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Abstract. We define and study the Cauchy problem for a one-dimensional (1-D) nonlinear
Dirac equation with nonlinearities concentrated at one point. Global well-posedness is provided and
conservation laws for mass and energy are shown. Several examples, including nonlinear Gesztesy–
Šeba models and the concentrated versions of the Bragg resonance and 1-D Soler (also known as
massive Gross–Neveu) type models, all within the scope of the present paper, are given. The key
point of the proof consists in the reduction of the original equation to a nonlinear integral equation
for an auxiliary, space-independent variable.
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1. Introduction. Interest in the nonlinear Dirac equation can be traced back
to the paper [39], in which a soluble nonlinear quantum field model in 1+1 space-time
dimensions for self-interacting fermions was introduced. Other well-known quantum
field theoretic examples are given in [38], again describing a self-interacting electron in
3+1 space-time dimensions, and later in [23], this time describing a model related to
quantum chromodynamics. However, the nonlinear Dirac equation also appears as an
effective equation in condensed matter physics, here describing localization effects for
solutions of the nonlinear Schrödinger or Gross–Pitaevskii equation in small periodic
potentials (see, e.g., [20] and the monograph [33] for an extended description and
bibliography). Relevant applications are in photonic crystals and in Bose–Einstein
condensates, where a two-dimensional (2-D) nonlinear Dirac equation plays the role
of an effective equation governing the evolution of wavepackets spectrally concentrated
near the Dirac points of a periodic optical lattice (see [1, 15, 18, 20] and references
therein). Inspired by the above models, the rigorous analysis of the Dirac equation
with general nonlinearities is now a major subject. As regards well-posedness results,
we only mention some of the relevant papers, being [8, 13, 16, 20, 30, 36]. Specifically,
for the one-dimensional (1-D) case, results relating to the global well-posedness in the
Sobolev space H1

(R) for several types of nonlinearities are known. For a review about
the global well-posedness of the nonlinear Dirac equation in one space dimension, see
[34]. For the especially relevant cases of Thirring and Gross–Neveu models, see also
[25, 26].
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In this paper we define and solve the Cauchy problem for a Dirac-type equa-
tion with concentrated nonlinearity. By this we mean that the nonlinearity is space-
dependent and acts at a single point in space. Models of this type are popular in
physics in the case of the Schrödinger equation (see, e.g., [9, 17, 31]), and there is also a
growing amount of literature of a mathematical nature relating to their well-posedness
[2, 3, 5] (see also [24]), orbital and asymptotic stability of standing waves (see [4]),
and approximation through smooth space-dependent nonlinearities [10, 11, 12] (see
also [27]). Work on the wave equation with concentrated nonlinearities in three di-
mensions began with [32], and using similar techniques the Klein–Gordon equation
has recently been treated [29]. To the knowledge of present authors, there is currently
no comparable activity related to the Dirac equation and this paper is possibly a first
contribution to the subject (see, however, the interesting paper [28] in which a model
that represents a regularization of a concentrated nonlinearity is considered). To in-
troduce the problem in the simplest way (details are given in the following sections),
we consider the Dirac operator

Dm := �i~ c�1
d 

dx
+mc2�3 ,

where �1 and �3 are a suitable choice of Pauli matrices. The nonlinear Dirac equation
with a space-dependent nonlinearity is given by

i~ @

@t
 = Dm + V g( ),

where V = V (x). In this paper we would ideally treat the case where V ! �y
weakly. This limit procedure can be consistently pursued in the case of the nonlinear
Schrödinger equation, and yields to a well-defined, nontrivial, and nonlinear dynamics
(see [10, 11] and references therein). The corresponding three-dimensional model has
also been studied mainly from a mathematical point of view (see [2, 3, 4, 12]). The
same constructive analysis could be attempted for the Dirac equation, but here we
make use of a more abstract approach which has the virtue of complete generality.
The starting point is the construction of linear singular perturbations of the Dirac
operator, well known for a long time (see [6, 7, 14, 19]). The idea is to restrict the free
Dirac operator Dm to regular functions out of the point y, obtaining a symmetric,
non-self-adjoint operator. The self-adjoint extensions of this operator give rise to
a unitary dynamics. Among them there is of course the Dirac operator itself, but
many others exist which differ for the singular behavior at the point y. They are
parametrized through a singular boundary condition embodied in the domain of the
extended operator

{ 2 H1
(R\{y})⌦ C2

: ic�1[ ]y = Aq},
where the two-component vector q :=

1
2 ( (y

+
) +  (y�)) is the mean value, and

[ ]y :=  (y+) �  (y�) is the jump of the spinor  at y, while A is any 2 ⇥ 2

Hermitian matrix. The case A = 0 gives of course the free Dirac operator on the line,
while in all other cases there are singularities at the point y, because the jump of  
is nontrivial. It is easy to see that one ends up with the evolution described by the
distributional equation

i~ d

dt
 (t) = Dm + i~ c�1[ ]y�y

with  belonging to the above domain.
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To define a nonlinear dynamics, we let the matrix A be dependent on the function
q, arriving at a nonlinear operator Hnl

A with a domain characterized by a nonlinear
boundary condition at the point y:

D(Hnl
A ) =

�
 2 H :  2 H1

(R\{y})⌦ C2, ic�1[ ]y = A(q)q
 
,

where the matrix A(z) is Hermitian for all z 2 C2.
Under a technical condition (see Assumption 3.2), we will show the following

well-posedness result (see Theorem 3.5 for the precise statement).
For any  � 2 D(Hnl

A ), there exists a unique, global-in-time solution  (t) of the
Cauchy problem

8
><

>:

i~ d

dt
 (t) = Hnl

A  (t) = Dm + ~A(q)q �y,

 (0) =  � 2 D(Hnl
A ).

A relevant fact about the proof of the main theorem is that, recasting the initial
value problem in integral form through the Duhamel formula,  (t) turns out to depend
on the solution of a nonlinear integral equation (giving the evolution of the function q;
see (3.4)), which rules the behavior of the system. Once the solution of this nonlinear
integral equation is guaranteed, a representation formula for the solution of the Cauchy
problem (which seems to be new even in the linear case when a point interaction is
present) allows one to close the proof of the theorem. Assumption 3.2 on A(z) is
needed to treat the existence and uniqueness of the solution of (3.4), and the rest of
the proof consists in assuring the stated regularity properties of the solution.

To conclude the introduction, we now give a brief outline of the content of the
various sections of the paper.

In the preliminary section 2, in order to keep the presentation self-contained, we
recall the definition of the 1-D Dirac equation with a linear point interaction. Here
we also provide a new representation formula for the solution of the linear Cauchy
problem (see Proposition 2.1).

Section 3 is the core of the paper. The definition of the Dirac operator perturbed
by a concentrated nonlinearity is given and it is shown how to split the nonlinear flow
into the sum of the free flow plus a part containing only q (depending on the total
initial datum) which satisfies a nonlinear integral equation. It is then shown that (3.4)
in the stated hypotheses admits a unique solution and the main theorem is proved.
The section ends with the proof of three complementary but relevant properties. The
independence of the global well-posedness results on the special representation of the
algebra of the Dirac matrices employed is proven (see Remark 3.7), and the mass
(or L2-norm; see Theorem 3.8) and energy conservation laws (see Theorem 3.9) are
shown. As regards the energy, in order to obtain conservation one has to restrict the
admissible matrix fields A(z) by imposing the constraint A(z) = A(z̄, z) = A(z, z̄).

