
Towards an Architectural Debt Index

Riccardo Roveda
Alten Italia, Milano, Italy

Email: riccardo.roveda@alten.it

Francesca Arcelli Fontana, Ilaria Pigazzini, Marco Zanoni
Department of Informatics, Systems and Communication,

Università of Milano-Bicocca

Email: {arcelli, pigazzini, zanoni}@disco.unimib.it

Abstract—Different indexes have been proposed to evaluate
software quality and technical debt. Usually these indexes take
into account different code level issues and several metrics, well
known software metrics or new ones defined ad hoc for a specific
purpose. In this paper we propose and define a new index, more
oriented to the evaluation of architectural violations. We describe
in detail the index, called Architectural Debt Index, that we
integrated in a tool developed for architectural smell detection.
The index is based on the detection of architectural smells,
their criticality and their history. Currently only dependency
architectural smells have been considered, but other architectural
debt indicators can be considered and integrated in the index
computation.

Index Terms—architectural smells, architectural debt index,
severity index, technical debt

I. INTRODUCTION

Many works have been done in the literature on managing

technical debt ([1], [2], [3]) which consider different forms

of technical debt at different levels, e.g., architecture, design,

code, test, social, documentation and technological. As out-

lined and evaluated by Ernst et al. [4] architectural issues are

the greatest source of technical debt. Hence, it is important to

understand how to identify and manage architectural problems

to avoid and reduce technical debt accumulation.

In this paper, we focus our attention on architectural

debt [1], [5], [2], [6] and its possible evaluation. Different tools

for software analysis, in particular commercial ones, provide a

large number of evaluation measures through the computation

of several metrics and technical debt indexes. In a previ-

ous paper [7], we briefly described five tools (SonarGraph,

Structure101, Cast, InFusion, SonarQube) able to provide a

Technical Debt Index, sometimes called in a different way,

but with the same or similar purpose. We found that often

architectural issues are not taken into account and when they

are considered the main focus is on the detection of cyclic

dependencies [8]. Many other architectural problems such as

architectural smells ([9], [10]) are not considered. Moreover,

different architectural smells/problems can be identified only

by analyzing the development history of a project([5]) and

Technical Debt (TD) indexes usually do not take into account

this kind of information too.

In this work we focus our attention on the debt that can be

caused by the presence of architectural smells. Architectural

smells are often introduced through the violation of some

design principles or decisions [11] and may accumulate high

maintenance and evolution costs, representing a source of

architectural debt. For this reason, we started working on the

definition of a new index, that we call Architectural Debt
Index, with a focus on architectural smells (AS) and we

integrated it in our tool for architectural smell detection, called

Arcan [12].
The aim of our index is to evaluate the internal quality of

a project in terms of: 1) the detected architectural smells, 2)
their history, 3) their severity (the most critical ones) and 4)
architecture design metrics. The index value of a project with a

large number of smells and also critical smells (high severity)

will be higher with respect to a project with less smells and

low severity.
Hence in this work, we aim to answer the following research

questions:

RQ1 How should a new index be formulated to more exhaus-

tively evaluate architectural debt?

RQ2 How can we estimate the severity of an architectural

smell?

RQ3 Is the new index based on architectural smell detection

independent from another existing index based on code

level issues?

The answer to research question RQ1 gives and motivates

the definition of a new Architectural Debt Index (ADI) based

only on the detection of different architectural smells (AS),

their severity and history. A high value of the index provides

hints on the low architectural quality of a project. Hence,

developers/maintainers can get hints on specific problems

causing the debt and identify the most critical ones. Moreover,

if the Architectural Debt Index during a project evolution tends

to increase, this means that developers/maintainers did not

focus their attention on the sources of this debt. This could be

probably due also to the lack of many available tools able to

easily identify architectural smells and/or to the high cost to

remove them.
The answer to research question RQ2 provides a severity

estimation of the detected architectural smells. The severity

is evaluated according to the violation degree of the metrics

values used in the detection of the smell and the relevance

of the part of the project affected by the smell, where the

relevance is evaluated through a PageRank index (see Section

IV-A2). The severity estimation allows to identify the most

critical smells in terms of negative impact on a project, that

can be prioritized to identify those to be removed first.
The answer to research question RQ3 allows to evaluate

if an index such as the ADI based on the detection of

408

2018 44th Euromicro Conference on Software Engineering and Advanced Applications

978-1-5386-7383-6/18/$31.00 ©2018 IEEE
DOI 10.1109/SEAA.2018.00073

architectural issues is independent by an index focused on code

level issues. For this analysis we considered the index provided

by SonarQube, since this tool is probably the most known

and used tool for software quality assessment and provides a

technical debt index whose computation is essentially based

on code level issues. The answer to this research question

is important since, if the two indexes effectively are able to

measure code and architectural debt and they are independent,

this means that there is no relation or not a strong relation

between the occurrence of issues at code and architectural

level. Hence, developers/maintainers have to take care of

both the two types of debt: removing code debt could not

necessarily imply the reduction/removal of architectural debt

and vice versa.

We compute the Architectural Debt Index on 109 open

source projects of the Qualitas Corpus [13], where the projects

have been classified in different categories. We evaluated

the ADI also according to these categories and the size of

the projects in terms of number of packages. Moreover, we

analyzed the evolution of our index and the one of SonarQube

in different major releases of 10 projects.

The paper is organized through the following sections: in

Section II we outline some related works on tools which

provide the computation of different kinds of technical debt

indexes; in Section III the architectural smells detected through

the Arcan tool; in Section IV the new Architectural Debt

Index and in Section V its computation and its evaluation

on a large dataset of projects; in Section VI the possible

correlations among the Architectural Debt Index and the index

of SonarQube. in Section VII the threats to validity and finally

in Section VIII, we provide the answers to the Research

Questions and discuss some future developments.

II. RELATED WORK

Different quality or technical debt indexes have been defined

in the literature to evaluate a project, as the old Maintainability

Index of Coleman [14]. We briefly cite below the indexes

provided by some tools, while a more extended description

of some of them can be found in [7].

Sonargraph tool evaluates Structural Debt1 quantified

through two measures: Structural Debt Index (SDI) and

Structural Debt Cost (SDC). SonarQube2 implements the

SQALE [15] model for the estimation of Technical Debt. Three

values are computed on the analyzed project, i.e., Technical

Debt (TDI), Technical Debt Ratio (TDR) and SQALE Rating

(SR). The TDI computation does not take into account ar-

chitectural or dependency information. CAST3 estimates the

amount of principal in the Technical Debt (TD-Principal)

of an application based on detectable structural problems.

Structure1014 shows a Structural over-Complexity (SoC) view

to estimate the percentage of the system involved in archi-

tectural issues. Obviously, other tools are available which are

1Metrics and Queries Documentation v.7.2, hello2morrow, May 2011
2https://www.sonarqube.org
3https://www.castsoftware.com
4https://structure101.com/

able to compute a huge number of metrics also related to

architectural issues, e.g., Massey Architecture Explorer5 com-

putes an Antipatterns Score and the Tangledness metric [16],

Lattix6 provides Stability, Cyclicality, and Coupling metrics,

and STAN7 supports the computations of different R. Martin’s

metrics [17]. With respect to the previous indexes, our index

is focused only on architectural issues (e.g., AS) and takes

into account different features not considered, according to

our knowledge, in the previous indexes.

