊆ cons(Qm−1), cons(Qm) ⊆ −→r , and Qm <Γ Qm−1. We

have ←−rm ⊆
−−−→rm−1 and ←−rm ⊆ cons(Qm) ⊆ −→r , which implies that −−−→rm−1 ∩

−→r 6= ∅. However, Conditions 3

and 4 of Definition 5.3 ensure that distinct assertions in ∆̂\A0 must have disjoint sets of descendants.

Thus, we know that r = rm−1.

We can now apply the same argument as above to rm−1 and Qm−1 to obtain an assertion Qm−2

such that←−−−rm−2 ⊆ cons(Qm−2), cons(Qm−1) ⊆
−−−→rm−2, and Qm−1 <Γ Qm−2. By iterating this argument,

we thus obtain the desired descending chain Q1 >Γ Q2 >Γ . . . >Γ Qm.

The following two remarks will be useful in the proof of the main theorem of this section. First,

note that Condition 7 of Definition 5.3 ensures that the assertions from Λ̂ triggering a rule application

all belong to the same node.

Second, given a new node N (i.e., one that was not present in the initial state) and an assertion

P ∈ N , Lemma 5.6 yields an edge r such that cons(P) ⊆ −→r . Since distinct edges have disjoint sets of

descendants (Condition 4 of Definition 5.3) any other assertion in Q ∈ N also satisfies cons(Q) ⊆ −→r .

This shows that the constants occurring in a node all belong to the descendant set of the edge whose

introduction created the node.

We are now ready to show termination of the pinpointing extension of any ordered forest tableaux.

Theorem 5.8 If S is an ordered forest tableau, then its pinpointing extension terminates on every

input.

Proof. Suppose that there is an input Γ = (I, T) for which there is an infinite sequence of pinpointing

rule applications S0 →Spin S1 →Spin . . ., with S0 ∈ ΓS . Since S is a covered tableau, there is a

finite T -cover ΩΓ such that, for all i ≥ 0, the assertions in Si use only predicate symbols from ΩΓ.

As noted above, for every node there is a fixed finite set of constants that can occur in the assertions

of this node. This set is either the set of constants occurring in S0 (for an old node) or it consists of

the descendants in the unique edge whose introduction created the node (for a new node). Together

with the fact that the T -cover ΩΓ is finite, this restricts the assertions that can occur in the node

to a fixed finite set. Each of these assertion may repeatedly have its label modified by applications

of the pinpointing rules. However, every application of a rule makes the label more general in the

sense that the new monotone Boolean formula has more models than the previous one. Since these

formulae are built over a finite set of propositional variables, this can happen only finitely often. The

same argument shows that the label of a given edge can be changed only finitely often.

26

Hence, to get a non-terminating sequence of rule applications, infinitely many new nodes must be

added. By Conditions 5 and 2 of Definition 5.3, each newly added node N is created as successor of an

existing node w.r.t. a unique edge r ∈ ∆̂ such that the constants in N are new constants contained in

−→r . If infinitely many new nodes are created, then either there is a node that obtains infinitely many

direct successors, or an infinite chain of nodes is created, where each is a successor of the previous

one.

Proposition 5.7 implies that the latter case cannot occur. In fact, given nodes N0, N1, . . . , Nm

and edges r1, . . . , rm such that, for all i, 1 ≤ i ≤ m, ri connects Ni−1 to Ni, Proposition 5.7 yields a

sequence of assertions Q1, . . . , Qm ∈ Λ̂ such that Q1 >Γ Q2 >Γ . . . >Γ Qm. However, the length of

such a descending sequence is bounded by the cardinality of the finite T -cover ΩΓ. Thus, it is not

possible that an infinite path is created by rule application.

Now, consider the first case, i.e., assume that there is a node N for which infinitely many successors

are created. However, the constants in N are from a fixed finite set of constants C, and the predicate

symbols that can occur in the applied rules must all belong to the finite T -cover ΩΓ. Thus, up to

variable renaming, there are only finitely many rules that can be applied to N , and there are only

finitely many ways of replacing the variables in the left-hand side of rules by constants from C. The

fresh variables in the right-hand side are always replaced by distinct new constants. Thus, for a fixed

rule and a fixed substitution σ replacing the variables in the left-hand side of this rules by constants

from C, the assertions introduced by two different applications of this rule using σ only differ by a

renaming of these new constants. By the way pinpointing rule applicability is defined, such renamed

variants can only be added as long as their labels are not equivalent. But there are only finitely many

labels up to equivalence. Thus, N can in fact obtain only a finite number of successors. This finishes

the proof that the pinpointing extension of an ordered forest tableau always terminates.

Note that termination of the pinpointing extension implies termination of the original tableau. In

fact, a non-terminating sequence of rule applications for the original tableau can easily be transformed

into a non-terminating sequence of rule applications for its pinpointing extension.

Corollary 5.9 An ordered forest tableau terminates on every input.

