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Abstract In this paper we provide an axiomatic foundation to Orlicz risk
measures in terms of properties of their acceptance sets, by exploiting their
natural correspondence with shortfall risk ([17]), thus paralleling the charac-
terization in [40]. From a financial point of view, Orlicz risk measures assess the
stochastic nature of returns, in contrast to the common use of risk measures
to assess the stochastic nature of a position’s monetary value. The corres-
pondence with shortfall risk leads to several robustified versions of Orlicz risk
measures, and of their optimized translation invariant extensions ([35], [20]),
arising from an ambiguity averse approach as in [19], [30], [9], or from a multi-
plicity of Young functions. We study the properties of these robust Orlicz risk
measures, derive their dual representations, and provide some examples and
applications.
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1 Introduction

Theories of risk measurement, dating back to [4], [12], [33], [38], and [37], of-
ten take random values designated in monetary units as basic objects. These
monetary values specify the final wealth levels in absolute terms. With uncer-
tainty represented by a space of states of nature, numerical representations are
then considered over state-contingent final wealth. In the context of financial
risk measurement and capital requirements, modern robust versions of such
theories are provided by convex measures of risk ([16, 17], [18], [36], and [27]).

Already [31] argued that, rather than considering final wealth levels in
absolute terms, risk measurement should instead be based on an assessment
relative to a reference (or inflection) point.1 Furthermore, there is a long-
standing tradition of considering relative risk in measurement of risk aversion
(see [32]).

In this paper, we develop a theory of risk measurement that takes log
returns (in relative terms) rather than monetary values (in absolute terms) as
basic objects.2 Our theory may, in some sense, be viewed as the analog for
returns of the theory of robust shortfall risk ([17], Chapter 4) for monetary
values. The new classes of risk measures induced by our theory include some
canonical special cases that are not contained in the classes of monetary ([17])
or convex measures of risk, and maintain the interpretation of measuring risk
by means of acceptance sets. In the law-invariant case, our theory is connected
to risk measurement based on Orlicz norms.

Orlicz premium principles were introduced in the actuarial literature in
[21]. For a random nonnegative loss X, the Orlicz premium HΦ is defined by

HΦ(X) := inf

{
k > 0

∣∣∣ E [Φ(X
k

)]
≤ 1

}
,

where the Young function Φ : [0,+∞)→ [0,+∞) is convex and satisfies Φ(0) =
0, Φ(1) = 1 and Φ(+∞) = +∞. By construction, Orlicz premia are positively
homogeneous, monotone and subadditive. From a mathematical point of view,
Orlicz premia are Luxemburg norms, and their natural domain is the Orlicz
space

LΦ =

{
X ∈ L0(Ω,F , P )

∣∣∣ E [Φ( |X|
k

)]
< +∞ for some k > 0

}
.

We refer the interested reader to [21], [34], [10, 11], [1, 2], [13], [28] and the
references therein for further properties of Orlicz premia and Orlicz spaces and
their use in risk measurement and portfolio choice. The economic motivation
behind Orlicz premia is to provide a multiplicative version of the actuarial zero

1 Indeed, [31] anticipated the development of reference-dependent theories of risk meas-
urement, such as, perhaps most noticeably, the popular prospect theory of [24], and more
recent extensions thereof.

2 Contrary to reference-dependent theories, however, our theory does not require the
specification of a reference level.
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utility premium principle; indeed, when X ∈ L∞+ , the Orlicz premium HΦ(X)
can be equivalently defined as the unique solution to the equation

E
[
Φ

(
X

HΦ(X)

)]
= 1.

The first contribution of this paper is to formalize a one-to-one corres-
pondence between Orlicz premia and measures of (utility-based) shortfall risk
defined in [16] as

ρ`(X) = inf {m ∈ R | E[`(X −m)] ≤ 0} ,

where ` : R→ R is nondecreasing and satisfies `(−∞) < 0 < `(+∞). Measures
of shortfall risk occur as special cases in the class of convex measures of risk.

The second contribution is to provide an axiomatic foundation to Orlicz
premia, which can be considered as the appropriate analog of the well-known
characterization of utility-based shortfall risk (see [40], [14]). From a financial
point of view, we discover that Orlicz premia arise naturally when assessing
the stochastic nature of returns, in contrast to the more common use of risk
measures that are applied to the monetary value of financial positions.

Our third contribution is to exploit the correspondence between Orlicz
premia and utility-based shortfall risk in order to define two families of robust
Orlicz premia. In the first family, the decision-maker faces ambiguity with
respect to the correct probabilistic model P . Ambiguity will be modeled in
three economically different but mathematically unifiable ways: by means of
multiple priors as in [19], by means of variational preferences as in [7], and by
means of homothetic preferences as in [7] and [9]. These ambiguity averse the-
ories belong to the wide family of uncertainty averse preferences of [7] and can
be viewed as formalizations—and significant extensions—of the classical de-
cision rule of [39] (see also [22]). In the second family of robust Orlicz premia,
the decision-maker considers a multiplicity of Young functions. Both famil-
ies lead to risk measures that are suprema of Luxemburg norms, related to
different probability measures on a suitable rearrangement-invariant Banach
space, or related to different Young functions. The most important difference
between the two families of robustifications is that law invariance is not auto-
matically inherited by the first family, while it is by the second family. The
properties of the different types of robust Orlicz premia are studied in detail.
We also provide an axiomatic foundation to the notion of robust shortfall risk
(introduced by [17]) and the related axiomatization of robust Orlicz premia.

Our fourth contribution is the development of optimized translation invari-
ant extensions of robust Orlicz premia, which we refer to as robust Haezen-
donck-Goovaerts risk measures in the spirit of [20]. Robust Orlicz premia are
positively homogeneous, monotone and subadditive, but not translation in-
variant. By extending the well-known Rockafellar-Uryasev [35] construction
(see also [3], [20], and [1, 2]), we introduce robust Haezendonck-Goovaerts risk
measures, analyze their properties, and provide their dual representation as
coherent measures of risk. We conclude with a few applications of our results
to Pareto optimal allocations and optimal risk sharing.
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The outline of this paper is as follows. Section 2 introduces some pre-
liminaries. In Section 3, we establish a connection between risk measurement
based on returns and risk measurement based on monetary values, leading
to an axiomatic characterization of Orlicz premia which parallels the well-
known characterization of utility-based shortfall risk in [40]. In Section 4, we
introduce robust Orlicz risk measures, study their properties and general rep-
resentations. We also characterize those robust Orlicz risk measures that are
translation invariant and discuss the axiomatic foundation of robust Orlicz
risk measures. In Section 5, we introduce and analyze robust Haezendonck-
Goovaerts risk measures, and provide dual representation results. Finally, in
Section 6 we provide some examples and applications.

2 Basic definitions and notation

We assume that there is an underlying probability space (Ω,F) with a fixed
reference measure P . The probability space (Ω,F , P ) is nonatomic. We denote
by Q the set of all probability measures on (Ω,F) that are absolutely con-
tinuous with respect to P . Without further mentioning we will often identify
Q with the set of Radon-Nikodym densities

D = {φ ∈ L1(Ω,F , P ), φ ≥ 0 P -a.s., EP [φ] = 1}.

In this paper we will consider finite-valued risk measures and premium prin-
ciples defined on L∞(Ω,F , P ) or on the smaller domains

L∞+ (Ω,F , P ) := {X ∈ L∞ | X ≥ 0 P -a.s.}
L∞++(Ω,F , P ) := {X ∈ L∞ | X > 0 P -a.s.}.

(Throughout, positive realizations of X represent losses while negative real-
izations represent gains.) For a risk measure ρ : L∞(Ω,F , P ) → R, we say
that3

- ρ is translation invariant if ρ(X + h) = ρ(X) + h, ∀h ∈ R,∀X ∈ L∞
- ρ is monotone if X ≤ Y P -a.s. ⇒ ρ(X) ≤ ρ(Y )
- ρ is monetary if it is monotone, translation invariant and satisfies ρ(0) = 0
- ρ is convex if it is monetary and

ρ(αX + (1− α)Y ) ≤ αρ(X) + (1− α)ρ(Y ), ∀X,Y ∈ L∞,∀α ∈ [0, 1]

- ρ is positively homogeneous if ρ(λX) = λρ(X), ∀λ ≥ 0,∀X ∈ L∞
- ρ is coherent if it is convex and positively homogeneous.

3 Different from most of the financial mathematics literature on risk measures and as a
consequence of the adopted sign convention on profits and losses, risk measures are here
assumed to be monotone increasing.
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The acceptance set of a risk measure ρ (at the level of random variables) is

Aρ := {X ∈ L∞ | ρ(X) ≤ 0}.

If ρ is translation invariant, it can be recovered from its acceptance set by

ρ(X) = inf{m ∈ R | X −m ∈ Aρ},

so ρ can be interpreted as the minimal amount, i.e., the required capital, that
has to be subtracted from the loss X in order to make it acceptable. If ρ is
law invariant, we define its acceptance set at the level of distributions

Aρ := {F ∈M1,c | ρ(F ) ≤ 0},

withM1,c the set of probability measures with compact support in R. We say
that ρ has the Fatou property if

Xn
P→ X, ‖Xn‖∞ ≤ k ⇒ ρ(X) ≤ lim inf

n→+∞
ρ(Xn).