In section 4, several examples are given, to compare our point-like nonlinear
models to the ones found in literature. Among others, the nonlinear versions of
the Gesztesy–Šeba models and the concentrated nonlinearities mimicking the 1-D
Soler-type and Bragg resonance models are treated. Finally, in Appendix A, the
representation formula for the free Dirac evolution in 1-D is recalled and the H1-
regularity in time of the evaluation at the singularity of the free part of the evolution
is proved; see Proposition A.1.
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Throughout the paper we will use the following notation.
• The inner product between two vector-valued functions in L2

(R)⌦ C2 is de-
noted by h ,�i, and it is antilinear in the first argument. The corresponding
norm is simply denoted by k k.

• The inner product between two vectors in C2 is denoted by hz, ⇠iC2 , and it is
antilinear in the first argument. The corresponding norm is simply denoted
by |z|, not to be mistaken for the usual absolute value which is denoted in
the same way.

• C denotes a generic positive constant whose value may change from line to
line.

2. The Cauchy problem for the Dirac equation with point interactions.
Let Dm : S 0

(R)⌦ C2 ! S 0
(R)⌦ C2 be the differential operator

Dm := �i~ c�1
d 

dx
+mc2�3 

corresponding to the free 1-D Dirac operator with mass m � 0. Here ~ is Planck’s
constant, c is the light velocity, S 0

(R) denotes the space of tempered distribution,
 = (

 1

 2
), and �1 and �3 are first and third among the three Pauli matrices

�1 =


0 1

1 0

�
, �2 =


0 �i
i 0

�
, �3 =


1 0

0 �1

�
.

On the Hilbert space L2
(R)⌦ C2, the linear operator

H : D(H) ⇢ L2
(R)⌦ C2 ! L2

(R)⌦ C2, H := Dm 

with domain D(H) = H1
(R) ⌦ C2 is self-adjoint, where H1

(R) denotes the Sobolev
space of square integrable functions with square integrable first-order distributional
derivatives.

Now we recall the construction of the self-adjoint singular perturbations of H
formally corresponding to the addition of a �-type potential (see, e.g., [6, 7, 14, 19]).

Given y 2 R, let H� and H+ be the free Dirac operators on L2
(�1, y)⌦ C2 and

L2
(y,+1)⌦C2 with domains D(H�) = H1

(�1, y)⌦C2 and D(H+) = H1
(y,+1)⌦

C2, respectively. Denoting by S the restriction of H to the domain D(S) := { 2
H1

(R) :  (y) = 0}, one has that S is closed symmetric and has defect indices (2, 2)
and adjoint S⇤

= H��H+. In order to define self-adjoint extensions of S, we consider
the Hermitian 2⇥ 2 matrices

A =


↵1 �
�̄ ↵2

�
, ↵1,↵2 2 R, � 2 C.

Then one gets a self-adjoint operator HA on L2
(R) ⌦ C2 by restricting H� �H+ to

the domain

D(HA) =
�
 2 H1

(R\{y})⌦ C2
: ic�1[ ]y = Aq

 
,(2.1)

where H1
(R\{y}) := H1

(�1, y)�H1
(y,+1),

[ ]y =

✓
[ 1]y

[ 2]y

◆
:=  (y+)� (y�)
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denotes the jump of  at the point y, and

q =

✓
q1
q2

◆
:=

1

2

�
 (y+) + (y�)

�

denotes the mean value of  at the point y. The case A = 0 gives the free Dirac
operator H. By using distributional derivatives, one has

HA = Dm + i~ c�1[ ]y�y = Dm + ~Aq �y.(2.2)

The domain and the action of HA can be described in an alternative way as follows (for
simplicity of exposition we consider only the case where m > 0; a similar description
holds also in the m = 0 case). Let G denote the solution of �DmG = �y ⌦ 1, i.e.,

G(x) = � 1

2~c e
�mc

~ |x�y|
(i sgn(x� y)�1 + �3).

Then, since

i~c�1[G⇠]y = ⇠

and  2 H1
(R\{y})⌦ C2 belongs to H1

(R)⌦ C2 if and only if [ ]y = 0, one gets

H1
(R\{y})⌦ C2

= { = �+G⇠, � 2 H1
(R)⌦ C2, ⇠ 2 C2},

S⇤
 = H�,

and so, since

1

2

�
G⇠(y+) +G⇠(y�)

�
= ��3⇠

2~c ,(2.3)

the self-adjoint extension HA can be equivalently defined as

D(HA)=

⇢
 = �+G⇠, � 2 H1

(R)⌦ C2, ⇠ 2 C2,

✓
1 +

1

2c
A�3

◆
⇠ = ~A�(y)

�
,(2.4)

HA = H�.

We now consider the Cauchy problem
8
<

:
i~ d

dt
 (t) = HA (t),

 (0) =  �.
(2.5)

Since HA is self-adjoint, such a Cauchy problem is well-posed for any  � 2 L2
(R)⌦C2

by Stone’s theorem. In the following proposition, we give a representation formula for
the solution of problem (2.5) in the case  � 2 D(HA). For simplicity of exposition
we only consider the case t � 0; a similar representation holds for t  0.

Proposition 2.1. Let  � 2 D(HA). Then for any t � 0 the solution  (t) =

e�
i

~ tH
A

 � of the Cauchy problem (2.5) is given by

 (x, t) =  

f
(x, t)� i

2c
✓

✓
t� |x� y|

c

◆
1 sgn(x� y)

sgn(x� y) 1

�
Aq

✓
t� |x� y|

c

◆

� i✓

✓
t� |x� y|

c

◆Z t� |x�y|
c

0
dsK(x� y, t� s)Aq(s),

(2.6)
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where  f
(t) := e�

i

~ tH
 � and q(t) is the solution of the integral equation

q(t) =  f
(y, t)� i

2c
Aq(t)� i

Z t

0
dsK(0, t� s)Aq(s).(2.7)

Here ✓ denotes Heaviside’s step function, and the matrix-valued kernel K is defined by

K(x, t) = �mc

2~

0

@i�3J0

⇣mc

~
p
(ct)2 � x2

⌘
+ (ct1 + x�1)

J1

⇣
mc
~
p
(ct)2 � x2

⌘

p
(ct)2 � x2

1

A

with Jk denoting the Bessel function of order k.

Proof. Recall that t 7! e�
i

~ tH
A is a strongly continuous unitary group and, more-

over, note that the maps on H1
(R\{y}) to C,

f 7! lim

x!y±
f(x) ⌘ f(y±), f 2 H1

(R\{y}),

are continuous. Then the map t 7! q(t), with q(t) defined as

q(t) :=
1

2

( (y+, t) + (y�, t)),(2.8)

is continuous as well.
The relation (2.2) leads us to consider the distributional Cauchy problem

8
<

:
i~ d

dt
 (t) = Dm (t) + ~Aq(t)�y,

 (0) =  �,
(2.9)

where q(t) is defined by (2.8). Then

 (t) =  f
(t) + �(t),

where  f
(t) = e�

i

~ tH
 �, and  �(t) solves (2.9) with zero initial conditions. By

Duhamel’s formula,

 

�
(t) = �i

Z t

0
ds e�

i

~ (t�s)HAq(s)�y.