6 Tableaux with blocking

The ordered forest tableaux introduced above can be used to model tableau-based algorithms that

try to generate a finite tree- or forest-shaped model. In the presence of so-called general concept

27

inclusion axioms (GCIs) or transitive roles, DLs lose the finite tree/forest model property, and thus

these algorithms need no longer terminate. Termination can be regained, however, by blocking the

application of generating rules, i.e., rules that generate new nodes, in case that the node to which the

rule is supposed to be applied has a predecessor node that has the same assertions. A saturated and

clash-free tableau can then be unraveled into an infinite tree/forest model (see, e.g., [18]).

In order to illustrate our general model of tableaux with blocking, we consider a non-terminating

forest tableau that can be made terminating by blocking. Note that the usual tableau-based algorithm

for ALC extended with inverse roles and GCIs shows a similar behavior.

Example 6.1 Consider a forest tableau S with the following three (deterministic) rules

R1 : ({C(x)}, ∅)→ {{r(x, y), D(y)}},

R2 : ({D(x)}, ∅)→ {{r(x, y), C(y)}},

R3 : ({C(x), r(y, x)}, ∅)→ {{¬D(y)}},

and the clash {D(x),¬D(x)}. In addition, we assume that the function ·S maps every input I ∈ I to

the singleton set {{C(a0)}} and each axiom in T to the empty set. It is easy to see that S does not ter-

minate since it can produce an infinite chain of assertions of the form C(a0), r(a0, a1), D(a1), r(a1, a2),

C(a2), If we apply rule R1 followed by R2 to ΓS = {({C(a0)}, ∅)}, then we obtain the S-state (A, ∅)

consisting of the assertions A := {C(a0), r(a0, a1), D(a1), r(a1, a2), C(a2)}. At this point, blocking

should prevent the application of R1 to the node a2:
7 it is the repeated application of R1 that causes the

generation of the above infinite chain of assertions. The reason why R1 can be blocked is that the node

a2 contains the same assertions as its predecessor a0: both have an assertion for C. Note, however,

that the application of R3 to a2, which adds the assertion ¬D(a1), should still be possible. In fact, oth-

erwise the clash could not be detected. After application of R3, we reach the S-state (A∪{¬D(a1)}, ∅),

where the only applicable rule is R1, which is however blocked. Thus, the blocking variant of the tableau

terminates with this blocking-saturated state.

Before we can formalize our notion of tableaux with blocking, we need to introduce some notation.

In the following we always assume that we have a forest tableau S. Given an input Γ, any S-state

that can be generated from ΓS by the applications of the rules of S is called an S-state for Γ. In the

following we assume that all the S-states that we consider are S-state for some input.

The rule (B0,S) → {B1, . . . , Bm} is called generating if there is an i, 1 ≤ i ≤ m, such that

7Since in this forest tableau the elements of Λ are all unary, nodes correspond to constants.

28

Bi ∩ ∆̂ 6= ∅. Note that the definition of forest tableaux implies that, if such a generating rule is

applicable with substitution ρ in state S, then S contains a node N such that B0ρ ⊆ N . We can thus

talk about the node to which a generating rule is applicable or applied. Given an S-state S for the

input Γ, a node N in S is new if it has been generated by the application of a generating rule. Note

that this is the case iff cons(N) ∩ cons(ΓS) = ∅.

Given two nodes N,N ′, we say that they contain the same assertions (written N ≡ N ′) if there is

a bijection f : cons(N)→ cons(N ′) such that P (a1, . . . , an) ∈ N iff P (f(a1), . . . , f(an)) ∈ N ′.

Definition 6.2 (blocking) Given a forest tableau S, and an axiomatized input Γ, let S be an S-state

for Γ. The blocking relation ⊳ between nodes of S is defined as follows:

N1 ⊳N2 iff N1 ≡ N2, N2 is a predecessor of N1, and N1 is a new node.

The node N is blocked if either there is a node N ′ such that N⊳N ′, or the parent node of N is blocked.

A non-generating rule is ⊳-applicable if it is applicable in the sense of Definition 3.2; a generating

rule is ⊳-applicable if it is applicable and the node N to which it is applicable is not blocked. For

sets of S-states M,M′ (S-states S,S′) we write M→⊳
S M

′ (S →⊳
S S′) if M →S M′ (S →S S′)

using a rule that is ⊳-applicable. The set of S-states M is ⊳-saturated if there is no M′ such that

M→⊳
S M

′.

Let P be a c-property on axiomatized inputs for I and Padmis(T), and S a forest tableau for I

and Padmis(T). Then S is ⊳-correct for P if it terminates and is sound and complete with respect to

⊳-application, i.e., the following two conditions hold for every axiomatized input Γ = (I, T):

1. there is no infinite chain of rule applications ΓS =M0 →
⊳
S M1 →

⊳
S . . .;

2. for every chain of rule applications ΓS =M0 →⊳
S . . .→

⊳
S Mn such that Mn is ⊳-saturated we

have that Γ ∈ P iff Mn is full of clashes.

