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Semi-Global Sampled-Data Dynamic Output
Feedback Controller for the Glucose-Insulin System

M. Di Ferdinando P. Pepe P. Palumbo S. Panunzi A. De Gaetano

Abstract—In this paper we deal with the problem of tracking a
desired plasma glucose concentration by means of intra-venous
insulin administration, for Type 2 diabetic patients exhibiting
basal hyperglycemia. A nonlinear time-delay model is used
to describe the glucose-insulin regulatory system, according to
which a model-based approach is exploited to design a semi-
global sampled-data dynamic output feedback controller. It is
shown that emulation, by Euler approximation, of a proposed
continuous-time control law yields stabilization in the sample-
and-hold sense to the closed-loop system. The glucose regulator
makes use of only sampled glucose measurements. Theoretical
results are validated through a virtual environment broadly
accepted as a substitute to animal trials for the preclinical testing
of control strategies in plasma glucose regulation. Numerical
results are encouraging and pave the way to further clinical
verifications.

Index Terms—Nonlinear sampled-data control, Nonlinear
time-delay system, Stabilization in the Sample-and-Hold sense,
Glucose-Insulin model, In silico validation.

I. INTRODUCTION

Diabetes Mellitus (DM) is a chronic disease, whose alarm-
ing continuous growth has been estimated by the International
Diabetes Federation (IDF) to involve currently 415 million
patients worldwide (a number predicted to rise up to 642
million by 2040), with a total health expenditure due to
diabetes estimated at 673 billion US dollars [29]. DM is in
fact a group of metabolic disorders characterized by sustained
hyperglycemia, mainly involving insulin, the primal hormone
responsible of plasma glucose homeostasis. In case of a
total lack of insulin we deal with Type 1 DM (T1DM) and
patients require exogenous insulin administration throughout
their lifetime. In case of an inadequate compensatory insulin
secretory response, possibly combined to a resistance to insulin
action, we deal with Type 2 DM (T2DM). Though less severe
than T1DM, T2DM accounts for 85% to 95% of all cases of
diabetes, thus having a relevant impact in worldwide National
Health Systems, since an untimely control of hyperglycemia
facilitates the emergence of many and diverse diabetic compli-
cations like retinopathy, neuropathy, nefropathy, etc., in both
T1DM and T2DM.
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The Artificial Pancreas (AP) refers to the set of integrated
systems combining the design of the insulin infusion therapy,
the actuators in charge of its delivery (insulin pumps) and the
sensor equipments providing measurements to the controller
in order to synthesize the closed-loop control law. Most of the
available AP results actually involve T1DM (see, among the
others, [7], [14], [18], [21], [23], [44] and references therein).

This work investigates closed-loop glucose control therapies
for T2DM patients, by means of a model-based approach, that
means the control law is synthesized by properly exploiting
the mathematical model of the glucose-insulin system. The
chosen model is a Delay Differential Equation (DDE) model,
published in [31], [34]: motivation is that DDE models are
known to properly account for the endogenous insulin delivery
rate [24], [30], which cannot be neglected for T2DM. More-
over, the DDE model here adopted has already been shown to
be effective in designing model-based, observer-based or, in
general, output dynamic glucose control laws [1], [32], [33]
according to continuous glucose measurements and continuous
insulin administration.

Differently from [32], [33], here the proposed regulator is
synthesized according to a novel control design architecture,
on the ground of sampled-data measurements (sampled-data
regulator). Preliminary results have been proposed in [39]
where a local sampled-data control law for the nonlinear
DDE model is presented. In [13] a semi-global sampled-
data controller for the glucose-insulin system is provided.
In [39] and [13] both measurements of glucose and insulin
concentrations are required by the controller, thus making
these works just a proof of concept since, unfortunately, insulin
measurements cannot be exploited in real-time closed-loop
algorithms because they are time-consuming and cumbersome
to achieve. This drawback is, here, overcome since the design
of the proposed semi-global nonlinear sampled-data control
law makes use of only plasma glucose measurements. To the
best of our knowledge, this problem has never been addressed
in the literature.

Insulin is supposed to be intravenously administered: the
intravenous route provides a wider range of possible strate-
gies with respect to the subcutaneous route, and ensures a
rapid delivery with negligible delays. As a matter of fact,
control algorithms based on intravenous infusions (we can cite,
among the others, [4], [15], [19], [32], [33], [41]) are directly
applicable so far only to problems of glycemia stabilization in
critically ill subjects, such as in surgical Intensive Care Units
after major procedures, [42].

Sampled-data stabilization has been studied in the literature
according to many approaches, such as: i) the time-varying
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delay approach (see for instance [17]), ii) the approximate
system discretization approach (see [26], [27]), iii) the hybrid
system approach (see [2], [28]); iv) the stabilization in the
sample-and-hold sense approach (see [5], [6], [12], [10], [11],
[36], [38], [37]). To implement sample-data regulators by
emulation is often the common choice in practical applications,
and its philosophy is shared by some of the aforementioned
approaches, like the hybrid and the sample-and-hold sense
ones. In these frameworks, emulation consists in (i) first
designing a continuous-time controller for the system at hand,
and then, (ii) discretizing it in order to make use of sampled-
data measurements and to apply the control law by zero-order
hold devices. The notion of stabilization in the sample-and-
hold sense, introduced in 1997 in [6], has been widely studied
for systems described by ordinary differential equations, and
recently extended to systems with delays too (see [12], [10],
[36] and [38]). Based on these recent results, the sampled-data
(by Euler emulation) output dynamic regulator is applied, in
this paper, to the DDE model of the glucose-insulin system
with the aim of glucose control. It is proved that the pro-
posed sampled-data controller ensures the practical stability
of the closed-loop glucose-insulin system, with arbitrary small
steady-state error. The proposed semi-global sampled-data
controller makes use of only glucose measurements in order
to perform the glucose reference tracking.

To evaluate the goodness of the proposed control law a
population of virtual patients has been created, according to
a comprehensive multi-compartmental model of the glucose-
insulin system [9] which allows to model healthy subjects
as well as T2DM patients and, along with [8], provides the
base for the in silico subjects of the UVA/PADOVA Type
1 Diabetes Simulator [20], accepted by the FDA (Food and
Drug Administration) as a substitute to animal trials for
insulin administration therapies. The use of comprehensive
models straightforwardly to design the control law would be
prohibitive: from the model parameter identification viewpoint,
such models include many internal states, usually not easily ac-
cessible to have measurements unless of invasive procedures,
thus preventing the applicability to individualized therapies;
from the other hand, they are associated to high-dimensional
differential equations systems, so making it extremely hard
to design an easy-to-handle mathematical control law guaran-
teeing (at least theoretically) the required performances. The
use of two distinct mathematical models (one compact to
design the control law, the other comprehensive to validate
the AP therapy) has been recently exploited in [25], where
the compact model was a simplified (linearized, discretized)
version of the same comprehensive model here adopted. Such
a design/validation AP architecture has been proposed in [33],
according to the same choice of the compact and comprehen-
sive models, but exploiting a different problem setting and by
means of a different control theory design.

Similarly to the virtual environmental benchmark proposed
in [33], we design the parameters of the regulator by closing
the loop on the DDE model tailored to the average virtual
patient of the population built up according to the adopted
comprehensive model. Then, a massive campaign of simula-
tions is carried out by keeping the control law parameters fixed

for any virtual patient sampled from the rather heterogenous
population. The effectiveness of the proposed control scheme
is validated in terms of safety robustness and performance
efficiency [3], by properly accounting for measurements un-
certainties and actuators malfunctioning.

