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Abstract—An optimal control algorithm is proposed for im-
pulsive differential systems, i.e. systems evolving according to
ordinary differential equations between any two control actions,
occurring impulsively at discrete time instants. Measurements
are as well acquired at discrete time instants. The model-based
control law is conceived for medical and health-care frameworks
and, indeed, is applied to synthesize a feedback antiangiogenic
tumor therapy. To cope with unavailable or temporally sparse
measurements, the control law benefits of a state observer
properly designed for continuous-discrete systems by suitably
exploiting recent results on observers for time-delay systems. The
closed-loop algorithm is validated by building up an exhaustive
simulation campaign on a population of virtual subjects, each
sampled from a multivariate Gaussian distribution whose mean
and covariance matrix are identified from experimental data
taken from the literature. In silico results are encouraging and
pave the way to further clinical verifications.

Index Terms—Optimal control, Impulsive control, Discretiza-
tion of nonlinear systems, Tumor therapy.

I. INTRODUCTION

This paper aims at describing a framework for the closed-
loop control of medical treatments. It is well known that
biomedical systems pose specific challenges to control tech-
niques originally developed for traditional engineering areas,
due to modeling uncertainties, parameter variability, frequency
of measurements and constraints on the control. We investigate
how new estimation and control approaches can be exploited
to alleviate these problems and pave the way to the design of
reliable and optimized feedback-based protocols in the medical
practice. Specifically, we consider the problem of estimation
and output feedback control of nonlinear continuous-time
systems under the constraint that measurements are available
at discrete time points, with possibly large intervals, and that
controls have an impulsive nature. These assumptions are
tailored to a potentially large set of situations in which both
the monitoring actions and the drug administration follow a
discrete-time pattern, with potentially large and distinct time
intervals.

In the literature several results can be found about impulsive
control [24], [37], [41], [44], [49], [51], [53], based on
the theory of impulsive dynamical systems [50]. Impulsive
differential systems have already been exploited in biomedical
applications, for instance in applications to pulse vaccination
strategies [2], [11], [48]. In order to deal with discrete-time
measurements taken at sampling intervals different than those
of the impulsive control we follow a different approach. The
optimal output-based impulsive feedback control is obtained

by using two new tools to bridge the gap between the
continuous-time system and the discrete measurements and
controls. From the one hand, discrete measurements are mod-
eled as a continuous-time output affected by a time-varying
delay, for which a suitable nonlinear state-observer is applied
[9], [10], providing an exponential estimate of the whole state.
On the other hand, the system in free evolution (i.e. among
any two control impulses) is discretized by means of the
Carleman linearization approach [29]. With respect to standard
numerical integrations, the advantage is that the continuous-
time nonlinear system is transformed into a discrete-time
linear system of higher dimensions. Even if the resulting
system is time-varying and its matrices depend on the state,
it enjoys the property that its dynamics can be inverted in
time, thus making easier to compute the optimal solution
with respect to a quadratic index through a classical LQ
approach. By using these two distinct tools it is relatively
easy to extend the proposed methodology to other scenarios,
like continuous-time measurements with impulsive control,
or discrete-time measurements with continuous or piece-wise
continuous infusion therapy. The use of a state observer allows
to overcome the drawback of [7], where preliminary results
on impulsive control where presented according to a complete
knowledge of the state of the system.

We apply our approach to the optimal control problem
of antiangiogenic tumor therapy. The scientific basis of an-
tiangiogenic therapy of cancer is widely discussed in the
medical literature, see for example the recent review in [38].
The original idea of antiangiogenic tumor therapy is due to
Folkman [21] and is based on two general principles, namely
that tumor growth is angiogenesis dependent and that antian-
giogenic therapy targets genetically stable microvascular en-
dothelial cells that are less prone to developing drug resistance.
Actually, no resistance to antiangiogenic inhibitors has been
observed in experimental cancer studies. On the other side,
antiangiogenic therapy only reduces the tumor size, ideally
to its maximum avascular size, and the cancer grows back
when the treatment is halted. For this reason, antiangiogenic
therapy is not sufficient as a stand-alone treatment, but can
be used in combination with other traditional therapies like
chemotherapy and radiotherapy. The interest in antiangiogenic
therapy was vastly increased when the first broad-spectrum an-
giogenesis inhibitors angiostatin and endostatin were described
in 1994 and 1997 by Folkman’s group [4], [38], [42], [43].
However, clinic trials based on a soluble preparation of human
recombinant endostatin didn’t confirm the expectations, since
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tumor regression was not consistently observed in Phase I and
Phase II clinical trials [19], [30]. Endostatin development was
pursued in China and has been approved by the Chinese SFDA
since 2005 for use in combination with chemotherapy [23],
[38]. Arguably, while for cytotoxic agents the reduction of the
tumor mass is a requirement for response, for antiangiogenic
agents tumor arrest and growth inhibition may already be
a valuable achievement [38]. In this sense, several further
studies have investigated the “additive” effects of multiple
antiangiogenic therapies [1], [25], [26], as well as novel
antiangiogenic approaches [40] and the different effects of
distinct drug administration protocols, i.e. bolus doses, low-
dose metronomic regimen and continuous infusion therapy [5],
[22], [26], [27].