In the DL literature, different forms of blocking have been used. The variant that we model here is

usually called equality blocking [18] since it requires that the blocked and the blocking node have the

same assertions. In subset blocking [2], it is only required that the blocking node has all the assertions

of the blocked node, but not vice versa. Our reason for using equality blocking rather than subset

blocking is that it is more appropriate for DLs with inverse roles, and our notion of forest tableaux

can model tableau-based algorithms for DLs with inverse roles. DLs that have both inverse roles and

number restrictions require more complex notions of blocking, such as pair-wise blocking [19], that

look not just at one node but at a node and it neighbors. Since our current notion of tableaux does not

29

capture rules that can identify constants, as used in tableau-based algorithms for DLs with number

restrictions [15], we have decided not to model pair-wise blocking.

The notion of blocking introduced in Definition 6.2 ensures that every covered forest tableau

terminates with respect to ⊳-application on all inputs. Instead of showing this directly, we will prove

that this is the case even for its pinpointing extension. But first, we must extend the notion of blocking

to the pinpointing extension. Obviously, the extended notion must take the labels of assertions into

account as well.

Given an input Γ, any S-state that can be generated from ΓS by the applications of the rules

of the pinpointing extension of S is called a labeled S-state for Γ. Nodes of such a labeled S-state

will be called labeled nodes. Given two such labeled nodes N,N ′, we say that they contain the same

labeled assertions (written N ≡pin N ′) if there is a bijection f : cons(N) → cons(N ′) such that

P (a1, . . . , an) ∈ N iff P (f(a1), . . . , f(an)) ∈ N ′, and the labels of these two assertions are equivalent.

Definition 6.3 (pinpointing blocking) Given a forest tableau S, and an axiomatized input Γ, let

S be a labeled S-state for Γ. The blocking relation ⊳pin between labeled nodes of S is defined as

follows:

N1 ⊳pin N2 iff N1 ≡pin N2, N2 is a predecessor of N1, and N1 is a new node.

The node N is pinpointing blocked if either there is a node N ′ such that N ⊳pin N
′, or the parent

node of N is pinpointing blocked.

The notions ⊳pin-applicable and ⊳pin-application as well as →⊳
Spin and ⊳pin-saturated are defined

in the obvious way.

Our approach for proving termination of the pinpointing extension of a covered forest tableau with

respect to ⊳pin-application is similar to the one employed for showing that ordered forest tableaux

always terminate. The next lemma can be proved just like Lemma 5.6.

Lemma 6.4 Let S be a forest tableau, Γ an axiomatized input, and S0 →Sm S1 →Sm · · · a sequence

of modified rule applications starting with S0 ∈ ΓS. Then, for every Si = (Ai, T) and P ∈ Ai ∩ Λ̂,

either cons(P) ⊆ cons(A0) or there are r ∈ Ai ∩ ∆̂ and Q ∈ Ai ∩ Λ̂ such that ←−r ⊆ cons(Q) and

cons(P) ⊆ −→r .

Equipped with this lemma, we can now prove the desired termination result.

Theorem 6.5 Let S be a covered forest tableau. Then the pinpointing extension of S terminates with

respect to ⊳pin-application on every input.

30

Proof. Suppose that there is an input Γ = (I, T) for which there is an infinite sequence of

pinpointing rule applications S0 →Spin S1 →Spin · · · , where S0 ∈ ΓS . Since S is a covered tableau,

there is a finite T -cover ΩΓ such that the assertions in Si use only predicate symbols from ΩΓ, for

every i ≥ 0. As already noted, every node has a fixed finite set of constants that can appear in its

assertions. By Lemma 6.4, this set is either the set of constants occurring in S0 (for an old node) or

the descendants in the unique edge by which the node was created (for a new node). Since the T -cover

is finite, the assertions that can occur in a given node form a finite set. Each of these assertions may

repeatedly have its label modified by pinpointing rule applications; however, every pinpointing rule

application produces a more general label, in the sense that the new monotone Boolean formula has

more models than the previous one. Since these formulas are built over a finite set of propositional

variables, this can happen only finitely often. Analogously, the label of a given edge can be changed

only finitely often.

Hence, to produce a non-terminating sequence of rule applications, infinitely many new nodes must

be added. Conditions 5 and 2 of Definition 5.3 ensure that every newly added node N is created as

a successor of an existing node with a unique edge r ∈ ∆̂ connecting them, and all the constants in

N are new constants appearing in −→r . If infinitely many new nodes are created, then either there is a

node with infinitely many direct successors, or an infinite chain of nodes, each one being a successor

of the previous, is created. The first case can be treated as in the proof of Theorem 5.8.

Thus, we concentrate on the second case. The number of constants occurring in a new node is

bounded by the largest arity of a predicate name r ∈ ∆̂. Taking into account that there are also only

finitely many possible labels, this implies that there can only be finitely many different labelled nodes,

up to constant renaming. Then, for every chain of nodes N0, N1, . . . , Nm that is sufficiently long

(i.e., where m is larger than the maximal number of labelled nodes that are different up to constant

renaming), there must exist 1 ≤ k < ℓ ≤ m such that Nk ≡pin Nℓ, and thus Nℓ is pinpointing blocked

by Nk. Consequently, all the nodes Nr for r > ℓ are blocked, which in particular means that Nm

cannot get a successor node. Thus, the second case is not possible as well, which completes the proof

of the theorem.

