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Abstract

We first establish a sharp relation between the order of vanishing of a Dirichlet eigenfunc-
tion at a point and the leading term of the asymptotic expansion of the Dirichlet eigenvalue
variation, as a removed compact set concentrates at that point. Then we apply this spectral
stability result to the study of the asymptotic behaviour of eigenvalues of Aharonov–Bohm
operators with two colliding poles moving on an axis of symmetry of the domain.
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1 Introduction and main results

The present paper is concerned with asymptotic estimates of the eigenvalue variation under either
removal of small sets from the domain or operator variations due to moving poles of singular
coefficients. More precisely, in the first part of the paper we will investigate the relation between
the order of vanishing of a Dirichlet eigenfunction at a point and the leading term of the asymptotic
expansion of the Dirichlet eigenvalue variation, as a removed compact set concentrates at that
point. In the second part of the paper we will consider Aharonov–Bohm operators with two poles
lying on the symmetry axis of an axially-symmetric domain and study the asymptotic behaviour
of eigenvalues as the poles move coalescing into a fixed point. A spectral equivalence between this
class of Aharonov–Bohm operators and the Dirichlet Laplacian will be established, once the poles’
joining segment has been removed. Thus sharp expansions for the Aharonov–Bohm operators will
be derived from those obtained in the first part of the paper.

1.1 Eigenvalue variation estimates under removal of small capacity sets

It is well-known that the spectrum of the Dirichlet Laplacian on a bounded domain Ω ⊂ Rn does
not change when a zero capacity compact set is removed from Ω, see e.g. [28]. In the first part of
the present paper we are interested in spectral stability of the Dirichlet Laplacian and estimates
of the eigenvalue variations when the domain is perturbed by removing sets of small capacity: we
mean the possibility that, if K ⊂ Ω is a compact set, the N -th Dirichlet eigenvalue λN (Ω \K) in
Ω \K may be close to λN (Ω) if (and only if) the capacity of K in Ω is close to zero. The seminal

aDipartimento di Matematica e Applicazioni, Università di Milano–Bicocca, Via Cozzi 55, 20125 Milano, Italy,
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work [28] excited much interest and now a wide literature deals with this topic, showing that a
perturbation theory can be developed in this situation.

We consider a bounded, connected open set Ω ⊂ Rn. Let K ⊂ Ω be a compact set. The
(condenser) capacity of K in Ω is defined as

CapΩ(K) = inf

{∫
Ω

|∇f |2 : f ∈ H1
0 (Ω) and f − ηK ∈ H1

0 (Ω \K)

}
, (1)

where ηK is a fixed smooth function such that supp ηK ⊂ Ω and ηK ≡ 1 in a neighborhood of K.
By a compactness argument, the infimum (1) is achieved by a function VK ∈ H1

0 (Ω) such that
VK − ηK ∈ H1

0 (Ω \K) (see e.g. [14, Section 2]), so that

CapΩ(K) =

∫
Ω

|∇VK |2 dx, (2)

where VK (capacitary potential) is the unique solution of the Dirichlet problem
−∆VK = 0, in Ω \K,
VK = 0, on ∂Ω,

VK = 1, on K.

(3)

By saying that VK solves (3) we mean that VK ∈ H1
0 (Ω), VK − ηK ∈ H1

0 (Ω \K), and∫
Ω\K
∇VK · ∇ϕdx = 0 for all ϕ ∈ H1

0 (Ω \K).

In [14], Courtois proves spectral stability under removal of small capacity sets in a very general
context; furthermore, [14] shows that, when K ⊂ Ω is a compact set with CapΩ(K) close to zero,
then the function

λN (Ω \K)− λN (Ω) (4)

is even differentiable with respect to CapΩ(K). More precisely, in [14] the following result is
established.

Theorem 1.1. [14, Theorem 1.2] Let X be a compact Riemannian manifold. Let λ := λN = . . . =
λN+k−1 be a Dirichlet eigenvalue of X with multiplicity k. There exist a function r : R+ → R+

such that limt→0 r(t) = 0 and a positive constant εN , such that, for any compact set A of X, if
CapX(A) ≤ εN , then

|λN+j(X \A)− λN+j − CapX(A) · µA(u2
N+j)| ≤ CapX(A) · r(CapX(A)) (5)

where µA is a finite positive probability measure supported in A defined as the renormalized sin-
gular part of ∆VA and {uN , . . . , uN+k−1} is an orthonormal basis of the eigenspace of λ which
diagonalises the quadratic form µA(u2) according to the increasing order of its eigenvalues.

We mention that, in the particular case of A concentrating to a point (see Definition 1.2) esti-
mate (5) is proved by Flucher in [17, Theorem 6]. Theorem 1.1 above provides a sharp asymptotic
expansion of λN+j(X \ A) − λN+j as CapX(A) → 0 if µA(u2

N+j) 6→ 0, but in general it reduces
just to estimate the difference λN+j(X \A)− λN+j without giving its sharp vanishing order when
µA(u2

N+j)→ 0. A sharp asymptotic expansion of the eigenvalue variation in the case of µA(u2
N+j)

vanishing requires a more precise estimate than (5). In this regard, scanning through the proof
of Theorem 1.1 given in [14] (see also [17, Theorem 7]), one realizes that when the eigenvalue
λN (Ω) is simple the significant quantity is instead the uN -capacity defined below, uN being an
(L2-normalized) eigenfunction related to λN (Ω). Indeed, this can better describe the expansion of
eigenvalues’ variation, as stated in Theorem 1.4 below.

For every u ∈ H1
0 (Ω), we defined the u-capacity as

CapΩ(K,u) = inf

{∫
Ω

|∇f |2 : f ∈ H1
0 (Ω) and f − u ∈ H1

0 (Ω \K)

}
. (6)
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We note that when u = 1 in a neighborhood of K, then we recover the definition (1) of the
condenser capacity. Definition (6) can be extended to H1

loc(Ω) functions, just defining, for any
u ∈ H1

loc(Ω), CapΩ(K,u) := CapΩ(K, ηKu) with ηK as in (1).
The infimum in (6) is achieved by a function VK,u which is the unique solution of the Dirichlet

problem 
−∆VK,u = 0, in Ω \K,
VK,u = 0, on ∂Ω,

VK,u = u, on K,

(7)

in such a way that

CapΩ(K,u) =

∫
Ω

|∇VK,u|2 dx. (8)

By saying that VK,u solves (7) we mean that VK,u ∈ H1
0 (Ω), VK,u − u ∈ H1

0 (Ω \K), and∫
Ω\K
∇VK,u · ∇ϕdx = 0 for all ϕ ∈ H1

0 (Ω \K). (9)

We refer to [14, Section 2] for description of the properties of the u-capacity and to [6, Section 2]
for the specific case of the u1-capacity (which is also called Dirichlet capacity). For our purposes,
it is important to observe the continuity properties of the f -capacity for family of concentrating
compact sets described in the remark below.

Definition 1.2. Let {Kε}ε>0 be a family of compact sets contained in Ω. We say that Kε is
concentrating to a compact set K ⊂ Ω if for every open set U ⊆ Ω such that U ⊃ K there exists
εU > 0 such that U ⊃ Kε for every ε < εU .

We observe that the above defined property of concentration of sets alone is not sufficient to
provide a classical notion of convergence of sets. However, if the family {Kε}ε>0 satisfies further
properties, such as monotonicity with respect to inclusion or zero capacity for the limit set, then
continuity properties of the capacity for concentration sets allow recovering classical notions of
convergence of sets, as observed below.

Remark 1.3. Let {Kε}ε>0 be a family of compact sets contained in Ω concentrating to a compact
set K ⊂ Ω such that one of the two following conditions hold:

(i) CapΩ(K) = 0;

(ii) K =
⋂
ε>0Kε where Kε is decreasing as ε→ 0 (i.e. Kε1 ⊆ Kε2 if ε1 > ε2).

Then, for all f ∈ H1
0 (Ω), VKε,f → VK,f strongly in H1

0 (Ω) and limε→0+ CapΩ(Kε, f) = CapΩ(K, f);
in particular, VKε → VK in H1

0 (Ω) and limε→0+ CapΩ(Kε) = CapΩ(K).
The proof in the case of assumption (ii) can be found in [14, Proposition 2.4]; for case (i) we

refer to Proposition B.1 in the appendix.

From Remark 1.3 it follows that, if {Kε}ε>0 is a family of compact sets concentrating to a
compact set K ⊂ Ω satisfying either (i) or (ii), then Ω \ Kε converge to Ω \ K in the sense of
Mosco, i.e. the following two properties hold:

(i) the weak limit points in H1(Rn) of every family of functions uε ∈ H1
0 (Ω \ Kε) belong to

H1
0 (Ω \K);

(ii) for every u ∈ H1
0 (Ω\K), there exists a family of functions uε ∈ H1

0 (Ω\Kε) such that uε → u
in H1(Rn),

see [15, 24]. In the present paper, the notion of concentrating sets will always be used together
with conditions (i) or (ii) of Remark 1.3, and hence in cases in which it implies Mosco convegence
of the complementary sets.
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The following result is essentially contained in the intermediate steps which are developed in
[14] to prove estimate (5). It provides a sharp asymptotic expansion of (4) in terms of the uN -
capacity when the eigenvalue λN (Ω) is simple. We observe that the derivation of (5) for non simple
eigenvalues requires an estimate of the remaining term in the asymptotic expansion uniformly with
respect to all eigenfunctions: this is performed in [14] in terms of the condenser capacity. On the
other hand, for a simple eigenvalue, the intermediate estimates obtained in [14, formulas (31) and
(50)] in terms of the uN -capacity are enough to obtain the following sharp asymptotic expansion.

Theorem 1.4. Let λN (Ω) be a simple eigenvalue of the Dirichlet Laplacian in a bounded, con-
nected, and open set Ω ⊂ Rn and let uN be an L2(Ω)-normalized eigenfunction associated to
λN (Ω). Let (Kε)ε>0 be a family of compact sets contained in Ω concentrating to a compact set K
with CapΩ(K) = 0. Then

λN (Ω \Kε) = λN (Ω) + CapΩ(Kε, uN ) + o (CapΩ(Kε, uN )) , as ε→ 0.

As already mentioned, the proof of Theorem 1.4 is contained in the proof of [14, Theorem 1.2],
which is based on a method of approximation of small eigenvalues introduced in [13] (see also [14,
Proposition 3.1]). Nevertheless, for the sake of clarity and completeness, we present an alternative
proof in the appendix, which relies on the use of the spectral theorem to estimate the eigenvalue
variation.

As observed in [14, Proposition 2.8], for every eigenfunction u of the Dirichlet Laplacian in Ω,
we have that CapΩ(Kε, u) = O(CapΩ(Kε)) as ε→ 0. This in particular means that Theorem 1.4 is
sharper than Theorem 1.1 since even the remaining term is estimated in terms of the uN -capacity.

We mention that estimates from above and below (but not sharp asymptotic expansions) of
the eigenvalue variation in terms of the u1-capacity were obtained in [6], in the case of a compact
Riemannian manifold with boundary with a small subset removed.

Motivated by Theorems 1.1 and 1.4, we devote the first part of the present paper to the
derivation of the asymptotics of the key quantity CapΩ(Kε, uN ) (which tends continuously to 0
as Kε concentrates to a compact zero-capacity set, as observed in Remark 1.3) with the goal of
writing the sharp asymptotic expansion of (4) in some relevant examples. In particular we address
the case of compact sets concentrating to a point, which has indeed zero capacity in any dimension
greater than or equal to 2. We will show that the asymptotics of CapΩ(Kε, uN ) depends on the
limit point, more precisely on the order of vanishing of uN at that point.

As a first remark in this direction, if the eigenfunction uN does not vanish at the limit point,
then the uN -capacity is in fact asymptotic to the condenser capacity (up to a constant).