The Fatou property is equivalent to continuity from above; see [17] or [13]. A
convex risk measure with the Fatou property has the following dual represent-
ation:

ρ(X) = sup
Q∈Q
{EQ[X]− c(Q)} , (1)

where the penalty function c : Q → [0,+∞) is convex and lower semicontinu-
ous with respect to the weak topology σ(L1, L∞). If moreover ρ satisfies the
stronger Lebesgue property

Xn
P→ X, ‖Xn‖∞ ≤ k ⇒ ρ(Xn)→ ρ(X),

which is equivalent to continuity from below, then the supremum in the dual
representation (1) is always attained and the penalty function c(Q) has the so-
called WC property, which means that its lower level sets are weakly compact.
We refer to [18], [17] and [13] for extensive treatments of convex duality theory
for risk measures. If ρ is law-invariant in the sense that

X
d
= Y ⇒ ρ(X) = ρ(Y ),

then it can be seen as a functional on M1,c. Each probability measure will
be identified with its distribution function F (x) := µ(−∞, x]. The operation
of convex combination in M1,c is the mixture of distribution functions and
should not be confused with the state-wise convex combination of random
variables in L∞(Ω,F , P ). We say that ρ is mixture continuous if the function
λ 7→ ρ (λF + (1− λ)G) is continuous for λ ∈ [0, 1] and that ρ has Convex
Level Sets (CxLS) if ρ(F ) = ρ(G) = γ ⇒ ρ(λF + (1 − λ)G) = γ, ∀λ ∈ (0, 1).
On M1,c we will consider the Ψ -weak topology σ(M1,c, CΨ ) where

CΨ = {f : R→ R, f continuous with |f | ≤ C · Ψ},

for some gauge function Ψ : R → [1,+∞). We refer to [17] for the properties
of the Ψ -weak topology. Convergence in the Ψ -weak topology will be denoted

by
Ψ→. We say that ρ is Ψ -weakly continuous if Fn

Ψ→ F ⇒ ρ(Fn)→ ρ(F ).
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3 Monetary risk measures and return risk measures

In this section, we discuss risk measurement based on the relative assessment
of a financial position. As will become apparent, the primitive object here is
not the position’s monetary value, but the position’s log return. We provide
the following definition:

Definition 1 A return risk measure ρ̃ : L∞++ → (0,+∞) is a positively homo-
geneous and monotone risk measure with ρ̃(1) = 1.

The following lemma shows that properties of ρ̃ translate to properties of its
associated acceptance set and that, vice versa, properties of the acceptance
set are inherited by ρ̃. Even more, ρ̃ can be recovered from its acceptance set.

Lemma 1 Let ρ̃ : L∞++ → (0,+∞) be positively homogeneous with ρ̃(1) = 1,
and let

Bρ̃ :=
{
X ∈ L∞++|ρ̃(X) ≤ 1

}
be its associated acceptance set.
a) We have that

ρ̃(X) = min {k > 0 | X/k ∈ Bρ̃} .

b) ρ̃ is subadditive if and only if Bρ̃ is convex.
c) ρ̃ is monotone if and only if Bρ̃ satisfies X ∈ Bρ̃, Y ≤ X ⇒ Y ∈ Bρ̃.

Proof a) Since ρ̃ is positively homogeneous, ρ̃
(
X
k

)
= ρ̃(X)

k , and obviously

ρ̃(X) = min
{
k > 0 | ρ̃(X)

k ≤ 1
}

.

b) If ρ̃ is subadditive, then, from positive homogeneity, it is also convex, hence
the lower level set Bρ̃ is convex. Conversely, let X,Y ∈ L∞++ with ρ̃(X) = α,

ρ̃(Y ) = β, with α, β > 0. Then, from positive homogeneity, ρ̃
(
X
α

)
= ρ̃

(
Y
β

)
=

1, hence, from the convexity of Bρ̃, we get that, for each λ ∈ [0, 1],

ρ̃

(
λ
X

α
+ (1− λ)

Y

β

)
≤ 1.

Choosing λ = α
α+β , we obtain

ρ̃ (X + Y ) ≤ α+ β,

which shows the subadditivity of ρ̃.
c) Let ρ̃ be monotone. Then, X ∈ Bρ̃, Y ≤ X ⇒ ρ̃(Y ) ≤ ρ̃(X) ≤ 1. On the
other hand, let Y ≤ X. Then,

Y

ρ̃(X)
≤ X

ρ̃(X)
∈ Bρ̃ ⇒

Y

ρ̃(X)
∈ Bρ̃ ⇒ ρ̃(Y ) ≤ ρ̃(X),

from which monotonicity follows. ut
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A natural one-to-one correspondence between return risk measures and mon-
etary risk measures is as follows:

- given a monetary risk measure ρ : L∞ → R, the associated monetary risk
measure ρ̃ : L∞++ → (0,+∞) is given by

ρ̃(X) := exp (ρ (log(X))) ; (2)

- given a return risk measure ρ̃ : L∞++ → (0,+∞), the associated monetary
risk measure ρ : L∞ → R is given by

ρ(Z) := log (ρ̃ (exp(Z))) . (3)

The following is immediate:

Lemma 2 Let ρ : L∞ → R and ρ̃ : L∞++ → (0,+∞) be as in (2) and (3).
Then:

a) ρ(0) = 0 ⇐⇒ ρ̃(1) = 1
b) ρ is translation invariant ⇐⇒ ρ̃ is positively homogeneous
c) ρ is monotone ⇐⇒ ρ̃ is monotone
d) ρ is subadditive ⇐⇒ ρ̃(XY ) ≤ ρ̃(X)ρ̃(Y ), ∀X,Y ∈ L∞++

e) ρ is positively homogeneous ⇐⇒ ρ̃(Xα) = ρ̃α(X), ∀X ∈ L∞++, α > 0
f) ρ is convex ⇐⇒ ρ̃(XαY 1−α) ≤ ρ̃α(X)ρ̃1−α(Y ), ∀X,Y ∈ L∞++, α ∈ (0, 1)
g) ρ is law-invariant ⇐⇒ ρ̃ is law-invariant.

When ρ and ρ̃ are law invariant, the correspondence given by (2) and (3) is
also well-defined at the level of distributions. Let us denote by M1,c(0,+∞)
the set of distribution functions with support in (0,+∞). If F ∈M1,c(0,+∞),
we have that

ρ̃(F ) = exp
(
ρ
(
F (et)

))
, (4)

and, correspondingly, if F ∈M1,c(R), we have

ρ(F ) = log(ρ̃(F (log t))). (5)

Lemma 3 Let Ψ : R → [1,+∞) be a gauge function, and let Ψ̃ : (0,+∞) →
[1,+∞) be given by Ψ̃(t) = Ψ(log t), for t > 0. Let F̃n(t) = Fn(log t) and
F̃ (t) = F (log t). Then

F̃n
Ψ̃→ F̃ ⇐⇒ Fn

Ψ→ F.

Proof Let F̃n, F̃ ∈ M1,c(0,+∞) with F̃n
Ψ̃→ F̃ , that is, F̃n → F̃ weakly and∫

Ψ̃dF̃n →
∫
Ψ̃dF̃ . Since F (t) = F̃ (et), it follows that Fn → F weakly, and∫ +∞

0

Ψ̃dF̃n =

∫ +∞

0

Ψ(log t)dFn(log t) =

∫ +∞

−∞
Ψ(t)dFn(t),
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and similarly∫ +∞

0

Ψ̃dF̃ =

∫ +∞

0

Ψ(log t)dF (log t) =

∫ +∞

−∞
Ψ(t)dF (t),

which implies that ∫ +∞

−∞
Ψ(t)dFn(t)→

∫ +∞

−∞
Ψ(t)dF (t),

which gives the thesis. The converse implication can be proved similarly. ut

Lemma 4 Let ρ : M1,c(R) → R and ρ̃ : M1,c(0,+∞) → (0,+∞) be as-
sociated as in (4) and (5). Let Bρ̃ := {F ∈ M1,c | ρ̃(F ) ≤ 1} and let

Ψ̃(t) = Ψ(log t). Then:

a) ρ is mixture continuous ⇐⇒ ρ̃ is mixture continuous
b) ρ has CxLS ⇐⇒ ρ̃ has CxLS
c) ρ is Ψ -weakly continuous ⇐⇒ ρ̃ is Ψ̃ -weakly continuous.
d) Aρ is convex with respect to mixtures ⇐⇒ Bρ̃ is convex with respect to

mixtures
e) Aρ is Ψ -weakly closed ⇐⇒ Bρ̃ is Ψ̃ -weakly closed.