As in the case of ordered tableaux, termination of the pinpointing extension also implies termination

of the original tableau.

Corollary 6.6 Let S be a covered forest tableau. Then S terminates with respect to ⊳-application on

every input.

We have seen that blocking can be used to regain termination of non-terminating covered forest

31

tableaux, and that this also the case for the pinpointing extension. However, since blocking prevents

the application of rules that would be applicable in the normal sense, the proof of correctness of

the pinpointing extension given in Section 4 does not apply directly to the pinpointing extension of

tableaux with blocking.

Our proof of correctness will rely on the notion of the folded version of an S-state, which is obtained

by removing all blocked nodes and adding new edges. Let S be a forest tableau and S = (A, T) an

S-state for an input Γ. Then S is a forest-structure, i.e., it is a graph-structure consisting of a set

of tree-like structures growing out of the original graph-structure induced by the input. If we remove

all the blocked nodes that are descendants of other blocked nodes, we obtain a new forest-structure

S′ = (A′, T) in which blocked nodes appear only as leafs in the trees. For every pair of nodes N1

and N2 in S′, if N1 is blocked by N2, then we know that N1 ≡ N2, and hence there is a bijection

f : cons(N1) → cons(N2) such that P (a1, . . . , an) ∈ N1 iff P (f(a1), . . . , f(an)) ∈ N2. We modify

the edge with destination N1 (i.e., the unique assertion r(←−r ,−→r) ∈ ∆̂ ∩ A′ with cons(N1) ⊆
−→r) to

r(←−r , f(−→r)) and then remove N1. Since f(−→r) contains only constants from N2, this new edge points

to N2, i.e., to the node that blocks N1. By applying this modification for all the remaining blocked

nodes, we obtain the folded version of S, which we denote by S	. If M is a set of S-states, then its

folded version is M	 = {S	 | S ∈M}.

Let us illustrate folding of S-states by using the tableau of Example 6.1. We have seen there that

rule application can be used to obtain the ⊳-saturated S-state S = (A, T) where A = {C(a0), r(a0, a1),

D(a1),¬D(a1), r(a1, a2), C(a2)}. The folded version of this S-state does not contain the constant a2

(since the blocked node {C(a2)} has been removed), but it makes up for this by an edge from a1 to

a0, i.e., S	 = (A	, T) with A	 = {C(a0), r(a0, a1), D(a1),¬D(a1), r(a1, a0)}.

The next lemma will allow us to reuse some of the results shown in Section 4, by relating ⊳-

saturatedness of a state to “normal” saturatedness of the corresponding folded state.

Lemma 6.7 If S is ⊳-saturated, then S	 is saturated.

Proof. Let S = (A, T),S	 = (A	, T) and R : (B0,S)→ {B1, . . . , Bm} be applicable to S
	 with

substitution ρ. Assume first that R is a generating rule, and let N be the node in A	 to which this

rule is applied, i.e., B0ρ ⊆ N ⊆ A	. Since folding never modifies any nodes in the graph structure,

except from removing some, N is also a node in S, i.e., B0ρ ⊆ N ⊆ A. As S is ⊳-saturated, R is

not ⊳-applicable to it. This means that either N is blocked, or there is a substitution σ extending

ρ such that Biσ ⊆ A for some i, 1 ≤ i ≤ m. Since folding removes all blocked nodes and N belongs

to A	, the first case cannot occur; thus, the second option must be the case. We can then construct

32

a substitution σ′ extending ρ such that Biσ
′ ⊆ A	 as follows: for every x ∈

⋃m
j=0 var(Bj), if σ(x) is

a constant in a non-blocked node of A, then we define σ′(x) := σ(x); if σ(x) belongs to a node N1

blocked by some non-blocked node N2, then in particular N1 ≡ N2, and thus there exists a bijection

f : cons(N1)→ cons(N2) such that P (a1, . . . , an) ∈ N1 iff P (f(a1), . . . , f(an)) ∈ N2 ; in this case, we

define σ′(x) = f(σ(x)). Because these bijections are also used when defining the folded state, it is

easy to see that Biσ
′ ⊆ A	 indeed holds. This contradicts our assumption that R is applicable to S	

with substitution ρ.

Suppose now that R is a non-generating rule. If B0ρ ⊆ A, since ⊳-applicability coincides with

regular applicability for non-generating rules, the proof is analogous to the one for the previous case.

Thus, we can assume w.l.o.g. that B0ρ 6⊆ A. Then, B0ρ must contain edges r that were added by

the folding process; these edges are of the form r = p(←−r , fr(
−→r)) where fr is the bijection ensuring

equivalence between blocked and the blocking node, and there are corresponding edges in A that have

blocked nodes as destinations. Using the bijections fr to rename constants, we can define a substitution

ρ′ such that B0ρ
′ ⊆ A. Note that this inclusion depends on our use of equality blocking. In fact, an

assertion Pρ ∈ B0ρ may be an assertion in a blocking node N , whose constants are renamed in ρ′ such

that they belong to a node N ′ blocked by N . Thus, we need to know that all the assertions occurring

in the blocking node also occur (appropriately renamed) in the blocked node. This is guaranteed by

our definition of ≡.

