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Abstract. The term orthopair is introduced to group under a unique defini-
tion different ways used to denote the same concept. Some orthopair models
dealing with uncertainty are analyzed both from a mathematical and seman-
tical point of view, outlining similarities and differences among them. Finally,
lattice operations on orthopairs are studied and a survey on algebraic struc-
tures is provided.

1. Introduction

Uncertainty in information can be caused by different factors: incompleteness,
imprecision, vagueness, differing standpoints, granularity. Several approaches have
been defined to represent and manage all these defects: starting from probability
theories in the XVIIth century, the field assumed a great importance in computer
science and artificial intelligence [29]. Among these approaches we have probability
theory, possibility theory, Dempster-Shafer theory, fuzzy sets, rough sets, formal
concept analysis, . . . and derived and mixing paradigms, such as fuzzy rough sets,
imprecise probabilities.
Here, we desire to put in evidence the links among several approaches to uncertainty
and describe a unique framework for these different models which makes easy their
comparison and enables a common study on operations and algebraic structures.
We decided to use the term orthopair (and equivalently nested pair) in order to
concentrate purely on its mathematical definition without entering in semantical
issues which will indeed be touched when describing the different models.

With the term orthopair we intend a pair of orthogonal or disjoint subsets (A, B)
of a given universe X: A, B ∈ X and A ∩ B = ∅. We will denote the collection of
all orthopairs on X as O(X) := {(A, B) : A, B ⊆ X, A ∩ B = ∅}. Such pairs
have been studied by several authors and in several environments. For instance,
Narin’yani in [39] introduced the notion of sub–definite set or in the rough sets field
they are investigated in [16] under the name classical preclusivity propositions. In
an independent way, Çoker [22] studied them under the name intuitionistic set, the
name being due to the fact that they are seen as a classical weakening of so-called
Intuitionistic Fuzzy Sets [2, 1]. Then, following Çoker work, they were renamed
double sets in [24].

Further, an orthopair (A, B) is equivalent to a pair of nested sets (A, C) such that
(A ⊆ C), through the mapping C := Bc. Pairs of this kind have been introduced
by Gentilhomme in [32] with the name flou sets and their algebraic structure has
been analysed in [35], within a rough sets framework. They are also studied in [57]
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under the name of interval sets. The collection of all nested pairs on X will be
denoted as N (X) := {(A, C) : A, C ⊆ X, A ⊆ C}.

Well known models which satisfy the disjoint A ∩ B = ∅ or subsethood A ⊆
B condition are twofold sets [26], shadowed sets [44, 45], interval sets [52, 56],
conditional events [27, 51] and any rough set based on a Boolean algebra [43]. As
a first step of the present work, we review all these models of orthopairs (this
is a complete list, of course to the best of our knowledge), putting in evidence
the peculiarity of each of them. Connections with three-valued sets and bipolar
information [28] will also be highlighted.

Then, we turn our attention to mathematical aspects, in particular to operations
and algebraic structures. Due to a bijection between orthopairs and three-valued
sets, we can derive properties on orthopairs from the equivalent ones in the three-
valued situation. In particular, we can study operations and algebraic structures
on three values and then report the results on orthopairs. The study on operations
(and hence on algebraic structures) becomes more problematic when we consider
subsets of all the orthopairs O(X), as it happens in some models, in particular in
rough sets. Indeed, given an operation, it must be shown that it is closed on that
particular subset. This is not simple and even if from a theoretical point of view
successful, it can raise questions on the interpretation. This topic will be discussed
in the rough sets case, showing with examples where the problem lies.

2. Orthopairs models

The aim of this section is to introduce and review different models of the or-
thopair concept, showing their similarity and differences both from a mathematical
and a semantical point of view. First of all, for a given orthopair (A, B) let us define
the two further sets U := Bc and Bnd := X\(A ∪ B). These two sets will play a
role in several of the following models and their name is due to the meaning they
will assume: U stands for Upper and Bnd for Boundary, whenever A is interpreted
as Lower and B as Exterior of some set under approximation.

2.1. Orthopairs and three valued sets. As a first step, let us make evident
the relationship between orthopairs and three-valued sets. Mathematically, an or-
thopair is in bijection with a three-valued set. Indeed, given a pair (A, B) of disjoint
sets on X , we can define a three-valued set f : X 7→ {0, 1

2 , 1} as

(1) f(x) =











1 if x ∈ A

0 if x ∈ B
1
2 ortherwise

Vice versa, given a three-valued set we can obtain in an obvious way an orthopair
(A, B): x ∈ A if f(x) = 1 and x ∈ B if f(x) = 0.
Thus, we have an isomorphism between the collection of three-valued sets F 1

2

(X) :=

{f |f : X 7→ {0, 1
2 , 1}} and the collection of disjoint subsets of X , i.e., O(X).

This connection will be useful in the following two ways. At first, it can be used
to link three-valued models to rough sets. Then, it enables us to study operations
and algebraic structure on F 1

2 (X) and report them on orthopairs on X . This can
be very useful since the study on three values is easier and it is a well known field
of research. Let us remark that this link, as expressed by equation 1, has been
already introduced in rough sets theory since [41].
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Remark 1. The value 1
2 is the usual value to denote an uncertain situation in three-

valued logics, which is half-way between truth (1) and falsity (0). For the safe
of simplicity in the mathematical treatment and in compliance with the standard
literature, the value 1

2 is used instead of other numerical values 1
3 , 1

4 , . . . or symbolic
ones a, (0, 1), . . . According to the situation/logic it can assume different semantics,
such as possible, unknown, undefined, etc. At this point, we do not give a specific
interpretation of this value, which can vary from model to model.