A. Notation

N denotes the set of nonnegative integer numbers, R denotes
the set of real numbers, R? denotes the extended real line
[−∞,+∞], R+ denotes the set of nonnegative reals [0,+∞).
The symbol |·| stands for the Euclidean norm of a real vector,
or the induced Euclidean norm of a matrix. For a positive
integer n, for a positive real ∆, a Lebesgue measurable
function f : [−∆, 0]→ Rn is said to be essentially bounded if
ess supt∈[−∆,0] |f(t)| < +∞, where ess supt∈[−∆,0] |f(t)| =
inf{a ∈ R∗ : λ({t ∈ [−∆, 0] : |u(t)| > a}) = 0},
λ denoting the Lebesgue measure. The essential supremum
norm of an essentially bounded function is indicated with
the symbol ‖·‖∞. For a positive integer n, for a positive
real ∆ (maximum involved time-delay): Cn and W 1,∞

n de-
note the space of the continuous functions mapping [−∆, 0]
into Rn and the space of the absolutely continuous func-
tions, with essentially bounded derivative, mapping [−∆, 0]
into Rn, respectively. For a positive real p, for φ ∈ Cn,
Cnp (φ) = {ψ ∈ Cn : ‖ψ − φ‖∞ ≤ p}. The symbol Cnp denotes
Cnp (0). For a continuous function x : [−∆, c) → Rn, with
0 < c ≤ +∞, for any real t ∈ [0, c), xt is the function
in Cn defined as xt (τ) = x (t+ τ) , τ ∈ [−∆, 0]. For
a positive integer n, C1 (Rn;R+) denotes the space of the
continuous functions from Rn to R+, admitting continuous
(partial) derivatives; C1

L (Rn;R+) denotes the subset of the
functions in C1 (Rn;R+) admitting locally Lipschitz (partial)
derivatives; C1 (R+;R+) denotes the space of the continuous
functions from R+ → R+, admitting continuous derivative;
C1
L (R+;R+) denotes the subset of functions in C1 (R+;R+)

admitting locally Lipschitz derivative. Let us here recall that a
continuous function γ : R+ → R+ is: of class P0 if γ (0) = 0;
of class P if it is of class P0 and γ (s) > 0, s > 0; of class K
if it is of class P and strictly increasing; of class K∞ if it is
of class K and unbounded. The symbol Id denotes the identity
function in R+. For a given positive integer n, for a symmetric,
positive definite matrix P ∈ Rn×n, λmax (P ) and λmin (P )
denote the maximum and the minimum eigenvalue of P ,
respectively. The symbol ◦ denotes composition (of functions).
For positive integers n, m, for a map f : Cn × Rm → Rn,
and for a locally Lipschitz functional V : Cn → R+, the
derivative in Driver’s form (see [35] and the references therein)
D+V : Cn × Rm → R?, of the functional V , is defined, for
φ ∈ Cn, u ∈ Rm, as:

D+V (φ, u) = lim sup
h→0+

V (φh,u)− V (φ)

h
, (1)

where, in the case of ∆ > 0, for 0 ≤ h < ∆, φh,u ∈ Cn is
defined, for s ∈ [−∆, 0], as

φh,u (s) =

{
φ (s+ h) , s ∈ [−∆,−h) ,

φ (0) + (s+ h) f (φ, u) , s ∈ [−h, 0] .
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II. THE DDE GLUCOSE-INSULIN MODEL

Define G(t), [mM], and I(t), [pM], plasma glucose and
insulin concentrations. The nonlinear DDE model, [31], [34],
exploited to design the closed-loop control law is

.

G (t) = −KxgiG (t) I (t) +
Tgh
VG

+
d(t)

VG
,

.

I (t) = −KxiI (t) +
TiGmax
VI

ϕ (G (t− τg)) +
v (t)

VI
,

ȳj = G(tj), j = 0, 1, . . .

G (τ) = G0 (τ) I (τ) = I0 (τ) τ ∈ [−τg, 0] ,
(2)

where Kxgi, [min−1pM−1], is the insulin-dependent glucose
uptake rate per pM of plasma insulin concentration, Tgh,
[min−1(mmol/kgBW)], is the net balance between hepatic
glucose output and insulin-independent zero-order glucose
tissue uptake, VG and VI , [L/kgBW], are the distribution
volumes for glucose and insulin, Kxi, [min−1], is the constant
elimination rate for insulin, TiGmax, [min−1(pmol/kgBW)], is
the maximal rate of second-phase insulin release, ϕ (·) models
the endogenous pancreatic insulin delivery rate according to
the following sigmoidal function:

ϕ (G (t− τg)) =

(
G (t− τg)

G∗

)γ
1 +

(
G (t− τg)

G∗

)γ ; (3)

with γ the sigmoidal function parameter related to the steep-
ness of ϕ, G∗, [mM], the glycemia at which the insulin release
is the half of its maximal rate and τg , [min], the apparent
delay with which the pancreas varies its secondary insulin
release in response to varying plasma glucose concentrations.
The pair (G0 (τ) , I0 (τ)) is the initial condition of the model,
corresponding to the plasma glucose/insulin concentrations
before the control input is applied. They can be taken equal
to the constant basal levels (Gb, Ib).
d(t), [(mmol/kgBW)/min], is an exogenous disturbance

affecting glucose dynamics, usually associated to meals or
physical exercise. It will be neglected for the control law
synthesis. v (t), [(pmol/kgBW)/min], is the exogenous intra-
venous insulin delivery rate, i.e., the control input. ȳj [mM],
are the sampled glucose measurement i.e., the output signal at
sampling times tj , j = 0, 1, 2, ....

Let Gref be the desired glucose reference, the one to be
tracked by the control law. The choice of a desired glucose
level Gref leads to the definition of the insulin and input
references, Iref and vref , respectively

Iref =
Tgh

VGGrefKxgi

vref = VIIrefKxi − TiGmaxϕ (Gref ) .

(4)

The pair (Gref , Iref ) refers to the steady state solution
achieved by fixing v(t) ≡ vref , t ≥ 0.

III. DESIGN OF THE SEMI-GLOBAL SAMPLED-DATA
OUTPUT CONTROLLER FOR THE GLUCOSE-INSULIN SYSTEM

In [13], a preliminary result on a global nonlinear sampled-
data regulator for the glucose-insulin system is provided, with
the drawback of a complete knowledge of the state of the
system, i.e. the implementation of the control strategy pro-
vided in [13] requires both glucose and insulin measurements.
Unfortunately, insulin measurements are less accurate than
glucose measurements and time-consuming to obtain, thus
inappropriate to be exploited in a real-time closed-loop control
algorithm. Then, there is a need to design the output dynamic
controller based on only glucose measurements. According to
the emulation approach, with a little abuse of notation, we
will associate to the sequence ȳj , j = 0, 1, . . ., a continuous
fictitious output signal ȳ(t) = G(t) (i.e. the output is supposed
to be acquired continuously in time). No meals are supposed
for the control design, therefore d(t) ≡ 0 in (2).

By properly exploiting the theory on the stabilization in the
sample-and-hold sense (see [5], [6]), as applied to time-delay
systems (see [12], [36] and [38]), a semi-global nonlinear
sampled-data output controller for system (2) is designed in
order to reduce the high basal plasma glucose concentration
to the reference glucose value.

In the spirit of emulation, we first propose the following
continuous-time output dynamic controller for (2):

.

Ĝ (t) = −KxgiĜ (t) Î (t) +
Tgh
VG

+H1(ȳ(t)− Ĝ (t)),
.

Î (t) = −KxiÎ (t) +
TiGmax
VI

ϕ (ȳ (t− τg))

+
v(t)

VI
+H2(ȳ(t)− Ĝ (t))

+
Kxgi

ρ

(
(Ĝ(t)−Gref )2 − (ȳ(t)−Gref )2

)
,

v(t) = VI

(
(KxiÎ (t)− TiGmax

VI
ϕ (ȳ (t− τg))

+
Kxgi

ρ
(ȳ(t)−Gref )2 −H2(ȳ(t)−Gref )

−H3(Î(t)− Iref )

)
,

Ĝ (τ) = Ĝ0 (τ) , Î (τ) = Î0 (τ) , τ ∈ [−τg, 0] ,
(5)

where H1, H2, H3, ρ ∈ R are scalar control tuning parameters.
Before to introduce the Euler emulation, we need to formal-

ize the output sampling instants introduced in (2) according to
the following definition of partition of [0,+∞), that we use
in the theory of sampled-data systems (see [6] and [36]).

Definition 1: A partition π = {ti, i = 0, 1, ...} of [0,+∞)
is a countable, strictly increasing sequence ti, with t0 = 0,
such that ti → +∞ as i→ +∞. The diameter of π, denoted
diam (π), is defined as supi≥0 ti+1 − ti. The dwell time of
π, denoted dwell (π), is defined as infi≥0 ti+1 − ti. For any
positive real a ∈ (0, 1], b > 0, πa,b is any partition π with
ab ≤ dwell (π) ≤ diam (π) ≤ b.
Given a partition πa,δ = {tj , j = 0, 1, ...}, the Euler em-
ulation of the output dynamic controller provided in (5) is



TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 4

described, for tj ∈ πa,δ , by the following equations

Ĝ (tj+1) = Ĝ (tj) + (tj+1 − tj)
(
−KxgiĜ (tj) Î (tj)

+
Tgh
VG

+H1(ȳ(tj)− Ĝ (tj))

)
,

Î (tj+1) = Î (tj) + (tj+1 − tj)
(
−KxiÎ (tj)

+
TiGmax
VI

ϕ (ȳ (tj − τg))

+
v(tj)

VI
+H2(ȳ(tj)− Ĝ (tj))

+
Kxgi

ρ

(
(Ĝ(tj)−Gref )2 − (ȳ(tj)−Gref )2

))
,

v(tj) = VI

(
KxiÎ (tj)−

TiGmax
VI

ϕ (ȳ (tj − τg))

+
Kxgi

ρ
(ȳ(tj)−Gref )2 −H2(ȳ(tj)−Gref )

−H3(Î(tj)− Iref )

)
.

