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Abstract

The present work proposes a computational model of morpheme combi-
nation at the meaning level. The model moves from the tenets of distri-
butional semantics, and assumes that word meanings can be effectively
represented by vectors recording their co-occurrence with other words
in a large text corpus. Given this assumption, affixes are modeled as
functions (matrices) mapping stems onto derived forms. Derived-form
meanings can thus be thought of as the result of a combinatorial proce-
dure which transforms the stem vector on the basis of the affix matrix
(e.g., the meaning of nameless is obtained by multiplying the vector
of name with the matrix of -less). We show that this architecture ac-
counts for the remarkable human capacity of generating new words that
denote novel meanings, correctly predicting semantic intuitions about
novel derived forms. Moreover, the proposed compositional approach,
once paired with a whole-word route, provides a new interpretative
framework for semantic transparency, that is here partially explained
in terms of ease of the combinatorial procedure and strength of the
transformation brought about by the affix. Model-based predictions
are in line with the modulation of semantic transparency on explicit
intuitions about existing words, response times in lexical decision, and
morphological priming. In conclusion, we introduce a computational
model to account for morpheme combination at the meaning level. The
model is data-driven, theoretically sound, and empirically supported,
and it makes predictions that open new research avenues in the domain
of semantic processing.

Keywords: distributional semantic models, compositionality, word for-
mation, derivational morphology, semantic transparency, novel words
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Large-scale statistical models induced from text corpora play an increasingly
central role in computational simulations of various aspects of human language pro-
cessing and acquisition (see, e.g., Dubey, Keller, & Sturt, 2013; Brent & Cartwright,
1996; Hay & Baayen, 2005, for just a few examples). Within this general trend, the
last few decades witnessed widespread interest in using methods from distributional
semantics to obtain quantitative estimates of important but hard-to-operationalize
semantic variables such as the degree of conceptual or topical similarity between two
words. These methods (whose most famous implementations might be Latent Seman-
tic Analysis, HAL and Topic Models) approximate lexical meanings with vectors that
summarize the contexts in which words appear, under the hypothesis that similar
words will occur in similar contexts.

However, words are not the smallest meaning-bearing units in a language. Most
words are composed by smaller elements consistently associated to specific semantic
aspects: nullify contains null and -ify, and means to make something null; driver
contains drive and -er, and means someone who drives. These elements, called mor-
phemes (Bloomfield, 1933), are at the base of the lexical productivity of human lan-
guages, that is, their capacity to generate endless novel words that are immediately
understandable by native speakers. The examples above fall, in particular, within the
domain of derivational morphology, where a free-standing morpheme, or word (the
stem, e.g., null), is combined with a bound element (the affix, e.g., -ify) to generate
the derived form, that is perceived as a separate lexical item. Inflectional morphology
generates instead inflected variants of the same item, as in sing/sings.

Distributional semantics has already been used in studies of morphological pro-
cessing, where distributional similarity between a derived form (e.g., nullify) and its
stem (e.g., null) can be employed to estimate the degree of semantic transparency of
the complex form, under the assumption that opaque forms should be semantically
far apart from their constituents. While this is a promising approach to quantify the
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degree of semantic relatedness between the starting and end points of a morphological
process, the field is still missing an empirical method to characterize the semantic side
of the process itself. Thanks to distributional semantics, we have an objective way
to measure that, say, redo is highly related to its stem do whereas recycle is not so
similar to cycle, but we are still missing a model that, given an appropriate meaning
representation for an affix, say re-, and a stem, say do or cycle, generates a meaning
representation for the corresponding derived forms (redo and recycle).1

This is a big gap. Without an explicit account of how morphological composi-
tion works on the semantic side, our models of morphological processing are ignoring,
paradoxically, one of the core reasons why morphological processes exist, that is, to
express new meanings by combining existing morphemes. More concretely, funda-
mental debates in the literature (e.g., Di Sciullo & Williams, 1987; Sandra, 1994),
for example on the extent to which complex words must be listed in the lexicon as
“semantically unpredictable”, are bound to remain purely theoretical in lack of an
objective model of how semantically predictable meanings of complex words should
look like.