Proposition 1.5. Let Ω ⊂ Rn be a bounded connected open set with n ≥ 2, let u ∈ H1
0 (Ω)∩C2(Ω)

and (Kε)ε>0 be a family of compact sets contained in Ω concentrating to a point x0 ∈ Ω such that
u(x0) 6= 0. Then

CapΩ(Kε, u) = u2(x0)CapΩ(Kε) + o(CapΩ(Kε)), as ε→ 0. (10)

In view of Proposition 1.5, if the eigenfunction u does not vanish at x0, then the u-capacity
is asymptotic to the condenser capacity and the problem of sharp asymptotics of the eigenvalue
variation (4) for K concentrating at x0 is reduced to the study of the behaviour of CapΩ(K).
In dimension 2 we succeed in proving the following sharp asymptotic expansion of the condenser
capacity of generic compact connected sets concentrating to a point in terms of their diameter.

Proposition 1.6. Let Ω be a bounded connected open set Ω ⊂ R2. Let (Kε)ε>0 be a family of
compact connected sets contained in Ω concentrating to a point x0 ∈ Ω. Let δε = diamKε, so that
δε → 0+ as ε→ 0+. Then

CapΩ(Kε) =
2π

| log(δε)|
+O

(
1

log2(δε)

)
, as ε→ 0+.

The proof of Proposition 1.6 is based on Steiner symmetrization methods together with a
conformal change of coordinates (see Section 2.2). This allows us to work in terms of elliptic
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coordinates which fit the special geometry of the problem very well. This particular strategy
seems to be more difficult in higher dimensions. Moreover, we stress that, in dimension n ≥ 3,
any compact set contained in a regular manifold of dimension n − 2 has zero capacity (see [18]),
so that one cannot obtain a lower bound on the capacity only in terms of the diameter.

As a consequence of Theorem 1.4, Propositions 1.5 and 1.6, we deduce the following sharp
asymptotic expansion of the eigenvalue variation (4) as the removed connected compact set K
concentrates to a point in dimension n = 2.

Theorem 1.7. Let λN (Ω) be a simple eigenvalue of the Dirichlet Laplacian in a bounded, con-
nected, open set Ω ⊂ R2 with the L2(Ω)-normalized associated eigenfunction uN . Let (Kε)ε>0

be a family of compact connected sets contained in Ω concentrating to a point x0 ∈ Ω such that
uN (x0) 6= 0. Then

λN (Ω \Kε)− λN (Ω) = u2
N (x0)

2π

| log δε|
+ o

(
1

| log δε|

)
, as ε→ 0.

It is worthwhile mentioning that there is a rich literature dealing with the asymptotic expansion
of the eigenvalues when small sets are removed from the domain, in particular when the removed
set is a tubular neighborhood of a submanifold. Theorem 1.7 above has the following counterpart
in [14, Theorem 1.4], which provides the asymptotic expansion for λN (Ω \Kε)− λN (Ω) when Kε

is a tubular neighborhood of a closed submanifold Y of codimension p ≥ 2.

Theorem 1.8. [14, Theorem 1.4] Let λ := λN = . . . = λN+k−1 be an eigenvalue of X with
multiplicity k. Let {uN , . . . , uN+k−1} be an orthonormal basis of the eigenspace of λ which di-
agonalises the quadratic form

∫
Y
u2 according to the increasing order of its eigenvalues. Then,

if Kε is a tubular neighborhood of a closed submanifold Y of codimension p ≥ 2, we have for
j = 0, 1, . . . , k − 1

λN+j(X \Kε)− λN+j = φp(ε)

∫
Y

u2
N+j + o(φp(ε))

where φp(ε) = 2π
| log ε| if p = 2 and φp(ε) = (p− 2)(Vol(Y ))p−1εp−2 if p ≥ 3.

Theorem 1.8 generalizes preexisting results obtained for simple eigenvalues by Ozawa [27] when
K is a point and Ω is a smooth bounded domain in R2 and by Chavel and Feldman for any
codimension p [12]. Concerning the case in which K is a point, it is worthwhile citing also [7],
which provides the whole asymptotic expansion for (4). We highlight that, in the case n = 2 and
for simple limit eigenvalues, Theorem 1.7 holds for general families of compact sets concentrating at
a point, which are not required to have necessarily the special form of decreasing neighborhoods of
the limit point. The validity of the asymptotic expansion for general families of removed compact
sets finds applications in the analysis of spectral stability for magnetic Aharonov–Bohm operators
with two coalescing points; this case requires the possibility of choosing as Kε a nodal line of a
magnetic eigenfunction joining the poles, see Section 3.3 and [3].

When the limit eigenfunction uN vanishes on the limit compact set, both Theorems 1.8 and 1.7
reduces to be just an estimate of the vanishing rate of the eigenvalue variation, without giving any
sharp information on the leading term of the expansion. Nevertheless, in view of Theorem 1.4, a
sharp asymptotics for simple eigenvalues can be obtained once the asymptotics of CapΩ(Kε, uN )
is computed, as we will do at least for special shapes of concentrating compact sets (i.e. segments
and disks) in dimension 2.

Let u be an eigenfunction of the Dirichlet Laplacian in Ω, with Ω being a bounded, connected
open set in R2 containing 0. It is well-known that u ∈ C∞(Ω) and there exist k ∈ N ∪ {0},
β ∈ R \ {0} and α ∈ [0, π) such that

r−ku(r(cos t, sin t))→ β sin(α− kt), (11)

in C1,τ ([0, 2π]) as r → 0+ for any τ ∈ (0, 1) (see e.g. [16]). In this case we say that u has a zero
of order k at 0. We note that (11) implies that, if k = 0, u does not vanish near 0 whereas, if
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k ≥ 1, the nodal set of u near 0 consists of 2k regular half-curves meeting at 0 with equal angles;
the minimal slope of tangents to such half-curves is equal to α

k . We also observe that, if k = 0 in
(11), then β sinα = u(0).

The following result provides the asymptotics of the u-capacity in the case of segments concen-
trating at a point.

Theorem 1.9. Let sε = [−ε, ε] × {0}. For u being an L2(Ω)-normalized eigenfunction of the
Dirichlet Laplacian in an open, bounded, connected set Ω ⊂ R2 containing 0, let k ∈ N ∪ {0},
β ∈ R \ {0}, and α ∈ [0, π) be as in (11).

(i) If α 6= 0, then

CapΩ(sε, u) =

{
2π
| log ε| u

2(0) (1 + o(1)), if k = 0,

ε2k π β2 sin2 αCk(1 + o(1)), if k ≥ 1,
(12)

as ε→ 0+, Ck being a positive constant depending on k (see (22)).

(ii) If α = 0, then CapΩ (sε, u) = O
(
ε2k+2

)
as ε→ 0+.

Combining Theorem 1.4 with Theorem 1.9 we obtain the following result.

Theorem 1.10. Let λN (Ω) be a simple eigenvalue of the Dirichlet Laplacian in an open, bounded,
connected set Ω ⊂ R2 containing 0, with the L2(Ω)-normalized associated eigenfunction uN . Let
k ∈ N ∪ {0}, β ∈ R \ {0}, and α ∈ [0, π) be as in expansion (11) for uN . For ε > 0 small, let
sε = [−ε, ε]× {0}. Then

λN (Ω \ sε)− λN (Ω) =


2π
| log ε| u

2
N (0) (1 + o(1)), if k = 0, α 6= 0,

ε2k π β2 sin2 αCk(1 + o(1)), if k ≥ 1, α 6= 0,

O
(
ε2k+2

)
, if α = 0,

as ε→ 0+.

Remark 1.11. We observe that the condition α = 0 means the segment sε to be tangent to a nodal
line of the limit eigenfunction uN . Hence Theorem 1.10 provides sharp asymptotics of λN (Ω \ sε)
if the segment is transversal to nodal lines of uN , whereas it gives just an estimate on the vanishing
order of λN (Ω \ sε) − λN (Ω) when the segment is tangent to a nodal line. In this case we expect
that the vanishing order will depend on the precision of the approximation between the nodal line
and the segment (e.g. if the nodal line is straight, we have trivially that the CapΩ (sε, u) is zero
and λN (Ω \ sε)− λN (Ω) = 0).

Remark 1.12. In the case k = 1, i.e. if 0 is a regular point in the nodal set of uN , we have that
β2 = |∇uN (0)|2, hence the asymptotic expansion in Theorem 1.10 has the form

λN (Ω \ sε)− λN (Ω) = ε2 π |∇uN (0)|2 sin2 αC1(1 + o(1)), as ε→ 0.

Another relevant example in which CapΩ(Kε, u) can be sharply estimated in terms of the
vanishing order of u is given by small disks concentrating at a zero point of u.

Theorem 1.13. Let Bε = B(0, ε) = {(x1, x2) ∈ R2 :
√
x2

1 + x2
2 ≤ ε}. For u being an L2(Ω)-

normalized eigenfunction of the Dirichlet Laplacian in an open, bounded, connected set Ω ⊂ R2

containing 0, let k ∈ N ∪ {0}, β ∈ R \ {0} and α ∈ [0, π) be as in (11). Then

CapΩ(Bε, u) =

{
2π
| log ε| u

2(0) (1 + o(1)), if k = 0,

2k π ε2k β2(1 + o(1)), if k ≥ 1,
(13)

as ε→ 0+.
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Combining Theorem 1.4 and Theorem 1.13, we obtain the following result.

Theorem 1.14. Let λN (Ω) be a simple eigenvalue of the Dirichlet Laplacian in an open, bounded,
connected set Ω ⊂ R2 containing 0 with the L2(Ω)-normalized associated eigenfunction uN . Let
k ∈ N ∪ {0}, β ∈ R \ {0}, and α ∈ [0, π) be as in expansion (11) for uN . Then

λN (Ω \Bε)− λN (Ω) =


2π
| log ε| u

2
N (0) (1 + o(1)), if k = 0,

2k π ε2k β2 (1 + o(1)), if k ≥ 1,

as ε→ 0+.

Remark 1.15. In the special case k = 1, that is to say if 0 is a regular point in the nodal set of
uN , Theorem 1.14 gives the asymptotic expansion

λN (Ω \Bε)− λN (Ω) = 2π ε2 |∇uN (0)|2(1 + o(1)), as ε→ 0.

1.2 Aharonov–Bohm potentials with varying poles

The special attention devoted to planar domains in the first part of the paper is well understood
in the context of the applications given in the second part to the problem of spectral stability for
Aharonov–Bohm potentials with varying poles. For a = (a1, a2) ∈ R2, the so-called Aharonov–
Bohm magnetic potential with pole a and circulation 1/2 is defined as

Aa(x) =
1

2

(
−(x2 − a2)

(x1 − a1)2 + (x2 − a2)2
,

x1 − a1

(x1 − a1)2 + (x2 − a2)2

)
, x = (x1, x2) ∈ R2 \ {a}.

The set of papers [1, 2, 4, 9, 25] deals with the dependence on the pole a of the spectrum of
Schrödinger operators with Aharonov–Bohm vector potentials, i.e. of operators (i∇+Aa)2 acting
on functions u : R2 → C as

(i∇+Aa)2u = −∆u+ 2iAa · ∇u+ |Aa|2u.

In particular, the aforementioned set of papers provides a complete picture of sharp asymptotics
for simple eigenvalues when the pole a is moving in Ω.

The very special features which circulation 1/2 presents are widely exposed in Section 3 and can
be summarized in the fact that eigenfunctions do present nodal lines ending at the pole a. If the
circulation is not a half-integer, the Aharonov–Bohm operator acts on complex-valued functions
without any hidden symmetry so that the notion of nodal lines does not make sense a priori; hence
the approach used here (and based on isospectrality with the Laplacian on the domain with nodal
lines removed) does not work. Spectral stability for Aharonov–Bohm operators with moving poles
and not half-integer circulation is under investigation in [5].

Of course, one can consider even potentials which are sum of different Aharonov–Bohm po-
tentials with poles located at different points in the domain, being the differential Schrödinger
operator defined analogously. Concerning this, in [23] the author proves continuity of eigenvalues
for Schrödinger operators with different Aharonov–Bohm potentials even in the case of coalescing
poles. As an application of the results proved in the first part of the present paper, in section
3 we begin to tackle the problem of coalescing poles, looking for sharp asymptotics for simple
eigenvalues. In this direction, we obtain Theorem 1.16 below under a symmetry assumption on
the domain.

