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Abstract

In this study, measurements of solar induced chlorophyll fluorescence (SIF) at

760 nm (F760) are combined with hyperspectral reflectance (R) measurements

collected in the field over agricultural crops in order to better understand the

fluorescence (ChlF) signal of the vegetation. The ’Soil-Canopy Observation

Photosynthesis and Energy fluxes’ (SCOPE) model, which combines radiative

transfer and enzyme kinetics of photosynthesis with turbulent heat exchange

in vegetation canopies, was partly inverted to obtain model parameters from R

taken over healthy (unstressed) crops during the growing season. Reflectance

spectra between 400 and 900 nm obtained at midday on different days in the

growing season were used to obtain pigment concentrations, leaf area index and

leaf inclination. These parameters were then used to simulate diurnal cycles

of half-hourly ChlF spectra, using measured weather variables as input. Three

scenarios were simulated: (i) a constant emission efficiency of ChlF (at the pho-

tosystem level), (ii) a variable emission efficiency calculated per half hour with

an electron transport, photosynthesis and ChlF model for the photosystem, and

(iii) a constant emission efficiency that was set to a theoretical maximum value
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for fully blocked photochemical electron transport of photosytem II and min-

imal non-photochemical quenching. The simulations of the first two scenarios

were compared to ChlF retrieved from field measurements in the O2A band

with the spectral fitting method in unstressed rice and alfalfa. This comparison

and a sensitivity analysis showed that SCOPE reproduces most of the seasonal

variability of SIF after tuning to R even if the ChlF emission efficiency is kept

constant, and F760 values are mostly determined by chlorophyll content, dry

matter, senescent material and leaf area and leaf inclination, whereas leaf water

and carotenoid content had small effects. Diurnal variations in the ChlF emis-

sion efficiency at photosystem level were small in these crops. The simulations

of the third scenario were compared to measurements of grass that was treated

chemically to block electron transport and to provoke maximum ChlF. This

comparison showed that the observed increase in F760 can indeed be explained

by a change in the ChlF emission efficiency at the photosystem level. It is con-

cluded that hyperspectral reflectance and the ChlF signal together can reveal

both the dynamics of vegetation structure and functioning.

Keywords: chlorophyll fluorescence, radiative transfer model, spectroscopy,

crop phenology

1. Introduction1

The emerging data of airborne and satellite solar induced chlorophyll fluores-2

cence (SIF) create opportunities for obtaining new information about vegetation3

status through remote sensing. SIF is the emission of energy in the red and far-4

red region of the electromagnetic spectrum by pigments that are involved in5

light harvest and photosynthetic electron transport in plants. Photochemical6

quenching was first mentioned as a cause of variability in chlorophyll fluores-7

cence (ChlF) in the literature in the 19th century (Müller, 1874), and ChlF8

measurements in controlled conditions on algae and terrestrial plants have been9

undertaken for many years using both active and passive techniques (for reviews,10

see Baker (2008) and Meroni et al. (2009)). The Fraunhofer Line Discrimination11
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(FLD) method to decouple SIF from R of terrestrial vegetation was introduced12

by Plascyk (1975), but the possibility to apply this method at large area, from13

airborne or satellite platforms, is relatively new. The first papers presenting14

global satellite maps of SIF were published only a few years ago from data of15

GOSAT, GOME-2 and OCO-2 (Frankenberg et al., 2011; Joiner et al., 2011;16

Guanter et al., 2012; Joiner et al., 2013; Frankenberg et al., 2014). Retrievals of17

SIF from airborne sensors using medium spectral resolution non-imaging sensors18

(Damm et al., 2014) and high spectral and spatial resolution imaging sensors19

(Rascher et al., 2015) have been demonstrated recently as well. In addition, the20

Fluorescence Explorer satellite mission FLEX has been selected by the European21

Space Agency (ESA) as the 8th mission in the Earth Explorer series. FLEX22

will carry a hyperspectral instrument allowing SIF retrievals at different wave-23

lengths in addition to hyperspectral reflectance, and it will be complemented24

with the optical and thermal bands of Sentinel-3 with which FLEX will fly in25

tandem.26

It has been empirically demonstrated that SIF is a good indicator of photo-27

chemical activity in terrestrial vegetation (Damm et al., 2010), even better than28

indices based on reflectance (R) (Meroni et al., 2008a,b; Guanter et al., 2014).29

Indeed, there is evidence that SIF provides different information than reflectance30

spectra (Rossini et al., 2015), because SIF only originates from the parts of the31

vegetation that photosynthesize. This is further supported by the fact that SIF32

responds to a range of physiological stresses exerted on the vegetation (Ač et al.,33

2015).34

A key aspect is how to best obtain useful information from SIF, and how to35

combine SIF and R data for better understanding of the vegetation status. ChlF36

depends on the actions of light harvesting pigments, the leaf area and leaf orien-37

tation, and the efficiencies of the two main de-excitation pathways of chlorophyll,38

notably photochemical quenching via electron transport (PQ) and thermal dis-39

sipation or non-photochemical quenching (NPQ) (Porcar-Castell et al., 2014).40

These two pathways compete with ChlF. Under low light, the excitation energy41

is efficiently used by photochemistry (PQ), while under high light exessive en-42
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ergy is dissipated as heat via by unregulated thermal dissipation and by various43

physiological NPQ mechanisms (Krause and Weis, 1991). The ChlF emission44

efficiency usually peaks between these extremes. SIF is thus always a function45

of both vegetation leaf (pigment) composition, leaf area and leaf inclination on46

the one hand, and the biochemical regulation of the energy pathways on the47

other hand. The vegetation architecture and pigment composition can be re-48

trieved from the spectral signature, i.e., the shape of the reflectance curve as a49

function of wavelength over the solar reflective range (Jacquemoud et al., 2009).50

It is also possible to detect subtle variations in the reflectance due to changes51

in epoxidation state of the xanthophyll cycle related to NPQ (Garbulsky et al.,52

2011), and this can be detected from airborne data (Zarco-Tejada et al., 2012)53

and from space as well (Coops et al., 2010; Hilker et al., 2009; Drolet et al.,54

2008; Hall et al., 2008). SIF may therefore be partly explained by reflectance,55

but also provide complementary information to the rich signal of reflectance.56

In several studies in the last years, the model ’Soil-Canopy Observation of57

Photosynthesis and Energy fluxes’ (SCOPE) (Van der Tol et al., 2009) has been58

used to interpret SIF. SCOPE combines radiative transfer in the canopy with a59

Soil-Vegetation-Atmosphere Transfer (SVAT) scheme for the energy balance and60

photosynthesis. It contains routines for radiative transfer of solar radiation and61

radiation emitted by the vegetation (thermal and ChlF), and a routine for PQ62

and NPQ. SCOPE has been used to, for example, investigate the seasonality of63

SIF and productivity in parts of the Amazonia (Lee et al., 2013) and to retrieve64

the photosynthetic capacity of crops (Zhang et al., 2014). Even with a tool like65

the SCOPE model it is not easy to unravel the signal of SIF and to understand66

how it is related to processes and interactions within the vegetation. The model67

is complex and inevitably has representation errors due to model abstractions,68

and uncertainty in parameters and driving variables (in this paper we treat all69

vegetation properties as parameters, and all weather data as variables). Verrelst70

et al. (2015) addressed the problem of model complexity by carrying out a71

sensitivity analysis of SIF, as simulated by SCOPE, in order to identify the72

most sensitive model parameters and variables. It was shown that irradiance,73
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leaf composition, leaf area index and the carboxylation capacity Vcmo are the74