(6)
Before to state the main theoretical results related to the

closed-loop system constituted by the DDE glucose-insulin
model (2) in closed-loop with v(t) = v(tj), tj ≤ t < tj+1

(see Euler emulation (6)), we introduce the following standard
assumptions (see [12], [10], [11], [36], [38], [37]), which will
be useful to tune the control parameters.

Assumption 1: Let q an arbitrary given positive real. The

initial condition in (2) is such that
[
G0(τ)−Gref
I0(τ)− Iref

]
, τ ∈

[−τg, 0], is in W 1,∞
2 , and

ess sup
θ∈[−τg,0]

∣∣∣∣∣∣∣∣
d

[
G0(θ)−Gref
I0(θ)− Iref

]
dθ

∣∣∣∣∣∣∣∣ ≤
q√
2
. (7)

Analogously, the initial condition in (5) is such that[
Ĝ0(τ)−Gref
Î0(τ)− Iref

]
, τ ∈ [−τg, 0], is in W 1,∞

2 , and

ess sup
θ∈[−τg,0]

∣∣∣∣∣∣∣∣∣∣
d

[
Ĝ0(θ)−Gref
Î0(θ)− Iref

]
dθ

∣∣∣∣∣∣∣∣∣∣
≤ q√

2
. (8)

Assumption 2: There exist a real H2, and positive reals H1,
H3, ρ, p1, p2, q1, q2, q3, q4, ω1, ω2, ω3, ω4, η, µ such that:

Ξ1 + ηµp1 < 0, Ξ2 + ηµρp1 < 0, (9)

Ξ3 + ηµp2 < 0, Ξ4 + ηµρp2 < 0 (10)

with

Ξ1 = p1|KxgiGref + ρH2|ω1 − 2p1KxgiIref +
p2H1

ω4
+ q1,

(11)

Ξ2 =
p1|KxgiGref + ρH2|

ω1
−2ρp1Kxi+

ρp1|Kxi −H3|
ω2

+q2,

(12)

Ξ3 = p2|KxgiGref + ρH2|ω3 − 2p2KxgiIref + p2H1ω4

−2p2H1 + q3,
(13)

Ξ4 = ρp1|Kxi−H3|ω2+
p2|KxgiGref + ρH2|

ω3
−2ρp2H3+q4.

(14)
Theorem 1: Let Assumptions 1 and 2 hold. Let a be an

arbitrary real in (0, 1]. Then, for any positive reals R, r with
0 < r < R, there exist positive reals δ, T , E such that, for any
partition πa,δ = {tj , j = 0, 1, ...}, for any initial condition
such that ∣∣∣∣∣∣∣∣

G0(τ)−Gref
I0(τ)− Iref
Ĝ0(τ)−Gref
Î0(τ)− Iref

∣∣∣∣∣∣∣∣ ≤ R, τ ∈ [−τg, 0],

the corresponding solution of the sampled-data closed-loop
system, described by the equations (see (2), (6))

.

G (t) = −KxgiG (t) I (t) +
Tgh
VG

,
.

I (t) = −Kxi

(
I (t)− Î (tj)

)
+
TiGmax
VI

(ϕ (G (t− τg))− ϕ (G (tj − τg))

+
Kxgi

ρ
(G(tj)−Gref )2 −H2(G(tj)−Gref )

−H3(Î(tj)− Iref ),

Ĝ (tj+1) = Ĝ (tj) + (tj+1 − tj)·(
−KxgiĜ (tj) Î (tj) +

Tgh
VG

+H1(G(tj)− Ĝ (tj))
)
,

Î (tj+1) = Î (tj) + (tj+1 − tj)
(
−H2(Ĝ (tj)−Gref )

−H3(Î(tj)− Iref ) +
Kxgi

ρ
(Ĝ(tj)−Gref )2)

)
,

t ∈ [tj , tj+1) , j = 0, 1, ...,
(15)

exists for all t ∈ R+, tj ∈ πa,δ , and, furthermore, satisfies:∣∣∣∣∣∣∣∣
G(t)−Gref
I(t)− Iref
Ĝ(tj)−Gref
Î(tj)− Iref

∣∣∣∣∣∣∣∣ ≤ E, ∀t ∈ R+, ∀tj ∈ πa,δ,

∣∣∣∣∣∣∣∣
G(t)−Gref
I(t)− Iref
Ĝ(tj)−Gref
Î(tj)− Iref

∣∣∣∣∣∣∣∣ ≤ r, ∀t ≥ T, ∀tj ∈ πa,δ, tj ≥ T.

(16)

IV. PROOF OF THEOREM 1

The proof is based on recent results on the stabilization
in the sample-and-hold sense (see [12], [11], [36]). As a
preliminary step it is useful to rewrite system (2) with respect
to the displacement

x (t) =

[
x1 (t)
x2 (t)

]
=

[
G (t)−Gref
I (t)− Iref

]
, (17)
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with the new control input u(t) and the new output signal y(t)

u (t) = v (t)− vref ,

y(t) =

[
y1(t)
y2(t)

]
=

[
ȳ(t)−Gref

ȳ(t− τg)−Gref

]
=[

G(t)−Gref
G(t− τg)−Gref

]
=

[
x1(t)

x1(t− τg)

]
.

(18)

By letting xt(τ) =

[
x1,t(τ)
x2,t(τ)

]
=

[
G (t+ τ)−Gref
I (t+ τ)− Iref

]
, τ ∈

[−τg, 0], it is:

.
x1 (t) = −Kxgi (x1 (t) +Gref ) (x2 (t) + Iref ) +

Tgh
VG

,
.
x2 (t) = −Kxi (x2 (t) + Iref )

+
TiGmax
VI

ϕ ((x1 (t− τg) +Gref )) +
vref + u(t)

VI
,

y(t) =

[
x1(t)

x1(t− τg)

]
,

x (τ) = x0 (τ) =

[
G0 (τ)−Gref
I0 (τ)− Iref

]
, τ ∈ [−τg, 0] .

(19)
Notice that system (19) is in the form

.
x (t) = f (xt, u (t)) , t ≥ 0 a.e.,
y (t) = h (xt) ,
x (τ) = x0 (τ) , τ ∈ [−τg, 0] ,

(20)

where: x (t) ∈ R2; x0, xt ∈ C2; τg is the involved time delay;
u (t) ∈ R is the input; y (t) ∈ R2 is the output; f is a map from
C2×R to R2, Lipschitz on bounded sets; h is a map from C2

to R2, Lipschitz on bounded sets; according to (4): f (0, 0) =
[0 0]T and h(0) = 0. Furthermore, from Assumption 1, the
initial state x0 ∈W 1,∞

2 and ess supθ∈[−τg,0]

∣∣∣dx0(θ)
dθ

∣∣∣ ≤ q√
2

.
Taking into account the new control input and the new out-

put signal in (18), we rewrite the output dynamic controller (5)
with respect to the displacements Ĝ(t)−Gref and Î(t)−Iref :

x̂ (t) =

[
x̂1 (t)
x̂2 (t)

]
=

[
Ĝ (t)−Gref
Î (t)− Iref

]
. (21)

By letting x̂t(τ) =

[
x̂1,t(τ)
x̂2,t(τ)

]
=

[
Ĝ (t+ τ)−Gref
Î (t+ τ)− Iref

]
, τ ∈

[−τg, 0], it is:
.

x̂1 (t) = −Kxgi (x̂1 (t) +Gref ) (x̂2 (t) + Iref ) +
Tgh
VG

+H1(y1(t)− x̂1(t)),
.

x̂2 (t) = −Kxi (x̂2 (t) + Iref )

+
TiGmax
VI

ϕ ((y2 (t) +Gref )) +
vref
VI

+
u(t)

VI

+H2(y1(t)− x̂1(t)) +
Kxgi

ρ
(x̂2

1(t)− y2
1(t)),

u(t) = VI

(
Kxi (x̂2 (t) + Iref )

