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Abstract

Portmanteau tests are typically used to test serial independence even if, by con-
struction, they are generally powerful only in presence of pairwise dependence between
lagged variables. In this paper we present a simple statistic defining a new serial inde-
pendence test which is able to detect more general forms of dependence. In particular,
differently from the Portmanteau tests, the resulting test is powerful also under a de-
pendent process characterized by pairwise independence. A diagram, based on p-values
from the proposed test, is introduced to investigate serial dependence. Finally, the
effectiveness of the proposal is evaluated in a simulation study and with an application
on financial data. Both show that the new test, used in synergy with the existing ones,
helps in the identification of the true data generating process.

Keywords: Chi-squared statistic, Serial dependence, Multi-way contingency table, Port-
manteau approach, Nonlinear time series, Model diagnostic checking

1 Introduction

Investigating the temporal dependence structure, and testing for serial independence, are of
fundamental importance in time series analysis. The autocorrelogram, which displays the
strength of linear dependencies (autocorrelations) as a function of the time lags, and the
testing procedures based on the autocorrelations (see King, 1987, for a survey), have been
the primary tools for exploring and testing serial independence for many decades. Although
these tools perform well when the serial dependence structure is linear and the innovations
are Gaussian, they fail when studying a process with zero autocorrelation (see Hall and
Wolff, 1995, for an example) and can behave rather poorly when applied to non-Gaussian
and/or nonlinear time series (see the simulation results reported by Hallin and Mélard,
1988).

The considerations above have motivated the development of serial dependence dia-

grams (see Anderson and Vahid, 2005, Bagnato et al., 2012, Zhou, 2012), as well as serial



independence tests (see Diks, 2009, pp. 6256-6257), which are powerful against general
types of dependence (omnibus procedures); however, the majority of such tests and dia-
grams have a drawback: they are based on pairs of lagged variables and, consequently,
they can fail in detecting kinds of dependence involving more than two lagged variables
simultaneously.

Among the available proposals of the type described above, this paper focuses on the
test and diagram proposed by Bagnato and Punzo (2010). The building block of these
methods is the well-known Pearson y? statistic computed on a pair of lagged variables in
order to test independence for that lag (single-lag testing problem); the single-lag procedure
is generalized to more than one lag via the classical “Portmanteau approach”. However, the
resulting “Portmanteau test” is blind when analyzing a dependent process characterized by
pairwise independence.

We propose a simple test statistic, asymptotically distributed as a x? under the null
of serial independence; advantageously, the corresponding test is powerful with respect to
general forms of dependence also involving more than one lag simultaneously. To investigate
serial dependence, we provide a bar diagram with bars defined by the proposed test statistic.

The paper is organized as follows. In Section 2 we recall the classical pairwise approach
to solve the problem of testing for serial independence. In Section 3 we outline and ex-
emplify the drawbacks of the pairwise approach. In Section 4 we introduce the new serial
independence test and we show how it can avoid some of the problems described in Sec-
tion 3. In sections 5 and 6 we evaluate the effectiveness of our proposal by a simulation
study and by an application to financial data, respectively. Conclusions are finally given in

Section 7.

2 Pairwise approach for testing serial independence

Let {X:},cn be a real-valued and strictly stationary stochastic process with X; having

continuous density g. We want to solve the testing problem

Hy : {Xi},cn is an independent process
versus (1)

Hy : { X4}, is a dependent process.



Given its complexity, it is quite difficult to build a test statistic which is sensitive to general
departures from Hy. Hence, the testing problem (1) is commonly handled by focusing on a
“pairwise approach”: the presence of serial independence is checked among pairs of lagged
variables. Operationally, as well-explained in Robinson (1991) and Skaug and Tjgstheim
(1993), the alternative hypothesis in (1) is substituted by the following simpler ones.

1. Single-lag testing problem: a particular lag [ € Ny, with N, = {1,2,...}, is chosen

and the alternative is

H}l)  f (x4, m¢) # g (z¢—1) g (21) over a subset of R? of non-null probability. (2)

2. Multiple-lag testing problem: a particular set of lags L (set of distinct positive natural

numbers sorted in increasing order) is chosen and the alternative is

H I(L) : f(zi_i, ) # g(w4_1) g (x4) over a subset of R? of non-null probability,

for some | € L. (3)

With the sentence “over a subset of R? of non-null probability” in (2) and (3) we means
that the inequality postulated by the alternative must hold on at least a subset, say S, of
R? such that the integral over S, with respect to the measure induced by g - g, is greater
than zero. As said above, hypotheses (2) and (3) are simpler than hypothesis (1); there are
cases in which (2) and (3) are false even if the underlying process is dependent.

)

In literature, a plethora of statistics to test Hp in (1) against Hl(l have been proposed
(see Diks, 2009 for a review). The majority of these statistics are defined starting from
a measure of discrepancy between f (xy_;,x;) and g (x4—;) g (). The resulting tests are

)

generally consistent against H }l in the sense that their power tends to 1 if the sample size n
tends to infinity when the data generating process exhibits some kind of dependence between
X;_; and X;. These tests are usually extended to the multiple-lag testing problem mainly
in two ways: the first one is to build a “Portmanteau” statistic defined as a convenient
sum of the single-lag statistics; the second one consists in building a “simultaneous” test by
means of p-value correction techniques based on Bonferroni’s inequality and its extensions
(see, e.g., Holm, 1979, Simes, 1986, Hochberg, 1988, and Hommel, 1988). As observed in
Wright (1992), the p-value correction is straightforward, but the resulting test is generally

very conservative (the effective level of the Type-I error probability is much less than the



nominal one) and, consequently, suffers of a lack of power. For this reason, the Portmanteau
approach is usually preferred and it will be the only one considered hereafter. Specifically,
we will focus on Portmanteau procedures based on the autocorrelations and on the Pearson

x? statistic which are summarized below.

2.1 Single-lag testing problem

Let (x1,...,2,) be an observed time series of length n from {X;},.y. To study the
single-lag testing problem for the generic lag I, | < n, let’s consider the n; = n — [ pairs
{(@i—, za) Yy = {(25, :L‘jH)}’;l:l. These pairs arise by the scheme in Table A.6 and they
will be the starting point to define the test statistics to face the single-lag testing problem.

2.1.1 Sample autocorrelation function (ACF)

The testing problem for the single lag [ is commonly addressed by measuring the lag-I
autocorrelation p;, i.e. the autocorrelation between X; and X;_;. Based on the observed

time series and on the pairs highlighted in Table A.6, the sample lag-l autocorrelation is

given by
> (@i —7) (2 — T)
ﬁl _ i=l+1 _ : (4)
> (i -
=1

where T = )" | x;/n denotes the sample mean. Under Hy, i.e. for a serial independent
process, v/np; asymptotically follows the standard normal distribution; thus, if the observed
time series is sufficiently long, the null hypothesis of serial independence can be rejected at
level o if py > 21_q/2/v/n Or P < —21_q/2//N, Z1_aj2 being the quantile of the standard
normal distribution.

The test based on p; performs well against H {l) : ;i # 0 (i.e. when the lag-l dependence
is mainly linear or the process is Gaussian) but it can be inconsistent against alternatives in
(2) characterized by a null lag-l autocorrelation (see Hall and Wolff, 1995, for an example)
and it can behave rather poorly, both in terms of level and power, when applied to non-
Gaussian and nonlinear time series (see the simulations reported by Hallin and Mélard,
1988).

In practice, the sample autocorrelation p; is computed for different, subsequent, values

of [ obtaining the sample autocorrelation function (ACF) which is usually depicted (along



with the critical values +2;_,/5/1/n) in the well known autocorrelogram.

