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Achieving DFT accuracy with a machine-learning interatomic potential:
Thermomechanics and defects in bcc ferromagnetic iron

Daniele Dragoni,1,2 Thomas D. Daff,3 Gábor Csányi,3 and Nicola Marzari1
1Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL),

École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
2Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via R. Cozzi 55, I-20125 Milano, Italy

3Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom

(Received 23 August 2017; published 30 January 2018)

We show that the Gaussian Approximation Potential (GAP) machine-learning framework can describe
complex magnetic potential energy surfaces, taking ferromagnetic iron as a paradigmatic challenging case.
The training database includes total energies, forces, and stresses obtained from density-functional theory
in the generalized-gradient approximation, and comprises approximately 150,000 local atomic environments,
ranging from pristine and defected bulk configurations to surfaces and generalized stacking faults with different
crystallographic orientations. We find the structural, vibrational, and thermodynamic properties of the GAP model
to be in excellent agreement with those obtained directly from first-principles electronic-structure calculations.
There is good transferability to quantities, such as Peierls energy barriers, which are determined to a large extent
by atomic configurations that were not part of the training set. We observe the benefit and the need of using
highly converged electronic-structure calculations to sample a target potential energy surface. The end result is a
systematically improvable potential that can achieve the same accuracy of density-functional theory calculations,
but at a fraction of the computational cost.
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I. INTRODUCTION

Iron is the most abundant element at the Earth’s core, it
is responsible for the generation of the geomagnetic field, it
is the main component of the most widely used structural
engineering material (steel), and in its atomic form is a
component of, e.g., oxygen-binding proteins. In its crystalline
form, it can host impurities that improve its mechanical
properties and make it a formidably strong material suitable
for many applications in the fields of construction, automotive,
machinery, and energy production. It is a metal with partially
filled d electronic bands and has a complex phase diagram
which presents transformations driven by the interplay of
magnetic, electronic, and vibrational degrees of freedom. As
a consequence, the modeling of iron is highly nontrivial.
Density-functional theory (DFT) provides a relatively good
description of its zero-temperature properties [1–6] although,
even in this regime, theory shows discrepancies with respect
to experimental data [7]. The finite-temperature behavior of
thermodynamical quantities of the bulk crystal can be well
described up to a good fraction of the Curie point considering
only vibrational effects [7,8]. Nonetheless, as temperature
approaches and crosses the Curie point, magnetic fluctuations
and magnetic disorder become crucial for a correct description
of such thermodynamic properties [9–11]. In fact, despite the
progress achieved in the past years, a satisfactory description of
the thermodynamic phase transitions and of the paramagnetic
phases of iron from first principles remains a formidable task.
Even more complex is the study of iron alloys and steels that,
on top of the challenges mentioned above, requires in many
cases the capability to deal with length and time scales which
are beyond the reach of any ab initio technique.

For this reason, empirical interatomic potentials have been
developed, fitted typically to a mixture of experimental and ab
initio data, that are capable of simulating systems containing
thousands or millions of atoms for thousands or millions of
time steps. These models allowed a detailed study of the
microscopic processes at the origin of macroscopic mechanical
properties of iron and iron alloys under different conditions.
Embedded Atom Models (EAM) [12], and other similar ap-
proaches such as the Finnis-Sinclair model [13], local volume
potentials [14], and the glue model [15] have proved to be suc-
cessful. In particular, the Mendelev family of parametrizations
[16–18] are able to reproduce many fundamental properties
of elemental bcc iron at zero temperature. These models,
however, are not always fully satisfactory in reproducing the
energetics of defective configurations such as self-interstitials
[19] and divacancies [18], the Peierls potentials associated
with screw dislocations [18,20] or even fundamental bulk
properties at finite temperature within the range of stability of
the ferromagnetic α phase [21]. Additionally, due to their fixed
functional form, these potentials are not easily generalizable
to the modeling of bonds with mixed metallic and covalent
character as can be found, for example, in Fe-C alloys. More
recently, new approaches such as the modified EAM [22],
the (analytic) bond order potentials [23–25], magnetic EAM
[26], or metallic-covalent interatomic potentials [27] have been
developed in order to overcome some of these limitations.

In this work, we follow an alternative approach, generating
a Gaussian approximation potential [28] (GAP) for the α

phase of iron. GAP is a highly flexible machine-learning
model that allows to fit directly and accurately first-principles
potential energy surfaces (PES). Transferability is ensured by
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regular and smooth basis functions (kernels, in the language
of machine learning), and by an extended training database
which covers here roughly 150 000 local atomic environments
(LAEs). Similar machine-learning approaches, such as neural
networks, have been successful recently in modeling materials
where previous, more empirical strategies have run out of steam
[29–38]. GAP uses Gaussian process regression [39,40], whose
advantages are that (i) its hyperparameters (that control the ker-
nel function and linear algebra regularization) make physical
sense and rarely need adjusting, (ii) the fit itself is determined
by simple linear algebra, rather than iterative nonlinear op-
timization of a highly multimodal function as in the case of
neural networks, and (iii) input data such as energies, forces,
and stresses are treated in a consistent manner, with appropriate
error estimates that allow the inclusion of variable accuracy
data. In the machine-learning literature, Gaussian process
regression is often thought of as scaling poorly (cubically)
with the size of the input data, but we find that well-known
heuristics allow us to limit the number of basis functions to
be much smaller than the number of input configurations,
leading to training times of about a day on a single multicore
server and to prediction costs similar to that of neural network-
based potentials. The key to the success of Gaussian process
regression is an appropriate kernel function that captures the
symmetries and describes the spatial correlation structure of
the target function. We use the “smooth overlap of atomic
positions” (SOAP) kernel [41] that has been shown previously
to lead to excellent results for other materials [42–45].

II. METHOD

We start by assuming that the Born-Oppenheimer potential
energy surface of a set of atoms is a smooth function of the
atomic coordinates. As it is usually done when constructing
interatomic potentials, we write the total energy as a sum of
atomic contributions

E =
∑

i

ε(qi), (1)

where the short-ranged local atomic energy ε(qi) is assumed
to depend explicitly on the positions of the atoms within a
sphere of radius rcut centered on atom i. The list of such atomic
positions defines the local atomic environment of atom i and
is represented by a suitable set of descriptors, here denoted
by the vector qi . (Standard terms representing electrostatic
and van der Waals interactions can be added as needed to
account for long-range interactions.) Empirical interatomic
potentials are designed using functional forms derived from
physical intuition to approximate ε(qi), and parameters are
fitted to experimental or computational data. The moderate
flexibility of these functional forms limits their scope to be
systematically improved by increasing the fitting datasets; on
the other hand, their qualitative description of the essential
physical interactions ensures a good degree of transferability.
In the GAP framework, Gaussian process regression is used
instead to define a model for the local atomic energy function
ε as a linear combination of nonlinear kernel functions

ε(q∗) =
∑

s

αsK(qs ,q
∗) ≡ K(q∗)Tα, (2)

TABLE I. Hyperparameters for the SOAP kernel and the GAP
model.