−TiGmax
VI

ϕ ((y2 (t) +Gref ))− vref
VI

+
Kxgi

ρ
y2

1(t)−H2y1(t)−H3x̂2(t)
)
,

x̂ (τ) = x̂0 (τ) =

[
Ĝ0 (τ)−Gref
Î0 (τ)− Iref

]
, τ ∈ [−τg, 0] ,

(22)

with the control parameters H1, H2, H3 and ρ satisfying the
inequalities in Assumption 2. Notice that (22) is in the form

.

x̂ (t) = f̂ (x̂t, u (t) , y (t)) , t ≥ 0,
u (t) = k (x̂t, y(t)) ,
x̂ (τ) = x̂0 (τ) , τ ∈ [−τg, 0] ,

(23)

where: x̂ (t) ∈ R2; x̂0, x̂t ∈ C2; τg is the involved time delay;
u (t) ∈ R and y (t) ∈ R2 are the input and the output in
(20), respectively; the maps f̂ : C2 × R × R2 → R2 and
k : C2 × R2 → R are Lipschitz on bounded sets; according
to (4) f̂ (0, 0, 0) = [0 0]T and k (0, 0) = 0. Furthermore,
from Assumption 1, the initial state x̂0 ∈ W 1,∞

2 , and that
ess supθ∈[−τg,0]

∣∣∣dx̂0(θ)
dθ

∣∣∣ ≤ q√
2

(see [12] for more details).
The continuous-time closed-loop system (19), (22) is, thus,

described by the following DDE system:

.
x1 (t) = −Kxgi (x1 (t) +Gref ) (x2 (t) + Iref ) +

Tgh
VG

,

.
x2 (t) = −Kxi (x2 (t)− x̂2 (t)) +

Kxgi

ρ
x2

1 (t)−H2x1 (t)

−H3x̂2 (t) ,
.

x̂1 (t) = −Kxgi (x̂1 (t) +Gref ) (x̂2 (t) + Iref ) +
Tgh
VG

+H1(x1(t)− x̂1(t)),
.

x̂2 (t) = −H2x̂1 (t)−H3x̂2 (t) +
Kxgi

ρ
x̂2

1(t),

(24)
that is, by exploiting the compact formalism of (20), (23)

.
x (t) = f (xt, k (x̂t, h (xt))) , t ≥ 0,
.

x̂ (t) = f̂ (x̂t, k (x̂t, h (xt)) , h (xt)) ,
x (τ) = x0 (τ) , x̂ (τ) = x̂0 (τ) , τ ∈ [−τg, 0] .

(25)

According to (22) given a partition πa,δ =
{tj , j = 0, 1, ...}, the Euler emulation of the the output
dynamic controller provided in (22) is described, for
tj ∈ πa,δ , by the following equations

x̂1 (tj+1) = x̂1 (tj) + (tj+1 − tj)
(
−Kxgi (x̂1 (tj) +Gref )

· (x̂2 (tj) + Iref ) +
Tgh
VG

+H1(y1(tj)− x̂1(tj))
)
,

x̂2 (tj+1) = x̂2 (tj) + (tj+1 − tj)
(
−Kxi (x̂2 (tj) + Iref )

+
TiGmax
VI

ϕ ((y2 (tj) +Gref )) +
vref
VI

+
u(tj)

VI

+H2(y1(tj)− x̂1(tj)) +
Kxgi

ρ
(x̂2

1(tj)− y2
1(tj))

)
,

u(tj) = VI

(
Kxi (x̂2 (tj) + Iref )

−TiGmax
VI

ϕ ((y2 (tj) +Gref ))

−vref
VI

+
Kxgi

ρ
y2

1(tj)−H2y1(tj)−H3x̂2(tj)
)
.

(26)
Let, as long as the solution of (24) exists,

x̃ (t) =


x1 (t)
x2 (t)
x̂1 (t)
x̂2 (t)

 ∈ R4, x̃t =


x1,t

x2,t

x̂1,t

x̂2,t

 ∈ C4. (27)
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According to (27), the closed-loop system (24) has the form:
.
x̃ (t) = F̃ (x̃t) ,

x̃ (τ) = x̃0 (τ) =

[
x0 (τ)
x̂0(τ)

]
, τ ∈ [−τg, 0] ,

(28)

with F̃ : C4 → R4 Lipschitz on bounded sets and such that
F̃ (0) = [0 0 0 0]T .

The next and main part of the proof is devoted to show that
Theorem 4 in [12] can be applied to the closed-loop system
(2), (5), stating that for any positive reals r, R, 0 < r < R,
a ∈ (0, 1], there exist positive reals δ, T and E such that, for
any partition πa,δ = {ti, i = 0, 1, ...}, for any initial condition

|x̃0(τ)| ≤ R, τ ∈ [−τg, 0],

the corresponding solution of the sampled-data closed-loop
system, described by the equations (see (19), (26))

.
x1 (t) = −Kxgi (x1 (t) +Gref ) (x2 (t) + Iref ) +

Tgh
VG

,
.
x2 (t) = −Kxi (x2 (t)− x̂2(tj))

+
TiGmax
VI

(ϕ (x1 (t− τg) +Gref )

−ϕ (x1 (tj − τg) +Gref )) +
Kxgi

ρ
x2

1(tj)

−H2x1(tj)−H3x̂2(tj),

x̂1 (tj+1) = x̂1(tj) + (tj+1 − tj)
(
−Kxgi (x̂1 (tj) +Gref )

· (x̂2 (tj) + Iref ) +
Tgh
VG

+H1(x1(tj)− x̂1(tj))
)
,

x̂2 (tj+1) = x̂2(tj) + (tj+1 − tj)(−H3x̂2(tj)−H2x̂1(tj)

+
Kxgi

ρ
x̂2

1(tj)),

t ∈ [tj , tj+1) , j = 0, 1, ...,
(29)

exists for all t ∈ R+, tj ∈ πa,δ , and, furthermore, satisfies:∣∣∣∣∣∣∣∣
x1 (t)
x2 (t)
x̂1 (tj)
x̂2 (tj)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
G(t)−Gref
I(t)− Iref
Ĝ(tj)−Gref
Î(tj)− Iref

∣∣∣∣∣∣∣∣ ≤ E, ∀t ∈ R+, ∀tj ∈ πa,δ,

∣∣∣∣∣∣∣∣
x1 (t)
x2 (t)
x̂1 (tj)
x̂2 (tj)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
G(t)−Gref
I(t)− Iref
Ĝ(tj)−Gref
Î(tj)− Iref

∣∣∣∣∣∣∣∣ ≤ r, ∀t ≥ T, ∀tj ∈ πa,δ, tj ≥ T.
(30)

To this end, we recall a class of Lyapunov-Krasovskii func-
tionals, which are very helpful for sampled-data stabilization.
In particular, we report the definition concerning smoothly
separable functionals suitably adapted here to cope with the
extended state dimension.

Definition 2: (see [36], [38]) A functional V : C2n → R+

is said to be smoothly separable if there exist a function V1 ∈
C1
L

(
R2n;R+

)
, a locally Lipschitz functional V2 : C2n → R+

and functions βi of class K∞, i = 1, 2, such that, for any
φ̃ ∈ C2n, the following equality/inequalities hold

V (φ̃) = V1(φ̃ (0)) + V2(φ̃),

β1(|φ̃(0)|) ≤ V1(φ̃(0)) ≤ β2(|φ̃(0)|). (31)

In order to apply Theorem 4 in [12], we have to check that
the following hypothesis is satisfied for (28) (see Assumption
3 in [12]).