2.1.2 Sample autodependence function (ADF)

Bagnato and Punzo (2010) proposed to classify the pairs highlighted in Table A.6 in a square

contingency table (cf. Table 1) having marginal sets defined by k > 2 adjacent intervals
k k

{C&l)} ) (used to classify x;_;) and {Df,l)} (used to classify z;). The absolute joint
u=

Table 1: Contingency table for the single-lag testing problem for the generic lag [.
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frequencies in this table are defined by

nll) = H(xi—laxi) C(ziogx) € CW x DO i =1+ 1,...,nH

= ’{(xj7xj+l) : (‘rjvijrl) S Cz(j) X D’l(}l)7 J= 1,...,7’&[} >

w,v=1,...,k,

where |A| denotes the cardinality of the set A, and the absolute marginal frequencies are
given by

k k
ng_)i_:anl),, u=1,...,k,  and nﬁL:an, v=1,... k.
u=1

v=1

The marginal intervals {Cq(f)}k_l and {Dq()l)}k_1 are data-dependent and are defined to
yield uniform marginal distriblft;ons (equi—freq:e_nt marginal intervals). Operationally, the
extremes of these equi-frequent marginal intervals correspond to the sample quantiles at
levels 1/k,2/k,...,(k — 1)/k obtained from the observed sub-series (x1,...,%,—;) and

(Ti41,...,%n), respectively. The single-lag testing problem can be so handled using the



Pearson 2 statistic

& (nl—ll)’
=) (5)
u=1v=1 Nuw
where A} = ngﬁrng} /n; are the theoretical frequencies under the (null) hypothesis of

independence of lag I, with u,v =1,... k.

Remark 2.1. It is worth noting that gl, defined with equi-frequent marginal intervals, can
be equivalently computed on the observed ranks (r1,...,7y) of (z1,...,2y,). This means

that ;5\1 is a function of the observed serial empirical copula (see Genest and Rémillard,

2004, p. 338)
1 <& il T
@ == I =< I L<
alw,u) = ZH:I {m+1—“1} {m+1—u2}’
1=

where (u1,u2) € [0,1]%, T{-} is the indicator function, and the quantities r;/ (n; + 1), i =

1,...,n, represent the relative ranks.

It is well known that, if the n; pairs {(X;_;, X;)}j-, , were interpretable as a bivariate
random sample from a bivariate distribution (as under the classical inferential paradigm),
the asymptotic null distribution of & should be the x2 with (k—1)? degrees of freedom (see
Agresti, 2002, p. 79). For us this is not the case since, even under the hypothesis of serial
independence, some of the n; pairs have a common element and, consequently, they are
dependent (e.g., if [ = 3, then the pairs (X1, X4) and (X4, X7) are dependent). However,
as outlined in Remark 2.1, ;5\1 is a function of the serial empirical copula and, consequently,
the results in Genest and Rémillard (2004) assure that in our serial context, under the null
hypothesis of serial independence, its asymptotic distribution does not change with respect
to the classical inferential paradigm. Then, the limiting distribution of gl under the null
hypothesis of serial independence is the x? with (k — 1)2 degrees of freedom.

This fact allows to test the null hypothesis of serial independence using g[ as test statistic:

denoting with X[Q’r]'q] the g-quantile of the x? distribution with 7 degrees of freedom, the null

2
[(k=1)*1—a]’

To completely specify the test statistic g[, the value of k must be selected. According

hypothesis is rejected at level « if ;5\1 > X

to Bagnato et al. (2012), it is convenient to select k& by matching the rules of Mann and

Wald (1942) and Cochran (1954); in formula

k = min {ks, k,}, (6)



with

1 1
R NAUAY o |ou (g —1Y\5
ke = {(5) J and k= {210 <|Zla‘> J

with |-] denoting the floor function. ks is the value for k related to the Cochran rule
and requires that, under the assumption of serial independence, in each of the k? cells
of the contingency table with equi-frequent marginal intervals, the expected number of
frequencies is at least 5. This requirement aims to assure that the null distribution of 3\1 is
well approximated by the 2. k, is the value of k prescribed by the Mann and Wald rule.
This last value is the one that “maximizes” the power of the related independence test.
The rule (6) has been introduced to assure both a good asymptotic approximation and a
good power of the serial independence test.

Operationally, gl is computed for different, subsequent, values of [ yielding the sample

autodependence function (ADF) which is usually depicted (along with the critical value

2
Xe—1)21-

The following example gives an illustration of the procedure described above.

cx]) in the autodependogram of Bagnato et al. (2012).

Example 2.1 (Contingency table). Consider the observed time series, of length n = 25,
reported in the last column of Tables A.7(a) and A.7(b). Suppose we are interested in
solving the single-lag testing problems for lags [ = 2 and [ = 3.

If | = 3, the ng = 22 pairs to be considered are highlighted in Table A.7(a). To
classify these pairs in the k x k contingency table reported in Table 1, the value of k
first has to be determined. Based on (6) the value k = 2 is obtained, since, in this case,
ks = 2 and k, = 3. The contingency table, with equi-frequent marginal intervals, is given

in Table 2(a). As concerns the equi-frequent marginal intervals Cig) = (—00,0.217) and

Table 2: Example 2.1: Contingency table for the testing problem of lag [.

’\‘ —00,0.567)  [0.567,00) | Total N —00,0.593)  [0.593,00) | Total
—00,0.217) 4 7 (—00,0.383) 7 12
[o 217, 00) 4 [0.383, 00) 4 11
‘ Total ‘ 11 11 22 ‘ Total ‘ 12 11 ‘ 23 ‘
053) = [0.217,00), the value 0.217 assures that both the marginal row frequencies are



equal to ng/k = 11 and it coincides with the median of the values in the first column
of Table A.7(a). Similarly, the value 0.567 defining the equi-frequent marginal intervals
D§3) = (—00,0.567) and Dé?’) = [0.567,00) is the median of the shaded values in the last
column of Table A.7(a). The four theoretical joint frequencies are Al =11-11 /22 = 5.5,
u,v = 1,2, and the value of the test statistic in (5) is Sl =0.727.

In the case [ = 2, the pairs to be considered are highlighted in Table A.7(b) and there
are ng = 23 of them. Also in this case, based on (6), ks = 2 and k, = 3; hence k = 2.
The resulting 2 x 2 contingency table, with equi-frequent marginal intervals, is given in
Table 2(b). In this case, the number of pairs (ny = 23) is not divisible by the number of
marginal intervals (k = 2); thus, one of the two marginal intervals, the first, contains one

pair more.

2.2 Multiple-lag testing problem via the Portmanteau approach

The statistical tests based on p; and 31 are able to detect deviations from serial independence
only when X;_; and X; are dependent. There are, indeed, dependent processes in which
X;_; and X; are independent and, in such situations, the tests based on gl and p; can be
inconsistent; this can happen, for example, when we use 31 or p1 but the underlying process
is only characterized by dependence from the second lag onwards. This situation could arise
when analyzing a seasonal time series with dependence only among the observations related
to the same season. As previously mentioned, to partially overcome this problem, the most
common technique is to build a “Portmanteau test” by summing simple transformations of
the single-lag statistics related to all the lags [ in L. The Portmanteau versions of the tests

based on p; and 3\1 will be summarized in Sections 2.2.1 and 2.2.2, respectively.

2.2.1 Portmanteau ACF

The most widespread Portmanteau test based on the ACF is the Ljung-Box test (Ljung
and Box, 1978). It is based on the test statistic

Qr=nn+2)> L, (7)
leL

which, under Hy, asymptotically follows the X|2L| distribution. Thus, if the observed time
series is sufficiently long, the null hypothesis of serial independence is rejected at level « if

@L > Xﬁthfa]' Note that, when the Ljung-Box test statistic in (7) is applied to test the

8



serial independence of the residuals from a fitted autoregressive moving average (ARMA)
model, the degrees of freedom need to be adjusted due to the estimation effect. In detail,
for a fitted ARMA(p,q) model, where all the p+ ¢ parameters are estimated, the degrees of
freedom of the asymptotic x? distribution should be set to |L| —p — g (see Verbeek, 2000,
Section 8.7.3). Note that the Ljung-Box test (hereafter referred to as Portmanteau ACF)

is powerful only with respect to the alternative
(L) .
H}™" :p; # 0 for some | € L,

which is a subset of the alternative hypothesis given in (3).

2.2.2 Portmanteau ADF

Starting from the single-lag statistic g[, the Portmanteau statistic
Ap=> 0 (8)

can be defined. As shown in Section 2.1, the asymptotic null distribution of gl is the x?
with (k; — 1)? degrees of freedom, where the subscript I in k; highlights that the dimension
of the (square) contingency table may depend on [ € L. Moreover, Bagnato and Punzo
(2010) prove that, under Hy, the statistics ;5\1, l € L, are independent and consequently A L
tends to the x? with >, (ki — 1)? degrees of freedom. Therefore, the result of the test
can be obtained by comparing either A 1, with the critical value y? or the

N [SieL(i—1)%1—a]’
p-value of A, with a.