Atomic environment kernel SOAP
rcut 5.0 Å
r� 1.0 Å

σ energy
ν DB1 1.0 × 10−4 eV/atom

σ energy
ν DB2 1.0 × 10−3 eV/atom

σ energy
ν default 5.0 × 10−3 eV/atom

σ force
ν DB1 1.0 × 10−2 eV/Å

σ force
ν DB2 5.0 × 10−2 eV/Å

σ force
ν default 2.0 × 10−1 eV/Å

σ virial
ν 1.0×−2 eV/atom

σw 1.0 eV
σatom 0.5 Å
ξ 4
nmax 12
lmax 12
GAP software version 1469201250

Represenative environments 4500
sparse method CUR

where the sum runs over some representative subset s of
training configurations, usually far fewer than the total training
set. The kernel function K(qi ,qj ) of two local atomic envi-
ronments, represented by their sets of descriptors qi and qj ,
corresponds to the expected covariance of their respective local
atomic energies ε(qi) and ε(qj ), and can be interpreted as a
measure of similarity of the two local atomic environments.
In the present work, we use the “smooth overlap of atomic
positions” (SOAP) kernel developed by Bartók et al. [41],
which is equivalent to choosing a polynomial kernel function

K(qi ,qj ) = σ 2
w|q̂i · q̂j |ξ , (3)

where the descriptor q̂ is the rotational power spectrum of
the local atomic environment, which is a smooth and regular
function, invariant to rotation and permutation of like atoms.
All hyperparameters, including those inherent in the definition
of the rotational power spectrum, are shown in Table I and
their role is extensively discussed in Ref. [42]. The physically
motivated hyperparameters include the energy scale σw, which
roughly corresponds to the expected standard deviation of the
atomic energy, and the length scale σatom, which controls the
regularity of the potential. The power spectrum of the local
environment includes a cutoff function that is zero for r > rcut,
a parameter whose choice is governed by the decay of the force
constant matrix, since the potential will give exactly zero force
constants for r > 2rcut by construction.

The vector of coefficients α is obtained by substituting the
training data into Eq. (2) and solving the linear system. We
briefly outline the necessary steps, see Refs. [42,46] for further
detail. Since the decomposition into atomic energies is not
available from electronic structure calculations, the training
data comprises total energies, and its derivatives (forces and
virial stresses) corresponding to collections of atoms. Let us
define y as the vector with D components containing the target
data: all total energies, forces, and virial stress components in
the training database, and y′ as the vector with N components
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containing the unknown atomic energies of the N atomic
environments in the database, and L as the linear differential
operator of sizeN × D, which connects y with y′ such that y =
LT y′. After selecting M representative atomic environments
(with M � N ), the expression for the coefficients in Eq. (2) is
given by [47]

α = [KMM + KMNL�−1LTKNM ]
−1

KMNL�−1 y , (4)

where KMM is the covariance matrix between the M

representative atomic environments, and KMN is the
covariance matrix between the M representative environments
and all N environments in the training data. (In the Gaussian
process literature, using a subset of the data to construct the
basis is called sparsification.) While taking � = σ 2

ν I as the
regularization matrix would be sufficient to solve the linear
system (corresponding to simple L2 regularization), the proba-
bilistic interpretation of Gaussian process regression suggests
that the elements of � are the tolerances, or expected errors in
components of the training data vector y, with even different
units for different types of input data. Note that the expected
errors are not just due to lack of numerical convergence in the
electronic structure calculations, but also include the model er-
ror of the GAP representation, e.g., due to the finite cutoff of the
local environment. Our informed choices for these parameters
are reported in Table I. The representative local environments
are chosen by the CUR matrix decomposition procedure [48]
applied to the matrix of descriptor vectors in the input dataset
which essentially finds a subset of the atomic environments
that would lead to a good low-rank approximation of the full
covariance matrix. The upshot of using only a small number of
representative atomic environments is that the computational
cost to train the model scales as O(NM2) rather than O(N3),
and the cost of evaluating a single local atomic energy scales as
O(M) rather than O(N ). Typically, we find that M < 10 000
is sufficient (in the sense that prediction results do not improve
when a larger M is used) even when N > 150 000.

We trained the GAP model using the QUIP software code,
which is publicly available [49], and the full set of command
line parameters as follows:
at_file=data.xyz gap={soap l_max=12 n_max=12
cutoff=5.0 cutoff_transition_width=1.0 delta=1.0
atom_sigma=0.5 zeta=4 config_type_n_sparse=
{slice_sample_high:500:phonons_54_high:500:
phonons_128_high:500:default:3000}
sparse_method=cur_points
covariance_type=dot_product}
sparse_jitter=1e-12 default_sigma={0.005 0.2
1.0 0.0} config_type_sigma={slice_sample_high:
0.0001:0.01:0.01:0.0:phonons_54_high:0.001:
0.05:1.0:0.0:phonons_128_high:0.001:0.05:
1.0:0.0}

III. DATABASE

A large training database of electronic structure calculations
is required in order to ensure transferability of flexible GAP
models to a wide range of atomic environments. In what
follows we discuss the details of how we generated such
database.

A. Generation protocol

We choose to include in the database only first-principles
data. Although computationally costly, this approach allows
for a direct control and propagation of the accuracy and
the degree of convergence of the data entering the training
procedure. The database generation protocol that we adopt
can be rationalized as follows. (1) We start by selecting the
physical properties that we require to be well reproduced or
predicted by our model. For each material property of interest,
we select a number of representative small periodic config-
urations (with varying cell parameters and atomic positions)
that are amenable for first-principles calculations and covers
the relevant local atomic environments needed for the potential
to reproduce that property. (2) We sample the configurational
space associated to each unit cell selected in (1) by means of
Monte Carlo or molecular dynamics techniques using density
functional theory calculations that are configured to have only
a moderate level of convergence. (3) From each sampling
run, we extract a weakly correlated subset of configurations.
Each of these subdatabases is denoted as DBx. (4) Finally,
we recompute total energies, forces, and stresses for each
configuration in each subdatabase using highly converged
parameters in order to minimize the stochastic and systematic
errors due to the finite k-point sampling and plane-wave
cutoff. Even so, it is not possible to use the same (consistent)
k-point sampling across the entire database due to resource
limitations, and the resulting varying degrees of convergence
are used to inform the magnitude of the regularization terms
corresponding to each subdatabase, as shown in Table I.