Since S is ⊳-saturated, R is not applicable to S with substitution ρ′, which implies that there

must exist an i, 1 ≤ i ≤ m such that Biρ
′ ⊆ A. We claim that Biρ ⊆ A	. This is an easy consequence

of the facts that (i) the assertions of non-blocked nodes in A are contained also in A	; and (ii) the

assertions of blocked nodes in A are contained in a renamed variant in the blocking node (i.e., the

node to which the edge leading to the blocked node has been redirected).

As done in Section 4, we will use projections of labeled S-states to show the correctness of the

pinpointing extension. The next lemma states a close connection between pinpointing ⊳-saturatedness

of a set of labeled S-states and ⊳-saturatedness of its projection.

Lemma 6.8 Let M be a finite set of labeled S-states and V a propositional valuation. If M is

pinpointing ⊳-saturated, then V(M) is ⊳-saturated.

Proof. Suppose that there is an S-state S = (A, T) ∈M and a rule R = (B0,S)→ {B1, . . . , Bm}

such that R is ⊳-applicable to V(S) with substitution ρ. For non-generating rules, applicability

and ⊳-applicability coincide. Consequently, if R in non-generating, then we can re-use the proof of

Lemma 4.4, which shows the result for the case without blocking.

33

Thus, assume that R is a generating rule. We have that S ⊆ TV , B0ρ ⊆ AV , for every i, 1 ≤ i ≤ m

and every substitution ρ′ on var(B0 ∪ Bi) extending ρ, it holds that Biρ
′ 6⊆ AV , and the node N ′ in

V(S) to which the rule is applied is not blocked.

We will show now that R is pinpointing ⊳-applicable to S with the same substitution ρ. Since

S ⊆ TV ⊆ T and B0ρ ⊆ AV ⊆ A, the first two conditions of pinpointing applicability are satisfied. For

the third condition, consider an i and a substitution ρ′ on var(B0 ∪ Bi) extending ρ. We must show

that ins(Biρ
′, A) 6= ∅ where ψ =

∧
b∈B0

lab(bρ) ∧
∧
s∈S lab(s). Note that S ⊆ TV and B0ρ ⊆ AV imply

that V satisfies ψ. Since Biρ
′ 6⊆ AV , there is a b ∈ Bi such that bρ′ /∈ AV . Thus bρ′ /∈ A or V does not

satisfy lab(bρ′). In the first case, bρ′ is clearly ψ-insertable into A. In the second case, ψ 6|= lab(bρ′)

since V satisfies ψ, and thus bρ′ is again ψ-insertable into A.

We have shown up to now that R is pinpointing applicable to S with the substitution ρ. It remains

to show that the node N ⊆ A to which this rule is applicable (i.e., the node satisfying B0ρ ⊆ N ⊆ A)

is not pinpointing blocked. If N is not a new node, then it cannot be blocked. Thus, we can restrict

the attention to the case where N is a new node. Since B0ρ ⊆ AV , we have B0ρ ⊆ NV . Thus, the

node N ′ in V(S) to which the rule R is applied is a subset of NV .8 We know that this node is not

blocked. Also note that, since this node belongs to V(S), the sequence of edges in S that leads to

the node N is also contained in V(S) and leads to this node. In fact, the label of an edge is always

implied by the labels of assertions occurring in nodes or as edges below this edge.

Assume that N is pinpointing blocked. We concentrate on the case where there is a predecessor

node M of N such that M ≡pin N . (The case where the parent node of N is blocked can be reduced

to this case by considering, instead of N , the (unique) predecessor node N ′ of N that is blocked, but

whose parent node is not blocked.) The definition of the relation ≡pin implies that there is a bijection

f such that, for every assertion P (a1, . . . , an) ∈ N ′ ⊆ NV the assertion P (f(a1), . . . , f(an)) ∈ MV .

The fact that the assertions in N ′ are connected implies that their f -images in MV are also connected,

and thus they belong to a node M ′ ⊆ MV . This shows, however, that N ′ is blocked by M ′, which is

a contradiction.

Notice that ifM→⊳
S M

′, then it is also the case thatM→S M′, and analogously for pinpointing

rule application: ifM→⊳
Spin M′, thenM→Spin M′. This, along with (2) of Lemma 4.7, shows that

M→⊳
Spin M′ implies that either V(M)→Sm V(M′) or V(M) = V(M′). In particular,M0

∗
−→
⊳

Spin M

implies V(M0)
∗
−→Sm V(M).

One last observation before proceeding to the proof of correctness of the pinpointing extension is

8Note that connectedness of N need not imply connectedness of NV ⊆ N .

34

that the order in which rules are applied has no influence on the result of a blocking tableau.

Lemma 6.9 Let Γ be an axiomatized input, and M0 = ΓS. If there are M and M′ such that

M0
∗
−→S M and M0

∗
−→S M

′ and M,M′ are both ⊳-saturated, then M is full of clashes iff M′ is

also full of clashes.