Due to the complexity of the angiogenesis process, the long
term perspective of effective implementation of antiangiogenic
tumor therapies requires reliable quantitative modeling of the
interplay between tumor growth and the development of its
vascular network as well as of the action of angiogenic
inhibitors [47]. Folkman and his coworkers developed a simple
but largely influential mathematical model of this kind, a min-
imally parametrized and low-dimensional dynamical system
that describes the vascular phase of tumor growth [25], usually
referred to as the Hahnfeldt et al. model. The Hahnfeldt et
al. model has been the subject of intense research in the
bio-mathematical field during the last 15 years [13], [18],
[28], [46], [47], [52]. In [12] some variants are discussed,
as well as the mathematical characterization of treatments
leading to tumor eradication. Antiangiogenic therapies has
been studied from the point of view of optimal control both
as standalone therapy [8], [17], [20], [34]–[36], [45] and as
part of a combined therapy [16], [32], [33]. Specifically, [14],
[15] derive interesting conclusions about the interplay between
chemotherapy and anti-angiogenic therapy through an analysis
based on variants of the Hahnfeldt et al. model. In the latter
work stochasticity and irregularity of drug delivery is also
faced. Overall, these works provide important contributions
to clarify how an optimal dosing strategy can be designed,
but they generally assume that continuous-time infusion is
applicable and that the state of the system is completely
known. Exceptions to the first assumptions include [12], where
the first example of impulsive control theory for a model of
vascularized solid tumor is provided, and the recent work [17],
where it is supposed that therapy is administered in bolus
doses with fixed rest periods. Also in these cases, the state
of the system is assumed to be known. The Hahnfeldt et al.
system includes two state variables, representing the tumor
size and the vascular carrying capacity. Tumor size can be
measured, even if in practice measurements cannot be taken
continuously, but the carrying capacity is an abstraction that
does not correspond to a measurable quantity. Even if [47]
argues that for the Hahnfeldt et al. model the optimal control
does not change much by varying the carrying capacity, it is of
both theoretical and practical interest to develop an impulsive
control strategy based on a convergent estimation of the true
state from discrete measurements.

The proposed antiangiogenic tumor therapy is validated by
means of a simulation campaign carried out on a population

of virtual subjects, each identified by a set of the Hahnfeldt et
al. model parameters, properly sampled from a multivariate
Gaussian distribution whose average value and covariance
matrix are estimated from experimental data achieved from the
literature. Because of the usually large inter- and intra-subjects
variability affecting biological and physiological systems, we
choose to design the control parameters on the average subject
and keep them fixed when applied to the virtual subjects
of a rather heterogenous population. Numerical simulations
highlight (i) the efficacy of the designed closed-loop control
law (in terms of a consistent reduction of the tumor size at the
end of the period of drug administration) and (ii) the reliability
of the therapy (validated by the boundedness of the maximum
daily drug administration), paving the way to further clinical
verifications.

The paper is organized as follows. Section II provides a de-
scription of the proposed methodology in a general framework,
including the problem setting and the development of the
optimal impulsive control algorithm. Section III is concerned
with the application of the optimal impulsive control to the
antiangiogenic tumor therapy, including a brief description
of the tumor growth model under consideration. Performance
analysis is reported in Section IV. Conclusions follow.

II. METHODOLOGICAL FRAMEWORK

A. Notation

The symbol ⊗ denotes the Kronecker product. M [i] is the
i-th Kronecker power of the matrix M , recursively defined by
M [i] = M ⊗M [i−1] and M [0] = 1. Given f ∈ C∞(Ra;Rb),
and x = [x1, . . . , xa]T ∈ Ra, ∇x ⊗ f is the function Ra →
Rb×a defined by [∂f/∂x1 . . . ∂f/∂xa]. ∇[i]

x ⊗ f denotes the
same operation repeated i times and it is a function Ra →
Rb×ai with ∇[0]

x ⊗f = f . Given the vector field f and a scalar
function h, Lfh denotes the Lie derivative of h with respect
to the vector field f , defined as Lfh(x) = (∇x⊗h)(x) ·f(x).
Lifh(x) denotes the i-th Lie derivative of h with respect to
the vector field f , with L0

fh(x) = h(x).

B. Problem setting and state of the art

Consider a strictly increasing and positive sequence of time
instants T = {τk, k ∈ I, τk+1 > τk ≥ 0}, with I =
{0, 1, . . . , N}, and an impulsive differential system [31] with
impulses occurring at times τk ∈ T , k ∈ I0 = {1, . . . , N},

ż(t) =f(z(t)), t ∈ [τk, τk+1), k ∈ I \ {N}
z(τ+

k ) =z(τ−k ) +Bvk, k ∈ I0

(1)

where τ0, is the initial time instant, z(t) ∈ Rn, vk ∈ Rp and
f : Rn → Rn is an analytic map. The initial condition is
z(τ0) = z0. In the sequel we will denote with σk = τk+1 −
τk > 0 the intervals between two consecutive impulses, and
with xk = z(τ+

k ) the state of system at the discrete time when
the impulsive input is delivered.

Measurements are acquired at fixed time instants in S =
{sm, m ∈ I ′0, sm+1 > sm ≥ 0}, with I ′0 = {1, . . . , N ′} and

ym = h
(
z(sm)

)
(2)
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where h : Rn → R is an analytic map. In case sm ∈ T , then
measurements are supposed to exclude the impulsive input,
that is:

ym = h
(
z(s−m)

)
. (3)

For simplicity, we refer to the case of a scalar output, but
the theory can be straightforwardly extended to deal with a
vector output [10].

The following two working hypotheses are here investigated
from a theoretical viewpoint. One case refers to input impulses
administered more frequently than sampled measurements,
that is, S ⊆ T . The other case refers to the opposite frame-
work, with T ⊆ S . The former is the more common case,
since often measurements are more difficult, time-consuming
and expensive to obtain than control actuation.

A key point in the applications of optimal control to
biomedicine is to provide a biologically meaningful control
objective. Of course, the definition of this objective may
depend on the specific problem or therapy and it will result
in a cost function to be minimized that can assume different
forms. The basic assumptions that we have followed in this
work are partly tailored to the problem of antiangiogenic tumor
therapy but in our view they can be shared by several similar
applications:
• The objective of the control law is formulated on the

discrete-time scale provided by the impulsive inputs
and the measurements. The time intervals between these
events usually depend on clinical practices that are not
part of the control strategy itself, thus they are assumed as
given but known. The time-scale is therefore a given and
known parameter of the problem that cannot be changed.

• The therapy has a known time horizon. The objective of
the control is to drive the state of the system to a desired
value at the end of the therapy and, at the same time, to
minimize the amount of the control input. This is a fairly
common setting for a therapy, since the control input is
usually a drug and its dose cannot assume arbitrarily large
values. This assumption results in a cost function having
two terms, the first one related to the distance from the
desired final value and the other one related to the amount
of the administered drug.

• Since our approach aims at transforming the original
nonlinear continuous-time systems into a linear discrete-
time systems with impulsive controls, we formulate the
cost terms as a quadratic function of the control pulses.
In this way we can build upon known methods for the
LQ (Linear Quadratic) optimal control framework.