B. Training configurations

The complete database consists of eight subdatabases,
which include 12193 configurations, equivalent approximately
to 1.5 × 105 atomic environments. The details of each sub-
datbase are described below (see also Ref. [50]) and also
summarized in Table II for simplicity.

DB1 aims at training around the bcc equilibrium geometry
and the elastic response of the bulk. It consists of energies
and stresses computed for one-atom cells whose vectors are
distorted with respect to the equilibrium bcc primitive cell
geometry. The distortions are randomly obtained using a slice-
sampling MC algorithm and performed with respect to various
reference volumes which are compressed or expanded with
respect to the 0 K DFT equilibrium value as reported in Table II.

DB2 is used to teach bulk vibrational properties and consists
of total energies and forces computed from 3 × 3 × 3 and
4 × 4 × 4 conventional cubic supercells containing 54 and 128
atoms, respectively. The configurations are extracted from MD
runs equilibrated at the volumes and temperatures shown in
Table II.

DB3 similarly to DB2 consists of total energies and forces
computed from 3 × 3 × 3 cubic supercells generated from MD
runs also equilibrated at various volumes and temperatures
reported in Table II. This subdatabase is used to teach bulk
monovacancy energetics. As such, the unit cells contain 53
atoms.

DB4 provides information on the divacancy energetics. Di-
vacancy environments up to third-nearest neighbor are explic-
itly included. This subdatabase consists of total energies and
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TABLE II. Database details used for training the α-Fe GAP. For each subdatabase (DB), we report the name of the physical properties
focus of the training, the physical quantities explicitly used for training, the number of training local environments, the volume (expressed in
percentage variation with respect to the electronic equilibrium value), the temperature, the number of atoms, the simulation box used for the
generation of the configurations, the k spacing used for the accurate calculations, and other details concerning the type of environments within
the DB. The notation for trivacancy identification is taken from Ref. [60].

Target Total number Number atoms in Simulation k spacing

property of LAEs V (% V0) T (K) unit cell box (Å
−1

) notes

DB1 bulk elastic 6001 −0.81/1.08/3.55 300 1 primitive bcc 0.015 –
constants distorted

DB2 bulk phonons 12474 0.0/±2.08/3.55 400–1400 54 3 × 3 × 3 0.03 –
11520 800 128 4 × 4 × 4

DB3 bulk 20193 0.0/±2.08 400–1000 53 3 × 3 × 3 0.03 –
monovacancies

DB4 bulk 10836 0.0 800 126 4 × 4 × 4 0.03 1-, 2-, 3-nn

divacancies
trivacancies 9375 0.0 800 125 4 × 4 × 4 0.03 [112],[113],

DB5
[223],[333],[339]

vacancy clusters 1736 0.0 800–1000 124 4 × 4 × 4 0.03 4 vac.
1476 0.0 600 123 4 × 4 × 4 0.03 5 vac.
2709 0.0 100 129 4 × 4 × 4 0.03 dumbbell100

1548 0.0 300 129 4 × 4 × 4 0.03 dumbbell110

DB6 self-interstitials 4773 0.0 100–300 129 4 × 4 × 4 0.03 crowdion111

3225 0.0 100–300 129 4 × 4 × 4 0.03 tetrahedral
2064 0.0 100 129 4 × 4 × 4 0.03 octahedral

di-interstitials 2340 0.0 300 130 4 × 4 × 4 0.03 nonparallel
bulk 660 0.0 300 12 1 × 1 × 6 0.03 (100)

DB7 terminated 588 0.0 300 12 1 × 1 × 6 0.025 (110)
surfaces 516 0.0 300 12 1 × 1 × 6 0.04 (111)

648 0.0 300 12 1 × 1 × 12 0.025 (211)
DB8 γ surfaces 30000 0.0 300 12 primitive xy 0.03 (110)

29388 0.0 300 12 primitive xy 0.025 (211)
DB 152070

forces of 4 × 4 × 4 conventional cubic supercells containing
126 atoms and obtained from MD equilibrated at 800 K and at
the equilibrium volume.

DB5 embodies selected trivacancies and small vacancy
clusters such as tetravacancies and pentavacancies (see Fig. 1)
that should provide a starting point for describing nanovoids.
We choose those trivacancy configurations, which lie in low
Miller index crystallographic planes {100}, {110}, and {111}
and that, in those planes, are most localized [51]. Total energies
and forces from 4 × 4 × 4 cubic supercell configurations
obtained from MD are used as training quantities.

DB6 embraces relevant self-interstitial environments, in-
cluding the 〈100〉/〈110〉 dumbbell, 〈111〉 crowdion, and the
tetrahedral and octahedral configurations. A type of nonparal-
lel di-interstitial configuration (see Fig. 1) is also considered
to cover further defective environments beyond simple self-
interstitials. The configurational space of all these point defects
is sampled by means of MD performed on cubic 4 × 4 × 4
supercells containing 129/130 atoms at the theoretical equilib-
rium bulk volume at 0 K. Training is from total energies and
forces.

DB7 consists of total energies and forces of bulk-terminated
surface configurations with {100}, {110}, {111}, and {211}
crystallographic orientations. For this subdatabase, we choose
supercells that are elongated along c and primitive in the sur-

face plane (at the equilibrium lattice parameter). We simulate
slabs that are 12 atomic layers thick to minimize interactions
between the two surfaces of the slabs. A vacuum separation
region of 16 Å is also used to avoid replica interactions in the c

direction. Molecular dynamics is performed on these cells with
the atoms allowed to move only along z in order to gain insight
mainly on the out-of-plane surface relaxation of the atoms at
the vacuum-slab interface.

DB8 is generated to train on γ surfaces, to be able to
ensure coverage of local environments found typically around
dislocation cores. In particular, we consider {110} and {211}
crystallographic orientations that are the most important slip
planes for bcc metals. As with the bulk-terminated surfaces,
we use supercells elongated along c, which contain 12 atomic
layers. Configurations are created in a 10 × 10 grid of slips
in directions in the glide plane of the gamma surface. Total
energies and forces are used as training quantities.