III. ARCHITECTURAL SMELLS DETECTED

We developed a tool to detect AS in Java projects, called

Arcan [12]. We currently focused our attention on AS based

on dependency issues, since components highly coupled and

with a high number of dependencies cost more to maintain and

hence can be considered more critical. Obviously dependen-

cies are not the only indicator of AD, hence other AS or debt

indicators will be considered in the upcoming future work.

Arcan detects:

• Unstable Dependency (UD): describes a subsystem (com-

ponent) that depends on other subsystems that are less

stable than itself. This may cause a ripple effect of

changes in the system [18]. Detected on packages.

• Hub-Like Dependency (HL): this smell arises when an

abstraction has (outgoing and ingoing) dependencies with

a large number of other abstractions [19]. Detected on

classes and packages.

• Cyclic Dependency (CD): refers to a subsystem (compo-

nent) that is involved in a chain of relations that break

the desirable acyclic nature of a subsystem’s dependency

structure. The subsystems involved in a dependency cycle

can be hardly released, maintained or reused in isola-

tion [18]. Detected on classes and packages and according

to different shapes [12].

• Implicit Cross Package Dependency (ICPD): captures

hidden dependencies among files belonging to different

packages [20], [21]. For hidden dependencies, we mean

co-change relations that we can find only in the history of

the project and not in the code. Files changed frequently

together with hidden dependencies lead to a lack of

modularity. Detected on files.

All computations are based on the dependency graph built

from reading the project compiled files through a specialized

Java library named BCEL. The graph represents the static

structure of the code and illustrates the relationships among

different software elements at different abstraction levels,

such as composition, inheritance, package afference etc. The

detailed description of the detection algorithms of CD, HL,

UD smells and the building of the dependency graph can be

found in [22]. For what concerns the Implicit Cross Package
Dependency, the detection is done through the analysis of the

dependency graph’s evolution from the version history of the

5http://xplrarc.massey.ac.nz/
6https://lattix.com/
7https://stan4j.com/

409

project development. Some of the above AS are detected also

by other tools prototypes, but with Arcan we exploit a different

approach: the project-under-analysis is represented through a

dependency graph which contains all the information regarding

the project static structure and the results of the detection.

IV. AN ARCHITECTURAL DEBT INDEX

This section is focused on the definition of a new index

based only on the detection of the AS currently identified

through Arcan. Obviously other AS can be considered in the

future by considering other issues impacting architectural debt.

The index computation, integrated in the Arcan tool, takes

into account:

• the Number of AS in a project;

• the Severity of an AS: assuming that some instances of

AS are more critical than others, the Index takes into

account a Severity measure defined according to each

architectural smell type;

• the History of AS: the presence of an AS in the history

of a project can have a different impact on the index

(for example if an AS involves an increasing number

of classes and packages in its evolution, it is considered

more critical than other AS).

• the Dependency metrics of Martin [17] (Instability, Fan

In, Fan Out, Efferent and Afferent Coupling) used for the

AS detection.

By considering these factors, the Architectural Debt Index

(ADI) of a project P is defined as follows:

ADI(P) =

n∑
k=1

(
1

W
(ASIS(ASk) ∗ w(ASk)) ∗History(ASk)

)
(1)

where:

• n: number of AS instances in a project P ;

• ASk: k-instance of an architectural smell;

• W : the total number of dependencies involved in at least

one AS for all the AS in the project;

• ASIS(ASk): the Architectural Smell Impact Score (de-

fined below in IV-A);

• w(ASk): the Architectural Smell Weight, i.e., the number

of dependencies associated to the ASk;

• History(ASk): the score associated to the trend evolu-

tion of the ASk (defined below in IV-B).

The dependencies are considered according to the depen-

dency graph of a project, on which all the AS found in a

project are mapped on. The dependencies are the number of

unique vertices (classes or packages) of the subgraph directly

affected by an architectural smell.

A. Architectural Smell Impact Score

The Architectural Smell Impact Score, ASIS, is based on

both the estimation of the severity of an AS and the importance

of the subsystem where the AS is found. It is defined as

the product of the SeverityScore associated to the ASk smell

and the PageRank value of the ASk, which estimates the

importance of the project subsystem affected by the ASk smell

(defined below).

It is not possible to define a general formula for the Severity

Score and the PageRank computation suitable for all types

of architectural smells. In addition, since we are combining

the two values linearly, we need to mitigate potential non-

linearities in their distribution, avoiding masking effects due

to extremely large or small values.

The SeverityScore and PageRank, defined below, will both

assume values in the range [0,∞) mapped to integer values

in the range [0, 1] (low to high respectively), through the

quantile(x) function which is the quantile associated to x
in the reference dataset.

Hence, we decided to compute the quantiles of the two

values (Severity Score and PageRank) on a large dataset of

109 projects (see Table II) of the Qualitas Corpus [13] and

use them to assign values to some thresholds such as: low,

medium low, medium, medium high and high.

The ASIS is defined as follows:

ASIS(ASk) = SeverityScore(ASk) ∗ PageRank(ASk) (2)

.

Since both SeverityScore() and PageRank() return val-

ues between 0 and 1, ASIS represents a SeverityScore
weighted by the “importance” (PageRank) of the subsystem

where the AS appears.

1) Severity Score: The SeverityScore(ASk) is a value

defined for each instance of AS according to each type of

AS. The SeverityScore for the AS detected by Arcan (Un-

stable Dependency (UD), Hub-like Dependency (HL), Cyclic

Dependency (CD)) is defined as follows:

• If ASk is an UD, SeverityScore(ASk) is defined as:

quantile(NumberOfUnstableDependencies)
• If ASk is a CD, ∀ e ∈ edges(CD), SeverityScore(ASk)

is defined as:

quantile(NumberOfelementsInCD∗min(n occ(e)))
where the n occ(e) is the number of times the same

type of edge among two vertices (e.g., class or package)

occurs.

• If ASk is a HL, SeverityScore(ASk) is defined as:

quantile(TotalNumberOfDependencies).

The SeverityScore of the ICPD smell computed con-

sidering the history of a project is evaluated through the

last factor of the ADI computation, the History(ASk) (see

Section IV-B).

2) PageRank: The PageRank(ASk) estimates whether the

AS is located in an important part of the project, where

the importance is defined by the value of the PageRank
algorithm executed on the dependency graph of the project

(to evaluate if many parts (subsystems) depend on the part

where the AS is involved). The PageRank, PR is modeled

starting from the one implemented by Brin and Page [23], as

explained below:

PR(v) =
1− d

N
+ d

(
n∑

k=1

PR(pk)

C(pk)

)
(3)

where:

410

• the vertex v is a node of the dependency graph associated

to a project;

• PR(v) is the value of PageRank of the vertex v;

• N is the total number of AS in the project;

• Pk is a vertex with at least a link directed to v;

• n is the number of the pk vertexes;

• C(pk) is the number of links of vertex pk;

• d (damping factor) is a custom factor fixed at 0.85,

a default value defined by Brin and Page [23]. It can

be changed according to the PageRank value needed

for every vertex and its minimum associated level of

PageRank.