2.2. Rough sets. Let us introduce the notions at the basis of rough sets (for an
overview and a complete bibliography see [43, 42]). We will first define classical
rough sets and then discuss their generalizations.

Definition 2.1. An approximation space is a pair (X, E) with X a set of objects
and E an equivalence (reflexive, simmetric, transitive) relation on X . Equivalence
classes are denoted as gE(x).

An equivalence class is the granule of information associated to an object x and
it contains all the objects equivalent to x with respect to E. On any approxima-
tion space and using these granules, it is possible to define the lower and upper
approximations of a given set.

Definition 2.2. Let (X, E) be an approximation space. The lower approximation

of H ⊆ X is

l(H) := {x ∈ X |gE(x) ⊆ H}

and the upper approximation of H is

u(H) := {x ∈ X |gE(x) ∩ H 6= ∅}

A rough set is the pair lower-upper r(H) := (l(H), u(H)) or equivalently the pair
lower-exterior re(H) := (l(H), e(H)) := (l(H), uc(H)).

The lower approximation of a set H contains the objects that certainly belong
to H and the upper approximation those that possibly belong to H . Thus, e(H)
represents the impossibility domain: the objects that certainly do not belong to H
and the boundary Bnd(H) = u(H)\l(H) is the uncertainty region.

As can be seen a rough set is made of a nested pair of sets (equivalently an
orthopair). Thus, the collection R(X) of all rough sets on a given universe X is a
subset of N (X) (or equivalently of O(X)). It is worth noticing that in general not
all nested pairs can be obtained as approximations of a subset H of the universe
X , i.e., R(X) $ O(X). This poses some problems when introducing operations
of R(X), since it is not assured that even if the result is a nested (ortho) pair
it is also a rough approximation. This topic will be further discussed in Section
3.3. We also remark that besides (l(H), e(H)) another orthopair can be defined:
(l(H), Bnd(H)). As a reviewer pointed out, this last notation is handy when the
set H is exact (i.e., definable as union of granules) since in this case Bnd(H) = ∅.

Typically, in rough-sets applications, the equivalence relation is obtained looking
at the properties of objects: two objects are equivalent if they assume the same
value for all the properties under investigation. The structure used to deal with
these ideas is known as Information Table or Information System [40].

Definition 2.3. An Information Table is a structure K(X) = 〈X, A, val, F 〉 where:

• the universe X is a non empty set of objects;
• A is a non empty set of attributes;
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• val is the set of all possible values that can be observed for an attribute a
from A in the case of an object x from X ;

• F (called the information map) is a mapping F : X × A → val which
associates to any pair object x ∈ X and attribute a ∈ A, the value F (x, a) ∈
val assumed by a for the object x.

Given a set of attributes D ⊆ A, two objects x, y ∈ X are called indiscernible

with respect to D, and we write xIDy, iff ∀a ∈ D, F (a, x) = F (a, y).
It can be easily verified that ID is an equivalence relation and so for any set

of attributes D, the pair 〈X, ID〉 is an approximation space. Thus, ID partitions
the universe X in disjoint classes (granules) gID

(x) defined as gID
(x) := {y ∈ X :

xIDy}.
Finally, we introduce the notion of Rough Membership function which will be

useful later. Basically, it is the degree of inclusion of an element x in a set H .

Definition 2.4. Given an Information Table K(X) and a set of attributes D ⊆ A,
the Rough Membership function of a set H ⊆ X is defined as

µH : X 7→ [0, 1] µH(y) :=
|gID

(y) ∩ H |

|gID
(y)|

Example 2.1. With respect to the Information Table 1, let us consider the indis-
cernibility relation generated by the set of attributes, IA ={Pressure,Headache,Temperature,Muscle
Pain}, then the partition of the universe X is made of the following equivalence
classes: {P1}, {P2, P3}, {P4}, {P5}.

Patient Pressure Headache Temperature Muscle Pain Flu
P1 Normal yes 38–39 yes A
P2 High no 36–37 yes A
P3 High no 36-37 yes B
P4 Low yes 35–36 no no
P5 Normal yes 36–37 yes no

Table 1. An example of Information Table

If we consider the set of objects H = {P1, P2}, that is the set of patient having
flu A, then its rough approximation is r(H) = 〈{P1}, {P1, P2, P3}〉. That is, we
are sure that patients with symptoms as P1 have flu A and P4, P5 do not have
it. However, due to the inconsistency between P2 and P3 (same symptoms but
different flu), we can only say that someone with symptoms as P2 and P3 could
have flu A, but we are not sure about it. This situation is reflected also by the
membership function µH which is defined as µH(P1) = 1, µH(P2) = µH(P3) = 1

2
and µH(P4) = µH(P5) = 0.

Several generalizations of this classical definition of rough sets have been intro-
duced. They are based on the power set of a given universe or also on a fuzzy or
abstract context. To the scope of the present work, only the former are interesting,
since we are dealing with pair of sets 2. In this category we can find approximations
defined by means of a general (i.e., not equivalence) binary relation [11, 53, 34, 42],
approximations based on covering and neighborhoods [54], variable precision rough

2Pairs of orthogonal fuzzy sets gives rise to so called intuitionistic fuzzy sets [1]
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sets [58, 36], probabilistic rough sets [55]. All these approaches are based on the
power set of a universe and satisfy the sub-sethood property (see [17]), thus they
lead to different models of orthopairs.