In this article, we purport to fill the gap. We exploit recent advances in dis-
tributional semantics to develop a fully automated and data-induced morphological
composition component that, given distributional representations of stems and affixes,
produces a distributional representation for the corresponding derived form.

The proposed model can generate distributional representations for the mean-
ings of novel derived words, hence tapping into one of the core functions of derivational
morphology, that is, lexical productivity. Therefore, in the first set of experiments we
focus on the predictions that our model makes about novel forms. We show that cer-
tain quantitative properties of compositionally-obtained semantic representations of
nonce forms obtained with our models are significant predictors of subject intuitions
about their semantic meaningfulness (harassable and windowist are equally unattested
in a very large corpus, but participants found the first highly acceptable, the second
meaningless). We show moreover that words that our model automatically picks as
highly related to composed nonce forms (“nearest neighbours”) are indeed closer in
meaning to the nonce forms than to other terms, including their stems, according to
subject judgments.

Next, we apply our compositional model to existing derived forms in three
experimental case studies. We use the compositional model to account for behavioral
patterns influenced by the degree of semantic transparency between a derived form
and its stem. More specifically, we let our model predict explicit semantic relatedness

1Of course, it is fairly standard in the theoretical morphological literature to use place-holders
or even carefully crafted feature structures to represent the meaning of stems and affixes (e.g.,
Lieber, 2004). For example, the meaning of re- might be equated to a [+iterate] feature. However,
these featural representations are not detailed and flexible enough to make quantitative predictions
about the morphological phenomena studied in the experimental literature. Moreover, hand-crafting
feature structures is only feasible for closed-class affixes, as there are relatively few of them and their
meanings are very general, and leaves stem representations largely unspecified.
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intuitions, modulate stem frequency effects in a lexical decision task, and account for
morphological priming results. These successful experiments demonstrate that, when
equipped with an appropriate semantic combination module, an approach in which
complex words are derived compositionally can predict effects associated to different
degrees of semantic transparency that are interestingly complementary to those that
are best captured by relying on full-form representations for the meanings of opaque
words. Overall, a more nuanced picture of semantic transparency effects emerges
from our experimental results.

Taken together, the evidence presented in this paper indicates that our com-
positional distributional semantics framework provides an effective meaning layer for
simulations of morphological processing. The richer, more flexible meaning compo-
sition rules that our system learns from data capture a wider range of composition
patterns than just fully transparent ones, and have important theoretical implications
for the development of models of word meanings. The model can be profitably used
to obtain data-driven, quantitatively-defined semantic representations for complex
forms, irrespective of them being well-known or never heard before.

Semantic aspects of morphological processing

The psycholinguistic literature has long investigated the role of morphology in
word recognition (Taft & Forster, 1975). This line of research suggests that mor-
phological information influences the way a word is processed beyond pure semantic
and form similarity. Priming experiments (Feldman, 2000; Rastle, Davis, Marslen-
Wilson, & Tyler, 2000) showed that presenting a morphological related prime before
the target (e.g., cattish-cat) leads to larger facilitations in response times compared
to using semantically (dog-cat) or form-related primes (cattle-cat).