Proof. For every S-state S ∈ M′, there is an S-state S0 ∈ M0 such that S0 � S, where the

corresponding constant renaming function is the identity. Recall that folding only changes assertions

involving blocked nodes, and that only new nodes can be blocked. Consequently, we also have S0 �

S	. Since S	 is saturated by Lemma 6.7, Lemma 4.11 thus yields an S-state S′ ∈ M such that

S′ � S	.

Now, assume thatM is full of clashes, i.e., every element ofM contains a clash. To show thatM′

is full of clashes, consider S ∈ M′. Then there is an element S′ ∈ M such that S′ � S	. Since M

is full of clashes, S′ contains a clash, and thus S	 also contains a clash. Since S	 is obtained from

S by removing blocked nodes and changing some edges, and since clashes consider only single nodes,

this implies that S also contains a clash.

The other direction can be shown analogously.

Theorem 6.10 (correctness of pinpointing with blocking) Let S be a forest tableau for I and

Padmis(T) that is ⊳-correct for the c-property P. Then the following holds for every axiomatized

input Γ = (I, T) over I and Padmis(T):

For every chain of rule applications M0 →⊳
Spin . . . →⊳

Spin Mn such that M0 = ΓS and

Mn is pinpointing ⊳-saturated, the clash formula ψMn
induced by Mn is a pinpointing

formula for P and Γ.

Proof. Let Γ = (I, T) be an axiomatized input, and assume that ΓS =M0
∗
−→
⊳

Spin Mn with Mn

pinpointing ⊳-saturated. To show that ψMn
is a pinpointing formula for P , we have to show that,

for every propositional valuation V , it holds that (I, TV) ∈ P iff V satisfies ψMn
.

Let N0 = (I, TV)S . Since S terminates w.r.t. ⊳-application, there is a ⊳-saturated set N such that

N0
∗
−→
⊳

S N . Also, as M0
∗
−→
⊳

Spin Mn, we have that V(M0)
∗
−→Sm V(Mn). Additionally, V(M0) = N0

and also V(Mn) is ⊳-saturated. Thus, Lemma 6.9 yields that N is full of clashes iff V(Mn) is full

of clashes. By the ⊳-correctness of S for P , we have then that (I, TV) ∈ P iff N is full of clashes iff

V(Mn) is full of clashes iff V satisfies ψMn
(Lemma 4.3).

Our notion of ⊳-correctness explicitly requires termination w.r.t. ⊳-application. For covered forest

tableaux we have seen that this condition is always satisfied.

35

Corollary 6.11 Let S be a covered forest tableau for I and Padmis(T) that is sound and complete

w.r.t. ⊳-application, i.e., for every chain of rule applications ΓS = M0 →⊳
S . . . →⊳

S Mn such that

Mn is ⊳-saturated we have that Γ ∈ P iff Mn is full of clashes. Then the following holds for every

axiomatized input Γ = (I, T) over I and Padmis(T):

1. There is no infinite chain of rule applications ΓS =M0 →⊳
Spin M1 →⊳

Spin . . .;

2. For every chain of rule applications ΓS =M0 →⊳
Spin . . .→⊳

Spin Mn such thatMn is pinpointing

⊳-saturated, the clash formula ψMn
induced by Mn is a pinpointing formula for P and Γ.

7 Discussion

We have introduced a general notion of tableaux, and have shown that tableaux that are correct

for a consequence property can be extended such that a terminating run of the extended procedure

computes a pinpointing formula. This formula can then be used to derive minimal axiom sets and

maximal non-axiom sets from it. We have also shown that, in general, termination of a tableau does not

imply termination of its pinpointing extension, even if all tableau rules are deterministic. To overcome

this problem, we have then introduced the concept of an ordered forest tableau, and have shown that

ordered forest tableaux and their pinpointing extensions always terminate. Tableau algorithms for

DLs that allow for general concept inclusion axioms (GCIs) or transitive roles use blocking to achieve

termination. We have shown that forest tableaux also provide us with a framework that can be used

to model tableau algorithms that employ blocking. More precisely, we have shown that covered forest

tableaux that use equality blocking always terminate, and that the same is true for their pinpointing

extension. In addition, correctness transfers from forest tableaux with equality blocking to their

pinpointing extension.

One of the surprising lessons that we have learned through the development of this general ap-

proach is that termination of pinpointing extensions of terminating tableau-based algorithms is far

from trivial. In fact, our results show that, in general, termination does not transfer. Instead, the

specific reason for the termination of standard tableau-based algorithms for DLs (namely, that they

build finitely branching trees of bounded depth) is strong enough to ensure also termination of the

pinpointing extension. Another lesson learned is that, for tableaux with blocking, the proof of correct-

ness of the pinpointing extension is much more problematic than for the case without blocking. This

also has consequences for the development of pinpointing extensions of specific tableau algorithms

since it shows where one needs to be particularly careful in the proofs.