Hypothesis. There exist a smoothly separable functional
V : C4 → R+ (complying the notation in Definition 2),
functions γ1, γ2 of class K∞, positive reals η, µ, a function
p in C1

L (R+;R+), of class K∞, ν ∈ {0, 1}, a function α3 of
class K, such that the following inequalities (with respect to
the system described by (28)) hold, for any φ̃ ∈ C4,

γ1(|φ̃(0)|) ≤ V (φ̃) ≤ γ2(‖φ̃‖∞), (32)

D+V (φ̃, 0) ≤ −α3(|φ̃(0)|), (33)

νD+V (φ̃, 0) + ηD+p ◦V1(φ̃, 0) + ηµp ◦V1(φ̃ (0)) ≤ 0. (34)

To this aim, let φ̃ = [φ1 φ2 φ3 φ4]T . Taking into account
Assumption 2, let P,Q ∈ R4×4 be two symmetric positive
definite matrices, defined as follows:

P =


p1 0 0 0
0 ρp1 0 0
0 0 p2 0
0 0 0 ρp2

 , Q =


q1 0 0 0
0 q2 0 0
0 0 q3 0
0 0 0 q4

 ,
(35)

Define the function V1 : R4 → R+ as

V1 (x̃) = x̃TPx̃, x̃ ∈ R4, (36)

the functional V2 : C4 → R+ as

V2(φ̃) =

0∫
−τg

φ̃ (τ)
T
Qφ̃ (τ) dτ, φ̃ ∈ C4, (37)

and the functional V : C4 → R+ as

V (φ̃) = V1(φ̃ (0)) + V2(φ̃), φ̃ ∈ C4, (38)

with V1 and V2 in (36) and (37), respectively. Let βi, γi, i =
1, 2, be the functions of class K∞ defined, for s ∈ R+, as

β1 (s) = λmin(P )s2, β2 (s) = λmax(P )s2. (39)

γ1 (s) = λmin(P )s2, γ2 (s) = (λmax(P ) + τgλmax(Q)) s2.
(40)

The functional V is smoothly separable with the functions βi,
i = 1, 2, in (39) (see Definition 2). Furthermore, the functional
V satisfies (32) with the functions γi, i = 1, 2 in (40).
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Taking into account (28), (38), and according to the model
constraints (4), for any φ̃ ∈ C4, the following equalities hold

D+V (φ̃, 0) = D+V1(φ̃, 0) +D+V2(φ̃, 0)

=
[
2p1φ1(0) 2ρp1φ2(0) 2p2φ3(0) 2ρp2φ4(0)

]
F̃ (φ̃)

+q1φ
2
1(0) + q2φ

2
2(0) + q3φ

2
3(0) + q4φ

2
4(0)− q1φ

2
1(−τg)

−q2φ
2
2(−τg)− q3φ

2
3(−τg)− q4φ

2
4(−τg)

= −2p1Kxgiφ
2
1(0)φ2(0)− 2p1KxgiGrefφ1(0)φ2(0)

−2p1KxgiIrefφ
2
1(0)− 2ρp1Kxiφ

2
2(0)

+2ρp1Kxiφ2(0)φ4(0) + 2p1Kxgiφ
2
1(0)φ2(0)

−2ρp1H2φ1(0)φ2(0)− 2ρp1H3φ2(0)φ4(0)
−2p2Kxgiφ

2
3(0)φ4(0)− 2p2KxgiGrefφ3(0)φ4(0)

−2p2KxgiIrefφ
2
3(0) + 2p2H1φ1(0)φ3(0)

−2p2H1φ
2
3(0) + 2p2Kxgiφ

2
3(0)φ4(0)

−2ρp2H3φ
2
4(0)− 2ρp2H2φ3(0)φ4(0)

+q1φ
2
1(0) + q2φ

2
2(0) + q3φ

2
3(0) + q4φ

2
4(0)− q1φ

2
1(−τg)

−q2φ
2
2(−τg)− q3φ

2
3(−τg)− q4φ

2
4(−τg).

(41)
Besides a couple of ready simplifications, D+V (φ̃, 0) can be
upper bounded as

D+V (φ̃, 0) ≤ Ξ1φ
2
1(0) + Ξ2φ

2
2(0) + Ξ3φ

2
3(0) + Ξ4φ

2
4(0)

−q1φ
2
1(−τg)− q2φ

2
2(−τg)− q3φ

2
3(−τg)− q4φ

2
4(−τg),

(42)
where Ξi, i = 1, 2, 3, 4 are defined in Assumption 2. Notice
that, the positive reals ωi, i = 1, 2, 3, 4 in Assumption 2 have
been exploited in (41) according to the following inequalities

2ξiφj(0)φk(0) = 2ξi
(√
ωiφj(0)

) (φk(0)√
ωi

)
≤ |ξi|

(
ωiφ

2
j (0) +

φ2
k(0)
ωi

)
,

(43)

with ξ1 = −p1(KxgiGref + ρH2), ξ2 = ρp1(Kxi − H3),
ξ3 = −p2(KxgiGref + ρH2), ξ4 = p2H1 and the pair of
indexes (j, k) in (43):

(j, k) =


(1, 2) for i = 1
(4, 2) for i = 2
(3, 4) for i = 3
(3, 1) for i = 4

(44)

Because of the inequalities in Assumption 2, from (43) it
follows that

D+V (φ̃, 0) ≤ 0. (45)

Let α3 defined, for s ∈ R+, as follows

α3(s) = −max{Ξ1,Ξ2,Ξ3,Ξ4}s2, (46)

where Ξi, i = 1, 2, 3, 4 are defined in Assumption 2. From
(45), for any φ̃ ∈ C4, also inequality (33) holds with function
α3 in (46). Furthermore, taking into account Assumption 2,
from (45) (see also (41) and (42)), we have that, for any
φ̃ ∈ C4, D+V1(φ̃, 0) ≤ 0. Let us choose p = Id, and ν = 1.

Taking into account (45), for any φ̃ ∈ C4, the following
equality/inequalities hold

νD+V (φ̃, 0) + ηD+p ◦ V1(φ̃, 0) + ηµp ◦ V1(φ̃ (0))

= D+V (φ̃, 0) + ηD+V1(φ̃, 0) + ηµV1(φ̃ (0))

≤ D+V (φ̃, 0) + ηµV1(φ̃ (0))
≤ Ξ1φ

2
1(0) + Ξ2φ

2
2(0) + Ξ3φ

2
3(0) + Ξ4φ

2
4(0)

−q1φ
2
1(−τg)− q2φ

2
2(−τg)− q3φ

2
3(−τg)− q4φ

2
4(−τg)

+ηµ(p1φ
2
1(0) + ρp1φ

2
2(0) + p2φ

2
3(0) + ρp2φ

2
4(0))

= (Ξ1 + ηµp1)φ2
1(0) + (Ξ2 + ηµρp1)φ2

2(0)
+ (Ξ3 + ηµp2)φ2

3(0) + (Ξ4 + ηµρp2)φ2
4(0)

−q1φ
2
1(−τg)− q2φ

2
2(−τg)− q3φ

2
3(−τg)

−q4φ
2
4(−τg) ≤ 0,

(47)
with the last inequality ensured by Assumption 2. From (47)
inequality (34) holds, and the hypotheses of Theorem 4 in [12]
are satisfied. This fact concludes the proof.

V. EVALUATION OF THE GLUCOSE CONTROL LAW ON A
POPULATION OF VIRTUAL PATIENTS

In order to validate the safety and efficacy of the pro-
posed glucose control law, we consider a virtual environment,
recently exploited in [33] for the same verification issue,
though applied to a completely different closed-loop control
strategy. A pivotal role in the proposed benchmark is played
by the comprehensive mathematical model used to build up the
population of virtual subjects upon which the control law is
applied: such model [9] allows to deal with healthy subjects
as well as T2DM patients and, along with [8] provides the
base for the in silico subjects of the UVA/PADOVA Type
1 Diabetes Simulator [20], accepted by the Food and Drug
Administration (FDA) as a substitute to animal trials to test
insulin administration therapies for the artificial pancreas.
Similarly to [33] the virtual environment is achieved according
to the following steps.

1) The comprehensive model provides a set of parameters
allowing to build a T2DM average Virtual Patient (VP)
with Gb = 8.85mM and Ib = 59.85pM (see Table I in
[9].

2) The DDE model parameters are estimated in order to
best fit the compact model onto the comprehensive one.
Such a step has already been done in [33] according to
a virtual clinical experiment (the Intra-Venous Glucose
Tolerance Test, IVGTT) usually done to identify minimal
models parameters. These parameters have been reported
in Table I for the ease of the reader. Notice that the
basal glycemia/insulinemia are slightly different than the
ones of the average VP because measurements errors
were accounted for in the compact model identification
procedure;

3) The control law parameters are set for the DDE compact
model identified at Step 2), properly accounting for the
constraints required by Assumption 2.

4) A population of VPs is sampled by randomly varying
the comprehensive model parameters. The greater is
their coefficient of variation, the more heterogeneous is
supposed the population to be.
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5) The proposed control law, tuned according to step 3), is
applied to the population of VPs, and performances are
assessed.