The PR value is computed only on vertices of the de-

pendency graph of both class and package types. PageRank
value PR is used for all the types of AS detected by Arcan,

but the PageRank of an AS which involves multiple classes

and packages is considered differently, e.g, a CD smell that

involves two or more classes or packages. To compute the

PageRank when an AS involves more than one vertex, it is

necessary to aggregate the data; a method to aggregate multiple

values could be to take the maximum PR value of the group.

The PR of all the AS and the max of PR of AS involving

multiple classes or packages is computed as follows:

PageRank(ASk) =

⎧⎨
⎩

If ASk is an AS among classes or packages:

quantile(maxn
j=1PR(vj))

If ASk is an AS of a class or a package:

quantile(PR(v))

where v is the vertex (class or package) affected by ASk, n is

the number of classes vj involved in an AS (among classes)

or the number of packages vj involved in an AS (among

packages).

B. History

The presence of an AS in the history of a project can have

a different impact on the index. Figure 1 shows an example

of project evolution through a graphical annotation. Version 1

(V1) is one version of a project, followed by Version 2 (V2).

V1 has two architectural smells, such as: AS1 and AS2. AS1

has been deleted from the V2 of the project. AS2 is equal

to the AS3 smell detected in V2. The comparison is made by

extracting the subgraphs (SG) affected by the AS and checking

whether the SGs in V2 contain, extend or are equal to any of

the subgraphs of the precedent version V1. In the case of

deletion of AS, a SG in V1 would not be in relation with any

SG in V2.

Hence, the factor of the ADI index related to the history of

a project, History(ASk), is defined as the weight assigned to

the trend of each type of smell as follows:

History(ASk) =

⎧⎪⎨
⎪⎩

ζ If ASk has a Decreasing Trend

θ If ASk has an Increasing Trend

η If ASk has a Stable Trend

(4)

where the trends are evaluated as:

• Decreasing Trend: when the number of classes, files or

packages involved in an AS is decreasing.

Figure 1: Example of AS evolution

• Increasing Trend: when the number of classes, files or

packages involved in an AS is increasing.

• Stable Trend: when the number of classes, files or pack-

ages involved in an AS is stable.

and where ζ, η and θ are fixed according to the validation

of the Index. Currently the values are fixed intuitively at 0.5,

1 and 2 respectively.

V. ARCHITECTURAL DEBT INDEX EVALUATION

In this section we evaluate the ADI index with and without

considering the History component in the index computation.

1) The ADI evaluation without History: In the ASIS

computation we have to consider the SeverityScore and

PageRank. We analyzed their values on a dataset of 109

projects of the Qualitas Corpus [24]: the quantile values of

the dataset distribution are reported in Table I, where the

SeverityScore(ASk) and PageRank(ASk) assume values

between 0 and 1. In this evaluation we have considered only

UD, HL and CD smells, while ICPD has been excluded

since ICPD is based on the history of a project (see next

subsection). Table I reports also the metrics used to compute

the SeverityScore (SS) described above: the number of

unstable dependencies (NUD) for UD; the number of total

dependencies (NoTD) for HL; the number of vertices (NoV)

i.e., number of classes or packages according to the granularity

level and the number of involved cycle (NoC) for CD.

Table II reports the values of the (ADI) index in the

referenced dataset (without considering the factor related to

the History of the projects) and its quantification as a score

value in a range among 1 and 5 through the following function

q(ADI(P)):

q(ADI(P)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 If 0.00 ≤ quantile(ADI(P)) ≤ 0.20

2 If 0.20 < quantile(ADI(P)) ≤ 0.40

3 If 0.40 < quantile(ADI(P)) ≤ 0.60

4 If 0.60 < quantile(ADI(P)) ≤ 0.80

5 If 0.80 < quantile(ADI(P)) ≤ 1

(5)

where quantile(ADI(P)) is the quantile associated to the

ADI computed for the project P of the reference dataset, e.g,

given a project with q(ADI(P)) of 5, its ADI is worse than

a project with a q(ADI(P)) of 2. Moreover, Table II shows

every single factor involved in the computation of the ADI:

ΣASIS, ΣASIS ∗ w, W and the number of the AS found

411

in the projects for UD, CD and HL smells, both at package

(PgK) and class (Cl) level.

From the data of Table II we can observe that projects with a

high number of architectural smells have a higher q(ADI(P)),
in fact Eclipse project has q(ADI(P)) of 5 and 20915

architectural smells; Cayenne has 8 architectural smells and

has q(ADI(P)) of 1. Moreover, we can see that two projects

with similar W (the number of dependency of the project) got

different q(ADI(P)), such as Batik and Freecol got 3 and 5

respectively due to the different number of architectural smells

and the higher ASIS. Batik and Findbugs have similar W
and different q(ADI(P)) of 3 and 5 respectively, because the

number of architectural smells are similar but the ΣASIS ∗w
is bigger for Findbugs than Batik. Hence, Findbugs has bigger

and worse architectural smells than Batik.

The JHotDraw and Tapestry projects have 389 and 398

architectural smells respectively, but they have q(ADI(P))
value of 1 and 2 respectively. Moreover, these values are lower

than for projects with less architectural smells (e.g., JParse

got the value 3 for q(ADI(P))), since the high number of

architectural smells is mitigated mainly by the higher W .

Figure 2 shows the distribution of the q(ADI(P)) for all

the projects of Table II according to the categories to which the

projects belong (Figure 2a) and the number of packages per

project (Figure 2b). All the projects in the Qualitas Corpus

repository are classified in the following categories [13]: a)
parsers/generators/make, b) 3D/graphics/media, c) diagram

generator/data visualization, d) programming language, e)
database, f) middleware, g) IDE, h) testing, i) tool, l) SDK

and m) games. As shown in Figure 2a, all the projects in

the programming language category got q(ADI(P)) of 5,

it is the worst category of projects together with the games

and IDE categories. The testing, generators and middleware

projects are the best ones with box of boxplot starting from

1 and not bigger than 4. Moreover, the worst categories have

big projects in terms of the number of packages and high

ΣASIS ∗ w (if compared to the better ones). As shown in

Figure 2b, the highest q(ADI(P)) is related to projects having

packages between 200 and 300, but the highest values belong

to projects with more than 300 packages.

2) The ADI evaluation with History: For this computation

we have to consider the project evolution. Hence, we evaluated

ADI on more than 100 versions of 10 projects shown in Table

III chosen in 7 different categories of the Qualitas Corpus

repository.

Figure 3a shows the evolution of the Architectural Debt

Index in several versions (i.e., major releases) per project.

The majority of the projects have an increasing trend (i.e. the

projects are getting worse) of the ADI index, i.e., the ADI in

the last version is higher than in the first version. Although,

Checkstyle shows a decreasing trend of ADI before a major

release publication and after that an opposite trend.