most influential parameters and variables affecting the signal of SIF. Most of75

the parameters and variables that affect SIF also influence reflectance. However,76

some, i.e., irradiance intensity, Vcmo and parameters for stomatal conductance,77

affect only SIF (not R), while others affect R rather strongly but have only78

a limited effect on SIF (leaf water content Cw). A practical question is thus,79

whether SCOPE can effectively explain the added value of SIF in understanding80

the functional status of vegetation. Up to now, a comparison between simulated81

SIF and field measurements of canopy ChlF has not been made in detail. This82

aspect important: To understand both simulated and observed diurnal and83

seasonal dynamics of ChlF is an important aspect. In this study we address84

this gap.85

The objective of this investigation is therefore to utilize the SCOPE model86

to separately quantify the effects of leaf pigment concentrations and canopy87

architecture on SIF on the one hand, and the effects of PQ and NPQ on SIF88

on the other hand. We utilized existing datasets from published studies to89

obtain SCOPE parameter inputs. That work included measurements of re-90

flectance in field crops using high-resolution (spatial, spectral) spectroscopy91

systems (Rossini et al., 2010; Cogliati et al., 2015a; Rossini et al., 2015). Pa-92

rameter retrieval from R determined the value of most of the model parameters93

that affect SIF, notably the parameters of the PROSPECT (Jacquemoud and94

Baret, 1990) and SAIL (Verhoef, 1984) models. This enabled the simulation95

of SIF with SCOPE, then simulated SIF was compared to corresponding field96

measurements. In the comparison between model outputs and observations, we97

focused on diurnal cycles of several days in the growing season of rice and al-98

falfa crops. The selected days spanned different phenological stages, so that the99

effects of canopy density and greenness could be evaluated. The diurnal cycles100

enabled us to study the effects of PQ and NPQ, which vary during the day,101

while canopy density and greenness can be considered constant. Finally, data102

of a manipulation experiment, in which PQ was inhibited (Rossini et al., 2015),103

were used to further assess the effect of PQ on SIF.104
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2. Materials and methods105

2.1. SCOPE model description106

The SCOPE model (Van der Tol et al., 2009) consists of several routines107

that are combined to simulate ChlF. Since the first publication the model has108

undergone several revisions. For the present paper we used version 1.61 as pub-109

lished on https://github.com/Christiaanvandertol under GNU General Public110

Licence.111

The illumination by direct solar light and diffuse sky light is simulated with112

the turbid medium model SAIL (Verhoef, 1984). The SAIL model calculates113

the scattering and absorption by leaves with a user-defined inclination distri-114

bution. Inputs of the SAIL model are the illumination above the canopy and115

the reflectance and transmittance of the leaves. The latter were originally cal-116

culated with the PROSPECT model, but in later versions (including version117

1.61) PROSPECT has been replaced by the model Fluspect. The incident light118

is converted into emitted ChlF spectra on each side (top and bottom) of the119

leaf by Fluspect (Verhoef, 2011; Vilfan et al., submitted). This is done for all120

leaf layers and inclination classes. The emitted ChlF is finally used in a ra-121

diative transfer model to calculate top-of-canopy (TOC) SIF in the observation122

direction and hemispherically integrated. The canopy radiative transfer model123

for SIF is similar to SAIL, but it simulates the fate of emitted radiation rather124

than the incident radiation. Thus three aspects determine SIF in the SCOPE125

model: the distribution of light over leaves, the conversion of illumination into126

ChlF emission, and the propagation of ChlF through the canopy.127

We now focus on the conversion of illumination into ChlF at the leaf level.128

The Fluspect model, which describes radiative transfer for a compact leaf, was129

used for this purpose. Fluspect is an extension of PROSPECT and includes the130

radiative transfer of ChlF (and re-absorption) within the leaf. The model uses131

an efficient doubling algorithm to solve the differential equations for radiative132

fluxes in the leaf mesophyll layer. It treats ChlF of the two photosystems, PSI133

and PSII, separately. The output of Fluspect (see Fig. 1) consists of leaf re-134
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flectance and transmittance as in PROSPECT and, in addition, the probability135

that excitation at a specific wavelength (λe) results in ChlF at a longer wave-136

length (λf ) at the illuminated side (the backward direction) or at the shaded137

side (the forward direction). For λe, the spectral range from 400 to 700 nm138

is used, while for λf 640 to 850 nm is used, both with a spectral resolution139

of 1 nm. The components of the two photosystems that are responsible for140

fluorescence, PSI and PSII, are handled separately, such that there are four flu-141

orescence excitation-emission probability matrices: one for each photosystem in142

the forward and the backward direction. The fluorescence emission of a leaf is143

the product of the probability matrices and the irradiance spectrum, as shown144

in Fig. 1 c,d,f,g.145

The input parameters of the Fluspect model are the chlorophyll and carotenoid146

concentrations Cab and Cca, the dry matter and leaf water concentrations Cdm147

and Cw, the brown pigment concentration Cs, the mesophyll scattering pa-148

rameter N , and the efficiencies of fluorescence emission at photosystem level.149

Specific optical properties, notably the absorption spectra of Cab, Cdm etc., and150

the spectral shape of the fluorescence emissions of the two photosystems, PSI151

and PSII, are fixed parameters.152

The emission efficiencies of PSI and PSII are known to vary with irradiance,153

leaf temperature and other factors, depending on the de-excitation pathways154

(PQ and NPQ) in the pigment bed of the photosystems (Weis and Berry, 1987;155

Krause and Weis, 1991). In SCOPE, a separate routine is used to predict how156

these efficiencies vary: the biochemical routine that also calculates leaf photo-157

synthesis and transpiration. The fluorescence emission efficiency first increases158

and then decreases as photosynthesis moves from light limitation to light sat-159

uration (Fig. 1a.). The peak of fluorescence in this model appears to be 1.44160

times the fluorescence efficiency at low light. Left of the peak (low light), most161

of the energy is dissipated through PQ, whereas right of the peak (high light),162

most of the excessive energy is dissipated through NPQ. The curve shown is163

empirically calibrated to data sets of PAM measurements on leaves of different164

species, but it may vary between species and sites depending on the complex165
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eco-physiological adaptation of photosynthesis in ways that are not fully under-166

stood.167

In SCOPE, the biochemical routine is used to scale the fluorescence spectrum168

of PSII in response to the ambient environmental condition, relative to the169

efficiencies in unstressed, low light conditions, referred to as the Fo level in the170

literature (Maxwell and Johnson, 2000). The fluorescence emission spectra at171

the Fo-level were generated with Fluspect setting the efficiencies under Fo for172

PSI and PSII to 0.01 for PSII and 0.002 for PSI (Fig. 1c,f). The value for173

PSII was selected because (1) under low light, the ratio of the rate coefficients174

of photochemistry and PSII fluorescence is about 80:1, and (2) under low light175

about 80% of the photosynthetically active radiation is used for photochemistry176

(Van der Tol et al., 2014), thus 1% for fluorescence. The value for PSI and the177

spectral distributions of the emission by photosystems were derived from the178

study published by Franck et al. (2002).179

Although SCOPE simulates the whole fluorescence spectrum, only the sim-180

ulations at 760 nm have been used in this study, corresponding to the far red181

fluorescence as retrieved from the available field measurements.182

2.2. Experimental data183

SCOPE model performances were evaluated using two datasets of top-of-canopy184

(TOC) R and SIF collected in two crop fields equipped with meteorological and185

eddy covariance towers, and one collected over grass. These datasets cover differ-186

ent vegetation cases, with variability of structural and physiological parameters,187

which is suitable for modelling exercises.188

The first dataset was collected in a rice (Oryza sativa L.) paddy field during189

seven field campaigns conducted in 2007 in Northern Italy (Rossini et al., 2010),190

but here only clear sky days are selected. The second consists of 27 consecutive191

days of measurements of R and SIF in an alfalfa (Medicago sativa L.) crop field192

in Central Italy (Cogliati et al., 2015a). Spectral data were collected manu-193

ally in the rice field while the automatic Multiplexer Radiometer Irradiometer194

(MRI) system was employed for the alfalfa crop. Both measuring systems use195
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Figure 1: Example of the output of the combined Fluspect model and biochemical model:

(a) simulation with the drought sensitive parameterization of the model of Van der Tol et al.