Although these results indicate that morphology cannot be reduced to a by-
product of semantic similarity, the semantic component appears to be important in
many morphological effects. Indeed, the degree of semantic transparency of words
modulates the mentioned priming effect (W. Marslen-Wilson, Tyler, Waksler, &
Older, 1994; Feldman & Soltano, 1999; Rastle et al., 2000): if the meaning of a com-
plex word is associated to the meaning of its constituents (dealer-deal), the priming ef-
fect will be larger than that observed for opaque pairs (courteous-court). This modula-
tion on morphological priming, although it might differ in magnitude, can be observed
across several languages and experimental manipulations (e.g., Diependaele, Sandra,
& Grainger, 2005; Rueckl & Aicher, 2008; Feldman, O’Connor, & Moscoso del Prado
Martín, 2009; Diependaele, Sandra, & Grainger, 2009; Kazanina, 2011; Järvikivi &
Pyykkönen, 2011; Feldman, Kostić, Gvozdenović, O’Connor, & Prado Martín, 2012;
Marelli, Amenta, Morone, & Crepaldi, 2013, but see Frost, Forster, & Deutsch, 1997).
Later in the paper, we will come back to the semantic transparency issue and discuss
it in detail, since it will play a central role in the empirical assessment of our model.
For the present discussion, it is sufficient to conclude from the relevant experimen-
tal evidence that the processing of a complex word is influenced by the semantic
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properties of the elements it is made of.
This notion is also supported by the literature on family size effects. The family

size of a complex word is computed as the count of the distinct words that contain the
same stem. The variable has a facilitatory effect on word recognition for both com-
plex (Bertram, Baayen, & Schreuder, 2000) and simple (Schreuder & Baayen, 1997)
word processing. Crucially, the nature of the family size effect is essentially semantic.
First, it emerges only late (i.e., at central processing levels) in a progressive demask-
ing condition (Schreuder & Baayen, 1997). Second, it works better as a predictor
for response latencies if opaque forms (e.g., cryptic when considering the family size
of crypt) are excluded from counting (Bertram et al., 2000; Prado Martín, Bertram,
Häikiö, Schreuder, & Baayen, 2004). Third, the effect can be dissociated from the
influence of family frequency (e.g., the cumulative corpus counts of morphological rel-
atives), which is believed to be associated to visual familiarity (De Jong, Schreuder, &
Baayen, 2000). Fourth, irregular relatives crucially contribute to the effect in virtue of
their semantic connection and despite their orthographic dissimilarity with the word
(De Jong et al., 2000). Fifth, the effect of family size interacts with other semantic
dimensions (e.g., concreteness) of the target word (Feldman, Basnight-Brown, & Pas-
tizzo, 2006). Sixth, family size is predictive of monolinguals’ lexical decision latencies
across unrelated languages (Moscoso Del Prado Martín et al., 2005). Taken together,
these results indicate that the morphological relations entertained by a word play
a role when that word is read, and this happens on the basis of meaning-mediated
associations. Data from Finnish (Laine, 1999; Lehtonen, Harrer, Wande, & Laine,
2014) further suggest that stems and affixes may be differentially represented at the
semantic level: in a semantic decision task on inflected words, violations affecting the
affix were more difficult to reject than violations affecting the stem, indicating that
suffix-related information is secondary to stem meaning.

Additional supporting evidence for the importance of semantics in morphology
comes from studies of compound processing. Recent work has shown that the semantic
properties of the individual constituents (year and book) influence the recognition of
the whole compound (yearbook), either because of activation/interference from their
core meanings (Ji, Gagné, & Spalding, 2011; Marelli & Luzzatti, 2012) or for an effect
associated with their emotional valence (Kuperman, 2013).

In conclusion, there is plenty of evidence that morpheme semantics plays a role
in the processing of complex words: morphological effects are not simply dependent
on superficial, formal similarities between morphologically related words, but also
involve access to morpheme meanings. Even more importantly, the ecological purpose
of word processing is comprehension: a crucial question that any complete model of
morphological processing should address is thus how we understand the meaning of
a morphologically complex word, and as a consequence how morpheme meanings are
represented in the semantic system.