Another light under which we can investigate the relationship between rough
sets and orthopairs is outlined in [37]. The authors call orthopairs samples with
the idea that they give positive and negative examples about the same unknown
concept. With respect to this idea, the relationship between samples (orthopairs)
and rough sets is then analyzed. The following two notions are first introduced:

• adequacy. An information system is adequate for an orthopair (P, N) if
for no elements x ∈ P, y ∈ N it happens that x, y are equivalent (that is
xIDy).

• consistency. A rough set (l(A), u(A)) is consistent with an orthopair
(P, N) if P ⊆ l(A), N ∩u(A) = ∅. An information system is consistent with
an orthopair (P, N) if there is a rough set over I consistent with (P, N).

Thus, adequacy implies that the information system is not in contradiction with
the observed example, whereas consistency represents the idea that the knowledge
carried by the example can be described by a rough set. Interestingly enough, these
two notions turn out to be equivalent.

2.3. Twofold sets. Twofold sets [26] were conceived to account for those situations
where in front of a lack of knowledge we want to understand which is the set of
objects X+ satisfying a certain property P and which objects X− do not satisfy P .
Clearly, X+ ∩ X− = ∅ and they form an orthopair.

More precisely, given a universe X , we define a multivalued attribute a with
domain val as a mapping Γa : X 7→ P(val). The set Γa(x) ⊆ val represents the
possible values for a of x which due to a lack of knowledge is not exactly known.

Let V ⊆ val be a subset of values. The ill-known set Γ−1
a (V ) ⊆ X is approxi-

mated by the twofold set 〈Γ−1
a∗ (V ), Γ−1∗

a (V )〉 where

Γ−1
a∗ (V ) := {x ∈ X, Γa(x) ⊆ V }(2)

Γ−1∗
a (V ) := {x ∈ X, Γa(x) ∩ V 6= ∅}(3)

Thus, the set of objects which share the same value for the attribute a is ap-
proximated by the lower and upper bounds 〈Γ−1

a∗ (V ), Γ−1∗
a (V )〉 which is a pair of

nested sets.

Example 2.2. Let us modify the attribute Pressure of Table 1 according to Table
2, where due to a lack of knowledge we are not sure about the data of patients P1
and P4.

Patient Pressure Headache Temperature Muscle Pain Flu
P1 {Normal,High} yes 38–39 yes A
P2 High no 36–37 yes A
P3 High no 36-37 yes B
P4 {Low,Normal} yes 35–36 no no
P5 Normal yes 36–37 yes no

Table 2. Multi-valued Pressure

Now, we ask which are the patients with a normal pressure, i.e., V = {Normal}.
Using the above definitions we get Γ−1

Pressure∗({Normal}) = {P5} and Γ−1∗
Pressure({Normal}) =
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{P1, P4, P5}. That is, for sure P5 has normal pressure and P2,P3 do not have nor-
mal pressure, whereas we cannot be certain about patients P1 and P4.

When comparing rough and twofold sets we get that from a theoretical stand-
point they are similar. Indeed, formally, if in equations (2) we change Γa(x) with
gE(x) and attributes with objects (that is, D with X), we get exactly the lower and
upper approximations of definition 2.2. Let us note that also in the two-fold case,
not all nested pairs can be retrieved as approximations of some property. That
is, the collection Rtf (X) = {〈Γ−1

a∗ (V ), Γ−1∗
a (V )〉 : a ∈ Att, V ⊆ val} is a subset of

N (X). For instance, in the above example 2.2, the pair ({P5}, {P4, P5}) cannot
be obtained by any attribute a and any set of values V .

On the contrary, when considering the interpretation of the two approaches,
they express two different points of view. In both cases we have the same type of
vagueness [30] where the objects are partitioned in two crisp sets, but the cause
of uncertainty is different. In twofold sets we have a precise set of attributes (F )
which however is not able to precisely characterize a set of objects. In rough sets
we have a well-known set of objects (H) which cannot be precisely characterized
by the attributes. In some sense, with twofold sets we know the intension of the
set under investigation but not the extension and vice versa in rough sets we now
the extension but not the intension.

2.4. Shadowed sets. Fuzzy sets are a powerful tool to describe and reason with
vague concepts, indeed they permit to express vagueness with an infinite degree of
accuracy, i.e., any value in the range [0, 1]. However, this quality in precision may
not always be needed or even worst may lead to high computational costs. Besides
the well known level fuzzy sets and α-cuts, more recently Pedrycz introduced shad-
owed sets [44, 45, 47] as a new tool to approximate a fuzzy set and thus to deal with
vagueness in a simpler way. According to him, the intention was “to introduce a
model which does not lend itself to precise numerical membership values but relies
on basic concepts of truth values (yes - no) and on entire unit interval perceived as
a zone of uncertainty” [44]. Formally, a shadowed set can be defined as follows.

Definition 2.5. Let X be a set of objects, called the universe. A shadowed set on
X is any mapping s : X → {0, 1, (0, 1)}.