Remark 1: The first three Steps of the aforementioned
procedure are purely related to the synthesis of the control
law, whilst the last two are related to the building of the
virtual environment. In the spirit of a personalized medicine,
we could imagine to substitute Step 1) with a real T2DM
subject, undergoing a real clinical non-invasive experiment
(like the IVGTT, usually exploited for such aim [34]) in order
to identify the DDE compact model parameters. Instead, here
we consider the case of a general control law, designed upon
an average VP that could be the representative of a rather
heterogenous class of T2DM subjects: a unique control law
applied in closed-loop to different individuals, each belonging
to the same class of patients.

TABLE I
DDE MODEL PARAMETERS. REFER TO SECTION 2 FOR THE

MEASUREMENT UNITS.

Gb = 8.45 Ib = 47.85 TiGmax = 1.695
γ = 15.92 G∗ = 9 τg = 6.5

VG = 0.18 Kxi = 3.8 · 10−2 Tgh = 0.0023
VI = 0.25 Kxgi = 3.15 · 10−5

A. Design of the output dynamic regulator

Choosing Gref = 5 mM, from (4), we obtain Iref = 81.13
pM and vref = 0.77 pmol/kgBW/min. By setting the numeric
values of H1, H2, H3 and ρ as follow

H1 = 2.2 · 10−3, H2 = −8.66,
H3 = 5.7 · 10−2, ρ = 2 · 10−5.

(48)

according to the constraints of Assumption 2, one possible
choice for the other control parameters, is given by

p1 = p2 = 2, q1 = q2 = q3 = q4 = 10−7, ω1 = 40,
ω2 = 1, ω3 = 30, ω4 = 3, η = 10−3, µ = 10−3.

(49)
Assumption 1 is also satisfied: the initial state of the

glucose-insulin system may be supposed as a constant function
with the usual hypothesis of plasma glycemia and insulinemia
fixed at their basal values before the insulin administration
therapy starts; regards to the initial condition of the regulator,
it is set by the designer as a constant function fixed at the
estimates of basal glycemia and insulinemia. Indeed such an
initialization ensures Assumption 1 and provides the following
initial conditions for the closed-loop system (2), (6):

G0(τ)
I0(τ)

Ĝ0(τ)

Î0(τ)

 ≡

Gb
Ib
Ĝb
Îb

 =


8.45
47.85
7.75
73.80

 , τ ∈ [−τg, 0].

(50)
with the estimates Ĝb, Îb set with displacements that are larger
than 8% and 50% for Gb and Ib, respectively. In summary, all
the assumptions, needed to apply the theoretical result stated
in Theorem 1, are satisfied for the average VP.

B. Implementation of the closed-loop control law

Before to get in the details of the virtual environment,
there are a couple of implementation issues to be properly
taken into account. The former regards how to cope with
possibly negative control inputs. From the one hand, the
control law is designed without imposing any constraint on the
positivity of the input signal; on the other hand, the control
input is provided by an exogenous insulin delivery rate that
clearly cannot become negative. Therefore, anytime the control
algorithm suggests to deliver a negative input, the feedback is
switched off in the simulator and no input is delivered. A
way to anticipate (and avoid) these drawbacks is to properly
tune the control parameters, trying to drive the control law
according to smooth trajectories. Indeed, these drawbacks are
easier to occur according to a coarse sampling period.

Another (more technical) point to be considered is how to
cope with delayed measurements. These are clearly required
by the output dynamic regulator according to the emulator
approach (for instance, v(tj) requires ȳ(tj − τg) in (6)) but,
unfortunately, they are available only if assuming a fixed
sampling period δ, and that the delay of the model τg is a
multiple of δ. Of course there are technological constraints that
prevent such hypotheses (e.g. the sampling period cannot be
chosen small at ease), therefore the implementable control law
is required to substitute the delayed measurement ȳ(tj − τg)
with an estimate ŷ(tj−τg). A simple solution is to consider the
interpolation between the two closest available measurements,
i.e. (see [38])

ŷ(tj − τg) = ȳk + ȳk+1−ȳk
tk+1−tk (tj − τg − tk),

tk = max
l∈N
{tl ∈ πa,δ : tl ≤ tj − τg}. (51)

In Fig. 1, a simulation of the closed-loop system (15) with
uniform sampling period δ = 10 min is reported (a sampling
period in accordance to usual Continuous Glucose Monitoring
(CGM) systems, as well as to the one chosen in the previous
literature [15], [18], [22], [33], [40]). It can be appreciated
that, despite the control law is forced to switch off soon
after the first half hour, the proposed simulation shows good
performances since plasma glycemia is constrained below
5mM within the first 2 hours of the treatment, according to a
smooth trajectory that avoids dangerous glucose oscillations.
This behavior is confirmed by any other choice of the initial
conditions (simulations not reported).

C. Building of the virtual environment

Similarly to [33], a population of 10, 000 T2DM patients
is generated by randomly sampling the comprehensive model
parameters according to log-normal distributions. All param-
eters share the same Coefficient of Variation CV = 5%,
thus providing a rather heterogeneous population of T2DM
patients.

Three distinct scenarios have been considered for VPs under
closed-loop glucose control.
[A] Scenario [A] refers to VPs at rest monitored for 6 hours

after the onset of the exogenous insulin administration.
[B] Scenario [B] refers to VPs that receive a single meal

during closed-loop control, and is inspired to [43]. The
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Fig. 1. Simulation of glucose-insulin DDE model in closed-loop with
the proposed glucose controller with a sampling period δ = 10 min. In
the first two upper panels the continuous lines refer to the glucose and
insulin concentrations, whilst the dotted lines refer the linear interpolations
of discrete-time available values Ĝ(jδ) (blue dotted line), Î(jδ) (red dotted
line), j = 0, 1, .... The third panel reports the input signal.

monitoring lasts for 24 hours: the control law is applied at
time 0h, and the VP is supposed to have reached the con-
trolled normoglycemic steady-state after 8 hours. Then a
meal is administered and the VP is monitored for the
remaining 16 hours. The meal is treated as an unknown
disturbance by the closed-loop system, and is modeled
by means of the gastro-intestinal tract of [9] providing
the glucose appearance rate d(t) straightforwardly in the
glucose dynamics. Three different single meals are here
considered: 60, 90 and 120 g of CHO.

[C] Scenario [C] aims at replicating the daily three meals
administration on VPs, and is inspired by [9]. It lasts
24 hours, with the VP supposed to be administered the
exogenous insulin therapy at time 0h as in Scenario
[B] and, then, three meals of 45 g, 70 g and 70 g are
administered at 8h, 12h and 20h, respectively.

Remark 2: According to [43], Scenario [B] considers a 16
hours monitoring period after meal administration to detect
and evaluate on the long period possible hypoglycemia cases
due to excesses of insulin administration stimulated by the
large CHO content of the meals (and not balanced by further
meals).

Three fixed sampling periods have been chosen, according
to the available CGM technology and to past literature, [15],
[18], [22], [33], [40]: δ = 5 min, δ = 10 min and δ = 15 min.

Errors in blood glucose measurements and malfunctioning
of the insulin delivery pumps are also considered, in order

to simulate most common uncertainties affecting the artificial
pancreas devices. More in details, similarly to [33], if ȳj and
v(tj) are the ideal measurement acquired at tj and the input to
be administered and held in the time interval [tj , tj+1), what
will be actually exploited in the feedback control law are ỹj
and ṽ(tj), provided by:

ỹj = ȳj + CVg ȳjNj ,

ṽ(tj) = v(tj) + CVvv(tj)Mj ,
(52)

where Nj and Mj are sequences of independent, zero-mean
Gaussian random variables with unitary variance, and CVg =
5%, CVv = 15% are the coefficient of variation (see [3], [33]).

Remark 3: Besides within the output dynamic regulator,
noisy measurements in (52) have been exploited also to assess
safety and efficacy criteria on VPs simulation.

D. Safety/efficiency criteria

Safety and efficiency criteria are exploited to evaluate the
glucose control law when applied to a VP or to a population
of VPs. They are both inspired by [3]. Regards to safety,
there is substantially a unique mandatory requirement: plasma
glycemia must never become smaller than a safety threshold
(i.e. the exogenous insulin must not be administered in excess
to avoid hypoglycemia cases). We set two thresholds: a VP
simulation with plasma glycemia below 3.3mM (even for
just one single glucose measurement) will be labelled as a
hypoglicemic case; if plasma glycemia goes below 2mM, it
will be labelled as a severe hypoglycemic case. Table II reports
how to evaluate the safety criteria on a population of VPs [3].
It is apparent that even a single case of severe hypoglycemia is
sufficient to highlight the failure of the insulin administration
therapy.