Let us notice that, by (A.2), the group of evolution exp(� i
~ tH) continuously maps

S(R) ⌦ C2 in S(R) ⌦ C2 and so it extends by duality to a group of evolution (which
we denote by the same symbol) on S 0

(R)⌦ C2 to S 0
(R)⌦ C2. Using the definition of

the unitary group e�
i

~ tH (see (A.3)), we get

 

�
(t) =� i

2

Z t

0
ds
�
(1 + �1)Aq(s) �y+c(t�s) + (1 � �1)Aq(s) �y�c(t�s)

�

� i

Z t

0
ds

Z c(t�s)

�c(t�s)
d⇠K(⇠, t� s)Aq(s) �y+⇠ .

Exploiting the Dirac delta distributions in the integrals (recalling that t � 0), we get

 

�
(x, t) =� i

2c
✓

✓
t� |x� y|

c

◆
1 sgn(x� y)

sgn(x� y) 1

�
Aq

✓
t� |x� y|

c

◆

� i✓

✓
t� |x� y|

c

◆Z t� |x�y|
c

0
dsK(x� y, t� s)Aq(s).

(2.10)
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Therefore, we have proved that the solution of the Cauchy problem (2.5) satisfies the
identity (2.6) with q(t) defined by (2.8).

To prove that q(t) satisfies the identity (2.7), we note that, by (2.6), one has

 (y±, t) =  
f
(y, t)� i

2c
(1 ± �1)Aq(t)� i

Z t

0
dsK(0, t� s)Aq(s).(2.11)

Remark 2.2. Note that from (2.6) one can see that  (t) satisfies the boundary
conditions in (2.1) for any t > 0. Indeed, by (2.11), one has that

[ (t)]y = � i

2c
((1 + �1)� (1 � �1))Aq(t) = � i

c
�1Aq(t).

Remark 2.3. Despite the presence of the ✓-function on the right hand side (r.h.s.)
of (2.6), the function  (x, t) is continuous in x = y± ct. In fact, from formula (A.3),
it follows that, for any t > 0,  f

(t) is discontinuous in x = y ± ct and

[ 

f
(t)]y±ct =

1

2

[(1 ± �1) �]y =

1

2

✓
[ �

1 ]y ± [ �
2 ]y

±[ �
1 ]y + [ �

2 ]y

◆
.(2.12)

On the other hand, since

lim

x!(y±ct)⌥
✓

✓
t� |x� y|

c

◆
= 1; lim

x!(y±ct)±
✓

✓
t� |x� y|

c

◆
= 0,

one has that
h
✓
⇣
t� |x�y|

c

⌘i

x=y±ct
= limx!(y±ct)+ ✓

⇣
t� |x�y|

c

⌘
� limx!(y±ct)� ✓

⇣
t� |x�y|

c

⌘
= ⌥1.

Then, (2.10) gives

[ 

�
(t)]y±ct = ± i

2c
(1 ± �1)Aq(0) = ⌥1

2

(1 ± �1)

✓
[ �

2 ]y

[ �
1 ]y

◆
= �1

2

✓
[ �

1 ]y ± [ �
2 ]y

±[ �
1 ]y + [ �

2 ]y

◆
,

(2.13)

where in the second equality we used the fact that  � 2 D(HA). Equations (2.12)
and (2.13) give [ (t)]y±ct = [ 

f
(t)]y±ct + [ 

�
(t)]y±ct = 0.

Remark 2.4. From (A.3), it follows that, for any t > 0,  f
(y, t) is continuous in

t, and

 

f
(y, 0) ⌘ lim

t!0
 

f
(y, t) =

1

2

�
(1 + �1) �(y

�
) + (1 � �1) �(y

+
)

�
.

This implies that

 

f
(y, 0)� i

2c
Aq(0) =

1

2

�
(1 + �1) �(y

�
) + (1 � �1) �(y

+
)

�
+

1

2

�1[ �]y = q(0),

which is in agreement with the fact that q(t) satisfies (2.7).
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3. The Cauchy problem for the Dirac equation with concentrated
nonlinearity. Now we define a Dirac operator Hnl

A with concentrated nonlinearity
such that the coupling between the jump and the mean value of the spinor function
is given by a nonlinear relation. To this aim we define the nonlinear domain

D(Hnl
A ) =

�
 2 H :  2 H1

(R\{y})⌦ C2, ic�1[ ]y = A(q)q
 
,

where C2 3 z 7! A(z) is a matrix-valued function such that A(z) is self-adjoint for all
z; Hnl

A is then defined as the restriction of S⇤
= H� �H+ to D(Hnl

A ), so that

Hnl
A : D(Hnl

A ) ⇢ L2
(R)⌦ C2 ! L2

(R)⌦ C2, Hnl
A  = Dm + ~A(q)q �y.(3.1)

Remark 3.1. We use the notation Hnl
A just for convenience; indeed, the nonlinear

operator Hnl
A depends on the function z 7! A(z)z and not only on A(z): there could

be two different matrices A1(z) and A2(z) such that A1(z)z = A2(z)z. Clearly,
Hnl

A = HA whenever A is z-independent.
In order to solve the nonlinear Cauchy problem

8
<

:
i~ d

dt
 (t) = Hnl

A  (t),

 (0) =  �,
(3.2)

we first of all write an equivalent formulation mimicking the Dirac flow in the repre-
sentation formula given in Proposition 2.1.

Take  � 2 D(Hnl
A ) and set  f

(t) = e�
i

~ tH
 �. For t � 0, the nonlinear Dirac

flow Unl
t is defined by Unl

t  � :=  (t), where

 (x, t) :=  f
(x, t)� i

2c
✓

✓
t� |x� y|

c

◆
1 sgn(x� y)

sgn(x� y) 1

��
A(q)q

�✓
t� |x� y|

c

◆
(3.3)

� i✓

✓
t� |x� y|

c

◆Z t� |x�y|
c

0
dsK(x� y, t� s)(A(q)q)(s),

where q(t) is the solution of the nonlinear integral equation

q(t) =  f
(y, t)� i

2c
(A(q)q)(t)� i

Z t

0
dsK(0, t� s)(A(q)q)(s),(3.4)

and (A(q)q)(t) is shorthand notation for A(q(t))q(t).
The first step towards proving the well-posedness of problem (3.2) is to show that,

for any T > 0, (3.4) admits a unique (sufficiently regular) solution for t 2 [0, T ]. This
is achieved in Lemma 3.4 below.

In the proof of Lemma 3.4, we need the map

FA : C2 ! C2, FA(z) := z +
i

2c
A(z)z

to be locally bi-Lipschitz continuous. Therefore, we make the following assumption
on the matrix-valued function A(z).