Based on the above assumptions the aim of the proposed
control action is to properly dose the impulsive inputs in order
to minimize the following quadratic index:

J(xN ,v) = (xN − x̄)TQN (xN − x̄) +

N∑
k=1

vTk Rkvk (4)

where QN ≥ 0, Rk > 0, are weight matrices, v =
[v1, . . . , vN ]T is the sequence of control impulses and x̄ is
the chosen reference level for the state of the system at the
end of the control application (e.g., at the end of the period

of drug administration therapy in case of medical/healthcare
frameworks). Such a problem has been addressed in [7], by
means of the Carleman-based discretization of the original
continuous-time system at the time instants τk ∈ T related to
the impulsive control. According to [7], the discretized version
of (1) is:

xk+1 = Ψk(xk, vk+1), x0 = z0, k ∈ I \ {N} (5)

where
Ψk(xk, vk+1) = xk + Fk(xk) +Bvk+1 (6)

with

Fk(xk) =

∞∑
j=0

P 1
j (xk)

σj+1
k

(j + 1)!
. (7)

P 1
j belongs to the family of vectors {P ij ∈ Rni , (i, j) ∈ N0×

N}, recursively defined by

P 1
j =

j∑
l=1

A1
l P

l
j−1, P ij =

j∑
l=max{1,i−1}

Ail−i+1P
l
j−1 (8)

with P 1
0 = f , P i0 = 0 for i ≥ 2 and the matrix coefficients

Aij ∈ Rni×nj+1−1

, (i, j) ∈ N0 × N, provided by

A1
j (x) =

(∇[j]
z ⊗ f)(x)

j!
, (9)

Aij =A1
j ⊗ I [i−1]

n + In ⊗Ai−1
j . (10)

The Carleman embedding provides the exact solution to the
discretization problem, whose finite-dimensional implementa-
tion is based on a suitable truncation of the involved series
expansion (7).

Once the control optimization problem is set on a pure
discrete-time framework, the optimal impulsive control prob-
lem is dealt with by solving the following constraints:

k ∈ I0 : ∇vk ⊗ L = 2vTk Rk + λTk
(
∇vk ⊗Ψk−1

)
= 0,

k ∈ I0 : ∇λk ⊗ L = Ψk−1 − xk = 0,
k ∈ I0\{N} : ∇xk ⊗ L = λTk+1

(
∇xk ⊗Ψk

)
− λTk = 0,

k = N : ∇xk ⊗ L = 2(xk − x̄)TQN − λTk = 0.
(11)

where Ψk denotes Ψk(xk, vk+1) for short, and L is the
Lagrangian

L(x,Λ,v) = J(xN ,v) +

N−1∑
k=0

λTk+1

(
Ψk − xk+1

)
, (12)

with x = [xT1 , · · · , xTN ]T and Λ = [λ1, . . . , λN ]T , λi ∈ Rn is
the vector of Lagrangian multipliers.

The solution is given by

vk =
1

2
R−1
k BTλk (13)

with x1, . . . , xN , λ1, . . . , λN ∈ Rn available by numerically
solving the usual backward/forward equations of the con-
straints.

From a mathematical viewpoint this formulation yields a
system of 2nN nonlinear equations with respect to the un-
knowns x,Λ. Since the numerical computation of the solutions
is computationally challenging, two possible methods can be
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pursued. The first one is to resort to receding horizon algo-
rithms that allow to decompose the original numerical problem
on a set of reduced order similar tasks. The second method
is to exploit the structure of the Carleman discretization that
allows to write the system equations backward in time. Indeed,
the Carleman backward discretization starts with the “initial
point” xk+1 − Bvk+1 and backwardly provides the “final
point” xk as

xk = xk+1 −Bvk+1 +

∞∑
j=0

P 1
j (xk+1 −Bvk+1)

(−σk)j+1

(j + 1)!
.

(14)
Therefore, both Λ and x can be written backward as functions
of the only unknown xN , thus reducing the optimization task
to the search for xN only (passing from 2nN to n unknowns).

Indeed, both these approaches have been followed in [7],
under the assumption of complete knowledge of the initial
state of the system. Unfortunately, such assumption is not
realistic, especially in biomedical applications where only few
compartments are accessible for measurements. We overcome
this drawback by means of a state observer that allows to
estimate the state of the system by properly exploiting the
available sampled measurements.

C. Optimal impulsive control algorithm

As previously stated, the optimal impulsive control algo-
rithm developed in [7] (and briefly recap in the previous
Subsection) requires the knowledge of the initial state x0. The
proposed control algorithm overcomes such requirement of
complete knowledge of the state by means of a state-observer
whose equations are updated by a discrete stream of sampled
measurements (see next Subsections for the observer details).
In the following the observer-based state estimate computed
at time τk will be denoted by x̂k.

Case S ⊆ T . In case the control impulses are more frequent
than the measurements, there exists an injection k : I ′0 7→ I0,
k = ν(m) that allows to write sm = τν(m) ∈ T , for any
m ∈ I ′0.

The initialization of the algorithm substantially requires the
computation of the solution of the optimal control problem by
substituting the initial estimate x̂0 in (4)-(13) in place of the
real state x0. This solution v does not consider any subsequent
measurement, and we apply it only regards to the the control
impulses v1, . . . , vν(1) (i.e the first ν(1) entries of v). Mean-
while, the observer evolves time-continuously in [τ0, s1), pro-
viding at t = s1 the update of the state estimate x̂ν(1). Notice
that this initial run of the observer trivially predicts the state
evolution without the correction term since no measurements
are available in [τ0, s1) yet. Then, at t = s1 the optimization
control problem (4)-(13) is reformulated in [τν(1), τN ] with
respect to the new initial state x̂ν(1). This solution provides
the control impulses {vν(1)+1, . . . , vN}, but we keep (and
apply) the impulses on the time instants {τν(1)+1, . . . , τν(2)}.
Meanwhile the observer evolves time-continuously in [s1, s2),
with the benefit of the new measurement acquired at time
t = s1, providing at t = s2 the update of the state estimate
x̂ν(2). And so on.

The optimization procedure is below formalized.