3 Problems of the pairwise approach

The single-lag and the Portmanteau statistics outlined in Sections 2.1 and 2.2, respectively,
define tests which have low power and can be inconsistent with respect to alternatives
belonging to H; in (1) but not included in (2) and (3), respectively. In particular, the

statistical test based on A 1, can be inconsistent for a serial dependent process such that
case 1: X; ; and X; are dependent only for some [ ¢ L;

case 2: X;_;and X, are independent for [ € N (serial dependence does not imply pairwise

dependence).



The statistic @ 1, suffers from the same problems and, in addition, it is not powerful in
capturing the presence of non-linear dependencies.

While case 1 could be potentially faced by considering a convenient set L (set contain-
ing at least one lag [ such that X; ; and X; are dependent), case 2 can not be handled
based on (2) and (3). From a practical point of view, case 1 is not greatly relevant since
temporal dependence is usually strong among variables which are temporally close and be-
comes negligible among variables temporally far. By contrast, if the adopted test is not
consistent under case 2, special kinds of dependence among temporally close variables

might be undetectable.

Example 3.1 (Motivation). As an example of a situation of case 2, consider the strictly
stationary process

X; = sign (e¢_16¢-2) + &1 = Lte if €162 20 , (9)

—1+¢& if g,_161_9 <0

where {g:},.y is a sequence of independent standard normal random variables. In Ap-
pendix B it is proved that {X;},.y is a dependent process with the following features: i)
the random variables in (X;_;, X;) are independent for any [; ii) the random variables in
(Xi—2, X;—1, X;) are not independent because X; depends on the pair (X;_o, X;_1); iii) the
random variables in (X;_3, X;_1, X;) are not independent because X; depends on the pair
(Xi—3,X;—1); iv) X is independent from all the pairs (X;—;,, X;—;,) with (I1,l2) different
from (2,1) and (3,1).

To emphasize the blindness of the Portmanteau approach in this scenario, we compute
@L and Ay on one thousand time series of length n = 1,000 from (9). Rejection rates
of the tests based on @ 1 and A 1 are computed by fixing @ = 0.05. The value of k, for
the definition of the contingency table related to g[, is chosen based on the rule of thumb
in (6). The obtained rejection rates, represented by vertical bars, are reported in the two
diagrams of Figure 1; here, all the subsets of lags L € P ({1,2,3,4,5}), L # (0, are ordered
lexicographically by size and displayed on the z-axis. With P (A) we denote the power set
of A. To facilitate performance evaluation, a horizontal line is placed at o = 0.05.

The rejection rates in Figure 1 are very close to the horizontal solid line, regardless of
the test and the set L considered; while this is an expected result for the subsets composed

of only one lag (i.e. {1}, {2}, {3}, {4}, and {5}), this also shows that the Portmanteau

10
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Figure 1: Example 3.1. Rejection rates, over 1,000 replications and with n = 1,000, from the tests based
on Qp and AL, L € P ({1,2,3,4,5}), L # 0.

multiple-lag testing procedures based on @L and AL are not able to detect the depar-
ture from the null hypothesis of serial independence. In the following section we propose
a multiple-lag test which, as we will show in Section 4.3, is instead able to detect the

underlying dependence induced by model (9).

4 Proposal for testing and investigating serial independence

Let X;_;, be the random vector containing the variables related to the set of lags L. As
an example, if L = {1,3}, then X, = (X;_3,X¢—1). The testing problem (1) can be
alternatively formulated as follows

Hy : f(xi—p,m) =g (2) Hg (z4_;) over a subset of RIZI*1 of probability one,

leL
for any L

versus (10)

Hy : f(zi—r,zt) # g (zr) Hg (z;;) over a subset of RI“I*1 of non-null probability,
leL
for some L,

where f is the joint density of (X;_r, X).

11



To overcome the drawback of the Portmanteau approach described in Section 3 (i.e. the
potential inconsistency under case 2), in Section (4.1) we propose a x? statistic defining

a test which, for a fixed L, is consistent with respect to the alternative

HfL) . f(xi—p, ) # g (x) h(ze—1) over a subset of RIZIF! of non-null probability,

for some L, (11)

where h is the joint density of X ;. Even if (11) is a subset of H; in (10), it is more
general than (3) which is the alternative hypothesis of the Portmanteau approach: there
are processes, such as the one described in Example 3.1, where (11) is true and (3) is false
(i.e. case 2 of Section 3).

In time series modeling, hypothesis (11) is particularly appealing and intuitively moti-
vated since it describes a situation in which X; depends on a certain set of lagged variables,
i.e. X;_r. Thisis the most natural way of describing temporal dependence as demonstrated
by the fact that common time series models have the form Xy = m(X,_r, €, €1, ...), where
m(-) is a convenient parametric/nonparametric function, and {¢;},. is the innovation pro-

cess.

4.1 Multiple-lag ADF

Let {Cu}fi:1 be a set of k equi-frequent marginal intervals for the observed time series
(1,...,xy). Moreover, let lyax = max {L}, lmax < n, be the maximum lag belonging to L.
To solve the multiple-lag testing problem having (11) as alternative hypothesis, once L is
fixed, let’s consider the set {(x;i_r, %)}y 1 = {(a’fj—s—lmax—L,xj—s—lmax)}?ip of dimension
nr = (N — lmax), composed by (|L| + 1)-uples of variables. Here, x;_;, denotes the vector
with elements x;_;, | € L. Consider the vector of indexes v = (vl, e 7”|L\) e KU with
K = {1,...,k}, which identifies the Cartesian product of equi-frequent intervals C, =
Cy, X - xC

YLy

12



Following the notation of Section 2, define

L .
ni(w) = ‘{(331'7[/,332') : (:Bivaxi) S C'v X Ou; 1= lmax + 17 cee ’n}‘
= ‘{(:Cj"l‘lmax_ll’mj'i‘lmax) : (mj+lrrlax_L’$j+lrrlax) € Cv X CU? j = ]" cc e 7nL} ’
L
my = D i,
’UEK‘L‘

k
N )
u=1

In words, n%) denotes the number of (|L| 4+ 1)-uples belonging to C,, x Cy, nffﬁ denotes the

(L)

number of values in {z;}. belonging to Cy, and n}; denotes the number of |L|-uples

1=lmax+1
in {zi-r}, . 41 = {Zj+tma—L}; 2, belonging to Cs.

The most intuitive way of handling the multiple-lag testing problem, having (11) as
alternative hypothesis, is to consider a test statistic which measures the discrepancy between
the empirical distribution of (X;_r,X;) and the theoretical distribution g (x¢)h (x:—r).
Inspired by expression (11), it is natural to measure this discrepancy by using the “Pearson

y2-like” statistic
m(ﬁ,) _ n(L)>

Z > (, (12)

u=1pe KLl ”uv
where nly) = +n o /n Always based on Agresti (2002) and Genest and Rémillard
(2004), the large sample null distribution of 5AL is well-approximated by the x? with
(k|L| — 1) (k— 1) degrees of freedom. Therefore, the result of the test can be obtained

by comparing either SL with the critical value X%( E or the p-value of SL with

KILI=1)(k—1);1—a
.

Remark 4.1 (Justification of the test statistic (12)). An alternative statistic to (12) is the

(|L| + 1)-variate version of the commonly applied Pearson y2-statistic

() - 8’
S B e (13)
u=1peKIL| nuv

where A\ = u+ HEI n+y /nr, with (vi,...,v) =v € KIE We choose 4y, instead of

B L, because it reflects and isolates the dependencies between X; and X;_p, i.e., the depen-
dence for the set of lags L. As an illustrative example of this advantage, consider the set of

lags L = {1,3}. In this case 3{173} is sensitive to: a) the dependence between X; 1 and Xy;

13



b) the dependence between X;_3 and X;; ¢) the dependence between the pair (X;_3, X;_1)
and X;. In other words, :5\{1,3} is sensitive to dependencies for lag-1, lag-3, and set of lags
{1,3}, respectively. To the contrary, 5{173} is sensitive to any kind of dependence in the
vector (X;_3, X;—1,X¢). Among these dependencies, there is also the lag-2 dependence
implicitly reflected by the presence of the pair (X;—3, X;—1) in (X;—3, X;—1, X¢). Hence, if
3\{1,3} is used, a rejection of the null hypothesis of serial independence in correspondence to
the set of lags {1,3} is certainly attributable to lag-dependencies involving the set {1, 3}
and its subsets. To the contrary, if 5{1,3} is used, then rejection of the null hypothesis can
be due to the lag-2 dependence, a kind of lag dependence that should not be considered
when analyzing the set of lags {1, 3}.