From any fuzzy set it is possible to obtain a corresponding shadowed set. In
order to define such a mapping, it is sufficient to fix a value α ∈ [0, 1

2 ). Then, for
a given fuzzy set f , the membership values f(x) which are less than or equal to α
are set to 0 and those greater than or equal to (1 − α) are set to 1. The remaining
ones, i.e., the membership values belonging to (α, 1 − α), are set to (0, 1), since
they are characterized by a great uncertainty or lack of knowledge and they are
consequently considered the “shadow” of the induced shadowed set.

Clearly, a shadowed set reduces a fuzzy set to a three-valued set and hence to
an orthopair (see Section 2.1). With this interpretation an orthopair represents the
certainty we have on a given fuzzy set.

From a formal point of view we can also recover a shadowed set from a rough
set. Indeed, let µH be the membership function of set H . The α-shadowed set
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generated by µH is defined as










0 if µH(y) ≤ α

1 if µH(y) ≥ 1 − α

(0, 1) otherwise

Example 2.3. Let us consider the rough membership function defined in example
2.1 and set α = 0.3. The induced shadowed set is s(P1) = 1, s(P2) = s(P3) = (0, 1)
and s(P4) = s(P5) = 0.

However, from a semantic point of view, shadowed and rough sets have different
foundations and different motivations. Further, in the rough-sets case “the ap-
proximation space is defined in advance and the equivalence classes are kept fixed”
whereas in shadowed sets the three regions are assigned dynamically by selecting a
proper α 4. In this sense we note that a peculiarity of shadowed set with respect to
other ways to approximate a fuzzy set [12, 18] is that they give the way to select the
“best” α according with a Balance of Vagueness criterion [47]: “the primary goal
we intend to accomplish in this way is the one of localizing and balancing the factor
of uncertainty that is inherently associated with any fuzzy set”. Indeed, a shad-
owed set localizes uncertainty by moving it from the intervals [0, α) and (1 − α, 1]
to the interval (α, 1 − α), i.e., to the “shadow”. In order to balance this exchange
of information, Pedrycz proposes the following method.
For a given fuzzy set f : X 7→ [0, 1] and for every α ∈ (0, 1/2], let us divide the
universe X in three regions:

Ω1(α) = {x : f(x) ∈ [0, α]}
Ω2(α) = {x : f(x) ∈ (1 − α, 1]}
Ω3(α) = {x : f(x) ∈ [α, 1 − α)}

Then, the optimal α is the one minimizing (if possible, setting to zero) the following
quantity [47, 46]:

(4) Vf (α) :=
∣

∣

∣

∫

Ω1(α)

f(x)dx +

∫

Ω2(α)

(1 − f(x))dx −

∫

Ω3(α)

dx
∣

∣

∣

The possibility to compare different values of α and choosing the best one is
clearly useful in applications.

2.5. Interval sets. An interval set is formally defined as a pair of nested sets, that
is given a universe X the collection of interval sets is exactly N (X). They were
first introduced in [52] and for a recent overview see [56].

The peculiarity of interval sets is in the semantic attached to them. Indeed, an
interval set (L, U) is interpreted as a “family of sets”, lower bounded by A and
upper bounded by U . This semantic is useful when dealing with partially known
concepts. If the only available knowledge about a concept C is that C ∈ (L, U) we
only know that L ⊆ C ⊆ U , that is, C is a set in the family of all sets between L
and U .

The reason of this partial knowledge in not fixed a priori, it can derive from a lack
of information in intension or in extension. As a consequence, different operations
inspired by different semantics can be introduced on interval sets [56].

4This is no more valid in some rough-sets model, for instance VPRS [58, 36] and probabilistic
[55], where the lower and upper approximations are explicitly defined using one or more parameters
[12, 17]
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Example 2.4. On the universe X = {P1, P2, P3, P4, P5} an interval set is ({P1}, {P1, P2, P3})
which represents a set C in the family {{P1}, {P1, P2}, {P1, P2, P3}} but we are
not sure which of them. Keeping in mind the semantic given in example 2.1 and
interpreting the set C as having flu A, it is clear that C is only partially known: for
sure P1 ∈ C, but nothing can be said about P2 and P3. Clearly, according to this
interpretation, the lack of knowledge is given by the attributes, that is in intension.

2.6. Conditional events. A conditional event (or conditional object) is an at-
tempt to formalize the relationship between two events (or between two logical
propositions) when one depends on the other.

Often a three-valued semantics has been used for conditional events where besides
true and false, the third value means undefined, that is with the available knowledge
it is not possible or it does not make sense to say if a conditional event is true or
false.

As stated in [27] this leads to an interval and thus to an orthopair: “a conditional
object can be equated to a pair of nested sets”, where the lower (resp., upper) bound
is obtained by interpreting the undefined value as false (resp., true). Thus, as in the
interval set case, we can think to a conditional object as a family of sets where only
one on them corresponds to the exact extension of the object under investigation,
but due to a lack of knowledge we do not know it exactly.

Example 2.5. Let us consider the two events E1= “It is raining” and E2= “Open
the umbrella”. Then the conditional event E2|E1 is true if both E1 and E2 are
true, false if E1 is true and E2 is false, undefined if E1 is false. As can be seen
the conditional event can be interpreted as a rule “if it is raining then open the
umbrella” and as such it can be meaningful in rule-based systems. According to
this interpretation, it is clear that if E1 is false (i.e., it is not raining) the rule is not
applicable, hence, the value of the whole rule is undefined. Further, according to
the transformation of a three valued set into an orthopair (A, B), we can interpret
A as the collection of all examples of the rule, i.e., A = E1 ∩ E2, and B as the set
of counterexamples, B = E1 ∩ E2c.