Proof a) From (4),

ρ̃(λF + (1− λ)G) = exp(ρ(λF (et) + (1− λ)G(et))),

hence mixture continuity of ρ̃ is equivalent to mixture continuity of ρ.
b) Let ρ̃(F ) = ρ̃(G). From (4) it follows that ρ(F (et)) = ρ(G(et)). If ρ has the
CxLS property, then

ρ(λF (et) + (1− λ)G(et)) = ρ(F (et)) = ρ(G(et)),

hence

ρ̃(λF + (1− λ)G) = ρ̃(F ) = ρ̃(G),

which implies that also ρ̃ has the CxLS property. The converse is similar.

c) Let ρ be Ψ -weakly continuous. Let F̃n, F̃ ∈ M1,c(0,+∞), with F̃n
Ψ̃→ F̃ .

Let

Fn(t) := F̃n(et), F (t) := F̃ (et).

From Lemma 3 it follows that Fn
Ψ→ F , which implies that ρ(Fn) → ρ(F ).

Since

ρ̃(F̃n) = exp (ρ (Fn)) , ρ̃(F̃ ) = exp (ρ (F )) ,

it follows that ρ̃(F̃n)→ ρ̃(F̃ ), which yields the thesis.
d) Let F,G ∈ Bρ̃, that is, ρ̃(F ) ≤ 1, ρ̃(G) ≤ 1. Hence, ρ(F (et)) ≤ 0, ρ(G(et)) ≤
0, that is,

F (et), G(et) ∈ Aρ.
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From the convexity of Aρ, for each λ ∈ (0, 1),

λF (et) + (1− λ)G(et) ∈ Aρ,

that is, ρ(λF (et)+(1−λ)G(et)) ≤ 0, which is equivalent to ρ̃(λF+(1−λ)G) ≤
1. The converse is similar.
e) We prove that if Nρ is Ψ -weakly closed, then Bρ̃ is Ψ̃ -weakly closed. The

converse is similar. Let F̃n ∈ Bρ̃, with F̃n
Ψ̃→ F̃ . As before, let

Fn(t) := F̃n(et), F (t) := F̃ (et).

From Lemma 3 it follows that Fn
Ψ→ F , which implies that F ∈ Nρ. As a

consequence,

ρ̃(F̃ ) = exp(ρ(F )) ≤ 1,

that is, F̃ ∈ Bρ̃. ut

A return risk measure can be given the following interpretation. Consider
a risk manager with initial capital x0 > 0. Suppose he assesses the risk of a
financial loss X ∈ L∞++ (recall that X is a loss r.v.) by considering its log return

with respect to initial capital x0 given by log
(
X
x0

)
rather than by considering

the loss X itself. In particular, he asks the question of whether this log return

is acceptable: does log
(
X
x0

)
∈ Aρ hold?

If the log return log
(
X
x0

)
is not acceptable, then he finds the smallest

amount of capital k > 0 such that, when translated into a log return with

respect to initial capital x0, i.e., log
(
k
x0

)
, and subtracted from the log return

log
(
X
x0

)
, the resulting log return given by

log

(
X

x0

)
− log

(
k

x0

)
= log

(
X

k

)
becomes acceptable, that is,

log

(
X

k

)
∈ Aρ. (6)

In other words, the risk manager determines inf
{
k > 0| log

(
X
k

)
∈ Aρ

}
. Eq.

(6) tells us that if k were the initial capital instead of x0, then the log return
with respect to initial capital, log

(
X
k

)
, would have been acceptable.

Now if the resulting log return log
(
X
k

)
is acceptable, then, by the definition

of acceptability,

ρ

(
log

(
X

k

))
≤ 0.
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Clearly, this is equivalent to exp
(
ρ
(
log
(
X
k

)))
≤ 1. Using the one-to-one cor-

respondence (2) and (3) this, in turn, means that

ρ̃

(
X

k

)
≤ 1,

hence
X

k
∈ Bρ̃. (7)

Thus, while monetary risk measures conventionally assess acceptability at
the level of monetary values, return risk measures can, from a conventional
risk measures perspective, be interpreted to assess acceptability at the level of
returns, as (6) reveals. Relatedly, one may directly interpret k as the amount
of initial required capital relative to which the loss X becomes acceptable, as
(7) stipulates. This interpretation naturally induces the positive homogeneity
and monotonicity properties that return risk measures satisfy.

In the special case of the Value-at-Risk measure of risk, risk assessment
at the level of monetary values is equivalent to risk assessment at the level of
returns, as Example 1 below makes explicit. However, as soon as we depart
from Value-at-Risk-based risk assessment, this equivalence is no longer valid
in general, as Examples 2 and 3 illustrate.

Note that the amount of initial capital x0 is irrelevant for determining k.
This means in particular that our theory does not require the specification of
a “reference level”, contrary to reference-dependent theories.

3.1 Orlicz premia and shortfall risk

A particular case of the correspondence in (2) and (3) arises when ρ is a
utility-based shortfall risk and ρ̃ is an Orlicz premium. Let X ∈ L∞+ . Given a
nondecreasing Young function Φ : [0,+∞)→ [0+∞) with Φ(0) < 1 < Φ(+∞),
we define

HΦ(X) = inf

{
k > 0

∣∣∣ E [Φ(X
k

)]
≤ 1

}
.

Notice that convexity of Φ is not required and that we allow the possibility
that Φ(0) > 0 or Φ(+∞) < +∞. Similarly, given a nondecreasing loss function
` : R→ R with `(−∞) < 0 < `(+∞), we define

ρ`(X) = inf{m ∈ R | E[`(X −m)] ≤ 0}.

Proposition 1 Let ρ and ρ̃ be associated as in (2) and (3). A monetary risk
measure ρ is a utility-based shortfall risk with loss function ` if and only if the
corresponding return risk measure ρ̃ is an Orlicz premium with Young function
Φ, with Φ(x) = 1 + `(log x).
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Proof By definition ρ̃`(X) = exp(ρ`(logX)). We compute

ρ̃`(X) = exp (inf{m ∈ R | E[`(logX −m)] ≤ 0})
= inf{k > 0 | E[`(logX − log k)] ≤ 0}

= inf

{
k > 0

∣∣∣ E [Φ(X
k

)]
≤ 1

}
= HΦ(X).

The reverse implication can be proved similarly. ut

Remark 1 When ` is convex, the continuity properties of ρ` with respect to
the Ψ -weak topology have been established in [26], under a ∆2 condition.

Example 1 (Value-at-Risk ←→ Value-at-Risk) Let α ∈ (0, 1) and

`(x) =

{
α− 1, if x ≤ 0,

α, if x > 0.

Then,

ρ`(X) = inf{m | αP (X > m) + (α− 1)P (X ≤ m) ≤ 0} = inf{m | FX(m) ≥ α}
= qα(X).

Correspondingly,

Φ(x) = 1 + `(log x) =

{
α, if 0 ≤ x ≤ 1,

1 + α, if x > 1,

and

HΦ(X) = inf

{
k > 0

∣∣∣ E [Φ(X
k

)]
≤ 1

}
= inf

{
k > 0

∣∣∣ (1 + α)P

(
X

k
> 1

)
+ αP

(
X

k
≤ 1

)
≤ 1

}
= inf

{
k > 0

∣∣∣ (1 + α)P (X > k) + αP (X ≤ k) ≤ 1
}

= qα(X).

So, when ρ is an α-quantile, then also the corresponding ρ̃ is the same α-
quantile. This is not surprising from a financial point of view: the use of the
Value-at-Risk does not require a distinction between measuring the risk of a
financial position at the level of returns or at the level of monetary values.
Notice also that in this example Φ is not convex and satisfies Φ(0) > 0 and
Φ(1) < 1, which motivates the need for the slightly generalized version of the
definition of Orlicz premia given at the beginning of this subsection.
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Example 2 (Mean ←→ logarithmic certainty equivalent) Let `(x) = x. Then,
ρ`(X) = E[X], Φ(x) = 1 + log x, and

HΦ(X) = inf

{
k > 0

∣∣∣ E [Φ(X
k

)]
≤ 1

}
= inf

{
k > 0

∣∣∣ E [1 + log

(
X

k

)]
≤ 1

}
= inf

{
k > 0

∣∣∣ E [logX − log k] ≤ 0
}

= exp (E [logX]) .

This example shows that the convexity of ρ` does not imply the convexity of
HΦ. Indeed, as we saw in Lemma 2 item f), the convexity of ρ is equivalent to
a multiplicative convexity of ρ̃.

Example 3 (Entropic risk measure ←→ p-norm) Let `(x) = exp(γx)− 1, with
γ > 0. Then, ρ` is the entropic risk measure, also known as the exponential
premium, given explicitly by

ρ`(X) =
1

γ
log (E[exp(γX)]) .

Correspondingly, Φ(x) = 1 + `(log x) = xγ and HΦ(X) = ‖X‖γ .
One of the most widely used families of utility functions is the power

(CRRA) family. The corresponding certainty equivalent under expected utility
is a p-norm. It is perhaps the most widely adopted measure of risk in econom-
ics. This example shows that the class of return risk measures encompasses
p-norms, contrary to the classes of monetary or convex measures of risk.