Let σ : R2 → R2, σ(x1, x2) = (x1,−x2). We observe that, if uN is an eigenfunction of the
Dirichlet Laplacian on an open set Ω such that 0 ∈ Ω = σ(Ω) and if the eigenvalue associated
to uN is simple, then the nodal set of uN is necessarily symmetric with respect to the x1-axis; in
particular the x1-axis must be tangent either to a nodal line of uN or to the bisector between two
nodal lines. This implies that, if k ∈ N ∪ {0}, β ∈ R \ {0}, and α ∈ [0, π) are as in expansion (11)
for uN , then

either α = 0 or α =
π

2
. (14)
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In particular, if the x1-axis is not tangent to any nodal line of uN , expansion (11) takes the form

r−ku(r(cos t, sin t))→ β cos(kt), as r → 0+ (15)

in C1,τ ([0, 2π]) for some β 6= 0 and k ∈ N ∪ {0}.
Theorem 1.16. Let Ω be an open, bounded, and connected set in R2 satisfying σ(Ω) = Ω and
0 ∈ Ω. Let λN (Ω) be a simple eigenvalue of the Dirichlet Laplacian on Ω and uN be an L2(Ω)-
normalized eigenfunction associated to λN (Ω) such that the x1-axis is not tangent to any nodal
line of uN . Let k ∈ N ∪ {0} and β ∈ R \ {0} be as in expansion (15) for uN .

For a > 0 small, let a− = (−a, 0) and a+ = (a, 0) be the poles of the following Aharonov–Bohm
potential

Aa−,a+(x) := −Aa−(x) +Aa+(x) = −1

2

(−x2, x1 + a)

(x1 + a)2 + x2
2

+
1

2

(−x2, x1 − a)

(x1 − a)2 + x2
2

and let λaN be the N -th eigenvalue for (i∇+Aa−,a+)2. Then

λaN − λN (Ω) =

{
2π
| log a| |uN (0)|2 (1 + o(1)), if k = 0,

a2k π β2 Ck(1 + o(1)), if k ≥ 1,

as a→ 0+, being Ck a positive constant depending only on k (see (22)).

We observe that, in view of (14), Theorem 1.16 considers the case of poles moving along the
bisector between two nodal lines of the limit eigenfunction uN .

The main idea behind the proof of Theorem 1.16 is the spectral equivalence between the
Aharonov–Bohm operator in an axially symmetric domain and the Dirichlet Laplacian in the
domain obtained by removing either the segment joining the poles or its complement in the axis.
Such isospectrality result is established in section 3.3 and extends the isospectrality result proved in
[8] for a single pole to the case of two poles. Once the spectral equivalence is established, Theorem
1.16 follows as an application of Theorem 1.10.

A weakening of the symmetry assumption required in Theorem 1.16 above presents some sig-
nificant additional difficulties due to the general shape of nodal lines of eigenfunctions (i.e. they
are not necessarily a straight segment); this problem is treated in [3] in the case k = 0.

Let us also mention that Aharonov–Bohm operators of the type studied in the present paper
are connected to spectral minimal partitions in the sense of [21], as illustrated in [8, 26]. More
precisely, it was shown in [20] that a minimal k-partition consists of the nodal domains of the
k-th eigenfunction of an Aharonov–Bohm operator. The corresponding vector potential is known
explicitly, given the minimal partition, and has half-integer circulation around a multiple point
in the boundary of the partition, if the order of multiplicity is odd. The changes in the minimal
partitions when the domain is deformed have been numerically studied in [8] for rectangles and in
[10] for flat rectangular tori. In the first case, the results show a triple point in the boundary of
the partition moving to the boundary of the domain. In the second case, they show pairs of triple
points merging into a point of order four. The analysis in [4, 25] is relevant to the first situation,
while [3] and the present paper are one step towards understanding the second one .

2 u-capacity

We devote this section to explicit calculations of u-capacity in several situations.

2.1 General compact sets concentrating away from zeros

In this subsection, we present the case of general domains which are concentrating to a point away
from zeros of the eigenfunction u and prove the asymptotic relation, stated in Proposition 1.5,
between the u-capacity and the condenser capacity. In order to derive such asymptotics we first
state the following lemma, which essentially rewrites [14, formula (53)] in a form which is more
convenient for our purposes.
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Lemma 2.1. Let Ω be a bounded, connected open set in Rn and let K be a compact set in Ω.
Let η be any smooth function such that supp η ⊂ Ω and η ≡ 1 in a neighborhood of K. If
u ∈ H1

0 (Ω) ∩ C2(Ω) then

CapΩ(K,u) = L(u,K)−
∫

Ω

VK,uVK∆(ηu) dx− 2

∫
Ω

VK,u∇VK · ∇(ηu) dx (16)

where L(u,K) satisfies(
min
x∈K

u2(x)

)
CapΩ(K) ≤ L(u,K) ≤

(
max
x∈K

u2(x)

)
CapΩ(K). (17)

Proof. Let us first assume that K is a regular compact set, meaning that K is the closure an open
smooth set. Then∫

Ω

|∇VK,u|2 dx =

∫
Ω\K
|∇VK,u|2 dx+

∫
K

|∇u|2 dx

=

∫
∂(Ω\K)

VK,u∂νVK,u dσ +

∫
∂K

u∂νu dσ −
∫
K

u∆u dx

=

∫
∂(Ω\K)

VKu∂νVK,u dσ +

∫
∂K

u∂νu dσ −
∫
K

u∆(ηu) dx.

On the other hand∫
∂(Ω\K)

VKu∂νVK,u dσ =

∫
∂(Ω\K)

VK(ηu)∂νVK,u dσ =

∫
Ω\K
∇ (VKηu) · ∇VK,u dx

=

∫
Ω\K

ηu∇VK · ∇VK,u dx+

∫
Ω\K

VK∇(ηu) · ∇VK,u dx

=

∫
∂(Ω\K)

uVK,u∂νVK dσ−
∫

Ω\K
VK,u∇VK · ∇(ηu) dx+

∫
∂(Ω\K)

VKVK,u∂ν(ηu) dσ

−
∫

Ω\K
VKVK,u∆(ηu) dx−

∫
Ω\K

VK,u∇VK · ∇(ηu) dx

=

∫
∂(Ω\K)

u2∂νVK dσ −
∫
∂K

u∂νu dσ −
∫

Ω\K
VKVK,u∆(ηu) dx− 2

∫
Ω\K

VK,u∇VK · ∇(ηu) dx.

Hence we obtain that, if K is regular, then

CapΩ(K,u) =

∫
∂(Ω\K)

u2∂νVK dσ −
∫

Ω

VKVK,u∆(ηu) dx− 2

∫
Ω

VK,u∇VK · ∇(ηu) dx. (18)

If K is a generic compact set, then there exist a decreasing family of regular compact sets {Kε}ε>0

concentrating at K such that K =
⋂
ε>0Kε. If η ∈ C∞c (Ω) is any smooth function such that η ≡ 1

in a neighborhood of K, then η ≡ 1 also in a neighborhood of Kε for ε sufficiently small. Writing
(18) for Kε and η and passing to the limit, in view of Remark 1.3 (case (ii)) we obtain that

CapΩ(K,u) = L(u,K)−
∫

Ω

VKVK,u∆(ηu) dx−2

∫
Ω

VK,u∇VK · ∇(ηu) dx

with L(u,K) = limε→0+

∫
∂(Ω\Kε) u

2∂νVKε dσ. By the Hopf Lemma, ∂νVKε is positive on ∂Kε,

being ν the exterior normal vector to Ω \ Kε. Moreover, by integration by parts, we have that∫
∂Kε
|∂νVKε | dσ = CapΩ(Kε). Hence(

min
Kε

u2

)
CapΩ(Kε) ≤ min

∂Kε
u2

∫
∂Kε

|∂νVKε | dσ

≤
∫
∂(Ω\Kε)

u2∂νVKε dσ ≤ max
∂Kε

u2

∫
∂Kε

|∂νVKε | dσ ≤
(

max
Kε

u2

)
CapΩ(Kε).
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By Remark 1.3 (case (ii)) and continuity of u, passing to the limit in the above estimate yields
(17), thus completing the proof.

From Lemma 2.1 we derive Proposition 1.5.

Proof of Proposition 1.5. Let η ∈ C∞c (Ω) be a smooth function such that η ≡ 1 in a neighborhood
of x0, so that (16) can be written for Kε and η for ε sufficiently small. The fact that Kε concentrates
to x0 as ε→ 0 and the continuity of u implies that

lim
ε→0

min
Kε

u2 = lim
ε→0

max
Kε

u2 = u2(x0),

so that L(u,Kε) = u2(x0)CapΩ(Kε) + o(CapΩ(Kε)) as ε→ 0+. From Cauchy-Schwarz Inequality
and Corollary A.2 we deduce that∣∣∣∣∫

Ω

VKεVKε,u∆(ηu) dx

∣∣∣∣ ≤ ‖∆(ηu)‖L∞(Ω)‖VKε‖L2(Ω)‖VKε,u‖L2(Ω) = o (CapΩ(Kε)) ,

as ε→ 0+. According to Cauchy-Schwarz Inequality and Corollary A.2,∣∣∣∣∫
Ω

VKε,uN∇VKε · ∇(ηu) dx

∣∣∣∣ ≤ ‖∇(ηu)‖L∞(Ω) ‖∇VKε‖L2(Ω) ‖VKε,uN ‖L2(Ω) = o (CapΩ(Kε)) ,

as ε→ 0+. Equation (10) then follows from (16).

2.2 Capacities in dimension 2

In this subsection we present some explicit computations for capacities of compact sets concen-
trating to a point in a planar domain.

To this aim, we first derive the following estimate of the h-capacity in terms of the vanishing
order of the function h at the concentration point of compact sets.

Lemma 2.2. Let Ω ⊂ Rn be a bounded connected open set with n ≥ 2 and 0 ∈ Ω and let {Kε}ε>0

be a family of compact sets contained in Ω such that, for some C > 0 and ε sufficiently small,

Kε ⊂ B(0, Cε).

Let h ∈ H1(Ω) be such that h(x) = O(|x|k+1) and |∇h(x)| = O(|x|k) as |x| → 0 for some
k ∈ N ∪ {0}. Then

CapΩ(Kε, h) = O(ε2k+n) as ε→ 0.

Proof. By monotonicity of the h-capacity, it is enough to prove that

CapΩ

(
B(0, Cε), h

)
= O

(
ε2k+n

)
as ε→ 0.

To do this, let us fix a smooth function ϕ : Rn → R supported in B(0, 2) and equal to 1 on B(0, 1).
Let us define

ϕε(x) := ϕ
( x

Cε

)
and hε := ϕεh.

The function hε coincides with h on B(0, Cε), so we have, by definition of the capacity,

CapΩ

(
B(0, Cε), h

)
≤
∫

Ω

|∇hε|2 dx.

On the other hand, for any x ∈ Ω,

|∇hε(x)|2 ≤ 2
(
ϕ2
ε(x) |∇h(x)|2 + h2(x) |∇ϕε(x)|2

)
= 2

(
ϕ2
( x

Cε

)
|∇h(x)|2 +

1

C2ε2
h2(x)

∣∣∣∇ϕ( x

Cε

)∣∣∣2) .
10



Since |∇h| = O(|x|k) as |x| → 0 and hε is supported in B(0, 2Cε), then ‖∇hε‖L∞(Ω) ≤ const εk.
Therefore ∫

Ω

|∇hε|2 dx = O(ε2k+n),

which proves the claim.

In order to derive sharp asymptotics in both cases of condenser capacities of generic compact
sets and of u-capacities of segments, a key tool is the following computation of capacity of segments
in ellipses. For L > 0 and ε > 0, we denote as

Eε(L) =

{
(x1, x2) ∈ R2 :

x2
1

L2 + ε2
+
x2

2

L2
< 1

}
(19)

the interior of the ellipse centered at 0 with major semi-axis of length
√
L2 + ε2 and minor semi-axis

of length L. Furthermore, for every ε > 0 we denote as

sε = [−ε, ε]× {0} (20)

the segment of length 2ε and center 0 on the x1-axis.