Control Algorithm A1.
First interval [τ0, s1):

0) the initial estimate x̂0 is set;
1) the optimization problem (4)-(13) is solved for the time

interval [τ0, τN ], with respect to the initial state x̂0,
providing the control inputs {v1, . . . , vN};

2) we apply only the input impulses {v1, . . . , vν(1)};
3) the observer evolves in free evolution in [τ0, s1). At t =

s1 it provides the estimate x̂ν(1).

Intervals [sm, sm+1), m = 1, . . . , N ′ − 1:

i) the estimate x̂ν(m) is available from the observer; a new
measurement ym at time sm is acquired;

ii) the optimization problem (4)-(13) is solved for the time
interval [τν(m), τN ], with respect to the initial state
x̂ν(m), providing the control inputs {vν(m)+1, . . . , vN};

iii) we apply only the input impulses
{vν(m)+1, . . . , vν(m+1)};

iv) the observer evolves in [sm, sm+1), with the benefit of
the last measurement ym. At t = sm+1 it provides the
estimate x̂ν(m+1).

v) if m < N ′ − 1, update m 7→ m+ 1 and go to item i)

Last interval [sN ′ , τN ) (in case τν(N ′) < τN ):

– the estimate x̂ν(N ′) is available from the observer;
– the optimization problem (4)-(13) is solved for the time

interval [τν(N ′), τN ], with respect to the initial state
x̂ν(N ′), providing the control inputs {vν(N ′), . . . , vN},
and we apply all the input impulses.

The optimization time intervals reduce their length at each
new step (from [τ0, τN ], to [τν(1), τN ], till [τν(N ′), τN ]), that
means an algebraic system of 2n(N − ν(m)) nonlinear equa-
tions is required to be solved at each step related to the generic
interval [τν(m), τN ].

Unfortunately, the computational task is still cumbersome
and motivates the search for receding horizon procedures as
the one proposed below.

Define rk = ϕ(τk) ∈ Rn, τk ∈ T , a discrete monotonic
trajectory, definitely approaching the desired final value x̄ =
rN . These points can be thought of as a sequence of desired
intermediate values for the state. Let M < N be the number of
reduced steps related to the chosen receding horizon approach.
Then, Control Algorithm A1 is modified as follows, with the
algorithm updating in [τk, τk+1) (instead of in [sm, sm+1)).

Control Algorithm A2:
0) the estimate x̂k is available from the observer; if there

exists an m ∈ I ′0 such that k = ν(m), then a new
measurement ym is acquired;

1) the optimization problem (4)-(13) is solved for the time
interval [τk, τk+M ], with respect to the initial state
x̂k, according to the desired final value x̄ replaced
by rk+M . Such solution provides the control inputs
{vk+1, . . . , vk+1+M};

2) we apply only the first input impulse vk+1;
3) the observer evolves in [τk, τk+1). At t = τk+1 it

provides the estimate x̂k+1.
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Clearly, the backward Carleman discretization can be applied
on top of the receding horizon approach, thus further lighten-
ing the computational effort.

Case T ⊆ S . In case the control inputs are less frequent
than the measurements, there exists an injection m : I0 7→ I ′0,
m = µ(k), that allows to write τk = sµ(k) ∈ S , for
any k ∈ I0. The following algorithm benefits of the state
estimates in time instants t different than of the control input
instants (i.e. t not in T ): these estimates will be denoted
by ẑ(t). The initial estimate x̂0 is exploited to preliminary
run the observer in [τ0, sµ(1)−1) in order to achieve the state
estimate at t = sµ(1)−1, right before the application of the
first control impulse. Dealing with an asymptotic observer
such estimate is supposed to be closer to the real state with
respect to an a priori initialization at t = τ0, since we
exploit the measurements at t ∈ {s1, . . . , sµ(1)−2}. Then,
the optimization algorithm (4)-(13) is applied in [sµ(1)−1, τN ],
providing the control sequence v, according to which we keep
(and apply) only the first v1 in τ1. Then we run the observer in
[sµ(1)−1, sµ(2)−1), in order to update the new initial estimate
in t = sµ(2)−1 right before the application of the second
control impulse. Then, we run the optimization algorithm in
[sµ(2)−1, τN ]. And so on. The optimization procedure is below
resumed.

Control Algorithm A3:
First interval [τ0, sµ(1)−1):

0) The observer evolves in [τ0, sµ(1)−1) (with the initial
estimate x̂0) providing at time sµ(1)−1 the estimate
ẑ(sµ(1)−1) that benefits of the measurements at times
t ∈ {s1, . . . , sµ(1)−2};

Intervals [sµ(k)−1, sµ(k+1)−1), k = 1, . . . , N − 1:
i) the estimate ẑ(sµ(k)−1) is available from the observer;

ii) the optimization problem (4)-(13) is solved for the time
interval [sµ(k)−1, τN ], with respect to the initial state
ẑ(sµ(k)−1), providing the control inputs {vk, . . . , vN};

iii) we apply only the first input impulse vk;
iv) the observer evolves in [sµ(k)−1, sµ(k+1)−1), with

the benefits of the measurements acquired in
[sµ(k), sµ(k+1)−2]. At t = sµ(k+1)−1 it provides
the estimate ẑ(sµ(k+1)−1).

v) if k < N − 1, update k 7→ k + 1 and go to item i).
Similarly to the case of S ⊆ T such an optimization

procedure is cumbersome and receding horizon procedures are
suggested. To this end, recalling the role of rk = ϕ(τk), let
M < N be the number of reduced steps related to the chosen
receding horizon approach. Then, the Control Algorithm A3
is modified as follows, with the algorithm still updating in
[sµ(k)−1, sµ(k+1)−1).

Control Algorithm A4:
i) the estimate ẑ(sµ(k)−1) is available from the observer;

ii) the optimization problem (4)-(13) is solved for the time
interval [sµ(k)−1, τk+M−1], with respect to the initial
state ẑ(sµ(k)−1), according to the desired final value x̄
replaced by rk+M−1. Such solution provides the control
inputs {vk, . . . , vk+M};

iii) we apply only the first input impulse vk;

iv) the observer evolves in [sµ(k)−1, sµ(k+1)−1), with
the benefits of the measurements acquired in
[sµ(k)−1, sµ(k+1)−2]. At t = sµ(k+1)−1 it provides
the estimate ẑ(sµ(k+1)−1).