We have considered also the evolution of the ADI in the

projects according to the Lines of Code (LOC) of the projects.

Figure 3b shows the evolution of the LOC metric. We can see

that the LOC value in most of the projects is stable, with the

a b c d e f g h i l m

1

2

3

4

5

(a) q(ADI(P)) by Qualitas Corpus’s Category

0−50 50−100 100−150 150−200 200−300 300 +

1

2

3

4

5

(b) q(ADI(P)) by NoP

Figure 2: Boxplots of q(ADI(P)) detected on the Qualitas

Corpus projects

Table I: ADI’s components Quantile and value associated

Unstable Dep. Hub-Like Dep. Cyclic Dependency

Q
u
an

ti
le Package Class Class Package

PR SS N
U

D
PR SS N

o
T

D

PR SS N
o
C

N
o
V

PR SS N
o
C

N
o
V

0.00 1.08 1 1 4.35 1 21 0.78 1 1 2 1.84 1 1 2
0.05 2.85 2 1 9.08 1 33 0.90 35 1 2 8.62 28 1 2
0.10 3.85 3 1 11.54 1 39 0.96 72 1 2 12.97 74 1 2
0.15 4.77 5 1 15.44 1 44 1.05 113 1 2 17.61 132 1 2
0.20 5.63 6 1 18.24 1 52 1.16 162 1 2 22.71 197 1 3

0.25 6.71 8 1 22.38 1 59 1.32 218 1 2 28.53 254 1 3
0.30 7.81 10 1 25.93 1 66 1.53 283 1 2 34.82 305 1 4
0.35 8.94 12 1 30.04 2 69 1.82 354 1 2 42.11 354 1 4
0.40 10.38 14 1 34.53 2 74 2.20 435 1 2 51.55 435 1 5

0.45 12.14 17 1 37.71 2 81 2.84 527 1 3 62.94 542 1 5
0.50 13.69 20 2 46.65 2 85 3.97 632 1 3 75.38 679 1 6
0.55 15.83 24 2 51.08 3 92 5.66 747 1 4 90.00 861 1 7
0.60 18.46 28 2 56.68 3 96 8.59 889 1 5 106.77 989 1 8

0.65 22.85 33 2 64.48 3 102 14.32 1069 1 7 126.19 1159 1 9
0.70 26.70 39 3 75.57 3 108 23.62 1325 1 10 150.30 1428 1 11
0.75 32.64 46 3 82.23 4 117 35.32 1664 1 14 185.52 1744 1 12
0.80 41.35 57 4 93.06 4 129 51.64 2052 1 18 256.20 2216 1 15

0.85 51.60 75 5 114.51 5 139 79.75 2498 1 24 380.28 3416 1 19
0.90 72.29 95 6 137.18 5 165 139.14 3360 1 33 553.30 4366 1 27
0.95 117.32 128 9 167.26 7 194 263.39 4920 2 54 836.93 5751 2 49
1.00 1766.90 207 42 428.95 11 893 418.22 7231 93 102 1599.88 7214 36 79

PR: PageRank, SS: Severity Score, NoC: Number of Cycle, NoV: Number of verti-
ces, NoTD: Number of Total Dependency, NUD: number of unstable dependencies.

exception of two projects (Hibernate and Ant). In Nekohtml,

Emma and PicoContainer projects, we can observe that even

if developers introduce few new LOC, the ADI increases (see

Figure 3a). If we look at both Figures 3a and Figure 3b,

we can observe that the ADI values increase also if the LOC

values remain stable. In fact ADI does not consider LOC in

its computation, but the number of AS.

For what concerns an initial validation of our index, we

looked for consistency between an existing architectural eval-

412

Table II: ADI computation and AS detection

Index Architectural Smells
UD CD HL Total

Project ΣASISΣASIS*w W ADI q
(A

D
I
)