From a formal standpoint, several representations can be given of conditional
events. For instance Walker [51] gives six (equivalent) of them, and in particular
the number 5 is exactly the definition of an orthopair on Boolean algebras.

Definition 2.6. Let (A,∧,∨,′ , 0, 1) be a Boolean algebra. Then the set of condi-
tional events on A is

C(A) := {(a, b) : a, b ∈ A, a ∧ b = 0}

2.7. Bipolar information. Orthopairs can be seen as a way to represent bipolar
information. Indeed, ”Bipolarity refers to the propensity of the human mind to
reason and make decisions on the basis of positive and negative affects” [28]. Typical
examples of bipolar information are pros and cons of a decision or examples and
counterexamples of the same statement. Conditional events viewed as decision
rules represent this situation, where, as laid bare in example 2.5, we can build an
orthopair from a rule, by considering its examples and counterexamples.

There are several types of bipolar information depending on the data used to
represent knowledge and if positive and negative information is given by the same
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agent or not [28]. Orthopair models are usually of type II: Symmetric bivariate

unipolarity. That is, given an orthopair (A, B):

• A, B are defined on the basis of the same data
• A, B are defined by two independent judgements on unipolar scales

Rough sets belong to this category when the pair (lower, exterior) is considered and
the notion of sample introduced in section 2.2 clearly outlines the bipolar aspect
of rough sets. Also conditional rules and interval sets belong to this category
where the ”two independent judgments” are respectively given by examples and
counterexample [28] and by the instrument used to define the lower and upper
bound of the interval, which can vary from situation to situation.

On the contrary three-valued sets are of type I, Symmetric univariate bipolarity:

• single evaluation on a bipolar scale: false, half-true, true.

Hence, also shadowed sets belong to this category.
Moreover, orthopairs can arise also in Asymmetric bipolarity (Type III). In this

case the two sets of an orthopair are generated on different data, hence the asym-
metry. For instance, background knowledge from one side (negative information)
and empirical data (positive information) from the other.

Let us note that if we report this kind of bipolarity on rough sets, it is possible
to think to a new rough sets model where the lower and upper approximations are
defined on different data. Of course in this case the relationship between lower and
upper approximations are not standard and it should be accurately investigated.

As a conclusion we summarize in Table 2.7 the characteristic of the models
analyzed in the present section.

3. Operation on orthopairs

As stated in section 2.1 thanks to the bijection between orthopairs and three-
valued sets it is possible to study operations and algebraic structures on three
values and then report them on orthopairs. So, for instance, we have that only two
binary operations corresponding to a discrete t-norm can be defined on orthopairs
[6]. Similarly, we can have 14 implications [19, 20] and only two are a residual of
a t-norm, namely, the  Lukasiewicz and Gödel ones. Particular attention should be
paid when reporting these results on orthopair models, since we must assure that
the operations are well defined on that particular model: in subsection 3.3 we will
briefly discuss the rough set case. In the following we are not going to study all such
operations, instead we refer to [21, 19, 20]. Here, we give a brief overview of some
known results on the algebraic approach and we will focus on lattice operations and
related order relations.

3.1. Lattice operations and order relations. The usual order relation on three-
valued (fuzzy) sets is the point–wise one:

(5) f1 ≤1 f2 iff ∀x f1(x) ≤ f2(x) where 0 ≤
1

2
≤ 1

That is, the usual number ordering on {0, 1
2 , 1} is extended to fuzzy sets. If we

consider the equivalent order on orthopairs we get

(6) (A1, B1) ⊑1 (A2, B2) iff A1 ⊆ A2, B2 ⊆ B1
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Model Type Bipolarity Comment
Rough Sets R(X) ⊆ N(X)

Re(X) ⊆ O(X)
II Approximation of sets

with precise extension
and ill-known intension

Twofold Sets Rtf ⊆ N (X) II Approximation of sets
with precise intension
and ill-known extension

Shadowed Sets O(X) I Approximation of fuzzy
sets; regions dynami-
cally defined through a
parameter α, differently
from classical rough sets
and similarly to VPRS;
a criterion to define the
best α is given

Interval Sets N (X) II A family of sets used to
represent an ill-known
set in extension or in in-
tension

Conditional Events N (X), O(X) II It does not give an ap-
proximation of a set but
the relationship between
two events; useful in
representing conditional
rules

Table 3. Overview of models features

This is indeed the most used order relation on orthopair models. It leads also to a
lattice structure where the meet and join are defined respectively as

(A1, B1) ⊓1 (A2, B2) := (A1 ∩ A2, B1 ∪ B2)(7)

(A1, B1) ⊔1 (A2, B2) := (A1 ∪ A2, B1 ∩ B2)(8)

We note that in [37, 56] this ordering is named inclusion ordering. Indeed, if the
semantic of an orthopair is to approximate a not exactly known set, this order
relation means that an orthopair (A1, A0) is less than another one (B1, B0) if they
are approximations of two sets A, B such that A ⊆ B. Further, in the context of
conditional events the conjunction (7) is named interval conjunction since it “is in
complete accordance with the interval understanding of conditional objects” (see
[27] for more details).