Assumption 3.2. The map z 7! A(z) from C2 to the space of 2 ⇥ 2 self-adjoint
matrices is such that FA is a C1-diffeomorphism as a map from R4 to itself.
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By Hadamard’s global inverse function theorem (see, e.g., [21, 22] and references
therein), a C1 map � : RN ! RN is a C1-diffeomorphism if and only if its Jacobian
determinant never vanishes and k�(x)k ! +1 as kxk ! 1. Since the complex map
FA can be equivalently seen as a map from R4 to R4, such a global inverse function
theorem applies to FA as well. By |FA(z)|2 = |z|2 + |A(z)z|2/(4c2), it follows that
|FA(z)| ! +1 whenever |z| ! +1. Hence, Assumption 3.2 is equivalent to the
following assumption.

Assumption 3.3. The map z 7! A(z) from C2 to the space of 2 ⇥ 2 self-adjoint
matrices is such that FA is C1

(R4,R4
) and its Jacobian determinant never vanishes.

We are now ready to state our first results that concern the well-posedness of the
equation for q(t).

Lemma 3.4. Let A(z) be such that Assumption 3.2 is satisfied. Then, for any
 � 2 D(Hnl

A ) and T > 0, there exists a unique solution q 2 H1
(0, T )⌦ C2 of (3.4).

Proof. At first we prove that there exists a unique solution q 2 C[0, T ]⌦ C2. We
equivalently show that, for fixed T > 0 and  � 2 D(Hnl

A ), there exists ¯t > 0 for which
the following holds true: for all k � 0 such that k¯t  T , suppose that there exists a
unique solution qk 2 C[0, k¯t ] ⌦ C2 of (3.4) (no assumption in the case k = 0); then
(3.4) has an unique solution qk+1 2 C[0, (k + 1)

¯t ]⌦ C2.
To begin with, we show that if q(t) solves (3.4) for t 2 [0, T ], then there exists a

positive constant C1 such that

sup

t2[0,T ]
|(A(q)q)(t)|  C1.(3.5)

To prove this claim recall that, by Remark 2.4, supt2[0,T ] | f
(y, t)|  C, and that

supt2[0,T ] |K(0, t)|  C for some positive constant C. Hence, by (3.4), and using the
fact that A(z) is self-adjoint, we get that for all t 2 [0, T ] the following inequality
holds true:

|(A(q)q)(t)|  2c

����

✓
1 +

i

2c
A(q(t))

◆
q(t)

����  C

✓
1 +

Z t

0
ds |(A(q)q)(s)|

◆
.

Then the bound (3.5) follows by Grönwall’s inequality.
Next, let us pose tk := k¯t. For t 2 [tk, tk +

¯t ], the solution of (3.4) satisfies the
identity

✓
1 +

i

2c
A(q(t))

◆
q(t) =  f

(y, t)� i

Z t
k

0
dsK(0, t� s)(A(qk)qk)(s)(3.6)

� i

Z t

t
k

dsK(0, t� s)(A(q)q)(s).

We set

fk(t) =  
f
(y, t)� i

Z t
k

0
dsK(0, t� s)(A(qk)qk)(s)

and

Ik(q)(t) = �i

Z t

t
k

dsK(0, t� s)(A(q)q)(s),
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and rewrite (3.6) as

q(t) = F�1
A (fk(t) + Ik(q)(t)),

where, by Assumption 3.2, F�1
A exists and is a C1 map from C2 to C2.

Since  f
(y, t) and K(0, t) are bounded, and by the bound (3.5), it follows that

sup

t2[0,T ]
|fk(t)|  C(1 + TC1) ⌘ R1.

Let Bk(R) := {g 2 C[tk, tk +

¯t ]⌦ C2
: supt2[t

k

,t
k

+t̄ ] |g(t)|  R}.
For any g 2 Bk(2R1) and ¯t  t1 = R1(C sup|z|2R1

|A(z)z|)�1 independent on k,
we have that

sup

t2[t
k

,t
k

+t̄ ]
|fk(t) + Ik(g)(t)|  R1 + ¯tC sup

|z|2R1

|A(z)z|  2R1.

Define the map

Gk(g) := F�1
A (fk + Ik(g)).

The map Gk is continuous in Bk(2R1). The self-adjointness of A(z) implies that
|F�1

A (z)|  |z| hence for ¯t  t1 one has that

sup

t2[t
k

,t
k

+t̄ ]
|Gk(g)(t)|  sup

t2[t
k

,t
k

+t̄ ]
|fk(t) + Ik(g)(t)|  2R1,

which means that Gk maps Bk(2R1) into itself.
By Assumption 3.2, we have that the maps F�1

A (z) and A(z)z = i2c(z � FA(z))
are locally Lipschitz. More precisely, for any z1 and z2 such that |z1|, |z2|  R, there
exist two constants F (R) and A(R) such that

|F�1
A (z1)� F�1

A (z2)|  F (R)|z1 � z2| and |A(z1)z1 �A(z2)z2|  A(R)|z1 � z2|.
Take ¯t  t1. For any g

1
, g

2
2 Bk(2R1), one has that supt2[t

k

,t
k

+t̄ ] |fk(t)+Ik(gj)(t)| 
2R1 and

sup

t2[t
k

,t
k

+t̄ ]
|Gk(g1(t))�Gk(g2(t))|  F (2R1) sup

t2[t
k

,t
k

+t̄ ]
|Ik(g1)(t)� Ik(g2)(t)|

 F (2R1)A(2R1)C¯t sup

t2[t
k

,t
k

+t̄ ]
|g

1
(t)� g

2
(t)|.

Set t2 = (2F (2R1)A(2R1)C)

�1 independent on k, and ¯t = min{t1, t2}; then the map
Gk is a contraction in Bk(2R1). By the Banach–Caccioppoli fixed point theorem, this
implies that there exists a unique solution q⇤(t) 2 Bk(2R1) of (3.6).

By construction, the function qk+1
(t) which is equal to qk(t) for t 2 [0, tk], and to

q⇤(t) for t 2 [tk, tk+¯t ], is indeed in C[0, tk+¯t ]⌦C2 and solves (3.4) for t 2 [0, tk+¯t ].
By

q(t) = F�1
A

�
 

f
(y, t)� I(t)

�
, I(t) := i

Z t

0
dsK(0, t� s)(A(q)q)(s),

since  f
(y, ·) 2 H1

(0, T )⌦C2 (see Proposition A.1 in Appendix A), I 2 C1
[0, T ]⌦C2,

and F�1
A is Lipschitz continuous. In conclusion, q 2 H1

(0, T )⌦ C2.
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Following the previous results we can prove the global well-posedness of the
Cauchy problem (3.2).

Theorem 3.5. Let A(z) be such that Assumption 3.2 is satisfied. Then, for any
 � 2 D(Hnl

A ), the formulae (3.3) and (3.4) provide the unique, global-in-time solution
 (t) of the Cauchy problem (3.2); more precisely,  2 C1

(R+, L
2
(R) ⌦ C2

),  (t) 2
D(Hnl

A ), and (3.2) holds for any t � 0.

