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Chapter 1
Introduction

The continuously increasing amount of text available on the WEB, news
wires, forums and chat lines, business company intranets, personal com-
puters, e-mails and elsewhere is overwhelming [38]. From 1990 to 2005
more than one billion people worldwide entered the middle class, get
richer, become more literate and thus fueled the information market [[109].
The effect of such an economic and social revolution, together with the im-
provements achieved by information and communication technologies, is
called the information explosion.

Indeed, in the last five years the information created started to diverge
from the storage capacity as reported by the International Data Corpora-
tion [41]. Data and information has gone from scarce to superabundant.
While it is common opinion that this setting brings huge benefits it is also
clear to everyone that it creates new challenges. In the next ten years the
data available on the WEB will amount to forty times the current size [41].
The knowledge hidden in such a huge amount of data will heavily influ-
ence social behavior, political decisions, medicine and health care, company
business models and strategies as well as financial investment opportuni-
ties.

The overwhelming amount of available un-structured data has trans-
formed the information from useful to troublesome. Indeed, it is becom-
ing increasingly clear that our recording and processing capabilities are

growing much slower than the amount of generated data and information.



1. Introduction

Search engines exacerbated this problem and although new paradigm of
web-search are now being explored [6], they normally provide users with
huge amount of un-structured results, which need to be pruned and orga-
nized to become useful and valuable.

In [51] the authors explain how the unreasonable effectiveness of data will
be the pillar of the new WEB revolution. Their position originates from
noticing that the biggest successes in natural language related machine
learning have been statistical speech recognition and statistical machine
translation. These tasks are much harder than document classification, but
the availability of large training sets allows the algorithms to have higher
performances with respect to other task like document classification, part-
of-speech tagging, named-entity recognition, or natural language process-
ing. The difficulty to obtain labeled corpora for such task, is the primary
problem researchers have to face. The process of annotation of a corpus by
human evaluator is difficult, slow and expensive. Human annotators are
usually biased and thus it difficult and costly to obtain objective evalua-
tions. The suggestion of the authors is to exploit the data available over the
WEB rather than generating expensive annotated data.

It is increasingly recognized that useful semantic relationships can be
automatically learned from the statistics of search queries and the corre-
sponding results, as well as from the accumulated evidence of WEB-based
text patterns and formatted tables [107]; in both cases no manually anno-
tated data is required. A second lesson learnt from speech recognition and
machine translation is that memorization offers a good strategy in the case
where a lot of data is available. The statistical models used are based on
huge databases of probabilities associated with n-grams, i.e. short sequences
of words, which have been built by exploiting billions or trillions of exam-
ples. A third lesson is the following; all the experimental evidence from the
last decade in machine learning suggests that throwing away rare events is
almost always a bad idea. Indeed, much WEB data consists of individually
rare but collectively frequent events. Finally, the authors observed that for
many tasks, words and word combinations provide all the representational
machinery we need to learn from text. [51] conclude their manuscript with

the following recommendation “Choose a representation that can use unsuper-
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1. Introduction

vised learning on un-labeled data, which is so much more plentiful than labeled
data”.

Contributions

In this dissertation, we are mainly concerned with probabilistic graph-
ical model for knowledge extraction and performance estimation. Text
mining is a broad definition of a huge set of models, methods and algo-
rithms that aim to distill information from textual data and discover valu-
able knowledge otherwise hidden.

In particular we are interested in novel, efficient and sound models for
managing document repositories expressed in many different formats and
offering to the users nuggets of information necessary to gain competitive
advantage and rational decision making. It is commonly acknowledged
that business companies spend a great deal of efforts in document man-
agement and organization with slightly sufficient results. Usually, users
perceive this tools as a burden and thus the quality of their submission to
the content manager lack of useful information. This dissertation presents a
set of models that could improve information mining by relieving the user
from boring duties and offering efficient ways to manage, classify, tag and
retrieve documents.

Thus the contributions of this dissertation are: a model for automatic
document tagging by means of topic extraction models and labeling algo-
rithm; a probabilistic model for performance evaluation of topic models,
and a combined model that exploits semantic information together with
textual sources to offer efficient and informative way to retrieve informa-

tions. The chapters are organized as follows:

e Chapter 2| presents an overview of background elements used along
the dissertation. In particular we will introduce Text mining and its
main activities: document preprocessing, representation, classifica-
tion and performances evaluation metrics. We will also introduce a
set of similarity metrics useful for comparison of discrete sets and a
common divergence used to compare probability distributions. We

10



1. Introduction

will conclude the chapter with a brief description of semantic graphs
and their representations.

Chapter 8| presents the current state of the art for probabilistic graphi-
cal models and their applications to text mining problems. We will in-
troduce topic extraction models describing their evolution in the last
decade until recently proposed hierarchical topic models. We will also
review different approaches for topic models evaluation and topic la-
beling.

Chapter[|describes a proposal for improving document management
with probabilistic topic models. We will show a model assessment
procedure for topic extraction, an algorithm for automatic labeling of
topics that is able to exploit a user supplied taxonomy, and finally, we
propose a multi-net Naive Bayes classifier that directly maps labeled
topics in a learned model for document tagging. The experimental
section will show the topic extraction procedure, the labeling process
and the documents tagging according to a real world corpus. Main
contributions offered in this chapter refer to [71,73,74].

In Chapter 5|a novel approach to topic model evaluation is presented.
The model interprets a topic model as a soft clustering procedure and
compares the result with a given gold standard. In particular the pro-
posed model offers a probabilistic interpretation of a known cluster-
ing evaluation index and extends such metric to deal with incom-
plete and overlapping partitions. Moreover two probabilistic metrics
linked to the concept of precision and recall are presented. A mon-
tecarlo procedure to evaluate the proposed metrics is presented. The
experimental section is devoted to the evaluation of a topic model,
and shows the correctness of the montecarlo procedure. Main contri-
butions offered in this chapter refer to: [95,96].

In Chapter [f| we present a novel approach for exploiting textual
sources linked to a semantic knowledge base. In particular we will
present a model that is able to enrich the semantic graph with text

documents and offers an effective and sound technique to query the

11



1. Introduction

knowledge base. The proposed system integrates classical informa-
tion retrieval tools with SPARQL query by means of a spreading acti-
vation algorithm. The experimental section will show how this model
is able to retrieve facts not present in the semantic knowledge base,
and entity related with such facts. Main contributions offered in this
chapter refer to: [72]

Chapter [/ summarizes the ideas proposed in the dissertation and

points to directions of future works.

12



Chapter 2
Background Material

The chapter will define the boundaries in which collocate the contri-
butions of this dissertation. The central theme of this work is Text Min-
ing, that can be described as an ensemble of theories and techniques that
aims to extract valuable knowledge from unstructured or semistructured
text. In this chapter we will briefly introduce the Text Mining workflow in
terms of preprocessing, document representation, document classification
and performance estimation. Moreover we will give a description of simi-
larity measures for comparing discrete sets of objects, like words lists, and a
brief description of Kullback-Leibler divergence and its modification as dis-
tance metric. Finally, we will give a brief introduction to semantic graphs

and representation methods.

2.1 Text Mining

Text mining [9,38]], is an emerging research area which aims to solve the
problem of information overload. Its typical tasks are: text categorization,
document clustering and organization, and information extraction. Text min-
ing exploits models and algorithms from machine learning, data mining,
information retrieval and natural language processing to automatically ex-
tract knowledge from semi-structured and unstructured data. Among such
methods, Support Vector Machines (SVMs) [57] have been shown to be ef-
fective to solve the text categorization problem. However, SVMs are en-

13



2. Background Material

dowed by an implicit limitation: they rely on a set of labeled samples. This
condition is extremely costly to be achieved and thus it is not easily met;
whenever it is satisfied the sample labeling result cannot be guaranteed to
be coherent. A lot of efforts have been oriented towards document cluster-
ing and organization: which do not require labeled samples and automat-
ically group documents according to some similarity or distance measure.
Classical algorithms like K-means [70] or Nearest Neighbor [35] represent doc-
uments as vectors in a metric space and compute pair-wise distance to gen-
erate documents clusters. Hierarchical clustering algorithms have also been
described in the specialized literature [35,58]. This class of algorithms re-
turns a nested sequence of partitions in which higher clusters contain a set
of similar documents obtained from couples of more specific partitions and
recursively repeat this idea until the partitions consist of a single document.
Drawbacks of classical clustering methods consist in the inability to capture
the meaning of the different parts of the documents, forcing them inside a
determined bin or subset of bins. Another problem is the labeling of clus-
ters that often relies on humans. [64] proposed Latent Semantic Analysis as
an efficient approach to document clustering and organization; the model
has been later enriched with a probabilistic framework based on mixture
decomposition via a latent class model, by [54]. These models capture the

concept contained in a document and identified by set of related words [16]].

211 Text Mining Workflow

Preprocessing

Caorpus || —

Standardization I—p| Preprocessing ‘_..

f.

Stopwords

Figure 2.1: Preprocessing.

Document Preprocessed
Representation | | ™ Corpus

Given a textual source containing different types of documents (differ-

ent formats, language registers, formatting) the first action that should be

14



2. Background Material

taken is standardization. The standardization step consists in the conver-
sion of the data in a common, shared and machine readable format. In the
specialized literature the common destination formats are identified with
eXtensible Markup Language (XML) [106] that allows a structured repre-
sentation of the documents (i.e. it is possible to identify different sections
in a document, like title, abstract, chapters, sections etc...) or TXT (ASCII or
Unicode) that is preferred whenever the system needs a plain and straight
format. Thus, the system should be able to deal with several formats (e.g.
PDFE, DOC, RTF, HTML) and generate the corpus as a set of TXT or XML
documents.

Once the corpus has been generated, the successive step is the docu-
ment preprocessing, in which different filters are applied to remove all the
data that in the specific implementation are considered to be non informa-
tive. Hence the system applies a tokenization algorithm that identifies each
word, removing the punctuation, numeric values and other standardiza-
tion debris. Then, each token is matched against a stop-word list, contain-
ing articles, pronouns, common abbreviations that are usually considered
to be non informative. The list is language dependent, and whenever the
system has to deal with multi-language corpora, different stop lists should
be applied. If the size of the corpus is huge, the dimension of the relative
vocabulary (i.e. the set of all the words appearing in the corpus) can be-
come quite large. One possible solution to reduce the number of words and
to speed up the computation without loss of information is the removal
of too frequent words that are normally language or corpus specific and
of less frequent words that usually are typos or some other kind of errors.
A possible approach consists in the computation of the distribution of the
words sorted by frequency that usually follows a zipf law [78]. Then, two
quantiles identifying the upper and lower tails are selected. Thus, the vo-
cabulary is reduced and it will contain the words with frequency within a
range defined by quantiles.

Document Representation The last component of the text preprocessing
module is the document representation. Once the documents have been trans-

formed and all the useless information are filtered out, the system should
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2. Background Material

transform the unstructured text in a highly structured format.

The documents are usually associated with a document vector w. Itis a
V-dimensional vector where V' represents the cardinality of the vocabulary
of the document corpus. However, the document vector can be represented
in different ways, while the representation used plays a central role on the
generalization ability achieved by the learning algorithm. The main rep-
resentation schemes are the following; binary or 0/1, term frequency and
term frequency inverse document frequency. In binary representation each
document is associated with a binary vector w whose i component equals
1, whether the document contains at least one instance of the i** word of
the vocabulary and 0 otherwise. The term frequency representation counts
the occurrence of each word of the vocabulary. Therefore, the ith compo-
nent of the vector w contains the number of occurrences of the ith word
in the considered document. The last representation scheme, namely the
term frequency inverse document frequency [101]], consists of two components;
the term frequency and the inverse document frequency. The term frequency
component for the i word ¢ f (i) is the same as in the term frequency rep-
resentation. The inverse document frequency component of the i word is
the reciprocal of the number of document df (i) where it occurs. Thus, the
Term Frequency Inverse Document Frequency (TF-IDF) for the ith word is
defined as follows:

tF — idf (i) = t£ (i) - log (dfl(z)) . (2.1.1)

It is customary to normalize term frequency inverse document fre-
quency to account for different document lengths.

Standard learning methods for text classification are; Naive Bayes, Roc-
chio, K-nearest neighbors and decision tree. However, it has been recog-
nized that Support Vector Machines (SVMs) are state of the art to solve the
text classification problem [75].

16
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information, by automatically extracting information from different ...

text categorization people ischool berkeley edu/~hearst/text-mining.html - Cached - Similar

Figure 2.2: Example of Google results Tag Cloud

Text Classification

The main scenarios in text classification are binary, multi-class and
multi-label [57]]. The binary scenario is the simplest and consists of learn-
ing a supervised classifier from two classes data; multi-class is the straight-
forward generalization of binary classification. It consists of documents
coming from more than two classes. However, most of the text classifica-
tion problems belong to the multi-label scenario. In such a scenario, there is
no one-to-one correspondence between class and document. Given a fixed
number L of classes, each document can be in multiple, exactly one or no
class at all. Classes are usually semantic topic identifiers used to tag docu-
ments, newswires, web pages, ... (Figure .

The multi-label text classification setting is modeled with an L-
dimensional class vector y where each component can take value on
{—1,+1}. Formally, the class vector is defined as follows:

y={-1,+1}". (2.1.2)

[57] pointed out that in the multi-label setting it is not clear how clas-

17
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sification errors have to be counted. Indeed, the 0/1 loss function does not
allow to model close misses while a reasonable distance metric is offered by
the Hamming distance which counts the number of mismatches between
the class vector y and the classifier output jj. Therefore, whether the Ham-
ming distance is used, the expected loss equals the sum of the error rates of
L binary text classification tasks. This means that the multi-label text classi-
fication task can be conveniently split into L binary classification tasks. [57]
motivated this approach by making the assumption that classes are inde-
pendent, given the document vector w and thus using a Bayes argument

concerning the optimality of the maximum posterior classification rule.

Performance Evaluation measures

Methods and algorithms for binary text classification are usually com-
pared on the basis of the following performance measures; accuracy, pre-
cision and recall. In such a setting each document is labeled as a positive
sample (+1) or a negative sample (-1). Let y and ¢ be respectively the true la-
bel and classifier forecasted label for the document described by the vector
z. Itis customary to define as True Positive (True Negative) those documents
where y = § = +1 (y = y = —1), while a document such that y = +1 and
y=—1(y =—1and g = +1) is said to be a False Negative (False Positive).
Then, given a document corpus consisting of N elements the accuracy of
a classifier algorithm or method for binary text classification is defined as
follows:

TP+ TN
N

and measures the effectiveness of the classifier, i.e. its capability to provide

accuracy = (2.1.3)

reliable forecasts. Precision is defined as follows:

TP
TP+ FP

and measures the reliability of the classifier to provide correct forecasts for

(2.1.4)

precision =

the positive class. The recall measure is defined as follows:

18



2. Background Material

TP
recall = m (215)

and measures the fraction of true positive documents which are recalled
from the classifier.

Finally, F-measure has been proposed as a single metric performance that
incorporate the value of precision and recall by computing the harmonic
mean as follows:

2 - precision - recall

F — measure = (2.1.6)

precision + recall

2.2 Similarity Measures

A large number of similarity measures or pseudometrics have been pre-
sented in literature. The measures of interest to this dissertation should
satisfy two distinct requisites: on one hand we are interested to measures
that are able to compare sets of discrete objects like word lists, on the other

hand we want to compute the similarity of given probability distributions.

2.2.1 Set Similarities

The comparison of discrete sets of object and in particular words lists
can be performed with many different metrics. In this section we present
a set of measures that can be applied for the comparison of sets of differ-
ent cardinality. [48] presented, analyzed and compared a representative set
of similarity measures that can be exploited to evaluate concepts similarity,
where a concept is defined as a semantically related sets of words. In this
section we present a subset of similarities that shows a coherent behavior
applied to words sets comparison: namely cosine similarity, overlap simi-
larity, mutual similarity, dice similarity, Tanimoto and Jaccard similarities.

Let z and y be two vectors while ||z|| be the Euclidean norm of vector z,

then the cosine similarity between vector z and vector y is defined as follows:

.fL'yT

— 2.2.1
Izl - ||y]| 22D

Cosine (L y) =

19



2. Background Material

It measures the similarity of the argument vectors through the cosine of the
angle between them. The smaller the angle the greater the similarity be-
tween the argument vectors is. It is worthwhile to mention that vectors =
and y are binary representations respectively for set A and B. The dimen-
sionality of z and y equals the cardinality of the union set A B.