(2014) of fluorescence emission efficiency Ft (a.u.) in the range 700-760 nm as a function

of irradiance, normalized by the efficiency in low light conditions Fo. (b) Reflectance ρ and

(e) transmittance τ simulated with the Fluspect model, and corresponding (c-d) backward

(Fb) and (f-g) forward (Ff ) fluorescence spectra normalized to total photosynthetically active

irradiance (iPAR). The contribution by PSI is denoted by the gray area. Panels (c) and (f)

are Fluspect simulations for the Fo-case, while in (d) and (g) the spectra of PSII represent

the Ft-case at a PAR irradiance of 87 Wm−2, corresponding to the peak in panel (a). The

Fo-case only occurs at iPAR↓ 0, but for the sake of comparison to the Ft-case, it is shown for

an irradiance of 87 Wm−2 as well. Note that the PSII spectrum is scaled such that integrated

fluorescence is proportional to Ft/Fo in panel, while the PSI spectrum is unchanged (a). For

these simulations, the Fluspect parameters of alfalfa of Julian day 164 (DOY = 164), and

carboxylation capacity Vcmo = 80 µmol m−2 s−1 and Ball-Berry stomatal parameter m = 10

were used.
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two portable spectrometers (HR4000, OceanOptics, USA) operating in the vis-196

ible and near-infrared region but with different spectral resolutions. The first197

one covers the 400-900 nm spectral range with a full width at half maximum198

(FWHM) of 1 nm. The second one is optimized to provide higher spectral199

resolution (FWHM of 0.1 nm) in a restricted spectral range (700-800 nm) to200

estimate SIF in the O2-A oxygen absorption band positioned at 760 nm (we use201

the symbol F760 for SIF in the O2-A band in this study). Sun-induced fluores-202

cence at 760 nm was estimated using the spectral fitting method (SFM) (Meroni203

et al., 2010), assuming a linear variation of reflectance and fluorescence in the204

O2-A absorption band region. The spectral interval used for F760 estimation205

was set to 759.00 - 767.76 nm for a total of 439 spectral channels used. In the206

rice field, spectral data were acquired manually using bare fiber optics with an207

angular field of view of 25◦ using the method presented in Meroni et al. (2010).208

In the manual configuration, the rotation of a mast mounted horizontally on a209

tripod allowed alternative measurements of a white reference calibrated panel210

(Optopolymer GmbH, Germany) and the target. The MRI is developed for211

unattended operation and uses an upward pointing cosine receptor to mea-212

sure irradiance and a bare fibre optic with an angular FOV of 25◦ to observe213

the target surface. The signal is divided by a computer-controlled multiplexer214

(MPM-2000, OceanOptics, USA). Spectrometers were spectrally and radiomet-215

rically calibrated with known standards (CAL-2000 mercury argon lamp and216

LS-1-CAL calibrated tungsten halogen lamp, OceanOptics, USA).217

The third data set, acquired in the Czech Republic, consists of two days218

of data over two plots of lawn grass: a mixture consisting of Festuca rubra,219

Lolium perenne and Poa pratensis. One was a control plot and the other was220

treated with the herbicide DCMU (Dichorophenyl-dimethylurea) to experimen-221

tally block the linear photosynthetic electron flow at PSII (Rossini et al., 2015).222

In this experiment, the MRI system was used sequentially over the control and223

the treated plot. On the first measurement day, 5 September 2012, a relatively224

low concentration of DCMU was applied, whereas on the second measurement225

day (9 September 2012), a tenfold higher concentration was used. These datasets226
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cover different vegetation cases, with variability of structural and physiological227

parameters, which is suitable for modelling exercises.228

2.3. Parameter retrieval from reflectance229

In Fig. 2 we show schematically how the model was applied. We first used230

Numerical Optimization (NO) for the retrieval of biophysical and biochemical231

parameters from apparent reflectance. We use the term ’apparent’ reflectance232

because the measured reflectance is ’contaminated’ by the fluorescence flux,233

i.e., TOC the measured top-of-canopy (TOC) radiance consists of reflected en-234

ergy plus fluorescence. The retrieval was carried out using the optical radiative235

transfer routine of the SCOPE model code (’RTMo’, where ’o’ stands for ’op-236

tical’). One set of parameter values was retrieved separately for each of the237

measurement days, using the reflectance measured at midday, and next, SIF238

was simulated with the full SCOPE model using the retrieved parameters (a239

single set per day) and half-hourly weather data, as discussed in Section 2.4.240

The general procedure for NO to retrieve parameters from apparent re-241

flectance was as follows. The model was iteratively executed, each time with242

different parameter values, while aiming at minimizing a cost function. The243

cost function f was:244

f = (Rs −Rm)>(Rs −Rm) + w · (p− po
σp

)>(
p− po
σp

), (1)

where Rs is the simulated and Rm the measured reflectance in all bands of the245

visible to near infrared (VNIR) spectra between 400 and 900nm, p the posterior246

and po the a priori values (also the initial values) of the parameters, σp is247

the assumed standard deviation of the a priori values of each parameter, and248

w = 3 ·10−3 is a weighting factor to scale the two parts of the cost function. The249

parameter w is necessary due to the different order of magnitude of the terms250

on the right hand side of Eq. (1), but the choice of its value w is subjective.251

The value chosen here ensures that the first part dominates the cost function.252

The second part only plays a role for the parameters to which the model is253

insensitive, and it prevents unrealistic posterior values for these parameters.254

11



Similarly, the choice of a priori values and standard deviations is subjective,255

but again these values only affect model-insensitive parameters. We used the256

function ’lsqnonlin’ of the optimization toolbox of Matlab R2013a, selecting a257

Trust Region algorithm for updating parameter values after each iteration step,258

and iteration stopped when the improvement of the cost function was less than259

a value of 10−3. The ranges, initial values and standard deviations used are260

shown in Table 1.261

Table 1: Lower boundaries (LB), upper boundaries (UB), A priori values (PV) and assumed

standard deviations (σp0) of each parameter used for the retrieval. The first five parameters are

Fluspect parameters for pigment content and leaf water content, followed by a transformation

of the leaf area index LAI, the sum and the difference of the leaf inclination parameters LIDFa

and LIDFb, and four parameters (C1 to C4) that describe the shape of the fluorescence

spectrum as a linear mixture four principle components.