4.2 Serial dependence diagram

Given a reference set £ of (different) lags, a bar diagram may be defined by plotting the
values of 87, as a function of L € P (L), L # (. This diagram may be used for a finer
investigation of serial dependence.

The value of k for the definition of SL needs to be determined in advance. In particular,
when |L| = 1, k is chosen according to the rule of thumb given in (6); in the other cases, k

is selected through the following iterative procedure:
1. put k= 3;
2. compute all the expected cell counts under the null;

3. if the lowest cell count is lower than five, then & = k — 1 and the procedure ends;

otherwise, put £k = k + 1 and go to step 2.

The condition to be verified, in the third step, is a common stronger version of the rule
proposed by Cochran (1954) aimed at preserving the size of the corresponding x2-test.
Based on the procedure above, the value of £k may change when L varies; in these terms, it
should be denoted by k. Hence, the bars of the g—diagram may be not comparable between
them because they are referred to y?-distributions with different degrees of freedom. A
normalized bar diagram, representing the evidence of the presence of serial dependence, can
be obtained by substituting S\L with its p-value; hereafter, we will refer to this graphical

representation as the bar diagram of the multiple-lag ADF. A horizontal dotted line is

14



superimposed on the diagram corresponding to the desired significance level «, with o =

0.05 the common choice.

4.3 Illustrative examples

In Example 4.1 we give an illustration for the definition of the multi-way contingency
table introduced in Section 4.1, in Example 4.2 we provide an illustration of the proposed
diagram, while in Example 4.3 we evaluate the ability of this diagram to detect complex

dependence structures.

Example 4.1 (Three-way contingency table). Consider the time series already analyzed
in Example 2.1. Suppose we are interested in the multiple-lag testing problem for the set
of lags L = {2,3}. Hence, with respect to the notation of Section 4.1, we have lpax = 3
and |L| = 2. The triplets to be considered are highlighted in Table A.8, and there are
ny2,3) = 22 of them. To define the three-way contingency table, we have to first determine
the value of k. This is done by following the 3-step procedure described in Section 4.2.
Starting with the value & = 3, the equi-frequent intervals defined on the observed time
series are (—00,0.165), [0.165,0.891), and [0.891,00). Due to the low value of nyy 3, we
realize, without computations, that the lowest expected cell count under the null is lower
than five; thus, £ = 2 and the procedure ends. With k£ = 2, the equi-frequent marginal
intervals defined on the whole observed time series are (—o00,0.567) and [0.567, c0). Table 3
reports, in a flat version, the 2 x 2 x 2 contingency table with both observed and expected

(under the null) cell counts. As an example, the expected cell count 2.5, highlighted in the

Table 3: Example 4.1. Flat contingency table for the testing problem for the set of lags L = {2, 3}.

observed cell count expected cell count
X5 Ly
Ti_3 Ti_o (—00,0.567) [0.567,00) (—00,0.567) [0.567,00)

(—00,0.567) (—00,0.567) 4 4 4 4
[0.567, c0) 1 4 2.5 2.5

[0.567,00)  (—00,0.567) 2 2 2 2
[0.567, 00) 4 1 2.5 2.5

11 11 11 11
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last column of Table 3, is computed as 11 (1 4 4) /22, where the numbers in the numerator

are highlighted in the flat table of the observed cell counts.

Example 4.2 (Bar diagram of the multiple-lag ADF). To illustrate the behavior of the
proposed bar diagram, a time series of length n = 1,000 is simulated from model (9). By
considering £ = {1,2,3,4,5}, Figure 2 shows our diagram on the generated time series. To
facilitate the interpretation of the results, a horizontal dotted critical line is placed at height
a = 0.05. Furthermore, black is used to color bars where the corresponding multiple-lag
ADF yields rejection; white is used otherwise. Details on the selected values of kj, and
on the obtained p-values, are given in Table 4. Here, due to the course of dimensionality
(Bellman, 1961), it easy to note how the value of k7, roughly decreases as the cardinality of

L increases.

1.0

0.8
I

p-values
0.6

0.4
I

0.2

Wt ... WL

0.0

Adoaddaaa

Figure 2: Example 4.2. Bar diagram of the multiple-lag ADF (L € P (L), L # 0 and £ = {1,2,3,4,5}) on

a time series simulated from model (9). A horizontal dotted line is placed in correspondence of o = 0.05.

By looking at the bar diagram in Figure 2, an underlying complex dependence structure
appears. The first five bars show no evidence in favor of dependence on the single lags
considered (see Appendix B.1 for theoretical support about this result): the p-values range
from 0.82057 for lag {2} to 0.09966 for lag {4} (cf. Table 4). By considering the sets of
cardinality 2, a high evidence in favor of dependence appears for the sets of lags {1,2} and
{1,3} (practically null p-values), which are the active sets of lags based on the theoretical

results given in Appendix B.2 and B.3, respectively. Such evidence is also shown for several
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Table 4: Example 4.3. p-values and ki, L € P (L), L # 0, and £ = {1,2,3,4,5}.

L kr  p-value L kr p-value
{1} 7 0.51920 {1,2,3} 3 0.00000
{2} 7 0.82057 {1,2,4} 3 0.00000
{3} 7 0.81397 {1,2,5} 3 0.00074
{4} 7 0.09966 {1,34} 3 0.00017
{5} 7 0.62975 {1,3,5} 3 0.00015
{1,2} 5 0.00000 {1,4,5} 3 0.75830
{1,3} 5 0.00000 {2,3,4} 3 0.36376
{1,4} 5 0.66355 {2,3,5} 3 0.80834
{1,5} 5 0.38729 {2,4,5} 3 0.90233
{2,3} 5 0.74383 {3,4,5} 3 0.88561
{2,4} 5 0.46686 {1,2,34} 2 0.16007
{2,5} 5 0.25374 {1,2,3,5} 2 0.62217
{3,4} 5 0.37176 {1,2,4,5} 2 0.22628
{3,5} 5 0.64592 {1,3,4,5} 2 0.83023
{4,5} 5 0.11516 {2,3,4,5} 2 0.26274
{1,2,34,5} 2 0.33769

sets of lags of cardinality 3 containing either {1,2} or {1, 3}.

Example 4.3 (Power of the test). By considering the data already presented in Exam-
ple 3.1, we show how the multiple-lag ADF is able to detect the presence of serial dependence
structures which are not captured by the Portmanteau ACF and by the Portmanteau ADF.
Figure 3 displays the rejection rates related to the test based on gL, LeP(L),L+#0,and
L ={1,2,3,4,5}. Similarly to Figure 1, which reports the results of the tests based on
@L and KL, the proposed test statistic 5z, has no power when the subsets {1}, {2}, {3},
{4}, and {5} are considered (coherently with the pairwise independence). Higher power is
observed, apart from the set {1,3,4,5}, for all the subsets of lags including either {1,2} or
{1,3}, while no dependencies are detected for other subsets of lags. These results are in
line with the arguments presented in Appendix B.

Then, differently from the Portmanteau approaches, our test is able to capture the
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presence of dependence even in the context of pairwise independence. Further results about
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Figure 3: Example 4.3. Rejection rates, over 1,000 replications and with n = 1,000, from the test based
onédy, LeEP(L),L+#0and £ ={1,2,3,4,5}.

this aspect will be given in Section 5.3.

5 Simulation study

This section examines, via a Monte Carlo simulation study, the behavior of the test based on
S\L (hereafter simply denoted as “Multiple-lag ADF”) in comparison with the tests based on
Qr (Portmanteau ACF) and Al (Portmanteau ADF), L € P (L), L # 0, L ={1,2,3,4,5},
and a = 0.05. The R-code (R Core Team, 2015) to obtain the bar diagrams of these three
tests is available at http://www.economia.unict.it/punzo.

