The Good, the Bad, and the Ugly of Using Left Ventricular Longitudinal Myocardial Deformation by Speckle-Tracking Echocardiography to Assess Patients After an Acute Myocardial Infarction

Luigi P. Badano, MD, PhD; Denisa Muraru, MD, PhD

Timely reperfusion, effective mechanical recanalization of the obstructed coronary arteries, and aggressive antiplatelet therapy have dramatically improved the prognosis of patients with acute ST-segment–elevation myocardial infarction (STEMI). Although no study has formally examined temporal trends in the prevalence of moderate to severe left ventricular (LV) systolic dysfunction after STEMI, it is likely that modern management of STEMI may have increased the proportion of patients who survive with only modest impairment of LV systolic function. However, not all survivors of a STEMI with normal or only modestly reduced LV ejection fractions have either a preserved systolic function or a favorable prognosis. Thus, a measure of systolic function in the setting of preserved LV ejection fraction that identifies high-risk STEMI patients could potentially be applied to identify those patients who may benefit from closer clinical monitoring, more aggressive management, and could be selected for future randomized studies testing new therapies.

In this issue of the Circulation: Cardiovascular Imaging, Joyce et al report a large cohort of patients with first STEMI treated with primary percutaneous coronary intervention who were followed for 5.2 years to assess the effects of myocardial function and body size (namely body mass index [BMI]) on outcome defined as all-cause mortality. Interestingly, despite similar mild reduction in LV ejection fraction (46±9%, 48±9%, and 47±9%, respectively) in normal/underweight (BMI<25 kg/m²), overweight (25 kg/m²–30 kg/m²), and obese (BMI≥30 kg/m²) groups, they found that LV global longitudinal strain (GLS) was also reduced in normal and overweight patients (−15.0±4.2), but obese patients had a significantly more impaired LV GLS (−13.7±3.8%). This was observed despite similar infarct characteristics across the BMI groups. Moreover, LV GLS was significantly more impaired in patients with the highest BMI regardless of the presence of reduced or preserved LV ejection fraction, underscoring the relative inadequacy of LV ejection fraction to determine contractile abnormalities in this population. Conversely, survival was worse in lower BMI patients despite having less impaired LV systolic function than higher BMI patients. The study is interesting because it adds evidence about the need of a more sensitive marker than LV ejection fraction to assess LV function in STEMI patients managed with state-of-the-art treatment, and also because it shows that other factors (eg, patient body size) in addition to infarct size may affect LV GLS after STEMI. Notably, the relationship between BMI and LV GLS was also reported by Wong et al in overweight and obese, but otherwise healthy subjects.

The Good
Speckle-tracking deformation imaging can provide a quantitative measure of myocardial function independent of LV ejection fraction which is a chamber function index and, as such, more affected by loading conditions. To date, research and clinical applications of speckle-tracking deformation imaging have focused on the assessment of LV GLS reflecting the function of subendocardial longitudinally oriented myocardial fibers, which are particularly sensitive to ischemia and increased wall stress. LV GLS has been shown to correlate with infarct size, and previous studies have shown that LV GLS adds prognostic value in patients with high-risk myocardial infarction and STEMI over the entire spectrum of systolic function. Moreover, the presence of regional differences in electric properties may cause heterogeneity of myocardial contraction that can be measured as mechanical dispersion. Measurements of mechanical dispersion and LV GLS in postmyocardial infarction patients have been reported to add important information about the risk of arrhythmia beyond LV ejection fraction. In patients with a preserved or slightly reduced LV ejection fraction, mechanical dispersion >70 ms identified postmyocardial infarction patients with an increased risk of life-threatening arrhythmias.

The Bad
Widespread clinical application of speckle-tracking deformation imaging has been hampered by the fact that strain values are heavily influenced by both technical- and patient-specific factors. Intervendor variability of strain values has been partially addressed by the work of the European Association
of Cardiovascular Imaging/American Society of Echocardiography/Industry Task Force to standardize deformation imaging,15 that managed to reduce the intervendor variability of 2-dimensional longitudinal strain.16,17 Technical factors that may affect LV GLS values are mainly related to image quality and temporal resolution, selection of the region of interest, choice of LV segmentation model, quality of tracking, and identification of the end-systolic frame.18 Recommendations on how to standardize most of these factors have been published.15

Demographic factors, such as reduction in myocardial deformation with aging and higher strain values in men than in women,19 should be taken into account when interpreting strain values. The work of Joyce et al2 highlights BMI among the factors to consider when interpreting LV GLS values. Finally, image acquisition plays also a pivotal role in strain assessment, and foreshortened apical views may result in inaccurate LV GLS measurements.

The Ugly

In patients with acute myocardial infarction, accurate and reproducible assessment of regional myocardial function is essential for early detection of ischemic injury and for the delineation of myocardial viability which helps guide patient management and potentially prevention of serious complications, such as LV remodeling, arrhythmias, and sudden cardiac death. LV segmental longitudinal strain measurements have been reported to detect the presence and extent of ischemia and distinguish between viable and nonviable segments.20–24 However, a recent study by Mirea et al25 performed in standardized conditions showed that the averaged absolute difference between repeated measurements of different regional longitudinal parameters ranged from 2.5% to 5.0%. Despite the fact that the lower end of this range might be still considered acceptable under certain conditions, the higher end constitutes an average relative error in the range of 25% which makes the regional strain measurement unsuited for clinical use. Moreover, a significant intervendor variability in regional strain values was also detected.25

There are reasons that may help explain the difference in performance between GLS and regional longitudinal strain in patients after myocardial infarction. To assess LV GLS, algorithms can apply a priori knowledge of LV shape and motion (eg, they assume that the apex is relatively fixed, and the mitral valve plane moves toward the apex). The measured extent of myocardial deformation can be averaged over a large area which makes the results more robust and reproducible. However, the only source of information to measure regional myocardial function with aging and higher strain values in men than in women,19 should be taken into account when interpreting strain values. The work of Joyce et al2 highlights BMI among the factors to consider when interpreting LV GLS values. Finally, image acquisition plays also a pivotal role in strain assessment, and foreshortened apical views may result in inaccurate LV GLS measurements.

Conclusions

Semiautomated measurement of LV GLS is significantly associated with mortality, heart failure admission, and risk of life-threatening arrhythmias in survivors of acute myocardial infarction over the entire spectrum of LV ejection fraction. However, GLS values are heavily influenced by technical- and patient-specific factors that should be considered when interpreting strain values. At present, regional strain values are affected by large test/retest variability and suboptimal intervendor reproducibility that makes them unsuited for routine clinical use.

Disclosures

None.

References

11. Erzsbl M, Valeur N, Mogensen UM, Andersen JM, Muller JE, Velazquez EJ, Hassager C, Søgaard P, Kober L. Prediction of all-cause mortality and heart failure admissions from global left ventricular longitudinal strain in patients with acute myocardial infarction and preserved left ventricular

Key Words: Editorials ■ algorithms ■ artifacts ■ heart failure ■ prevalence ■ survivors