Proof. By (3.1) and by the same reasonings as in the linear case provided in
section 2 (replacing Aq with A(q)q), one has that  (t) given in formula (3.3) solves
the distributional Cauchy problem

8
<

:
i~ d

dt
 (t) = Dm (t) + ~(A(q)q)(t) �y,

 (0) =  �,

and, since q(t) solves (3.4), one gets  (t) 2 D(Hnl
A ) for any t � 0. Therefore, to

conclude the proof we need to show that the map t 7!  (t) belongs to C1
(R+, L

2
(R)⌦

C2
). Since  (t) 2 D(Hnl

A ) ⇢ H1
(R\{y}), we have the decomposition (in the following

we suppose m > 0; similar considerations hold in the m = 0 case)

 (t) = �(t) +G⇠(t), �(t) 2 H1
(R)⌦ C2, ⇠(t) = i~c�1[ (t)]y.(3.7)

Let us notice that, since

⇠(t) = ~(A(q)q)(t)(3.8)

and z 7! A(z)z is Lipschitz continuous, t 7! ⇠(t) belongs to H1
(0, T ) ⌦ C2 for any

T > 0 by Lemma 3.4. Moreover, since

Hnl
A  = Dm(�+G⇠(t)) + ⇠(t) �y = H�,(3.9)

one has that �(t) solves the Cauchy problem
8
<

:
i~ d

dt
�(t) = H�(t)� i~G ˙⇠(t),

�(0) = ��

(3.10)

with �� :=  � �G⇠(0) 2 H1
(R)⌦ C2. Therefore,

 (t) = e�
i

~ tH
�� �

Z t

0
ds e�

i

~ (t�s)HG ˙⇠(s) +G⇠(t).

Since t 7! e�
i

~ tH
�� belongs to C1

(R+, L
2
(R)⌦C2

) and �HG ˙⇠ = ˙⇠�y, to conclude we
need to show that the map

t 7! ⌥(t) :=
d

dt

✓Z t

0
ds e�

i

~ (t�s)HG ˙⇠(s)�G⇠(t)

◆
=

i

~

Z t

0
ds e�

i

~ (t�s)H
˙⇠(s)�y

belongs to C(R+, L
2
(R)⌦ C2

). By the same calculations that led to (2.10), one gets

⌥(t) =
i

~

✓
1

2c
⌥1(t) +⌥2(t)

◆
,
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where

⌥1(x, t) = ✓

✓
t� |x� y|

c

◆
1 sgn(x� y)

sgn(x� y) 1

�
˙⇠

✓
t� |x� y|

c

◆
,

⌥2(x, t) = ✓

✓
t� |x� y|

c

◆Z t� |x�y|
c

0
d⌧ K(x� y, t� ⌧) ˙⇠(⌧).

Let  denote the bound for the kernel K:

 := max

i,j=1,2
sup

0<t<t�,|x|<ct

|Ki,j(x, t)|.

One has (supposing 0  s < t  t�, the same kind of reasonings hold in the case
0  t < s  t�)

k⌥1(t)�⌥1(s)k2  C

✓Z cs

0
dx
��� ˙⇠
⇣
t� x

c

⌘
� ˙⇠

⇣
s� x

c

⌘���
2
+

Z ct

cs

dx
��� ˙⇠
⇣
t� x

c

⌘���
2
◆

 C

✓Z t�

0
dx
��� ˙⇠ (t� s+ x)� ˙⇠ (x)

���
2
+

Z t�s

0
dx
��� ˙⇠(x)

���
2
◆

and

k⌥2(t)�⌥2(s)k2

 2

Z

|x|cs

dx

�����

Z t�|x|/c

0
d⌧ K(x, t� ⌧) ˙⇠(⌧)�

Z s�|x|/c

0
d⌧ K(x, s� ⌧) ˙⇠(⌧)

�����

2

+ 2

Z

cs|x|ct

dx

�����

Z t�|x|/c

0
d⌧ K(x, t� ⌧) ˙⇠(⌧)

�����

2

 4

Z

|x|cs

dx

 Z s

|x|/c
d⌧
���K(x, ⌧)

⇣
˙⇠(t� ⌧)� ˙⇠(s� ⌧)

⌘���

!2

+ 4

Z

|x|cs

dx

✓Z t

s

d⌧
���K(x, ⌧) ˙⇠(t� ⌧)

���
◆2

+ 2

Z

cs|x|ct

dx

 Z t�|x|/c

0
d⌧
���K(x, t� ⌧) ˙⇠(⌧)

���

!2

 162
Z

|x|cs

dx

 Z s

|x|/c
d⌧
��� ˙⇠(t� ⌧)� ˙⇠(s� ⌧)

���

!2

+ 162
Z

|x|cs

dx

✓Z t

s

d⌧
��� ˙⇠(t� ⌧)

���
◆2

+ 82
Z

cs|x|ct

dx

 Z t�|x|/c

0
d⌧
��� ˙⇠(⌧)

���

!2

 C

Z s

0
d⌧
��� ˙⇠(t� ⌧)� ˙⇠(s� ⌧)

���
2
+ C(t� s)k ˙⇠k2H1(0,t�)

 C

Z t�

0
d⌧
��� ˙⇠(t� s+ ⌧)� ˙⇠(⌧)

���
2
+ C(t� s)k ˙⇠k2H1(0,t�)

.
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Since

lim

s!t

Z t�

0
dx
��� ˙⇠ (t� s+ x)� ˙⇠ (x)

���
2
= 0

(by ⇠ 2 H1
(0, T ) and by the continuity of the shift operator; see. e.g., [37, page 11])

and

k⌥(t)�⌥(s)k  C(k⌥1(t)�⌥1(s)k+ k⌥2(t)�⌥2(s)k),
we conclude

lim

s!t
k⌥(t)�⌥(s)k = 0.

Remark 3.6. Let us define, as in the proof of Theorem 3.5, the map t ! �(t) =
 (t) � G⇠(t), which, according to (3.7), gives the time evolution of the H1

(R) ⌦ C2

component of the solution. Since, by (3.10), i~ d
dt (t) = H�(t), and we proved

that  2 C1
(R+, L

2
(R) ⌦ C2

), one has that H� 2 C0
(R+, L

2
(R) ⌦ C2

). Therefore,
� 2 C0

(R+, H
1
(R)⌦ C2

).
Remark 3.7. The Dirac differential operator Dm has many different equivalent

representations: given any unitary map U : C2 ! C2, one defines an equivalent Dirac
operator by ˜Dm := (1 ⌦ U⇤

)Dm(1 ⌦ U), i.e.,

˜Dm = �i~ c �̃1
d 

dx
+mc2�̃3 , �̃k := U⇤�kU.

The relation between the corresponding nonlinear operators is

(1 ⌦ U⇤
)Hnl

A (1 ⌦ U) =

˜Hnl
Ã
 :=

˜Dm + ~ ˜A(q)q �y, ˜A(z) := U⇤A(Uz)U.

Since

FÃ(z) = U⇤
✓

1 +

i

2c
A(Uz)

◆
Uz = U⇤FA(Uz),

FA satisfies Assumption 3.2 if and only if FÃ does. This shows that our global well-
posedness result holds in any representation and Assumption 3.2 is an invariant one.

Theorem 3.8 (mass conservation). Let  � 2 D(Hnl
A ); then the L2-norm is con-

served along the flow associated to the Cauchy problem (3.2).
Proof. We take the derivative

d

dt
k (t)k2 = 2Re

D
˙

 (t), (t)
E
.