The overlap similarity measure is defined as follows:

AN B

Overlap (A, B) = m

(2.2.2)

where A and B are sets, while | A| represents the cardinality of the set A.
The mutual similarity uses the degree of inclusion of set A into set B and

the degree of inclusion of set B into set A. It computes their average value

as follows:
lANB| |, |AN B
Mutual (A, B) := —4 > 1] (2.2.3)
The dice similarity is defined as follows:
, 2-|ANB|
Dice (A,B) := —————, (2.2.4)
W= s

and is related to the Jaccard coefficient, commonly used in information re-
trieval to measure the overlap between two sets.
The Jaccard coefficient is defined as follows:

_1AnB
AUB|

It ranges from zero to one as the cosine similarity measure. Finally, the

Jaccard (A, B) : (2.2.5)

Tanimoto distance, commonly used to compute the similarity between sets

with different cardinalities is defined as follows:

[Al+[B] -2-|AN B
Al +[B| - AN B

Tanimoto (A, B) :==1— (2.2.6)
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2.2.2 Probability distribution similarity

Kullback-Leibler divergence (KL) [69] is a similarity function commonly
used to compare different probability distributions with the same support
S and is defined as follows:

w tk
KL(ti t;) =Y tilog [ =+ (2.2.7)
et = e )

where ¥ and té‘? are the probability P;(k) and P;(k). The quantity is equal
to zero when for all &, tf = té‘?.

KL is not a proper metric due to its asymmetry. Thus, a symmetrized
version has been proposed, which simply compute the average of both the
divergences:

SKL(ti, tj) = % (KL(ti, tj) + KL(tj, tz)) . (2.2.8)

2.3 Semantic Repositories

In the last decades, the interest in efficient and sound tools for informa-
tion sharing and knowledge management has steadily grown. Since 1972,
ontologies have been introduced by computer scientists as a possible so-
lution for knowledge engineering and representation, information integra-
tion, language modeling, database design. For each of this applications a
specific definition of the term ontology has been given: for example it has
been interpreted as a tool for domain modeling or as a way to solve lexical
and semantic problems like sinonimity. In recent years also the Machine
Learning and Text Mining communities has started to investigate possible
connections [7,37,111] and applications.

While in [49]50] the authors has discussed the notion of ontology and
its implication and applicability, in [8] the authors has moved towards the
definition of the Semantic Web by means of a set of properties that should
be satisfied by a (web) resource:

The Semantic Web is an extension of the current web in which infor-
mation is given well-defined meaning, better enabling computers and
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people to work in cooperation. [8]].

In the last ten years, a great deal of effort has been spent in the definition
of ontology languages that satisfy the above definition. A first step towards
the creation of a structured information over the web was XML [106] that
soon became too limited for richer ontology specification. Subsequently
RDF and its accompanying schema language RDFs have became reference
language for ontology definition and construction. In the recent years On-
tology Web Language (OWL) has been proposed as an extension of RDF.

Resource Description Framework

RDF (Resource Description Framework) is a general purpose language
for representing metadata over the World Wide Web. It guarantees meta-
data interoperability. The data model is characterized by triples consisting
of (object, properties, values). W3C has provided a standard syntax specifi-
cation [65] and an associated schema specification [17]. The model consists
of three basic data types:

e Resources identify objects named by Uniform Resource Identifier
(URI) or by strings.

e Properties define a specific characteristic, attribute or relation to de-

scribe a resource.

e Statements are specific resources together with a named property and
an associated value.

Formally each RDF statement is defined by a triple: < S, P,O > where
P (Predicate) is an URI, S (Subject) is an URI or a blank node and O (Ob-
ject) is a URI, a blank node or a literal. RDF offers a very basic syntax that
defines web metadata like authors, creation date etc. RDFs extended such
syntax making possible the definition of classes of resources and properties.
In particular, according to RDFs syntax, an ontology is defined in terms of
classes, subclasses, sub-properties, domain and range restriction of proper-
ties. A complete specification of RDF/RDFs vocabulary description language
is provided by the W3C [17].
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rdfs:Resource

AN

rdfs:Class rdfs:Literal rdfs:Datatype rdfs:Property

Figure 2.3: Classes definition in RDFs.

The basic elements of the RDFs are classes and properties: a class has the
same interpretation of a class in an object-oriented programming language.
The types of a class, depicted in Figure [2.3] are the following:

o rdfs:Resource: All things described by RDF are are instances of the class

rdfs : Resource.

e rdfs:Class: The class of resources that are RDF classes. rdfs : Class is
an instance of rdf s : Class.

o rdfs:Literal: The class of XML literal values. rdf : XM LLiteral is an

instance of rdf s : Datatype and a subclass of rdfs : Literal.

o rdfs:DataType: The class of datatypes. All instances of rdfs : Datatype
correspond to the RDF model of a datatype described in the RDF Con-
cepts specification. rdfs : Datatype is both an instance of and a sub-
class of rdf s : Class. Each instance of rdf s : Datatype is a subclass of
rdf s : Literal.

e rdfs:Property: is the class of RDF properties. rdf : Property is an in-

stance of rdf's : Class.

RDFs specifications for properties, depicted in Figure are the fol-
lowing;:
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rdf:property

rdfs:subPropertyOQ rdf:subClassOf

Figure 2.4: Properties specification in RDFs

o rdfs:subClassOf: The property rdfs:subClassOf is an instance of
rdf:Property that is used to state that all the instances of one class are

instances of another. The rdfs : subClassO f property is transitive.

o rdfs:subPropertyOf: The property rdf s : subPropertyO f is an instance
of rdf : Property that is used to state that all resources related by
one property are also related by another. The rdfs : subPropertyO f

property is transitive.

e rdfs:range: is an instance of rdf : Property that is used to state that the
values of a property are instances of one or more classes.

o rdfs:domain: is an instance of rdf : Property that is used to state that
any resource that has a given property is an instance of one or more
classes.

e rdfs:label: is an instance of rdf : Property that may be used to provide
a human-readable version of a resource name.

e rdfs:comment: is an instance of rdf : Property that may be used to

provide a human-readable description of a resource.
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State of the art

3.1 Probabilistic Graphical Models

Statistical applications in Data and Text Mining require to deal with
complex models involving thousand of interdependent random variables.
Probabilistic Graphical models tries to merge two important fields of ap-
plied mathematic: probability theory and graph theory and offer an effi-
cient and sound tool for solving inference and estimation problems.

A probabilistic graphical model (PGM) [59] is a family of probability
distribution described by a directed or undirected graph. Undirected mod-
els commonly describes Markov Random Fields [63], while directed models
are commonly used for the description of Bayesian Networks [87] or latent
variable models.

Formally a PGM is defined as G = (V, E) where each node v € V rep-
resents a random variable, each edge {(v;,vj) € E} describe dependencies
among the variables and plates describe replication of substructures of the
graph.

PGM can be used to represent latent variable models that describe how
observed data interact with latent or unobserved random variables. In the
graphical representation, shaded nodes represent observed variables and
unshaded ones the unobserved variables.

Example 1. In Figure[3.1(a))is represented the graphical model of a Gaussian mix-
ture model; the observed variable x is shaded, the unobserved variable z represents
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(a) Graphical Model. (b) Probability Density Function.

Figure 3.1: Gaussian Mixture.

a sample from a multinomial distribution 6 that selects the normal distribution
from which the next value will be sampled and j1 represents the random variable of
the mean parameter of the Gaussian distributions composing the mixture.

In figure is represented the probability density function of the mixture
composed by three different normal distribution distribution with mean p; =
—4, po = 1, pg = 5 and equal variance o1 = o9 = o3 = 1. Posterior inference on
such model is the main task we want to solve. In particular we may be interested
in computing the value of z given a data point x i.e. P(z|x = 1, p1, o, p13), or to

estimate the value of the mean parameter ju, for each component.

Posterior inference on the desired latent variables conditional on ob-
served data can be computed by empirical Bayes approaches which find the
point estimates of the parameters based on maximum likelihood using, for
example, the expectation maximization algorithm [31]. On the other hand,
the problem can be solved using a fully Bayesian approach, placing prior
on variables and computing proper posterior distribution over the model
parameters. Such approach is defined as the hierarchical Bayesian model-
ing [44] and necessitate the specification of a distribution over the parame-

ters, which are endowed by hyper-parameters.

3.1.1 Posterior inference

In latent variable models our goal is to compute the posterior distribu-
tion of latent variables conditioned on observed data. Exact computations
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for this posterior is usually intractable except for toy models. In recent years
with the increase of computational power and models complexity, several
approximate approaches have been proposed in the literature. In this dis-
sertation we are mainly concerned with Mean field variational approach [59]
and Gibbs Sampling [24] that are the natural choice for the models presented
in the following section in which variables are assumed to follow exponen-
tial distributions [12].

In a hierarchical mixture model with parameter 7, observed variables
x = x1.n and latent variable z = z;.)s the posterior of the latent variable can

be computed as:

p(zim|T1N, M) = p(xlzN’zliM‘n)
e fp(xlthzlsM|77)d21:]\/['

This posterior is often intractable. Whenever in the denominator 2./ is
a realization of one of K possible values (i.e. the mixture components), the

integral is a sum over K™ elements.

Mean-Field Variational methods

Let (y,z) = (y1,---s Yn, 21, ..., 24) be a continuous random vector with
values in R"*? and for a given § define the joint density of (y, z) by f(y, z|6).
Suppose y to be observed while z is latent; the parameter 6 is modeled with

distribution p(6). The posterior p(f|y) can be defined as:

S 9y, =z 0)dz
p(fly) = e (3.1.1)

where ¢(y, z,0) is the joint density of (v, z,60) and m(y) the marginalized
density. p(f|y) is normally intractable in many real world problems, mean-
field variational methods offer a deterministic methodology for approxi-
mating such posteriors. The posterior p(|y) can be computed by marginal-
izing out z from p(0, z|y). The variational approximation can be defined as

follows:

e Let ¢(9, z|y) to denote the variational density with same support S of
the true distribution.
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e Assume that 6 and z are conditionally independent given y:
(0, 2ly) = q1(2|y)g2(0y).

e Choose ¢;(z|y) and ¢2(f|y) to minimize the Kullback-Leibler diver-
gence between p(60, z|y) and ¢1(z[y)q2(0]y).

The quantity to be minimized can be computed to be:

(p(0,2ly),q(z,0ly)) =
ga(

3.1.2
lOQ(P(y))+/SCJ1(2\3/)(12(9!y)log ((‘y):)w))dzdé? ( )

The minimization must satisfy the following constraints:
e ¢i(z|ly) and ¢2(0|y) are strictly positive
o [qi(zly)dz = Land [ g2(0]y)dd = 1

The minimization is solved through a mean-field algorithm that iter-
atively minimize the KL with respect to the unconstrained ¢; and ¢2. In
particular at each step the algorithm separately minimize ¢; and ¢» while
holding the other fixed.

Further details on variational models can be found in [[12,60,(113,118].

Gibbs Sampling

Gibbs Sampler is a particular type of Markov Chain Monte Carlo (MCMC).
MCMC are a class of algorithm in which the rationale is to build a Markov
Chain which stationary distribution is the target distribution. Once the
chain is collected it is possible to collect samples from the chain and approx-
imate the desired distribution. In particular GS is derived from Metropolis-
Hasting algorithm [52] in which the acceptance criterion for the candidate
point is removed. The key of GS is to consider only univariate conditional
distributions, hence all the random variables but one have assigned a fixed
value. This approach implies that the vector of n different random vari-
ables is computed in n steps rather than generating the vector in a single
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pass. The samples are collected after a burn in period that makes the dis-
tributions independent to the starting configuration.

To compute the posterior p(z|x, 1) each iteration of the GS draws each la-
tent variable z; from p(z;|z_;, x, ). When the chain is converged we collect
B samples and approximate the empirical distribution as follows:

B

p(z|x,n) Z

An extended description of the Gibbs Sampler can be found in [24]43}/44]

3.2 Probabilistic Graphical Models for Text Mining

The following section describes the main models proposed in the liter-
ature for topic extraction. In particular we will describe the basic models
proposed in the last decades together with their extensions.

3.2.1 Notation

The notation used in the dissertation follows the following schema:

e A corpus of documents is identified by a collection of M documents:
D = (di,d2, -+ ,du).

e Each document d; is represented by a vector of N words w =

(wl,wg, s ,'UJN).
e Each corpus is associated with a vocabulary V' = | J o Wa

e In each document d;, each word w is associated with a topic, thus each
word vector w = (wq,ws, - ,wy) is associated with a topic vector

Z = (ZlazQa'” 7ZN)-

3.2.2 Uni-gram model

The simplest latent graphical model for text can be identified with uni-
gram model. The generative model described in Figure assume that
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™

Figure 3.2: Uni-gram Model.

for each document d € {1, M} the words w € {1, N} are sampled from a
single multinomial distribution. The probability of a document is defined

as follows: N
P(w) =[] P(wn). (3.2.1)
n=1
3.2.3 Mixture of Uni-grams
M
N

@

Figure 3.3: Mixture of Uni-grams Model.

[90] has extended the uni-gram model by including a latent topic vari-
able z. The underlying generative model states that given a document we
first choose a topic z and then we sample N words independently from
the conditional distribution p(w|z). The document probability is defined as
follows:

N
P(w) = Z P(z) H P(wp)z). (3.2.2)

Hence, this representation states that each document is associated with
only one possible topic. This assumption is limiting especially in large text
collection where a more fine grained approach should better represents the
complexity. Inference in conducted with an EM procedure.
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3.2.4 Probabilistic Latent Semantic Analysis (pLSA) [54]

PLSA have been proposed by [54}55] to give a statistical interpretation
of Latent Semantic Analysis (LSA) [64]. LSA has its roots in linear algebra
and, in particular, in dimensionality reduction algorithms. Given the bag-of-
words representation of a corpus, i.e. a D x W term frequency matrix, Latent
Semantic Analysis applies a Single Value Decomposition (SVD) to project the
document in a new lower dimensional space that allows to better capture
similarities between documents (LSA) and between documents and queries
(Latent Semantic Indexing). One of the deficits of such model contested
by [55] is the lack of solid statistical foundation and the difficulty of dealing
with polisemy and synonymity.

M

N

© e®

Figure 3.4: pLSA model.

The proposed model, tries to overcome the problem of LSA by formulat-

ing a latent class model specifying a precise generative model and offering
an empirical Bayes algorithm for posterior inference.
In particular the proposed model tries to associate the co-occurrences of
the words w; € w with a latent class z; € z for each document d € D.
The graphical model is represented in Figure 3.4 and the relative genera-
tive model is described as follows:

1. select a document d with probability P(d) « length(d),
2. pick a latent class z with probability P(z|d),

3. generate a word w with probability P(w|z).

The observed variables are the pairs (d, w), i.e. the presence of a word

inside a document. The joint probability model can be written as:
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P(w,d) = P(d) *x P(w|d), where (3.2.3)
P(w|d) =Y P(wl|z) = P(z]d). (3.2.4)
z€Z

The model makes two assumptions: the observation pairs (d, w) are as-
sumed to be independent (i.e. bag-of-words assumption), and it is assumed
that the words w are generated independently of the document d given the
latent class z.

Inference This model interprets documents as mixtures of multinomial
distributions over words given the latent class variable p(w|z) where the
mixing proportion are given by p(z|d). It is worthwhile to notice that pLSA
is different form other document clustering algorithms, as a matter of fact,
documents are described as mixtures of objects that are distribution over
words.

The Log-Likelihood of the model is defined as:

L= n(dw)logP(d,w) (3.2.5)

deD wew
where n(d, w) is the term frequency of the word w in the document d. Max-
imum Likelihood estimation can be computed with the Expectation Maxi-
mization algorithm.
The E step computes posterior probabilities for the latent variable z based
on current values of the parameters:

P(2)P(d]2) P(u2)
PGl d) = = b Gy Pl Plul )

The maximization (M) step, updates parameters for the computed pos-
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terior:
wl|z) = Zdn(d’w)P(z|w’d)
P(w|z) S o (s w) Py, ) (3.2.6)
) — Sogn(d,w)P(z|lw,d)
P(d|z) = S i 1dj, W) P (2w, dj)’ (3.2.7)
1
P(z2) = ST %n(d,w)P(zd,w). (3.2.8)

The author states that the EM algorithm [31] is prone to overfitting due
to the numbers of parameters to evaluate: in particular the model consist
of K multinomial distribution over V words plus the K multinomial mix-
ture over each of the M documents. To overcome the overfitting author
proposes a Tempered EM algorithm TEM, that at each iteration applies a
smoothing over the parameters computation. Details of the TEM algorithm
are described in [54].