These empirical and theoretical considerations notwithstanding, morphological
processing models often lack a detailed description of how morphemes are repre-
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sented at the semantic level, mostly focusing on early, orthographic-lexical levels of
word recognition. In some cases (e.g., Crepaldi, Rastle, Coltheart, & Nickels, 2010)
the architecture of the semantic system is left purposely underspecified. A similar
approach is adopted by Taft (2004): the meaning level is generically described as con-
taining “semantic information”, that is in turn activated by lemma representations
assumed to be holistic for opaque words (cryptic) and morpheme-based for trans-
parent words (re-do). Interestingly, an explicit (as well as essential for model build-
ing) assumption about semantic representations was made within the connectionist
framework. This class of models explains word recognition by using distributed hid-
den layers interfacing orthographic and semantic information (Plaut & Gonnerman,
2000). In these architectures, the semantic level is populated by subsymbolic nodes
representing semantic features; word meanings are then represented as activation dis-
tributions across these nodes. Indeed, since such models do not conceive a lexical
system specifying representations for morphological units, they explain morphologi-
cal effects as a by-product of the large overlap, in terms of both form and meaning,
between a derived form and its stem: morphology is seemingly important because
read and reader have similar distributed representations, but read is not actively
used to construct the meaning of reader online. In opposition to this, some models
of word processing (Caramazza, Laudanna, & Romani, 1988; Baayen & Schreuder,
1996; Baayen, Milin, Durdević, Hendrix, & Marelli, 2011) postulate stored morpheme
representations in the semantic system. These models assume that stems and affixes
are eventually combined to obtain the whole-word meaning, but how this procedure
unfolds is left unspecified, at least from a computational point of view. Meaning
composition has been instead central to the study of novel compounds, that is, re-
search on conceptual combination between content words (e.g., Gagné & Spalding,
2009; Costello & Keane, 2000). Although these models might provide some insight as
to how also affixes are processed, combining two content words (e.g., stone+squirrel)
and combining a root and an affix (e.g., stone+ful) are relatively different operations,
each of them subtending its own procedures and posing its own problems.

In conclusion, although different assumptions have been made time after time,
the psycholinguistic literature is generally lacking detailed descriptions of how affixed
words are represented and processed at the meaning level. This gap is puzzling,
all the more so when considering that the time course of the semantic influence on
morpheme processing is one of the central issues of current psycholinguistic research
on lexical morphology (e.g., Rastle & Davis, 2008; Feldman et al., 2009).

Distributional semantic models

Distributional semantic models (DSMs) automatically extract word meaning
representations from large collections of text, or corpora. Recent surveys of these
models include Clark (2015), Erk (2012), Lenci (2008) and Turney and Pantel (2010).

DSMs rely on the idea, known as the distributional hypothesis (Firth, 1957; Har-
ris, 1954; Miller & Charles, 1991), that if two words are similar in meaning they will
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Figure 1 . In this toy DSM example, the target words automobile, car and horse are represented by
the vectors on the left, recording the number of times they co-occur with the context terms runs
and wheels in a hypothetical corpus. The vectors are represented geometrically on the right, where
we see that those for automobile and car, that share similar contextual patterns, form a narrower
angle (in real DSMs, the vectors would have hundreds or thousands of dimensions).

have similar distributions in texts, that is, they will tend to occur in similar linguistic
contexts. But then, by inverting the postulated dependency between meaning and
context, we can use context similarity to infer meaning similarity. In concrete, most
DSMs represent the meaning of a word with a vector that keeps track of how many
times the word has occurred in various contexts in a corpus (where contexts are, for
example, documents or other words co-occurring with the target in a short passage).
Thanks to this representation of word meaning, DSMs can quantify semantic relat-
edness with geometric methods, in particular by measuring the width of the angle
formed by the vectors associated to the words of interest. A toy example illustrating
the idea is sketched in Figure 1.

DSMs differ widely in terms of what counts as context, how raw co-occurrence
counts are weighted and whether dimensionality reduction techniques are applied.
Indeed, some famous DSMs in cognitive science are derived by fixing some parameters
in the construction of semantic spaces. For example, LSA (Landauer & Dumais,
1997) is a semantic space based on a word-document co-occurrence matrix, to which
Singular Value Decomposition is applied for dimensionality reduction; on the other
hand, HAL (Lund & Burgess, 1996) is built from word-to-word co-occurrences, whose
collection can be delimited by different window sizes. More recently, Neural Language
Models (Collobert et al., 2011; Mikolov, Chen, Corrado, & Dean, 2013) induce vectors
trained to predict contextual patterns, rather than directly encoding them.