Table 5 shows the models, and the corresponding parameters specification, used in the
simulation study. They include: three scenarios of serial independence (Section 5.1), four
scenarios characterized by serial dependence of a purely linear type (Section 5.2), and three
scenarios with nonlinear serial dependence (Section 5.3).

Concerning the independence cases, data are randomly generated from the standard
Gaussian (denoted with &;), from the Student-t with 3 degrees of freedom (denoted with

u;) and from the Cauchy (denoted with v;). The Gaussian noise ¢; is always used for
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Table 5: Models, and corresponding parameters specification, adopted in the simulation study. The first

column reports the section in which the simulation is discussed.

Model Parameter specification
Section 5.1 Gaussian X = ¢
Student-t (3 d.f.) Xt =wy
Cauchy Xt = vt
Section 5.2 MA(1) X; =02e_1+¢
MA(3) X: =0.2¢_3+ ¢
AR(1) X =03X1+ ¢
AR(3) X =03X3+¢
Section 5.3  GARCH(1,1) X, = o1&, with 0 = 0.01 + 0.2X7 | 4+ 0.507_,
Bilinear AR(2) X =05X 90501 +¢€;

Multiplicative MA(1) X; =0.364_161—92 + &

the remaining models. As regards the scenarios related to the linear dependence, the
well known AR and MA models are considered. The nonlinear models taken into account
are: the GARCH(1,1) that is characterized by a quadratic form of dependence, by zero
correlation, and by a decaying memory structure; the Bilinear AR(2) that has a complex
nonlinear and non-monotonic form of dependence but no autocorrelation structure beyond
lag zero; and the Multiplicative MA (1) which is characterized by independence from the
third lag (included) onward. Finally, to evaluate the estimation effect, the competing tests
are applied to residuals from different fitted models.

For each of the 10 models in Table 5, 1,000 samples, each of size n = 800, are randomly
generated. In particular, for the 7 models characterized by serial dependence, a time series
of length 900 is initially generated, but only the final 800 observations are used in order to

mitigate the impact of initial values.
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5.1 Results under serial independence

Figure 4 shows the results, in terms of rejection rates, under serial independence (Hy).
When the noise is Gaussian (cf. Figure 4(a)), all the competing approaches, as expected,
maintain the size. Similar results are obtained under the Student-¢ noise (cf. Figure 4(b)).
When the noise is Cauchy distributed (cf. Figure 4(c)), the test based on @ 1, is conservative;
this is due to the fact that assumptions on which the asymptotic y? distribution of @ L
is based are not satisfied because the Cauchy distribution has no moments of any order
(see Romano and Thombs, 1996, p. 590, for details). To the contrary the ADF-based
approaches, that are the tests based on ﬁL and SL, maintain the size; the robustness
towards distributions with non-existing moments is a clear advantage of the ADF-based

techniques.

5.2 Results under serial linear dependence

Figures 5—8 show the diagrams related to the obtained results under linear serial dependence
for each of the four linear models in Table 5. The first diagram of each Figure reports the
rejection rates of tests computed on the raw data, while the second diagram reports the
rejection rates of the tests computed on residuals from the fitted true model. Parameter
estimates, for linear models, are obtained via the maximum likelihood approach by using
the arma() function included in the R-package tseries (Trapletti et al., 2015).

The first diagram in the Figures 5-8 clearly shows a higher performance of the Port-
manteau ACF in detecting the linear serial dependence implicit in the MA and AR models.
This result is rather expected because the Portmanteau ACF is an instrument specifically
conceived to detect the presence of linear serial dependence. However, also the Portman-
teau ADF and the Multiple-lag ADF are powerful enough in detecting dependencies. Their
performance is quite similar even if the Multiple-lag ADF exhibits a higher persistence in
power when the cardinality of the set of lags L increases.

Concerning the behavior of the tests applied on residuals from the fit of the correspond-
ing true model, we expect that the estimation removes all the dependence in the time
series, i.e. the tests on residuals should have a power equal to « for all the considered sets
of lags. The obtained results (see the second diagram of Figures 5-8) confirm this fact for
the Portmanteau ADF and the Multiple-lag ADF. By contrast, the Portmanteau ACF has

some problems. Specifically, considering for example the residuals from the fitted AR(1)

20



B Portmanteau ACF @ Portmanteau ADF O Multiple-lag ADF

1.0

0.8

0.6
0.4

sajel uonoalal

0.2

0.0

[~ AN N an e W7 I i Eren i Biran iy I'h'l;nfl'l W e ST e T O e W O i W~

{sv'e'e'th
{sv'e'e
{s'v'e'T}
{s'v'e'1}
{s'e’e'n}
{r'eet}
{s'v'e}
{s'v'e}
{s'e'e}
{r'eet
{s'v't}
{s'e't}
{r'e't}
{sz1}
'z
{e'z'n
{s'v}
{s'e}
{r'e}
{s'z}
{r'z}
e’}
{g'1}
't
{1}
ta]

{s}

{r}

{e}

jt4]

{1}

(a) Gaussian

B Portmanteau ACF @ Portmanteau ADF O Multiple-lag ADF

1.0

0.8

0.6
0.4

sajel uonoalal

0.2

0.0

{s'v'ee
{s'v'eet
{s'v'e'T}
{s'v'e't}
{g'e’e'}
{reett
{s'v'e}
{s'v'e}
{s'e'e}
{rect
&'}
{s'e'n}
{r'e'n}
{s'z1}
[Cxa
e}
{s'v}
{s'e}
e}
sz}
{r'at
e}
51}
't}
{1
e}

{s}

v}

{e}

{e}

{t}

(b) Student-t (3 d.f.)

B Portmanteau ACF @ Portmanteau ADF [0 Multiple-lag ADF

1.0

0.8

0.6
0.4

sajel uonosfal

0.2

0.0

[~ T T T T oY 1 T T T T iI‘ITJ;TlHTI T 1Tl o1 T ol T 1 o T 0 T T W T

{sv'ee'th
{sv'e'e
{s'v'e'T}
{s'v'z'1}
{s'e’z'}
{ree1}
{s'v'e}
{s'v'z}
{g'e'g}
{r'eet
{s'v't}
{g'e't}
{re't}
{sz1}
'zt
{21
{s'v}
{s'e}
{r'e}
{g'z}
{r'z}
e’z
{g'1}
{r'n
{1}
{1}

{s}

{}

{e}

t4]

{1}

(c¢) Cauchy

Hjp. Simulated rejection rates, over 1,000 replications and with n = 800, for the tests based on:
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Qr (Portmanteau ACF), Ap (Portmanteau ADF), and 6, (Multiple-lag ADF).
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Figure 5: MA(1). Simulated rejection rates, over 1,000 replications and with n = 800, for the tests based
on: Qr, (Portmanteau ACF), Ay, (Portmanteau ADF), and oL (Multiple-lag ADF).

model (see Figure 7(b)), the lag-1 autocorrelation between the residuals is structurally very
close to 0 due to the well known estimation effect and, consequently, the rejection rate
corresponding to lag-1 is roughly 0 (see the bar related to lag-1 in Figure 7(b)). Moreover,
the correction for the estimation effect recalled in Section 2.2.1, cannot be applied in this
context since |L| —p = 1 — 1 = 0 and, therefore, the autocorrelation test based on py
(which is equivalent to the Portmanteau ACF test with L = {1}) has no sense in this case
(see, again, Verbeek, 2000, Section 8.7.3). Similar considerations can be made for lag-1 in
Figure 5(b) and lag-3 in Figures 6(b) and 8(b). Concluding, the ADF-based approaches do
not require any correction for the estimation effect regardless of the particular set of lags

L, and this is a further clear advantage for them.
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Figure 6: MA(3). Simulated rejection rates, over 1,000 replications and with n = 800, for the tests based
on: Qr, (Portmanteau ACF), Ay, (Portmanteau ADF), and oL (Multiple-lag ADF).

5.3 Results under serial nonlinear dependence

The results obtained under the nonlinear models are depicted in Figure 9 for the GARCH(1,1),
in Figures 10-11 for the Bilinear AR(2), and in Figures 12-13 for the Multiplicative MA(1).