Pkg Cl Pkg Cl Pkg AS

ant-1.8.2 263.1 2353.5 564 4.173 5 26 730 190 4 6 956
antlr-3.4 37.7 318.5 255 1.249 4 8 120 8 4 0 140
aoi-2.8.1 517.8 7506.6 656 11.443 5 7 1007 30 4 2 1050
argouml-0.34 85.5 620.9 489 1.270 4 25 305 114 0 3 447
aspectj-1.6.9 1655.3 35149.6 1476 23.814 5 52 2882 135 6 2 3077
axion-1.0-M2 6.2 20.7 67 0.309 2 5 30 23 0 1 59
azureus-4.7.0.2 3548.5 130507.8 4504 28.976 5 168 5497 1741 3 3 7412
batik-1.7 162.3 895.8 1141 0.785 3 34 617 92 8 2 753
castor-1.3.3 84.0 613.4 706 0.869 3 58 289 139 1 8 495
cayenne-3.0.1 0.4 1.8 77 0.024 1 1 4 1 1 1 8
checkstyle-5.6 20.8 79.2 185 0.428 2 3 77 6 2 2 90
c jdbc-2.0.2 85.8 519.1 526 0.987 3 35 236 129 3 4 407
cobertura-1.9.4.1 1.2 3.0 111 0.027 1 4 14 5 4 2 29
collections-3.2.1 15.0 49.0 287 0.171 1 5 122 21 4 0 152
colt-1.2.0 56.7 306.6 241 1.272 4 9 173 42 4 2 230
columba-1.0 62.9 727.6 459 1.585 4 60 163 187 1 4 415
compiere-330 403.0 4992.6 926 5.392 5 19 922 111 4 5 1061
derby-10.9.1.0 434.0 5252.5 1063 4.941 5 51 1087 153 1 3 1295
displaytag-1.2 6.4 18.1 66 0.275 2 5 30 13 1 0 49
drawswf-1.2.9 25.4 119.2 160 0.745 3 14 87 15 2 0 118
drjava-20100913 761.5 8672.7 1818 4.770 5 14 1818 76 9 3 1920
eclipse SDK-3.7.1 6266.9 92813.4 18058 5.140 5 608 18040 2258 3 6 20915
emma-2.0.5312 8.9 27.5 141 0.195 1 8 56 19 3 0 86
exoportal-v1.0.2 18.5 55.1 239 0.230 2 49 107 40 0 0 196
findbugs-1.3.9 411.0 5864.4 1106 5.302 5 13 909 105 8 2 1037
fitjava-1.1 3.0 9.4 69 0.136 1 0 12 0 2 0 14
fitlibrary-2011 109.4 1080.5 351 3.078 4 38 181 172 1 5 397
freecol-0.10.3 1611.9 31660.1 1169 27.083 5 20 2479 124 11 4 2638
freecs-1.3. 42.7 374.4 155 2.415 4 6 99 22 4 0 131
freemind-0.9.0 347.3 2696.9 846 3.188 4 16 837 82 4 5 944
galleon-2.3.0 125.5 686.9 672 1.022 3 6 529 26 5 3 569
ganttproject-2.1.1 141.0 788.1 700 1.126 3 20 484 99 2 3 608
geotools-9.2 562.9 6518.7 2446 2.665 4 206 1433 808 1 5 2453
hadoop-1.1.2 330.0 3326.0 1743 1.908 4 48 1120 298 4 5 1475
heritrix-1.14.4 49.7 354.5 369 0.961 3 16 137 108 3 3 267
hibernate-4.2.0 625.6 11485.3 1408 8.157 5 124 1038 636 0 3 1801
hsqldb-2.0.0 354.4 7324.4 427 17.153 5 11 651 45 7 2 716
htmlunit-2.8 410.0 7226.4 613 11.789 5 7 765 53 2 0 827
informa-0.7.0-a 1.2 2.7 113 0.024 1 3 19 4 3 0 29
iReport-3.7.5 767.7 8001.8 2560 3.126 4 44 2316 206 5 4 2575
itext-5.0.3 183.1 2171.1 368 5.900 5 6 373 20 5 1 405
ivatagr.w.-0.11.3 0.2 2.4 132 0.018 1 20 2 4 1 2 29
jag-6.1 40.0 105.0 185 0.567 2 7 158 19 1 0 185
james-2.2.0 1.8 5.3 164 0.032 1 6 42 6 1 2 57
jasperreports-3.7.4 130.5 982.2 730 1.345 4 21 362 87 5 2 477
javacc-5.0 3.8 10.4 89 0.117 1 2 19 0 3 1 25
jboss-5.1.0 143.5 1121.4 1291 0.869 3 93 639 119 5 4 860
jchempaint-3.0.1 98.3 651.5 488 1.335 4 37 171 215 2 3 428
jedit-4.3.2 524.0 7554.0 922 8.193 5 14 1161 48 7 1 1231
jena-2.6.3 267.1 3532.1 699 5.053 5 21 620 116 2 4 763
jext-5.0 102.1 686.6 459 1.496 4 13 300 24 4 2 343
jfreechart-1.0.13 10.3 162.6 418 0.389 2 15 60 36 5 4 120
jgraph-5.13.0.0 62.3 366.7 331 1.108 3 8 216 11 4 2 241
jgraphpad-5.10.0.2 11.4 43.0 242 0.178 1 4 80 3 4 0 91
jgrapht-0.8.1 1.2 3.7 74 0.050 1 6 14 11 1 0 32
jgroups-2.10.0 50.2 268.5 506 0.531 2 7 269 39 2 2 319
jhotdraw-7.5.1 34.1 130.2 683 0.191 1 22 325 43 4 4 398
jmeter-2.5.1 148.9 2117.0 513 4.127 4 35 207 274 3 4 523
jmoney-0.4.4 27.2 60.2 148 0.407 2 3 138 4 0 0 145
joggplayer-1.1.4s 12.1 30.4 209 0.146 1 3 96 2 3 0 104
jparse-0.96 9.6 43.1 58 0.743 3 1 30 2 1 0 34
jpf-1.5.1 0.9 2.2 72 0.030 1 2 18 2 1 0 23
jrat-1-beta1 19.2 100.3 176 0.570 3 19 69 46 1 2 137
jre-1.6.0 3136.1 81534.4 3997 20.399 5 145 5761 633 1 4 6544
jrefactory-2.9.19 129.4 1172.0 600 1.953 4 37 372 125 1 3 538
jruby-1.7.3 2586.6 128738.1 1904 67.615 5 46 3592 324 3 9 3974
jspwiki-2.8.4 87.4 711.7 313 2.274 4 17 181 78 4 2 282
jsXe-04 beta 32.8 135.0 286 0.472 2 7 145 8 6 0 166
jtopen-7.8 196.7 1790.9 618 2.898 4 3 613 4 1 0 621
jung-2.0.1 6.4 18.2 141 0.129 1 14 61 23 0 2 100
junit-4.10 6.4 20.3 122 0.167 1 11 45 22 1 1 80
log4j-2.0-beta 15.7 80.6 156 0.516 2 13 64 60 0 3 140
lucene-4.2.0 204.1 1150.6 1618 0.711 3 66 956 241 1 1 1265
marauroa-3.8.1 9.5 43.5 173 0.252 2 12 41 35 4 1 93
maven-3.0.5 19.5 205.1 180 1.139 3 27 28 102 0 6 163
megamek-0.35.18 551.8 7712.7 876 8.804 5 20 1106 72 3 1 1202
mvnforum-1.2.2 60.3 376.9 349 1.080 3 26 201 56 1 2 286
myfaces-2.1.10 56.8 554.4 806 0.688 3 41 243 113 5 2 404
nakedobjects-4.0.0 111.9 758.3 766 0.990 3 99 369 279 0 2 749
nekohtml-1.9.14 0.5 1.1 43 0.027 1 2 5 2 1 0 10
netbeans-7.3 6898.9 49950.4 31592 1.581 4 1043 28865 2016 3 1 31928
openjms-0.7.7-b 13.4 39.2 227 0.173 1 19 115 16 0 2 152
oscache-2.3 0.9 2.3 35 0.066 1 4 10 9 0 1 24
picocont.-2.10.2 4.8 20.3 76 0.266 2 4 33 11 0 1 49
pmd-4.2.5 14.6 70.1 179 0.392 2 17 71 34 0 2 124
poi-3.6 195.1 1709.0 864 1.978 4 43 416 232 5 8 704
pooka-3.0-080505 437.7 6926.1 743 9.322 5 8 955 28 7 0 998
proguard-4.9 12.5 43.8 148 0.296 2 15 85 31 0 2 133
quartz-1.8.3 16.4 38.8 122 0.318 2 8 63 18 0 1 90
quickserver-1.4.7 18.1 55.6 137 0.406 2 6 95 14 0 1 116
quilt-0.6-a-5 4.6 13.8 31 0.447 2 3 25 2 0 0 30
roller-5.0.1 12.4 106.3 353 0.301 2 23 41 65 4 2 135
rssowl-2.0.5 834.5 10870.3 2116 5.137 5 51 2127 182 8 2 2370
sablecc-3.2 1.1 4.6 73 0.062 1 1 18 1 1 0 21
sandmark-3.4 52.2 227.1 394 0.576 3 23 238 22 2 0 285
spring-3.0.5 222.2 1472.0 1453 1.013 3 100 741 296 3 4 1144
squirrel sql-3.1.2 23.3 52.6 116 0.453 2 2 106 2 0 0 110
struts-2.2.1 63.7 454.1 537 0.846 3 43 236 122 1 4 406
sunflow-0.07.2 50.6 364.4 146 2.496 4 7 115 38 1 2 163
tapestry-5.1.0.5 59.0 324.8 575 0.565 2 29 269 84 2 5 389
tomcat-7.0.2 107.7 646.0 796 0.812 3 35 452 92 4 1 584
trove-2.1.0 0.9 2.1 11 0.195 2 0 8 0 0 0 8
velocity-1.6.4 20.5 78.6 90 0.873 3 14 45 34 0 2 95
wct-1.5.2 18.9 168.9 268 0.630 3 35 81 69 1 3 189
webmail-0.7.10 6.2 44.1 109 0.405 2 7 20 6 3 1 37
weka-3-6-9 297.3 2109.3 1079 1.955 4 32 911 236 2 2 1183
xalan-2.7.1 423.8 4715.5 535 8.814 5 21 838 57 2 2 920
xerces-2.10.0 67.0 422.4 269 1.570 4 12 220 38 1 1 272
xmojo-5.0.0 0.1 0.1 5 0.022 1 1 2 0 0 0 3