Parameter unit LB UB PV σp0

Cab µg cm−2 0 100 40 30

Cdm mg cm−2 0 20 5 6

Cw mg cm−2 0 100 20 20

Cs a.u. 0 0.4 0.1 0.2

Cca µg cm−2 0 25 10 4

1− exp(−0.2LAI) m2m−2 0 0.7 0.45 0.2

LIDFa+ LIDFb - -1 1 -0.5 0.6

LIDFa− LIDFb - -1 1 -0.2 0.6

C1 - 0 40 0 ∞

C2 - -20 20 0 ∞

C3 - -10 10 0 ∞

C4 - -2 2 0 ∞

The following properties could potentially be retrieved from the apparent re-262

flectance: (1) the leaf and canopy parameters of RTMo, (2) the soil (background)263

reflectance, and (3) the fluorescence spectrum. It appeared that only the leaf264

and canopy properties contributed substantially to the apparent reflectance.265
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For the soil background, we used the ’Global Soil Vector’ (GSV) model (Ver-266

hoef et al., 2014), which simulates the soil spectrum as a linear combination267

of three basis spectra. In principle the parameters of the GSV model could be268

retrieved, but we found that for the crops in this study, the sensitivity of the269

simulated top-of-canopy TOC reflectance to the soil spectrum was negligible.270

For this reason, the parameters of the GSV model were fixed at 0.5, 25, 45 and271

30 for the brightness, LAT and LON parameter and the soil moisture content,272

respectively. The measured apparent reflectance includes a small contribution273

from fluorescence, which was for some of the measurements visible as a spike in274

the spectra around 760 nm (i.e., in the O2-A band). We corrected for this effect275

by adding a fluorescence spectrum on top of the radiance simulated by RTMo,276

and by including the fluorescence in the NO. The effect of fluorescence on the277

apparent reflectance (Ra) was modelled by including fluorescence radiance (F )278

in the simulated radiance (L):279

πL = rsoEsun + rdoEsky + F (2)

Ra =
πL

Esun + Esky
, (3)

where rso and rdo are the reflectance of solar and diffuse radiation, respectively,280

simulated by RTMo, and Esun and Esky are solar and sky irradiance spectra281

(Wm−2µm−1) estimated from a MODTRAN5 simulation for a clear sky at-282

mosphere with solar zenith angle of 45◦, air and vapour pressure and carbon283

dioxide and oxygen partial pressures of 967 hPa, 15 hPa, 364.4 ppm and 19.49284

percent (note that the CO2 concentration was somewhat low even for mid-285

growing season agricultural fields, but this does not affect the reflectance in the286

region of 400-900 nm). The direct and diffuse irradiance were calculated from287

MODTRAN5 output as:288

Esun = πt1t4, (4)

Esky =
πt1 (t5 + t12rsd)

1− t3rdd
, (5)
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where ti are atmospheric radiative transfer functions of MODTRAN5: t1 is the289

extraterrestrial solar irradiance (Wm−2µm−1sr−1), t3 the spherical albedo, t4290

the direct solar transmittance, t5 the diffuse solar transmittance, and t12 the291

product of t3 and t4 (see Fig. 2 in Cogliati et al. (2015b)), all averaged to292

the resolution of the field spectrometer. The fluorescence spectra in Eq. (2)293

were not computed with the full SCOPE model, but instead simulated as a294

linear combination of four basis spectra, derived from output of earlier SCOPE295

runs using principal component (PC) analysis. Four coefficients, one for each296

of these basis spectra, were retrieved. The fluorescence spectra retrieved in297

this way, however, were only intended to correct for the spike in the apparent298

reflectance. The values at 760 nm were reasonably in agreement with the SFM299

data from the much higher spectral resolution measurements, but we consider300

the latter as measured fluorescence.301

The following parameters were retrieved: Leaf Area Index LAI (m2 m−2),302

Leaf Inclination Distribution Function parameters LIDFa and LIDFb, leaf303

chlorophyll a+b concentration Cab and leaf carotenoid concentration Cca (µg304

cm−2), leaf dry matter Cdm and leaf water Cw concentration (g cm−2), brown305

pigment Cs (arbitrary unit), and four coefficients C1−4 for the fluorescence PC’s.306

The mesophyll scattering parameter N was fixed to 1.5. Parameters LIDFa and307

LIDFb are used to describe the cumulative probability distribution function308

of leaf inclination angles mathematically (Verhoef, 1998; Wang et al., 2007).309

LIDFa determines the average leaf inclination (-1 for planophile (9◦) and +1310

for erectophile (89◦) leaves), and LIDFb the bimodality of the distribution.311

2.4. Simulation of fluorescence312

We simulated diurnal cycles of SIF with the retrieved parameter values us-313

ing half-hourly synoptic data from an on-site weather station as input with the314

complete SCOPE model, while the leaf and canopy parameters were maintained315

constant during each day. Several model parameters that affect the emission316

efficiency of SIF but not R, such as carboxylation capacity at 25◦C, Vcmo, and317

the Ball-Berry parameter for the calculation of the stomatal conductance, m318
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(Verrelst et al., 2015), were maintained at default values. It is common practice319

to treat these as constants during a diurnal cycle, but PQ and NPQ are still320

variable: They are functions of irradiance, temperature, relative humidity and321

wind speed. The MODTRAN irradiance spectra Esun and Esky were linearly322

scaled at every 30-minute time interval to match exactly the instantaneously323

measured broadband irradiance. To investigate the effect of variations in flu-324

orescence emission efficiency under natural conditions relative to the effects of325

leaf composition, leaf area and leaf inclination, three types of simulations of SIF326

were carried out:327

1. The reference simulation. A simulation in which the fluorescence emis-328

sion efficiencies at photosystem level were kept constant over time. The329

emission efficiency calculated by the biochemical routine was overruled in330

an extra line added to the code in the model. For this constant emission331

efficiency, we used the default value of 0.002 for PSI, while for PSII we332

chose the (peak) value as simulated with the biochemical model of Van der333

Tol et al. (2014) at intermediate light conditions (the peak value in Fig.334

1a.), and applied this value throughout the day. The total efficiency (of335

PSI and PSII) between 700 and 760 nm was 1.44 times the efficiency un-336

der low light, unstressed condition. In this way physiological regulation337

of photosynthesis and SIF was ’switched off’. This enabled us to quantify338

the effects of leaf composition, leaf area and leaf inclination on SIF and339

on the efficiency of SIF (i.e., SIF/irradiance) at canopy level. The SIF of340

this reference simulation is proportional to irradiance, and otherwise only341

a function of R, and is independent of, for example, the carboxylation342

capacity or the leaf temperature.343

2. The dynamic simulation. A simulation in which the fluorescence efficiency344

was calculated with the standard SCOPE model, i.e., using the drought345

parameterization of Van der Tol et al. (2014). Wullschleger (1993) pub-346

lished tables of literature values of Vcmo: the average values therein were347

94 µmol m−2 s−1 for rice and 67 µmol m−2 s−1 for all C3 crops together.348

16



Here we used Vcmo = 80 µmol m−2 s−1. The Ball-Berry parameter for349

stomatal regulation m was set to 10, such that stomatal conductance var-350

ied with relative humidity, and the simulated internal CO2 concentration351

in the stomata was about 70 percent of the ambient at the mean midday352

relative humidity. The dynamic simulation yields lower values for SIF353

than the reference simulation.354

3. A simulation with (constantly) inhibited PQ. In this simulation the maxi-355

mum stress effect of a fully blocked photochemical pathway was calculated.356

From the values of the rate coefficients for kinetics in the model of Van der357

Tol et al. (2014), we can derive that the maximum possible effect of blocked358

PQ is a factor 5 increase in fluorescence of PSII compared to that of un-359

treated vegetation under low light, and a factor 3.3 increase compared360

to the reference simulation as defined earlier. We therefore carried out a361

simulation in which we forced the fluorescence efficiency of photosystem362

II to be 5 times the default value for low light unstressed vegetation, thus363

overruling the value computed by the physiogical model in the code. This364

simulation was carried out only for the treated grass.365

The differences between the simulations, and between measured and simu-366

lated SIF, provide insight into the magnitude of the effect of PQ and NPQ on367

SIF, as compared to the effects of leaf composition, leaf area and leaf inclina-368

tion. The focus here is on the diurnal shape, while the absolute values of SIF369

have some uncertainty due to the chosen value of the emission efficiencies at370

low light. The results of the reference and dynamic simulation were both qual-371

itatively compared to observations of chlorophyll fluorescence at 760 nm (F760)372

and differences between days and times of the day were analysed.373

2.5. Model sensitivity and error propagation374

The Jacobian of the model was calculated to determine (i) the most influ-375

ential parameters for reflectance and fluorescence of the crops and the grass,376