Also in this case the backward Carleman discretization can
be applied to the receding horizon approach, to unburden the
computational effort.

D. State observer for continuous-discrete systems

The observer exploited in the control algorithm is the one
developed in [9], [10] and is based on the idea to model the
discrete-time output as a continuous-time stream of data with
a time-varying delay:

Ym(t) = h
(
z(t− θm(t))

)
, t ∈ [sm, sm+1), (15)

with θm(t) = t − sm ∈ [0, sm+1 − sm) a time-varying delay
bounded by sm+1 − sm. Clearly, by definition, it is:

Ym(t) ≡ ym = h(z(sm)), t ∈ [sm, sm+1). (16)

In this way, an observer for nonlinear systems endowed
with continuous-time output measurements affected by time-
varying delays can be applied to obtain a continuous-time
estimation from discrete measurements. The observer in [9],
[10] requires a drift-observability condition, that means the
drift-observability map Θ(z) defined by

ξ = Θ(z) =


h(z)
Lfh(z)

...
Ln−1
f h(z)

 (17)

is a diffeomorphism in the domain of interest D and Θ, Θ−1

are uniformly Lipschitz in D (if D ≡ Rn the system is said
GULDO, i.e. Globally Uniformly Lipschtiz Drift-Observable).
If that is the case, denoted by ẑ(t) the state estimate provided
by the observer, then for any α > 0 there exists an observer
gain matrix K and a delay bound θ̄ such that the observer
equations defined on t ∈ [sm, sm+1), m ∈ I ′0

˙̂z(t) = f(ẑ(t))

+JΘ(ẑ(t))−1e−αθm(t)K
(
Ym(t)− h

(
ẑ(t− θm(t))

))
,

(18)
with ẑ(sm) as initial condition ensures an exponential error
decay rate α if t− sm ≤ θ̄. Notice that the latter condition is
equivalent to having sm+1−sm ≤ θ̄, that is, the measurement
intervals are uniformly bounded by θ̄. JΘ(ẑ) is the Jacobian
matrix of the drift-observability map Θ(z).

According to the impulsive fashion of the control input,
whenever it is applied in t = τk, k ∈ I0, the state estimate is
updated as follows

x̂k =ẑ(τ+
k )

ẑ(τ+
k ) =ẑ(τ−k ) +Bvk

(19)
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III. ANTIANGIOGENIC TUMOR THERAPY

A. Model of the antiangiogenic therapy

The Hahnfeldt et al. model here adopted belongs to the
family of models introduced in [25], and is based on ordinary
differential equations accounting for angiogenic stimulation
and inhibition. Under the hypothesis that tumor growth is
strictly dependent on the development of its vasculature, the
dynamics of the tumor size is modeled as a Gompertz growth
law with a dynamically varying term that models the devel-
opment of the vasculature, the vasculature carrying capacity.
On the other hand, the growth rate of the vasculature will
be antagonized by endogenous factors and by the presence of
anti-angiogenic drug. A classification of tumor growth models
can be found in [3].

The Hahnfeldt et al. model and its variants are very popular
and have been thoroughly discussed in many publications, see
for example [12], [13], [47]. Controllability issues for this class
of models have been studied in [28], [52].

In this paper we refer to the following version of the
Hahnfeldt et al. model

ż1 = −λz1 ln
(
z1
z2

)
,

ż2 = bz1 − (µ+ dz
2/3
1 )z2 − cz2z3,

(20)

where z1, [mm3], denotes the tumor volume and z2, [mm3] is
the vasculature carrying capacity. In particular, the first equa-
tion describes the evolution of the tumor size, that depends
on the tumor growth rate λ, [day−1]. The second equation
refers to the carrying capacity dynamics, with a production
rate provided by the stimulatory capacity of the tumor upon the
inducible vasculature (bz1 with b, [day−1], the vascular birth
rate), and a clearance rate split in three terms: a spontaneous
loss (µz2 with µ, [day−1], the rate of the spontaneous vascular
inactivation), an endogenous inhibition which depends on the
tumor volume (dz2/3

1 z2 with d, [day−1mm−2], the endothelial
cell death) and a third contribute depending on the exogenous
drug administration and providing a vasculature inhibitory
action (cz2z3 with c, [day−1(mg/kg)−1], the sensitivity to the
drug). z3, [mg/kg], denotes the serum level of the administered
angiogenic inhibitor.

Following the literature [25], the value of parameter µ is
assumed to be zero in the following, because it was found to
be negligible for this system (i.e., constitutive endothelial cell
loss does not play a major role).

Since the antiangiogenic drug is not directly administered in
vein a further compartment is considered to account for drug
diffusion,

z3(t) =

∫ t

0

e−η(t−t′)u(t′)dt′, (21)

where u, [day−1(mg/kg)] is the actual drug infusion rate,
i.e. the control law, and η, [day−1], is the degradation rate
constant. Eq.(21) can be written in its differential form as

ż3 = −ηz3 + u. (22)

A thorough mathematical analysis concerning the qualitative
behavior of the present model (and of the more general family
of models describing the mutual interaction between tumour

growth and vasculature) can be found in [13], where conditions
are given according to which tumor eradication is achieved
for specific “open loop” control strategies, such as constant or
periodic infusion therapies.

If we assume that (i) the input is administered in pulses, that
(ii) the only available measurement, exploited to design the
control law, is the size of the tumor, that is, the first component
of the state vector z, and that (iii) these measurements are
acquired at discrete sampling times, then system (20)-(22) can
be represented according to the formalism of (1) (and will be
referred to in the sequel as the ‘impulsive Hahnfeldt et al.
model’) where

f(z) =

 −λz1 ln
(
z1
z2

)
bz1 − dz2/3

1 z2 − cz2z3

−ηz3

 B =

0
0
1

 , (23)

h(z) = Cz = z1 with C = [1 0 0]. (24)

Differently from the continuous-time input u(t) in (22), vk is
expressed in [mg/kg] (it is an administered ‘mass’ instead of
a ‘rate’ of administration, [(mg/kg)/day], as in (22)).