Table III: Projects selected for the ADI evolution evaluation

Project Versions Category Project Versions Category

Ant 10 Tool JGrapht 7 Tool
Antrl 10 Parser Junit 8 Testing
Checkstyle 15 IDE Nekohtml 12 Parser
Emma 10 Testing PicoContainer 12 Middleware
Hibernate 8 Database Quartz 12 Middleware

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Versions

A
D

I

Ant

Antlr

Checkstyle

Emma

Hibernate

JGrapht

Junit

Nekohtml

PicoContainer

Quartz

(a) ADI

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.2

0.4

0.6

0.8

1

·105

Versions

L
O

C

Ant

Antlr

Checkstyle

Emma

Hibernate

JGrapht

Junit

Nekohtml

PicoContainer

Quartz

(b) LOC

Figure 3: Evolution of ADI and LOC by project

uation of a project and our index. As we can see in Table II, the

Eclipse project has a high value(5) of ADI indicating its poor

quality. This is consistent with the evaluation of architectural

erosion previously conducted by other authors on the same

version(3.X) of the Eclipse project [25].

VI. ADI AND SONARQUBE TDI

In order to answer RQ3 we have analyzed the possible

correlations existing between the Technical Debt Index (TDI)

of SonarQube (see Section II) and ADI.

Figure 4 shows the comparison of the two indexes for each

project: the y-left-axis is referred to Technical Debt index

and the y-right-axis is referred to ADI, but the attention is

focused on the trends of the indexes since their values have

different scales: TDI and ADI improve (less debt) when they

have a decreasing trend. As shown in Figure 4, the trend of

TDI is stable in 4 projects on 10, i.e., TDI has the same

value in the first and last version; while, ADI has increasing

trends for all projects. TDI is not improved in Ant, Junit

and PicoContainer, and also ADI is worse. Moreover, ADI

and TDI have the same trend in Antrl and Emma projects,

while ADI is getting slightly worse and TDI increases in Ant

projects. In conclusion, we can assert that the majority of the

projects analyzed by using our proposed implementation of

ADI has increasing trends for ADI (a worse overall software

413

1 2 3 4 5 6 7 8 9 10

8

9

10

11

In
d
ex

es

4.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55

(a) Ant

1 2 3 4 5 6 7 8 9 10

6

7

8

9

1.1

1.2

1.3

1.4

1.5

1.6

(b) Antlr

1 3 5 7 9 11 13 15

7

8

9

In
d
ex

es

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

(c) Checkstyle

1 2 3 4 5 6 7 8 9 10

5

6

0.13

0.13

0.13

0.13

0.14

0.14

0.14

0.14

(d) Emma

1 2 3 4 5 6 7 8

10

11

12

13

In
d
ex

es

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

(e) Hibernate

1 2 3 4 5 6 7

5

6

7

0.22

0.24

0.26

0.28

0.3

0.32

(f) JGrapht

1 2 3 4 5 6 7 8 9 10

8

9

10

In
d
ex

es

0.15

0.2

0.25

0.3

0.35

0.4

(g) Junit

1 3 5 7 9 11

5

6

7

5 · 10−2

5.5 · 10−2

6 · 10−2

6.5 · 10−2

7 · 10−2

7.5 · 10−2

8 · 10−2

8.5 · 10−2

(h) Nekohtml

1 3 5 7 9 11

5

6

7

8

In
d
ex

es

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

(i) PicoContainer

1 3 5 7 9 11

10

11

12

13

0.4

0.45

0.5

0.55

0.6

0.65
TDI

ADI

(j) Quartz

Figure 4: Evolution of ADI and TDI Index by project

Table IV: Kendall Correlation and Krippendorff’s Alpha inter-

rate test both among ADI and TDI (Bugs and LOC)

Kendall Correlation Krippendorff’s α

ADI - TDI ADI - Bugs ADI - LOC ADI ADI ADI
Project Tau P-value Tau P-value Tau P-value TDI Bugs LOC

Ant 0.447 0.164 0.764 0.003 0.867 0.007 0.225 0.033 0.038
Antlr 0.229 0.447 0.207 0.469 0.449 0.088 0.025 0.023 0.033
Checkstyle 0.175 0.512 0.183 0.405 0.44 0.026 0.320 0.027 0.032
Emma 0.342 0.283 0.000 1.000 0.345 0.205 0.113 0.113 0.028
Hibernate 0.084 0.844 0.074 0.900 0 1 0.311 0.037 0.057
Jgraph 0.499 0.210 0.150 0.759 0.619 0.072 0.308 0.005 0.047
Junit 0.084 0.807 0.431 0.074 0.785 0.001 0.109 0.008 0.031
Nekohtml 0.297 0.129 0.279 0.273 0.333 0.150 0.317 0.030 0.040
Picocontainer 0.331 0.213 0.772 0.001 0.748 0.001 0.104 0.016 0.030
Quartz 0.245 0.215 0.381 0.109 0.473 0.039 0.324 0.014 0.035

In bold are reported P-value lower (or equal) than 0.05 and Tau grater (or equal)
than 0.8

architecture quality), while in contrast to ADI, the TDI has

a stable or improved trend. This trend difference discovered

among ADI and TDI is probably related to their computation:

ADI is focused on the evaluation of the AS of the project

and AS evolution; TDI is focused essentially on the detection

of code and object-oriented violations. Hence, both the two

indexes have to be considered in order to identify code and

architectural debt.

Moreover, we performed three different tests to better ana-

lyze the possible correlation/independence between ADI and

TDI index of SonarQube: Kendall [26] correlation test, Cohen

Kappa [27] and Krippendorff Alpha [28]. We tested also ADI

with some metrics used in the TDI computation of SonarQube:

we considered LOC and Bugs.

Kendall correlation results reported in Table IV among ADI

and TDI indexes show that there is no correlation among them,

since only Ant project has good values of Tau and P-value in

ADI - LOC tests.

Krippendorff Alpha results between ADI and TDI indexes,

shown in Table IV, outline that there is independence between

ADI and TDI, since all the tests had values lower than 0.4

in the ADI - TDI tests: this value is much lower than 0.8,

considered as the minimum value for inter-rater reliability.

This is confirmed for the other two tests case, i.e., the ADI -

Bugs and ADI - LOC.

As last test, we conducted the Cohen’s Kappa tests and

Table V shows the results among ADI and TDI indexes. The

obtained results confirmed what Table IV showed before.

Given the results of the tests on the ADI and TDI indexes

and their evolution shown in Figure 4, we can observe that

ADI and TDI are behaving in different way, since they seem

to not have any correlation or inter-related dependence.