(ii) the ill-posedness of the retrieval, and (iii) the propagation of retrieval errors377

into the simulated fluorescence. Two Jacobians were computed for each set of378
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optimized parameters: JR, which is the local model sensitivity of R at each379

λi of the b spectral bands of the HR4000 spectrometer to each of the n = 12380

parameters, and JF , which is the local model sensitivity of the SIF spectrum at381

each fluorescence wavelength (640-850 nm, 1 nm resolution) to each parameter:382

JR =


∂Rλ1/∂p1 . . . ∂Rλ1/∂pn

... . . .
. . .

...

∂Rλb/∂p1 . . . ∂Rλb/∂pn

 (6)

and383

JF =


∂F640/∂p1 . . . ∂F640/∂pn

... . . .
. . .

...

∂F850/∂p1 . . . ∂F850/∂pn

 (7)

The Jacobians were further normalized (multiplied) by the span of each384

parameter to obtain comparable numbers in equal units, and then analysed by385

decomposing them into singular values and singular vectors using Singular Value386

Decomposition (SVD):387

JN = UΣV >, (8)

where the subscript N stands for normalized Jacobian, U and V are the left and388

right singular vectors, respectively, and Σ is a diagonal matrix of singular values.389

U is a matrix of 12 spectra (in columns), and V is a 12x12 matrix providing390

the contributions of each of the 12 parameters in Table 1 to each spectrum in391

U . The occurrence of relatively low singular values indicates ill-posedness.392

We estimated the propagation of uncertainty in the measured reflectance393

spectra into the model simulations of fluorescence by first calculating the un-394

certainty (i.e., the standard deviation) in model parameters, σp:395

σp = (J>R JR)−1J>Rσ
>
R (9)

where σR the spectrum of uncertainty in R. The covariance matrix of simulated396

SIF, c2SIF is:397

c2SIF = JF (σpσ
>
p )J>F , (10)
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and the variance is the diagonal of the covariance matrix, which is a spectrum398

from 650 to 850 nm. From this matrix, we selected only the value at index (i, i)399

for which wl = 760 nm, and calculated the standard deviation of F760 as the400

square root of this value:401

σF760 =
√
c2SIF (i, i). (11)

For σR we used the standard deviation of repeated measurements of R of the402

same target on the same day, within two hours around solar noon. This provides403

a measure for the uncertainty due to variability in irradiance and instrumen-404

tal noise, but it does not represent the total measurement uncertainty, which405

would also include instrument calibration errors. This methodology provides406

the minimum uncertainty in simulated SIF that can be expected.407

3. Results408

3.1. Parameter retrievals from reflectance spectra409

Figs. 3 and 4 show the simulated reflectance on 7 and 4 dates during the410

growing season of rice and alfalfa, respectively, along with the measured ap-411

parent reflectance, and Fig. 5 shows the reflectance of the control and treated412

grass on two days. Alfalfa was cut on Julian day of the year 180 (DOY=180),413

and the first spectrum corresponds to the mid-season phase, whereas the other414

three spectra show the crop development phase after regrowth. In general, the415

model reproduces the reflectance well (RMSE between 0.0032 and 0.0106). The416

four reflectance spectra of the grass are similar: there are only small differences417

between the two dates and between the two plots. The residuals (the measured418

minus simulated spectra) are shown as well, and these are in the same order of419

magnitude as, but somewhat higher than, the standard deviation of the mea-420

surements for most wavelengths. The following discrepancies between simulated421

and measured spectra are evident. It appears that in some cases the simulated422

reflectance peak in the green (550 nm) is too sharp (for example DOY 248 for423

rice). We attribute this to the absorption spectra of carotenoids and chlorophyll424
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used as input of Fluspect. Spikes in the NIR can be attributed to atmospheric425

effects: The spectra of direct and diffuse incident light were not measured sep-426

arately, and here MODTRAN simulated spectra have been used. Spikes at 720427

and 880 nm can be attributed to effects of water vapour absorption, and the428

spike at 760 nm to either an inaccuracy in the O2-A absorption band depth, or429

a mismatch in the shape of the simulated ChlF. At the red edge the residuals430

are larger, which could be explained by the fixed absorption spectra of the leaf431

constituents. With the PCs for the fluorescence, the spike in reflectance at 760432

nm could only partly be reproduced and some discrepancy remains. This may433

be caused by the fact that the spectral distibution of the fraction diffuse:direct434

irradiance, which affects the spike, was not known exactly. The relatively large435

differences between measured and simulated spectra around 890 nm in alfalfa436

may have the same cause: In this region the diffuse and direct light, which have437

a different reflectance due to directionality, are strongly different spectrally.438

Fig. 6 and Table 2 show a representative example of the results of the SVD439

of normalized JR, for alfalfa on DOY=164. The nearly four orders of magnitude440

difference between the highest and lowest singular value (SV) indicates that the441

retrieval was ill-posed. The four fluorescence coefficients dominate the lower442

SV values. This is expected: Their contribution is concentrated in a few bands443

only (Fig 6), and therefore these SVs are small. The largest SV is dominated by444

Cdm and LAI, but with an opposite sign, which indicates that the effects of pa-445

rameters can to some degree nullify, such that an overestimate (underestimate)446

in one can be accompanied by an overestimate (underestimate) in the other.447

The second SV is dominatd by Cab, and the third by Cs. The fourth to eighth448

SVs are < 5% of the first; these are dominated by Cca, Cw and combinations449

of other parameters. Although the leaf inclination distribution parameters only450

dominate small SV, they also have some effect on the first three highest SVs.451

The retrieved parameter values are listed in Tables 3 to 5. The retrieved452

Cab and Cdm decreased over time in rice, while Cs increased. These are realistic453

patterns, but a few other features are not. On one day in both in rice and454

alfalfa, retrieved Cdm was zero. Due to the ill-posedness of the inversion, these455
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values were compensated by LAI values lower than expected.456

Table 2: Singular values (SV) and right singular vectors (V ) of the Jacobian of the reflectance

model after fitting to the measured reflectance of alfalfa on DOY=164. The highest contri-

butions per SV is shown in bold font. The squared sum over rows equals 1, and likewise the

squared sum over columns equals 1.