Under expected utility preferences (or homothetic preferences as considered
in Section 4), the certainty equivalent coincides with the utility-based shortfall
risk if and only if the utility function is exponential. Also, the only certainty
equivalent under expected utility (or homothetic) preferences that gives rise
to a convex measure of risk is the one with exponential utility (see [27]).
Now suppose we use an exponential utility function, but not to measure the
risk of monetary values (in absolute terms) but to measure risk in relative
terms, that is, to measure the risk of log returns. Under exponential utility, the
certainty equivalent agrees with the utility-based shortfall risk under expected
utility (or homothetic) preferences, and induces a (β-discounted, in the case
of homothetic preferences) p-norm for risk measured in absolute terms, as
illustrated in this example. Thus, it gives rise to one of the most widely adopted
measures of risk.

3.2 Axiomatization of Orlicz premia

An axiomatic characterization of utility-based shortfall risk has been provided
in [40]. We recall the main result:

Theorem 1 (Weber (2006)) Let ρ : M1,c → R be a law invariant monetary
risk measure. If the following conditions hold:
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a) the acceptance set Aρ and its complement Acρ are convex with respect to
mixtures

b) the acceptance set Aρ is Ψ -weakly closed for some gauge function Ψ
c) for each x < 0, y > 0, there exists α ∈ (0, 1) such that αδx+(1−α)δy ∈ Aρ

then ρ is a utility-based shortfall risk.

[14] proved a version of this result in the special case of law invariant
convex risk measures, in which the assumptions b) and c) are not needed.
Here we translate Weber’s Theorem into a characterization of those return
risk measures that are Orlicz premia.

Theorem 2 Let ρ̃ : M1,c(0,+∞)→ R be a law invariant return risk measure
and let

Bρ̃ := {F ∈M1,c(0,+∞) | ρ̃(F ) ≤ 1}.

Assume that

a) Bρ̃ and Bcρ̃ are convex with respect to mixtures

b) Bρ̃ is Ψ̃ -weakly closed for some gauge function Ψ̃
c) for each 0 < x̃ < 1 and ỹ > 1 there exists α ∈ (0, 1) such that

αδx̃ + (1− α)δỹ ∈ Bρ̃.

Then there exists Φ : [0,+∞) → [0,+∞), with 0 ≤ Φ(0) < 1 < Φ(+∞), such
that

ρ̃(F ) = inf

{
k > 0 |

∫
Φ (x/k) dF (x) ≤ 1

}
.

Thus, ρ̃ is an Orlicz premium.

Proof Let us consider the risk measure ρ : L∞ → R associated to ρ̃ by (3).
From Lemma 2 it follows that ρ is monetary with ρ(0) = 0. From item a)
and Lemma 4, item d) it follows that Aρ and Acρ are convex with respect to
mixtures. From item b) and Lemma 4, item d) it follows that Aρ is Ψ -weakly
closed. Let now x < 0 < y and x̃ = ex, ỹ = ey. Since x̃ < 1 < ỹ, from item c)
there exists α ∈ (0, 1) such that

ρ̃(αδx̃ + (1− α)δỹ) ≤ 1,

which implies

ρ(αδx + (1− α)δy) ≤ 0,

that is, αδx + (1− α)δy ∈ Aρ. Hence, all the hypotheses of Weber’s Theorem
are satisfied, and we can conclude that ρ is a utility-based shortfall risk cor-
responding to some loss function `. From Proposition 1 it then follows that
ρ̃(X) = HΦ(X), with Φ(x) = 1 + `(log x). ut
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4 Robustification of Orlicz premia

So far, no uncertainty on the choice of P and of Φ has been considered. What
happens if we consider uncertainty with respect to the probabilistic model P
(i.e., ambiguity) or with respect to the Young function Φ? In the first case, the
decision-maker faces a set S ⊂ Q of probability measures, while in the second
case he faces a set F of Young functions. Our goal in the present section is to
extend and robustify Orlicz premia, by adopting ambiguity averse preferences
or by means of a worst-case approach over a multiplicity of Young functions.

4.1 Ambiguity over Q

When X ∈ L∞+ , Orlicz premia are implicitly defined by

L

(
X

HΦ(X)

)
= 1,

where L(X) = E[Φ(X)]. Robust versions of Orlicz premia are obtained by
replacing the expected utility loss with the following “robust” versions of ex-
pected utility:

– Multiple priors ([19]):

L(X) = sup
Q∈S

EQ[`(X)],

with S ⊂ Q.
– Variational preferences ([30]):

L(X) = sup
Q∈Q
{EQ[`(X)]− c(Q)},

with c : Q → [0,+∞].
– Homothetic preferences ([7] and [9]):

L(X) = sup
Q∈Q
{β(Q)EQ[`(X)]},

where β : Q → [0, 1], with supQ∈Q β(Q) = 1.

More precisely, we introduce the following definitions:

Definition 2 (Robust Orlicz premia - multiple Q) Let X ∈ L∞+ , X 6= 0,
and let Φ : [0,+∞) → [0,+∞) be convex, with Φ(0) = 0, Φ(1) = 1 and
Φ(+∞) = +∞.
Let S ⊂ Q. We define

HΦ,S(X) := inf

{
k > 0

∣∣∣ sup
Q∈S

EQ
[
Φ

(
X

k

)]
≤ 1

}
. (8)
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Let c : Q → [0,+∞] be convex and lower semicontinuous, with infQ∈Q c(Q) =
0. We define

HΦ,c(X) := inf

{
k > 0

∣∣∣ sup
Q∈Q

{
EQ
[
Φ

(
X

k

)]
− c(Q)

}
≤ 1

}
. (9)

Finally, let β : Q → [0, 1] satisfying supQ∈Q β(Q) = 1. We define

HΦ,β(X) := inf

{
k > 0

∣∣∣ sup
Q∈Q

{
β(Q)EQ

[
Φ

(
X

k

)]}
≤ 1

}
. (10)

If X = 0 P -a.s., we set by definition HΦ,S(X) = HΦ,c(X) = HΦ,β(X) = 0.

Clearly, the definition of HΦ,S(X) in (8) is a special case of both (9) and (10),
corresponding to

c(Q) =

{
0, if Q ∈ S,
+∞, if Q /∈ S,

or

β(Q) =

{
1, if Q ∈ S,
0, if Q /∈ S.

Notice that multiple priors, variational preferences and homothetic preferences
are special cases of the more general uncertainty averse preferences introduced
in [7]. As suggested by an anonymous referee, it is possible to further generalize
the definition of Robust Orlicz premia to a quasiconvex setting by invoking
uncertainty averse preferences.

When S = {P}, the robust Orlicz premium coincides with the usual Orlicz
premium. The following lemma shows that on L∞+ robust Orlicz premia can
always be expressed as the solution to an equation, just like the Orlicz premium
itself.

Lemma 5 Let X ∈ L∞+ , X 6= 0, and let Φ : [0,+∞) → [0,+∞) be convex,
with Φ(0) = 0, Φ(1) = 1 and Φ(+∞) = +∞. Furthermore, let HΦ,S , HΦ,c

and HΦ,β be as in Definition 2. Then, HΦ,S , HΦ,c and HΦ,β are the unique
solutions to the following equations:

sup
Q∈S

EQ
[
Φ

(
X

HΦ,S(X)

)]
= 1, (11)

sup
Q∈Q

{
EQ
[
Φ

(
X

HΦ,c(X)

)]
− c(Q)

}
= 1, (12)

sup
Q∈Q

{
β(Q)EQ

[
Φ

(
X

HΦ,β(X)

)]}
= 1. (13)

Proof We consider only HΦ,c and HΦ,β , since HΦ,S in (11) can be regarded as
a special case of (12) and (13). For k ∈ [0,+∞), let

g(k) := sup
Q∈Q
{EQ[Φ(kX)]− c(Q)}.
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Then, g(0) = − infQ∈Q c(Q) = 0, and g is convex and nondecreasing, since
X ∈ L∞+ . From

EQ[Φ(kX)]− c(Q) ≤ EQ[Φ(k‖X‖∞)] ≤ Φ(k‖X‖∞),

we get that g is finite and hence continuous and strictly increasing on {g > 0}.
Moreover, from the monotone convergence theorem, g(+∞) = +∞. It follows
that the equation g(k) = 1 has exactly one solution. For the case of HΦ,β , the
same arguments show that the function

g(k) := sup
Q∈Q
{β(Q)EQ[Φ(kX)]}

satisfies g(0) = 0, g(+∞) = +∞ and is strictly increasing on {g > 0}, from
which the thesis follows as before. ut

Remark 2 It is possible to extend the domain of the robust Orlicz premia
beyond L∞+ . For example, it is easy to see that HΦ,S is finite on

LΦ+ =
⋂
Q∈S

LΦ+(Q),

although Lemma 5 does not necessarily hold on this larger domain. In this
paper we stick to the L∞+ case, leaving these extensions for further research.

In order to present the various robustifications of the Orlicz premium in a
unified framework, we introduce the following definition.