Lemma 2.3. Let k ∈ N ∪ {0} and let Pk be a homogeneous polynomial of degree k ≥ 0, i.e

Pk(x1, x2) =

k∑
j=0

cjx1
k−jx2

j (21)

for some c0, c1, . . . , ck ∈ R. Then, for every L > 0,

CapEε(L)(sε, Pk) =

 2π
| log ε| c

2
0

(
1 +O

(
1

| log ε|

))
, if k = 0,

ε2k c20 πCk(1 + o(1)), if k ≥ 1,

as ε→ 0+, where

Ck =

k∑
j=1

j|Aj,k|2, being Aj,k =
1

π

∫ 2π

0

(cos η)k cos(jη) dη. (22)

Remark 2.4. We notice that, if k ≥ 1, then there exists at least a j ∈ {1, 2, . . . , k} such that

Aj,k 6= 0, so that Ck =
∑k
j=1 j|Aj,k|2 6= 0 if k ≥ 1.

Remark 2.5. As a particular case of Lemma 2.3 when k = 0 and c0 = 1 (so that Pk ≡ 1), we
obtain that the condenser capacity of the segment in the ellipse is given

CapEε(L)(sε) =
2π

| log ε|

(
1 +O

(
1

| log ε|

))
as ε→ 0+. (23)

Proof of Lemma 2.3. We define the elliptic coordinates (ξ, η) (see for instance [30]) by{
x1 = ε cosh(ξ) cos(η),

x2 = ε sinh(ξ) sin(η),
ξ ≥ 0, 0 ≤ η < 2π.

Let us note that, in these coordinates, the segment sε is defined by ξ = 0, whereas Eε is defined
by 0 ≤ ξ < ξε and ∂Eε is described by the condition ξ = ξε, with ε sinh(ξε) = L , that is to say

ξε = argsinh

(
L

ε

)
= log

(
L

ε
+

√
1 +

L2

ε2

)
. (24)
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A direct computation shows that the mapping Φ : (ξ, η) 7→ (x1, x2) has a Jacobian matrix of the
form

J(Φ)(ξ, η) = h(ξ, η)O(ξ, η),

with O(ξ, η) an orthonormal matrix and h(ξ, η) > 0 in R2 \ sε satisfying

h2(ξ, η) = ε2(cosh2 ξ − cos2 η).

If we evaluate the homogeneous polynomial Pk in the new set of coordinates on the segment
sε = {(ξ, η) : ξ = 0}, we end up with Qk(ξ, η) = Pk(Φ(0, η)) = c0ε

k(cos η)k. Let W be the
Dirichlet potential of Pk in elliptic coordinates, that is

−∆W = 0, in (0, ξε)× (0, 2π),

W = 0, on ξ = ξε,

W = c0 ε
k(cos η)k, on ξ = 0,

W (ξ, 0) = W (ξ, 2π), for all ξ ∈ (0, ξε).

Let us consider the Fourier expansion of W in elliptic coordinates:

1

εk
W (ξ, η) =

a0(ξ)

2
+
∑
j≥1

(aj(ξ) cos(jη) + bj(ξ) sin(jη))

where

aj(ξ) =
1

π

∫ 2π

0

1

εk
W (ξ, η) cos(jη) dη, bj(ξ) =

1

π

∫ 2π

0

1

εk
W (ξ, η) sin(jη) dη,

from which we see that bj(0) = 0 for any j and aj(0) = 0 for all j > k. Therefore we have

0 = −∆(ξ,η)W = εk
a′′0(ξ)

2
+ εk

∑
j≥1

(
(a′′j (ξ)− j2aj(ξ)) cos(jη) + (b′′j (ξ)− j2bj(ξ)) sin(jη)

)
and imposing the boundary conditions for ξ ∈ (0, ξε) we obtain

a0(ξ) = a0(0)

(
1− ξ

ξε

)
, (25)

aj(ξ) = aj(0)

(
ejξ

1− e2jξε
+

e−jξ

1− e−2jξε

)
, for j ≥ 1 (26)

bj(ξ) = 0 for j ≥ 0. (27)

In this way

1

εk
W (ξ, η) =

a0(ξ)

2
+

k∑
j=1

aj(ξ) cos(jη)

and then by Parseval’s identity∫∫
(0,ξε)×(0,2π)

|∇W |2 = ε2k π

2

∫ ξε

0

|a′0(ξ)|2 dξ + ε2kπ

k∑
j=1

∫ ξε

0

(|a′j(ξ)|2 + j2|aj(ξ)|2) dξ. (28)

Let us now compute every term of the latter expression. First we have∫ ξε

0

|a′0(ξ)|2 dξ =
1

ξε
|a0(0)|2. (29)
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Secondly, for j ≥ 1 we have∫ ξε

0

|a′j(ξ)|2 dξ = j2|aj(0)|2
∫ ξε

0

(
ejξ

1− e2jξε
− e−jξ

1− e−2jξε

)2
dξ

=
j

2
|aj(0)|2

(
−1

1− e2jξε
+

1

1− e−2jξε
− 4j

ξε
(1− e2jξε)(1− e−2jξε)

)
=
j

2
|aj(0)|2

(
e−2jξε − e2jξε − 4jξε

(1− e2jξε)(1− e−2jξε)

)
=
j

2
|aj(0)|2(1 + o(1)) as ε→ 0. (30)

Finally we have∫ ξε

0

|aj(ξ)|2 dξ = |aj(0)|2
∫ ξε

0

(
ejξ

1− e2jξε
+

e−jξ

1− e−2jξε

)2
dξ

= |aj(0)|2 1

2j

(
−1

1− e2jξε
+

1

1− e−2jξε
+ 4j

ξε
(1− e2jξε)(1− e−2jξε)

)
= |aj(0)|2 1

2j
(1 + o(1)) as ε→ 0. (31)

Plugging (29), (30) and (31) into (28) we obtain∫∫
(0,ξε)×(0,2π)

|∇W |2 = ε2k π

2

1

ξε
|a0(0)|2 + ε2kπ

k∑
j=1

j|aj(0)|2(1 + o(1)) as ε→ 0. (32)

We note that for k = 0 there holds a0(0) = 2c0, whereas aj(0) = 0 for j ≥ 1. Moreover, a simple
calculation shows

1

ξε
=

1

| log ε|
+O

(
1

| log ε|2

)
as ε → 0+. On the other hand, if k ≥ 1, then there exists at least a j ∈ {1, 2, . . . , k} such that
aj(0) 6= 0.

We then conclude that

CapEε(L)(sε, Pk) =


2π
| log ε|c

2
0

(
1 +O

(
1

| log ε|

))
, if k = 0,

ε2k π
(∑k

j=1 j|aj(0)|2
)

(1 + o(1)), if k ≥ 1,

thus completing the proof.

2.2.1 Condenser capacity in dimension 2

We first consider generic compact connected sets and prove the sharp asymptotic expansion of the
condenser capacity in terms of their diameter, as stated in Proposition 1.6.

Proof of Proposition 1.6. Let aε, bε ∈ Kε be such that |bε−aε| = δε. We denote by mε the middle
point of aε and bε, i.e. mε = 1

2 (aε + bε). Note that mε → x0 as ε→ 0.
Let us first derive an upper bound for CapΩ(Kε). There exists R > 0 such that B(mε, R) ⊂ Ω

and B(x0, R) ⊂ Ω for ε sufficiently small. According to the monotonicity properties of the capacity,
we have

CapΩ(Kε) ≤ CapB(mε,R)B(mε, δε) = CapB(0,R)B(0, δε).

It is easy to compute CapB(0,R)B(0, δε). Indeed, the radial function V defined as V (x) = f(|x|)
with

f(r) =

{
1, if r ≤ δε,
log(r/R)
log(δε/R) , if δε < r ≤ R,
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belongs to H1
0 (B(0, R)), is harmonic in B(0, R) \ B(0, δε) and equal to 1 on B(0, δε). Hence V is

a capacitary potential and

CapB(0,R)B(0, δε) =

∫
B(0,R)

|∇V |2 dx = 2π

∫ R

δε

dr

r log2(δε/R)
=

2π

log(R/δε)
.

We therefore have

CapΩ(Kε) ≤
2π

log(R/δε)
. (33)

To find a lower bound for CapΩ(Kε) is a more delicate issue. Since Ω is bounded, there exists a

length L such that Ω ⊂ Ẽε, where Ẽε is the interior of the ellipse centered at mε, whose major

semi-axis has length
√
L2 + 1

4δ
2
ε and belongs to the straight line Dε passing through aε and bε,

and whose minor semi-axis has length L. By monotonicity of the capacity,

CapẼε(Kε) ≤ CapΩ(Kε).

We now claim that, if s̃ε denotes the segment of extremities aε and bε,

CapẼε(s̃ε) ≤ CapẼε(Kε). (34)

To prove claim (34), we first consider a regular connected compact set K̃ε such that Kε ⊆ K̃ε ⊂ Ẽε.
Since K̃ε is regular, we have that its capacitary potential VK̃ε is continuous in Ẽε. For every x ∈ R2,
let us denote as Sx the straight line perpendicular to Dε passing through x. Let us consider the
Steiner symmetrization of VK̃ε with respect to the line Dε (see e.g. [11]), i.e.

V ∗
K̃ε

(x) = inf
{
t > 0 : H1({y ∈ Sx : VK̃ε(y) > t}) ≤ 2 dist(x,Dε)

}
,

where H1 is the 1-dimensional Hausdorff measure.
Since K̃ε is connected and aε, bε ∈ K̃ε, we have that Sx ∩ K̃ε 6= ∅ for every x ∈ s̃ε. It follows

that, for every x ∈ s̃ε, supSx∩Ẽε VK̃ε = 1; then H1({y ∈ Sx : VK̃ε(y) > t}) = 0 if and only if t ≥ 1.
It follows that V ∗

K̃ε
(x) = 1 for every x ∈ s̃ε. Then

CapẼε(s̃ε) ≤
∫
Ẽε
|∇V ∗

K̃ε
|2 dx.

Since Steiner symmetrization decreases the Dirichlet energy, we obtain also that∫
Ẽε
|∇V ∗

K̃ε
|2 dx ≤

∫
Ẽε
|∇V

K̃ε
|2 dx = CapẼε(K̃ε)

thus concluding that CapẼε(s̃ε) ≤ CapẼε(K̃ε). Finally, to obtain (34) it is enough to approximate
Kε by regular connected compact sets and invoke Remark 1.3 (ii).

Since a roto-translation transforms Ẽε into Eδε/2 and s̃ε into sδε/2 (see the notations introduced
in (19) and (20)), from (23) it follows that

CapẼε(s̃ε) = CapEδε/2(sδε/2) =
2π

| log δε|

(
1 +O

(
1

| log δε|

))
as ε→ 0+.

Putting the above inequalities and computations together, we get

CapΩ(Kε) ≥
2π

| log δε|

(
1 +O

(
1

| log δε|

))
as ε→ 0+. (35)

Putting together Equations (33) and (35), we obtain

2π

| log δε|

(
1 +O

(
1

| log δε|

))
≤ CapΩ(Kε) ≤

2π

log(R/δε)
. (36)

Observing that
2π

log(R/δε)
=

2π

| log δε|

(
1 +O

(
1

| log δε|

))
as δε → 0+, we conclude the proof.
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2.2.2 u-capacity for segments concentrating to a point in dimension 2

We now compute the u-capacity for the special shape of segments of length 2ε centered at 0; for
this particular shape we are able to consider even the case when the limit point is a zero of the
eigenfunction u. The interest in computing the u-capacity of segments with coalescing extremities is
motivated by the remarkable application to eigenvalue asymptotics for Aharonov–Bohm operators
with two poles presented in section 3.

The following proposition gives the asymptotics for h-capacity of concentrating segments in a
planar domain when h is a homogeneous polynomial.

Proposition 2.6. Let Ω ⊂ R2 be a bounded connected open set with 0 ∈ Ω. For ε > 0 small,
let sε be as in (20) and Pk be a homogeneous polynomial of degree k ≥ 0 as in (21) for some
c0, c1, . . . , ck ∈ R. Then

CapΩ(sε, Pk) =

{
2π
| log ε| c

2
0

(
1 +O

(
1

| log ε|
))
, if k = 0,

ε2k c20 πCk(1 + o(1)), if k ≥ 1,
(37)

as ε→ 0+, with Ck as in (22).