3.2.5 Latent Dirichlet Allocation (LDA) [16]

LDA tries to improve the weakness of previous models. In particular
the mixture of uni-gram model is heavily limited by assigning one topic per
document, while pLSA suffers of overfitting due to the non well defined
generative model. In pLSA d is a dummy variable representing the index
of the document currently considered in the corpus, and thus the associ-
ated random variable has as many possible values as the number of doc-
uments: so the model learns the topic mixture p(z|d) considering only the
documents in the current corpus. This particular set-up implies that there
is no natural way to assign probability to a previously unseen document.
Moreover, the number of parameters of the model grows linearly with the
number of documents, due to fact that the distribution is indexed by the
documents: e.g. in a K-topic model, the number of parameters is speci-
fied by K multinomial over the vocabulary of size V plus a mixture over
K topic for each of the M documents resulting in £V + kM parameters to
estimate that grows linearly in the number of documents. [94] have shown
that also the tempered version of the EM algorithm is prone to overfitting.
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Figure 3.5: LDA model.

In LDA a document is formed by first deciding its number of words,
the mixing coefficients associated with the topics and then by repeatedly
choosing a topic and consequently sampling a word from the selected dis-
tribution. Thus the generative process proposed by LDA gives a fully prob-
abilistic definition of document generation process:

1. choose the document length N ~ Poisson(¢),
2. choose the topic mixing proportion 6 ~ Dir(«),
3. For each of the N words w,:

(a) Choose a topic z, ~ Multinomial(),

(b) Choose a word wy, ~ p(w|zy, ).

The model has some simplifying assumptions: the number of topics
and thus the dimensionality of the Dirichlet distribution is assumed to be
known. The Poisson assumption can be ignored: the number of words N in
the document is independent of the data generating variables § and z, hence
it can be interpreted as an ancillary variable and so ignored. Moreover, (3 is
interpreted as a K x V matrix such that 8;; = P(w’ = 1|2 = 1) is treated as
fixed quantity to be estimated. Given the parameters o and g, it is possible
to write the joint distribution of a topic mixture 6, a set of words w and its
associated topic z as:

N
p(0.2,wla, B) = p(6]a) [ | p(znl0)p(wnlzn, 5). (3.29)

n=1
The marginal distribution of a document is then computed by integrat-

ing over 0 and summing over z:
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Figure 3.6: Smoothed LDA model.

N
p(wla ) = [ pOl)([] 3 plenlo)ptienlzn, 5))a0. (3:2.10)

n=1 zn

Inference Givena LDA model, we are mainly interested in computing the

posterior of the hidden variables given a document:

p(0,z, wla, B) .

pwla, B) (3.2.11)

p(0,zlw,a, ) =
Unfortunately, this distribution is intractable to compute in general, due
to the nature of the denominator (see Equation in which 6 and
are coupled. The authors propose a convexity based variational inference
approach for posterior approximation. We address the reader to the original
paper for the details.
The parameter o and /3 are estimated via a variational EM algorithm
that maximize the Log-Likelihood of the data:

M
L(Oé, ﬁ) = Z lng(Wd|Od, /8)
d=1

The authors state that in large corpora the evaluation of 3 in the infer-
ence step can be problematic: when the size of the vocabulary tends to grow
large the matrix 8 with dimensions K x V becomes really sparse. In this
set-up the model tends to associate zero probability to previously unseen
words and thus giving zero probability to new documents. The authors
suggest to insert a Dirichlet smoothing over 5 with parameter 7. The pro-
posed model is depicted in Figure The inference procedure is adapted
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Figure 3.7: Document generation process. Mixing coefficient of 0.7 and 0.3.

according to this modification.

3.2.6 Probabilistic Topic Models (PTM) [103]

PTM endorse the main idea of topic extraction: a document can be inter-
preted as a linear combination of probability distributions over a given vo-
cabulary, where each probability distribution, i.e. topic, is associated with
a specific argument, idea or theme.

The generative model proposed by [103] adopt the smoothed generative
model proposed in [16] (Figure which associates a Dirichlet prior with
hyper-parameter 7, to the topic-word distribution p (w|z). The authors sug-
gest to interpret the hyper-parameter as prior observations on the number
of times words are sampled from a topic before any word from the corpus is
observed. This choice smooths the word distribution in every topic with an
amount of smoothing determined by the value of the hyper-parameter. The
authors suggest that a good choices for the hyper-parameters is dependent
to the number of topics K and vocabulary size V.
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Inference The authors observe that many text collections contain millions
of word tokens, and thus the estimation of the posterior over the topic re-
quires the adoption of efficient procedures. While in [16], the the estimation
B is performed through variational approximation. [46] propose to directly
estimate the posterior distribution p(z|w) and then obtaining the estimates
of § and 5. Thus, they choose symmetrical Dirichlet priors for o and 7,
and computes the joint distribution of p(w, z) by integrating out 6 and §.
It is worthwhile to notice that the full joint distribution can be written as

follows:

p(w, 2,6, Blav,n) = p(Blm)p(6]a)p(2]6)p(w]B, 2). (3.2.12)

Then integrating out ¢ and /3 leads to:

p(w, zla, n) = / / p(BImp(6]a)p(2|0)p(w]B, 2)d0ds. (3.2.13)

Separating the integrals by pulling out the terms dependent on the variable
being integrated:

p(w.zla.n) = [ p(aO)p@la)ds x [ p(Bpwlpzas. (219
Hence it is possible to evaluate the posterior as:

pzlw) = 2 (w,2) (3.2.15)

- > pw,z)

However, the denominator requires to evaluate the distribution in a
large sample space that is intractable. The authors then proposes to uti-
lize a Gibbs sampling procedure, which is easy to implement and provides
a relatively efficient method to compute such distribution. Details of the
computations can be found in [46] and in [23]].
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Figure 3.8: Author-Topic Model.

3.2.7 Extended Models

In the last years several models for topic extraction have been proposed.
Each of them take as building block the LDA model and add other com-
ponent that creates richer and specialized models. In this section we will
briefly present the main and more interesting extended models. In par-
ticular we will describe the Author-Topic, the HMM-LDA models, and the

hierarchical topic models.

Author-Topic Model [99]

The author-topic model (AT-LDA) extends LDA by incorporating the
authorship of the documents in the corpus. In particular AT-LDA assumes
that the observed variables are both the documents (i.e the words) and the
set of associated authors; the inference procedure discovers the topics dis-
cussed in the documents and the set of authors associated to such topics.
A multi-author document will be characterized by topics that are shared
among the authors.

In the generative model each author a,, € A is characterized by a prob-
ability distribution over topics (#), and each topic is described as a distri-
bution over words (3): documents are generated by picking an author at
random and then sampling a topic from the author-topic distribution and
finally extracting a word from the specific word-topic distribution. For-

mally the generative process for a document is defined as follows:
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1. For each author a, choose the topic mixing proportion 6, ~
Dirichlet(«),

2. For each topic z, choose the word-topic distribution 3, ~ Dirichlet(n),
3. For each word in the document:

(@) Choose an author a,, ~ Uniform(A),
(b) Choose a topic z, ~ Multinomial(6,,,),

(c) Choose a word w;,, ~ Multinomial(.,, ).

The probability associated with the corpus can be defined as follows:

M
P(D|A, a,n) = //p(e,ma n H (walA,0,3)d0ds. (3.2.16)

Equation[3.2.16|implements the same strategy as PTM in which the topic
weight distribution 6 and the word-topic distribution J are treated as ran-
dom variable and integrated out while p(0, 5|, n) = p(0|a)p(B|n) are the
Dirichlet priors.

Inference The inference strategy proposed by the authors exploits a Gibbs
Sampler procedure to approximate the posterior p(6, 3|D, ., n). In particu-
lar the authors use this posterior to derive other quantities used in different
tasks, like information retrieval or as a tool to find the most surprising doc-
ument from an author. The inference scheme is based on the observation
that:

p(0, 81D, c,n) =Y p(6, B|z,a,D, a,n)P(z,a]D, a,1). (3.2.17)

z,a

The Gibbs Sampler procedure is used to obtain an empirical sample esti-
mation of P(z,a|D, a,n), then p(0, 5|z, a, D, v, n) is computed by exploiting
the conjugacy between Dirichlet and multinomial distributions. Details of
Gibbs Sampler derivation can be found in [99].
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Further extensions: [88]] propose some extension and differentiation of the
basic author topic model that replace authors with different entities in the
corpus; The proposed models are:

o Conditionally-Independent LDA (CI-LDA) that makes an explicit a pri-
ori differentiations of word tokens by means of common words and

entities. The work is similar to the one proposed by [28].
e Switch-LDA is the fully generative model derived from CI-LDA.

e CorrLDA-1 that tries to overcome the decoupling that implicitly af-
fects Switch-LDA by first making inference about word topics and
consequently associating entities to such topics.

e CorrLDA-2 that modify CorrLDA-1 by allowing word topics includ-
ing mixture of entity topics, i.e topics about sports is related to entity

topics about soccer, football, and basket players.

[22] propose the User-Topic-Tag (UTT) model in which a collaborative
tagging process in modeled. The generative process assumes that each user
cites a document based on his interest (i.e. users are modeled as the au-
thors in AT model) and then applies the tags to the documents according
to its content. In particular, each topic is associated with a distribution over
words (as in LDA), and moreover each topic is also associated with a multi-
nomial distribution over tags. A comparison of different models for anno-

tated documents is presented in [21]

Integrating topic and syntax (HMM-LDA) [45]

The words used in a document have two different purposes: seman-
tic and syntactic. Syntactic words are functional words connecting the se-
mantic ones which express the meaning of documents. This two classes of
words have different behaviors in a text: semantic words have long range
dependencies (i.e different sentences can have similar content) while syn-
tactic constraints are normally sentence-dependent and have short range

dependencies. The authors propose a composite model: an LDA model
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Figure 3.9: Simplified HMMLDA graphical model.

deals with semantic classes and a Hidden Markov Model (HMM) deter-
mines when to emit words from the syntactic class.

Thus, for each word w; in the document, the generative model takes

into account the corresponding topic z; and also the particular state s; of the

chain that emits the word class ¢;. In particular, whenever the chain status

selects a class ¢ = 1 the word belong to the semantic class and then its topic

z is sampled from 6 (i.e. topic mixing proportions), while if the status is

greater then 1 a syntactic class c is selected. Thus the word is sampled from

¢ when the chain is in a semantic state or from /. for syntactic states. Class

transition follows a distribution 7(,_1) that is a row of the transition matrix

1L

The generative model for a document in the corpus is the following;:

1.

2.

Choose topic mixing proportion 6 ~ Dirichlet(«),

Choose word-topic distribution for semantic class 3; ~ Dirichlet(n),
Choose a row of the transition matrix II as 7; . ~ Dirichlet(y),
Choose word-class distribution for syntactic classes /3. ~ Dirichlet(d),

For each word in the document:
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(a) Choose z; ~ 69,
(b) Choose ¢; ~ w(c=1),

(c) If ¢; = 1 then w,, ~ 3;" else w,, ~ B%.

Inference The authors solve the inference problem via a two step Gibbs
sampling procedure in which 3, # and 7 are treated as parameters and con-
sequently integrated out. In particular, in the first part of the Gibbs sampler
a topic assignment z; is drawn conditioned on all other assignment z_;, on

class assignments c and the observed words w:

P(zi|z—i,c,w) < P(z|z—;) P(wi|z,c,w_;). (3.2.18)

Similarly the class assignment is drawn from:

P(cilc—i,z,w) < P(w;|z,c,w_;)P(ci|c_;). (3.2.19)

In the experimental section, however, the author states that to use a grd
order Markov Chain. This modification implies the inclusion of an addi-
tional term in P(c;|c_;). Details of the computation can be found in [45]
and [47];

Hierarchical Topic Models

A great deal of efforts have been focused on developing hierarchical
topic models. Models like LDA and its extensions extract flat sets of topics,
that sometimes does not capture the intrinsic hierarchical structure, and
leave to the researcher the burden of the organization. Different approaches
have been proposed in specialized literature: in particular it is possible to
distinguish two different approaches.

On one hand there are post processing solutions like the one proposed
by [119] that exploits particular metrics to evaluate the specificity of topics
and build an ontology. Also [123] utilize topic models to build an ontology
by means of topic models.

On the other hand several Bayesian approaches have been proposed:

[14] exploit the Chinese Restaurant Process [2] by applying a nested structure
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that defines an infinitely branching tree with chosen depth, and in which
the nodes are the topics and documents are characterized by paths in the
tree. In [13] the model is extended by allowing infinite branching and in-
finite depth topic trees that are described by two different stochastic pro-
cesses: the nested Chinese restaurant process defines the branching character-
istic, while the stick braking process [93] put weights on the nodes, i.e. the
topics proportions, along the paths. In particular, this model describes doc-
uments as a path in the tree and force general topics to higher level of the
trees. The stochastic processes described are both particular characteriza-
tion of the Dirichlet Process [3]].

[33] propose a model similar to [14] that exploits a nested Hierarchical
Dirichlet Process (HDP) [108] to create more fine grained and compact topic
tree.

[68] and [66] presented a model that exploits a directed acyclic graph
(DAG) to capture nested correlation between topics: in particular the leaves
of the DAG are individual words of the vocabulary, internal nodes repre-
sents correlation between its children (i.e. words or topics). [67] use a non-
parametric Bayesian prior based on the HDP that allows the model to learn

the number of topics and their relation.

3.3 Topic Labeling

Topic Labeling is a key issue in developing topic models, especially
whenever the model is used as an intermediate step in application like in-
formation retrieval or document classification [83]. Nonetheless, research
community has spent little attention on this problem and often it they relies
on manual labeling.

This section presents two of the more interesting approaches to topic la-
beling: the first one is specifically devoted to the label assignment problem,
the second utilizes a different approach to create more meaningful topic by

means of a post processing step.
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3.3.1 Automatic Labeling of Multinomial Topic [79]

The proposed model tries to overcome the weakness of human labeling
for topic models. A manual labeling has to face many difficulties espe-
cially with larger models that normally are quite specific in the content and
maybe overlapping. In this set up the labeling process is prone to errors due
to the difficulty in the choice of meaningful, precise and unbiased labels.

According to the authors a topic labeling procedure should satisfy the

following constraints:

e labels should be understandable by the user;

e labels should capture the meaning of topics i.e relevant;

labels should distinguish a topic from others i.e discriminative;

label should offer a high coverage of the labeled topic;

labels should be objective and unbiased;

The main ingredients of the labeling problem can be formally described
by:

e a topic model § = {z1,z2,---,2} describing a document corpus D.

where each z; is a probability distributions over words.

e a set of topic labels £L = {l,l2,--- ,1;} in which each [; is defined by a
sequence of words semantically meaningful to the latent topic mean-
ing;

e arelevance score S(l;, z;) that measure the semantic similarity between

a label and a topic.

The Topic labeling problem consists in finding the best set of labels £ that
match a topic model 6 according to the relevance score adopted.
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Topic Labeling The labeling process requires to find candidate labels by
extracting relevant phrases form the document corpus: two distinct ap-
proaches has been identified, the simplest one requires to extract phrases
using a Natural Language Processing (NLP) chunker and selecting the most
frequent ones. The other approach, instead, requires to extract the best n-
grams from the reference collection to build meaningful phrases. To select
the n-grams it is possible to exploit measures like mutual information or par-
ticular statistic tests like x? or Student’s T' — test.

The authors propose two distinct relevance score. Zero-order Relevance
can be simply computed by evaluating a label [ = w1, ws, - - - , wy, against a
specific topic:

(1|2 i
Scoreg, = log |Z Zlog UJ|Z (3.3.1)

where p(u;) is a normalization factor that smooths the score for short
phrases, and it can be computed by some background collection or set to
uniform. It is worthwhile to notice that this metric gives more weights to
the higher ranked words inside a topic, limiting the coverage of the label
on the specific topic. Another possible disadvantage of the metric is the
absence of any contextual information from the reference collection D.
First-order relevance tries to find labels with the best coverage with re-
spect to the extracted topics. In this set up each label is defined as a multi-
nomial distribution over words, and thus it is possible to compute the close-
ness between the label and the topic by means of Kullback-Leibler diver-
gence (see section[2.2.2).
Each label is associated to a distribution p(w|l, €) which takes into account
the context C of the label. The score is defined as follows:

Scorey, = —K L(zl5) Zp w|z;) log (wll, ;

(3.3.2)
= p(w|z)PMI(w,1|€) — KL(z|C) + Bias(l, €)

where Bias(l, €) acts as a prior over labeling context and PM I (w, I|C) is the
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pointwise mutual information between [ and the terms in the topic model
given the context.

In order to increase the coverage of the labeling w.r.t. the topic model
the authors propose to select labels that maximize the Maximal Marginal
Relevance defined as follows:

[ = arg max (ASeore(l, 2;) = (1= A)Sim(l,1)) (3.3.3)

where 8§ is the set of label already selected, Sim(l',]) = —KL(!',l) and )\ is
a parameter empirically set.

Finally, the last criteria to satisfy is that labels should be discriminative,
i.e. a good label should have high semantic relevance to the target topic,
and low relevance for all the others. The authors propose to modify the
scoring function as follows:

Score’ = Score(l, z;) — pScore(l, z—;) (3.3.4)

where Score(l, z_;) represents the semantic of the label against all the other
topic but z; and p is an empirically chosen parameter that controls the dis-
criminative power.