TABLE II
SAFETY CRITERIA

Safety criteria Conditions
excellent safety no cases of severe hypoglycemia

no cases of hypoglycemia
good safety no cases of severe hypoglycemia

less than 5% cases of hypoglycemia
satisfactory safety no cases of severe hypoglycemia

less than 20% cases of hypoglycemia
unsafe any other case

Efficacy criteria aim at evaluating the ability of the
output glucose control law to drive (and keep) plasma
glucose concentration within suitable normoglycemia do-
mains. Each VP simulation is assigned a label of excel-
lent/good/satisfactory/unsatisfactory efficacy according to the
criteria summarized in Tables III and IV for VPs at rest
or during a meal, respectively. Regards to VPs at rest, effi-
cacy criteria investigate whether plasma glycemia is definitely
constrained below a certain level within the first 3 hours of
treatment. During a meal, efficacy criteria evaluate the control
law capability to definitely lower the (physiological) post-
prandial hyperglycemic state down to a suitable level within
the first 2 hours after the meal ingestion.
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A different way to assess efficacy is to assign to the
VP a fraction of each labels, provided by the percentage
of glucose samples that comply with the efficacy label. For
VPs at rest, such a percentage is computed on the interval
[3h,6h], for the single meals administration, the percentage is
computed on the interval [10h,12h], whilst for the 3 meals
administration scenario, the percentage is computed on the
intervals [10h,12h]∪[14h,20h]∪[22h,24h]. Thus, for instance,
a simulation on a VP at rest provides 0.85 of excellent efficacy
if 85% of the glucose samples after the first 3 hours of the
insulin administration therapy is constrained below 6mM, and
0.15 of good efficacy if 15% of the glucose samples after the
first 3 hours of the insulin administration therapy is constrained
within 6mM and 7mM. Both label and fractional efficacy
criteria are accounted for in the proposed simulations.

TABLE III
EFFICACY CRITERIA FOR A VP AT REST

Efficacy criteria Conditions after the first 3h of treatment
excellent G < 6mM
good 6mM≤ G < 7mM
satisfactory 7mM≤ G < 8mM
unsatisfactory G ≥ 8mM

TABLE IV
EFFICACY CRITERIA FOR A VP DURING MEALS

Efficacy criteria Conditions after 2h from meal and during
the period before the possible next meal

excellent G < 8mM
satisfactory 8mM≤ G < 11mM
unsatisfactory G ≥ 11mM

An efficient visual representation for the VPs population
undergoing the proposed AP therapy is provided by the
Control-Variability Grid Analysis (CVGA) (see e.g. [22], [23],
[33], [43]). The grid allows to visualize the largest glucose
excursions produced by the control algorithm: each point of
the grid is a VP and indicates the minimum (reversed X-
axis) and maximum (Y -axis) blood glucose values within the
considered time period. The grid, on which the data points are
plotted, is composed by nine square zones (see Table V) used
in order to classify the controller’s performances.

TABLE V
CONTROL VARIABILITY GRID ANALYSIS

Grid zone Control performances
A accurate control
Lower B benign deviations into hypoglycemia
B benign control deviations
Upper B benign deviations into hyperglycemia
Lower C over-correction of hyperglycemia
Upper C over-correction of hypoglycemia
Lower D failure to deal with hypoglycemia
Upper D failure to deal with hyperglycemia
E erroneous control

E. Data analysis and discussion
As a preliminary test we apply the closed-loop control on

the average VP (the one exploited to estimate the DDE com-

Fig. 2. Plasma glycemia (upper panel), plasma insulinemia (middle panel)
and insulin infusion rate (lower panel) for the average VP during 6 hours of
treatment (no meal administration, Scenario [A]). A sampling period of 10
min is considered.

TABLE VI
FRACTIONAL EFFICACY RESULTS FOR THE AVERAGE VP WITH A SINGLE

MEAL (SCENARIO B)

Meal Sampling period Excellent Satisfactory Unsatisfactory
60 g δ = 5 min 68% 32% 0%
90 g δ = 5 min 56% 44% 0%

120 g δ = 5 min 48% 52% 0%
60 g δ = 10 min 69% 31% 0%
90 g δ = 10 min 62% 38% 0%

120 g δ = 10 min 61.5% 30.8% 7.7%
60 g δ = 15 min 56% 44% 0%
90 g δ = 15 min 56% 44% 0%

120 g δ = 15 min 56% 33% 11%

pact model parameters, upon which the model-based control
is designed). Figs. 2 and 3 report simulations that refer to
Scenarios [A] and [B] (120 g of CHO), respectively, with a
sampling period δ = 10 min. In both scenarios we never have
hypoglycemia cases and very good efficacy results: fractional
efficacy results for Scenario [B] are reported in Table VI.

Regards to the 10,000 VPs population, all three scenarios
share an excellent safety results: no hypoglycemic cases occur,
regardless of the sampling period δ ∈ {5, 10, 15} min, regard-
less whether the VP is at rest or a meal is administered and,
in this last case case, regardless of the amount of the meal.
Pictures of glycemia envelopes are reported in Figs. 4, 5 and
6 for scenarios [A], [B] and [C], respectively, with δ = 10
min. Efficacy results are resumed in Tables VII, VIII and IX
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Fig. 3. Plasma glycemia and insulin infusion rate for the average VP
during the whole 24 h of the virtual experiment (meal of 120 [g] CHO,
Scenario [B]). Red lines are the noisy glucose samples measurements in each
sampling interval and blue continuous line is the VP controlled glycemia. The
piecewise-constant black line is the control input with δ = 10min.

for scenarios [A], [B] and [C], respectively. Finally, the 10,000
VPs simulations are recap in the CGVAs, see Fig. 7 and Tables
X, XI, XII for Scenario [B], and Fig. 8 and Table XIII for
Scenarios [C].

As far as the efficacy results, the common denominator of
the three scenarios is that there are no unsatisfactory results,
with a dominant percentage of excellent vs good/satisfactory
when dealing with fractional efficacy. Efficacy seems to
strengthen when the sampling period becomes coarser. This
fact, though counterintuitive (because a coarser sampling pe-
riod is associate to coarser Euler emulation of the control
law), is coherent with the feedback control scheme: a larger
sampling period means a larger period of the sample-and-hold
regulator, therefore a possible initial high insulin administra-
tion may be held for a longer time. These efficacy benefits
have to cope with the side-effects possibly affecting the safety,
since a larger administration of insulin is not balanced by
any exogenous counter-regulating hormone (like glucagon).
However, these facts do not affect the excellent safety results
since no VP ever undergoes hypoglycemic cases in all reported
simulations. The CVGAs confirm the goodness of the closed-
loop control, highlighting that only during the largest meal
administration (of 120 g of CHO) a low percentage of VP is
found in the lower D zone (spanning from 0.39% for δ = 5
to 2.16% for δ = 15 min), though according to a minimum
plasma glycemia always grater than 60 mM.

Remark 4: As a final remark, in all simulations, the control
input never exceeds 80 pmol/kgBW/min, corresponding to
5, 600 pmol/min for a VP of an average weight of 70kg.
Although literature on artificial pancreas reports a limit of
4U/h for the insulin infusion rate [3], corresponding to about
466 pmol/min, our control input amplitude is still acceptable,
according to the high-dose insulin protocols employed in the
treatment of severe beta-blocker and calcium channel-blocker

Fig. 4. Controlled glycemia of a 10,000 VPs population at rest (Scenario
[A]), sampling period δ = 10 min.

Fig. 5. Controlled glycemia of a 10,000 VPs population according to Scenario
[B]: 60 g (upper panel), 90 g (medium panel) and 120 g (lower panel).
Sampling period δ = 10 min.

Fig. 6. Controlled glycemia of a 10,000 VPs population according to Scenario
[C]. Sampling period δ = 10 min.
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Fig. 7. Control-variability grid of the control law action on a population of
10, 000 VPs, Scenario [B]: 60 g (upper panel), 90 g (middle panel) and 120
g (lower panel) of CHO administered. Sampling period δ = 10 min.

poisoning with insulin infusion ranges up to 22U/kgBW/h
(about 180, 000 pmol/min), [16], a much larger upper bound
than the one reported by simulations.