Proof. Since Ω is open and bounded, there exist L2 > L1 > 0 such that, for ε sufficiently small,
sε ⊂ Eε(L1) ⊂ Ω ⊂ Eε(L2), with Eε(L1), Eε(L2) being as in (19). By monotonicity of the capacity,

CapEε(L2)(sε, Pk) ≤ CapΩ(sε, Pk) ≤ CapEε(L1)(sε, Pk).

The conclusion then follows from Lemma 2.3.

The following proposition gives, for every sufficiently smooth function u, a sharp relation be-
tween the asymptotics of CapΩ(sε, u) and the order of vanishing of u at 0 ∈ Ω.

Proposition 2.7. Let Ω ⊂ R2 be an open, bounded, connected set with 0 ∈ Ω and let k ∈ N∪ {0}.
Let us assume that u ∈ Ck+1

loc (Ω)\{0} has vanishing order at 0 equal to k, i.e. the Taylor polynomial
of u of order k and center 0 has degree k and is non-zero and k-homogeneous, namely is of the
form

Pk(x1, x2) =

k∑
j=0

cjx1
k−jx2

j

for some c0, c1, . . . , ck ∈ R, (c0, c1, . . . , ck) 6= (0, 0, . . . , 0).

(i) If c0 6= 0, then

CapΩ(sε, u) =

{
2π
| log ε| u

2(0)
(
1 + o(1)

)
, if k = 0,

ε2k c20 πCk(1 + o(1)), if k ≥ 1,
(38)

as ε→ 0+, Ck being defined in (22).

(ii) If c0 = 0, then CapΩ (sε, u) = O
(
ε2k+2

)
as ε→ 0+.

Proof. From the Taylor formula, we can write u as u = Pk + h for some h ∈ Ck+1
loc (Ω) satisfying

h(x) = O(|x|k+1) and |∇h(x)| = O(|x|k) as |x| → 0+.

We denote by V , W0, and W the capacitary potentials associated with the capacities CapΩ (sε, u),
CapΩ (sε, Pk), and CapΩ (sε, h) respectively. By linearity of the Dirichlet problem, V = W0 +W .
Therefore we have that

CapΩ (sε, u) =

∫
Ω

|∇V |2 dx =

∫
Ω

|∇W0|2 dx+ 2

∫
Ω

∇W0 · ∇W dx+

∫
Ω

|∇W |2 dx.
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By Lemma 2.2 we have that, as ε→ 0+,∫
Ω

|∇W |2 dx = O
(
ε2k+2

)
and ∣∣∣∣∫

Ω

∇W0 · ∇W dx

∣∣∣∣ ≤ ‖∇W0‖L2(Ω) ‖∇W‖L2(Ω) =
√

CapΩ (sε, Pk)O
(
εk+1

)
.

Hence
CapΩ (sε, u) = CapΩ (sε, Pk) +

√
CapΩ (sε, Pk)O

(
εk+1

)
+O

(
ε2k+2

)
, (39)

as ε→ 0+. In view of Proposition 2.6 and (39), we have that, if c0 6= 0,

CapΩ (sε, u) = CapΩ (sε, Pk) (1 + o(1))

as ε→ 0+, from which estimate (38) follows thanks to Proposition 2.6.
On the other hand, if c0 = 0, then Proposition 2.6 implies that CapΩ (sε, Pk) = 0, hence from

(39) it follows that CapΩ (sε, u) = O
(
ε2k+2

)
as ε→ 0+.

The proof of Theorem 1.9 (and consequently of Theorem 1.10) now follows as a particular case
of Proposition 2.7.

Proof of Theorems 1.9 and 1.10. From the fact that u ∈ C∞(Ω) and (11) it follows that the Taylor
polynomial of the function u with center 0 and order k is harmonic, k-homogeneous, and has degree
k; more precisely it has the form

Pk(r cos t, r sin t) = βrk sin(α− kt).

Since it can be also written as Pk(x1, x2) =
∑k
j=0 cjx1

k−jx2
j for some c0, c1, . . . , ck ∈ R, we have

then that necessarily c0 = β sinα. The proof of Theorem 1.9 then follows from Proposition 2.7.
Finally, the proof of Theorem 1.10 is a direct consequence of Theorems 1.4 and 1.9.

2.2.3 u-capacity for small disks concentrating to a point in dimension 2

We conclude this section with a proof of Theorem 1.13. As in the proof of Theorem 1.9, we rely on
explicit computation of the u-capacity in a special case. The following result is the counterpart,
in the case of the disks, of Lemma 2.3, which was stated for segments.

Lemma 2.8. Let k ∈ N, k ≥ 1, and let Pk be a homogeneous polynomial of degree k. Let us define
the Fourier coefficients

aj,k =
1

π

∫ 2π

0

Pk(cos t, sin t) cos(jt) dt for j ∈ {0, 1 . . . , k}

and

bj,k =
1

π

∫ 2π

0

Pk(cos t, sin t) sin(jt) dt for j ∈ {1 . . . , k}.

Then, for every R > 0,

CapB(0,R)(Bε, Pk) = πD(Pk) ε2k(1 + o(1))

as ε → 0+, where Bε = B(0, ε) and D(Pk) is a constant depending only on the coefficients of the
polynomial Pk given by

D(Pk) =
k a2

0,k

4
+

k∑
j=1

(k + j)2

2k
(a2
j,k + b2j,k). (40)
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Proof. Let us denote by V the Dirichlet potential of Pk and by W its expression in polar coordi-
nates, that is to say V (r cos t, r sin t) = W (r, t) for (r, t) ∈ (0, R) × (0, 2π). By definition of the
Fourier coefficients,

Pk(r cos t, r sin t) = rk
a0,k

2
+

k∑
j=1

rk (aj,k cos(jt) + bj,k sin(jt)) (41)

for all (r, t) ∈ (0,+∞) × (0, 2π). For all x ∈ Bε, V (x) = Pk(x), and therefore, using polar
coordinates,

∫
B(0,ε)

|∇V (x)|2 dx =

∫ ε

0

r2k−2

[ ∫ 2π

0

k2

(
a0,k

2
+

k∑
j=1

aj,k cos(jt) + bj,k sin(jt)

)2

+

( k∑
j=1

j bj,k cos(jt)− j aj,k sin(jt)

)2]
r dr.

By Parseval’s identity, we obtain

∫
B(0,ε)

|∇V (x)|2 dx =
ε2k

2k

k2 π a2
0,k

2
+

k∑
j=1

π (k2 + j2) (a2
j,k + b2j,k)

 . (42)

Let us now determine V in the open set B(0, R) \ Bε, that is to say W (r, t) for r ∈ (ε,R). The
function W satisfy the boundary value problem

1
r
∂
∂r

(
r ∂∂rW

)
+ 1

r2
∂2

∂t2W = 0, in (ε,R)× (0, 2π),

W (R, t) = 0, for all t ∈ (0, 2π),

W (ε, t) = Pk(ε cos t, ε sin t), for all t ∈ (0, 2π),

W (r, 0) = W (r, 2π), for all r ∈ (ε,R).

(43)

To solve problem (43), we expand W in Fourier series with respect to the variable t:

W (r, t) =
a0(r)

2
+
∑
j≥1

aj(r) cos(jt) + bj(r) sin(jt),

for (r, t) ∈ (ε,R)× (0, 2π). Then(
1

r

∂

∂r

(
r
∂

∂r
W

)
+

1

r2

∂2

∂t2
W

)
(r, t) =

1

2r
(r a′0(r))

′

+

k∑
j=1

(
1

r

(
r a′j(r)

)′ − j2

r2
aj(r)

)
cos(jt) +

(
1

r

(
r b′j(r)

)′ − j2

r2
bj(r)

)
sin(jt),

so that
(r a′0(r))′ = 0 in (ε,R),

and, for j ≥ 1,
r (r a′j(r))

′ − j2aj(r) = 0 and r (r b′j(r))
′ − j2bj(r) = 0.

Taking into account the boundary conditions in (43), we find

a0(r) = a0,k ε
k log

(
r
R

)
log
(
ε
R

) ,
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and, for j ∈ {1, . . . , k},

aj(r) = aj,kε
k

(
R
r

)j − ( rR)j(
R
ε

)j − ( εR)j and bj(r) = bj,kε
k

(
R
r

)j − ( rR)j(
R
ε

)j − ( εR)j ,
while, for j ≥ k + 1, aj(r) = 0 and bj(r) = 0. Using polar coordinates and Parseval’s identity as
above, we find∫

B(0,R)\Bε
|∇V (x)|2 dx

=

∫ R

ε

(
π

2
|a′0(r)|2 + π

k∑
j=1

(
|a′j(r)|2 +

j2

r2
|aj(r)|2 + |b′j(r)|2 +

j2

r2
|bj(r)|2

))
r dr.

We have ∫ R

ε

π

2
|a′0(r)|2 r dr =

π a2
0,k ε

2k

2 log2
(
R
ε

) ∫ R

ε

dr

r
=
π a2

0,k ε
2k

2 log
(
R
ε

) .
For j ∈ {1, . . . , k}, an integration by parts gives us∫ R

ε

(
r |a′j(r)|2 +

j2

r
|aj(r)|2

)
dr =

[
r aj(r) a

′
j(r)

]R
ε
−
∫ R

ε

((
r a′j(r)

)′ − j2

r
aj(r)

)
aj(r) dr

= −ε aj(ε) a′j(ε).

Using the expression computed for aj(r), we find∫ R

ε

(
r |a′j(r)|2 +

j2

r
|aj(r)|2

)
dr = j a2

j,k ε
2k 1 +

(
ε
R

)2j
1−

(
ε
R

)2j .
The exact same computation gives us∫ R

ε

(
r |b′j(r)|2 +

j2

r
|bj(r)|2

)
dr = j b2j,k ε

2k 1 +
(
ε
R

)2j
1−

(
ε
R

)2j ,
so that ∫

B(0,R)\Bε
|∇V (x)|2 dx =

π a2
0,k ε

2k

2 log
(
R
ε

) + π ε2k
k∑
j=1

j (a2
j,k + b2j,k)

1 +
(
ε
R

)2j
1−

(
ε
R

)2j . (44)

Combining (42) and (44), we get

CapB(0,R)(Bε, Pk) = π ε2k

k a2
0,k

4
+

k∑
j=1

(
k2 + j2

2k
+ j

)
(a2
j,k + b2j,k) +O

(
1

|log(ε)|

) ,

and finally

CapB(0,R)(Bε, Pk) = π

ka2
0,k

4
+

k∑
j=1

(k + j)2

2k
(a2
j,k + b2j,k)

 ε2k (1 + o(1)),

as ε→ 0+.

Remark 2.9. Since the polynomial Pk in Lemma 2.8 is of degree k ≥ 1, it is non zero, and
therefore D(Pk) > 0.
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We can now find the asymptotics of the Pk-capacity for small balls concentrating at a point in
any open set. This is the analogue of Proposition 2.6 for segments.

Proposition 2.10. Let Ω ⊂ R2 be a bounded connected open set with 0 ∈ Ω. For ε > 0 small, let
Bε = B(0, ε) and Pk be a homogeneous polynomial of degree k ≥ 0. Then

CapΩ(Bε, Pk) =

{
2πc20
| log ε|

(
1 +O

(
1

| log ε|
))
, if k = 0 and Pk ≡ c0,

π D(Pk) ε2k(1 + o(1)), if k ≥ 1,
(45)

as ε→ 0+, where D(Pk) is the constant defined in (40).

Proof. If k = 0, i.e. if Pk ≡ c0, then CapΩ(Bε, Pk) = c20CapΩBε and the conclusion follows from
Proposition 1.6.

For k ≥ 1, let us fix two radii 0 < R1 < R2 such thatB(0, R1) ⊂ Ω ⊂ B(0, R2). By monotonicity
of the capacity we have

CapB(0,R2)(Bε, Pk) ≤ CapΩ(Bε, Pk) ≤ CapB(0,R1)(sε, Pk).

We apply Lemma 2.8 to CapB(0,R1)(Bε, Pk) and CapB(0,R1)(Bε, Pk) and obtain (45).

The following proposition is the analogue for disks of Proposition 2.7 for segments.