The author tested this criterion against two different document corpus:
SIGMOD conference proceedings and Associated Press News dataset showing
the robustness of the proposed method. Further details, the experimental
section and evaluation can be found in [79].

3.3.2 Turbo Topics [15]

Once a topic model has been inferred from the reference corpus, the
next step consists in the visualization of the topics, and their interpretation.
Topic models rely on uni-gram representation, and thus the users have to
analyze list of words ordered by decreasing probability and try to intuit
the “meaning” of the topic. Literature has provided model that tries to
overcome the uni-gram representation [115,/120] loosing the computation
advantage of uni-gram representation.

The authors propose a different approach that can be interpreted as a
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sort of post-processing step over a topic models. In particular given a cor-
pus, the model is fitted as usual, and the posterior is used to annotate each
document with its most probable topic. Then, the most significant n-grams
are extracted from each topic by a co-occurrence analysis. The selected n-
grams are combined with the extracted topic words list to offer to the users
the possibility to better understand the “semantic” of the topic.

The Turbo topics model works as follows:

1. estimate an LDA topic model with 7" topic,

2. use the posterior over words and topic to annotate each word in the
corpus with a topic assignment. The resulting corpus will contain an
ordered sequence of words and topics pairs,

3. iteratively repeat for each given word (or phrase) w with topic label
z an hypothesis testing procedure which identifies other words v that
are likely to precede or follow w with label z, until no more significant

phrases are added.

The n-grams generation procedure is based on an arbitrary language
model such that the log-likelihood can be computed as follows:

w
Lw = Z logP(wn|w1, o 7wn71)' (335)

n=1

where W represent the number of words in the corpus.

A fully parameterized model is obviously intractable, while if word in-
dependence is assumed the model is transformed in the usual uni-gram
representation. The proposed solution for bi-grams discovery distinguishes
two different type of bi-grams, on one side non-true bi-grams are assumed
to follow a general distribution 7, on the other side real bi-grams instead
are assumed to be heavily influenced by their previous history. E.g. sup-
pose we encountered the word new: if the following word is house the
probability P(w; = “house”|w;—; = “new”) is considerably lower than

P(w; = “york”|w;—1 = “new”).
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The model is then recursively expanded through the analysis of the like-
lihood ratio of joined bigger n-grams. Best n-grams are selected by choos-
ing the words that joined increase the likelihood ratios. Details about the
recursive procedure and results are presented in [15].

3.4 Topic Model Evaluation

Topic model evaluation has gained much attention due to the specifity
of this models. Topic models are unsupervised algorithms that on one hand
can be interpreted as a kind of Document Clustering and Organization but on
the other side they are mixture models which components describe the cor-
pus. Thus, there are no gold standards to which we can refer and compare. In
literature there are different approaches to evaluation: statistical measures
to evaluate the quality of the inference, human judgment, or evaluation
based on a different interpretation of the model like the one proposed in
this dissertation in Chapter

3.4.1 Perplexity and Other statistical Evaluation metrics

The classical approach to topic model evaluation relies on the computa-
tion of perplexity on held out documents. Perplexity is a standard measure
for statistical models of natural language, and indicates the uncertainty in
predicting a word given a model. It can be informally seen as an evaluation
of how much we are surprised to find specific words in a document given a
learned model. Perplexity is monotonically decreasing in the likelihood (i.e.
lower values indicate better results) of the test data and can be computed
as:

M
P(Diest) = exp (‘ =1 109 P(WdW)) . (3.4.1)

Z(]i\il Na

In [116] the authors present an extensive analysis of evaluation metrics,
and propose two new metrics that are declared to be less biased. The eval-
uation process is performed upon an held out set of document W. The
paper describe importance sampling [44] and harmonic mean method as state
of the art methods and discuss their limitation in evaluating high dimen-
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sional distribution; moreover, annealed importance sampling [86] is described
as capable to deal with this problem. The paper contribution is represented
by two different measures: a Chibb-Style estimation [27] and left-to-right eval-
uation algorithm. The experimental section shows how the two proposed
measures have good performances with respect to the others, and shows
how the left-to-right algorithm [117] has better performance on real-world
corpora. For the technical details and evaluation the reader should refer to
the original papers.

3.4.2 Human interpretation of topic models

The approach proposed in [26] investigates the interpretability of topic
models according to human judgment. In particular, the authors propose
a first measure to evaluate the quality of the an extracted topic in terms
of semantic coherence. The second measure evaluate the quality of the
document-topic assignment. Both this task are conducted by human eval-
uators hired through Amazon Mechanical Turk ﬂ

The evaluation of the semantic coherence of a topic model is conducted
as follows: given a topic z and the associated words list, present to the
judges a set of 6 word in which 5 are selected to be the most probable words
of the considered topic and the sixth is chosen to be a high probability word
from a different topic (i.e. the intruder). This setup guarantees that the
word comes from another semantic area and it is not just a rare word in the
corpus. The evaluators are asked to identify the intruder. With this kind of
experimental set-up users should easily identify the intruder whenever the
chosen topic contains semantically related words while in a bad topic the
intruder will be chosen at random in the words list.

Document-topic assignment can be interpreted as a topic intrusion test.
The user is presented with a given document snippet and a set of 4 topics
each described by their 8 most probable words, one of the topic is taken at
random from low probability topics for the given document. The evaluator

is instructed to identify the intruder.

1http: //www.mturk.com
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Word intrusion for topic £ is evaluated by computing the model preci-
sion as follow:

SO M = w)
S

where 1(i* = w;) is an indicator function that is equal to 1 whenever the

MP, = (3.4.2)

user selected intruder topic i¥ equals the real intruder wy.

The topic intrusion of a topic k for a document d is defined as the topic
log-odds (TLO) of the topic proportion for the considered document. Let
és’s the point estimate of topic proportion selected by the user s € S and let
0% the point estimation of topic proportion of real intruder:

s log9§ — logéis

TLOg = 5

(3.4.3)

The evaluation has been compared with statistical metric usually ap-
plied to topic models like held-out likelihood and information retrieval
based scoring. The author showed how this measures are negatively corre-
lated to human judgment and indicate how topic model evaluation is still

an open problem.
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Chapter 4

Improving Document

Management with Probabilistic

Knowledge Extraction

Enterprise Document Management (ECM) is becoming a corner stone

for every company that has to deal with huge repositories of unstructured

textual sources. Many big players are challenging to offer solutions that

best fit document management needs. ECM is a container of many different

solutions and technologies. According to Gartner [42] ECM platforms offer

solutions for:

Document management: document organization, version control and

security policy for business documents.

Document imaging: digitalization of paper based document (i.e captur-

ing, transforming and managing).

Records management: long-term document archiving according to

compliance policies.
Workflow: business processes management.
Web content management: integration of contents for web publishing.

Document-centric collaboration: document sharing for project teams.
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The prerequisites of a ECM solution are the ability to offer ease of use,
integrability in preexistent IT environments, legal compliance for document
storage and environments.

The proposed approach is intended to be integrated in a Document
Management System to avoid the burden of manually categorizing, label-
ing and retrieving documents. The solution exploits statistical methods to-
gether with unlabeled documents to extract semantic knowledge to be used
in document repositories and thus enabling the system to achieve efficient
and effective management that allows users to dominate and organize data
and to make rational decisions upon them.

The knowledge extraction process is implemented through an informa-
tion processing pipeline which transforms documents from plain to tagged.
The tagging process, which is performed by exploiting a set of extracted
topics and a user supplied taxonomy, is capable of extracting and exploit-
ing the semantic structure hidden in a given document corpus. The pipeline
relies on probabilistic topic models to extract topics from the document cor-
pus. Then, each topic is automatically labeled according to a user supplied
taxonomy through the ALOT algorithm [71]. The learnt topics together
with their labels allow to automatically tag the document corpus. Such
tagging task is a multi-label document classification problem, and it is per-
formed by exploiting a multi-net Naive Bayes model that avoids the usual
learining procedure and directly maps the output of the topic extraction
process to the parameters of the multi-net Naive Bayes model [62,74].

The chapter is organized as follows. Section is devoted to intro-
ducing and describing the main ingredients of the information processing
pipeline. In particular subsection will describe the topic extraction
and model assessment procedure; in subsection the automatic label-
ing of topic algorithm is described and finally the multi-net Naive Bayes
supervised classification model is presented in subsection Numerical
experiments illustrating the functionalities of the information processing
pipeline are described in Section Future research directions, emerging
trends, paradigms and conclusions close the chapter.
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4.1 Knowledge Extraction components

The pipeline is intended to satisfy the needs of business companies with
a little impact on their internal procedures. The system should be able to
deal with the business company document collection and automatically ex-
tracts the relevant topics, labels them according to the company view and
offers a reliable service that grants the labeling of new documents coher-

ently with respect to the old ones.

Text Mining

5
o Q
] - Topic Extraction ] S
o
Corpus > 3 » | Preprocessed | __, — | %
3 Corpus Topic Labeling ] =3
»n 5
@, =3
a [ Multi-Net Naive Bayes ] 2
@

Taxonomy

Figure 4.1: Information Processing Pipeline

The modules of the information processing pipeline, together with their
interactions, are illustrated in Figure In particular the modules of the

pipeline are:
e Preprocessing: data manipulation and transformation,
o Text Mining:

— Topic Extraction: topic extraction and model assessment,

— Topic Labeling: topic labeling and organization according to a
given taxonomy,

— Multi-Net Naive Bayes: multi-label document classification ac-

cording to extracted topic.

4.1.1 Topic Model Assessment

Given a corpus of documents and a set of candidate topic models a key
problem is to select the most meaningful and representative set of topics
that explain the corpus. The approach adopted exploits a technique based
on the evaluation of an infra-topic similarity according to a symmetrized
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Kullback-Leibler measure. Given the symmetric matrix generated from the
distance computation, a hierarchical clustering algorithm is applied and first
creates clusters composed of pair of objects that are close together, then the
algorithm recursively links each cluster to the others creating bigger clus-
ters until all the objects of the original dataset are linked together in a hier-
archical tree (i.e. the root of the tree is one single cluster containing all the
initial data). The aggregation strategy computes a problem-dependent dis-
tance function between the content of each cluster. The proposed solution

utilizes the average linkage function:

|X] Y]
) 1
g

where z; € X,y; € Y, |X] is the cardinality of cluster X and d(z;,y;) is the
distance between the argument objects.

The result of a hierarchical clustering is conveniently represented as a
dendrogram ( Figure [£.2). The horizontal axis represents the distance at
which successive clusters are joined.

Figure 4.2: Dendrogram example

On the vertical axis all the data points are represented. After the al-
gorithm has computed the cluster tree, the system chooses the “optimal”

height at which the tree should be cut. [85] provides a stopping criterion
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based on the heights at which the clusters are joined. Formally the rule
states that the cut height is computed as:

Cutheight = h + Koy, (4.1.2)

where h is the average of the heights for all the clusters, o}, is the standard
deviation of the heights and « is a specified constant. Mojena suggested
a value x satisfying 2.5 < £ < 3.0. Successive analysis suggested a value
equal to 1.25 [82].

4.1.2 Automatic Labeling of Topic

As described in section 3.3]topic labeling is an open and emerging prob-
lem. The proposed algorithm tries to conjugate and reconcile human judg-
ment with computer discovered solutions. The idea originated from the
observation of business companies best practice. Indeed, many business
companies organize their document collection through the use of special-
ized document management systems. These systems require the user to
associate each document against a taxonomy or a given controlled vocab-
ulary. Such taxonomies are built to exactly match the company needs and
goals. They are context dependent and describe the full knowledge base
of the business company. However, final users normally ignore such tax-
onomies and give bad or no labeling to their documents, and thus making
useless the document management system. The proposed approach allo-
cates the extracted topics inside the hierarchy, finds the associated label and

organization.

Topic Tree

The taxonomy [56] is encoded in a particular structure defined as topic
tree. A topic tree (Figure is a pair T = (V, E), where V' is a set of nodes
indexed by non negative integers j = 0,1,..., N, while E = V x V is a set
of arcs (i, j) between nodes, ¢, j € V. Each node j is associated with a topic
Ty (j) = (label, words list,in fos), where label is the topic label, words list is
the topic list of positive words and infos is additional information associated
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ROOT

label _1

word_1
word_2

___________

Tx(3) Tx(4) Tx(5) Tx(B)

Figure 4.3: Topic Tree

with the topic. It is worthwhile to mention that the root node indexed by
0 is not a proper topic. It is introduced to ensure that the set of topics,
which usually gives rise to a forest, forms a tree. Therefore, the root node
can be interpreted as the most generic topic or all-the-topics. It is worthwhile
to mention that the framework considered in this approach assumes that
the world is described by a set of concepts (equivalently, topics) which are
inserted into a light ontology [84]. The topics tree Y describes how topics are
linked in a taxonomic way by means of the usual IS-A relation. A concept
¢ IS-A concept d iff I(c) C I(d), where I is an interpretation function I :
€ +— U mapping a concept ¢ € C to a subset I(c) of a given universe U. For
instance, under the common-sense interpretation, cat IS-A feline since any

real cat belongs to the set of felines (but not vice versa).

The ALOT Algorithm

An extracted topic is a word list, obtained from the application of the
LDA method. Given a topics tree T and a set of extracted topic T =
{T.(1), ..., Te(K)}, the algorithm for Automatic Labeling Of Topics (ALOT)
aims to label each element 7,(i), i = 1, ..., K, by means of labels associated
with topics Ty (j), j = 1, ..., N of the topics tree Y.

The main components of ALOT are the similarity measures and the la-
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Algorithm 1 Automatic Labeling Of Topics (ALOT)

Require: A topics tree T, a topic T¢(7) to be labeled.
Ensure: The label of T, (7).

1: Compute j; = argmax; S, (Tc(i), Ty (j)) Vr,r = 1,...,6, and set L(i) =
(G2}

2: if j7 = ... = jg then {case TC}

3:  Return the T (j7) label

4: else {case TD}

5.  Case Path: Find j, the shallowest topic in A(7)

6: Case Subtree: Find j, the deepest predecessor of nodes belonging to

A(1)

7. if Ty (j) # ROOT then {case SA}

8: Return the T’y (j) label

9: else {case NSA}
10: Compute  jm**  which  maximizes  depth(j™**) and

|successor (™) N A(i)]
11: if 79" is unique then {case S-dtmap}
12: Return the Ty (j™%*) label
13: else
14: Apply subcase M-dmatp and return the computed label if
unique or ROOT if not (subcase R-dmatp)

15: end if
16:  end if
17: end if

beling rules. While similarity measures, introduced in section are con-
cerned with the word list component of topics, labeling rules exploit the top-
ics tree to find the optimal label (w.r.t. the available topics tree T) for each
extracted topic 7. (i). More in detail, given a topics tree Y, for each extracted
topic T, (i) its nearest topic T (j;"), with respect to similarity measure S,, is
recovered by solving the following optimization problem:

ji = argmax S,(T.(0). Tr ().
That is, Tr(j;) is the topic which has the greatest similarity .S, with

Te(i) and j; the index of this topic in Y. For each extracted topic 7.(7),

we collect all these indexes associated to the similarity measures .S, in
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L(i) = {j7,...,J¢}, and the corresponding set of topics will be denoted by
A(i) = {Tx(57),.... Tx(j5¢) }. Both L(i) and A(i) will be represented on the
tree structure by coloring the corresponding nodes. For instance, in Figure
L(i) = {4,7,9} (and this means that the six similarity measures give
only three different results).

Given T¢(i) € T, the following cases can occur:

e Topic concordance (TC); j* = j7 = ... = j§, all similarity measures agree
on which the nearest topic Ty (j*) is. The ALOT algorithm labels T (i)
with the label of the corresponding optimal unique topic T (j*).

e Topic discordance (TD); 31, g : j;° # j,, at least two similarity measures
disagree on which the nearest topic is. The ALOT algorithm labels
Te(%) according to:

1. SA (Semantic Association, topics belonging to A(7) share a pre-
decessor, different from the root). The ALOT algorithm looks for
a topic Ty (j), not necessarily belonging to A(i), which synthe-
sizes all the topics in A(7). The following subcases can occur:

(a) Path; all the topics in A(7) lie on the same path. ALOT labels
Te (i) with the label of the shallowest topic in A(7), i.e., the
topic T (j;) which minimizes depth(j;) (Figure [4.4(a)).

(b) Subtree; all the topics in A(7) belong to a common subtree.
The ALOT algorithm labels 7, (:) with the label of the topic
Ty (j) which is the common deepest predecessor of topics
in A(i) (Figure .4(b)). Tx(1). Notice that the case where
Ty (j) € A(i) can also occur.