Concerning the results related to the GARCH(1,1) model, the performance of the
considered testing procedures is evaluated on: raw data (Figure 9(a)), residuals from a
GARCH(1,0) model (Figure 9(b)), and residuals from a GARCH(1,1) model (Figure 9(c)).
Parameters estimates for GARCH models are obtained by using the conditional maximum
likelihood (CML) method and the function garchFit() included in the fGarch package
(Wuertz and Chalabi, 2013). In practice, GARCH models are usually applied on financial
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Figure 7: AR(1). Simulated rejection rates, over 1,000 replications and with n = 800, for the tests based
on: Qr, (Portmanteau ACF), Ay, (Portmanteau ADF), and oL (Multiple-lag ADF).

returns which commonly present linear dependence among the squared values. Accordingly,
under this model, we follow the usual practice of applying the Portmanteau ACF on the
squared raw series/residuals. Under this scenario we expect that: the Portmanteau ACF
on squared raw series should be the best performer since the GARCH model can be viewed
as an ARMA model on the squared series; the power observed on raw data should signifi-
cantly decrease when the residuals from the GARCH(1,0) are analyzed; the power of all the
tests should be equal to o when applied on residuals from the GARCH(1,1) model. The
simulation results almost confirm these expectations. They reveal that the Portmanteau
ADF and the Multiple-lag ADF show no power in detecting the residual dependence after
the estimation of the GARCH(1,0) model. This suggests that, under the GARCH model,
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Figure 8: AR(3). Simulated rejection rates, over 1,000 replications and with n = 800, for the tests based
on: Qr, (Portmanteau ACF), Ay, (Portmanteau ADF), and oL (Multiple-lag ADF).

the ADF based procedures are mainly sensitive to the dependence due to the ARCH com-
ponents and substantially blind to the purely GARCH part. Concerning the Portmanteau
ACF, as for the AR and MA models discussed in the previous section, the distortion due
to the estimation effect is clearly visible on the first lag of Figure 9(b) and for all the sets
of lags in Figure 9(c).

For the Bilinear AR(2) model, the performance of the considered tests is evaluated on:
raw data (Figure 10(a)), residuals from an ARMA(1,1) model (Figure 10(b)), residuals
from a GARCH(1,1) model (Figure 11(a)), and residuals from the correctly specified model
(Figure 11(b)). Based on Rao (1981), we implemented a specific R code to obtain the
CML estimates of the parameters for the Bilinear AR(2). We expect that: due to the
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Figure 10: Bilinear AR(2). Simulated rejection rates, over 1,000 replications and with n = 800, for the
tests based on: Q1 (Portmanteau ACF), A, (Portmanteau ADF), and oL (Multiple-lag ADF).

nonlinear nature of the dependence of the generating model (which is characterized by
serial uncorrelation; refer to Section 5), the power observed on the raw data should not
significantly change when residuals from the fitted ARMA(1,1) model are analyzed; the
power of all the tests should be equal to a when applied on residuals from the correctly
specified model. The latter expectation is corroborated by the simulation results. The
former expectation is only confirmed when analyzing the results of the Portmanteau ADF
and the Multiple-lag ADF, while the behavior of the Portmanteau ACF on the residuals
from the ARMA(1,1) model is affected by the estimation effect which is particularly evident
when the correction of the degrees of freedom can not be applied (i.e. on the first 15 bars

in Figure 10(b)). We also note that, even if the Bilinear AR(2) model is an uncorrelated
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Figure 11: Bilinear AR(2). Simulated rejection rates, over 1,000 replications and with n = 800, for the
tests based on: Q1 (Portmanteau ACF), A, (Portmanteau ADF), and oL (Multiple-lag ADF).

process, the Portmanteau ACF test has a power that is slightly greater than «. This
fact is not surprising and is a simple consequence of the fact that the test statistic @L is
asymptotically x? only under the null hypothesis of serial independence and not simply
under the assumption of serial uncorrelation (see Genest and Rémillard, 2004, for details).
Another interesting observation regards the analysis of the residuals from the GARCH(1,1)
model: Figure 11(a) shows that the power of the Portmanteau ACF and of the Portmanteau
ADF are substantially equal to « regardless of L. Operationally, if we use these tests on
observed time series from a Bilinear AR(2), we will often erroneously tend to use the
GARCH(1,1) as the model to represent these temporal dynamics. To the contrary, the

power of the multiple-lag ADF still remains very high in correspondence to some sets of
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Figure 12: Multiplicative MA(1). Simulated rejection rates, over 1,000 replications and with n = 800, for
the tests based on: Q. (Portmanteau ACF), A, (Portmanteau ADF), and &, (Multiple-lag ADF).

lags. This result emphasizes the practical relevance of the multiple-lag ADF which is the
only graphical device, among the considered ones, able to capture the residual underlying
serial dependence.

Similar conclusions are obtained when analyzing the Multiplicative MA (1) model (Fig-
ures 12-13). For the estimation of the correctly specified model, the CML is used (refer to
Figure 13(b)). In this case, the result is even more extreme since the Portmanteau ACF

and Portmanteau ADF have a power equal to a even on the raw data.
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Figure 13: Multiplicative MA(1). Simulated rejection rates, over 1,000 replications and with n = 800, for
the tests based on: Q. (Portmanteau ACF), A, (Portmanteau ADF), and &, (Multiple-lag ADF).

6 Real data application

In this section an application to a financial time series is considered. In particular, we
consider the SMI dataset included in the R-package SDD (Bagnato et al., 2015). The series
consists of n = 660 daily returns of the Swiss Market Index spanning the period from
August 12", 2009, to March 6, 2012; see Figure 14.

Figure 15 displays a 4 x 3 matrix of diagrams; each of them reports, by column, the p-
values of the multiple-lag tests based on Q, (Portmanteau ACF), Ay, (Portmanteau ADF),
and o7, (Multiple-lag ADF), L € P (L), L # 0, L ={1,2,3,4,5}. The three tests are applied

to the raw series (first row) and to residuals from three nonlinear models (second—fourth
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Figure 14: Daily returns of the Swiss Market Index (SMI), spanning from August 12t 2009, to March
61, 2012.

rows) which will be detailed below. Note that, due to the nature of the dependence usually

observed for financial returns, @)y, is computed on the squared series.

6.1 Results on the raw series

By looking at the first row of diagrams in Figure 15, an underlying dependence structure
is detected by all the considered approaches. In particular a clear autocorrelation, for all

the considered subsets of lags, is highlighted by the Portmanteau ACF computed over the

squared series.

6.2 Results on residuals on the GARCH model

To capture the autocorrelation on the squared series, a GARCH(1,1) model has been
adopted; it is widely used to model financial time series (see, e.g., Bollerslev et al., 1992).
The GARCH(1,1) model is estimated, with the CML approach, using the garch () function
of the R-package tseries. As we can see from the second row of diagrams in Figure 15, the
Portmanteau ACF does not display any significant linear dependence among the squared
residuals. To the contrary, the remaining diagrams in the second row suggest the presence
of dependence, for example on the single lags {1}, {2}, and {3}. This suggests the use of a

more sophisticated nonlinear model able to capture the underlying dependence structure.
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Figure 15: SMI dataset: matrix of diagrams of p-values for the test statistics Q1. (first column), Az, (second
column), and o (third column), L € P (L), L # 0 and £ = {1,2,3,4,5}; a = 0.05. The three tests
are applied to: raw data (first row), residuals from the GARCH(1,1) (second row), residuals from the
A&M model in (14) (third row), and residuals from the modified A&M model in (15) (fourth row). Q1

is applied on the squared series.
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6.3 Results on residuals on the A&M model

We consider the nonparametric A&M model proposed by Yang et al. (1999). It consists of
a nonparametric autoregression with multiplicative structure for the conditional variance
and additive structure for the conditional mean. As usual in the financial context, only the

part of the model concerning the volatility is retained, that is

d
Xt =0 (thla s 7Xt—d) Ets with 0-2 (thla s 7Xt—d) =cC H eXp {f] (thj)} ) (14)
j=1

where ¢ is a positive constant and {f; (Xt,j)};l:l are unknown functions describing the
different impact of the lagged variables on the conditional variance. The process {e¢},cn
is assumed to be ii.d. such that E (e;) = E (¢}) =0, E (¢}) = 1, E (¢}) < oo, and & is
independent of X;_; for j > 0. The backfitting algorithm on the additive model resulting
from an opportune log-transformation of the series, is used to estimate the multiplicative
model (14). This algorithm is implemented using the gam() function of the R-package gam
(Hastie, 2013) and each additive component is fitted with smoothing splines.