Definition 3 (Non-normalized Orlicz premia) Let Q ∈ Q, Φ : [0,+∞)→
[0,+∞) convex with Φ(0) = 0, Φ(1) = 1 and Φ(+∞) = +∞, X ∈ L∞+ and
c ≥ 0. We define HQ,Φ,c(X) as the unique solution to the equation

EQ
[
Φ

(
X

HQ,Φ,c(X)

)]
= 1 + c. (14)

If X = 0 P -a.s. or if c = +∞, we set by definition HΦ,Q,c(X) = 0.

Clearly, if c = 0, we have that HΦ,Q,c is the usual Orlicz premium, and
moreover

c1 ≤ c2 ⇒ HQ,Φ,c1(X) ≥ HQ,Φ,c2(X).

The next proposition shows that the three robust Orlicz premia HΦ,S , HΦ,c(X)
and HΦ,β can be expressed as (non-penalized) suprema of non-normalized
Orlicz premia HQ,Φ,c.

Proposition 2 Let X ∈ L∞+ and Φ : [0,+∞) → [0,+∞) be convex, with
Φ(0) = 0, Φ(1) = 1 and Φ(+∞) = +∞. Let HΦ,S , HΦ,c, HΦ,β be as in
Definition 2 and let HQ,Φ,c(X) be as in (3). Then,

HΦ,S(X) = sup
Q∈S

HQ,Φ,0(X),

HΦ,c(X) = sup
Q∈Q

HQ,Φ,c(Q)(X),

HΦ,β(X) = sup
Q∈Q

H
Q,Φ,

1−β(Q)
β(Q)

(X).
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Proof From the proof of Lemma 5 we know that the function

g (k) = sup
Q∈Q
{EQ [Φ (kX)]− c(Q)}

is finite, convex, continuous and strictly increasing on {g > 0}. For any Q ∈ Q,

sup
Q∈Q

{
EQ

[
Φ

(
X

HQ,Φ,c(Q)(X)

)]
− c(Q)

}

≥ EQ

[
Φ

(
X

HQ,Φ,c(Q)(X)

)]
− c(Q) = 1,

which implies HQ,Φ,c(Q)(X) ≤ HΦ,c(X), so supQ∈QHQ,Φ,c(Q)(X) ≤ HΦ,c(X).
On the other hand,

sup
Q∈Q

EQ

Φ
 X

sup
Q∈Q

HQ,Φ,c(Q)(X)


− c(Q)


≤ sup
Q∈Q

{
EQ
[
Φ

(
X

HQ,Φ,c(Q)(X)

)]
− c(Q)

}
= 1,

which gives supQ∈QHQ,Φ,c(X) ≥ HΦ,c(Q)(X), from which the thesis follows.

Now for β > 0 define Hβ
Q,Φ(X) as the unique solution to the equation

EQ

[
Φ

(
X

Hβ
Q,Φ(X)

)]
=

1

β
.

Notice that Hβ
Q,Φ(X) = HQ,Φ, 1−ββ

(X). A similar argument as before shows

that
HΦ,β(X) = sup

Q∈Q
H
β(Q)
Q,Φ (X) = sup

Q∈Q
H
Q,Φ,

1−β(Q)
β(Q)

(X).

ut

Let c : Q → [0,+∞] and let H̄Φ,c : L∞ ×Q → [0,+∞) be defined as

H̄Φ,c(X,Q) := HQ,Φ,c(Q)(X), (15)

so that
HΦ,c(X) = sup

Q∈Q
H̄Φ,c(X,Q).

Lemma 6 Let c : Q → [0,+∞] be convex and lower semicontinuous with re-
spect to the σ(L1, L∞) topology, with infQ∈Q c(Q) = 0. Let Φ : [0,+∞) →
[0,+∞) be convex, with Φ(0) = 0, Φ(1) = 1 and Φ(+∞) = +∞. Let H̄Φ,c : L∞×
Q → [0,+∞) be as in (15). Then:

a) H̄Φ,c(X,Q) is positively homogeneous and subadditive with respect to X
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b) ‖Xn‖∞ ≤ k, Xn
P→ X ⇒ H̄Φ,c(Xn, Q)→ H̄Φ,c(X,Q)

c) H̄Φ,c(X,Q) is quasiconcave with respect to Q
d) H̄Φ,c(X,Q) is upper semicontinuous with respect to Q in the σ(L1, L∞)

topology
e) if c : Q → [0,+∞] has the WC property, then the upper level sets

Uγ := {Q ∈ Q | H̄Φ,c(X,Q) ≥ γ}

are compact in the σ(L1, L∞) topology.

Proof a) follows in the same way as the corresponding properties of the Orlicz
premium. Positive homogeneity is immediate, while

EQ
[
Φ

(
X + Y

H̄Φ,c(X,Q) + H̄Φ,c(Y,Q)

)]
≤ EQ

[
H̄Φ,c(X,Q)

H̄Φ,c(X,Q) + H̄Φ,c(Y,Q)
Φ

(
X

H̄Φ,c(X,Q)

)]
+ EQ

[
H̄Φ,c(Y,Q)

H̄Φ,c(X,Q) + H̄Φ,c(Y,Q)
Φ

(
Y

H̄Φ,c(Y,Q)

)]
= 1 + c(Q),

hence
H̄Φ,c(X,Q) + H̄Φ,c(Y,Q) ≥ H̄Φ,c(X + Y,Q).

b) For a fixed Q, the non-normalized Orlicz premium HQ,Φ,c has the Lebesgue
property; see for example [21].
c) Let Q1, Q2 ∈ Q and α, β ∈ [0, 1] with α+ β = 1. We have that

EαQ1+βQ2

[
Φ

(
X

min(H̄Φ,c(X,Q1), H̄Φ,c(X,Q2))

)]
= αEQ1

[
Φ

(
X

min(H̄Φ,c(X,Q1), H̄Φ,c(X,Q2))

)]
+ β EQ2

[
Φ

(
X

min(H̄Φ,c(X,Q1), H̄Φ,c(X,Q2))

)]
≥ αEQ1

[
Φ

(
X

H̄Φ,c(X,Q1)

)]
+ β EQ2

[
Φ

(
X

H̄Φ,c(X,Q2)

)]
= α(1 + c(Q1)) + β(1 + c(Q2)) ≥ 1 + c (αQ1 + βQ2) ,

hence
min(H̄Φ,c(X,Q1), H̄Φ,c(X,Q2)) ≤ H̄Φ,c(X,αQ1 + βQ2),

that is, H̄Φ,c(X,Q) is quasiconcave with respect to Q.
d) For a fixed X ∈ L∞, let

Uγ =
{
Q ∈ Q | H̄Φ,c(X,Q) ≥ γ

}
,

and let Qn ∈ Uγ . Then

EQn
[
Φ

(
X

γ

)]
≥ 1 + c(Qn). (16)

Let Qn → Q weakly. Since X ∈ L∞, Φ is monotone and finite-valued and c is
weakly lower semicontinuous, we have

0 ≤ lim sup
n→+∞

{
EQn

[
Φ

(
X

γ

)]
− 1− c(Qn)

}
= EQ

[
Φ

(
X

γ

)]
− 1− lim sup

n→+∞
c(Qn) ≤ EQ

[
Φ

(
X

γ

)]
− 1− c(Q),
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hence H̄Φ,c(X,Q) ≥ γ.
e) Let again Qn ∈ Uγ . From (16), we get

c(Qn) ≤ EQn
[
Φ

(
X

γ

)]
− 1 ≤ Φ

(
ess supX

γ

)
− 1.

From the WC property, there exists a subsequence Qnk → Q̄. Since from item
d) Uγ is weakly closed, it follows that Q̄ ∈ Uγ , which proves the thesis. ut

Theorem 3 Let c : Q → [0,+∞] be convex and lower semicontinuous with
respect to the σ(L1, L∞) topology, with infQ∈Q c(Q) = 0. Let Φ : [0,+∞) →
[0,+∞) be convex, with Φ(0) = 0, Φ(1) = 1 and Φ(+∞) = +∞. Let H̄Φ,c : L∞×
Q → [0,+∞) be as in (15) and let as before

HΦ,c(X) = sup
Q∈Q

H̄Φ,c(X,Q).