SV 12.4 4.08 1.3217 0.597 0.281 0.200 0.106 0.081 0.059 0.032 0.006 0.004

rank 1 2 3 4 5 6 7 8 9 10 11 12

Cab 0.09 0.94 0.18 -0.08 -0.25 0.06 0.01 0.00 0.00 0.01 0.00 -0.00

Cdm 0.75 -0.16 0.12 -0.10 -0.16 0.38 -0.44 0.12 -0.07 0.01 -0.02 -0.02

Cw 0.06 -0.03 0.15 -0.02 0.21 0.68 0.65 -0.06 -0.06 -0.18 0.01 -0.00

Cs 0.24 0.16 -0.94 0.05 0.02 0.05 0.13 0.01 -0.04 -0.02 -0.01 0.00

Cca 0.00 0.04 0.05 0.98 -0.13 0.12 -0.06 0.04 0.01 -0.01 -0.00 0.00

LAI -0.48 0.15 -0.13 -0.04 0.39 0.47 -0.56 0.14 -0.16 -0.03 -0.03 -0.03

LIDFa+ LIDFb -0.26 -0.13 -0.11 -0.09 -0.58 0.23 -0.01 0.03 -0.04 0.03 0.70 0.02

LIDFa− LIDFb -0.27 -0.14 -0.09 -0.10 -0.59 0.21 0.02 0.06 0.08 -0.02 -0.70 -0.02

C1 -0.00 -0.02 0.03 0.03 -0.08 -0.09 0.06 -0.22 -0.95 0.15 -0.08 -0.06

C2 -0.00 0.00 0.04 -0.01 0.02 -0.11 0.19 0.95 -0.19 0.06 0.01 0.02

C3 -0.00 -0.00 -0.01 0.00 0.07 0.16 0.08 -0.04 0.15 0.96 -0.03 0.08

C4 -0.00 0.00 0.00 -0.00 -0.00 0.01 -0.03 -0.02 -0.07 -0.07 -0.03 0.99

3.2. Solar induced fluorescence simulations457

With the retrieved parameter values, the diurnal cycles of SIF were simu-458

lated. Table 6 shows the SVD of the normalized Jacobian of SCOPE fluorescence459

spectra JF for alfalfa on DOY=164. Again, Cdm dominates the first SV, but460

all other parameters except for Cw and Cab also contribute to the highest SV.461

The second SV is dominated by Cab, which has a specific effect on the shape of462

the fluorescence spectrum: The higher Cab, the higher the ratio of near infrared463

to red fluorescence; this specific effect causes Cab tdo dominate one specific SV.464

The third SV is dominated by leaf inclination distribution LIDFa, Cdm, Cs465

and Cab. Only the fifth SV is dominated by LAI, but the fourth to the eighth466

SVs are all rather small (< 5% of the first SV). Similar to reflectance, the effects467

of Cdm and LAI have opposite signs in the first two SVs. We discussed earlier468

that these parameters are likely to be simultaneously overestimated or under-469

estimated. The fact that the effects of Cdm and LAI on fluorescence are also470

opposite implies that the effect of a simultaneous overestimate or underestimate471
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Figure 3: Left panels: Measured (blue) and simulated (black) midday apparent reflectance

spectra on seven Julian days for a rice growing season. Right panels: the residual after spectral

fitting (i.e., the difference between measured and simulated apparent reflectance (line)), and

the standard deviation of the measurements (gray shaded area).
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Figure 4: Left panels: Measured (blue) and simulated (black) midday apparent reflectance

spectra on four selected Julian days for alfalfa. The crop was mowed on DOY=180. Right

panels: the residual after spectral fitting (i.e., the difference between measured and simulated

apparent reflectance (line)), and the standard deviation of the measurements (gray shaded

area). 23
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Figure 5: Measured and simulated midday apparent reflectance spectra of a control and a

DCMU treated grass for two days. Right panels: the residual after spectral fitting (i.e., the

difference between measured and simulated apparent reflectance (line)), and the standard

deviation of the measurements (gray shaded area).
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Figure 6: Left singular vectors U of the Jacobian of the reflectance model for alfalfa DOY=164.

The weights S of the vectors and the most contributing parameter are provided in the caption

of each subplot. Refer to Table 2 for the SV and rank of each of the 12 parameters in Table

1.
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Table 3: Parameter values for rice as retrieved from mid-day hyperspectral reflectance mea-

surements for seven days in the growing season of rice with the RTMo model of SCOPE.

DOY 186 193 199 208 222 239 248

Cab (µg cm−2) 55 60 61 60 57 12 13

Cdm (mg cm−2) 5.0 4.7 4.2 3.3 2.9 2.0 0.0

Cs (a.u.) 0.07 0.07 0.04 0.06 0.15 0.26 0.39

Cw (mg cm−2) 21 21 21 20 19 24 16

Cca (µg cm−2) 9.5 9.7 9.4 9.5 9.5 5.2 7.3

LAI (m2m−2) 2.8 3.3 3.5 3.6 2.9 3.8 1.6

LIDFa -0.79 -0.82 -0.64 -0.65 -0.60 -0.41 0.22

LIDFb -0.15 -0.15 -0.15 -0.15 -0.15 -0.11 -0.12

RMSE of refl 0.0036 0.0032 0.0040 0.0042 0.0049 0.0106 0.0092

of retrieved Cdm and LAI cancels out in the simulation of fluorescence. Thus472

one can to some degree predict fluorescence from reflectance correctly for the473

wrong reasons (i.e., parameters), as long as the measured reflectance spectrum474

is reproduced.475

The diurnal cycles of SIF at 760 nm (F760), normalized by the incident photo-476

synthetically active radiation (PAR) in energy units (Wm−2) are shown in Figs477

7 and 8. The resulting normalized SIF can be considered as an efficiency, but it478

only represents the emission at one wavelength (760 nm), and only in one solid479

angle, therefore it is expressed in µm−1 sr−1. The normalization by irradiance480

i.e., the computation of apparent fluorescence yield is necessary because other-481

wise variations in SIF are dominated by the diurnal cycles of irradiance, and this482

makes it more difficult to visualize and comprehend the effects of pigments, leaf483

area and leaf inclination, and physiology. Figs. 7 and 8 show how these simula-484

tions compare to observations (irradiance is shown separately). We plotted the485

half-hourly observations along with the reference simulations (dashed lines) and486

the dynamic simulations (solid lines). Shown as grayscale around the reference487

simulation is the uncertainty of the reflectance measurements propagated into488

F760 (F760 + /− σF760) as calculated with Eq. (11).489
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Table 4: Parameter values as retrieved from mid-day hyperspectral reflectance measurements

for four days in the growing season of alfalfa with the RTMo model of SCOPE.

DOY 164 193 197 200

Cab (µg cm−2) 42 33 40 41

Cdm (mg cm−2) 2.8 0.0 3.4 3.4

Cs (a.u.) 0.00 0.18 0.05 0.04

Cw (mg cm−2) 23 15 21 20

Cca (µg cm−2) 8.0 6.7 7.2 7.7

LAI (m2m−2) 4.2 1.4 3.0 3.3

LIDFa -0.04 0.45 0.01 -0.02

LIDFb -0.15 -0.13 -0.13 -0.13

RMSE of refl 0.0055 0.0085 0.0060 0.0056

There are differences between clear-sky days in measured normalized F760 for490

both rice and alfalfa. These differences are reproduced by both the reference and491

the dynamic simulation (in all subplots in Figs 7 and 8, representing the days,492

the simulations are close to the measurements). The fact that the reference493

simulation (with a constant fluorescence emission efficiency) also reproduces494

the differences between days, implies that we can explain a large part of the495

seasonal cycle of normalized F760 from the parameters that were retrieved from496

R on clear sky days. In other words, the information contained in F760 overlaps497

with the information contained in the reflectance of these healthy, well developed498

crops. To illustrate this more clearly, we have also plotted the daily averages499

of normalized F760 versus Julian day for the rice crop in Fig. 9. The seasonal500

pattern of simulated fluorescence is similar to the measured pattern. Most of the501

measurements fall between the reference simulation and the dynamic simulation.502

There is no clear diurnal signal in the measured normalized F760 (Figs. 7503

and 8). The measured normalized F760 of rice tends to decline towards the504

afternoon for most days, whereas the measured normalized F760 in alfalfa tends505

to increase towards the afternoon. These variations are nevertheless small, in-506

dicating that F760 is almost proportional to irradiance during each day. The507
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Table 5: Parameter values as retrieved from mid-day hyperspectral reflectance measurements

for two days of control and DCMU treated grass with the RTMo model of SCOPE.