We write  (t) as in (3.7) and use (3.10) to get
D
˙

 (t), (t)
E
=

i

~ hH�(t),�(t)i+ i

~
⌦
H�(t), G⇠(t)

↵
.(3.11)

Since �DmG = �y ⌦ 1, we have that

i

~
⌦
H�(t), G⇠(t)

↵
= � i

~
⌦
�(y, t), ⇠(t)

↵
C2(3.12)

= �i

*
q(t),

  
A(q) +

A(q)�3A(q)

2c

!
q

!
(t)

+

C2

,
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where we used (3.8), the boundary condition in (2.4), and the fact that A is self-
adjoint. Using the latter identity in (3.11), and noticing that Im hH�,�i = 0 and
Im

⌦
q,
�
A+

A�3A
2c

�
q
↵

C2 = 0, we conclude that Reh ˙ (t), (t)i = 0, which in turn
implies that the L2-norm is conserved.

To state the conservation of the energy, we look at Hnl
A as a Hamiltonian vector

field with respect to the pair of canonical coordinates  and  . For this reason, in
the next theorem we use the notation A(q) = A(q̄, q).

Theorem 3.9 (energy conservation). Assume that A(q̄, q) = A(q, q̄), and let
 � 2 D(Hnl

A ). Then the energy

E( ) =

⌦
 , Hnl

A  
↵� ~

⌦
q,A(q̄, q)q

↵
C2 + ~W (q̄, q),(3.13)

where W : C4 ! R is such that W (q̄, q) = W (q, q̄), and

rq̄W (q̄, q) = A(q̄, q)q(3.14)

is conserved along the flow associated to the Cauchy problem (3.2).

Proof. As a first step, we rewrite the energy functional in a different form. Recall
that  2 D(Hnl

A ) can be decomposed as in (3.7). By (3.9) it follows that

⌦
 , Hnl

A  
↵
= h�, H�i+ ⌦G⇠, H�↵ .

Repeating the calculations in (3.12), one obtains

⌦
G⇠, H�

↵
= � ⌦�(y), ⇠↵

C2 = �~
⌧
q,

✓
A(q̄, q) +

A(q̄, q)�3A(q̄, q)

2c

◆
q

�

C2

.

Hence, for any state  2 D(Hnl
A ), the energy functional can be written as

E( ) = h�, H�i � 2~
⌧
q,

✓
A(q̄, q) +

A(q̄, q)�3A(q̄, q)

4c

◆
q

�

C2

+ ~W (q̄, q).

Next, we compute the time derivative of the E( (t)) when  (t) is the solution of the
Cauchy problem (3.2). By using again the decomposition in (3.7), we have that

d

dt
h�(t), H�(t)i = lim

s!0

1

s
(h�(t+ s), H�(t+ s)i � h�(t), H�(t)i)(3.15)

= lim

s!0

1

s
(h�(t+ s), H�(t+ s)i � h�(t), H�(t+ s)i

+h�(t), H�(t+ s)i � h�(t), H�(t)i)
= 2Reh ˙�(t), H�(t)i,

where we used the fact that �(t) is in D(H) for all t � 0 and is a continuous function
of t, and that H is self-adjoint.
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In what follows, to shorten the notation, we do not make explicit the dependence
of functions on t. We have that

2Reh ˙�, H�i = 2Re

D
˙⇠,�(y)

E

C2
,

where we used the fact that ˙

� satisfies the equation in (3.10), and that �DmG = �y⌦1.
From the relations (3.8) and (2.3), we have that

�(y) = q +
�3⇠

2~c =

✓
1 +

�3A(q̄, q)

2c

◆
q.

Hence,

d

dt
h�, H�i = 2~Re

⌧
d

dt

�A(q̄, q)q
�
,

✓
1 +

�3A(q̄, q)

2c

◆
q

�

C2

= 2~
D
q, ˙A(q̄, q)q

E

C2
+ 2~Re

⌦
q̇,A(q̄, q)q

↵
C2

+

~
c
Re

D
q, ˙A(q̄, q)�3A(q̄, q)q

E

C2

+

~
c
Re

⌦
q̇,A(q̄, q)�3A(q̄, q)q

↵
C2 ,

where we used the fact that A(q̄, q) and ˙A(q̄, q) are self-adjoint. We note that
D
q, ˙A(q̄, q)q

E

C2
=

D
q,
⇣
˙q̄ ·rq̄A(q̄, q)

⌘
q
E

C2
+

D
q,
⇣
q̇ ·rqA(q̄, q)

⌘
q
E

C2

= 2Re

D
q,
⇣
˙q̄ ·rq̄A(q̄, q)

⌘
q
E

C2
,

where we used rqAi,j(q̄, q) = rq̄Aj,i(q̄, q), which is a consequence of the assumption
A(q̄, q) = A(q, q̄) and of the fact that A is self-adjoint. From the latter identity, it
follows that

D
q, ˙A(q̄, q)q

E

C2
= 2Re

⇣D
q̇,rq̄hq,A(q̄, q)qiC2

E

C2
� ⌦q̇,A(q̄, q)q

↵
C2

⌘
.

In a similar way, by using the identity hq, (rqA)�3AqiC2
= hq,A�3(rq̄A)qiC2 , one

can prove that

Re

D
q, ˙A(q̄, q)�3A(q̄, q)q

E

C2
= Re

⇣D
q̇,rq̄hq,A(q̄, q)�3A(q̄, q)qiC2

E

C2
(3.16)

�hq̇,A(q̄, q)�3A(q̄, q)qiC2

⌘
.

Hence,

d

dt
h�, H�i = 4~Re

*
q̇,rq̄

*
q,

 
A(q̄, q) +

A(q̄, q)�3A(q̄, q)

4c

!
q

+

C2

+

C2

(3.17)

� 2~Re
⌦
q̇,A(q̄, q)q

↵
C2 .

Taking into account the fact that

2~ d

dt

⌧
q,

✓
A(q̄, q) +

A(q̄, q)�3A(q̄, q)

4c

◆
q

�

C2

= 4~Re
⌧
q̇,rq̄

⌧
q,

✓
A(q̄, q) +

A(q̄, q)�3A(q̄, q)

4c

◆
q

�

C2

�

C2

,
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and that
d

dt
W (q̄, q) = 2Rehq̇,rq̄W (q̄, q)iC2 ,

together with (3.13) and (3.14), it follows that d
dtE[ ] = 0.

4. Examples. Given M : C2 ! C2 self-adjoint, let �(z) := hz,MziC2 be the
corresponding quadratic form. We suppose that

A(z) = A�(�(z))

with A� such that

A�(%)MA�(%) = a(%)M, a : R ! R.(4.1)

Therefore, �(A(z)z) = a(�(z))�(z) and

�(FA(z)) = �(z) +
1

4c2
�(A(z)z) = fa(�(z)), fa(%) :=

✓
1 +

1

4c2
a(%)

◆
%.

So, if x 7! a(%)% is C1 and

lim

|x|!+1

����1 +
1

4c2
a(%)

���� |%| = +1,(4.2)

1 +

1

4c2
d

d%
(a(%)%) 6= 0,(4.3)

then fa : R ! R is a C1-diffeomorphism by Hadamard’s theorem and FA has a global
inverse given by

F�1
A (z) =

✓
1 +

i

2c
A�
�
f�1
a (�(z))

�◆�1

z.