VII. THREATS TO VALIDITY

In this Section, we introduce the threats to validity, fol-

lowing the structure suggested by Yin [29] and we debate the

different tactics adopted to mitigate them. Threats toConstruct
Validity concerns the identification of the measures adopted for

the concepts studied in this work. Regarding this threat, the

first issue is related to the detection accuracy of the adopted

tools. For this purpose, we relied on an existing detection tool

414

Table V: Cohen’s Kappa correlations test among ADI and TDI

Cohen’s Kappa

ADI - TDI ADI - Bugs ADI - LOC
Project Kappa z P-value Kappa z P-value Kappa z P-value

Ant 0.023 1.65 0.0986 0.042 0.942 0.346 0.052 1.25 0.211
Antlr 0.042 1.3 0.194 0.050 1.11 0.266 0.101 2.45 0.014
Checkstyle 0 0 0 0.025 1.25 0.212 0.094 2.55 0.011
Emma 0.032 1.11 0.267 0 0 1 0.052 1.03 0.305
Hibernate 0.150 2.15 0.504 0.011 0.245 0.807 0.010 0.202 0.84
Jgraph 0.062 1.5 0.341 0.062 1.5 0.134 0.051 1.06 0.291
Junit 0.007 0.367 0.714 0.149 2.49 0.013 0.14 3.13 0.002
Nekohtml 0 0 0 0.113 2.88 0.004 0.049 1.19 0.235
Picocontainer 0.023 1.35 0.176 0.081 2.12 0.034 0.102 2.38 0.017
Quartz 0.074 1.67 0.081 0.084 1.74 0.081 0.091 2.27 0.023

In bold are reported P-value lower (or equal) than 0.05 and Kappa grater
(or equal) than 0.8

already used in previous research work [12], [22], where the

authors report a precision of 100%, since Arcan found only

correct instances of architectural smells. The second issue

is related to the completeness of the measures we use to

characterize architectural debt, i.e. Architectural Smells (AS).

We have considered only four AS, while many others have

been defined in the literature, hence we have to extend this

study and analyze the severity and the index computation and

evolution according to a larger set of smells related to different

architectural debt indicators. As for numerical issues deriving

from the scale of the adopted measures, the ADI formula is

defined using the quantile of distribution on a large dataset of

projects. This allows mapping unbounded values (most of the

times distributed exponentially or as a power law) to values

in the range of [0, 1]. This kind of normalization has been

designed to make the combination of the scores originated by

different AS representative of all its parts.

Threats to Internal Validity concern factors that could have

influenced the obtained results. We cannot claim that our

results fully represent every Java project. In order to mitigate

this issue, we considered a large set of 109 projects and we

analyzed 10 versions of 10 open source projects. This dataset

includes projects from different domains, different sizes and

with different software architectures. In this way, we mitigate

the possibility that one of these factors could influence our

results.

Threats to External Validity concern the possibility of gen-

eralizing our results. To make our results as generalizable as

possible, we analyzed a large dataset of projects. More case

studies are needed in order to establish whether our observa-

tions concerning the evolution of ADI and the independence

between ADI and the TDI of SonarQube are applicable also

considering other projects, and in particular industrial projects.

Threats to Reliability refer to the correctness of the conclu-

sion reached in the study. We applied non-parametric tests

and rank-based correlation methods since software metrics

often do not have normal distributions. We used a standard

R package to perform all statistical analyses since it allows

simple replications of them and gives good confidence on the

quality of the results.

VIII. CONCLUSION AND FUTURE DEVELOPMENTS

In this paper a new index oriented to the evaluation of

architectural issues as AS has been proposed and integrated

in the Arcan tool. Severity for all the architectural smells

detected by Arcan are given and explained. An evaluation of

the index has been performed on a dataset of 109 open source

projects. The evolution of the ADI and a comparison with

the SonarQube TDI index has been performed on 10 projects

considering more than 100 versions in total. In the following,

we provide the answers to our research questions.

With respect to RQ1 How should a new index be formulated
to more exhaustively evaluate the architectural debt? Accord-

ing to our proposal, the index should take in consideration the

architectural smells of the project and their development his-

tory. Hence the defined index is computed through the values

of ASIS (Architectural Smell Impact Score) and History.

The first element estimates the criticality of the AS in terms

of the negative impact that they could have on the project. The

second element measures the variation of the number of AS

in a project during the development history, as explained in

Section IV-B. This index can be used to identify and prioritize

the most critical classes or packages in the projects; in this way

the developers/maintainers can easily identify and focus their

attention on them. Moreover, the index can be used to monitor

and check the architectural debt during a project evolution. We

assessed that our index reflects the architectural debt of the

projects by comparing an evaluation done on Eclipse [25] and

the value of ADI, both stating the poor architectural quality

of the project.

With respect to RQ2 How can we estimate the severity of an
Architectural Smell? It is possible to estimate the severity for

each architectural smell. We considered both SeverityScore
and PageRank indexes, described in Section IV-A. The

severity evaluation could be also used to estimate the cost-
solving of architectural smells. The PageRank has been

identified in Section IV-A as a smell-agnostic way to weight

the severity of an AS, since it indicates the most important

and popular place in the dependency graph (i.e., the elements

of the dependency graph that are the hardest to refactor). With

agnostic, we mean that the PR uses the dependency graph and

it is independent from the AS type.

With respect to RQ3 Is the new index based on architectural
smell detection independent from another existing index based
on code level issues? The indexes seem not to have correlation

and inter-dependence according to the three tests we conducted

in Section V. Moreover, there is no correlation of ADI with

both LOC and Bugs used for the computation of the TDI of

SonarQube. TDI showed different trends with respect to ADI

highlighting its weakness on architectural quality evaluation,

since TDI cannot evaluate any aspect of the architecture of

a project which is computed by ADI. In fact we observed

that ADI got worst and TDI was stable or getting better in

the majority of the projects. This highlights the independence

between issues at code level (detected by TDI) and at archi-

tectural level (detected by ADI), making our index a valid

415

support for developers to assess architectural quality.

According to future developments, we aim to evaluate the

index on a large dataset of both open source and industrial

projects to get the feedback of the developers [30]. Hence, the

weights assigned for example to the History could be changed

according to new validations. We focused our effort on the

detection of the AS described in Section III, obviously in the

future other AS can be considered in the index and detected by

Arcan. For example we could consider AS related to Interface

design and evolution, such as the AS Ambiguous Interface,

Redundant Interface, Overused Interface and Unstable Inter-

face [10]. We would like also to detect different categories

of AS which could impact different quality attributes, such as

performance and security; in this direction, we could identify

and compute different ADI index profiles according to the

impact of the AS on specific quality attributes.

Moreover, we aim to extend the index or define a new one to

consider also the cost to remove the architectural smells (cost-
solving). This could allow developers/maintainers to make a

business case (costs vs benefits) and help them to set the order

in which they want to remove the AS. Towards the definition

of this index oriented to the evaluation of the cost-solving, we
are also interested to work on the development of some kind

of automatic/semiautomatic refactoring support by studying

the different refactoring opportunities of each AS. The index

now is focused only on the evaluation of the architectural

debt derived by AS. Other factors could be considered, e.g.