2. NSA (Non-Semantic Association, topics belonging to A(i) do
not share a predecessor, except from the root). ALOT uses a ma-
jority voting scheme and selects the deepest maximally agreed
topics predecessor, i.e. the topic Tx(j"") associated with the
node ;7 such that depth(;*) and |successors(j™**) N L(i)|

are both maximized. The following subcases can occur:

(a) S-dmatp (Single deepest maximally agreed topic predeces-

sor); a single topic T’ (j™%") is obtained and its label is asso-
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Tx(7) Tx(8) Tr(9) Tr(10)

(b) Semantic Association: Subtree

Figure 4.4: Semantic Association ALOT Cases.

ciated with T, (7). In Figure 4.5(a)| the selected topic is T’y (1)
since it has two successors in A(7) compared to only one on

the other branch of the tree.

(b) M-dmatp (Multiple deepest maximally agreed topic prede-
cessor); more than one topic is returned by the majority vot-
ing scheme. ALOT computes how many times each T (j;")
is a descendant of all the T (j™%"), stores this information
into info and finds the T (j™**) with the maximum number
of occurrences. In Figure the majority voting returns
Ty (1) and Tv(2) and between them, Ty (2) is selected since
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it has four successors in A(7) compared to only two of T’ (x).

(c) R-dmatp (Rooted deepest maximally not agreed topics pre-
decessor); the root node is returned by the majority voting
scheme and the maximum number of occurrences Ty (%)
is the same for at least two descendants in A(7). Then, the
root node is returned by ALOT.

Tx(7) Tx(@8) Tr(9) Tr(10)

(b) Non Semantic Association: M-dmatp

Figure 4.5: Non Semantic Association ALOT Cases
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4.1.3 Multi-label Document Tagging

The topic extraction step offers a set of topics that project the docu-
ment collection in a lower dimensional space, which represents the core
arguments, while the ALOT algorithm associates each topic with reliable
labeling and with an allocation inside the hierarchy. The tagging of new
documents accordingly with the extracted topics is an important feature in
business environments. A reliable tagging allows user to retrieve important
document seamlessly and efficiently. The proposed classifier is a specific
instance of the Multi-Net Naive Bayes classifier (MNNB) [62] that despite
its simplifying assumptions (i.e. the attributes are independent given the
class variable) gives good performances. The MNNB classifier is the obvi-
ous choice for the document classification step due to the Bayesian nature
of LDA, and although other algorithms like Support Vector Machines are
known to have very good performances in binary and multi-class problems,
in a multi-label set-up they are known to have long training phase and suf-
fer of less good performances. Moreover, the linking of SVM with LDA
models is more complex, not straightforward and implies the discarding of
the Bayesian approach. The Naive Bayes classifier computes the probability
that a document d; represented as a vector w of words, belongs to a class z;

through the Bayes’ theorem as follows:

P(w|z;) - P(z) elii - P(2;)

e T Ry e e 2 B
where:
o Pwlz)
tij = log m (4.1.4)

Exploiting this framework and arranging the derivation of ¢;; ac-
cordingly to different document representation it is possible to compute
P(zildy).

The t;; factor for binary representation is defined as follows:

£mary — 3™ 1, log “’Iji (4.1.5)

'LUG’lU
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where w is a word of the vocabulary, 1,, is an indicator function equal
to 1if w € d;, and 0 otherwise.
The term frequency representation is as follows:

(7 = 3 £ (w)log igz; (4.16)

wew
€y

where tf(w) is the term frequency of word w for the document d;.

The term frequency inverse document frequency representation is defined

as follows:

. P(w|z;
tLFIPE = 3 " tf — idf(w) log PEM;Z; (4.1.7)

wew
c€u

where tf — idf(w) is equal to the term TF-IDF of the word w in the document
d;.

From LDA to Naive Bayes

Equation and shows the quantity needed to compute the de-
sired posterior. Thus the classifier exploits the values computed by the LDA
model for the prior probability over the topics P(z;), and the conditional
probability P(w|z;) for each word in the vocabulary given the topic. The
derivation of non-class conditional probability P(w|z;) can be derived by re-

mebering that given a topic z; we can compute P(w) as:
P(w) = P(w|z) - P() + P(w[z) - P(%). (4.18)

then the non-class conditional probability is defined as follows:

Plw) = P(wj|zi) - P(z)

P(w|z) = P (4.1.9)
where P(w) is defined to be:
T
P(w) =Y P(wl|z) - P(z) (4.1.10)
i=1
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4.2 Numerical Experiments

In order to evaluate the quality of the pipeline it is customary to find a
corpus with an adequate number of documents which presumably contain
a variety of topics and a related taxonomy to exploit. Common literature
corpora like Reuters-21875 satisfy the first prerequisite, but usually lack an
associated taxonomy. Taxonomy, are typically used in the business world
or in very specific sectors where the taxonomy is tailored for the specific
needs. Possible examples are represented by Medical Subjects Headings,
Criminal Law - Lawyer Sources and the Google Directory [30,34,80] that
requires the related corpus to be harvested and mined.

In the proposed experimental set-up, we choose as reference taxonomy
the Google Directory (gDir), which is part of the Open Directory Project.
This project manages the largest human-edited directory available on the
web. Editors guarantee fairness and correctness of the directory.

421 Document Corpus and Taxonomy

The Google Directory (Figure is a hierarchical structure that orga-
nizes web-sites according to 16 macro categories, and for each category of-
fers a classification subtree of variable depth. The experimental setup used
all the 16 macro-categories, but discarded the implicit category ADULT that
is a mere replication of the hierarchy including adult suggested pages. The
tree has been cut to depth 5. The topic tree (Figure has been built as
follows: each node of the directory is a topic and its children are the words
that specify the topic, this structure is repeated recursively. The topic tree
contains 4,516 nodes. The corpus has been generated by submitting a set
consisting of 960 queries to the Google search engine through the Google
Ajax API. Each query is formed by a couple of words randomly selected
from the union of word lists associated with the topic tree. Some exam-
ples of random queries are “Music Environment”, “News and Media
Current Events”,“Holidays Ukrainian’. For matters of simplicity,
the results are filtered, and only PDF files written in English are retrieved.

The query process retrieved 46, 480 documents.
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Google

directory
Web |mages Groups MNews Shopping Maps Scholar more »
I | (s iy
The web organized by topic into categories.
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(b) Google Directory Topic Tree

Figure 4.6: Document Corpus and Taxonomy.
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4.2.2 Preprocessing

The document corpus has been standardized to plain text (TXT) for-
mat. The preprocessing stage consisted of stop-words removal. Then, in
order to regularize the document lengths, we applied a size-based filter-
ing: only documents with a size between 2 and 400 KB have been retained,
thus almost empty documents and too long or garbage documents are dis-
carded. The filtered document corpus consisted of 33, 801 documents, while
the global vocabulary has been reduced by removing the distribution tails:
words mentioned in less than 10 or in more than 2,551 documents are re-

moved: the resulting vocabulary consists of 111, 795 words.

4.2.3 Topic Extraction and Labeling

The topic extraction step has been performed with the following hyper-
parameter values: o« = 50/7" and n = 0.01. The number of iterations has
been set to 700. Each run had a burn-in period of 200 iterations. Each run
has been repeated to assure the topic stability according to KL divergence.

In order to assess the correct number of topics, we started by computing
a large number of topics, computing infra-topic similarities according to
sKL distance and computing a hierarchical clustering.

Then, we applied the Mojena rule: the value of the parameter has been
adapted to the particularities of topic models and the related distances. We
extracted two different topic models with number of topics 7" = 250 and
T = 500. The dendrogram in Figure 4.7(a)] and .7(b)| shows topic similar-
ities according to KL divergence: shallow joins indicate higher similarities

between topics. According to the Mojena stopping rule, the optimal num-
ber of clusters is 100. Then we run the LDA model setting the number of
topics to 100 while keeping constant the other parameter values. Some of
the extracted topics are shown in Table

Then, the ALOT algorithm is applied (Table[4.3) and the labels assigned
(Table £.2). The Topic_66 is a topic concordance case and it is easy to la-
bel. The Topic_0 and Topic_15 are associated with a topic discordance case
and a semantic association subcase: the former contains labels on the same

path while the latter contains labels of the same sub-tree. The Topic_24 in-
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Figure 4.7: Topic Hierarchical Clustering and Mojena cut
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Topic_66 .008 Topic_0 .013
encyclopedia  .023 cells 025
atlas .023 protein 010
bibliography 017 genetic .008
directories 016 gene .007
dictionary 015 samples .006
catalog 014 acid .006
periodicals 012 proteins .005
genealogy 012 bone .005
abstracts 012 genes 005
librarians 012 tissue .005
Topic_15 011 Topic_38 .013
firms .037 assets 022
suppliers 012 loan 018
enterprises 012 banks 018
venture .009 loans 017
entrepreneurs  .008 debt 014
productivity .008 investments 013
procurement .007 equity 012
logistics .007 securities 011
supplier .006 banking 011
incentives .006 expenses .010

Table 4.1: Extracted Topics

stead, is a non-semantic association subcase, and the labeling is resolved by

computing the maximally agreed topic predecessor (M-dmatp).

Topic_ 0 SA Path Biology

Topic_.15 SA  Subtree Business
Topic_38 NSA M-dmatp Financial Services
Topic_.66 TC  Concordance Reference

Table 4.2: Labeling rules and resulting labels
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Topic_66
Tanimoto root—Reference
Jaccard root—Reference
Dice root—Reference
Cosine root—Reference
Overlap root—Reference
Mutual root—Reference
Topic_0
Tanimoto root—Science—Biology
Jaccard root—Science—Biology
Dice root—Science—Biology
Cosine root—Science— Biology— Bioinformatics—Online Services
Overlap root—Science— Biology—Bioinformatics—Online Services
Mutual root—Science— Biology— Bioinformatics—Online Services
Topic_15
Tanimoto root—Business—Financial Services
Jaccard root—Business—Financial Services
Dice root—Business—Financial Services
Cosine root—Business—Financial Services
Overlap root—Business—Business Services—Consulting
Mutual root—Business—Business Services—Consulting
Topic_38
Tanimoto root—Business—Financial Services
Jaccard root—Business—Financial Services
Dice root—Business—Financial Services
Cosine root—Business—Financial Services
Overlap root—Computers—Software—Industry Specific—Insurance
Mutual root—Computers—Software—Industry Specific—Insurance

Table 4.3: Candidate labels according to similarities measures. For each label, the
full path is displayed.
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4.2.4 Document Tagging

The last module of the pipeline is devoted to document tagging. Once
the topics have been labeled the system generates the inducer. The system
requires the user to specify the model and the number of words used for
each topic: this information will generate the global vocabulary associated
with the inducer. After the inducer has been built, the user is requested
to choose the document representation to use and a probability threshold
associated with class labels. These parameters are particularly important
whenever the system is used as a component in a bigger system, e.g. docu-
ment management systems, where for each document a meaningful label-
ing is requested: a unique labeling with high probability. In [74] has been
shown that for the Italian language a probability threshold set to 0.5 pro-
vides stable and reliable results.

To evaluate the performance of the proposed system we downloaded
189 new documents using the same methodology used for the corpus gen-
eration, then we manually labeled the documents according to 4 different
classes: Biology, Business, Financial Services and Reference. Then, the docu-
ments were inputted to the inducer with document term frequency represen-
tation and a threshold value equal to 0.5. The results are summarized in

Table

Precision Recall Accuracy
Biology 1.00 0.45 0.71
Business 1.00 0.35 0.80
Financial Services 0.96 0.69 0.83
Reference 0.88 0.13 0.61

Table 4.4: Classification performances.

The precision of the topics Biology, Business and Financial Services is
nearly perfect due to the high specificity of the word lists. The test set is
composed of many technical papers which are easily correctly labeled. On
the other hand the achieved recall value is consistently lower than preci-
sion. A possible explanation to this behavior is as follows; the manual la-

beling procedure is both complex and ambiguous; it could label documents
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by using a broader meaning for each topic. Therefore, it is expected that au-
tomatic document classification would not achieve excellent performance
with respect to both precision and recall. However, it is important to keep
in mind the difficulty of the considered labeling task, together with the fact
that human labeling of documents can result in ambiguous and contradic-
tory label assignment. The Reference topic has sensibly lower performances
due to its particular nature. Indeed, it is not easily captured by the human
labeling who tends to assign this topic to many generic documents, and
moreover, the documents matching the topic semantics in the test set are

too few.

4.3 Conclusion and Future Works

Capturing document meaning will be the gold standard in the next few
years. Nowadays search engines are very efficient in document retrieving
but they still lack the ability to capture the meaning of the retrieved doc-
uments according to the user query. The Semantic Web is becoming the
corner stone of the future of the web search. However, it is still unable
to deal with the enormous amount of existing data and still relies on hu-
man intervention for the creation and maintenance of knowledge repos-
itories. The specialized literature has spent a great deal of effort to de-
velop new automatic ways to capture and aggregate bits of information
and to create knowledge bases that can be used to satisfy users information
needs [25,/121].

Topic extraction models offer an efficient and effective answer to cap-
turing the meaning of document collections. They are particularly useful
whenever we have to deal with mid-sized document repositories and when
we need an overview on what the documents are about. Future research in
topic models will be more and more focused on the integration of topics
with network data, like social networks with the aim to help users to iden-
tify sub-networks that meet their interest and vision.

In this chapter we proposed an information processing pipeline that ex-

ploits a probabilistic topic models, an automatic labeling procedure and a
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document tagging service that helps users to efficiently manage and or-
ganize their documents. We presented results of applying the pipeline
to a real world corpus automatically generated by retrieving documents
through random queries. The extracted topics show a high quality and se-
mantic significance. Topic labeling has been performed by exploiting the
Google directory, a real and hand crafted taxonomy that tries to classify
web pages according to predefined categories. The performances of the
document tagger have been evaluated against a set of manually labeled
documents and show interesting results. The probabilistic models behind
the pipeline exploits Latent Dirichlet Allocation for topic extraction and
the classifier implements a particular implementation of a multi-net Naive
Bayes model that automatically maps the topics to the inducer. The pipeline
offers many application scenarios: it can be used for document manage-
ment, implemented in a vertical information retrieval application, for press
coverage management service and many others. Recent models can also be
applied to improve or characterize the particular application: hierarchical
topic models, relational models or author-topic models can offer interesting

developments and improved applicability.
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Chapter 5

Topic Model performance

estimation

In this chapter we are concerned with the analysis and validation of the
semantic coherence of the results obtained through Latent Dirichlet Allo-
cation and with the problem of their comparison with the results obtained
through alternative models. The proposed approach consists of transform-
ing each topic model into a “hard” overlapping partition over documents
through the discretization of the “soft” document-topic associations. The
Fowlkes-Mallows (FM) index [40,{114], a cluster validation metric, has been
generalized in order to make it suitable to validate overlapping and incom-
plete clusterings. Such generalization was performed on the basis of its
underlying probabilistic interpretation and allows us to link the Fowlkes-
Mallows index to the semantic coherence of the model rather than to the
mere similarity between cluster partitions.

Thus, the validation is performed by exploiting this novel probabilis-
tic metrics, based on the interpretations of the widely known precision and
recall performance measures. The proposed validation approach has the
following advantages with respect to existing metrics:

e it offers an explicit probabilistic interpretation;

e it allows the validation of overlapping partitions;
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e it allows the validation of incomplete partitions.

Moreover, the harmonic mean of precision and recall can be computed
to obtain a combined single-metric measurement of the quality of the par-
tition i.e. F-measure. The paper also shows how the proposed metrics allow
to perform a “drill-down” analysis into the individual topics (clusters) to

make straightforward the determination of:
1. which are the best and the worst clusters in the partition;
2. which topics are better recalled by any given cluster.

The rest of this chapter is organized as follows. In section [5.1| the prob-
lem of cluster evaluation is presented according to the Fawlkes-Mallows
index and its probabilistic interpretation. In section 5.2l The FM index is
adapted to incomplete and overlapped partition and the proposed metric
to evaluate a topic model quality are introduced. The results of the nu-
merical experiments performed on the Reuters-21578 data set are described
in Section Finally, conclusions and research directions are reported in

Section5.4]

5.1 Clustering Evaluation

Every hard-clustering problem applied to a multi labeled document cor-

pus involves the following elements:

e acorpus D = {do, ..., dy } consisting of n documents;
e a partition of D in K clusters: U = {uy, ..., ux};
e a partition of D in S classes: C' = {cy, ..., cg}.

Most of the existing validation metrics [122] can be expressed in terms
of a |U| x |C| contingency matrix (Table where the content of each cell
n;j represents the number of documents belonging to cluster u; and class
cj-

In the special case where clusters do not overlap and the document cor-
pus is uni-labeled, the following properties hold:
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Classes
C1 C9 Cs by
UL | ni1 | n12 | e | Mis | N
Cluster u2 | n21 | 22 | ... | N2s | N2«
U | k1 | T2 e | MEs | Mkx
by Tosl | M2 | eoe | Thxs | Thax

Table 5.1: Contingency matrix

2. uiNuj =0Vi,j=1,..,K with i # j: there is no overlap between the

elements of the cluster partition;

3. ¢ciNcj =0Vi,j =1,...,5 with i # j: there is no overlap between the
elements of the class partition.