Therefore, F�1
A is a C1-diffeomorphism (and hence Assumption 3.2 holds) whenever

% 7! A�(%) is a C1 map such that (4.2) and (4.3) hold. Let us notice that, as the next
example shows, Assumption 3.2 can hold true under weaker conditions.

4.1. Nonlinear Gesztesy–Šeba models. The two simplest models are the
ones in which M = M± :=

1
2 (1 ± �3), i.e., either �(z) = �+(z) := |z1|2 or �(z) =

��(z) := |z2|2. These give nonlinear versions of the models introduced in [19]. One
has that (4.1) holds if and only if

A�(%) = ↵(%)M±, ↵ : R ! R, a = ↵2.

By straightforward computation, one gets that the Jacobian determinant of FA never
vanishes if and only if

1 +

1

4c2
d

d%
(↵2

(%)%) 6= 0.

So, for example, Assumption 3.2 holds true whenever ↵(%) =  %2�,  2 R and � 2 R+;
the case � 2 (0, 1/2) shows that Assumption 3.2 can be true even if x 7! A�(%) is not
a C1 map.

Let us notice that, in the linear case, the nonrelativistic limit of the “+” case
gives a Schrödinger operator with a delta interaction of strength ↵, whereas the
nonrelativistic limit of the “�” case gives a Schrödinger operator with a delta prime
interaction of strength �1/↵ (see [7]).
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4.2. Bragg resonance. If M = 1, i.e., �(z) = |z|2, then (4.1) holds if and only
if either

A�(%) = ↵(%) 1, ↵ : R ! R, a = ↵2,

or

A�(%) =


↵(%) �(%)
�̄(%) �↵(%)

�
, ↵ : R ! R, � : R ! C, a = ↵2

+ |�|2.

As a special case, taking A(z) = 3�|z|21, � 2 R, i.e., W (z) = 3
2 � |z|4, one obtains the

“concentrated” version of the Bragg resonance model; see [34]. There a different rep-
resentation of the Dirac operator is used; with reference to Remark 3.7, it corresponds
to the choice

U =

1p
2


1 �1

1 1

�

so that

˜Dm = �i~c�3
d

dx
�mc2�1.

In such a representation, the corresponding potential is given by

˜W (z) = �
�|z|4 + 2 |z1|2|z2|2

�
.

4.3. Example. If M = �1, i.e., �(z) = z1z̄2 + z̄1z2, then (4.1) holds if and only
if either

A�(%) = �(%)�1, � : R ! R, a = �2,

or

A�(%) =


↵1(%) �(%)
�̄(%) ↵2(%)

�
, ↵1 : R ! R, ↵2 : R ! R, � : R ! iR, a = ↵1↵2 � |�|2.

4.4. Example. If M = �2, i.e., �(z) = i(z1z̄2 � z̄1z2), then (4.1) holds if and
only if either

A�(%) = �(%)�2, � : R ! R, a = �2,

or

A�(%) =


↵1(%) �(%)
�(%) ↵2(%)

�
, ↵1 : R ! R, ↵2 : R ! R, � : R ! R, a = ↵1↵2 � �2.

4.5. Soler-type models. If M = �3, i.e., �(z) = |z1|2 � |z2|2, then (4.1) holds
if and only if either

A�(%) = ↵(%)�3, ↵ : R ! R, a = ↵2,

or

A�(%) =


↵(%) �(%)
�̄(%) ↵(%)

�
, ↵ : R ! R, � : R ! C, a = ↵2 � |�|2.

As a special case, taking A(z) = 4

�|z1|2 � |z2|2
�
�3, i.e., W (z) = 2

�|z1|2 � |z2|2
�2, one

obtains the “concentrated” version of the massive Gross–Neveu model (see [23, 34])
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which corresponds to the 1-D Soler model (see [38]). Notice that, with respect to
the representation ˜Dm of the Dirac operator used in [34], the potential is given by
˜W (z) = 2(z1z2 + z1z2)

2.

Appendix A. A regularity result for the free evolution. Here we recall
the basic results for the Cauchy problem for the 1-D free Dirac operator:

8
<

:
i~ d

dt
 

f
(t) = Dm 

f
(t),

 

f
(0) =  �.

(A.1)

By
✓
� i

~ Dm

◆2

= Km := c2
d2

dx2
� m2c4

~2 ,

such a Cauchy problem is equivalent to
8
>>>>><

>>>>>:

d2

dt2
 

f
(t) = Km 

f
(t),

 

f
(0) =  �,

d

dt
 

f
(0) = � i

~Dm �.

The solution of the Cauchy problem for the Klein–Gordon equation is known (see,
e.g., [40, section II.5.4] and [35, section 4.1.3-3]):

 

f
(x, t) =

1

2

( �(x� ct) + �(x+ ct))

� mc2t

2~

Z x+ct

x�ct

d⇠
J1

⇣
mc
~
p
(ct)2 � (x� ⇠)2

⌘

p
(ct)2 � (x� ⇠)2

 �(⇠)

+

1

2c

Z x+ct

x�ct

d⇠ J0

⇣mc

~
p
(ct)2 � (x� ⇠)2

⌘✓
� i

~Dm �

◆
.

Posing

 

f
(t) =

✓
 f
1 (t)

 f
2 (t)

◆
,  � =

✓
 �
1

 �
2

◆
,

integrating by parts and by d
dxJ0(x) = �J1(x), the solution can be rewritten in an

equivalent way as

 f
k (x, t) =

1

2

�
( �

k +  �
j )(x� ct) + ( �

k �  �
j )(x+ ct)

�
(A.2)

� mc

2~

Z x+ct

x�ct

0

@ct
J1

⇣
mc
~
p
(ct)2 � (x� ⇠)2

⌘

p
(ct)2 � (x� ⇠)2

� i(�1)

kJ0

⇣mc

~
p

(ct)2 � (x� ⇠)2
⌘
1

A �
k(⇠)d⇠

� mc

2 ~

Z x+ct

x�ct

J1

⇣
mc
~
p
(ct)2 � (x� ⇠)2

⌘

p
(ct)2 � (x� ⇠)2

(x� ⇠) �
j (⇠) d⇠, j, k = 1, 2; j 6= k.
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Therefore, defining the matrix-valued kernel function

K(x, t) = �mc

2~

0

@i�3J0

⇣mc

~
p
(ct)2 � x2

⌘
+ (ct1 + x�1)

J1

⇣
mc
~
p
(ct)2 � x2

⌘

p
(ct)2 � x2

1

A ,

the solution of the Cauchy problem (A.1) can be written as

 

f
(x, t) =

⇣
e�

i

~ tH
 �

⌘
(x)(A.3)

=

1

2

((1 + �1) �(x� ct) + (1 � �1) �(x+ ct))

+

Z x+ct

x�ct

d⇠K(x� ⇠, t) �(⇠).

In the following proposition we establish the regularity properties of the map
t 7!  

f
(y, t).

Proposition A.1. For any y 2 R,  � 2 H1
(R\{y}) ⌦ C, and T > 0,  f

(y, ·) 2
H1

(0, T ).