DOY 249 control 249 treated 253 control 253 treated

Cab (µg cm−2) 33 27 35 30

Cdm (mg cm−2) 2.5 2.8 2.2 2.1

Cs (a.u.) 0.20 0.21 0.19 0.15

Cw (mg cm−2) 13.6 14.4 13.1 10.3

Cca (µg cm−2) 7.4 5.8 8.4 7.8

LAI (m2m−2) 4.1 4.1 4.1 4.3

LIDFa -0.03 0.06 -0.16 -0.02

LIDFb -0.13 -0.13 -0.13 -0.13

RMSE of refl 0.0050 0.0067 0.0041 0.0047

reference simulation also has a weak diurnal cycle, caused by the diurnal cycle508

of the solar zenith angle. The solar zenith angle affects the distribution of light509

over leaves: a more horizontal solar beam penetrates less deeply into the canopy510

than a more vertical solar beam, and this in turn affects the emission of fluores-511

cence. As expected, the dynamic simulation which also accounts for the effects512

of weather conditions on PQ and NPQ, produced lower normalized F760, and513

a slightly different diurnal cycle. The difference between the two simulations is514

small compared to the actual values of normalized F760. Although the dynamic515

simulation is somewhat closer to the measurements than the reference scenario,516

it does not necessarily reproduce the diurnal variations better than the refer-517

ence simulation. In the rice crop, the measurements are closer to the reference518

scenario in the morning hours, and drop to the physiologically regulated level519

in the afternoon, while the opposite is the case for alfalfa. The diurnal cycle520

potentially contains some information about the physiological regulation of the521

signal, but the scatter in the data is too large to draw firm conclusions.522

Because we did not have experimental data of a naturally stressed crop, we523

induced the effects of changing PQ by chemically reducing and blocking the524

electron transport by means of the herbicide DCMU to provoke a functional525
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Table 6: Singular values (SV) and right singular vectors (V ) of the Jacobian of fluores-

cence spectra simulated with SCOPE after fitting to the measured reflectance of alfalfa on

DOY=164. The highest contribution(s) in each column is indicated by bold font.

SV 12.1 6.0 1.46 0.61 0.21 0.095 0.014 0.006

rank 1 2 3 4 5 6 7 8

Cab -0.01 0.87 0.39 0.27 0.04 0.10 0.01 0.01

Cdm -0.57 -0.22 0.37 0.05 0.70 0.03 0.02 -0.01

Cw -0.03 -0.02 0.00 0.03 -0.01 0.19 -0.97 0.12

Cs -0.45 -0.06 0.40 -0.45 -0.58 0.31 0.07 0.02

Cca -0.45 0.15 -0.12 0.02 -0.22 -0.83 -0.13 0.10

LAI 0.29 0.23 0.10 -0.83 0.33 -0.23 -0.09 -0.01

LIDFa+ LIDFb 0.26 -0.22 0.51 0.14 -0.13 -0.28 -0.14 -0.70

LIDFa− LIFDb 0.34 -0.26 0.52 0.13 -0.06 -0.21 0.05 0.70

change. Blocking the photochemical dissipation pathway would cause a lower526

total (PQ+NPQ) quenching rate of the excitation, resulting in a higher F760527

than in untreated vegetation. Indeed we observed that measured F760 of the528

control plot followed the dynamic simulation on 5 September, while F760 of529

the treated lawn quickly rose to values above controls but below those of the530

dynamic simulation after reducing PQ in the morning by a small dose of DCMU.531

The fluorescence remained above controls but below the dynamic simulation532

throughout the day (Fig. 10). Because of the lower dose of DCMU, electron533

transport at PSII might not have been completely blocked, and some NPQ still534

may have been in operation, which could have accounted for the F760 value of the535

treated grass being substantially lower than its simulated theoretical maximum.536

On 9 September, the electron transport was fully blocked by applying a tenfold537

higher concentration of DCMU. In that case F760 of the treated lawn approached538

the simulation of the theoretical maximum for PQ=0 and NPQ=0, while F760539

of the control lawn was still close to the dynamic simulation.540
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Figure 7: Measured PAR irradiance (top) and diurnal cycles of simulated (lines) and measured

(symbols) F760 normalized by incident PAR for selected dates in the rice’s growing season

of rice (bottom). The black solid line represents a model simulation with maximum ChlF

emission efficiency and the shaded area two times the standard deviation calculated with

Eq. (11), whereas the bluered solid line represents a simulation in which fluorescence emission

efficiency was calculated from weather conditions and parameters carboxylation capacity Vcmo

and Ball-Berry stomatal parameter m.

4. Discussion541

In this study, we have presented a methodology to retrieve parameters from542

field hyperspectral R, and to further use these parameters to simulate energy543

fluxes, reflectance, photosynthesis and SIF. The simulated normalized F760 re-544

produced most of the temporal variability retrieved from high resolution spectra545

collected in the field. The diurnal variability of normalized F760 was low in both546

rice and alfalfa. This is empirical evidence for the finding of Verrelst et al. (2015)547

that parameters of physiological regulation (Vcmo and m) and weather variables548

have a relatively small effect on normalized F760. Verrelst et al. (2015) also549

found that the effect of the parameters Cab and Cs declined with fluorescence550

wavelength. We found that these two parameters still have a considerable ef-551

fect on the fluorescence variability at 760 nm, besides Cdm, LAI and the leaf552

inclination distribution. Several other factors contributed to the limited signal553

in the diurnal cycle of normalized F760. First, accurate early morning and late554
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Figure 8: Measured PAR irradiance (top) and diurnal cycles of simulated (lines) and measured

(symbols) F760 normalized by incident PAR for selected dates in the growing season of alfalfa

(bottom). The black solid line represents a model simulation with maximum fluorescence

emission efficiency, whereas the red line represents a simulation in which fluorescence emission

efficiency was calculated from weather conditions and parameters Vcmo and m. Note that the

crop was mowed on DOY=180. Around the black line, a shaded area is plotted indicating two

times the standard deviation calculated with Eq. (11), but this is barely visible because the

standard deviation was small.
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Figure 9: Diurnal cycles of simulated (lines) and measured (symbols) daily average F760

normalized by daily average PAR for selected dates in the growing season of rice. The black

solid line represents a model simulation with maximum fluorescence emission efficiency and

the shaded area two times the standard deviation calculated with Eq. (11), whereas the

bluered line represents a simulation in which fluorescence emission efficiency was calculated

from weather conditions and parameters Vcmo and m, but for daily averages of the normalized

F760. The RMSE and R2 are presented for the dynamic simulation and the measurements.
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Figure 10: Left: Measured (symbols) and modelled (lines) diurnal cycles of irradiance nor-

malized F760 of two grass plots: a control (open symbols/ fine line), and a treated plot in

which PQ was (partially) blocked (filled symbols/ bold line). The fine (red) line denotes the

dynamic simulation and the bold line the simulation with maximum DCMU effect. On 5

September (top), PQ was only partially blocked after application of DCMU in solution with

a concentration of 10−5M in 1% ethanol/water, whereas on 9 September (bottom), PQ was

fully blocked after application of DCMU in solution with a concentration of 10−4M in 1%

ethanol/water. The simulation of the treated plot assumed the maximum possible effect of