A comprehensive review of the traditional metrics used to validate non
overlapping partitions can be found in [122] and [32].
5.1.1 The Fowlkes-Mallows index

Among the existing cluster validation metrics, a particular interesting
one is the Fowlkes-Mallows (FM) index [40], [114] . Using the contingency
matrix notation from Table the FM index is defined as follows:

I V¢ )
Vo 055, 05)

In order to analyze the FM index, the events associated with the experiment

(5.1.1)

of randomly sampling two documents d; and d» without replacement from

D, are defined as follows:
e S..: di and dy belong to the same class;
e Sy di and dp belong to the same cluster;

e Suc: di and d belong to the same cluster and class.
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To denote the event of d; and dy belonging to class c¢; we write Si;
whose probability is given by:

P(Sie;) = (5.1.2)

In a similar manner, we write S, to denote that d; and ds belong to cluster
u;, where the corresponding probability value is given by:

The probability of two documents belonging to the same class can be com-
puted from expression (5.1.2) to be:

P(S,) = Zj:P(S*cj) = (RL) > (n;) (5.1.4)

while the probability of two documents belonging to the same cluster can
be computed from expression (5.1.3) to be:

P(Sus) = Z P(Sy) = (nl) > <”2> (5.1.5)

2 i

Finally, the probability of two randomly sampled documents, without re-
placement, to belong to the same class and cluster is:

P(Sye) = z]: P(Sye;) = (nl) > (”;) (5.1.6)

2 ij

Then, the conditional probability that two randomly sampled documents,
without replacement, belong to the same class given they belong to the

same cluster is: > ( )
P(SuC) ij nZZ]

P(Sic|Sux) = = o (5.1.7)
(Seelu) = B50) = 5, ()
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while the conditional probability that they belong to the same cluster given
that they belong to the same class is:

o P(Suc) o Zij (n”)
P(Su*‘S*c) N P(S*c) ; ZJ (n;) (518)

It is worthwhile to note that the FM index (5.1.1) can be obtained by
computing the geometric mean of the conditional probability that the pair

of sampled documents belong to the same class given they belong to the
same cluster (P(S|Sus+)), and the conditional probability that the pair of
sampled documents belong to the same cluster given they belong to the

same class (P(Sy«|S«c)). Therefore, expressions (5.1.7) and (5.1.8) allow us
to write the following;:

FM = \/P(S.¢|Sus) P(Sus|Sue). (5.1.9)

Hypergeometric Distribution The previous formulations can also be ex-
pressed in terms of the hypergeometric distribution (See [A.3). Equation
and can be rewritten in terms of hypergeometric distribu-
tion as follows: the probability of sampling two documents from the same
cluster could be rewritten as P(Su«) = Y, h(Nus, Nix, 2,2) and the proba-
bility of sampling two documents from the same class becomes P(S,.) =
> y h(nx, 145, 2,2). In a similar fashion, Equation can be interpreted
as P(Suc) = > ;5 h(ns, nij, 2, 2).

Thus, the conditional probabilities (Eq. and expressed above
can be rewritten as:

P(S,..|S, Eij h(Nsx, 35, 2, 2)
(Scl50) = 2 Rl 2.2

(5.1.10)

and:

N Zj RNk, N, 2, 2)
Finally, by geometric averaging (5.1.10) and (5.1.11) the new expression for

P(Sus|Se) (5.1.11)
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(5.1.1) is:

Zij h(n**, Nig, 2, 2)

FM =
\/Zz h(n**7 Thjx s 27 2) Z] h(n**, Mg, 2, 2)

(5.1.12)

It is worthwile to notice that, when N is greater than 50 and m/N <
0.10, the hypergeometric distribution can be conveniently approximated by
the binomial distribution [19]. Thus the proposed formalization serves two
goals. On one hand, it is helpful for computational purposes as it allows
the usage of lower cost approximations; on the other hand, it is useful to
better understand the properties of the considered metric.

5.2 Proposed metrics

In this section, we introduce a version of the FM index adjusted for over-
lapping and incomplete clusters. In this set-up the properties assumed by

the FM index do not hold due to the particular nature of topic models:

e the tresholding procedure used to move from soft to hard clustering

may result in some documents being unassigned;
e a document can be assigned to more than one cluster;

e the document corpus is multi-labeled, and thus every document can

be assigned to no, one or more classes.

5.2.1 Overlapping partitions

When validating using a multiply labeled corpus, such as Reuters-
21578, the set of ground-truth classes result in overlapping partitions. In
such a case the FM index cannot be computed by using equation be-
cause the assumption of sampling without replacement does not hold. The
main difficulty with overlapping when computing the FM index, is due
to the use of the contingency matrix notation, which hides the probability

being computed that easily results in making the wrong assumption that
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Nix = |ui], nsj = |¢j| and n. = |D|. The implications of such wrong as-
sumptions are shown through the following example.

Example 2. Consider a non-overlapping partition consisting of 2 clusters and
2 classes. Let uy = {di,da,ds,dy,ds} with {dy,da,ds} € c1 and {d4,d5} €
co and let ugy = {dg,d7,ds,dg,d1o} with {dg} € ¢ and {d7,ds,dg,d1p} € co.
The situation can be conveniently summarized through the following contingency

matrix:
c1 C2 >
ul 3 2 Nix = 5
Nyl =4 | Mo =6 | Nye = 10

According to and we can compute P(S..) as follows;
4 6

P(Su) = 35 P(Suey) = 5, h(ns, 14, 2,2) = ((20)) + ((22) — 21 4o obtain a
2 2

correct probability value.

Now suppose to extend the example above in a class overlapping scenario, due
to multi-labeled documents. Let cs be such that {dy,dy,ds,dy,d10} € c3. The
corresponding contingency matrix is:

c1 co c3 >
U] 3 2 2 Nix =7
U 1 4 3 Nox =8
Nel =4 | Mg =6 | Neg3 =5 | Ny = 15

Intuitively, we expect the intra-cluster overlap to increase the value of P(S..).
However, Equation yields the incorrect result of 31/105, which is smaller
than the correct one 21/45. This is due to the fact that the sampling without re-
placement assumption no longer holds. Indeed, there are not (125) = 105 ways to
select 2 documents, as that would allow the possibility to select the same document
more than one time. The right number of ways to select 2 elements is still 45 and it
is given by (01) = (). However, the events S.., to sample two documents from
the same class j are no longer independent. Therefore, they cannot be added as in

5.1.4).
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When class or cluster overlap exists, the contingency matrix bins do not
represent mutually exclusive events. Thus, the value of P(S,.) when classes

overlap exists is given by:

P(S.) = Y _h(|Dl,|¢;],2,2) — J(C) (5.2.1)
J

where J(C) is the probability that a selected pair of documents belongs to

two classes simultaneously, defined by the expression:

J(C) =Y P(Suc; N Suc,,)
Joi>i

or accordingly to the hypergeometric notation by the following expression:

J(C) =% h(DI, [{See; N Sue; }:2,2)
Jo§'>i
However, the above formulas deal with the case where the classes over-
lap is restricted to pairs. The case where general classes overlap is con-
cerned is more complex from both the theoretical and computational point
of view and will be presented in a different work. Formula is a re-
expression of under the general addition rule of probability for non
independent events which states that: P(AUB) = P(A)+P(B)—P(ANB).

Example 3. In the previous example, if any of the pairs {(da,dg), (ds,dy),
(da, d10), (ds, dy), (ds, d10), (dg, d10) } are sampled, then S, and S., are both true,
and this results in a double count. The correct value of P(S..) is obtained by sub-
tracting the probability of the classes intersection:

G, 6 (3)>_

()
P(Sie) = ( iy T 7ioy T 710 = 0.55
) G G)
When hardening a soft-cluster solution generated by a topic model, we

()

5.2.2 Incomplete partitions

potentially obtain overlapping and incomplete partitions; thus, the valida-
tion metrics should be sensitive to some form of recall. In the FM index
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computation the base assumption would be that the column marginal to-
tals correspond to the size of the classes, i.e. n,; = |¢;|, and that the row
marginal totals equal the size of the clusters. As shown before, such an
assumption is false when an overlapping exists with the same applying to
cases where the clusters are incomplete. Measuring incomplete partitions
with the FM contingency matrix is wrong. Indeed, it incorrectly reduces
the number of successes inside the population by using n;. instead of |u;]|.
Furthermore, the possibility of cluster overlapping has to be taken into ac-
count. Therefore, the correct probability of selecting 2 documents from the
same cluster will be given by:

P(Su) = Z h(|D, |ui|,2,2) — J(U) (5.2.2)

where J(U) accounts for the probability of selecting a pair of documents
belonging to two or more clusters, and it is given by adding up the proba-

bilities of cluster intersections:

JU) =" P(Su;x N Suye)

i 8>

and by using the hypergeometric distribution:

JU) =) > h(ID] [{Sus 0 Sy}, 2.2)
>0
It is worthwhile to note that formula is also valid in the case
where clusters do not overlap. However, although FM can be corrected to
take into account some of the effects of partitions” incompleteness and/or
overlap, we consider that its interpretation is more biased toward measur-
ing partition similarity, and thus we find it valuable to study new metrics

that can serve better to estimate semantic coherence.

5.2.3 Generalized Fowlkes-Mallows Index

As discussed in section if the FM index is expressed in terms of

the contingency matrix, it can not be used to validate overlapping or in-
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complete clusters. The reason is that while its addition terms come from
the hypergeometric distribution, they would use an incorrect population
size in the case where cluster overlapping is concerned. However, we have
shown that when re-expressing the FM index in terms of the hypergeomet-
ric distribution and by correcting its formula in order to use the cluster size
|u;| and the class size |¢;|, the probabilities P(S..) in and P(S,,) in
(5.2.2) are correct under the assumption that the maximum overlap equals
two. Therefore, the last step required to obtain a generalized version of the
FM index requires to generalize the computation of P(S,.) in such a way
that non-independent events S,,,.; are correctly taken into account. This
generalization requires to compute the probability of the intersection of el-
ementary events. For the whole contingency matrix the sum of the proba-

bilities of the intersection between “bins” will be denoted by:

J(U, C) - Z Z P(Suicj- N S’U»ilcj/)

ij i

where ¢ > i and j' > j and where by using the hypergeometric probabili-
ties we obtain:

‘](Uv C) = Z Z h(|D|7 |{SUiCj N Sui/cj/H, 2, 2) (523)

ij il

Note that the computation of J(U, C) requires the creation of an additional
“overlap matrix” consisting of (|U|x|C|)? elements. Finally, the generalized
result for P(S,.) is given by:

P(Suc) = Y h(|D|,n,2,2) — J(U,C) (5.2.4)
ij

Thus, the generalized version of the metric can be defined as the geo-

metric average of:

e the probability of 2 randomly sampled documents belong to the same
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class, given they belong to the same cluster, i.e.:

P(S |S )_Ewh(’D‘,n”,ZQ)—J(U,C)
ST (D, il 2,2) — J(U)

(5.2.5)

e the probability of 2 randomly sampled documents belong to the same
cluster, given they belong to the same class, i.e.:

> h(ID],nij,2,2) — J(U,C)
P(SulSee) = =300 ey 2.2) —I(0)

(5.2.6)

In conclusion, the generalized version of the FM index, which will be
referred to as GFM, is given byﬂ:

225 MID|,nij, 2,2) — J(U, C)
\/[Zi WD, fuil, 2,2) = JU)] 225 h(I DI, lej], 2, 2) = J(C)]

(5.2.7)

5.2.4 Partial Class Match Precision

This metric is inspired by the notion of precision utilized in the IR field.
The Partial Class Match Precision (PCMP) measures the probability of ran-
domly selecting two documents from the same class taken from a randomly
sampled cluster. In contrast to FM, where we are concerned with the ran-
dom sampling of two documents d; and ds from the documents corpus,
PCMP requires to first randomly sample a cluster and then randomly sam-
ple two documents from the sampled cluster. In order to clearly differen-
tiate both random events, we use Sc* to denote the event of selecting two
documents belonging to the same class sampled from a given cluster. For-
mally, the PCMP metric is defined as follows:

Ppyr = P(Sic) = Y P(Saclus) P(us) (5.2.8)

'We are aware that this formulation may not be accurate on extreme cases of very over-
lapped collections, however we will show that the hypothetical error, which is in fact an
underestimation of actual probabilities is negligible in real-world corpora such as Reuters-
21579. Such insights of more theoretical interest will be presented in future works.
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where the prior probability of selecting the cluster u; is given by P(u;) =
Nix [ Mo

PCMP measures the probability of the event 5’*0, i.e. to sample two
documents from the same class, after having randomly selected a cluster.
However, the computation of each individual P(S..|u;) also needs to be
generalized in the case of class overlapping. Therefore, we need to add
up the probability of selecting two documents from each class comprised
within the cluster P( S*Cj |u;) under the general rule of the addition for non-
independent events, which implies discounting the probability of a success

in two classes simultaneously. Thus, each individual P(S,.|u;) would be

given by:

P(Sucltis) = P(Sucylui) — J(us) (5.2.9)
J
where J(u;), which represents the probability to sample two elements from
two or more classes when selecting documents d; and d2 which belong to
cluster u;, is given by:

J(i) => Y " P({Suic; N Suic, }) (5.2.10)
Joi'>g

The previous equation represents the probability of selecting two ele-
ments from cluster u; that simultaneously belong to two different classes.

Thus, in order to obtain J(u;) we need to compute the individual prob-
abilities of selecting two documents that simultaneously belong to every
distinct pair of classes (c;, ¢j) and then add them up to obtain the proba-
bility of selecting two documents that simultaneously belong to any pair of
classes.

The expression for the individual probabilities can also be represented
using the formula of the hypergeometric distribution, where the parameter
accounting for the number of successful outcomes is the number of ele-
ments in u; that belong to both ¢; and c;/, that is, the “overlap” between c;
and cjr.
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T(us) =) h(fual, [{Suie; N Suseyr 52, 2) (5.2.11)
J o3>y

This metric is designed to work well with multi-labeled documents cor-
pus. The name “Partial” comes from the fact that in a multi-label setting the
two randomly sampled elements d; and d> can be associated with many
classes. As long as one of their classes matches we will consider the result
to be semantically coherent, thus a success. We consider that this property
of the metric is a valuable feature to focus on measuring semantic coherence
rather than mere partition similarity.

For instance, in contrast to similarity oriented metrics, more than one
clustering solution can achieve the maximum evaluation in terms of the
PCMP metric. In fact, we can think of two clustering solutions that will
obtain a PCMP value of 1, where any pair of elements sampled from within

a given cluster will belong to the same class.

a) Creating one cluster for every class, and assigning all the elements in ¢;
to u;, so that k = |C|.

b) Creating clusters of elements that share exactly the same class labels.

Finally, we should highlight that this metric can be easily approximated
via a Monte Carlo simulation. We will use this method to check the correct-

ness of the metric.

5.2.5 Clustering Recall

In the IR field the “recall” measure represents the probability that a rel-
evant document is retrieved. Therefore, for the clustering scenarios under
consideration, when the completeness of the partition cannot be assumed,
it is critical to provide clear ways to measure the completeness of the clus-
tering. Let N, be the total number of class assignments, given by the sum

Ne = Z’Cﬂ
J

of the sizes of every class:
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In overlapping and incomplete clustering we must not rely on the values of
the contingency matrix to compute recall values, because they can account
for duplicates. They also do not consider elements not assigned to any
clusters.

Class recall

If we are interested in measuring which classes are better captured by
the clustering it is straigthforward to compute a class recall value. We de-
fine this “class recall” as the probability that a document d, randomly sam-

pled from the class c;, is included in any cluster.
k . .
R(c;) = P([d € Uu]|e;) = W (5.2.12)
J

In other words, equation (5.2.12) means dividing the number of docu-
ments labelled with class c; that were recalled by any cluster u; by the total

number of documents labelled with class c;.