Proof. We use identity (A.2), which we rewrite as

 f
k (y, t) = u1,k(t) + u2,k(t) + u3,k(t) + u4,k(t)

with

u1,k(t) =
1

2

�
( �

k +  �
j )(y � ct) + ( �

k �  �
j )(y + ct)

�
,

u2,k(t) = �mc

2 ~

Z y+ct

y�ct

ct
J1

⇣
mc
~
p
(ct)2 � (y � ⇠)2

⌘

p
(ct)2 � (y � ⇠)2

 �
k(⇠) d⇠,

u3,k(t) = i(�1)

kmc

2 ~

Z y+ct

y�ct

J0

⇣mc

~
p
(ct)2 � (y � ⇠)2

⌘
 �
k(⇠) d⇠,

u4,k(t) = �mc

2 ~

Z y+ct

y�ct

J1

⇣
mc
~
p
(ct)2 � (y � ⇠)2

⌘

p
(ct)2 � (y � ⇠)2

(y � ⇠) �
j (⇠) d⇠

with k, j = 1, 2 and k 6= j.
We start by noting that, for k = 1, 2,

Z T

0
| �

k
0
(y + ct)|2 dt = c

Z y+cT

y

| �
k
0
(s)|2 ds  ck �

k
0k2L2(y,+1).

Similarly,
Z T

0
| �

k
0
(y � ct)|2 dt  ck �

k
0k2L2(�1,y),

and an equivalent bound holds true for
R T

0 | �
k(y ± ct)|2 dt. Hence,

kuk,1kH1(0,T )  C

2X

j=1

k �
j kH1(R\{y}).
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Next we analyze the integral terms in (A.2). Recall that

k �
kk2L1(y,+1)  2k �

kkL2(y,+1)k �
k
0kL2(y,+1),

k �
kk2L1(�1,y)  2k �

kkL2(�1,y)k �
k
0kL2(�1,y).

(A.4)

We shall prove that, for l = 2, 3, 4, u0
l,k(t) is bounded for all t 2 [0, T ]; this in turn

implies that ul,k 2 H1
(0, T ).

We start with u2,k. We split the integral on the intervals (y� ct, y) and (y, y+ ct)
and consider first the integration for ⇠ 2 (y, y + ct); we have that

Z y+ct

y

ct
J1

⇣
mc
~
p
(ct)2 � (y � ⇠)2

⌘

p
(ct)2 � (y � ⇠)2

 �
k(⇠) d⇠(A.5)

= ct

Z ct

0

J1

⇣
mc
~
p

(2ct� ⌘)⌘
⌘

p
(2ct� ⌘)⌘

 �
k(ct+ y � ⌘) d⌘.

Taking the derivative with respect to t, we obtain

d

dt

Z y+ct

y

ct
J1

⇣
mc
~
p
(ct)2 � (y � ⇠)2

⌘

p
(ct)2 � (y � ⇠)2

 �
k(⇠) d⇠(A.6)

= c

Z ct

0

J1

⇣
mc
~
p
(2ct� ⌘)⌘

⌘

p
(2ct� ⌘)⌘

 �
k(ct+ y � ⌘) d⌘

+ c2t
J1

⇣
mc
~
p
(ct)2

⌘

p
(ct)2

 �
k(y

+
)

+ ct

Z ct

0

d

dt

0

@
J1

⇣
mc
~
p
(2ct� ⌘)⌘

⌘

p
(2ct� ⌘)⌘

1

A �
k(ct+ y � ⌘) d⌘

+ c2t

Z ct

0

J1

⇣
mc
~
p
(2ct� ⌘)⌘

⌘

p
(2ct� ⌘)⌘

 �
k
0
(ct+ y � ⌘) d⌘.

For the first, second, and fourth terms on the r.h.s. we use the bounds (A.4) and the
fact that, for any a � 0, there exists a constant C such that |J1(

p
a)/

p
a|  C. So

for all t 2 [0, T ], each of those terms is bounded by CT k �
kkH1(y,1), where CT is a

constant which depends on T .
For the third term on the r.h.s. of (A.6) we use the fact that, for any a > 0 and

b � 0, there exists a constant C such that | d
daJ1(

p
ab)/

p
ab|  C/a. We have that,

for all ⌘ 2 [0, ct],

t

������
d

dt

J1

⇣
mc
~
p
(2ct� ⌘)⌘

⌘

p
(2ct� ⌘)⌘

������
 Ct

2ct� ⌘
 C.

Hence, the third term on the r.h.s. of (A.6) is also bounded by CT k �
kkH1(y,1). The

integral of the form (A.5) on the interval (y�ct, y) is bounded in a similar way and we
omit the details. We have proved that, for all t 2 [0, T ], |u2,k(t)|  CT k �

kkH1(R\{y}).
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The analysis of u3,k is straightforward. Splitting again the integration interval
and taking the derivative, we obtain

d

dt

Z y+ct

y

J0

⇣mc

~
p
(ct)2 � (y � ⇠)2

⌘
 �
k(⇠) d⇠

= c �
k(y + ct)� mc

~ c2t

Z y+ct

y

J1

⇣
mc
~
p
(ct)2 � (y � ⇠)2

⌘

p
(ct)2 � (y � ⇠)2

 �
k(⇠) d⇠.

The integral on the interval (y� ct, y) can be treated in a similar way. By inequalities
(A.4), and since J1(a)/a is bounded for all a � 0, we conclude that, for all t 2 [0, T ],
|u3,k(t)|  CT k �

kkH1(�1,y)�H1(y,1).
We are left to analyze u4,k. Also, in this case, we split the integral on the intervals

(y � ct, y) and (y, y + ct), and take the derivative. We obtain

d

dt

Z y+ct

y

J1

⇣
mc
~
p
(ct)2 � (y � ⇠)2

⌘

p
(ct)2 � (y � ⇠)2

(y � ⇠) �
j (⇠) d⇠

(A.7)

= �mc2

2~ (ct) �
j (y + ct) + c2t

Z y+ct

y

d

d⇠

0

@
J1

⇣
mc
~
p

(ct)2 � (y � ⇠)2
⌘

p
(ct)2 � (y � ⇠)2

1

A �
j (⇠) d⇠,

where we used the identity

(y � ⇠)
d

dt

0

@
J1

⇣
mc
~
p
(ct)2 � (y � ⇠)2

⌘

p
(ct)2 � (y � ⇠)2

1

A
= c2t

d

d⇠

0

@
J1

⇣
mc
~
p
(ct)2 � (y � ⇠)2

⌘

p
(ct)2 � (y � ⇠)2

1

A .

In (A.7), we integrate by parts and obtain

d

dt

Z y+ct

y

J1

⇣
mc
~
p
(ct)2 � (y � ⇠)2

⌘

p
(ct)2 � (y � ⇠)2

(y � ⇠) �
j (⇠) d⇠

= �cJ1

✓
mc2

~ t

◆
 �
j (y

+
)� c2t

Z y+ct

y

J1

⇣
mc
~
p
(ct)2 � (y � ⇠)2

⌘

p
(ct)2 � (y � ⇠)2

 �
j
0
(⇠) d⇠.

A similar result holds true for the integral on the interval (y�ct, y). By using again the
bounds (A.4) and the boundedness of J1(a)/a, we obtain |u3,k(t)|  CT k �

kkH1(R\{y}),
and this concludes the proof of the proposition.
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