The Hahnfeldt et al. model is conceived to provide, in
absence of a therapy and assuming the initial carrying capacity
is larger than the tumor size, a monotonic increase of tumor
volume and carrying capacity to a unique equilibrium point
z1 = z2 = Xmax = (b/d)3/2, z3 = 0 which is globally
asymptotically stable [12], [25]. Xmax may be thought of as an
upper bound for both tumor and vasculature. A lower bound is
naturally given by εz , the size at which the tumor does not need
any vasculature. As a matter of fact, a meaningful initialization
of the type z2(0) > z1(0) > εz , z3(0) = 0 and a proper choice
of the final tumor target x̄ such that εz < x̄ < Xmax allow to
set D = [εz, Xmax]×[εz, Xmax]×[0, z̄3] as the natural domain
of interest for the Hahnfeldt et al. model, with z̄3 depending
on the upper bound of the input v. In [8] it has been shown
that, according to a meaningful choice of the model parameters
and to the aforementioned setting of the initial conditions, the
domain D is an invariant set for the Hahnfeldt et al. model.

B. Observer synthesis

In order to design the continuous-time observer from dis-
crete measurements for the impulsive Hahnfeldt et al. model
(1) we need the following steps: (i) verify the Global Uni-
formly Lipschitz Drift-Observability hypothesis for (1) in the
domain of interest D; (ii) design the observer gain K in
order to obtain a suitable convergence rate α for the control
application, providing a delay bound θ̄ compatible with the
maximum inter-sampling measurement interval, that means:

max
m=1,...N ′−1

{sm+1 − sm} ≤ θ̄. (25)

Regards to the first point, the drift-observability map (17) for
f and h defined in (23)-(24) is

ξ = Θ(z) =

 z1

−λ (1 + log z̃)

λz1

(
λ (1 + log z̃) log z̃ + bz̃ − dz2/3

1 − cz3

)


(26)
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where z̃ = z1
z2

. The GULDO hypothesis requires the Jacobian
matrix JΘ(z) = dΘ/dz to be non-singular in D, which is true
because det(JΘ) = −cλ2z1z̃ is not zero in D. The inverse
Θ−1 of Θ is

z1 =ξ1

z2 =ξ1e
1+ξ2/λ

z3 =
ξ2
c

+
ξ2
2

cλ
+
b

c
e−(1+ξ2/λ) − dξ2/3

2 − ξ3
cλξ1

.

(27)

It is easy to verify that Θ is a diffeomorphism and that both
Θ and Θ−1 are uniformly Lipschitz in D, hence the GULDO
hypothesis is verified.

Regards to the design of the gain K, Theorem 5 in [10]
requires that K is chosen in order to assign eigenvalues
with negative real part to Ab − KCb, where (Ab, Cb) are a
Brunowski pair. Let L be the set of eigenvalues of Ab−KCb
and ` = max<(L )) < 0. Parameter α can take value in
(0,−`) and it corresponds to the rate of exponential conver-
gence to 0 of the observation error. For each choice of α there
is a corresponding delay bound θ̄ and a larger value for α
implies a smaller value for θ̄. The relationship between α and
θ̄ depends on K and on the Lipschitz constants of the system.
Since θ̄ must be larger than the interval between any two
consecutive measurements, this results is a constraint on α,
and the optimal choice of K is the one that yields the largest α
for a given θ̄. Notice that if θ̄ is too large no positive value of α
can satisfy the constraint, in other words the sampling interval
is too large for the observer to converge to the state of the
system. Since the Lipschitz constants are difficult to determine,
and the theoretical bounds are in any case only sufficient
conditions, the choice of α and K can be performed through
off-line simulations for each value of θ̄ by using the model
parameters. Numerical simulations have shown that a sampling
interval θ̄ ∈ [0, 3] days allows an appropriate choice of K
that guarantees good performance of the observer in less than
2 days, that is, only 1-2 measurements are sufficient. This is
compatible with the experimental practice under consideration
[27].

C. Impulsive control synthesis

The computation of the optimal control requires the Carle-
man discretization of the impulsive Hahnfeldt et al. model in
each time interval [τk, τk+1). The discretization is provided in
the form (5)–(7) and is practically achieved by truncating the
Taylor series in (7), thus obtaining a polynomial approximation
for Fk(xk) (see [6], [7] for the details about the general case).
In Table I the analytic expression of the first 4 coefficients of
the Taylor series are reported.

The blocks Aij(x) for i = 1 defined in (9) assume the form

A1
0(x) = f(x) =

[
f1(x)
f2(x)
f3(x)

]
=

[
−λx1 ln

(
x1
x2

)
bx1−dx2/3

1 x2−cx2x3

−ηx3

]
(28)

A1
1(x) =

−λ(1+ln(
x1
x2

))
λx1
x2

0

b− 2dx2

3x
(1/3)
1

−cx3−dx(2/3)
1 −cx2

0 0 −η

 (29)

TABLE I
COEFFICIENTS P 1

j (x) OF THE TAYLOR SERIES FOR j ≤ 3

j P 1
j (x)

0 A1
0 = f(x)

1 A1
1A

1
0 = J(x)f(x)

2
(
A1

1

)2
A1

0 + 2A1
2

(
A1

0

)[2]
3

(
A1

1

)3
A1

0 + (2A1
1A

1
2 + 3A1

2A
2
1)

(
A1

0

)[2]
+ 6A1

3

(
A1

0

)[3]

A1
2(x) =

 −λ
x1

λ
x2

0 λ
x2

−λx1
x22

0 0 0 0

2dx2

9x
(4/3)
1

−2d

3x
(1/3)
1

0 −2d

3x
(1/3)
1

0 −c 0 −c 0

0 0 0 0 0 0 0 0 0

 , (30)

whereas (10) is used for i > 1, for example

A2
0 = A1

0 ⊗ I3 + I3 ⊗A1
0 (31)

and its explicit form is

A2
0 =



2f1(x) 0 0
f2(x) f1(x) 0
f3(x) 0 f1(x)
f2(x) f1(x) 0

0 2f2(x) 0
0 f3(x) f2(x)

f3(x) 0 f1(x)
0 f3(x) f2(x)
0 0 2f3(x)

 . (32)

It can be noticed that the recursive nature of (10) makes
extremely easy the automatic computation of higher order
terms.