In [37] another order relation on orthopairs is introduced and named sub-sethood:

(9) (A1, B1) ⊑2 (A2, B2) iff A2 ⊆ A1, B2 ⊆ B1

This relation, once interpreted on three values does not generate a lattice but
only the join-semilattice of figure 1.
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•

1
2

��������
•
1

??
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Figure 1. The lattice structure of order 3.

Clearly, this happens also on orthopairs where the meet does not always exist
and the join is defined as:

(10) (A1, B1) ⊔2 (A2, B2) := (A1 ∩ A2, B1 ∩ B2)

By relaxing the requirements of this order we can obtain two other orderings,
which generate two lattice operations. In one case we keep the condition on the
first component and in the other the condition on the second one. That is, the new
order relations on orthopairs are:

(A1, B1) ⊑3 (A2, B2) iff Bnd1 ⊆ Bnd2, B2 ⊆ B1(11)

(A1, B1) ⊑4 (A2, B2) iff A2 ⊆ A1, Bnd1 ⊆ Bnd2,(12)

where the condition Bnd1 ⊆ Bnd2 can be equivalently expressed as A2 ∪ B2 ⊆
A1 ∪ B1.

It can be easily seen that order 2 implies orders 3 and 4:

If (A1, B1) ⊑2 (A2, B2) then (A1, B1) ⊑3 (A2, B2), (A1, B1) ⊑4 (A2, B2)

but not vice versa. Indeed, both orders 3 and 4 must be satisfied to recover order
2:

If (A1, B1) ⊑3 (A2, B2) and (A1, B1) ⊑4 (A2, B2) then (A1, B1) ⊑2 (A2, B2)

On three values orders (11) and (12) correspond to a different order with respect
to the standard one on numbers, according to the following equations:

f1 ≤3 f2 iff ∀x f1(x) ≤ f2(x) where 0 ≤ 1 ≤ 1
2(13)

f1 ≤4 f2 iff ∀x f1(x) ≤ f2(x) where 1 ≤ 0 ≤ 1
2(14)

So, in some sense, 0, 1
2 , 1 are no more treated as numbers with associated order,

but as labels with an order. The analysis of the semantic of these orders and the
following logics are out of the scope of the present work. Instead, we are going to
see that they have an intuitive interpretation on orthopairs.

These two orderings give rise to the following meet and join operations on or-
thopairs

(A1, B1) ⊓3 (A2, B2) := (A1\B2 ∪ A2\B1, B1 ∪ B2)(15)

(A1, B1) ⊔3 (A2, B2) := (A1\Bnd2 ∪ A2\Bnd1, B1 ∩ B2)(16)

(A1, B1) ⊓4 (A2, B2) := (A1 ∪ A2, B1\A2 ∪ B2\A1)(17)

(A1, B1) ⊔4 (A2, B2) := (A1 ∩ A2, B1\Bnd2 ∪ B2\Bnd1)(18)

We note that in the conditional event context the operations (15) and (16) are
named quasi-conjunction and quasi-disjunction and together with operations (7)
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and (8) are the only two possibilities which satisfy the constraints derived by their
use as inference rules [27].

From a semantic standpoint, we have a more clear picture if we invert the orders,
that is: (A2, B2) �i (A1, B1) iff (A1, B1) ⊑i (A2, B2) with i ∈ {2, 3, 4}. We note
that �2 is called knowledge ordering in [56] and it represents the idea that we
have more knowledge about (A2, B2) than about (A1, B1). A similar thing can be
said about orderings �3 and �4. Indeed, the fact that with �3 and �4, we have
Bnd1 ⊆ Bnd2, means that we are more certain in situation 1 than in situation 2.
The following pictures represent these three orderings.

(a) (b) (c)

Figure 2. Representations of orders �3, �4 and �2.

Thus, orderings 3 and 4 are less demanding from the “knowledge” point of view
of ordering 4, but they have the advantage to generate a lattice structure, with the
possibility to define intersection and union. We note however, that the operations
generated by order three are quite “strange”. Indeed, due to the fact that the
natural order between 0 and 1 is inverted, we have the counter-intuitive behaviour
that with the intersection (union), the first component of the result is obtained by
the union (intersection) of the two operands.

More study about the role that these orderings can play in the different appli-
cations is of course needed. Also some investigations about the structures arising
from them would be interesting. For instance, in [37] is it said that orders ⊑1 and
�2 forms a bilattice on the collection of all (not necessarily ortho) pairs of sets.
Clearly, this is not true on O(X) since order �2 does not give rise to a lattice.

3.2. Algebraic structure. The collection of ortho (nested) pairs can be endowed
with different operations (some have been introduced in the previous subsection)
and thus algebraic structures. Here, we give some hints about some known results
on this topic.