Gross clustering recall

From the previous expression and recalling that the probability of se-
lecting a class would be given by P(c;) = |¢;j|/N,, it is possible to derive
the following unconditional expression to measure the recall of the whole

clustering;:

Ry = P(d € Uju;) = Y P(d € Ufuile;) P(c)) (5.2.13)
J

where the probability of selecting each class would be given by |c;|/N.. So
(5.2.13), it can be conveniently expressed as:

1
Ry = A EJ: R(cj)lc;] (5.2.14)
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5.2.6 Single-metric performance

In retrieval and classification it is widely known that it is trivial to
achieve high recall at the expense of precision and viceversa. Thus, tradi-
tionally they are averaged into a single metric, the F-Score. The traditional
F-Score is nothing but the harmonic mean between precision and recall. Al-
most any two probabilities can be averaged in this way, however, for the
particular case of topic-model validation we are interested in balancing the
best measurement for semantic coherence with the best measure for com-

pleteness, so our proposed metric is defined by the harmonic average of

equation (5.2.9) and equation (5.2.14) to obtain:

2Ppy Ry
Fo=—"—"7"—7- 5.2.15
Ppy + Ry ( )
Notice that the selection of (5.2.9) and (5.2.14) comes at the expense of

not penalizing some clustering dissimilarities. Thus, if the ultimate perfor-

mance criteria is the partition similarity, then the GFM may be a best metric
of choice.

Both components of the F|, metric, are micro-averaged so that every
document has the same weight on the result. The micro-averaging effect
is achieved by the marginalization step performed in and in
order to work with unconditional probabilities.

5.3 Numerical Experiments

In this section the correctness of the theoretical formulations is checked.
Moreover some insights on their different characteristics is provided.

In order to generate the presented performance measures the Reuters-
21578 corpus, ModApte split, is adopted and only the documents that are
labeled with any topics are considered. The pre-processing step has not fil-
terd the stopwords but numbers were replaced by a unique symbol. After
this pre-processing, documents with less than 10 unique words were re-
moved. Both traning and test set were included in the corpus, making a

total of 10,468 unique documents and 117 ground-truth classes.
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5.3.1 Topic Extraction

For demonstration purposes, the evaluated algorithm was LDA with
parameters § = 0.01, o = 50/ K running 1,000 iterations of Gibbs sampling.
As noted earlier, the proposed measurement techniques require a dis-
cretization of the document-topic assignments. Thus, in order to better ob-
serve the effects of the discretization on the final mesurement we generated
models using document-topic probability thresholds ¢ of 0.05,0.1,0.2,0.25
and number of topics K of 10,30, 50,70,90 and 117. An example of the
extracted topics with K = 90 is shown in Table Each topic is associ-
ated with the prior probability P(z;) and each word is associated with its
conditional probability P(w;|z;)

Topic_0 .010 Topic_2 .008
coffee 062 price 062
brazil .040 prices .047
said .037 oil 034
export .035 effective 028
quotas .026 cts 022
quota 022 crude 022
producers 018 increase 021
ico 017 raised 021
brazilian 015 barrel .020
international .015 raises 019
Topic_49 .013 Topic_56 .011
rate .095 wheat 036
rates 077 agriculture  .034
interest .055 us .033
pct .048 usda 032
cut .035 corn .030
bank 027 grain .029
market .023 program 028
money 022 farm 027
prime .020 said 024
point 016 farmers 020

Table 5.2: Example of Extractred topic with K=90.
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5.3.2 Empirical approximation to the metrics

First, in order to check the correctness of the GFM and F, formulations,

we performed some Monte Carlo simulations. In order to estimate the GFM

metric the following procedure, described in Algorithm 2] was performed:

1.

2.

Randomly sample a pair of documents.

Check if they belong to the same class.

Check if they belong to the same cluster.

Check if they belong to the same class and cluster.

Compute empirical values for P(Syc), P(S«c|Sux), P(Sux|S«) and
GF M (Algorithm 2} lines 16-22).

Then, in order to demonstrate the correctness of the PCMP and F,, for-

mulations, the following simulation, described in algorithm 3| was per-

formed:

1.

2.

Randomly select a cluster, based on its prior probability.

Randomly select 2 documents from the cluster, check whether if they
belong to the same class.

Randomly select a class, based on its prior probability, check whether
if they are included in the clustering.

. Compute empirical values for P(§*0|ui), Ry and F, (Algorithm

lines 20-22).
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Algorithm 2 Approximation to GFM

Require: D = {dy,...,dn} is the set of input documents and maxTrials is

the maximum number of trials.

Ensure: I', the empirical approximation to the Generalized Fowlkes-

Mallows index.

ClaSet(d) and CluSet(d) return respectively the set of classes and clusters

8:
9:
10:
11:

12:
13:
14:
15:

16:
17:
18:

19:
20:
21:

22:

23:

24

associated with document d. Sample DocsPair(D) randomly samples a
pair from the set of documents D.

sameClassFreq < 0
sameClustFreq < 0
sameClassAndClustFreq < 0

for trials = 1 to maxTrials do

sameClass < False
sameClust < False
dy,dy < SampleDocsPair(D)

if {ClaSet(d;) N ClaSet(dy)} # 0 then
sameClassFreq < sameClassFreq + 1
sameClass < True

end if

if {CluSet(d,) N CluSet(dy,)} # 0 then
sameClustFreq < sameClustFreq+ 1
sameClust < True

end if

if (sameClass N sameClust) then
sameClassAndClustFreq < sameClassAndClustFreq + 1
end if

P, < sameClassAndClustFreq/trials
Py < sameClassFreq/trials
P, < sameClustFreq/trials

Puc | Puc

U/ ps P

end for

return T’
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Algorithm 3 Approximation to F;,

Require: U = {uy,...,uy} is the set of clusters, C' = {ci, ..., c5} is the set of

classes and maxzT'rials is the maximum number of trials.

Ensure: ®(, the empirical approximation to the F|, metric.

ClaSet(d) returns the set of classes associated with document d.

@ N2

8:
9:
10:
11:

12:
13:
14:

15:
16:

17:
18:
19:

20:
21:
22:

23:

24:

SampleClass(C) randomly samples an element from the set of classes
C. SampleClust(U) randomly samples an element from the set of clus-
ter U. SampleDocClass(c) randomly samples a document associated
with the class ¢. SampleDocsClust(u) randomly samples a pair of doc-
uments associated with the cluster w.

sameClassGivenClustFreq < 0
recDocsFreq <+ 0
RecalledDocs + ()

forall u; € U do

RecalledDocs < {RecalledDocs U u;}
end for
for trials = 1 to mazT'rials do

sameClass < False
sameClust < False

Uy < SampleClust(U)

dy,dy < SampleDocsClust(uy)

if {ClaSet(d,) N ClaSet(dy)} # 0 then
sameClassGivenClustFreq < sameClassGivenClustFreq + 1
end if

¢z < SampleClass(C')
d, < SampleDocClass(cy)

if (d, € RecalledDocs) then
recDocsFreq <— recDocsFreq + 1
end if

Ppyr < sameClassGivenClust Freq/trials

Ry < recDocsFreq/trials
2-Pppy-Ry
Do < Ppy+Ru

end for

return @
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Figure 5.1: Monte Carlo approximation of GFM and F,.

Results of an individual simulation for K=90, t=0.2 are shown in Figure
where the convergence pattern of the empirical measurements to their

correct values is depicted.

5.3.3 Relation of GFM and Overlapping F,

This subsection is devoted to measure how sensitive the F,,, PCMP and
GFM metrics are to the document-topic discretization threshold and num-
ber of topics parameters. Moreover, a measure of how the presented metrics
correlate to each other is presented.

Thus, we consider that it is important to report two statistical measure-
ments. First, in Table We present the results of a cross-correlation tab be-
tween GFM and the components of F, for the overall data set. In Table[5.3]it
is possible to observe a high correlation between GFM and F,, although not
high enough to make the metrics redundant. Recall is positively correlated
with F, and GFM and inversely correlated with Precision; this property is
widely acknowledged in the retrieval field.

In order to determine the effects of the parameterization on the mea-
surements we also performed a two-factor analysis of variance using the
number of topics K and the selected probability threshold as factors. The
results, summarized in Table 5.4/ show that both factors, the threshold and
the number of topics, have a statistically significant effect on the F|, metric
with confidence of above 94%, while this effect can only be moderately no-
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F, GFM PCMP Recall
F, 1
GFM 057 1
PCMP 091 033 1
Recall -0.04 038 -041 1

Table 5.3: Cross-correlation between metrics

ticed in the GFM metric for the threshold factor with a confidence of about
88%. A potentially important consequence of the F,, metric’s higher sen-
sitivity to parametrization is that it makes itself more suitable to perform

model selection analysis.

Factor F, GFM
Rows (Treshold) 0.0004* 0.1267
Columns (K) 0.0523* 0.5105

Table 5.4: Two-Factor ANOVA P-values

5.4 Conclusions and Future Work

In this capter we have shown that it is possible to measure the seman-
tic coherence of topic models by considering them to be special instances
of soft-clustering algorithms and then using multi-labeled corpora as ex-
ternal validation input. In order to accomplish this goal, we have gen-
eralized existing metrics designed to evaluate non-overlapping partitions
like the Fowlkes-Mallows Index. We have also proposed metrics with more
straightforward probabilistic interpretations and of easier implementation.
In both cases we have shown the correctness of the formulations by empir-
ically approximating the predicted values using a Monte Carlo simulation.

In future works we are interested in discussing how the different prop-
erties of a topic modeling algorithm like completeness, similarity between
partitions or semantic coherence are stressed by the different metrics. We
are also interested in evaluate the proposed metrics with other soft cluster-
ing methods like the one proposed in [97] and to study possible interplays
with probabilistic topic models. Moreover, although this metric is already

92



5. Topic Model performance estimation

based on human input, it would be useful to more clearly visualize the pre-
dictive power of such probabilistic metrics on the performance of machine

learning tasks like classification or retrieval.
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Chapter 6

Hybrid search

The interest in semantic web techniques has steadily been growing in
recent years. By comparing the standard web with the semantic web one
might realize that there are two common but largely distinct ways to rep-
resent, store and retrieve information. On the one hand, there are large
collections of unstructured text documents. Most web documents are of
this form, and also many popular services, such as Wikipedia, are funda-
mentally document or text based. Information retrieval in this unstructured
domain is commonly done with keyword-based search and the results of a
query are typically ranked lists of documents.

On the other hand there are structured data sources, from which in-
formation can be extracted with formal queries. As structured informa-
tion sources we consider semantic networks such as DBpedia [4], YAGO
[104] or Linked Life Data (LLD) [91]. These sources directly encode entity-
relationship (ER) graphs, which consist of entities like persons, countries,
etc. and of relations or facts concerning these entities, e.g. statements like
Albert Einstein bornIn Germany. Moreover, we also consider tra-
ditional relational databases, which can be mapped into ER graphs via tools
like D2R Server [11] or Openlink Virtuoso [36]].

The motivation of this chapter relies on the observation that many in-
formation repositories are in fact a combination of the two data-storage
regimes described above: they both contain structured and unstructured

information. For example consider the textual repository Wikipedia where
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linked '?data

a semantic data integration platform for the biomedical domain

CY

Search and explore over 4 billion RDF statements from various sources including UniProt, Publed, EntrezGene and 20 more...
Perform complex SPARQL queries and retrieve more than 500 million RDF resources.

SPARQL Query

Disclaimer: Part of the information in the Linked Life Data knowledge base is from copyrighted data sources
Linked Life Data is a prototype demonstration service and its users are solely responsible for compliance with any copyright restrictions. Beport a copvright violation

Linked Life Data is partly funded by the EU IST project LarKC (FP7-215535
® 2009-2010 Ontotext AD. Al rights reserved

Figure 6.1: Linked Life Data

many important facts are available in structured form, e.g. via DBpedia [5]
or YAGO. However the structured information is only available for the info-
boxes in each wikipage and not for the content of the main article and im-
portant content remains hidden in the textual description of each Wikipedia
node. In this chapter, both the structured part of Wikipedia and the textual
information are exploited. We consider the joint information sources as a
textual enriched ER graph. As a second example, consider the computing
environment of a large company. There are often huge collections of un-
structured textual documents available like emails, project reports, or prod-
uct handbooks. At the same time, there are typically many well-curated
databases available listing and linking entities like employees, hierarchies
of departments, customers and products. Available documents can often
be linked to one or more entities in the structured representation. In total,
one can thus consider the whole information repository again as a textually
enriched ER graph.
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6.1 Information Retrieval on Textually-Enriched ER

graph

Keyword-based search [77] is very powerful, since it is flexible, can
be implemented efficiently, and is highly intuitive for most users. Yet,
keyword-based search also has its well-known problems. High recall
is hampered by the fact that there might be many expressions with the
same semantic meaning (polysemy). Specificity is negatively influenced
by context-dependent semantics of many words (polymorphism). Due to
low specificity, a meaningful ranking of the search results is indispensable
in keyword-based search. The extraction of knowledge from the retrieved
documents is typically up to the user himself. Thus, when searching di-
rectly for specific entities, list of entities or facts, traditional search engines
are only of limited use.

For structured information repositories information retrieval is typically
performed with structured queries in languages like SPARQL [112] for se-
mantic web domains or with SQL for traditional relational databases. These
languages allow for very precise query formulation, for efficient filtering
and aggregation, such that the search results produce a well-defined set.
For structured queries, a ranking of the query results is of less importance.

Querying structured semantic repositories brings two different prob-
lems. First, much knowledge is still and will continue to be in text form.
While entity extraction and relation extraction have recently made great
progress [20,/102,]105], it seems highly likely that, also in the near future,
important information will remain in textual, unstructured form.

A second problem is the high complexity of structured queries (e.g. an
example queries of [91] is shown in Figure 6.2). So even if all relevant
knowledge could be transformed into structured form, many users would
still have great difficulties to retrieve this information. For standardized
queries an intelligent user interface may automate the formulation of a cer-
tain type of query. However, for any non-standard search task the user
has to write specific structured search queries which requires deep formal
thinking and good knowledge of the structure of the data store.
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2E linkedlife data Pet Home | SPARQL | Relffinder | Sources | Conventions | Download | About | Questions?

SPARQL Query

Query

PREFIX biopax2: éhttp Flamai bmupax org/release/biopax-level? owl#s o
PREFIX uniprot: <http://purl.uniprot.org/core/>
PREFIX drugbank: <http:/fwwwd wiwiss fu-berlin de/drugbankiresource/drugbank/=

SELECT distinct #ullname
WHERE {
Tinteraction rdf:type biopax2:physicallnteraction
Zinteraction biopax2:PARTICIPANTS ?participant
?participant biopax2:PHYSICAL-ENTITY ?physicalEntity
?physicalEntity skos:exactMatch ?protein .
“?protein uniprot-classifiedVWith <http://purl uniprot.org/go/0006954
?protein uniprot:recommendediame Zname.
“?name uniprot-full Nlame ?fullname .
Zprotein uniprot:mnemonic ?mnemaonic

m

Ptarget drugbank:swissprotName ?mnemonic . -
} P

Include inferred

Execute

Sample queries

SPARQL Select template, Select Genes and their links to GeneOntology terms, Select interacting partners for specified protein
Select interactions where participates specified protein, Select all proteins that are linked to a curated interaction from the literature and to inflammatory response,

Figure 6.2: Example of SPARQL query on Linked Life Data

6.2 Proposed Hybrid Search Engine

Given a textually enriched ER graph we show how to formulate hy-
brid queries consisting of user provided keywords and simple structured
queries, which might be encoded in a user interface. Dependent on the
query, the results will be ranked lists of entities or lists of facts, that hold
between the entities. Technically, we contribute a novel, sound and effi-
cient method to propagate text-based relevance scores on ER graphs to use
these for ranking the results of a SPARQL query. While in one setting of
our approach, the keywords can be used to rank the results of a classical
faceted search, our method is much more flexible and powerful. It realizes
approximate keyword matches in the ER graph and also allows for more
complex structured queries. The advantages of the proposed approach will

be demonstrated in the experimental section.

In information retrieval it is often useful to first expand a query in or-
der to alleviate some of the problems with polysemy and subsequently to
narrow down the search results according to the semantics of the query. We
implement this basic idea as follows: First, we use a keyword based query
on the text-documents in the ER graph and then propagate the keyword
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relevance score via a propagation algorithm to the whole ER graph. We
then perform a SPARQL query as an effective semantic filter and rank the
SPARQL results according to the relevance computed from the keywords.

We mainly follow the terminology of [104]. We consider an entity to
be an instance of a certain entity class such as people, companies, diseases,
genes and proteins. Two entities can stand in a relation. Facts come in form
of triples and are composed of two participating entities and one relation
(e.g. [Angela Merkel, born_in, Hamburg]). Under category we mean
the type-level representation of the ER graph resulting from the categories
of WordNet or Wikipedia (see [104]).

SPARQL
Electron , Scientific
: Microscope .
Microscopy techniques

G. Binnig @ Microscopist Scientist

Merkel ® Galileo Galilei

Text Document

Figure 6.3: Stylized subgraph of the YAGO ER graph. Some of the nodes are linked
to text documents depicted via circles within the nodes.