Once the Carleman discretization allows to restate the
optimal control problem in a pure discrete-time framework,
equations (11) have to be solved. To this end it is necessary
to compute the derivatives of Ψk with respect to vk+1 and xk.
The former is immediately obtained as ∇vk+1

⊗Ψk = B. The
latter can be computed as

∇xk ⊗Ψk = In +

∞∑
j=0

(
∇xk ⊗ P 1

j (xk)
) θj+1

k

(j + 1)!
. (33)

Notice that, due to the particular structure of the impulsive
system (1), ∇vk+1

⊗Ψk does not depend on xk (it is constant,
actually) and ∇xk ⊗Ψk does not depend on vk+1.

It is useful for the applications to have ∇xk ⊗ Ψk in (33)
expressed as a recursive function of the blocks A1

j . To this end,
the following Lemmas are required (see [7] for the proofs and
more details).

Lemma 1: For any j ≥ 0 and i > 0 it is:

∇x ⊗Aij =(j + 1)
(
A1
j+1 ⊗ I [i−1]

n

)
+ [In ⊗Ai−1,j

1 , . . . In ⊗Ai−1,j
n ] (34)

with

Ai,jl = ∇xl ⊗Aij =
∂Aij
∂xl

(35)

and xl is the l-th component of vector x. In case of i = 1:

∇x ⊗A1
j = (j + 1)A1

j+1. (36)
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Lemma 2: For j ≥ 0 ∇x ⊗ P 1
j admits the expression

∇x ⊗ P 1
0 =A1

1 (37)

∇x ⊗ P 1
j =

j∑
l=1

(l + 1)A1
l+1(In ⊗ P lj−1) +A1

l (∇x ⊗ P lj−1)

(38)

and, for i > 1, ∇x ⊗ P ij is given by

∇x⊗P ij =

j−i+1∑
l=0

[
(∇⊗Ail)(In⊗P l+i−1

j−1 )+Ail(∇x⊗P l+i−1
j−1 )

]
(39)

Since ∇x⊗P 1
0 = ∇x⊗f = A1

1 is the Jacobian, this analysis
shows that each term ∇x⊗P 1

j in (33) is computable from the
matrices A1

j , e.g. the ones reported in (28)-(30).
The design of the optimal control is completed by specifying

the matrices QN and Rk in the optimization index (4).
The choice of the weight matrices is done according to the
following aims:
• bring the tumor volume within a specified range of the

final reference level x̄ at the end of the prescribed time-
horizon;

• keep the average daily amount of the administered drug
below a given bound;

• minimize the total amount of the administered drug in
the prescribed time-horizon.

IV. PERFORMANCE ANALYSIS

In order to obtain an effective benchmark for the proposed
impulsive drug administration therapy we build up a popula-
tion of 500 virtual subjects. Each subject (mice, actually) is
associated to a set of the Hahnfeldt et al. model parameters.
These model parameters are sampled from a multivariate
Gaussian distribution, whose average value and covariance
matrix are identified from experimental data taken from the
available literature, eventually providing a population of rather
heterogenous individuals. The control law and observer param-
eters are fixed once and for all the virtual mice: they are set
by simulations on the ground of the average virtual mouse and
do not vary when applied to the population individuals, thus
allowing to test a posteriori the robustness of the algorithm.

A. Building of virtual mice population

The starting point to build up an in silico validation of
the proposed anti-angiogenic tumor control law is to properly
define a population of virtual subjects onto apply the drug
administration therapy. To this end we exploited experimental
data taken from [27] where different types of human cancer
cells were implanted in the s.c. dorsa of mice. More specifi-
cally, we obtained data from Figures 1.a, 2.a and 2.d of [27],
where tumor volume evolutions (BxPC-3 tumor) are reported
over a time horizon spanning from 25 to 35 days (with an
inter-sampling period spanning from 2 to 5 days), with or
without a prescribed therapy. In summary we got streams of
data for two sets of 14 mice each, one set referring to the
control group (i.e. without any therapy), the other referring
to the therapy group (i.e. under endostatin administration).

The Hahnfeldt et al. model parameters have been identified
according to the following double-step procedure. First, the
control group is exploited, allowing to estimate the triple (λ,
b, d) for each mouse; average value and standard deviation
over the 14 mice control group are reported in Table II. Then,
the other pair of parameters related to the drug administration
(i.e. c and η) are estimated from the therapy group, with the
Gompertz growth parameters (λ, b, d) provided to the model
by the aforementioned average values. In this case we found a
negligible variability within the mice population, thus we did
not report any variance in Table II. It worths noticing that the
whole set of parameters could not be identified in a unique
step since the therapy group does not allow to identify the
Gompertz growth parameters, due to identification problems.

TABLE II
POPULATION OF VIRTUAL MICE: HAHNFELDT et al. MODEL PARAMETERS

Parameter Unit Mean Std
λ [day−1] 0.0735 0.0144
b [day−1] 4.0501 2.4906
d [day−1mm−2] 0.0097 0.0041
c [day−1(mg/kg)−1] 0.0955 0.0
η [day−1] 0.6240 0.0

The mice population exploited to validate the control law is
generated by randomly sampling triples of Gompertz growth
parameters (λ, b, d) from a multivariate Gaussian distribution
with average values (reported in Table II) and covariance
matrix provided by the identification procedure (we report only
standard deviations in Table II). Parameters (c, η) are, instead,
fixed for all virtual mice. Initial conditions for z1 and z2 are
sampled from independent Gaussian random variables with
average values 100 and 200, respectively, and a Coefficient of
Variation (CV) of 20% for both. the initial condition for z3 is
fixed equal to 0.

B. Control law implementation

Motivated by the fact that often measurements are more
difficult, time-consuming and expensive to obtain than control
actuation, simulations reported comply with the Control Al-
gorithm A2 reported in Section II-C, with less measurements
than control impulses.

According to the clinical literature [25], [27], the desired
final tumor size is set equal to 50mm3, i.e. half of the initial
size. The desired final value for the carrying capacity has been
set to 1mm3, which is a reasonable approximation of εz .