Iwinski [35] studied the collection of orthopairs in connection with rough sets
ideas and showed that (N (X),⊓1,⊔1, (∅, X), (X, ∅) is a distributive lattice. This
result can be improved in different ways:

• The structure 〈N (X),⊓1,⊔1,≈, (∅, X), (X, ∅)〉 is a Stone algebra [49] where
≈ is defined as

≈ (A, B) := (B, Bc)

• The structure 〈N (X),⊓1,⊔1,≈,−, (∅, X), (X, ∅)〉 is a BZ lattice [16] where

−(A, B) := (B, A)

Moreover, in [10] the structure of orthopairs O(X) is related to the notion of texture
space. In particular, texture spaces are characterized in order to be “intuitionistic
textures”, i.e., texture isomorphic to the collection of orthopairs O(X).
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Further, several structures are studied in connection with rough sets and can be
thus easily introduced also on orthopairs. For an overview we refer to [4]. Here,
we just mention that the richer structure used in connection with rough sets is the
one of Heyting Wajsberg algebra [13, 14] 〈R(X),⇒L,⇒G, (∅, X)〉 where ⇒L,⇒G

are respectively a  Lukasiewicz and a Gödel implication. Thus, both Stone algebras
and BZ lattices are a substructure of HW algebras. We also note that HW algebras
are equivalent to other well know structures, without entering into details (see [14])
we mention: MV∆ algebras, obtained adding a Baaz’s operator ∆ [3, 33] to MV
algebras; Stonean MV algebra, a particular class of MV algebras introduced by
Belluce [7]; BZMVdM algebras, a pasting of MV algebras and BZ lattices [15].

Moving to a more abstract context, it is possible to define orthopairs on more
general spaces than the powerset of a given universe and then study their algebraic
structure.

• By defining orthopairs on a Boolean algebra as in definition 2.6, Walker [51]
proved that the structure 〈C(A), g, f,∼, (0, 1)〉 is a Stone algebra, where
g, f are the abstract meet and join corresponding to the concrete ones
⊓1,⊔1:

(a, b) g (c, d) := (a ∧ b, c ∨ d)

(a, b) f (c, d) := (a ∨ b, c ∧ d)

(0, 1) is the minimum of the lattice, ∼ is the corresponding of ≈:

∼ (a, b) := (b, b′)

Moreover, he characterizes those Stone algebras S that are an algebra of
orthopairs O(A) through a condition on the skeleton and dense subsets of
S.

• The structure of nested pairs of a Boolean algebra, i.e., pairs (a, b) such that
a ≤ b, was studied also by Monteiro [38, p.199]. Translating his results to or-
thopairs, he showed that
〈C(A), g, f,¬,∇, (1, 0)〉 where ¬(a, b) := (b, a) and ∇(a, b) = (b′, b) is a
three-valued
 Lukasiewicz algebra.

• Going more generally, and considering an Heyting algebra 〈A,∧,∨,→, 0, 1〉,
instead of a Boolean one, Vakarelov [50] showed that 〈C(A), g, f, _,¬,∇, (1, 0)〉
where (a, b) _ (c, d) := (a → c, a ∩ d) is a Nelson algebra. The interest-
ing aspect, with respect to the interpretation side, is that this approach
has been developed in order to give a semantics to the notion of counter-

example, hence it is strictly related to orthopairs and bipolar information.

3.3. Going down to models: the rough set case. All the previous operations
(and consequently algebraic structures) regard the collection of all orthopairs O(X)
(nested pairs N (X)) of a given universe. If we want to report these results on the
models we must pay attention to the fact that they remain closed operators and
then understand which is the semantic in that model. More clearly, let us consider
a n-ary function f : O(X)n → O(X) on orthopairs and then consider a subset
S ⊆ O(X) of orthopairs. The problem is if for all s ∈ Sn it happens that f(s) ∈ S.
This is not obvious and sometimes hard to prove. Moreover, if from a theoretical
point of view one is able to prove it, the second question is if it makes sense from
a semantical standpoint. To show this problem, we now consider the case of rough
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sets, i.e. S = Re(X), and in particular the usual meet and join operations ⊓1,⊔1.
Let us start with an example.

Example 3.1. Let our universe be X = {a, b, c, d, e, f} and suppose to have the
following two partitions:

π1 = {a, b}, {c, d}, {e, f}

π2 = {a, b, c}, {d, e, f}

Now, consider the two sets X1 = {a, b, c} and X2 = {c, e}. We compute their (lower-
exterior) approximations with respect to the two partitions and according to def-
inition 2.2. Considering the first partition we have: r1

e({a, b, c}) = ({a, b}, {e, f}),
r1
e({c, e}) = (∅, {a, b}). Their intersection and union using equations (7),(8) are:

r1
e({a, b, c}) ⊓1 r1

e({c, e}) = (∅, {a, b, e, f})

r1
e({a, b, c}) ⊔1 r1

e({c, e}) = ({a, b}, ∅)

The question, now, is if there exist two sets M1, J1 such that re(M1) = (∅, {a, b, e, f})
and re(J1) = ({a, b}, ∅). The answer is positive but not unique. For instance,
M1 = {c} or M1 = {d} and J1 = {a, b, c, e} or J1 = {a, b, d, f}.

With respect to the second partition, we obtain r2
e({a, b, c}) = ({a, b, c}, {d, e, f}),

r2
e({c, e}) = (∅, ∅) and then

r2
e({b, c}) ⊓1 r2

e({c, e}) = (∅, {d, e, f})

r2
e({b, c}) ⊔1 r2

e({c, e}) = ({a, b, c}, ∅)

Also in this case, there are several sets M2, J2 which have as rough approximation
(∅, {d, e, f}) = re(M2) and ({a, b, c}, ∅) = re(M2): M2 = {x} with x ∈ {a, b, c} and
J2 = {a, b, c, y} with y ∈ {d, e, f}. Moreover, when comparing the solution of the
two partitions, it can be easily seen that they are quite different.