C. Computational details

MD simulations are all performed in a NVT ensemble with
time steps ranging from 2 to 4 fs and a Berendsen thermostat
[52]. Temperatures and volumes are varied as specified in
the section above (details are reported in Table II). This is
done to ensure a good coverage of the physical properties of
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FIG. 1. From top to bottom we show the schematics of tetra-,
pentavacancy, and nonparallel di-interstitials of DB5/DB6. Azure
circles represent the missing atoms in an otherwise perfect bcc
structure. Red circles schematically represent the atomic arrangement
of a nonparallel di-interstitial defect.

interest across the theoretical thermodynamic range of stability
of the α-phase of iron [7]. Sampling of self-interstitial defects
requires some attention since most of them are metastable
states which tend to rapidly relax to more stable configurations
during the MD. In those cases, we perform very short MD runs
at low temperatures trying to capture the transition pathway to
lower energy states.

Monte-Carlo sampling was originally performed in
Ref. [42] for bcc tungsten at 300 K and exploiting a slice-
sampling technique. Here, we simply take the same periodic
cells and rescale them to account for the differences in the
lattice parameter and elastic constants of ferromagnetic iron
and tungsten.

All quantum-mechanical calculations of this work are
performed in a collinear spin-polarized plane waves DFT
framework as implemented in the QUANTUM ESPRESSO
distribution [53], employing an ultrasoft GGA PBE [54]
pseudopotential from the 0.2.1 pslibrary [55] with semicore
electrons in valence. This pseudopotential has been carefully
tested and has proved to be able to reproduce the correct
all-electrons behavior for a number of ground sate properties.
The exchange-correlation functional used provides a relatively
good description of thermomechanical properties for the α

phase [7]. At the same time, it is a reliable choice for
reproducing point defect properties [56].

For the accurate calculations mentioned at step (4) of the
generation protocol, all input parameters are chosen to ensure
convergence to 1 meV/at, 0.01 eV/Å, and 0.01 GPa for
the energy difference, forces, and stresses, respectively. In
particular, a value of 90 Ry on the wave function (dual of 12
[57]) is required for the convergence of energy differences and

forces. The convergence of stresses instead requires a cutoff
value of 144 Ry (dual of 12). It is important to stress that
none of these values is, however, sufficient to ensure proper
convergence of the total energy. As a consequence, in order to
avoid inconsistencies (that would affect the training procedure)
between total energies of DB1 and those of DBx with x > 1,
we have built DB1 as a combination of stresses computed at
144 Ry and of total energies computed at 90 Ry. The BZ is in-
tegrated with a Monkhorst-Pack grid and a Marzari-Vanderbilt
smearing scheme [58] at an effective temperature of 0.01 Ry.
In order to ensure the level of convergence mentioned above,
we found critical to choose a sampling density so that for all
the subdatabase cells the largest k spacing along any reciprocal

cell vector is below 0.03 Å
−1

. Exact k spacing values for each
DB are reported in Table II for completeness. Note in the table
that slightly different k-point densities are used for some of the
data. This is due to computational costs (for primitive unit cells
one can afford higher densities than for large supercells) but
also due to the incommensurate nature of the simulation boxes
used in the different DBs. The k spacing has a typical value of

0.025 Å
−1

with a standard deviation of 0.005 Å
−1

. The AiiDA
materials’ informatics infrastructure [59] has been partially
used as a tool to automate submission of accurate calculations
of the generation protocol, and to provide easy access to
provenance information of all the data of the training database.

For the calculations at step (2) of the generation protocol,
i.e., those related to the sampling of the quantum-mechanical
PES, we do not require such level of accuracy. In fact, in this
case, we use lower cutoff values of 60 Ry (dual 8) with a
reduced k sampling of the Brillouin zone.

IV. RESULTS

In this section, we present the GAP model for bcc iron,
which has been trained on the database of Table II with
generation details reported in Table I. Validation is performed
in the following sections through an analysis of the energetics
and of the thermomechanic properties of the α phase by
comparing with DFT data; comparisons with experiments
(when possible) are also reported. The DFT calculations that
are used for comparison are either taken from the literature or
computed in this work with input parameters consistent with
those described in Sec. III C. The latter are considered part of
a testing set and are not used for training.

A. Fundamentals

We start our analysis showing in Table III the lattice
parameter a0, the bulk modulus B0, and the elastic constants
C11, C12, and C44 calculated with GAP at zero temperature
(with and without zero-point contributions). The results are in
excellent agreement with the quantum-mechanical data and, as
previously discussed in Ref. [7], reflect the inherent limitations
of standard DFT approaches to deal with magnetism [61]. The
equation of state (EOS) reported in Fig. 2 shows how close
GAP is with respect to the DFT curve even relatively far from
the equilibrium volume. The maximum energy difference be-

tween the two EOS curves in the volume interval [11.0:12.0] Å
3

around the electronic equilibrium is ≈ 0.3 meV [62], with a

013808-5



DRAGONI, DAFF, CSÁNYI, AND MARZARI PHYSICAL REVIEW MATERIALS 2, 013808 (2018)

TABLE III. Lattice parameter, bulk modulus, and elastic constants for α-iron at zero temperature. GAP results are compared to DFT (with
and without quasiharmonic zero-point energy contributions) and to experimental data at 0 K.

GAP DFT

no ZPE ZPE no ZPE ZPE Expt.

a0 (Å) 2.834 2.839 2.834 [7] 2.839 [7] 2.855 [64]
B0 (GPa) 198.2 191.7 199.8 ± 0.1 [7] 194.6 ± 0.3 [7] 170.3 ± 1 [65]

196.9a

C11 285.9 – 296.7 ± 0.3 [7] 287.9 ± 0.4 [7] 239.5 ± 1 [65]
C12 154.3 – 151.4 ± 0.2 [7] 148.0 ± 0.5 [7] 135.7 [65]
C44 103.8 – 104.7 ± 0.1 [7] 102.2 ± 0.5 [7] 120.7 ± 0.1 [65]

aThis work.

measure � of the distance between the two curves calculated
à la Cottenier [63] of 0.112 meV/atom. In the inset of Fig. 2,
we also report for reference the GAP and DFT electronic bulk
moduli B(V ) = V ∂2E(V )

∂V 2 .