Model (14) is fitted to the raw data with d € {1,2,3,4,5}. Among these fitted models,
the best one, in terms of reducing the number of black bars of the considered diagrams, is
the model with d = 4 (see the third row in Figure 15). However, while the Portmanteau
ACF and the Portmanteau ADF do not underline any kind of dependence, the p-values
related to o7, highlight that a residual dependence exists on the sets of lags {1,4}, {1,5},
{3,4}, and {2,3,5}.

6.4 Results on residuals on the modified A&M model

In the fashion of multiplicative MA and bilinear AR models, we modify model (14) by
adding suitable multiplicative interactions to the conditional variance based on the active

sets of lags {1,4}, {1,5}, and {3,4}. After some trials, we identify the following model
Xt =0 (thl, PN ,Xt,5) Et, (15)

where o (X;—1,...,X¢—5) is given by
4

c[Texp{fi (Xi—j)}exp{fs (Xe—1Xs—a)}exp {fo (Xs-1X;—5)}exp { fr (X7 3X7 )}
j=1

The model above is able to capture all the remaining dependence, as we can note by the

fourth row of diagrams in Figure 15.
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7 Conclusions

Serial independence is typically tested by statistics which only account for pairwise de-
pendencies (i.e. those involving pairs of lagged variables); a classical example, considered
as a benchmark herein, is the Portmanteau approach that, as shown in Section 3.1 and
5.3, can be blind with respect to non-pairwise dependencies. A test statistic, which over-
comes this problem, is proposed in this paper. It is simple to compute, being based on a
multi-way contingency table, and has an asymptotic x? distribution with known degrees of
freedom under the null hypothesis of serial independence. Simulation results showed that
the corresponding serial independence test maintains the size even when the data gener-
ating process does not have moments and that it is powerful for a wide variety of linear
and nonlinear data generating processes. Meaningful are the results related to the Bilinear
AR and Multiplicative MA models (see Section 5.3) where the new test statistic is able to
reveal dependencies that are not perceived by the classical Portmanteau tests. The simula-
tion study also highlights that, when applied on residuals from fitted models, the new test
does not require any correction for the estimation effect (differently from the commonly
used Ljung-Box test which is based on the Portmanteau approach). The application on
the financial data of Section 6 demonstrates how the proposed test can be used, in synergy
with the classical Portmanteau tests, in a finer identification of the true data generating

process.

Appendix

A Some tables from Sections 2.1 and 4.3

In the following, we collect some Tables pertaining to Sections 2.1 and 4.3.
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Table A.6: Preliminary scheme to determine the pairs to be considered for the single-lag testing problem

for the generic lag .

¢ Li—] Ti—1+1 Li—1 T
1 I
2 I €T
l 1 -1 x
[+1 1 T x; Ti41
¢ Ti—1 Li—1+1 Li-1 T
n—1 xp 1 Tn—1 Tn—2 Tn—1
n Tn—1 Tpn—I1+1 Tn—1 Tn
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Table A.7: Example 2.1: Preliminary scheme to determine the pairs to be considered for the testing

problem of lag [.

(a) 1 =3 (b) =2

{ Zi-3 Ti—2 i1 X { ) Ti—1 x;

1 0.217 1 0.217
2 0.217  -0.542 2 0.217 -0.542
3 0.217 -0.542 0.891 3 0.217 -0.542 0.891
4 0.217 -0.542  0.891 0.596 4 -0.542  0.891 0.596
5 -0.542 0.891 0.596 1.636 5 0.891 0.596 1.636
6 0.891 0.596 1.636 0.689 6 0.596 1.636 0.689
7 0.596 1.636 0.689 -1.281 7 1.636 0.689 -1.281
8 1.636 0.689 -1.281 -0.213 8 0.689 -1.281 -0.213
9 0.689 -1.281 -0.213 1.897 9 -1.281 -0.213 1.897
10 -1.281 -0.213 1.897 1.777 10 -0.213 1.897 1.777
11 -0.213 1.897 1.777 0.567 11 1.897 1.777 0.567
12 1.897 1.777 0.567 0.016 12 1.777  0.567 0.016
13 1.777 0.567 0.016 0.383 13 0.567 0.016 0.383
14 0.567 0.016 0.383 -0.045 14 0.016 0.383 -0.045
15 0.016 0.383 -0.045 0.034 15 0.383 -0.045 0.034
16 0.383 -0.045 0.034 0.169 16 -0.045 0.034 0.169
17  -0.045 0.034 0.169 1.165 17 0.034 0.169 1.165
18 0.034 0.169 1.165 -0.044 18 0.169 1.165 -0.044
19 0.169 1.165 -0.044 -0.100 19 1.165 -0.044 -0.100
20 1.165 -0.044 -0.100 -0.283 20 -0.044 -0.100 -0.283
21  -0.044 -0.100 -0.283 1.541 21  -0.100 -0.283 1.541
22 -0.100 -0.283 1.541 0.165 22 -0.283 1.541 0.165
23 -0.283 1.541 0.165 1.308 23 1.541 0.165 1.308
24 1.541 0.165 1.308 1.288 24 0.165 1.308 1.288
25 0.165 1.308 1.288 0.593 25 1.308 1.288 0.593
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Table A.8: Example 4.1. Preliminary scheme to determine the triples to be considered for the multiple-lag
testing problem for the set of lags L = {2, 3}.

{ i3 Ti—2 Ti—1 x;

1 0.217
2 0.217 -0.542
3 0.217 -0.542 0.891
4 0.217 -0.542  0.891 0.596
5 -0.542 0.891 0.596 1.636
6 0.891 0.596 1.636 0.689
7 0.596 1.636 0.689 -1.281
8 1.636 0.689 -1.281 -0.213
9 0.689 -1.281 -0.213 1.897
10 -1.281 -0.213 1.897 1.777
11 -0.213 1.897 1.777 0.567
12 1.897 1.777 0.567 0.016
13 1.777 0.567 0.016 0.383
14 0.567 0.016 0.383 -0.045
15 0.016 0.383 -0.045 0.034
16 0.383 -0.045 0.034 0.169
17 -0.045 0.034 0.169 1.165
18 0.034 0.169 1.165 -0.044
19 0.169 1.165 -0.044 -0.100
20 1.165 -0.044 -0.100 -0.283
21  -0.044 -0.100 -0.283 1.541
22 -0.100 -0.283 1.541 0.165
23 -0.283 1.541 0.165 1.308
24 1.541 0.165 1.308 1.288
25 0.165 1.308 1.288 0.593
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B  Model (9): theoretical results about serial dependence
To ease the reader, we recall the definition of model (9)
Xy = sign (g4-16¢-2) + €4, (B.16)

where {e;},c is a sequence of independent standard normals. The process defined by
(B.16) is strictly stationary (it is a measurable transformation of the strictly stationary

process {e;}) and the marginal distribution of X, is given by

1
P(Xt < .73) = P(Xt < .T|Et_1€t_2 < 0) + §P(Xt < CC’Et_lé't_Q > O)
1
P(atgx—i—l)—i—iP(gtgx—l)

[@B(z+1) + Bz — 1)], (B.17)

N~ N~ N

where ®(-) is the distribution function of the standard normal. Expression (B.17) clearly
exhibits that X; is a mixture of two normal distributions with unit variance and means —1

and +1.

B.1 Pairwise independence

The pairwise independence in model (B.16) is directly proved by showing that
PXy 1 <znX; <y)=PXi <2)P(X; <vy), V(z,y) €R? and 1 =1,2,....

The condition above is trivially verified if I > 3, but the cases [ = 1 and [ = 2 remain to be
analyzed. Only the case [ = 1 is here considered because [ = 2 can be handled in a similar
way.