Then, HΦ,c is monotone, positively homogeneous and subadditive. Moreover,
for each X ∈ L∞+ and k > 0, we have:

a) HΦ,c(k) = k
b) HΦ,c(X + k) ≤ HΦ,c(X) + k
c) c(Q∗) = 0⇒ HΦ,c(X) ≥ EQ∗(X)
d) infQ∈QHQ,Φ,0(X) ≤ HΦ,c(X) ≤ supQ∈QHQ,Φ,0(X)

e) ‖Xn‖∞ ≤ k, Xn
P→ X ⇒ HΦ,c(X) ≤ lim inf HΦ,c(Xn), that is HΦ,c has the

Fatou property
f) if c has the WC property, then there exists Q̄ ∈ Q such that

HΦ,c(X) = H̄Φ,c(X, Q̄)

Proof Monotonicity, positive homogeneity and subadditivity follow immedi-
ately from Proposition 2. If X = k P-a.s., then

sup
Q∈Q

{
E
[
Φ

(
X

k

)]
− c(Q)

}
= Φ(1)− sup

Q∈Q
c(Q) = 1,

from which a) follows. b) follows from subadditivity and a). From Proposition
2,

HΦ,c(X) = sup
Q∈Q

HQ,Φ,c(Q)(X) ≥ HQ∗,Φ,0(X) ≥ EQ∗(X),

that is c). Similarly, d) follows from

HΦ,c(X) = sup
Q∈Q

HQ,Φ,c(Q)(X) ≤ sup
Q∈Q

HQ,Φ,0(X)

and the observation that

sup
Q∈Q

EQ

Φ
 X

inf
Q∈Q

HQ,Φ,0(X)

− c(Q)


≥ sup
Q∈Q

{
EQ
[
Φ

(
X

HQ,Φ,0(X)

)]
− c(Q)

}
= 1,
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which shows that infQ∈QHQ,Φ,0(X) ≤ HΦ,c(X).
e) Let ‖Xn‖∞ ≤ k, Xn → X in probability. Then,

HΦ,c(Xn) ≤ γ ⇒ HQ,Φ,c(Q)(Xn) ≤ γ ⇒ HQ,Φ,c(Q)(X) ≤ γ ⇒ HΦ,c(X) ≤ γ,

from which the thesis follows.
f) From Lemma 6 we have that, if c has the WC property, then the upper
level sets of H̄Φ,c(X,Q) are weakly compact. Moreover, H̄Φ,c(X,Q) is weakly
upper semicontinuous, hence the maximum is attained. ut

4.2 Translation invariance of robust Orlicz premia

Orlicz premia HΦ are not in general translation invariant, with the exception
of the case Φ(x) = x, as was shown by [21]. If Φ(x) = x, also robust Orlicz
premia of the form HΦ,S(X) are translation invariant. The following theorem
gives a partial converse:

Theorem 4 Let Φ : [0,+∞) → [0,+∞) be convex and twice differentiable,
with Φ(0) = 0 and Φ(1) = 1. Let S ⊂ Q be weakly compact, and let HΦ,S be
defined as in (8). If HΦ,S is translation invariant, then Φ(x) = x.

Proof Let us consider a dyadic random variable X which can take the values
a > 0 and b > 0, and let pQ := Q(X = a). The Orlicz premium HQ,Φ,0(X) is
the unique solution to the equation

pQΦ

(
a

HQ,Φ,0(X)

)
+ (1− pQ)Φ

(
b

HQ,Φ,0(X)

)
= 1,

and the robust Orlicz premium HΦ,S(X) is given by

HΦ,S(X) = sup
Q∈S

HQ,Φ,0(X).

Since S is weakly compact the supremum is attained, so ∃Q̄ ∈ S such that

pQ̄Φ

(
a

HΦ,S(X)

)
+ (1− pQ̄)Φ

(
b

HΦ,S(X)

)
= 1.

Notice that since HQ,Φ,0(X) is monotonic with respect to first-order stochastic
dominance, it holds that

pQ̄ = min
Q∈S

Q(X = a) = min
Q∈S

pQ.

Assuming translation invariance, for each h > 0,

sup
Q∈S

{
pQΦ

(
a+ h

HΦ,S(X) + h

)
+ (1− pQ)Φ

(
b+ h

HΦ,S(X) + h

)}
= 1,
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and also

pQ̄Φ

(
a+ h

HΦ,S(X) + h

)
+ (1− pQ̄)Φ

(
b+ h

HΦ,S(X) + h

)
= 1, (17)

since trivially

min
Q∈S

Q(X + h = a+ h) = min
Q∈S

Q(X = a) = pQ̄.

Summing up, for each a > 0 and b > 0, there exists pQ̄ such that for each
h > 0 equation (17) holds. Differentiating twice with respect to h we get

pQ̄Φ
′′
(

a+ h

HΦ,S(X) + h

)
(HΦ,S(X)−a)2 +(1−pQ̄)Φ′′

(
b+ h

HΦ,S(X) + h

)
(HΦ,S(X)− b)2 = 0,

and from the generality of a, b and h we get Φ′′(x) = 0 for each x > 0. ut

The theorem above shows basically that in order to have translation invariance
ofHΦ,S(X), it is necessary to stick to the case Φ(x) = x. And indeed, under this
hypothesis, HΦ,S is translation invariant. A further natural question is under
which hypotheses on c : Q → R (or, alternatively, on β : Q → [0, 1]) the robust
Orlicz premium HΦ,c (or HΦ,β) with Φ(x) = x is translation invariant. As
shown in the following example, linearity of Φ does not guarantee translation
invariance of HΦ,c and HΦ,β . Notice that, for Φ(x) = x, the robust Orlicz
premium HΦ,β has the explicit formulation

HΦ,β(X) = sup
Q∈Q
{β(Q)EQ[X]}. (18)

(18) can be interpreted as a worst-case β-discounted expectation.

Example 4 Consider Ω = {ω1;ω2}, Q = {Q1;Q2}, with Q1(ω1) = Q1(ω2) =
1/2, Q2(ω1) = 1/4, Q2(ω2) = 3/4 and

c(Q1) = 0, c(Q2) =
1

4
,

β(Q1) = 1, β(Q2) =
5

6
,

and assume Φ(x) = x.

Taking k = 3 and X =

{
0, on ω1,
1, on ω2,

it is easy to verify that HΦ,c(X+k) =

7
2 < HΦ,c(X) + k = 18

5 and HΦ,β(X + k) = 7
2 < HΦ,β(X) + k = 29

8 . Hence,
translation invariance fails for both HΦ,c and HΦ,β (although Φ is linear).

One may conjecture that, under linearity of Φ, translation invariance of
HΦ,β (resp. HΦ,c) is equivalent to β ≡ 1 (resp. c ≡ 0). This is essentially true
when one considers only “relevant” probability measures. In order to clarify
this point, we provide the following example.
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Example 5 Consider Ω = {ω1;ω2}, Q = {Q1;Q2}, with Q1(ω1) = Q1(ω2) =
1/2, Q2(ω1) = 1/4, Q2(ω2) = 3/4 and

β(Q1) = 1, β(Q2) =
1

2
,

and assume Φ(x) = x.
For any X ∈ L∞+ and k ≥ 0, it holds that HΦ,β(X + k) = EQ1

(X) + k =
HΦ,β(X) + k. In other words, translation invariance holds for any X ∈ L∞+
and k ≥ 0 even if β(Q2) < 1. The underlying reason is that here

EQ1
(X) ≥ β(Q2)EQ2

(X), for any X ∈ L∞+ ,

that is, the probability Q2 is “irrelevant” since the maximum is always attained
in Q1.

Assume Φ(x) = x. The following result gives a necessary condition for
HΦ,c (respectively HΦ,β) to be translation invariant. This condition is the one
we have conjectured and essentially requires that probability measures having
c(·) > 0 (resp. β(·) < 1) can be dropped since they are always “irrelevant”.
The condition c(Q) = 0 (resp. β(Q) = 1) for any Q ∈ Q is always sufficient
for the translation invariance of HΦ,c (respectively HΦ,β).

Proposition 3 Assume that Φ(x) = x and that the supremum is always at-
tained in (12) (resp. (13)).

If translation invariance holds for HΦ,c (respectively HΦ,β), then there does
not exist any Q̄ ∈ Q such that c(Q̄) > 0 (resp. β(Q̄) < 1) and such that for
some X ∈ L∞+ the maximum in (12) (resp. (13)) is realized only in such Q̄.

Proof Let us focus first on the case of HΦ,c and assume by contradiction that
there exists a Q̄ ∈ Q such that c(Q̄) > 0 and such that for some X̄ ∈ L∞+ the
maximum in (12) is realized only in such Q̄. Hence,

HΦ,c(X̄) =
EQ̄[X̄]

1 + c(Q̄)
>

EQ[X̄]

1 + c(Q)
,

for any Q ∈ Q \ {Q}.
We are now going to prove that the following two cases cannot occur when

translation invariance holds: (a) HΦ,c(X̄ + k) =
EQ̃k [X̄+k]

1+c(Q̃k)
with c(Q̃k) = 0 for

some k > 0; (b) HΦ,c(X̄ + k) =
EQ̃k [X̄+k]

1+c(Q̃k)
with c(Q̃k) > 0 for any k > 0.

(a) If HΦ,c(X̄ + k) =
EQ̃k [X̄+k]

1+c(Q̃k)
with c(Q̃k) = 0 for some k > 0, then, for

such k,

HΦ,c(X̄ + k)− k =
EQ̃k [X̄ + k]

1 + c(Q̃k)
− k = EQ̃k [X̄ + k]− k = EQ̃k [X̄] < HΦ,c(X̄).
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(b) If HΦ,c(X̄ + k) =
EQ̃k [X̄+k]

1+c(Q̃k)
with c(Q̃k) > 0 for any k > 0, then, for any k,

HΦ,c(X̄+k)−k =
EQ̃k [X̄ + k]

1 + c(Q̃k)
−k =

EQ̃k [X̄]− kc(Q̃k)

1 + c(Q̃k)
<

EQ̃k [X̄]

1 + c(Q̃k)
< HΦ,c(X̄).