Proposition 2.11. Let Ω ⊂ R2 be an open, bounded, connected set with 0 ∈ Ω and let k ∈ N∪{0}.
Let us assume that u ∈ Ck+1

loc (Ω)\{0} has vanishing order at 0 equal to k, i.e. the Taylor polynomial
of u of order k and center 0 has degree k and is non-zero and k-homogeneous. Then

CapΩ(Bε, u) =

{
2π
| log ε| u

2(0)
(
1 + o(1)

)
, if k = 0,

π D(Pk) ε2k(1 + o(1)), if k ≥ 1,

as ε→ 0+, D(Pk) being defined in (40).

Proof. The proof follows by repeating the same arguments as in Proposition 2.7 and using Propo-
sition 2.10 instead of Proposition 2.6.

Proof of Theorems 1.13 and 1.14. Arguing as in the proof of Theorem 1.9, from the fact that
u ∈ C∞(Ω) and (11) we deduce that the Taylor polynomial of the function u with center 0 and
order k is harmonic, k-homogeneous, and has degree k; more precisely it has the form

Pk(r cos t, r sin t) = βrk sin(α− kt).

Then, for k ≥ 1, the Fourier coefficients aj,k and bj,k appearing in Lemma 2.8 are zero for j 6= k
and

ak,k =

{
2β sinα, if k = 0,

β sinα, if k ≥ 1,
and bk,k = −β cosα.

From (40) it follows that, for k ≥ 1, D(Pk) = 2kβ2. Then the asymptotics stated in (13) follows
from Proposition 2.11.

The proof of Theorem 1.14 follows directly from Theorems 1.4 and 1.13.

3 Asymptotic expansion for coalescing poles of Aharonov–
Bohm operators

In this section we study Aharonov–Bohm operators on domains having one axis of symmetry. More
specifically, let us define the reflection σ : R2 → R2 by

σ(x1, x2) = (x1,−x2),
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and let us consider Ω, an open, bounded, and connected set in R2 satisfying σ(Ω) = Ω. Let us
consider a Schrödinger operator with a purely magnetic potential of Aharonov–Bohm type, with
two poles on the axis of symmetry

R := {(x1, x2) ∈ R2 : x2 = 0},

each with a half-integer flux.
More precisely, let us fix two points a− = (a−1 , 0) and a+ = (a+

1 , 0) in R, with a−1 < a+
1 . We

consider the vector field Aa−,a+ defined on the doubly punctured plane P̈(a−, a+) := R2 \{a−, a+}
by

Aa−,a+(x) := −1

2

1

(x1 − a−1 )2 + x2
2

(−x2, x1 − a−1 ) +
1

2

1

(x1 − a+
1 )2 + x2

2

(−x2, x1 − a+
1 ).

Let us note that, if we write, for any x = (x1, x2) ∈ P̈(a−, a+),

Aa−,a+(x1, x2) = (A1(x1, x2), A2(x1, x2)),

we have
Aa−,a+(x1,−x2) = (−A1(x1, x2), A2(x1, x2)).

Equivalently, we have, for any x ∈ P̈(a−, a+),

Aa−,a+(σ(x)) = −Aa−,a+(x)S

where S is a 2× 2 symmetry matrix:

S :=

(
1 0
0 −1

)
. (46)

We work in the complex Hilbert space L2(Ω) of complex valued square integrable functions on Ω,
with the scalar product defined by

〈u, v〉 :=

∫
Ω

uv dx

for u and v in L2(Ω). Our operator is the Friedrichs extension of the differential operator

(i∇+Aa−,a+)2,

acting on C∞c (Ω̈(a−, a+)), the space of smooth functions with compact support in the doubly
punctured domain Ω̈(a−, a+) := Ω \ {a−, a+}. We denote it by HAa−,a+

. By construction, it is a

positive and self-adjoint operator. Furthermore, it has compact resolvent, as a consequence of [23,
Corollary 2.5]. Its spectrum therefore consists of a sequence of real positive eigenvalues tending to
+∞, which we denote by (λk(a−, a+))k≥1.

3.1 Gauge transformations

We now construct suitable gauge transformations, in order to remove the magnetic potential. We
use the notation

I(a−, a+) := [a−1 , a
+
1 ]× {0}

to denote the closed segment joining the two poles.

Lemma 3.1. There exists a unique C∞-function ϕa−,a+ defined on R2 \ I(a−, a+) such that

∇ϕa−,a+ = Aa−,a+ on R2 \ I(a−, a+)

and
ϕa−,a+(x1, 0) = 0 for all x1 ∈ (a+

1 ,+∞).

Furthermore, ϕa−,a+ satisfies ϕa−,a+ ◦ σ = −ϕa−,a+ .
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Proof. We define θ0 : R2 \ ((−∞, 0]× {0})→ R by

θ0(x) := 2 arctan

(
x2

x1 +
√
x2

1 + x2
2

)
.

and

ϕa−,a+(x) :=
1

2
θ0(x− a+)− 1

2
θ0(x− a−),

as illustrated on Figure 1. A simple computation shows that ϕa−,a+ has a unique smooth extension

•

•• x

x1−
√
x21 + x22

x2

θ0(x)θ0(x)/2
a−
•

a+
•

• x

θ0(x− a−)
θ0(x− a+)

Figure 1: Geometric interpretation of θ0 and ϕa−,a+ .

to R2 \ I(a−, a+), with all the desired properties. Uniqueness follows from the connectedness of
R2 \ I(a−, a+).

Lemma 3.2. There exists a unique smooth function ψa−,a+ : P̈(a−, a+)→ C satisfying

(i)
∣∣ψa−,a+ ∣∣ ≡ 1 on P̈(a−, a+);

(ii)
∇ψa−,a+
iψa−,a+

= 2Aa−,a+ on P̈(a−, a+);

(iii) ψa−,a+(x1, 0) = −1 for all x1 ∈ (a−1 , a
+
1 ).

Furthermore, ψa−,a+ satisfies ψa−,a+ ◦ σ = ψa−,a+ .

Proof. For all x ∈ R2 \ I(a−, a+), we set ψa−,a+(x) = e2iϕa−,a+ (x), where ϕa−,a+ is the function
defined in Lemma 3.1. This function is smooth on R2 \ I(a−, a+) and, for all x ∈ R2 \ I(a−, a+),

∇ψa−,a+(x) = 2ie2iϕa−,a+ (x)∇ϕa−,a+(x) = 2iψa−,a+(x)Aa−,a+(x),

and thus
∇ψa−,a+(x)

iψa−,a+(x)
= 2∇ϕa−,a+(x) = 2Aa−,a+(x).

On the other hand, for all x1 ∈ (a−1 , a
+
1 ),

lim
η→0,η>0

ψa−,a+(x1, η) = eiπ = −1 and lim
η→0,η>0

ψa−,a+(x1,−η) = e−iπ = −1.

This implies that ψa−,a+ admits a continuous extension to P̈(a−, a+), which we also denote by

ψa−,a+ . Since ∇ψa−,a+ = 2iψa−,a+Aa−,a+ on R2 \ I(a−, a+), with Aa−,a+ smooth on P̈(a−, a+),

we obtain that ψa−,a+ is of class C1 on P̈(a−, a+), and then that ψa−,a+ is smooth by a bootstrap
argument.
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Let us now prove uniqueness. Let us assume that ψ̃ is a function satisfying conditions (i–iii).
Then, we deduce from (ii) that

∇

(
ψ̃

ψa−,a+

)
=

ψ̃

ψa−,a+

(
∇ψ̃
ψ̃
−
∇ψa−,a+
ψa−,a+

)
=

ψ̃

ψa−,a+

(
2iAa−,a+ − 2iAa−,a+

)
= 0

on P̈(a−, a+). There exists therefore c ∈ C such that ψ̃ = cψa−,a+ on P̈(a−, a+), and condition
(iii) tells us that c = 1, thus proving uniqueness.

Finally, since ϕa−,a+ ◦ σ = −ϕa−,a+ , we conclude that ψa−,a+ ◦ σ = ψa−,a+ .

To simplify notation, in the following sections, we do not write explicitly the dependence on
a− and a+, except for the eigenvalues, but the objects considered depend on the position of the
two poles (so we will write HA for HAa−,a+

, Ω̈ for Ω̈(a−, a+), etc.).

3.2 Conjugation and symmetry

Definition 3.3. Let us define the antilinear, antiunitary operator K on L2(Ω) by Ku := ψu,
where ψ is the gauge function defined in Lemma 3.2. We say that a function u ∈ L2(Ω) is K-real
if Ku = u. We denote by L2

K(Ω) the set of K-real functions.

Lemma 3.4. If u and v are in L2
K(Ω), 〈u, v〉 ∈ R.

Proof. We have

〈u, v〉 =

∫
Ω

uv dx =

∫
Ω

ψuψv dx =

∫
Ω

ψuψv dx =

∫
Ω

uv dx = 〈u, v〉.

Remark 3.5. The set L2
K(Ω) is not a subspace of the complex vector space L2(Ω), because mul-

tiplication by a complex number does not preserve K-real functions. However, multiplication by a
real number does preserve these functions, and therefore L2

K(Ω) is a real vector space. Moreover,
Lemma 3.4 shows that the restriction to L2

K(Ω) of the complex scalar product on L2(Ω) is a real
scalar product. Therefore, L2

K(Ω) is a real Hilbert space.

Lemma 3.6. The antilinear operator K preserves the domain of HA, and HA ◦K = K ◦HA.

Proof. Let us begin by considering u ∈ C∞c (Ω̈). We have

(i∇+A)(Ku) = (i∇+A)(ψu) = iψ∇u+ ψuA+ iu∇ψ.

Since ∇ψ = 2iψA, we obtain

(i∇+A)(Ku) = iψ∇u− ψuA = −ψ(i∇+A)u.

As a consequence, for any v ∈ C∞c (Ω̈),∫
Ω

HAKuv dx =

∫
Ω

(i∇+A)(Ku) · (i∇+A)v dx = −
∫

Ω

ψ(i∇+A)u · (i∇+A)v dx

=

∫
Ω

(i∇+A)(Kv) · (i∇+A)u dx =

∫
Ω

Kv (i∇+A)2u dx

=

∫
Ω

ψv (i∇+A)2u dx =

∫
Ω

KHAu v dx.

We therefore have HAKu = KHAu for all u ∈ C∞c (Ω̈). The conclusion follows by density.

We deduce from Lemma 3.6 that the eigenspaces of HA are stable under the action of K. This
implies that we can find a basis of L2(Ω) formed by K-real eigenfunctions of HA. We also interpret
this in another way: L2

K(Ω) is stable under the action of HA and the restriction of HA to L2
K(Ω)

has the same spectrum as HA.
We now want to study the consequence of the fact that Ω is symmetric with respect to R on

the operator HA. We therefore define the antiunitary antilinear operator Σ, acting on L2(Ω), by
Σu := u ◦ σ.
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Lemma 3.7. The antilinear operator Σ preserves the domain of HA, and HA ◦ Σ = Σ ◦ HA.
Furthermore, Σ ◦K = K ◦ Σ.

Proof. The second point is clear: if u ∈ L2(Ω),

(ΣK)u(x) = (Ku) (σ(x)) = ψ(σ(x))u(σ(x)) = ψ(x)u(σ(x)) = (KΣ)u(x).

To prove the first point, we begin by considering u ∈ C∞c (Ω̈). Recalling that S is defined in (46),
we have

(i∇+A)(Σu) = i∇(u ◦ σ) + (u) ◦ σA = (i(∇u) ◦ σ)S − ((uA) ◦ σ)S = −((i∇+A)u ◦ σ)S.

For any v ∈ C∞c (Ω̈), we have∫
Ω

(HAΣu) v dx =

∫
Ω

(i∇+A)(Σu) · (i∇+A)v dx =

∫
Ω

−((i∇+A)u ◦ σ)S · (i∇+A)v dx.

After the change of variable x = σ(y), and using the fact that S is symmetric, we find∫
Ω

(HAΣu) v dx =

∫
Ω

(i∇+A)u · −((i∇+A)v ◦ σ)S dy

=

∫
Ω

(i∇+A)u · (i∇+A)(Σv) dy =

∫
Ω

HAuΣv dy =

∫
Ω

HAu (v ◦ σ) dy.