VI. CONCLUSION

In this paper, the recent results about stabilization in the
sample-and-hold sense, for time-delay systems, have been used
in order to cope with the problem related to the tracking of
a desired plasma glucose concentration by means of intra-

TABLE VII
LABEL AND FRACTIONAL EFFICACY RESULTS FOR THE 10,000 VPS

POPULATION AT REST (SCENARIO [A])

Efficacy Label Fractional Sampling period
excellent 3.95% 61.61% δ = 5 min
good 96.05% 38.39% δ = 5 min
satisfactory 0% 0% δ = 5 min
unsatisfactory 0% 0% δ = 5 min
excellent 4.30% 55.40% δ = 10 min
good 95.70% 44.60% δ = 10 min
satisfactory 0% 0% δ = 10 min
unsatisfactory 0% 0% δ = 10 min
excellent 9.00% 60.85% δ = 15 min
good 91.00% 39.15% δ = 15 min
satisfactory 0% 0% δ = 15 min
unsatisfactory 0% 0% δ = 15 min

TABLE VIII
LABEL AND FRACTIONAL EFFICACY RESULTS FOR THE 10,000 VPS

POPULATION (SCENARIO [B])

Efficacy Label Fractional Meal Sampling period
excellent 0% 99.86% 60g δ = 5 min
satisfactory 100% 0.14% 60g δ = 5 min
unsatisfactory 0% 0% 60g δ = 5 min
excellent 0% 99.99% 60g δ = 10 min
satisfactory 100% 0.01% 60g δ = 10 min
unsatisfactory 0% 0% 60g δ = 10 min
excellent 0% 100% 60g δ = 15 min
satisfactory 100% 0% 60g δ = 15 min
unsatisfactory 0% 0% 60g δ = 15 min
excellent 0% 85.68% 90g δ = 5 min
satisfactory 100% 14.32% 90g δ = 5 min
unsatisfactory 0% 0% 90g δ = 5 min
excellent 0% 97.16% 90g δ = 10 min
satisfactory 100% 2.84% 90g δ = 10 min
unsatisfactory 0% 0% 90g δ = 10 min
excellent 0% 99.06% 90g δ = 15 min
satisfactory 100% 0.94% 90g δ = 15 min
unsatisfactory 0% 0% 90g δ = 15 min
excellent 0% 52.43% 120g δ = 5 min
satisfactory 100% 47.57% 120g δ = 5 min
unsatisfactory 0% 0% 120g δ = 5 min
excellent 0% 94.96% 120g δ = 10 min
satisfactory 100% 5.04% 120g δ = 10 min
unsatisfactory 0% 0% 120g δ = 10 min
excellent 0% 99.43% 120g δ = 15 min
satisfactory 100% 0.57% 120g δ = 15 min
unsatisfactory 0% 0% 120g δ = 15 min

TABLE IX
LABEL AND FRACTIONAL EFFICACY RESULTS FOR THE 10,000 VPS

POPULATION (SCENARIO [C])

Efficacy Label Fractional Sampling period
excellent 0% 100% δ = 5 min
satisfactory 100% 0% δ = 5 min
unsatisfactory 0% 0% δ = 5 min
excellent 0% 100% δ = 10 min
satisfactory 100% 0% δ = 10 min
unsatisfactory 0% 0% δ = 10 min
excellent 0% 100% δ = 15 min
satisfactory 100% 0% δ = 15 min
unsatisfactory 0% 0% δ = 15 min

Fig. 8. Control-variability grid of the control law action on a population of
10, 000 VPs, Scenario [C]. Sampling period δ = 10 min.
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TABLE X
CVGA RESULTS FOR THE 10,000 VPS POPULATION (SCENARIO [B],

MEAL OF 60g CHO)

Grid zone Controller results Sampling period
A 46.78% δ = 5 min
Lower B 0.09% δ = 5 min
B 0.02% δ = 5 min
Upper B 53.11 δ = 5 min
Lower C 0% δ = 5 min
Upper C 0% δ = 5 min
Lower D 0% δ = 5 min
Upper D 0% δ = 5 min
E 0% δ = 5 min
A 34.72% δ = 10 min
Lower B 0.31% δ = 10 min
B 0.4% δ = 10 min
Upper B 64.57% δ = 10 min
Lower C 0% δ = 10 min
Upper C 0% δ = 10 min
Lower D 0% δ = 10 min
Upper D 0% δ = 10 min
E 0% δ = 10 min
A 18.6% δ = 15 min
Lower B 0.13% δ = 15 min
B 0.3% δ = 15 min
Upper B 80.97% δ = 15 min
Lower C 0% δ = 15 min
Upper C 0% δ = 15 min
Lower D 0% δ = 15 min
Upper D 0% δ = 15 min
E 0% δ = 15 min

TABLE XI
CVGA RESULTS FOR THE 10,000 VPS POPULATION (SCENARIO [B],

MEAL OF 90g CHO)

Grid zone Controller results Sampling period
A 0% δ = 5 min
Lower B 0% δ = 5 min
B 11.99% δ = 5 min
Upper B 88.01% δ = 5 min
Lower C 0% δ = 5 min
Upper C 0% δ = 5 min
Lower D 0% δ = 5 min
Upper D 0% δ = 5 min
E 0% δ = 5 min
A 0% δ = 10 min
Lower B 0% δ = 10 min
B 27.02% δ = 10 min
Upper B 72.98% δ = 10 min
Lower C 0% δ = 10 min
Upper C 0% δ = 10 min
Lower D 0% δ = 10 min
Upper D 0% δ = 10 min
E 0% δ = 10 min
A 0% δ = 15 min
Lower B 0% δ = 15 min
B 25.05% δ = 15 min
Upper B 74.95% δ = 15 min
Lower C 0% δ = 15 min
Upper C 0% δ = 15 min
Lower D 0% δ = 15 min
Upper D 0% δ = 15 min
E 0% δ = 15 min

TABLE XII
CVGA RESULTS FOR THE 10,000 VPS POPULATION (SCENARIO [B],

MEAL OF 120g CHO)

Grid zone Controller results Sampling period
A 0% δ = 5 min
Lower B 0% δ = 5 min
B 65.99% δ = 5 min
Upper B 33.62 δ = 5 min
Lower C 0% δ = 5 min
Upper C 0% δ = 5 min
Lower D 0.39% δ = 5 min
Upper D 0% δ = 5 min
E 0% δ = 5 min
A 0% δ = 10 min
Lower B 0% δ = 10 min
B 84.01% δ = 10 min
Upper B 14.81% δ = 10 min
Lower C 0% δ = 10 min
Upper C 0% δ = 10 min
Lower D 1.18% δ = 10 min
Upper D 0% δ = 10 min
E 0% δ = 10 min
A 0% δ = 15 min
Lower B 0% δ = 15 min
B 83.66% δ = 15 min
Upper B 14.18% δ = 15 min
Lower C 0% δ = 15 min
Upper C 0% δ = 15 min
Lower D 2.16% δ = 15 min
Upper D 0% δ = 15 min
E 0% δ = 15 min

TABLE XIII
CVGA RESULTS FOR THE 10,000 VPS POPULATION (SCENARIO [C])

Grid zone Controller results Sampling period
A 0.27% δ = 5 min
Lower B 0.29% δ = 5 min
B 24.64% δ = 5 min
Upper B 74.8 δ = 5 min
Lower C 0% δ = 5 min
Upper C 0% δ = 5 min
Lower D 0% δ = 5 min
Upper D 0% δ = 5 min
E 0% δ = 5 min
A 0.08% δ = 10 min
Lower B 0.03% δ = 10 min
B 19.89% δ = 10 min
Upper B 80% δ = 10 min
Lower C 0% δ = 10 min
Upper C 0% δ = 10 min
Lower D 0% δ = 10 min
Upper D 0% δ = 10 min
E 0% δ = 10 min
A 0% δ = 15 min
Lower B 0% δ = 15 min
B 22.85% δ = 15 min
Upper B 77.15% δ = 15 min
Lower C 0% δ = 15 min
Upper C 0% δ = 15 min
Lower D 0% δ = 15 min
Upper D 0% δ = 15 min
E 0% δ = 15 min
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venous insulin administration for T2DM patients. A semi-
global sampled-data output controller for the glucose-insulin
system is proposed. It is shown that emulation, by Euler
approximation, of the provided semi-global nonlinear output
dynamic controller yields the reduction of a high basal plasma
glucose concentration to a reference glucose value. The control
law has been evaluated by closing the loop on a population of
10,000 virtual patients, generated by a model recently accepted
by the Food and Drug Administration (FDA) as an alternative
to animal trials for the preclinical testing of control strategies
in artificial pancreas. Criteria to evaluate the performances of
the proposed control law have been taken into account in the
data analysis. The simulations and the criteria adopted for the
data analysis show the good performances of the proposed
control strategy.
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