DSMs have several desirable properties as computational models of meaning for
cognitive simulations. First, they induce meaning from large amounts of naturally
occurring linguistic data (the source corpora), not unlike what children and teenagers
must do in order to acquire the huge vocabularies that adults command (of course,
while the input might be similar, nobody claims that the mechanics of DSM induc-
tion are plausible acquisition models; Landauer & Dumais, 1997). Second, DSMs
can easily induce and encode meaning representations for thousands or even millions



MODELING MORPHEME MEANINGS WITH DISTRIBUTIONAL SEMANTICS 8

of words, making them very practical in the design of experiments and simulations.
Third, DSMs naturally provide a graded notion of meaning (via the continuous sim-
ilarity scores they produce), in accordance with mainstream “prototype” views of
lexical and conceptual meaning (Murphy, 2002).

Indeed, DSMs have been found to be extremely effective in simulating an in-
creasingly sophisticated array of psycholinguistic and lexical-semantic tasks, such as
predicting similarity judgments and semantic priming, categorizing basic-level nom-
inal concepts or modeling the selectional preferences of verbs (e.g., Baroni, Barbu,
Murphy, & Poesio, 2010; Landauer & Dumais, 1997; Lund & Burgess, 1996; McDon-
ald & Brew, 2004; Padó & Lapata, 2007; Erk, Padó, & Padó, 2010). As this aspect
will be relevant to our nonce form acceptability experiments below, we remark that,
although DSMs are mostly used to measure vector similarity as a proxy to semantic
relatedness, intrinsic properties of distributional vectors, e.g., their length and en-
tropy, have also recently been shown to be of linguistic interest (Kochmar & Briscoe,
2013; Lazaridou, Vecchi, & Baroni, 2013; Vecchi, Baroni, & Zamparelli, 2011).

Not surprisingly, morphological processing scholars have seized the opportunity
offered by distributional methods, and it has become almost standard to use DSMs
to quantify the degree of semantic transparency of derived or compound words in
terms of geometric distance of the morphologically complex form from its stem (in
derivation) or its constituents (in compounding). For example, Rastle et al. (2000)
used LSA to quantify the degree of semantic relatedness between morphologically
related primes and targets in a study of visual word recognition (e.g., depart and de-
parture are semantically close, apart and apartment are far). Other studies using LSA
in similar ways include Rastle, Davis, and New (2004); Moscoso Del Prado Martín
et al. (2005); Milin, Kuperman, Kostić, and Baayen (2009); Feldman et al. (2009);
Gagné and Spalding (2009); Diependaele, Duñabeitia, Morris, and Keuleers (2011).
Heylen and De Hertog (2012) used DSMs together with other distributional cues to
predict the degree of semantic transparency of Dutch compounds. Working with En-
glish and Chinese, Wang, Hsu, Tien, and Pomplun (2013) found good correlations
between constituent-to-compound similarities as measured by LSA and human trans-
parency judgments. As a final example, Kuperman (2009) found that operationalizing
constituent-to-compound semantic similarity in terms of LSA scores led to reliable
transparency effects in lexical decision and eye-movement latencies.

While the studies we just reviewed provide evidence for the usefulness of DSMs
in morphology, a crucial ingredient is missing. Standard DSMs provide representa-
tions for the words that constitute the input and output of a morphological process
(consider and reconsider, contain and containment, etc.), but they have nothing to
say about the process itself, and the meaning of the morphemes that trigger it (how
does re- contribute to the meaning of reconsider). Without a way to model meaning
composition in word formation, traditional DSMs are rather poor semantic surrogates
for the study of morphology.