B. Bain path

The Bain path traverses the diffusionless transformations
between bcc, body-centered tetragonal (bct), and fcc crystal
structures, by varying c/a for the cell. It shows the relative
stabilities of the bcc and fcc phases and the energy barrier for
the transformation. Since the GAP training data only includes
ferromagnetic bcc data, the Bain path is an interesting test of
the performance well outside of the training data. We compute
the Bain path using a two-atom bcc cell, so that c/a = 1.0
is the bcc configuration and c/a =√

2 is fcc. At each point
along the pathway, the structure is set to a fixed value of c/a

and the cell volume and the position of the central atom are
relaxed to the minimum energy structure for that value of c/a.
The GAP calculated Bain path is shown in Fig. 3. GAP is
able to estimate the error in its prediction, and this variance is
also plotted, showing the greatest uncertainty in the prediction
for the fcc structure. Each structure has also been recalculated
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FIG. 2. Equation of state of the GAP potential (blue, circles)
compared to DFT data (orange, squares) whose calculation details
are consistent with those used for the database generation. In the
inset, we report the GAP and DFT bulk moduli obtained analytically
from a polynomial fitting of the corresponding total energy curves.

with DFT (using the GAP optimized volume), and GAP shows
notably an excellent agreement with ferromagnetic DFT across
the entire Bain path. Changes in the magnetic ground state
complicate the path for iron; we find that an antiferromagnetic
double layer magnetic state would stabilize the fcc structure at
the GAP optimized volumes, and the true Bain path involves
a number of complex magnetic states [66–68]. Including
magnetic behavior in subsequent development of GAP for iron
would be a fascinating challenge.

C. Phonons

The GAP phonon dispersions are shown along high sym-
metry paths in the first BZ at the DFT equilibrium volume V0

(without zero-point energy contributions) and at an expanded
value corresponding approximately to the equilibrium volume
at 1000 K predicted by DFT quasiharmonic theory [7] (namely
+3.0% V0). For each volume, the GAP dynamical matrix
is obtained with a frozen-phonon method using a supercell
corresponding to a 8 × 8 × 8 primitive cell and finite displace-
ments of 0.01 Å; it is then Fourier interpolated on a denser
32 × 32 × 32 mesh to give smoother frequency dispersions.
Calculations are performed with the QUIP+GAP code [49].
Results are compared in Fig. 4 (top panels) to the DFT data
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FIG. 4. (Top) From top to bottom we report the phonon disper-
sions computed at DFT equilibrium volume V0 (without zero-point
energy contributions) and at +3% V0 (approximately the QHA DFT
equilibrium volume at 1000 K). GAP frequencies (orange solid
lines) are obtained from frozen-phonon calculations on a supercell
and are compared to DFT values (blue solid line) obtained from
density-functional perturbation theory on a 4 × 4 × 4 mesh. (Bottom)
Softening of the phonon frequencies along the dispersion path due to
the change in volume from 0.0% → 3.0% V0. As above, the three
blue lines are the three GAP modes while the three orange lines are
the three DFT modes.

from Ref. [7]. In the bottom panel of Fig. 4, we also check the
phonon softening between the two volumes since the softening
of phonon frequencies as a function of volume is critical to
the thermal expansion and ultimately for the thermodynamic
properties of a material.

FIG. 5. Helmholtz free energy computed with GAP in the quasi-
harmonic approximation. The black dashed curve is the locus of the
points where the free energy is minimized at each temperature with
respect to the volume. Its projection in the free energy-temperature
plane is also reported.

D. Bulk thermodynamics

An important aspect, not always taken under consideration
during the validation process of an interatomic potential, is
the ability to reproduce finite-temperature properties. Iron has
the bcc α phase displaying a ferromagnetic behavior and a
Curie temperature of 1043 K. In fact, it has been shown that
magnetic excitations come into play for the description of
many thermodynamic quantities only above a large fraction
of the Curie point [7,9,11,69]. As such, we can neglect them in
first approximation and assume the thermal properties of the α

phase as dominated by atomic vibrations. Given that our GAP
model provides an excellent description of bulk vibrations, we
then expect good finite-temperature performance.

We start our analysis of the bulk thermal properties making
use of the quasiharmonic approach, which provides an accurate
tool to access the low-temperature regime taking into account
quantum statistical effects. By computing and integrating the
phonon dispersions at 57 different volumes, from −3.6% up to
7.6% V0 in steps of 0.2% of the electronic equilibrium volume,
and using the same calculation details described in Sec. IV C,
we obtain the Helmholtz free energy (see Fig. 5). From that, we
calculate all the relevant thermodynamic quantities of interest
in the quasiharmonic approximation. In parallel, in order to
study the same quantities obtained from QHA in the high-
temperature regime, where stronger anharmonicity comes
into play and quantum statistical effects lose importance, we
use an MD approach. We perform NPT runs at vanishing
external pressure to find the equilibrium density at different
temperatures from 200 to 1800 K in steps of 200 K. We use
a 8 × 8 × 8 supercell with 1024 atoms, a time step of 1 fs
with temperature and pressure controlled by a Nose-Hoover
chain thermostat [70], and a Parrinello-Rahman barostat [71]
as implemented in the LAMMPS [72] package.

The first quantity that we analyze is the thermal expansion.
In Fig. 6, we show the GAP QHA curve, which follows the
proper quantum Bose-Einstein (BE) statistics, the GAP QHA
modified to follow the classical Maxwell-Boltzmann (MB)
statistics (zero point energy contribution is not included),
and the GAP curve resulting from MD calculations. For
comparison, we show the DFT QHA (BE) curve [7] plus
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FIG. 6. (Top) Thermal expansion of GAP obtained from MD
(blue solid line) and QHA (blue dashed line is QHA with Bose-
Einstein statistics, blue thin line is QHA with Maxwell-Boltzmann
statistics). Results are compared to DFT QHA data (orange solid
line), to a single DFT MD point at 800 K, and to experiments (squares,
triangles and circles data from Refs. [64,75,76]). Midlle panel: heat
capacity at constant pressure as a function of temperature. GAP QHA
(dashed blue line) and GAP MD (solid blue line) are compared to DFT
QHA (solid orange line) and to experimental data from Refs. [77,78]
(squares and triangles, respectively). (Bottom) Adiabatic (blue solid
line) and isothermal (azure dotted line) bulk modulus as a function of
temperature from GAP. Comparison with DFT adiabatic data (orange
solid line) from Ref. [7] and experiments from Refs. [65,79] (circles
and triangles).