In both cases, translation invariance fails. This proves the thesis. The case of
HΦ,β can be proved similarly. ut

4.3 Axiomatization of robust Orlicz premia and robust shortfall risk

The aim of this subsection is to discuss the axiomatic foundation of robust Or-
licz premia introduced in Definition 2. In view of the correspondence between
Orlicz premia and utility-based shortfall risk studied in Subsection 3.1, we fo-
cus on the axiomatization of robust shortfall risk, introduced in [17] by means
of the acceptance set

AρS := {X ∈ L∞ | EQ [`(X)] ≤ 0, ∀Q ∈ S} ,

for a suitable S ⊂ Q. A related characterization result has been provided by
[27] for the particular case of robust entropic risk measures (called entropy
coherent risk measures in [27]), which are of the form

ρ(X) := sup
Q∈S

eQ,γ̄(X),

where

eQ,γ̄(X) = γ̄ log

(
EQ
[
exp

(
X

γ̄

)])
, γ̄ > 0.

The Laeven-Stadje Theorem axiomatizes robust entropic risk measures in the
wider class of robust monetary risk measures, which are defined by

ρ(X) = sup
Q∈S

ρQ(X),

where each ρQ is translation invariant, Q-monotone in the sense that

X ≤ Y Q-a.s.⇒ ρQ(X) ≤ ρQ(Y ),

and Q-law invariant, in the sense that

FQX = FQY ⇒ ρQ(X) = ρQ(Y ),

where for each X ∈ L∞ and Q ∈ S we denote by FQX the distribution function
of X under the probabilistic model Q. In the axiomatization of [27], a crucial
role is played by the axiom of acceptance neutrality:

if FQ1

X = FQ2

Y then X ∈ AρQ1
⇔ Y ∈ AρQ2

, (19)



24 Fabio Bellini et al.

which is much stronger than Q-law invariance of each ρQ. Indeed, acceptance
neutrality implies that the acceptance sets at the level of distributions are the
same: for each Q1, Q2 ∈ S,

{F ∈M1,c | ρQ1
(F ) ≤ 0} = {F ∈M1,c | ρQ2

(F ) ≤ 0}.

In words, we may say that a random variable X is acceptable under a model
Q if and only if its distribution FQX belongs to a common set of acceptable dis-
tributions. Under the acceptance neutrality axiom, it is immediate to provide
an axiomatization of robust shortfall risk.

Theorem 5 Let X ∈ L∞ and let

ρ(X) = sup
Q∈S

ρQ(X),

where for each Q ∈ S
i) ρQ is translation invariant with ρQ(X) = 0 if X = 0 Q-a.s.
ii) ρQ is Q-monotone

iii) FQX = FQY ⇒ ρQ(X) = ρQ(Y ).
Assume moreover that acceptance neutrality (19) holds, and that there exists
Q ∈ S such that AρQ satisfies the hypotheses of Weber’s Theorem (Theorem

1). Then,

ρ(X) = sup
Q∈S

inf {m ∈ R|EQ[`(X −m)] ≤ 0} .

Thus, ρ is a robust shortfall risk.

Proof From Weber’s Theorem it follows that there exists a nondecreasing
` : R→ R with `(−∞) < 0 < `(+∞) such that

ρQ(X) = inf{m ∈ R | EQ[`(X −m)] ≤ 0},

that is,

AρQ =

{
F ∈M1,c |

∫
`(x)dF (x) ≤ 0

}
.

From acceptance neutrality, for each Q ∈ S, it holds that AρQ = AρQ , so

ρQ(X) = inf{m ∈ R | EQ[`(X −m)] ≤ 0},

from which the thesis follows. ut
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4.4 The case of multiple Φ

In the previous subsections we considered robustified versions of Orlicz premia
that originated from ambiguity on the true probabilistic model Q, modeled by
a worst-case approach with an additive or multiplicative penalty function. In
this subsection we consider the situation in which there is only one probabilistic
model P , but the decision-maker is uncertain about his Young function Φ.
Indeed, he has a multiplicity of possible Young functions, and takes a worst-
case approach. This setting is analogous to a worst-case approach under a
multiplicity of utility functions as considered by [29] and [8].

Definition 4 (Robust Orlicz premium - multiple Φ) Let X ∈ L∞+ and
F = {Φα}α∈I , where each Φα is convex and satisfies the usual assumptions
Φα(0) = 0, Φα(1) = 1 and Φα(+∞) = +∞. Let supΦ∈F Φ(x) < +∞, for each
x > 0. We define

HF(X) := inf

{
k > 0

∣∣∣ sup
Φ∈F

EP
[
Φ

(
X

k

)]
≤ 1

}
.

We state the following result:

Proposition 4 Let X ∈ L∞+ and let HF(X) be as in Definition 4. Then:

a) HF(X) is the unique solution to the equation

sup
Φ∈F

EP
[
Φ

(
X

HF(X)

)]
= 1

b) It holds that
HF(X) = sup

Φ∈F
HΦ(X)

c) HF(X) is law invariant, monotone, positively homogeneous and subadditive
d) HF(k) = k, for each k ∈ R
e) HF(X) ≥ EP [X]

f) ‖Xn‖∞ ≤ k, Xn
P→ X ⇒ HF(X) ≤ lim inf HF(Xn), that is, HF has the

Fatou property.

Proof a) Let
g(k) = sup

φ∈F
EP [Φ(kX)] .

Then, from the assumption supΦ∈F Φ(x) < +∞, we obtain that g is finite and
convex, and hence continuous, from which the thesis follows.
b) Let Φ̄ ∈ F. Since

EP
[
Φ̄

(
X

HΦ̄(X)

)]
= 1,

clearly

sup
Φ∈F

EP
[
Φ

(
X

HΦ̄(X)

)]
≥ 1,
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which implies HΦ̄(X) ≤ HF(X), thus

sup
Φ̄∈F

HΦ̄(X) ≤ HF(X).

On the other hand,

sup
Φ∈F

EP
[
Φ

(
X

supΦ̄∈FHΦ̄(X)

)]
≤ sup
Φ∈F

EP
[
Φ

(
X

HΦ(X)

)]
= 1,

from which we obtain the reverse inequality.
c), d), e), f) follow from b), as in the proof of Theorem 3. ut

5 Robustification of Haezendonck-Goovaerts risk measures

Let us now recall the definition of the Haezendonck-Goovaerts risk measure:

ΠQ,Φ,c(X) := inf
x∈R

{
x+HQ,Φ,c

(
(X − x)+

)}
(see [20] or [1, 2]). Notice that the parameter α ∈ (0, 1) in the original defin-
ition has been replaced here by c ∈ [0,+∞), in order to be consistent with
(14) in Definition 3. Haezendonck-Goovaerts risk measures are coherent risk
measures, they provide a natural extension to the Rockafellar-Uryasev [35] con-
struction of Conditional Value-at-Risk, and their properties are well-known.
In particular, their dual representation is given by

ΠQ,Φ,c(X) = max
R∈RQ

ER[X],

where

RQ = {R� P : ER[X] ≤ HQ,Φ,c(X), ∀X ∈ L∞+ }. (20)

It is natural to suggest a similar construction in the robust case, so we define
the robust Haezendonck-Goovaerts risk measure as

ΠΦ,c(X) := inf
x∈R

{
x+HΦ,c

(
(X − x)+

)}
. (21)

Proposition 5 Let X ∈ L∞(Ω,F , P ). Furthermore, let c : Q → [0,+∞] be
convex and lower semicontinuous with respect to the σ(L1, L∞) topology, with
minQ∈Q c(Q) = c(Q∗) = 0, and let Φ : [0,+∞) → [0,+∞) be convex, with
Φ(0) = 0, Φ(1) = 1 and Φ(+∞) = +∞. Finally, let HΦ,c be as in (9) and
ΠΦ,c as in (21). Then:

a) ΠΦ,c : L∞(Ω,F , P )→ R is a coherent risk measure. Moreover, ΠΦ,c(X) ≥
EQ∗ [X].

b) ΠΦ,c : L∞ → R has the Fatou property
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c) For each X ∈ L∞, it holds that

ΠΦ,c(X) = sup
Q∈R

EQ [X] ,

where

R =
{
Q� P : EQ [X] ≤ HΦ,c(X) for any X ∈ L∞+

}
. (22)

d) If c satisfies the WC property, then we have the minimax identity

ΠΦ,c(X) = sup
Q∈Q

ΠQ,Φ,c(Q)(X).