36

The results for pinpointing extensions of general tableaux presented in this paper subsume several

results on pinpointing extensions of specific tableau algorithms published in the DL literature. For

example, the tableau algorithms and their pinpointing extensions presented in [5, 30, 22] are instances

of our approach, and thus termination and correctness of these pinpointing extensions follow from our

general results. More precisely, correctness of the pinpointing algorithms for the DL ALC presented in

[5, 30] follows from the results of Section 4, and termination from the results of Section 5. Termination

and correctness of the pinpointing algorithm for ALC with GCIs presented in [22] follow from the

results of Section 6. In [22], the extension of their approach to the DL SI, which extends ALC with

transitive and inverse roles, is mentioned as an open problem. The known tableau algorithms for SI

with GCIs and its extension SHI by role hierarchies [18] are covered forest tableaux that employ

equality blocking. Consequently, the results of Section 6 yield correct and terminating pinpointing

algorithms for these DLs.

In addition to standard tableau algorithms for DLs like the ones mentioned above, also other

decision procedures that are usually not considered to be tableau-based are instances of our general

notion. As already mention in Section 3, the polynomial-time subsumption algorithms for the DL EL

and its extensions introduced in [1] as well as the congruence closure algorithm [24] can be viewed

as correct deterministic tableaux with unstructured assertions. Since termination is trivial in the

unstructured case, the results of Section 4 yield correct and terminating pinpointing extensions of

these algorithms. In particular, correctness of the pinpointing algorithm for EL+ described in [7]

follows from these results.9

Axiom pinpointing has also been investigated in other research areas, though usually not under

this name. For example, in the SAT community, people have considered the problem of computing

maximally satisfiable and minimally unsatisfiable subsets of a set of propositional formulae. The

approaches for computing these sets developed there include special purpose algorithms that call a

SAT solver as a black box [23, 10], but also algorithms that extend a resolution-based SAT solver

directly [11, 34]. To the best of our knowledge, extensions of tableau-based algorithms have not

been considered in this context, and there are no general schemes for extending resolution-based

solvers. Since the standard tableau algorithm for propositional (un)satisfiability is a correct tableau

with unstructured assertions (in the sense introduced in this paper), the results of Section 4 yield a

correct and terminating pinpointing algorithm for propositional (un)satisfiability, which can be used to

compute maximally satisfiable and minimally unsatisfiable subsets of a set of propositional formulae.

9Note that in [7] we already refer the reader to these general results for the proof of correctness of the pinpointing
algorithm.

37

It should be noted, however, that tableau algorithms usually do not yield efficient algorithms for

propositional (un)satisfiability, which is probably the reason why the SAT community has concentrated

on other approaches.

In the area of satisfiability modulo theories (SMT) [25], one is interested in computing small sets

of axioms that have a given consequence w.r.t. a specific theory. One of the theories considered in this

context is the theory of equality with uninterpreted functions (EUF), for which consequences can be

computed using congruence closure [24]. As mentioned above, the congruence closure algorithm can

be viewed as a deterministic tableau with unstructured assertions, and thus the results of Section 4 can

be used to obtain an algorithm that computes all minimal sets of axioms that have a given consequence

w.r.t. EUF. It should be noted, however, that in the context of SMT it is usually sufficient to have

one such set, which should be “small,” but need not be minimal [24].

In first-order theorem proving, work that tries to explain a given consequence usually does not

focus on pinpointing. The reason is that one often has relatively few axioms, but very long proofs.

Thus, the main problem is to present these proofs in a compact and comprehensible way. For example,

the proof of a theorem in group theory usually involves all the three axioms of the standard equational

theory defining groups, and thus axiom pinpointing would not be of any help here. In contrast, DL-

based ontologies often consist of a huge number of axioms, but a given consequence usually depends

only on a few axioms, and the proof of the consequence from these axioms is usually quite short [9].

This explains why the DL community spends considerable effort on developing pinpointing algorithms.

Our current framework cannot deal with the standard tableau-based algorithms for DLs with

number restrictions [15, 8]. In fact, our tableau rules always extend the current set of assertions.

We do not allow for rules that can modify existing assertions. Thus, tableau-based algorithms that

identify constants, like the standard rule treating at-most number restrictions (see, e.g., [8]), cannot

be modelled. A similar problem occurs for the tableau systems introduced in [4]. There, it was

solved by modifying the definition of rule application by allowing rules that introduce new individuals

(in our notation: rules with fresh variables) to reuse existing individuals. However, this makes such

rules intrinsically non-deterministic. In our setting, we believe that we can solve this problem more

elegantly by introducing equality and inequality predicates. In addition, number restrictions require

a more complex notion of blocking (called pair-wise blocking) if added to a DL with GCIs and inverse

roles [19, 8]. We believe that the approach used in Section 6 can be extended such that it can treat

pair-wise blocking, but this would make the definitions and proofs more complicated.

38

References

[1] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of IJCAI 2005, pages
364–369. Morgan Kaufmann, Los Altos, 2005.

[2] F. Baader, M. Buchheit, and B. Hollunder. Cardinality restrictions on concepts. Artificial Intel-
ligence, 88(1–2):195–213, 1996.

[3] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press, 2003.