an estimate of the equilibrium volume at 800 K from DFT
molecular dynamics. As a reference, we also report three sets
of experimental data. It is immediately possible to note that
the GAP QHA (BE) curve agrees remarkably well with the
DFT QHA one up to 1000 K. The DFT and GAP results
instead underestimate experiments. As exhaustively discussed
in Ref. [7], this can be attributed to the DFT PBE functional
which has been adopted for the database generation and for the
DFT data used for comparison. Nonetheless, the experimental
thermal trend is overall well reproduced. The GAP MD and
the GAP QHA curves agree well up to 800 K, while they
start to deviate above this temperature. The GAP MD curve
also matches the DFT MD equilibrium volume at 800 K.
This analysis seems to suggest that beyond quasiharmonic
effects start to play a role only above 800 K. Interestingly,
the MD results overlap with quasi-harmonic results modified to
artificially reproduce a classical Maxwell-Boltzmann behavior
at temperatures below 200 K. We finally notice that the bcc
phase appears mechanically stable up to approximately the
experimental melting point [73]. From the knowledge of the
temperature-volume relation at equilibrium, we then calculate
the temperature dependence of other relevant bulk thermo-
dynamic quantities. The heat capacity at constant pressure
results are reported in Fig. 6, including QHA and MD data. As
for the thermal expansion, the heat capacities obtained with
QHA and MD nicely converge at intermediate temperature.
The experimental divergence at the Curie point is related to
magnetic entropy [69,74]; as such, it is not captured by our
DFT calculations and, consequently, by our model. Within the
quasiharmonic framework, the heat capacity is used also to
compute the adiabatic bulk modulus thermal behavior starting
from the isothermal one as discussed in Ref. [7]. In Fig. 6,
we show that GAP is capable to reproduce well the overall
DFT thermal behavior, although slightly underestimating (in
the direction of the experimental data) the absolute values.
Since the bulk moduli are second partial derivatives of the
Helmholtz free energy, these results reflect the ability of the
model to accurately reproduce the details of the bulk quantum-
mechanical PES.

E. Bulk point defects

Real crystals are far from being perfect, and contain defects
that can be, e.g., pointlike or extended in space. Their study
is fundamental for understanding the microscopic processes
that govern the actual response of a macroscopic system under
different external conditions. It is therefore important to test
the capabilities of GAP in describing the energetics of some
simple defects.

1. Atomic vacancies

We start from the monovacancy, which consists of a missing
atom in an infinite lattice. This missing atom is assumed to
be isolated, i.e., not interacting with any other defect in the
surroundings. The energy of formation of a monovacancy, i.e.,
the cost of removing an atom from the perfect bulk, at the
equilibrium volume is reported in Table IV. In addition, the
dependence of the formation energy upon volume [80] is shown
in Fig. 7. We also compute the energy profile or minimum
energy path for a monovacancy migration to a first-, second-
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TABLE IV. Formation and binding energies of defected configurations from GAP. Results are obtained with fully relaxed cells except
for NEB calculations, which are performed at the equilibrium (electronic DFT) volume and compared to DFT (from this work and from the
literature) and, when possible, to experimental data at 0 K.

GAP DFT (this work) Other DFT calcs. Expt.

Ev
f (eV) 2.26 2.22 2.15 [89], 2.07 [90],2.10 [103] 1.6 [104], 2.0 [105]

Ev
m1NN 0.67 – 0.67 [86], 0.64 [87] 0.55 [106]

Ev
m2NN 2.75 – – –

Ev
m3NN 5.63 – – –

E1NNv
f 4.41 4.24 4.02 [103] –

E2NNv
f 4.30 4.20 3.76 [87], 3.96 [103] –

E3NNv
f 4.55 4.45 – –

E4NNv
f 4.48 – – –

E5NNv
f 4.47 – – –

E1NNv
b 0.11 0.20 0.16 [18], 0.14 [87], 0.08 [103] –

E2NNv
b 0.22 0.24 0.23 [18], 0.28 [87], 0.15 [103], 0.2 [107] –

E3NNv
b − 0.03 − 0.01 −0.015 [18], -0.02 [87] –

E4NNv
b 0.04 – 0.05 [18] –

E5NNv
b 0.05 – 0.06 [18] –

E
[112]v
f 6.19 – E

[112]v
f < E

[226]v
f [83], 5.82 [84], 5.42 [87] –

E
[226]v
f 6.38 – E

[226]v
f < E

[223]v
f [83], 6.13 [84] –

E
[223]v
f 6.35 – E

[223]v
f < E

[115]v
f [83], 6.70 [84] –

E
[115]v
f 6.47 – 6.15 [84] –

E
[113]v
f 6.59 – 6.14 [84] –

E
[333]v
f 6.85 – – –

E
[339]v
f 6.85 – – –

E
[112]v
b 0.60 – 0.66 [84], 0.37 [86] –

E
[226]v
b 0.41 – 0.35 [84] –

E
[223]v
b 0.44 – −0.22 [84] –

E
[115]v
b 0.32 – 0.33 [84] –

E
[113]v
b 0.20 – 0.34 [84] –

E
[333]v
b −0.07 – – –

E
[339]v
b −0.06 – – –

ESIA
f〈110〉 4.21 4.37 3.77 [18], 3.93 [56], 4.02 [89], 3.64 [90], 3.94 [91] 4.7–5 [108]

ESIA
f〈111〉 4.90 5.13 4.64 [56], 4.72 [89], 4.34 [90], 4.66 [91] –

ESIA
f〈100〉 5.47 5.48 4.80 [18], 5.05 [56], 5.13 [89], 4.64 [90], 5.04 [91] –

ESIA
ftet

4.75 4.79 4.28 [18], 4.32 [56], 4.44 [89], 4.26 [90] –
ESIA

foct
5.53 5.58 4.97 [18], 5.21 [56], 5.29 [89], 4.94 [90] –

Ejump
m〈110〉 0.31 – 0.34 [90] 0.30 [18]

EdiSIA
NPC 7.54 7.84 7.04 [19] –

EdiSIA
110 8.36 8.95 7.15 [19], 6.56 [90] –

E110 (J/m2) 2.499 2.495 2.27 [92], 2.37 [93], 2.25 [109] –
E100 2.547 2.543 2.29 [92], 2.47 [93], 2.25 [109] –
E211 2.612 2.629 2.50 [93] –
E111 2.756 2.752 2.52 [92], 2.58 [93], 2.54 [109] –

, and third-nearest-neighbor site through nudge-elastic band
[81] (NEB) calculations. The energy profiles are reported in
Fig. 8 and the corresponding migration energy barriers are
summarized in Table IV. Results are closely consistent with
DFT calculations.

Next, we consider divacancy defects, where two missing
atoms are simultaneously present and interact with each other
in the crystal. The formation energy and binding energy
of first-, second-, third-, fourth-, and fifth-nearest-neighbor
divacancies are reported in Fig. 9 and summarized in Table IV.
In agreement with Refs. [18,82] the binding energy of the
third-nearest neighbor is negative, thus suggesting the insta-
bility of such configuration compared to the condition of two

isolated monovacancies. As expected from DFT calculations,
but contrarily to most of the semiempirical models available
in the literature [18], the fifth-nn configuration is reported to
be positive.