Proof a) Monotonicity, positive homogeneity, convexity and translation invari-
ance (hence, coherence) of ΠΦ,c are straightforward. By Theorem 3 it follows
that

x+HΦ,c

(
(X − x)+

)
≥ x+ EQ∗

[
(X − x)+

]
≥ x+ EQ∗ [X − x] = EQ∗ [X] ,

hence ΠΦ,c(X) ≥ EQ∗ [X].

b) Let ‖Xn‖∞ ≤ k, Xn
P→ X. Then there exists a subsequence (nk) such that

Xnk ↘ X. Hence, by monotonicity of ΠΦ,c,

ΠΦ,c (X) = inf
x∈R

{
x+HΦ,c

(
(X − x)+

)}
≤ inf
x∈R

{
x+HΦ,c

(
(Xnk − x)+

)}
= ΠΦ,c (Xnk) ≤ c,

for any nk. The thesis then follows immediately.
c) Following [1], we notice that ΠΦ,c can be seen as the inf-convolution of the
proper convex functionals f and g defined by

f (X) = HΦ,c

(
X+
)

g (X) =

{
x, if X = x, P -a.s.,
+∞, otherwise.

Indeed,

ΠΦ,c (X) = inf
x∈R

{
x+HΦ,c

(
(X − x)+

)}
= inf
Y ∈L∞

{f(X − Y ) + g (Y )} .

We get

(ΠΦ,c)
∗

(ϕ) = f∗ (ϕ) + g∗ (ϕ) =

{
f∗ (ϕ) , if E [ϕ] = 1,
+∞, otherwise,



28 Fabio Bellini et al.

for ϕ ∈ L1, where f∗ and g∗ denote the convex conjugates of f and g. Fur-
thermore,

f∗ (ϕ) = sup
X∈L∞

{E [ϕX]− f (X)} = sup
X∈L∞

{
E [ϕX]−HΦ,c

(
X+
)}

= sup
λ≥0

{
λ sup
X∈L∞:‖X‖∞≤1

{
E [ϕX]−HΦ,c

(
X+
)}}

(23)

=

{
0, if HΦ,c (X+) ≥ E [ϕX] for any X ∈ L∞ s.t. ‖X‖∞ ≤ 1,
+∞, otherwise,

=

{
0, if HΦ,c (X) ≥ E [ϕX] for any X ∈ L∞+ ,
+∞, otherwise,

where equality (23) is due to positive homogeneity of HΦ,c. The thesis follows.
d) If c satisfies the WC property, it follows from Theorem 3 that there exists
Q̄ such that

HΦ,c(X) = HQ̄,Φ,c(Q̄)(X).

Hence,

ΠΦ,c(X) = inf
x∈R

{
x+HQ̄,Φ,c(Q̄)

(
(X − x)+

)}
≤ sup
Q∈Q

ΠQ,Φ,c(Q)(X).

On the other hand, examining the sets of generalized scenarios in the dual
representations (20) and (22), it is easy to see that⋃

Q∈Q
RQ ⊆ R,

from which it follows that

ΠΦ,c(X) ≥ sup
Q∈Q

ΠQ,Φ,c(Q)(X).

ut

5.1 The case of multiple Φ

We can also robustify the Haezendonck-Goovaerts risk measure in the case of
multiple Φ. Just like in Section 4, an important difference with the case of
ambiguity over Q is that we will now obtain a coherent risk measure that is
law invariant. We define:

ΠF(X) := inf
x∈R

{
x+HF

(
(X − x)+

)}
, (24)

with HF[X] as defined before.

Proposition 6 Let X ∈ L∞+ and F = {Φα}α∈I , where each Φα is convex and
satisfies the usual assumptions Φα(0) = 0, Φα(1) = 1 and Φα(+∞) = +∞.
Let supΦ∈F Φ(x) < +∞, for each x > 0. Let ΠF(X) be as in (24). Then:
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a) ΠF : L∞ → R is a coherent and law invariant risk measure. Moreover,
ΠF(X) ≥ EP [X].

b) ΠF : L∞ → R has the Fatou property
c) For each X ∈ L∞, it holds that

ΠF (X) = sup
Q∈R

EQ (X) ,

where

R =
{
Q� P : EQ [X] ≤ HF (X) for any X ∈ L∞+

}
.

Proof Similar to Proposition 5.

6 Applications to Pareto optimal allocations and optimal risk
sharing

The aim of this section is to study and compare Pareto optimal allocations and
optimal risk sharing under classical Orlicz premia and Haezendonck-Goovaerts
risk measures and under the corresponding robustified premia/risk measures.

We recall that, given two premia/risk measures π1 and π2, these problems
essentially consist in solving

inf
X1,X2:X1+X2=X

{π1(X1) + π2(X2)}, (25)

also known as the optimal risk decomposition or inf-convolution. Indeed, as
shown by [15] and [23] (see also [5] and [6]), for convex functionals π1 and π2,
an optimal risk decomposition is a Pareto optimal allocation and vice versa,
and from an optimal risk decomposition one can build an optimal risk sharing
rule.

In the following, any pair (X1;X2) satisfying X1 +X2 = X will be called
an admissible allocation and, with slight abuse of notation, problem (25) will
be called optimal risk sharing and a solution (X∗1 ;X∗2 ) to it an optimal risk
decomposition.

By [15] (see also [5] and [6]), given two Gateaux differentiable convex func-
tionals4 π1, π2 : L∞ → R an admissible pair (X∗1 ;X∗2 ) ∈ L∞ × L∞ is optimal
for problem (25) if and only if

π′1(X∗1 ) = π′2(X∗2 ),

where π′i stands for the Gateaux derivative of πi. We recall that π′i(X) is such
that h′(0) = E [π′i(X) · V ], where h(t) = πi(X + tV ) and t ∈ R.

The following example illustrates optimal risk decomposition under Orlicz
premia in a classical and robust framework. To this end, we recall that HΦ is

4 We note that Theorem 10 of [15] holds also without assuming that π1 and π2 satisfy
constancy (that is π(c) = c for any c ∈ R) and translation invariance.
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Table 1 Optimal risk decomposition in Example 6

Q H (X∗1 ;X∗2 ) H1(X∗1 ) +H2(X∗2 )

non-robust {P} H1, H2 (X − c; c) for c ∈ [0, 1] 3/2

robust {P,Q} H1,β1 , H2,β2

{
(1− 2√

7
; 2√

7
); on ω1

(0; 2); on ω2

1
4

+
√

7
2

law invariant and, for a differentiable Young function Φ, the Gateaux derivative
of HΦ(X) is given by

H ′Φ(X) =
Φ′
(

X
HΦ(X)

)
E
[

X
HΦ(X)Φ

′
(

X
HΦ(X)

)]
(see [25] and [2]).

Example 6 Take Ω = {ω1;ω2}, P (ω1) = 1/2 and Q(ω1) = 1/4.
For i = 1, 2, take Φi(x) = xi and

Hi(X) = HΦi(X) (classical Orlicz premium);

Hi,βi(X) = HΦi,βi(X) (robust Orlicz premium);

where, in the second case, Q = {P,Q} and

β1(R) =

{
1
2 , R = P,
1, R = Q,

β2(R) =

{
1, R = P,
1
3 , R = Q.

Then,

H1,β1
(X) = sup

R∈Q
{β1(R)ER[X]}

H2,β2(X) = sup
R∈Q

{
(β2(R))

1/2 (ER [X2
])1/2}

are in general no longer law invariant.
It is easy to verify that any pair (X∗1 ;X∗2 ) ∈ L∞+ × L∞+ satisfying

1 =
X∗2
‖X∗2‖2

, X∗1 = X −X∗2 ,

is an optimal risk decomposition of X. We deduce, therefore, that any pair
(X − c; c), with c ∈ [0; ess inf X], is an optimal risk decomposition of X in the
classical case.

Take now

X(ω) =

{
1, ω = ω1,
2, ω = ω2.

We summarize in Table 1 the explicit optimal risk decomposition. It is worth
to notice that, as one might expect, the optimal risk decomposition in the
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robust case is different from the one in the non-robust case. Furthermore, the

minimal total premium to be paid for the robust case would be 1
4 +

√
7

2 , while
in the non-robust case it would be 3

2 (i.e., lower). This result can be viewed as
a consequence of the fact that in the robust case, model uncertainty is taken
into account.

Let us now consider Haezendonck-Goovaerts risk measures. We recall that
both classical and robust Haezendonck-Goovaerts risk measures defined on L∞

are coherent and lower semicontinuous. Moreover, both in the classical and in
the robust case, Haezendonck-Goovaerts risk measures defined on L∞ can be
represented as

ΠΦ,c(X) = sup
R∈R

ER [X] ,

where
R =

{
R� P : ER [X] ≤ HΦ,c(X) for any X ∈ L∞+

}
(see Proposition 17 of [1] and Proposition 5 in the present paper). By Theorem
3.1 of [23], it then follows that an admissible pair (X∗1 ;X∗2 ) is a Pareto optimal
allocation if and only if

Π1,c(X
∗
1 ) = EQ∗ [X∗1 ] and Π2,c(X

∗
2 ) = EQ∗ [X∗2 ] ,

for some Q∗ ∈ R1 ∩R2.
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