Example 4. In Figure [6.3)is represented an qualitative eaxample of the hybrid
search. Given a keyword microscope, a full text query is performed and some
documents obtain a relevance score (darker circles mean high relevance). This
translates directly into a score for the nodes of the ER graph connected to the
document. These scores are generalized to all nodes with and without text with
help of the proposed relevance propagation algorithm (the resulting relevances are
color-coded, red means high score, blue low score). A SPARQL query finally select
a subgraph of the ER graph that contains nodes of type category. These are
ranked according to their aggregated relevance scores.
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6.2.1 Keyword Query and Relevance Propagation

Given the ER graph with links to textual documents, we index a node
with the words in all the texts associated with that node using Lucene [53]].
If a node is connected to more than one document, we join the documents
and index the result.

At query time, we can then retrieve all the documents that contain the
given keywords or match a given regular expression efficiently. Since the
documents are linked to nodes in the ER graph, a query implicitly specifies
a subgraph of the ER graph.

With G = (V, E) being the ER graph with n vertices v; € V and m edges
(7,7) € E, the Lucene query formally yields a Lucene relevance score [; for
the text associated with a node and thus for the node v; itself. For nodes
that are not returned by Lucene we define [; = 0.

The keyword-based node relevances [; are then generalized via exploit-
ing the known, meaningful structure of the ER graph. Following a page
rank like principle [18] or similarly activation spreading ideas [29], we com-
pute novel relevance scores r; for each node, by iterating

r

=1+ A g -

T + 2 d;
(4,9)eE

Here, d; is the out-degree of node j and 0 < A < 1 is a weighting fac-
tor. Thus, the novel relevance r; of each node is the Lucene relevance [;
plus contributions of the novel relevances of nodes that are connected via
incoming edges. The weighting factor A\ discounts relevance propagation
over long distances. \ close to 1 means that propagation distance is not re-
stricted, whereas small A means that only close neighbors in the ER graph
get significant activation. The optimal choice of A is task dependent. An
example is discussed in the experimental section.

We compute the solution of the resulting sparse linear equation effi-
ciently with an iterative sparse equation solver, namely GMRES [100]. Alter-
natively, this equation could be solved with locally optimal updates which
are performed until convergence; this would correspond the Gauss-Seidel
method for solving the sparse linear system.
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Figure 6.4: Spreading Activation Example with query term microscope. Larger
and red nodes indicate higher relevance, blue indicate lower relevance,
yellow squared nodes are textually enriched nodes.
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6.2.2 Structured Search and Final Result Ranking

In a next step, we filter out relevant entities and facts using a SPARQL-
select query. We store the ER graph in a RDF store [92] where we execute
the SPARQL query. The result is table where the columns encode the dif-
ferent variable bindings and the rows are instances found in the database,
generally not sorted. Each row thus consists of one or more references to
entities or literals, and potentially expresses one or more facts about these
objects.

Having performed the keyword-based scoring of all the nodes in the
ER graph, we now rank the rows returned by the SPARQL query such that
more relevant entities or facts are placed on top of the result list. At the
moment, we simply sum-up the relevances of all entities in each row. This
roughly expresses an OR semantics for ranking. In the future, we will also

investigate other combination rules.

6.3 Experiments

In order to evaluate the proposed approach we selected the YAGO
knowledge baseE] [104] as a structured information source and Wikipedia
as a textual resource. YAGO consists of approx. 2 million entities and more
than 20 million facts describing these entities [104]. Facts are automatically
extracted from Wikipedia and combined with concepts from Wordnet [39].
YAGOQO's accuracy is estimated to be about 95%. In addition, many YAGO
entities are linked to Wikipedia pages via the relation describes and we
thus obtain an interlinked, textually enriched ER graph.

The full text of all Wikipedia pages is indexed with Lucene. We adapted
the standard Lucene score by adding a normalization factor that takes into
account the length of the document. This normalization factor is neces-
sary due to the nature of encyclopedic-style document collections, where
important or famous entities tend to have longer than average textual de-
scriptions.

In the following we present three show cases. We focus on examples,

lyersion from February 1st 2010
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where it is either difficult or impossible to retrieve particular information
with a standard SPARQL query or a keyword search alone. Qualitatively,
the examples can be grouped as follows:

o Context-Aware Fact Search: Search for entities and facts by specifying
the interesting aspects with keywords (see Example 5| and [6).

o Context-Aware Category Search: Search with keywords for abstract cat-

egories which are not linked to a special textual description (see Ex-

ample|7).

6.3.1 Context-Aware Entity Search

In this setting we would like to retrieve entities or facts about entities

where the specific context is specified via keywords.

Example 5. Give me companies with number of employees and annual revenue
which have sth. to do with ultrasound.

In this example, we query our hybrid search engine with the keyword “ultrasound”
and a SPARQL-select with the following WHERE-clause,

?company rdf:type wordnet_company
?company yago:hasEmployeees 7?employees

?company yago:hasRevenue ?revenue

The results of our approach are presented in Table The 10 top-ranked re-
sults are all companies that produce ultrasound devices. An exception here is Turtle
Beach Syst., which produces a PC sound card named Ultrasound.

Note that there is no category for companies that produce ultrasound
devices in YAGO. Thus, this question could not have been answered with a
structured query on YAGO alone, which could have only retrieved general
companies. At the same time, a keyword-only query on Wikipedia with the
keywords “company ultrasound” produces only two companies while the
other returned items are related to technology pages. This example thus

demonstrates the need for hybrid search techniques.
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r Company Employees Revenue Score

0 | General Electric 327000 $172.738 M. | 9083.89
1 | GE Healthcare 8419.13
2 | Philips 125500 26.976 M. 8404.8

3 | Siemens AG 430000 $110,820 M. | 8092.45
4 | Neusoft Group 12000 $ 355 M. 4640.18
5 | SRI International 4299.93
6 | Agfa-Gevaert 13565 aCri 3.300 M. | 3759.03
7 | Foster-Miller 3055.97
8 | Ellex Medical Las. 3011.97
9 | Turtle Beach Syst. 2958.37

Table 6.1: Ranked results of our approach for example |5 (keyword “ultrasound”).

Moreover, note that our approach directly returns not only relevant
company names, but also their number of employees and the revenue. This

approach thus goes beyond keyword-aware faceted search.

Example 6. Give me physicists and their advisors that worked in the area of quan-
tum mechanics and have sth. to do with Los Alamos.

The results of our hybrid approach are shown in Table[6.2] Again the result is very
reasonable. The first result, Robert Oppenheimer, was the director of the famous
Los Alamos Scientific Laboratory, and both Oppenheimer and his advisor Born
worked in the area of quantum mechanics. But also the other persons obtained with
our approach were famous quantum physicists with connections to Los Alamos
laboratories.

6.3.2 Context-Aware Category Search

Relevance propagation allows us to generalize keyword relevance of a
subset of nodes to all nodes in the ER graph, even if some of them are not
linked to texts themselves. Such nodes are for example the category nodes
in YAGO, which group a number of entities with respect to a specific topic
or property, but which do not have a description other than the title of the
category. With the help of relevance propagation, our system is thus never-
theless able to search for categories by specifying context related keywords.
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r Physicist Advisor Score 7;
0 | Robert Oppenheimer | Max Born 86579.94
1 | David Bohm Robert Oppenheimer 77108.46
2 | Willis Lamb Robert Oppenheimer 62835.95
3 | Philip Morrison Robert Oppenheimer 61497.02
4 | Richard Feynman John Archibald Wheeler | 54672.82
5 | George Zweig Richard Feynman 52808.75
6 | Chen Ning Yang Edward Teller 47098.77
7 | Edward Teller Werner Heisenberg 46347.56
8 | Lincoln Wolfenstein | Edward Teller 45903.60
9 | John von Neumann | Leopold FejAl'r 34172.28
10 | Emilio G. Segre’ Enrico Fermi 31561.64
10 | Enrico Fermi Luigi Puccianti 31561.64

Table 6.2: Ranked results of our approach for example@ (keywords “Los Alamos”
and “Quantum”)

Example 7. Give me categories related to microscopes.
Here, we query our search engine with the keyword “microscope” and a SPARQL-
select with WHERE-clause,

?category rdf:type ?concept

To give a notion about the influence of the weighting factor X\, we assess the
distance of the shortest path D between the nodes that obtained a Lucene score and
the nodes from the top ten result set. Table[6.3|shows the results and corresponding
distances for A = 1 (respectively Table |6.4| for X = 0.1). It can be seen that for
A =1, the top ten results are enriched with nodes that have a longer shortest path
distance than the top ten results for A\ = 0.1.

In both cases the results are highly plausible. They can be grouped roughly into
two types: Categories that get investigated with the help of microscope techniques,
e.g. plants or pathogens, and categories that are technically related to the concept
microscope, e. . X-rays.
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r Category score D
0 | wikicategory wordnet microscope 1234643.5 | 3
1 | wikicategory Scientific techniques 1112785.29 | 3
2 | wordnet disease 962138.78 | 1
3 | wordnet person 63251798 |1
4 | wikicategory wordnet optics 521473.51 |3
5 | wikicategory Plant pathogens and diseases 486216.12 | 3
6 | wikicategory wordnet measuring instruments | 322737.59 | 3
7 | wikicategory X-rays 28162711 | 3
8 | wordnet anatomy 280101.66 |1
9 | wikicategory wordnet igneous rock 23044275 | 3

Table 6.3: Results of our system for exampleﬁ] (keyword “microscope”, A = 1)

r Category score | D
0 | wikicategory wordnet microscope | 22079.62 | 3
1 | wikicategory Scientific techniques | 11873.37 | 3
2 | wordnet disease 7419.3 1
3 | wikicategory wordnet optics 6621.56 | 3
4 | wordnet person 425436 |1
5 | wordnet scientist 4056.44 |1
6 | wikicategory wordnet lens 3426.64 | 3
7 | wikicategory Types of cancer 296422 | 1
8 | wikicategory Technology timelines | 2849.33 | 1
9 | wikicategory wordnet genetics 2477.66 | 1

Table 6.4: Results of our system for examplel?] (keyword “microscope”, A = 0.1)

6.4 Related Work

Unlike our proposed approach, most semantic search engines aim at
retrieving relevant documents supported by semantic annotations, see [76]
for a recent survey. Our goal, however, is to directly retrieve entities and
facts from the ER graph, such that the user does not have to search through
the documents himself.

This paradigm is similar to structured search engines such as NAGA
[61], where a flexible subgraph pattern is given to retrieve pieces of an ER
graph. While they also rank the results of a structured query, they do not

105



6. Hybrid search

take into account keywords.

Searching and ranking entities given a keyword query is done for the
scientific domain by [89]. For instance, the Libra system [81] returns lists of
conferences, persons and research papers. However, this system does not
return facts and no generalization by relevance propagation is utilized.

Another attempt to bridge the gap between textual input and structured
search is the translation of natural language or keyword queries into a struc-
tured formalism. However, this involves advanced understanding of lan-
guage, a highly ambitious effort. To alleviate this problem [110] introduce
a method that maps keyword queries to entities in a knowledge base.

We also refer to work in the traditional database community that
provides mechanisms to make Relational Database Management Systems
(RDBMS) searchable with keywords, see e. g. [1}/10]. In contrast, our aim is
to use the effectiveness and richness of textual features to rerank the formal
query and thus to narrow down the user intention.

Most similar to our approach is the work proposed by [98]. In their
work the authors describe a hybrid approach for searching ER-graph like
data repositories. As we do in our work, they also use the idea relevance
propagation or activation spreading. Our work can be seen as an extension
of this work by including a reranking component based on the user’s in-
tention expressed via keywords. More precisely, activation spreading [29]

does not include IR-style ranking scores when retrieving relevant results.

6.5 Conclusions

We have presented a framework for hybrid search on textually enriched
ER graphs. It integrates flexible and intuitive keyword search with the
specificity of structured query languages. This is advantageous in several
respects: First, keywords are very flexible and allow the incorporation of
unstructured information that is not made explicit in the semantic struc-
ture of the ER graph. At the same time the graph structure is exploited both
for a suitable generalization of keyword relevance via relevance propaga-

tion, as well as for a precise filtering in terms a given SPARQL query. Our
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method can not only retrieve lists of entities based on a hybrid query, but
gives direct access to lists of facts that otherwise would have to be collected
manually starting from each relevant entity.

There are several directions to extend and improve our work. While
preliminary results have shown the effectiveness of our proposed approach,
a quantitative evaluation in terms of retrieval performance will be a matter
of ongoing research. Second, we have so far not used formal reasoning in
the ER graph. Such additional, logic-based generalization would have to
be compared with the more probabilistic generalization step that we have
included via the relevance propagation formalism. We imagine that these
two approaches could well complement each other.

In total, we feel that, while information retrieval in the structured and
in the unstructured domain separately are well-established, searching and
retrieving information on mixed data sources such as textually enriched en-
tity relationship graphs will be a growing field of interest. There are many
more interesting problems that can be looked at such as, for example, clus-
tering or hierarchical question answering. With the advent of linked data
stores like Linked Life Data or YAGO/Wikipedia there are many large and
interesting data sources available for experiments with such tasks. While
we have not demonstrated our method on corporate intranet data, we be-
lieve that this area could also be a major application field for the proposed
method.

107



Chapter 7
Conclusions

In this dissertation we have shown how Text Mining can be fruitfully
exploited in real world applications with the aim to distill knowledge from
unstructured textual sources.

We have shown how structured data, commonly produced in a business
environments (i.e. taxonomies, databases and semantic repositories) could
be enhanced with unstructured document collection to provide powerful
tools for knowledge management and information integration.

Thus, the aim of this dissertation has been the development of text min-
ing models that can be easily integrated in business environments. The
models provide efficient tools for gaining competitive advantage and eas-

ing the access to relevant informations.

More precisely, we have applied probabilistic topic models for docu-
ment management: the proposed approach exploits a document repository
and a related taxonomy by efficiently extracting a representative set of top-
ics labeled accordingly to the supplied taxonomy. The result is a a simple,
fast and efficient multi-label Bayesian classifier specifically tailored to doc-
ument tagging. The system can be easily integrated in a existing document
management system and offers a reliable way to manage and retrieve in-
formations.

Such model has also been applied for the Italian legal domain as a verti-
cal faceted search engine, and offers to lawyers the possibility of querying
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existing document repositories, receive updates on recent relevant news
and manage their own documents. A prototype of the system is pub-
licly available online at http://dedalus.cnds.disco.unimib.it:
8080/sideinformer/.

Moreover we proposed a novel approach for topic models performance

estimation by exploiting a soft-clustering interpretation. In particular we
derived a probabilistic interpretation of a well known performance index,
that has been exploited for the construction of a novel index that is able to
evaluate soft-clustering algorithms characterized by incomplete and over-
lapping partitions.
The proposed generalization allowed the formulation of novel metrics cor-
related with the classical information retrieval measures of precision and
recall. Furthermore a montecarlo procedure has been proposed in order to
offer an efficient and reliable estimation of the model performances.

Finally we have shown how text mining techniques can be used to en-
rich existing semantic repositories with textual resources. The proposed
approach allows to query the semantic repositories via simple keyword-
based query. The keyword-based query is extended to the semantic graph
by means of a novel spreading activation algorithm enabling the users to

discover entities, facts and concept otherwise hidden.

Future directions

Future work direction should investigate further extension of the pro-
posed models. In particular the use of richer topic models integrating ad-
ditional information like authors or relations could be useful for document
management.The topic labeling algorithm could be enhanced by the appli-
cation of different rules over semantic graphs; the tagging process could be
improved by new classification models.

The performance estimation metrics could be improved by the defini-
tion of an upper bound of the error in the evaluation of high overlapped
and incomplete partitions. Different topic models could be investigated

and compared according to the proposed metrics.
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7. Conclusions

Finally the hybrid search model can be extended by improving the in-
dexing of textual resources with topic models. We are also interested in
investigating the applicability of the proposed paradigm for the query an-
swering problem.
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Appendix A

Probability Distributions

A.1 Dirichlet Distribution

The Dirichlet is the conjugate prior distribution for the parameters of the
multinomial distribution. The Dirichlet is a multivariate generalization of
the beta distribution. Let p denote a k dimensional random vector. Under

the dirichlet model with parameter vector o the probability density at p is

p(p) ~ Dla,- -+ ) = m P!
k

where p, > 0 (A.LT)

Zpkzzl
%

A.2 Multinomial Distribution

Let X1, Xo, -+, X, be a set of random variables. The probability mass

function is given as follows:
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N n
P(Xp =1, Xn=1p) = WHW
=1 =1

st.x; >0,0;, >0

n
E xT; =N
i=1
n

292:1

i=1

(A.2.1)

A.3 Hypergeometric Distribution

Hypergeometric Distribution is defined as the probability of selecting
exactly = successes in a sample of size m, obtained without replacement
from a population of N objects from which k contain the characteristic of
interest. Formally:

k\ (N—k
h(N,k,m,z) = &) e (A.3.1)

(m)
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