We do not specify any desired final value for the level of
the administered angiogenic inhibitor (i.e. z3).

Regards to the observer parameters, the gain K is de-
signed in order to place the eigenvalues of Ab − KCb at
{−0.1,−0.2,−0.3}. This choice is fixed for all simulations
on the virtual mice population. Measurements are available
once a day, thus we assume to have a fixed inter-sampling
period sm+1 − sm = 1 day, ∀m = 1, . . . , N ′.

Regards to the Carleman discretization step, we made
simulations with different truncations of the Taylor series (up
to including 6th order terms): simulations showed that after
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the 4th order term, to include further terms in the summation
does not provide meaningful improvements.

Finally the weight matrices QN and Rk of the cost function
(4), are set equal to diag{450, 225, 0} and 50, respectively.
Notice that the last element of QN is set equal to zero because
the cost for z3 is already included in the cost of the input. The
remaining parameters of QN and Rk are chosen to balance
the final tumor size and the amount of drug infusion with a
heuristic approach on simulations on the average mouse. The
impulsive control action happens 4 times per day on a time-
horizon of 13 days. The discrete time unit is therefore 0.25
days, that is, τk+1− τk = 0.25 for all k, and the time horizon
is N = 52 with a control impulse per time unit. The length
of the receding horizon is M = 4 time units that corresponds
to 1 day.

C. Simulation results and discussion

Besides the primal regulatory issue concerning tumor vol-
ume reduction, further secondary issues have to be properly
accounted for when evaluating the control law performances.
For instance we need to supervise the daily maximum dose
administered during the treatment. Therefore, we evaluated the
goodness of the proposed control law in terms of the following
items:
• how close to the reference level is the final tumor volume

(i.e. z1(t = 13 days));
• daily upper bound of the administered drug.

We actually tighten this second issue by monitoring each
single drug administration to be possibly lower than 25 mg/kg
(that ensures a daily drug administration lower than 100
mg/kg/day, since we have 4 impulses per day).

We assume to know the initial estimates for z1 and z3.
Indeed z1(0), the initial tumor mass, can be measured before
the drug administration therapy starts, while z3(0), the initial
level of administered drug, is known to be at zero in absence of
a therapy. Instead, we assign the initial estimate of the carrying
capacity as a Gaussian random variable with average value
150mm3 (25% less than the real value) and a CV = 20%.

Figure 1 reports the time evolution for the three state
variables, endowed with their estimates, for the average virtual
mouse. It can be appreciated how good the actual state is
estimated by the observer (the carrying capacity is clamped
before the first day of therapy). Moreover, the final value of
the tumor size reaches the required target values at the end of
the treatment.

Figure 2 show that actual control impulses for a sample of
5 virtual mice randomly extracted from the population. It can
be appreciated that the actual input is not uniform and it varies
across subjects as a consequence of the unknown parameters
used to generate each mouse. The amount of daily drug
administration is never above the threshold of 100 mg/kg/day,
whereas the first dose is occasionally larger than 25 mg/kg,
whci is a reasonable behavior.

Numerical simulations show that 100% of the population
reduces the tumor size with respect to the initial condition.
Table III describes how close is the final tumor mass to the
desired one. For instance, it is apparent that in the 80% of

cases the final tumor size is smaller than 60mm3, 20% greater
than the desired value.

TABLE III
CONTROL LAW PERFORMANCE

Final tumor value [mm3] < 50 < 55 < 60 < 65 < 70
Percentage 35% 65% 80% 91% 98%

Figure 3 collects data from the closed-loop simulations on
the population of virtual mice according to a grid that aims
at resembling the Control Variability Grid Analysis recently
exploited in the different medical framework of the artificial
pancreas (see, e.g. [39]). The x-axis refers to the final tumor
value and the y-axis reports the maximum among each single
drug administration. We may divide the grid into four zones.
The light green one refers to virtual subjects of the population
that are very good controlled (their final tumor mass is within
10% of the desired target value) according to an impulse
drug delivery that never exceeds the chosen upper bound of
25mg/kg per single impulse (63%). It can be appreciated it is
the majority of the 500 individuals. The dark green refers to
virtual mice that are satisfactory controlled (their final tumor
mass is within 40% of the desired target value) according
to an impulse drug delivery that never exceeds the chosen
upper bound of 25mg/kg per single impulse. Notice that the
light and dark green zones include the great majority of the
population (95%). The orange zone refers to individuals that
are satisfactory controlled, though according to a single dose
that exceeds (at least one time) the bound of 25mg/kg. The
rest of the grid (red zones) refer to individuals whose final
tumor mass is more than 40% greater than the desired one, or
that allow a maximum control impulse that exceeds 50mg/kg.
They constitute a very small percentage (3.4%).

V. CONCLUSIONS

One of the key problems in medical oncology is the fact that
tumor size measurements and other parameters are achieved on
a very irregular basis. In addition the treatment delivery usually
happens periodically in the form of control impulses. This
situation appears to be quite common in the clinical practice
and, consequently, the traditional approaches to the output-
feedback control problem need to be substantially modified in
order to be of help in this area. In this work we have presented
an output feedback control framework based on sparse mea-
surements and controls that appears promising for developing
model-based protocols. We have validated our approach on a
model-based feedback antiangiogenic tumor therapy, where a
separation results allows to separately estimate the unknown
parameters of the model from the sparse measurements and
to design an advanced discretization-based optimal impulsive
control strategy. Our results show that for the chosen model
the approach can efficiently cope with un-modeled parameter
uncertainties under reasonable constraints on the frequency of
measurements and controls. From a quantitative perspective
the results seem consistent with recently published results
about the optimal control of antiangiogenic therapies under
the simplified assumption that the system state and the model
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Fig. 1. Time evolution for the state variables of the closed-loop system for the average virtual mouse. The y-axis reports z1 and z2 in [mm3] as well as z3
in [mg/kg].

parameters are known [17]. Our work can be further extended
by deriving optimal control laws for different choices of
the cost function and for more sophisticated constraints on
the therapy that may arise in the clinical practice. Another
interesting point that deserves further investigation is the
application of the proposed framework to the optimal time
scheduling of therapies [20].
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