In the above example, the two operations ⊓1,⊔1 are closed on the collection of all
classical rough sets. This is true in general, indeed it was shown how to construct the
two sets M and J in several manners [8, 31, 5]. However, as shown in the example,
this solution has some problem from the point of view of the interpretation. Indeed,

• they depend on the partition and thus on the available data which can vary
during time or from one observer to another;

• also inside the same partition, they are not unique, that is they cannot be
exactly described using only the two operands under investigation.

This can be interpreted as a language related issue. The starting sets X1, X2

are known in extension (i.e., we known the objects belonging to them) whereas
their intension is available only through approximations and the attributes to de-
scribe them. Clearly, intension depends on the language and in this case through
attributes: the more attributes the finer the description. It is evident that changing
the attributes (the language) will change intersection and union but not X1 and
X2. For more discussion about this topic see also [25, 21].

Further, if from classical rough sets, we move to more general approaches, for
instance using a tolerance instead of an equivalence relation, we are not even assured
on the closeness of the operations [9].
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4. Conclusion

Orthopairs and nested pairs of sets are a widely used notion to represent un-
certainty. We have seen that the interpretation as well as the way to obtain them
changes from model to model. Several operations can be introduced on the collec-
tion of orthopairs on a given universe, giving rise to different algebraic structures.
Here, we analyzed some of them, mainly related to order relations and gave an
overview of existing algebras used in connection with orthopairs.

Several generalizations can also be studied by abstracting the underlying struc-
ture, the only condition is to be able to define an orthogonality relation. So, if we
consider fuzzy sets instead of Boolean ones, we get so-called Intuitionistic Fuzzy
Sets (and equivalent structures [23]). On the other hand, we can consider pairs on
an abstract algebra (Boolean, Heyting, . . . ) as outlined in Section 3.2.

The bijection between orthopairs and three-valued sets will be further explored
in order to study new operations on orthopairs and their models [19].
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[38] Monteiro, A.: Sur Les Algèbres de Heyting symétriques, Portugaliae Mathematica, 39, 1980,

1–237.
[39] Narin’yani, A. S.: Sub–definite set – New data type for knowledge representation, Memo 4–

232, Computing Center, Novosibirsk, Russia, 1980, (in Russian, with an English summary).
[40] Pawlak, Z.: Information Systems - Theoretical Foundations, Information Systems, 6, 1981,

205–218.
[41] Pawlak, Z.: Rough sets and fuzzy sets, Fuzzy Sets and Systems, 17, 1985, 99–102.
[42] Pawlak, Z., Skowron, A.: Rough sets: Some extensions, Information Sciences, 177, 2007,

28–40.
[43] Pawlak, Z., Skowron, A.: Rudiments of rough sets, Information Sciences, 177, 2007, 3–27.
[44] Pedrycz, W.: Shadowed Sets: Representing and Processing Fuzzy Sets, IEEE Transaction

on Systems, Man and Cybernetics - PART B: Cybernetics, 28(1), 1998, 103–109.
[45] Pedrycz, W.: Shadowed Sets: Bridging Fuzzy and Rough Sets, in: Rough Fuzzy Hybridization

(S. Pal, A. Skowron, Eds.), Springer–Verlag, Singapore, 1999, 179–199.



ORTHOPAIRS: A SIMPLE AND WIDELY USED WAY TO MODEL UNCERTAINTY10 17

[46] Pedrycz, W.: Granular Computing with Shadowed Sets, Proceedings RSDGRC’05, 3641,
Springer–Verlag, Berlin, 2005.

[47] Pedrycz, W., Vukovich, G.: Granular Computing with Shadowed Sets, International Journal
of Intelligent Systems, 17, 2002, 173–197.

[48] Polkowski, L., Skowron, A., Eds.: Rough Sets in Knowledge Discovery 1, vol. 18 of Studies
in Fuzziness and Soft Computing, Physica–Verlag, Heidelberg, New York, 1998.

[49] Pomykala, J., Pomykala, J.: The Stone Algebra of Rough Sets, Bulletin of the Polish Academy
of Sciences - Mathematics, 36(7–8), 1988, 495–507.

[50] Vakarelov, D.: Notes on N-Lattices and Constructive Logic with Strong Negation, Studia
Logica, 36, 1977, 109–125.

[51] Walker, E.: Stone Algebras, Conditional Events, and Three Valued Logic, IEEE Transaction
of Sysyems, Man, and Cybernetics, 24(12), 1994, 1699–1707.

[52] Yao, Y.: Interval-set algebra for qualitative knowledge representation, Proceedings of the
Fifth international Conference on Computing and Information, 1993.

[53] Yao, Y.: Generalized rough set models, chapter 16, Vol. 18 of Polkowski and Skowron [48],
1998, 286–318.

[54] Yao, Y.: Relational interpretations of neighborhood operators and rough set approximation
operators, Information Sciences, 111, 1998, 239–259.

[55] Yao, Y.: Probabilistic Rough Set Approximations, International Journal of Approximate

Reasoning, 49, 2008, 255–271.
[56] Yao, Y.: Interval Sets and Interval-Set Algebras, Proceedings of the 8th IEEE International

Conference on Cognitive Informatics, 2009.
[57] Yao, Y., Li, X.: Comparison of rough-set and interval-set models for uncertain reasoning,

Fundamenta Informaticae, 27, 1997, 289–298.
[58] Ziarko, W.: Variable Precision Rough Sets Model, Journal of Computer and Systems Sci-

ences, 43(1), 1993, 39–59.

Dipartimento di Informatica, Sistemistica e Comunicazione, Università di Milano–
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