[4] F. Baader, J. Hladik, C. Lutz, and F. Wolter. From tableaux to automata for description logics.
Fundamenta Informaticae, 57(2–4):247–279, 2003.

[5] F. Baader and B. Hollunder. Embedding defaults into terminological knowledge representation
formalisms. J. of Automated Reasoning, 14:149–180, 1995.

[6] F. Baader and R. Penaloza. Axiom pinpointing in general tableaux. In Proc. of Tableaux 07,
LNAI 4548, pages 11–27. Springer-Verlag, 2007.

[7] F. Baader, R. Peñaloza, and B. Suntisrivaraporn. Pinpointing in the description logic EL+. In
Proc. of KI2007, LNAI 4667, pages 52–67. Springer-Verlag, 2007.

[8] F. Baader and U. Sattler. An overview of tableau algorithms for description logics. Studia Logica,
69:5–40, 2001.

[9] F. Baader and B. Suntisrivaraporn. Debugging SNOMED CT using axiom pinpointing in the
description logic EL+. In Proc. of KR-MED’08, Poenix, Arizona, 2008.

[10] J. Bailey and P. J. Stuckey. Discovery of minimal unsatisfiable subsets of constraints using hitting
set dualization. In Proc. of PADL’05, LNCS 3350, pages 174–186. Springer-Verlag, 2005.

[11] G. Davydov, I. Davydova, and H. Kleine Büning. An efficient algorithm for the minimal unsat-
isfiability problem for a subclass of CNF. Ann. Math. in AI, 23(3–4):229–245, 1998.

[12] M. R. Garey and D. S. Johnson. Computers and Intractability — A guide to NP-completeness.
W. H. Freeman and Company, San Francisco (CA, USA), 1979.

[13] V. Haarslev and R. Möller. RACER system description. In Proc. of IJCAR 2001, LNCS 2083,
pages 701–706. Springer-Verlag, 2001.

[14] B. Hollunder. Consistency checking reduced to satisfiability of concepts in terminological systems.
Ann. of Mathematics and Artificial Intelligence, 18(2–4):133–157, 1996.

[15] B. Hollunder and F. Baader. Qualifying number restrictions in concept languages. In Proc. of
KR’91, pages 335–346, 1991.

[16] I. Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of KR’98, pages
636–647, 1998.

[17] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL: The
making of a web ontology language. J. of Web Semantics, 1(1):7–26, 2003.

[18] I. Horrocks and U. Sattler. A description logic with transitive and inverse roles and role hierar-
chies. J. of Logic and Computation, 9(3):385–410, 1999.

[19] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very expressive description logics.
J. of the Interest Group in Pure and Applied Logic, 8(3):239–264, 2000.

39

[20] A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca-Grau, and J. Hendler. Swoop: A Web ontology
editing browser. J. of Web Semantics, 4(2), 2005.

[21] H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen. The Protégé OWL plugin: An
open development environment for semantic web applications. In Proceedings of the Third Int.
Semantic Web Conf., Hiroshima, Japan, 2004.

[22] K. Lee, Th. Meyer, and J. Pan. Computing maximally satisable terminologies for the description
logic ALC with GCIs. In Proc. of DL 2006, CEUR Electronic Workshop Proceedings, 2006.

[23] M. H. Liffiton and K. A. Sakallah. On finding all minimally unsatisfiable subformulas. In Proc.
of SAT’05, LNCS 3569, pages 173–186. Springer-Verlag, 2005.

[24] R. Nieuwenhuis and A. Oliveras. Fast congruence closure and extensions. Information and
Computation, 205(4), 2007.

[25] R. Nieuwenhuis, A. Oliveras, E. Rodŕıguez-Carbonell, and A. Rubio. Challenges in satisfiability
modulo theories. In Proc. of RTA’07, LNCS 4533, pages 2–18, 2007.

[26] D. Oberle, R. Volz, B. Motik, and S. Staab. An extensible ontology software environment. In
Handbook on Ontologies, pages 311–333. Springer-Verlag, 2004.

[27] B. Parsia, E. Sirin, and A. Kalyanpur. Debugging OWL ontologies. In Proc. of WWW’05, pages
633–640. ACM, 2005.

[28] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57–95, 1987.

[29] S. Schlobach. Diagnosing terminologies. In Proc. of AAAI 2005, pages 670–675. AAAI Press/The
MIT Press, 2005.

[30] S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of description
logic terminologies. In Proc. of IJCAI 2003, pages 355–362, 2003.

[31] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with complements. Artificial
Intelligence, 48(1):1–26, 1991.

[32] E. Sirin and B. Parsia. Pellet: An OWL DL reasoner. In Proc. of DL 2004, pages 212–213, 2004.

[33] K.A. Spackman, K.E. Campbell, and R.A. Cote. SNOMED RT: A reference terminology for
health care. J. of the American Medical Informatics Association, pages 640–644, 1997. Fall
Symposium Supplement.

[34] L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-based checker:
Practical implementations and other applications. In Proc. of DATE’03, pages 10880–10885.
IEEE Computer Society Press, 2003.

40