Let F;,i=1,...,16, be the events corresponding to all the possible signs configurations
of the random variables (g;_3,&t—2,61-1,¢¢) defining X;_; and X;. Thanks to the law of
total probability we have that

16
P(X;1<znNXy<y)=» P(Xp1<znX,<ynE).

=1

Now, assuming that

E1={€t_3>0ﬁ€t_2>00€t_1 >0ﬁ5t>0},
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it is easy to show that

(X, 1 <znX; <ynE}= Fi if min(z —1,y—1)>0
-1 < . < _ |
@  otherwise

where

E1:{€t73>0ﬁ€t72>0ﬂ0<5t71<(1‘—1)ﬁ0<€t<(y—1)}.

Hence, P(X;—1 < 2NX; < yNEy)isequalto Py = P(Ey) = 1 [®(z — 1) — 3] [®(y — 1) — 4]
if condition min(x — 1,y — 1) > 0 is satisfied and 0 otherwise. In Table B.9 all the events
E;, 1 =1,...,16, are reported along with the corresponding non-trivial representation E;

of the set {X;—1 < 2N X; <yN E;} obtained under an appropriate condition.

i E; E, condition P;

€t-3 Et-2 Ei-1 &t €t-3 Et-2 Et-1 Et
1 + + + + + + € (0,z—-1) €(0,y—1) min(z—Ly—1)>0 §[®@-1)—35][®(y—1)- 3]
2 4+ + o+ - + o+ € (0,z—1) <min(0;y—1) (z—1)>0 Lo(@—1) — 4] min [®(y — 1); 1]
3 + + -+ + + <min(0;z—-1) €(0,y+1) (y+1)>0 Lmin [@(z —1); 3] [@(y+1) — 1]
4 + + - - + + <min(0;z —1) <min(0;y+1) none L min (<I>(;r —1); 4] min (®(y + 1); 1]
5 4+ - + 4+ + - € (0,z+1) <min(0;y+1) min(z+Ly+1)>0 3 [@@+1) -3 [‘I’(l/ +1) - 3]
6 + - + - + - € (0,z+1) <min(0;y+1) (z+1)>0 Lo+ ) 1 mi [<I>(y+1) 1]
7 + - -+ + - <min(0;z+1) <min(0;y—1) (y—1)>0 Lmin [@(z +1); 3] [@(y - 3]
8 + - - - + - <min(0;z+1) <min(0;y—1) none Lmin [®(z + 1); 1] min [(I)(y —1)4]
9 - + + + -+  e(0z+1) €(0,y—1) min(z+Ly—1)>0 §[®@+1)—35][@(y—1)- 1]
10 - + + - - + € (0,z+1) <min(0;y—1) (z+1)>0 L[@(@+1) — 4] min [®(y — 1); 3]
1 - + -+ - + <min(0;z+1) € (0,y+1) (y+1)>0 %nun [@(1 +1); %} [ y+1)— —}
12 - + - - - + <min(0;z+1) <min(0;y+1) none Lmin [®(z + 1); 1] min [@(y + 1); 1]
13 - - + o+ - - € (0,z—1) €(0,y+1) min(z —1L;y+1)>0 L[@(@—-1)-1][@@y+1)-1]
14 - - + - - - € (0,z—-1) <min(0;y+1) (z—1)>0 L [®@@—1) = ] min [®(y + 1); 1]
15 - — - + - - <min(0;z—1) € (0,y—1) (y—1)>0 %mu [@(171)‘1} [@(g/fl)fé]
16 - - - = - - <min(0;z —1) <min(0;y—1) none Lmin [®(z —1); 3] min [®(y — 1); 5]

Table B.9: Definition of the set F; along with the related condition and probability P;, i = 1,...,16.

Now, by using the information in Table B.9, it is possible to verify that P(X;_; <
rNXy <y)=P(Xy1<z)P(X; <y) for all (z,5) € R%2 For example, assume that
rz+1<0andy+1<0 and, consequently, z —1 < 0 and y — 1 < 0. From the conditions
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in Table B.9 it follows that

16

P(X; 1 <aznX;<y) = Y P(X;1<anX, <ynE)

=1

= Z P

i€{4,8,12,16}

- {3pe-n+ew o {iee- e+l
= P(Xt_lgx)P(thy)

B.2 Dependence on the set of lags {1,2}

To prove the dependence of X; from (X;_1,X;_2) it is sufficient to prove that X; and

Y; = X:_1X;_o are correlated, that is

COV(Xt, Y;)

E(X:Y;) — B(X,)E(Y;)

E(X:Y;)

E(X: X1 X:—2)

E {[sign(er—121-2) + &) [sign(er—aer-3) + 1] [sign(er—ser—a) + 2]}
Eles—16¢—2sign(er—16¢-2)]

E (|5t—1€t—2|) > 0.

B.3 Dependence on the set of lags {1,3}

To prove the dependence of X; from (X;_1,X;_3) it is sufficient to prove that X; and

= thlet_g are correlated, that is

COV(Ath7 Zt)

E(XiZ;) — E(Xy)E(Z)

E(X:Z;)

E(X: X7 2 X;—3)

E {[Sign(5t715t72) + &) [sign(er—2e1—3) + -1 [sign(es—ag—5) + 5%3]}
2E[e;—16¢—3sign(e;_161—2)sign(e;_sei—3)]

2E[£t—15t—381gn(5t—1&5—3)]

E (|5t—15t73|) > 0.

40



B.4 Independence on the set of lags {l;,[>} different from {1,2} and {1, 3}

Here, it is shown that X is independent from (X;_o, X;_3). A similar procedure can be
followed to show that X is independent from (X;_;,, X;—;,) for all the pairs (i1, 3) different
from (1,2) and (1,3). Following Kallenberg (2009), the independence between X; and
(Xi—2, X¢—3) can be proved showing that E(X] X/ ,X; 5) = E(X?)E(X],)E(X} 5) for
all p,q,s € N;. Using the notation S; = sign(e;), it is possible to note that sign(eies_;) =
sign(e¢)sign(e;—;) and E (Si ) =0 if j is odd. From the binomial theorem it results that

p q m
E(XPX;I 2 Xi- 3 {Z( >Sf fsp Z( >Sf§ 3115? 2 (k)sm kSms 5t 3]

J=0 h= k=0
= Z Z i (p) (Z) (7;) E(S; 3 ) B(SE ) B(Si et y) E(SP{ ety E(SP{ ) E(e]).

The expression above reveals that the addends in the triple summation with at least one of
the indexes j, p — j, m — k odd, are null. Moreover, the addends with ¢ —h odd and m — k
even are null too since, in this case, the exponent ¢ — h +m — k of Sy_4 is odd. Then: all
the addends in the triple summation with at least one of the indexes j, p — j, m — k, and
q — h odd, are null. The remaining addends are characterized by even values of j, p — j,
m — k, and ¢ — h. By noting that Sf = 1 with probability one if a is even, these remaining

addends have the following form
E(ef_3)E(ef_2) E(e]).

The addends of the form described above are null if one of the indexes k, h, and j is odd.
Now, note that if one of the exponents, p, ¢, or m is odd, then also all the addends with
k, h, and j even are null since, in this case, at least one indexes among p — j, m — k, and

q — h is odd. Consequently

E(XPX! X[ 4)=0=E(X)E(X] ,)E(X}_3) if one of the values p, ¢, or m is odd.
(B.18)
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To the contrary, if all the exponents p, ¢, and m are even, then p — j, m — k, and ¢ — h are

all even if and only if j, k, h are all even. Consequently:

B(XPX{, X7 ) = B pfo(;}):f(;)g(;)E(s%Eg)E(efhg)E( 2
= =0 =0
—E §©h 0() O(Z)E<853>E<e?2>E<az>
{0 0] £

=E[(1+ t)p( te2)! (1+e-3)"=E[(1+e)’ | E[(1+e-2)E[(1+e-3)"] .

Using, once again, the binomial theorem, it is possible to prove that, if j is even, thus

B(X]) = E[(14+¢,)]. Ifp, ¢, and k are all even, then E (XPX{ , X7 ) = E(XP) E (X{,) E (X7_,).
This last case, in addition to (B.18), prove that E (X7 X , X} 5) = E(X}) E (X[,) E (X} 3)

for all p,q,s € N,.
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