FOSS/COTS obsolescence, legacy monolithic applications and

lack of information architecture hardening.

REFERENCES

[1] R. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, “In search of
a metric for managing architectural technical debt,” in Proc. of the 2012
Joint Working IEEE/IFIP Conf. on Soft. Arch. (WICSA) and European
Conf. on Soft. Arch. (ECSA). Finland: IEEE, 2012, pp. 91–100.

[2] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on
technical debt and its management,” Journal of Systems and Software ,

vol. 101, pp. 193–220, 2015.
[3] E. Tom, A. Aurum, and R. T. Vidgen, “An exploration of technical debt,”

Journal of Systems and Software, vol. 86, no. 6, pp. 1498–1516, 2013.
[4] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton,

“Measure it? manage it? ignore it? software practitioners and
technical debt,” in Proc. of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2015. New
York, NY, USA: ACM, 2015, pp. 50–60. [Online]. Available:
http://doi.acm.org/10.1145/2786805.2786848

[5] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Identifying
and quantifying architectural debt,” in Proceedings of the 38th
International Conference on Software Engineering , ser. ICSE ’16.

New York, NY, USA: ACM, 2016, pp. 488–498. [Online]. Available:
http://doi.acm.org/10.1145/2884781.2884822

[6] Z. Li, P. Liang, and P. Avgeriou, “Chapter 9 - architectural debt
management in value-oriented architecting,” in Economics-Driven
Software Architecture, I. Mistrik, , R. Bahsoon, , R. Kazman, ,
and Y. Zhang, Eds. Boston: Morgan Kaufmann, 2014, pp. 183 –
204. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/B978012410464800009X

[7] F. Arcelli Fontana, R. Roveda, and M. Zanoni, “Technical debt indexes
provided by tools: A preliminary discussion,” in 2016 IEEE 8th Inter.
Work. on Managing Technical Debt (MTD), Oct 2016, pp. 28–31.

[8] T. D. Oyetoyan, J. R. Falleri, J. Dietrich, and K. Jezek, “Circular
dependencies and change-proneness: An empirical study,” in 2015 IEEE
22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), March 2015, pp. 241–250.

[9] M. Lippert and S. Roock, Refactoring in Large Software Projects:
Performing Complex Restructurings Successfully. Wiley, Apr. 2006.

[10] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying
architectural bad smells,” in CSMR 2009. Germany: IEEE, 2009, pp.
255–258.

[11] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak,
and A. Shapochka, “A case study in locating the architectural roots
of technical debt,” in Proceedings of the 37th IEEE International
Conference on Software Engineering (ICSE 2015), vol. 2, May 2015,
pp. 179–188.

[12] F. Arcelli Fontana, I. Pigazzini, R. Roveda, D. E. Tamburri, M. Zanoni,
and E. D. Nitto, “Arcan: a tool for architectural smells detection,” in
To Appear at IEEE International Conference on Software Architecture
(ICSA 2017), 2017.

[13] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble, “The qualitas corpus: A curated collection of java code
for empirical studies,” in Proc. 17th Asia Pacific Software Engineering
Conference (APSEC 2010). Sydney, Australia: IEEE, December 2010,
pp. 336–345.

[14] D. Coleman, D. Ash, B. Lowther, and P. Oman, “Using metrics to
evaluate software system maintainability,” Computer, vol. 27, no. 8,
pp. 44–49, Aug. 1994. [Online]. Available: http://dx.doi.org/10.1109/2.
303623

[15] J.-L. Letouzey, “The SQALE method for evaluating technical debt,” in
MTD 2012, June 2012, pp. 31–36.

[16] S. M. A. Shah, J. Dietrich, and C. McCartin, “Making smart moves
to untangle programs,” in 2012 16th European Conference on Software
Maintenance and Reengineering, March 2012, pp. 359–364.

[17] R. C. Martin, “Object oriented design quality metrics: An analysis of
dependencies,” ROAD, vol. 2, no. 3, Sept–Oct 1995.

[18] R. Marinescu, “Assessing technical debt by identifying design flaws in
software systems,” IBM Journal of Research and Development, vol. 56,
no. 5, pp. 9:1–9:13, 2012.

[19] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
Software Design Smells, 1st ed. Morgan Kaufmann, 2015.

[20] E. Kouroshfar, M. Mirakhorli, H. Bagheri, L. Xiao, S. Malek, and Y. Cai,
“A study on the role of software architecture in the evolution and quality
of software,” in Proc. 12th Working Conf. Mining Software Repositories,
ser. MSR ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 246–257.

[21] R. Mo, Y. Cai, R. Kazman, and L. Xiao, “Hotspot patterns: The formal
definition and automatic detection of architecture smells,” in 12th
Working IEEE/IFIP Conference on Software Architecture, WICSA 2015,
Montreal, QC, Canada, May 4-8, 2015, 2015, pp. 51–60. [Online].
Available: http://dx.doi.org/10.1109/WICSA.2015.12

[22] F. Arcelli Fontana, I. Pigazzini, R. Roveda, and M. Zanoni, “Automatic
detection of instability architectural smells,” in Proc. of the 32nd Intern.
Conf. on Software Maintenance and Evolution (ICSME 2016). Raleigh,
North Carolina, USA: IEEE, Oct. 2016, eRA Track.

[23] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” in Seventh International World-Wide Web Conference
(WWW 1998), 1998. [Online]. Available: http://ilpubs.stanford.edu:
8090/361/

[24] R. Terra, L. F. Miranda, M. T. Valente, and R. S. Bigonha, “Quali-
tas.class Corpus: A compiled version of the Qualitas Corpus,” Software
Engineering Notes, vol. 38, no. 5, pp. 1–4, 2013.

[25] B. Merkle, “Stop the software architecture erosion: Building better
software systems,” in Proceedings of the ACM International Conference
Companion on Object Oriented Programming Systems Languages and
Applications Companion, ser. OOPSLA ’10. ACM, 2010, pp. 129–138.
[Online]. Available: http://doi.acm.org/10.1145/1869542.1869563

[26] W. Hoeffding, Econometrica, vol. 25, no. 1, pp. 181–183, 1957.
[Online]. Available: http://www.jstor.org/stable/1907752

[27] J. Cohen, “Weighted kappa: Nominal scale agreement provision for
scaled disagreement or partial credit.” Psychological bulletin, vol. 70,
no. 4, p. 213, 1968.

[28] K. Krippendorff, Content analysis: An introduction to its methodology.
Sage, 2004.

[29] R. K. Yin, Case Study Research: Design and Methods, 4th Edition
(Applied Social Research Methods, Vol. 5), 4th ed. SAGE Publications,
Inc, 2009.

[30] A. Martini, F. Arcelli Fontana, A. Biaggi, and R. Roveda, “Identifying
and prioritizing architectural debt through architectural smells: a case
study in a large software company,” in Proc. of the European Conf. on
Software Architecture (ECSA). Madrid, Spain: Springer, Sep. 2018.

416