We now do the reverse change of variable y = σ(x), thus obtaining∫
Ω

(HAΣu) v dx =

∫
Ω

(
HAu ◦ σ

)
v dx =

∫
Ω

(ΣHAu) v dx.

We therefore have HAΣu = ΣHAu for all u ∈ C∞c (Ω̈). The conclusion follows by density.

The second point of Lemma 3.7 implies that L2
K(Ω) is stable under the action of Σ. If we write

L2
K,Σ(Ω) := L2

K(Ω) ∩ ker(Σ− Id)

and
L2
K,aΣ(Ω) := L2

K(Ω) ∩ ker(Σ + Id),

we observe that every function u ∈ L2
K(Ω) can be decomposed as

u =
1

2
(u+ ū ◦ σ) +

1

2
(u− ū ◦ σ), (47)

so that we have the orthogonal decomposition

L2
K(Ω) = L2

K,Σ(Ω)⊕ L2
K,aΣ(Ω). (48)

The first point of Lemma 3.7 implies that HA leaves the spaces L2
K,Σ and L2

K,aΣ invariant. We

can therefore define the operators HA,Σ and HA,aΣ, restrictions of HA to L2
K,Σ(Ω) and L2

K,aΣ(Ω)
respectively. The spectrum of HA is the union (counted with multiplicities) of the spectra of HA,Σ

and HA,aΣ.

3.3 Spectral equivalence to the Laplacian with mixed boundary condi-
tions

Let L2
R,σ(Ω) be the real Hilbert space consisting of the real valued L2-functions u on Ω such that

u ◦ σ = u. Let us consider the operator HNDN on L2
R,σ(Ω) defined as the Friedrichs extension of

the differential operator −∆ acting on the domain {u ∈ C∞c (Ω \ I,R) : u ◦ σ = u}, the space of
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real valued smooth functions with compact support in Ω \ I symmetric with respect to the axis
x2 = 0. The domain of HNDN is then given by {u ∈ H1

0 (Ω\I) : u◦σ = u and ∆
∣∣
Ω\Iu ∈ L

2
R,σ(Ω)},

being ∆
∣∣
Ω\I the distributional Laplacian in Ω\I. HNDN is a symmetric, positive, and self-adjoint

operator on L2
R,σ(Ω). We denote by (λNDNk (a+, a−))k≥1 its eigenvalues.

In a similar way, we consider the operator HDND on L2
R,σ(Ω) defined as the Friedrichs extension

of −∆ acting on {u ∈ C∞c (Ω \ (R \ I),R) : u ◦ σ = u}. The domain of HDND is then given by
{u ∈ H1

0 (Ω \ (R \ I)) : u ◦ σ = u and ∆
∣∣
Ω\(R\I)

u ∈ L2
R,σ(Ω)}, being ∆

∣∣
Ω\(R\I)

the distributional

Laplacian in Ω \ (R \ I). HDND is a symmetric, positive, and self-adjoint operator on L2
R,σ(Ω).

We denote by (λDNDk (a+, a−))k≥1 its eigenvalues.

Remark 3.8. Let us consider the upper-half domain associated with Ω

Ωuh := Ω ∩ {(x1, x2) ∈ R2 : x2 > 0}.

We have that ∂Ωuh := Γuh ∪ Γ0, with Γuh := ∂Ω∩ {(x1, x2) ∈ R2 : x2 > 0} and Γ0 := Ω∩R. We
additionally define Γ0

c = Γ0 ∩ I.
We notice that, if Ω has smooth boundary, then the operator HNDN can be identified with the

Neumann-Dirichlet-Neumann Laplacian on Ωuh denoted by −∆NDN and defined as the Laplacian
on Ωuh with Dirichlet boundary condition on Γuh∪Γ0

c and Neumann boundary condition on Γ0\Γ0
c,

see Figure 2(a).
In a similar way, if Ω has smooth boundary, then the operator HDND can be identified with the

Dirichlet-Neumann-Dirichlet Laplacian −∆DND defined as the Laplacian on Ωuh with Dirichlet
boundary condition on Γuh ∪ (Γ0 \ Γ0

c) and Neumann boundary condition on Γ0
c, see Figure 2(b).

a−
•

a+
•

N D N

Γ0
c

Ωuh

(a) Neumann-Dirichlet-Neumann
boundary conditions

a−
•

a+
•

D N D

Γ0
c

Ωuh

(b) Dirichlet-Neumann-Dirichlet
boundary conditions

Figure 2: Eigenvalue problems with mixed boundary conditions in Ωuh.

The main result of this section is the following equivalence of HNDN with HA,Σ and of HDND

with HA,aΣ.

Proposition 3.9. The operator HNDN is unitarily equivalent to HA,Σ and the operator HDND is
unitarily equivalent to HA,aΣ.

Before proving Proposition 3.9, we observe that a direct consequence of Proposition 3.9 com-
bined with the discussion in §3.2 is the following isospectrality result.

Corollary 3.10. The sequence (λk(a+, a−)) is the union, counted with multiplicities, of the se-
quences (λNDNk (a+, a−))k≥1 and (λDNDk (a+, a−))k≥1.

We divide the proof of Proposition 3.9 into two lemmas. The first gives information on the
nodal set of functions in L2

K,Σ(Ω) or L2
K,aΣ(Ω).

Lemma 3.11. If u ∈ L2
K,Σ(Ω) ∩C(Ω̈), then u ≡ 0 on Ω ∩ I. If u ∈ L2

K,aΣ(Ω) ∩C(Ω̈), then u ≡ 0
on (Ω ∩R) \ I.
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Proof. Since Ku = u, we have u(x1, 0) = u(x1, 0) if x1 < a−1 of x1 > a+
1 , and u(x1, 0) = −u(x1, 0)

and if x1 ∈ (a−1 , a
+
1 ).

If Σu = u, u(x1, 0) = u(x1, 0) for all x1, and therefore u(x1, 0) = 0 if x1 ∈ (a−1 , a
+
1 ). In the

case where Σu = −u, u(x1, 0) = −u(x1, 0) for all x1, and therefore u(x1, 0) = 0 if x1 < a−1 or
x1 > a+

1 .

The second Lemma gives a unitary operator of similarity, and proves the two isospectrality
results of Proposition 3.9.

Lemma 3.12. If u ∈ L2(Ω), we define

Uσu := e−iϕu, Uaσu :=

{
e−iϕu, in Ωuh,

−e−iϕu, in Ω \ Ωuh

where ϕ is the function defined in Lemma 3.1. We have the following properties:

(i) Uσ defines a one-to-one and unitary mapping from L2
K,Σ(Ω) to L2

R,σ(Ω) and Uaσ defines a

one-to-one and unitary mapping from L2
K,aΣ(Ω) to L2

R,σ(Ω);

(ii) Uσ maps the domain of HA,Σ to the domain of HNDN and Uσ ◦HA,Σ = HNDN ◦ Uσ;

(iii) Uaσ maps the domain of HA,aΣ to the domain of HDND and Uaσ ◦HA,aΣ = HDND ◦ Uaσ.

Proof. Let us first check that for all u ∈ L2
K(Ω), Uσu = Uσu and Uaσu = Ua,σu. Indeed, for x ∈ Ω,

e−iϕ(x)u(x) = e−iϕ(x)e2iϕ(x)u(x) = e−iϕ(x)(Ku)(x) = e−iϕ(x)u(x).

If u ∈ L2
K,Σ(Ω), then Uσu(σ(x)) = e−iϕ(σ(x))u(σ(x)) = eiϕ(x)u(x) = Uσu(x) = Uσu(x) so that

Uσu ∈ L2
R,σ(Ω). If u ∈ L2

K,aΣ(Ω), then Uaσu(σ(x)) = Uaσu(x) so that Uaσu ∈ L2
R,σ(Ω).

Furthermore, if u ∈ L2
K(Ω) then |Uσu| = |u| and |Uaσu| = |u|, therefore∫

Ω

|u|2 dx =

∫
Ω

|Uσu|2 dx =

∫
Ω

|Uaσu|2 dx.

Finally, if v ∈ L2
R,σ(Ω), a direct computation shows that the function uΣ defined on Ω by

uΣ(x) := eiϕ(x)v(x)

is in L2
K,Σ(Ω) and that UσuΣ = v. This shows that Uσ defines a one-to-one map from L2

K,Σ(Ω) to

L2
R,σ(Ω). In the same way, the function uaΣ defined on Ω by

uaΣ(x) := eiϕ(x)v(x) for x ∈ Ωuh

and
uaΣ(x) := −eiϕ(x)v(x) for x ∈ Ω ∩ {(x1, x2) ∈ R2 : x2 < 0}

is in L2
K,aΣ(Ω) and UaσuaΣ = v. This shows that Uaσ defines a one-to-one map from L2

K,aΣ(Ω) to

L2
R,σ(Ω). We have proved point (i).

To prove point (ii), let us begin by considering u ∈ C∞c (Ω̈) ∩ L2
K,Σ(Ω). According to Lemma

3.11, u ≡ 0 on Ω ∩ I. Then Uσu ∈ H1
0 (Ω \ I) (for this it is crucial that u vanishes on I since e−iϕ

jumps across I) and

(i∇)(Uσu) = i∇(e−iϕu) = e−iϕ(i∇+∇ϕ)u = e−iϕ(i∇+A)u in Ω \ I.

We observe that any function u in the domain of the operator HA,Σ can be approximated in the

form domain norm by functions in C∞c (Ω̈) ∩ L2
K,Σ(Ω). To this aim, we can first take a sequence

of functions un ∈ C∞c (Ω̈) converging to u in the form domain norm; then we take the sequence
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vn = 1
4 (un + un ◦ σ +K(un + un ◦ σ) which stays in C∞c (Ω̈) ∩ L2

K,Σ(Ω) and converges to u in the
form domain norm thanks to the validity of the Hardy type inequality (see [22])

‖Aw‖L2(Ω) ≤ C(a,Ω)‖(i∇+A)w‖L2(Ω)

which holds for every w ∈ C∞c (Ω̈) and for some C(a,Ω) > 0 depending on a and Ω.
Then we conclude that, for every u in the domain of the operator HA,Σ, Uσu ∈ H1

0 (Ω \ I) and

(i∇)(Uσu) = e−iϕ(i∇+A)u in Ω \ I.

Furthermore, for every w ∈ C∞c (Ω \ I)∫
Ω\I
∇(Uσu) · ∇w dx =

∫
Ω̈

(i∇+A)u · (i∇+A)(eiϕw) dx. (49)

Since u is in the domain of the Friedrichs extension of the differential operator (i∇ + A)2, we
conclude that ∣∣∣∣∣

∫
Ω\I
∇(Uσu) · ∇w dx

∣∣∣∣∣ ≤ const‖w‖L2(Ω)

for every w ∈ C∞c (Ω \ I), thus implying that Uσu stays in the domain of HNDN . Moreover, by
density and (49) we conclude that

Uσ(HNDNu) = e−iϕ(i∇+A)2u

completing the proof of (ii).
The proof of (iii) can be obtained in a similar way, observing that any u ∈ C∞c (Ω̈) ∩ L2

A,aΣ(Ω)

vanishes on R \ I; hence Uaσu ∈ H1
0 (Ω \ (R \ I)) (for this it is crucial that u vanishes on R \ I

since sign(x2)e−iϕ jumps across R \ I).

3.4 Proof of Theorem 1.16

Combining the isospectrality result of Corollary 3.10 with Theorem 1.10 we can now prove Theorem
1.16.