DCMU. Right: the same data plotted as modelled versus measured F760. Here F760 was not

normalized to enhance legibility and better separate the points in the graph. The solid line is

the 1:1 line.
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afternoon measurements were not available. Measurements around midday are555

reliable, but as the solar zenith angle increases, it becomes increasingly difficult556

to retrieve F760 with high confidence. The retrieval relies on accurate measure-557

ments of the incident light as well as representative measurements of the canopy.558

Both are problematic in the first hours after sunrise and the hours before sunset.559

For this reason the seasonal cycle analysis was limited to approximately 10AM560

to 4PM, which limits the time span of the diurnal cycle. Second, the rice and561

alfalfa crops studied here were agricultural crops, supplied with sufficient water562

and nutrients throughout the season. In the absence of any stress, it is likely563

that the fluorescence emission efficiency was not highly variable. Lower fluo-564

rescence efficiency and higher NPQ during heat or drought (Ač et al., 2015) or565

light saturation (Van der Tol et al., 2014) and higher fluorescence during chilling566

especially of non-cold-hardy plants (Ač et al., 2015; Lindfors et al., 2015) can567

be expected. For example, Zarco-Tejada et al. (2013) found not only significant568

correlations between gross primary productivity (GPP) and spectral indices for569

chlorophyll content, but also between GPP and chlorophyll fluorescence and570

photochemical reflectance index over a seasonal cycle in an olive orchard. At571

the same time, vegetation indices for vegetation structure did not correlate with572

GPP. In that case, physiological changes affecting the fluorescence emission effi-573

ciency could have been responsible for the observed correlation, but in our study,574

stress conditions did not occur in the rice and alfalfa crop. The experiment in575

which the electron transport of PSII was inhibited in grass clearly demonstrated576

that F760 can be used to reveal variations in PQ. Combining the reference sce-577

nario with the scenario of complete blocking of electron transport enabled us to578

estimate the maximum effect of this type of artificially induced environmental579

stress, and the dynamic changes in F760 were in agreement with our expectation580

and with modelling results.581

Two model limitations need to be considered. We have already indicated582

that the absolute levels of simulated F760 were not certain. In addition, the583

model of Van der Tol et al. (2014) that was used to simulate leaf-level variations584

in PQ and NPQ is parameterized using empirical data, and may not apply to all585
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conditions in the field. Even in Van der Tol et al. (2014) two empirical fits were586

presented: one for several species in outdoor conditions under natural drought,587

and one for cotton in laboratory conditions. The difference in diurnal shape588

between the alfalfa and rice crops could be due to a different response of NPQ589

to irradiance. Diurnal cycle measurements in combination with modelling as590

described in this paper, could be used to further study the effects of NPQ of591

F760 in different crops if sufficient data are available.592

Our finding of a limited effect of physiological regulation on F760 seems593

to contradict a recent study, in which SCOPE has been used to retrieve the594

photosynthetic capacity parameter Vcmo from changes in emission efficiency as595

observed by the GOME-2 satellite product of SIF for coarse spatial scales (e.g.,596

0.5◦) in regions that include over large agricultural fields in the USA (Zhang597

et al., 2014). A comparison between the studies is, however, hardly possible.598

Although The SCOPE model was used in both instances, but the two studies599

are very different in temporal and spatial scale. Here, we have focussed on600

a small number of diurnal cycles, but Zhang et al. (2014) used satellite data601

acquired in the early morning ( 9:30am) as compared with our midday field602

measurements, and those data were aggregated over space and time over the603

entire growing season. Our local-scale ground-based results suggest that the604

effect of leaf pigments, leaf area and leaf inclination is much stronger than the605

effect of the emission efficiency on fluorescence. It is possible that during entire606

growing seasons including drought and senescence, the effects of PQ and NPQ607

(and thus Vcmo) become more apparent. An alternative explanation for the608

apparent contradiction between Zhang et al. (2014)’s and the present findings, is609

that we were able to estimate the scattering and (re-)absorption from the whole610

reflectance spectrum as compared to only a few satellite bands. This enabled611

us to better ’correct’ for the effects of leaf pigments and canopy structure on612

the absorbed photosynthetically active radiation (aPAR), and thus the light613

use efficiency. Without the quantification, variations SIF caused by pigment614

content and vegetation structure may be attributed to effects of PQ and NPQ,615

and thus to Vcmo. It is still an open question which spectral information is616
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essential, and whether a method can be developed to obtain PQ and NPQ from617

satellite products from SIF in a more simple way than that presented here.618

Furthermore, the retrieved Vcmo values may still ’contain’ other effects. Vcmo619

is then not a strict leaf-level parameter but it compensates for effects of leaf620

pigments, leaf area and inclination that could not be retrieved from the MODIS621

products used by Zhang et al., (2014)622

5. Conclusion623

The SCOPE model was successfully used to reproduce the temporal variability624

of F760 in two unstressed crops. Most of the input parameters of the SCOPE625

model were retrieved from reflectance spectra measured in the field.626

We conclude that For a correct interpretation of variations in solar-induced627

fluorescence in terms of stress effects on PQ and NPQ, it is necessary to consider628

the variations in hyperspectral reflectance data. This study demonstrated that629

the SCOPE model is able to explain field measurements of F760 computed for630

three vegetation types and in different conditions, after parameter retrieval from631

hyperspectral data. Better results can be expected if the direct and diffuse632

irradiance spectra are measured separately in the field.633

A sSensitivity analysis performed on the SCOPE model for these crops634

showed that F760 values were mostly determined by Cdm, LAI, LIDFa, LIDFb,635

Cs and Cab, which represent the canopy dry matter content, leaf area in-636

dex, leaf inclination angles, brown pigment content and chlorophyll content.637

This confirms the findings of Verrelst et al., (2015), who analysed the global638

sensitivity (i.e., the whole parameter space) of the model. The sensitivity639

analysis also showed that The retrieval of parameter values from reflectance640

was ill-posed for Cdm and LAI. Both a high LAI and a low Cdm cause high641

scattering, and the cause of this scattering (LAI or Cdm) cannot be identified642

from the reflectance spectrum. The scattering appears to have with a similar643

effect on F760 and R.644

In the crops, the diurnal variability of F760 normalized by the incident irra-645
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diance was low, probably because the physiological regulation of F760 emission646

(through regulation of PQ and NPQ) during the day is low in healthy and un-647

stressed canopy. Simulations of F760 for a grass lawn with the electron transport648

of PSII blocked by a chemical agent showed that In severely stressed conditions,649

the effect of PQ and NPQ on fluorescence can nevertheless be estimated after650

retrieval of Cdm, LAI, LIDFa, LIDFb, Cs and Cab. This shows the impor-651

tance of pairing F760 retrievals from specialized atmospheric chemistry satellites652

(e.g., OCO-2) with VNIR spectrometer observations to acquire the necessary653

canopy parameters that enable the interpretation of the SIF signal. Further654

studies are necessary to validate models for the response of PQ and NPQ to655

environmental conditions in naturally stressed vegetation. This can be achieved656

with concurrent R and SIF measurements in vegetation exposed to a variety657

of stresses.658

This The proposed methodology is useful for future research. The study659

also may help in defining a strategy using future FLEX data. In this con-660

text, measurements of reflectance from the FLuORescence Imaging Spectrom-661

eter (FLORIS) can be used in a inversion process to estimate biochemical and662

biophysical parameters directly from FLEX, that can then be successfully used663

to properly interpret the SIF signal.664
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