An analysis of selected trivacancy defects, identified here
by means of the Beeler notation [60], is then carried out. As
for divacancies, trivacancy calculations are performed using
a 10 × 10 × 10 conventional cubic supercell at zero pressure
condition. The computed formation energies are summarized
in Table IV, along with the corresponding binding energies
also reported in Fig. 10. Results are in good agreement
with available DFT data and suggest a ground-state [112]
configuration [83] with a suppression of binding on the {111}
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plane. The cost of formation of the [223] configuration is
predicted lower than the [115] one in accordance with the
PBE data of Ref. [83]. At the same time, at variance with
DFT data, the ordering of formation of the [226] and [223]
configurations is swapped. These findings, along with the
fact that neither the [226] nor the [115] are included in the
training database, suggest that some caution is needed when
the potential is used as an extrapolation. Interestingly, at odds
with results of Ref. [83], the authors of Ref. [84] report a
positive formation energy difference between the [223] and
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[115] configurations. Such discrepancy at the DFT level is here
attributed to the different exchange-correlation functional used
in the two calculations (PBE and PW91 [85], respectively),
and it might also justify the qualitative difference in the [223]
binding energy obtained by our GAP model, which has been
trained on PBE data, and the corresponding binding energy
obtained from PW91 calculations. Although we have included
a few four and five vacancies configurations in the training
database, an extensive analysis of tetra- and pentavacancies
will be performed elsewhere.

2. Self-interstititals

Next, we consider self-interstitial atoms (SIAs), with par-
ticular interest for the crowdion111, dumbbell110, dumbbell100,
tetrahedral, and octahedral configurations. These are in fact
the simple self-interstitial defects in bcc iron [18], which
are considered the most relevant in the study of damage
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and aging of steel reactor vessels under strong irradiation.
GAP formation and binding energies are reported in Table IV
with formation energies also summarized in Fig. 11. As
expected from our DFT calculations [88] and other DFT
studies [56,89–91], we find that the most stable GAP interstitial
is the dumbbell110 configuration, followed by the tetrahe-
dral, crowdion111, dumbbell100, and octahedral ones. The
renormalization of the atomic distances of the atoms of the
111 string along the 〈111〉 direction are reported in Fig. 12 for
reference. We have also computed the migration energy barrier

atomic pairs in the 111 string
−25
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−10
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0

Δ
%

FIG. 12. Crowdion displacement field along the 111 string as
predicted by GAP. �% = (d − a0

111)/a0
111 × 100, with d being the

distance between two consecutive atoms in the 111 string of the re-
laxed defective configuration, and a0

111 = √
3/2 a0 the same quantity

in a perfect lattice at the (electronic) equilibrium. The minimum of
the curve indicates where the atomic pairs are closest. Here we use a
10 × 10 × 10 cubic supercell containing 2001 atoms in total so that
we have 21 atomic distances to consider along the 〈111〉 direction.

for a dumbbell110 to jump to a first-nearest-neighbor site. The
jump mechanism to the first-nearest neighbor is consistent
with the one observed within the DFT framework [18]. The
migration energy barrier E

jump
m〈110〉 of such mechanism is reported

again in Table IV. At variance with most of the models available
in the literature [18], the GAP model presented here is able
to reproduce the relative ordering of binding energies of the
nonparallel and 〈110〉 dumbbell di-interstitial configurations.

The GAP energetics of self-interstitials defective con-
figurations is computed using a 10 × 10 × 10 conventional
cubic supercell at equilibrium volume with atomic relaxation.
According to the authors of Ref. [89], the size of the cell
used here is enough to guarantee consistency with calculations
performed at zero pressure condition.

F. Free surfaces

Bulk-terminated surfaces can be regarded as a type of
extended defect. The energy cost of creating a bulk terminated
surface and its dependence on the crystallographic orientation
influences the growth and equilibrium shape of the crystal
during crystallization. Here we calculate the surface formation
energy of four crystallographic surface orientations which
are considered most relevant for bcc structures [92,93]. These
are the low index surfaces {110}, {100}, and {112}, which are
lowest in energy compared to other orientations, plus the {111}
surface orientation for the sake of completeness. The formation
energy ordering obtained for GAP is reported in Table IV and
agrees well both qualitatively and quantitatively with the DFT
results.

G. Gamma surfaces and dislocations

We shall now examine the ability of the GAP potential
to reproduce gamma surfaces, as introduced by Vitek [94].
Gamma surfaces, or generalized stacking faults, are two-
dimensional functions describing the energy change due to a
relative displacement of two halves of a crystal with respect
to each other across a glide plane. Such surfaces are obtained
by computing the energy associated to all possible relative
shear displacement vectors spanning a given crystallographic
plane. However, due to the crystal periodicity, the displacement
vectors that need to be considered to fully characterize any
gamma surface are bound by the lattice vectors of the crystal-
lographic plane under consideration. Gamma surfaces provide
a way for finding potential stacking faults in metals by looking
at local minima in the computed energy landscape and their
details have direct impact on the structure of screw dislocations
core. Here we restrict our analysis to the {110} and {112}
crystallographic planes which, due to their dense packing, are
the most important slip planes in bcc metals. Gamma surface
calculations are performed using slanted cells of 12 atoms with
the long direction oriented perpendicular to the gamma surface.
The crystal cell is distorted, without moving the atoms, in a
grid of displacements in the [11̄0] and [001] directions for
the {110} gamma surface, and [11̄1̄] and [01̄1] directions for
the {112} gamma surface. Atoms are relaxed in the direction
normal to the glide plane before evaluation of the total energy.
GAP results are reported on the right column of Fig. 13 and
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FIG. 13. Gamma surfaces computed in GAP (left column) and DFT (right column) for the {110} (top row) and {211} (bottom row)
crystallographic orientation with atomic relaxation in the direction perpendicular to the surface.

appear in good agreement with DFT data reported on the left
column of the same figure.