Proof of Theorem 1.16. It is known from [23] that λaN → λN (Ω); in particular the continuity result
of [23] implies that, since λN (Ω) is simple, then also λaN is simple. It is not restrictive to assume
that uN is real valued. We can show that, for all a > 0 small, there exists uaN eigenfunction of
(i∇+Aa−,a+)2 associated to λaN such that

uaN → uN in C2
loc(Ω \ {0},C) (50)

as a→ 0+. Indeed, the results of [23, Section 3] imply that, for all a > 0 small, we can choose uaN
so that uaN → uN in L2(Ω) as a→ 0+. Let us also note that for any r > 0 the family of operators
(i∇+Aa−,a+)2 is uniformly elliptic in Ω\B(0, r) for a > 0 small enough. The statement (50) then
follows by elliptic regularity theory. Moreover it is possible to choose uaN ∈ L2

Ka−,a+
(Ω); indeed, if

uaN 6∈ L2
Ka−,a+

(Ω), we can take 1
2 (uaN +Ka−,a+(uaN )) which is a Ka−,a+ -real eigenfunction for λaN

still converging to uN (notice that 1
2 (uaN +Ka−,a+(uaN )) 6≡ 0 for a small enough since it converges

to uN 6≡ 0).
The orthogonal decomposition (47) and the simplicity of λaN imply that either uaN ∈ L2

K,Σ(Ω)

(and then, by Lemma 3.11, uaN ≡ 0 on [−a, a] × {0}) or uaN ∈ L2
K,aΣ(Ω) (and then uaN ≡ 0 on

(R \ (−a, a)) × {0}). If uaN ≡ 0 on (R \ (−a, a)) × {0}, then (50) would imply that uN ≡ 0 on
R×{0} thus contradicting the assumption that the x1-axis is not tangent to any nodal line of uN .
Hence we have that necessarily uaN ∈ L2

K,Σ(Ω). Then λaN is an eigenvalue of HAa−,a+ ,Σ
and, by

Proposition 3.9, of HNDN . Therefore

λaN = λN (Ω \ ([−a, a]× {0}))

and the conclusion follows applying Theorem 1.10.
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A Proof of Theorem 1.4

Since our setting is a little different from [14] (which considers manifolds without boundary) and
Theorem 1.4 is quite hidden in the arguments of [14], we think it is worthwhile giving in this
appendix a proof of Theorem 1.4. Our approach is different from the one used in [14]. It relies on
the spectral theorem to estimate how closely approximate eigenvalues and eigenfunctions approach
the true one.

Let us begin with the following crucial estimate, which is the analogue of [14, Lemma 3.2].

Lemma A.1. Let Ω ⊂ Rn be a bounded, connected, and open set. If (Kε)ε>0 is a family of compact
sets contained in Ω concentrating to a compact set K with CapΩK = 0, then for every f ∈ H1

0 (Ω)∫
Ω

|VKε,f |2 dx = o (CapΩ(Kε, f)) as ε→ 0,

where VKε,f is defined in (7).

Proof. Let us assume by contradiction that there exists a sequence εn → 0 and a constant C > 0
such that ∫

Ω

|VKεn ,f |
2 dx ≥ 1

C
CapΩ(Kεn , f).

We set

Wn :=
1∥∥VKεn ,f∥∥L2(Ω)

VKεn ,f .

We have
‖Wn‖L2(Ω) = 1

and

‖∇Wn‖2L2(Ω) =
1∥∥VKεn ,f∥∥2

L2(Ω)

CapΩ(Kεn , f) ≤ C.

By weak compactness of the unit ball of H1
0 (Ω) and compactness of the inclusion H1

0 (Ω) ⊂ L2(Ω),
there exists an increasing sequence of integers (nk)k≥1 and a function W ∈ H1

0 (Ω) such that
(Wnk)k≥1 converges to W when k goes to +∞, weakly in H1

0 (Ω) and strongly in L2(Ω). We have
that ‖W‖L2(Ω) = 1 and ∆W = 0 in Ω \ K in a weak sense. This last equation implies that W

is harmonic in Ω (since CapΩK = 0), and therefore that W is identically 0. We have reached a
contradiction and proved the lemma.

Corollary A.2. If (Kε)ε>0 is a family of compact sets contained in Ω concentrating to a compact
set K ⊂ Ω with CapΩK = 0, then, for any f ∈ H1

0 (Ω) ∩ L∞(Ω),∫
Ω

|VKε,f |2 dx = o (CapΩ(Kε)) as ε→ 0.

Proof. By the maximum principle for harmonic functions in Ω \Kε we have that

|VKε,f | ≤
(

max
Ω
|f |
)
VKε .

Hence
∫

Ω
|VKε,f |2 dx ≤ (maxΩ |f |)2 ∫

Ω
|VKε |2dx and the conclusion follows from Lemma A.1 (with

f = ηK).

We are now in position to prove Theorem 1.4.
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Proof of Theorem 1.4. For ε > 0, we denote by −∆ε the Dirichlet Laplacian on Ω \ Kε. More
precisely, −∆ε is the self-adjoint operator obtained from the restriction of the quadratic form

q(u) =

∫
Ω

|∇u|2 dx

to H1
0 (Ω \Kε) through the Friedrichs’ extension procedure (see for instance [29, Theorem X.23]).

To simplify notation, we write λε = λN (Ω \ Kε), cε = CapΩ(Kε, uN ), Vε = VKε,uN , and we
denote by q both the quadratic form defined above and the associated bilinear form. We write
ψε = uN −Vε. Let us note that by definition of the potential Vε, ψε is the orthogonal projection of
uN on H1

0 (Ω\Kε), in the space H1
0 (Ω) endowed with the scalar product q. For any ϕ ∈ H1

0 (Ω\Kε),

q(ψε, ϕ)− λN (Ω)〈ψε, ϕ〉L2(Ω) = q(uN , ϕ)− λN (Ω)〈ψε, ϕ〉L2(Ω)

= λN (Ω)〈uN , ϕ〉L2(Ω) − λN (Ω)〈ψε, ϕ〉L2(Ω) = λN (Ω)〈Vε, ϕ〉L2(Ω).

This means that ψε is in the domain of the operator −∆ε and that

(−∆ε − λN (Ω))ψε = λN (Ω)Vε. (51)

According to Lemma A.1, ‖Vε‖L2(Ω) = o
(
c
1/2
ε

)
as ε→ 0+, so that

‖(−∆ε − λN (Ω))ψε‖L2(Ω) = o
(
c1/2ε

)
as ε→ 0+. From the spectral theorem (see for instance [19, Proposition 8.20]), we get

dist (λN (Ω), σ(−∆ε)) ≤
‖(−∆ε − λN (Ω))ψε‖L2(Ω)

‖ψε‖L2(Ω)

= o
(
c1/2ε

)
, as ε→ 0+,

where σ(−∆ε) is the spectrum of the self-adjoint operator −∆ε. We recall that λε → λN (Ω) as
ε → 0+: this an immediate corollary of [28, Theorem 2.3]. Since λN (Ω) is assumed to be simple,
λε is simple for ε > 0 small enough, and

|λε − λN (Ω)| = o
(
c1/2ε

)
as ε→ 0+.

Let us now denote by Πε the orthogonal projection from L2(Ω) onto the one-dimensional eigenspace
associated with λε, and let us write ũε := ψε −Πεψε. We have

(−∆ε − λε) Πεψε = 0,

and therefore
(−∆ε − λε) ũε = (−∆ε − λε)ψε.

Since
‖(−∆ε − λε)ψε‖L2(Ω) ≤ |λN (Ω)− λε| ‖ψε‖L2(Ω) + ‖(−∆ε − λN (Ω))ψε‖L2(Ω) ,

we obtain
‖(−∆ε − λε) ũε‖L2(Ω) = o

(
c1/2ε

)
as ε→ 0+.

Let us denote by Kε the closed subspace Im(I − Πε) = ker(Πε), and by Tε the restriction of the
operator −∆ε to Kε. The operator Tε is self-adjoint, with spectrum σ(Tε) = σ(−∆ε) \ {λε}.
Furthermore, since λj(Ω \Kε)→ λj(Ω) for all j ≥ 1 as ε→ 0+, and since λN (Ω) is simple, there
exists some δ > 0 such that dist(λε, σ(Tε)) ≥ δ for ε > 0 small enough. Using the spectral theorem
for the operator Tε, we get

dist (λε, σ(Tε)) ‖ũε‖L2(Ω) ≤ ‖(Tε − λε) ũε‖L2(Ω) ,

and therefore

‖ψε −Πεψε‖L2(Ω) ≤
‖(Tε − λε) ũε‖L2(Ω)

δ
= o
(
c1/2ε

)
as ε→ 0+.
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Consequently, we have

‖uN −Πεψε‖L2(Ω) ≤ ‖Vε‖L2(Ω) + ‖ψε −Πεψε‖ = o
(
c1/2ε

)
,

and therefore
‖Πεψε‖L2(Ω) = 1 + o

(
c1/2ε

)
as ε→ 0+.

This implies in particular that Πεψε is non-zero for ε > 0 small enough, so that we can define

uε =
Πεψε

‖Πεψε‖L2(Ω)

,

an L2(Ω)-normalized eigenfunction of −∆ε associated with λε. A simple computation shows that

‖uε − ψε‖L2(Ω) = o
(
c1/2ε

)
and

‖uε − uN‖L2(Ω) = o
(
c1/2ε

)
as ε→ 0+. Taking the scalar product of equation (51) with uε, we obtain

(λε − λN (Ω))〈uε, ψε〉L2(Ω) = λN (Ω)〈uN , Vε〉L2(Ω) + λN (Ω)〈uε − uN , Vε〉L2(Ω)

= λN (Ω)〈uN , Vε〉L2(Ω) + o (cε) as ε→ 0+. (52)

On the other hand, since ψε and Vε are q-orthogonal, we have

cε = q(Vε) = q(uN − ψε, Vε) = q(uN , Vε) = λN (Ω)〈uN , Vε〉L2(Ω), (53)

using for the last equality the fact that uN is an eigenfunction of the Dirichlet Laplacian in Ω
associated with the eigenvalue λN (Ω). Reinjecting (53) into (52), we finally obtain

λε − λN (Ω) =
cε + o(cε)

〈uε, ψε〉
= cε(1 + o(1)),

as ε→ 0+.

B Continuity of the u-capacity

In this appendix, we establish a continuity result for the u-capacity with respect to concentration
at zero capacity sets.

Proposition B.1. If {Kε}ε>0 is a family of compact sets contained in Ω ⊂ Rn concentrating to a
compact set K ⊂ Ω with CapΩ(K) = 0, then, for every u ∈ H1

0 (Ω), we have that VKε,u → VK,u = 0
strongly in H1

0 (Ω) and limε→0+ CapΩ(Kε, u) = CapΩ(K,u) = 0.

Proof. Testing equation (9) for VKε,u with ϕ = VKε,u − u we obtain

0 =

∫
Ω\Kε

∇VKε,u · ∇(VKε,u − u) dx

=

∫
Ω

∇VKε,u · ∇(VKε,u − u) dx =

∫
Ω

|∇VKε,u|2 dx−
∫

Ω

∇VKε,u · ∇u dx. (54)

Since VKε,u attains the minimum defining CapΩ(Kε, u), we have that
∫

Ω
|∇VKε,u|2 dx ≤

∫
Ω
|∇u|2 dx,

so that {VKε,u}ε>0 is bounded in H1
0 (Ω). Hence, along a sequence εk → 0+, VKεk ,u ⇀ V weakly

in H1
0 (Ω) for some V ∈ H1

0 (Ω). Since CapΩ(K) = 0, we have that H1
0 (Ω) = H1

0 (Ω \K) (see [14,
Proposition 2.1]), hence u − V ∈ H1

0 (Ω \K). Moreover, for every ϕ ∈ C∞c (Ω \K), we have that
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ϕ ∈ C∞c (Ω \Kε) for ε sufficiently small, hence, passing to the limit in (9) for VKεk ,u as k → +∞,
we obtain that ∫

Ω

∇V · ∇ϕdx = 0.

Hence
∫

Ω
∇V · ∇ϕdx = 0 for every ϕ ∈ H1

0 (Ω \ K) = H1
0 (Ω). It follows that V = VK,u = 0.

Moreover, passing to the limit in (54), we obtain that

lim
k→+∞

CapΩ(Kεk , u) = lim
k→+∞

∫
Ω

|∇VKεk ,u|
2 dx = lim

k→+∞

∫
Ω

∇VKεk ,u · ∇u dx =

∫
Ω

∇V · ∇u dx = 0

We conclude that CapΩ(Kεk , u) → 0 and VKεk ,u → 0 strongly in H1
0 (Ω) as k → +∞. Since such

limits do not depend on the subsequence, we reach the conclusion.
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