We proceed further with our validation process by assessing
the Peierls energy barriers for a 1/2〈111〉 screw dislocation
gliding along any of the equivalent 〈112〉 directions. As a first
step, we determine the stable structure for the dislocation core
predicted by the potential. For the simulation of dislocations
with PBCs, quadrupolar arrangements of easy core 1

2 〈111〉 are
created by making a dislocation dipole in a slanted cell, which
would be equivalent to a square arrangement of dislocations
in a square cell [20,95]. The simulation cell lattice parameters
used are

�a = Nx �v112̄, (5)

�b = Nx

2
�v112̄ + Ny �v11̄0 + 1

2
�v111, (6)

�c = �v111, (7)

which is equivalent to half a cell of Nx �v112̄ × Ny �v11̄0, where �v
are the directions in the bulk lattice, and the integer values of
Nx and Ny are chosen to make the arrangement of dislocations
as close to square as possible. Two cells are used in this
study, one with 135 atoms (5 × 9), for which DFT calculations
can also be performed for validation, where dislocations are
separated by ∼ 17 Å, and a larger cell containing 2330 atoms
(21 × 37) where dislocations are separated by ∼ 70 Å. Atoms
are displaced in the z direction according to linear elastic theory

around the dislocation core positions. All atomic positions and
the cell vectors are allowed to relax. The differential displace-
ment map reported in Fig. 14 shows the screw components of
the screw dislocation core structure (out of plane displacements
[96]) computed with GAP. Results are in agreement with DFT
[20,97,98] having a nondegenerate compact core structure with
a D3 point-group symmetry. Separate plots of the in-plane
edge components (magnified 20 times) show that GAP more
closely matches the structure obtained with DFT than with the
Mendelev potential.

The Peierls barrier is calculated by performing a NEB
calculation with climbing images [81,99,100] between the
initial configuration and with one dislocation moved by �v112̄.
The Peierls plot for the GAP potential shows a single saddle
point in qualitative accordance with earlier DFT findings [20],
whereas the Mendelev pathway has a double hump due to an
incorrectly stabilized split-core structure [101]. The asymme-
try in the barrier plot of Fig. 15 is due to moving only one of
the dislocations in the cell so the final configuration deviates
from an exact square quadrupole in the final arrangement.
This finite-size effect vanishes for sufficiently large simulation
boxes. The DFT reference energies for the Peierls barrier are
generated by recalculating the structures obtained from the
135 atom GAP NEB with DFT (for computational efficiency
reasons). The value of the Peierls barrier, 64 meV b−1 (where
b is the Burgers vector), is in good agreement with our DFT
calculations. The largest deviation from DFT calculated forces
is for atoms in the dislocation core at the saddle point, and does
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MAETFDPAG (Mendelev)

FIG. 14. Differential displacement maps of the screw dislocation core structure obtained with GAP (left column), DFT (center), and
Mendelev potential (right). The compact, nondegenerate core structure satisfying D3 point-group symmetry is consistent with earlier first-
principles findings [20,97,98]. Circles of different colors represent atoms belonging to different parallel planes with the ABCABC stacking
sequence of the 〈111〉 zone before introduction of the dislocations. The top row shows out-of-plane screw displacements and the bottom row
shows the in-plane edge displacements (magnified 20 times).

not exceed 0.1 eV Å
−1

. Although the Peierls barrier seems
high in comparison to barriers of ≈ 40 meV b−1 found in the
literature [20,102], the barrier itself is shown to vary by 10
to 20 meV b−1 for different DFT methods [101], and may
also be sensitive to the method used to find the transition
state, so we only make quantitative comparisons with our own
calculations.
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FIG. 15. Peierls energy barrier of a 1/2〈111〉 screw dislocation
gliding in the 〈112〉 direction. GAP data are computed using two
different cells containing 135 and 2330 atoms with two dislocations
in a quadrupolar arrangement. DFT energies are computed in this
work for the structures obtained from the 135 atoms GAP NEB
pathway. The Mendelev semiempirical EAM potential curve is shown
for comparison using a 2330 atom cell.

V. REMARKS AND CONCLUSIONS

We have generated a Gaussian approximation potential for
α-iron by training on DFT total energies, forces, and stresses
for approximately 150k local atomic environments. The GAP
model is presented and validated against DFT data not included
in the training protocol, either computed in this work or taken
from the literature. Results show that the new model is able
to reproduce DFT energetics and thermodynamics with great
accuracy, including energetics of point defects such as mono-,
di-, and trivacancies and of self-interstitials and di-interstitials.
Notably, the potential is able to reproduce the Bain bath, a
positive 5-nn divacancy binding energy and the correct order-
ing of binding energies for the nonparallel and parallel 〈110〉
di-interstitials, rectifying some of the weaknesses displayed
by the EAM interatomic potentials available in the literature
[18]. Selected generalized stacking faults and the formation
energy of selected free surfaces are also reproduced from
a qualitative and quantitative point of view. The compact,
nondegenerate core structure of the 1/2〈111〉 screw dislocation
and the associated Peierls energy barrier are also consistent
with DFT. In order to achieve such accuracy, we found it
essential to use first-principles data with a high degree of
convergence to the DFT Born-Oppenheimer PES, in particular,
the k-point sampling needs to be high because supercells of
different sizes cannot have a congruent Brillouin sampling,
and the plane-wave cutoff is high enough that energies, forces,
and virials are all converged.

We stress that, as pointed out in previous works, the model
is built to interpolate between known atomic environments but
does not extrapolate to completely new configurations. Caution
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is therefore always suggested when dealing with such cases. In
this work, we have tried to ensure transferability of the model
by creating an extended training database that provides a good
coverage of environments across the thermodynamic range of
stability of the α-phase of iron. Such a database can be further
extended in a modular way to include new environments which
are relevant to a specific line of research. To this end, we
have pointed out all the details of the data generation protocol
needed to preserve the accuracy of the current database.

The DFT data used for the training are always performed
in a collinear spin-polarized approximation starting from a
ferromagnetic ordering. As such, the model can only reproduce
reliable thermomechanical properties up to two-thirds of the
Curie point, while the high-temperature paramagnetic behavior
governed by magnetic disorder cannot be correctly captured. In
order to study high-temperature bcc phases of iron, one needs
to train the paramagnetic PES. In fact, however, accessing
the paramagnetic PES with standard DFT calculations is a
nontrivial task [11,110]. An alternative route to magnetism
is to generalize the GAP formalism to treat magnetic degrees
of freedom in a semiclassical way. This approach will possibly
be a future direction of investigation.

The computational cost of GAP is higher than simple
analytical models, at around 60 ms/atom/cpu-core, so at this

stage, the method is too expensive to tackle multimillion atom
and/or nanosecond calculations using moderate computational
resources. However, its linear scaling cost with respect to the
number of processors, combined with its high accuracy, makes
the methodology suitable to access intermediate time and size
scales, which are not accessible by first principles. This paves
the way, for example, to the use of interatomic potentials for
studying thermodynamics of real materials with a reliability
never achieved before.

The training database and the potential are freely avail-
able on the MATERIALS CLOUD ARCHIVE [111] and at
www.libatoms.org. Software and data necessary for the repro-
duction of the results are freely available at www.libatoms.org.
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