A related issue arises when trying to scale DSMs to handle meaning above the
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word level. DSM proponents have indeed been interested, from the very start, in ways
to derive the meaning of phrases, sentences and whole passages from the combination
of the distributional representations of their constituent words (Landauer & Dumais,
1997). However, despite the similar compositional challenge, most of the approaches
suggested for constituents above the word do not adapt seamlessly to derivational
morphology, since they rely on the assumption that the input to composition is a set
of word-representing vectors (Guevara, 2010; Mitchell & Lapata, 2010; Socher, Huval,
Manning, & Ng, 2012; Zanzotto, Korkontzelos, Falucchi, & Manandhar, 2010). For
example, a simple and surprisingly effective approach constructs the vector represent-
ing the meaning of a phrase by summing the vectors of its constituent words. The
problem with extending this method to morphological derivation should be clear. If
we want to derive a representation for reconsider, we can use the corpus-harvested
vector for consider, but how do we get a vector for re-, given that the latter never
occurs as an independent word? There are of course ad-hoc ways around this prob-
lem. For example, in Lazaridou, Marelli, Zamparelli, and Baroni (2013), we created
a vector for re- by simply accumulating co-occurrence information from all words
prefixed with re- in the corpus.2 However, such artificial solutions are not required
by the theoretically grounded functional model we are about to introduce.

The functional approach to DSM composition was proposed by Baroni and
Zamparelli (2010) and further developed by Baroni, Bernardi, and Zamparelli (2014)
(Clark, 2013, Coecke, Sadrzadeh, & Clark, 2010, and Grefenstette & Sadrzadeh, 2011,
present a closely related framework).3 The approach follows formal semantics in char-
acterizing composition as function application. For example, an adjective modifying
a noun (red car) is treated as a function that takes the noun vector as input, and re-
turns a modified phrase vector as output. This naturally extends to derivation, where
we can think of, e.g., the prefix re- as a function that takes a verb vector as input
(consider) and returns another verb vector with an adjusted meaning (reconsider)
as output. No independent vector representation of affixes is assumed. This is the
approach we will pursue in this article.

Combinatorial versus full-form meaning

In the next section we will introduce our implementation of a distributional
semantic model equipped with a derivational composition component based on the
functional approach. Of course, a purely combinatorial procedure for morphemes is
not the only possible solution for the role of morphology in the mental lexicon, and
not necessarily the best one. It may be tempting to conceive a semantic system popu-
lated by full-form meanings (i.e., separate representations for run, runner, homerun)

2Luong, Socher, and Manning (2013), more elegantly, learn vector representations of morphemes
within a recursive neural network architecture trained to predict word n-gram contexts.

3Interestingly, a first sketch of the functional approach was developed by Guevara (2009) in the
context of modeling derivational morphology, although Guevara did not evaluate his method in
quantitative terms.
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and explain alleged morphological effects as by-products of semantic and formal simi-
larity, and/or lexical links between related whole-word representations. This solution
permits dealing with the idiosyncratic semantics characterizing (to different degrees)
nearly all complex words. It can also handle cases where a complex form contains
a reasonably transparent affix meaning but the stem is not a word: grocer4 clearly
displays the agentive sense of -er, but to groce is not a verb, so the noun cannot
be derived compositionally.5 However, holistic meanings by themselves fall short in
explaining the surprising productivity of morphological systems. Native speakers of
a language are able to build new words by means of existing morphemes, and people
in the same linguistic community are immediately able to understand the meanings
of these novel constructs: herringless dish can be clearly assigned the meaning of dish
without herrings, even if the word herringless does not appear in English dictionaries
and it has likely never been heard before by the listener. Any model of the semantic
system should be able to explain these phenomena, but in order to do so the cog-
nitive architecture needs some representation for morpheme meanings, as well as a
combinatorial procedure operating on them.

Assuming a combinatorial process does not exclude the possibility that holistic
meanings may also be stored in the semantic system together with separate mor-
phemic entries, and the phenomena we discussed above indeed suggest that both
full-form representations and a combinatorial route are called for. This makes a
purely full-form meaning approach and a mixed one difficult to disentangle from an
empirical point of view. Still, providing a computationally-defined formalization of
the combinatorial mechanism will permit one to assess to what extent the meaning
of a complex word can be predicted by systematic processes, and conversely help to
determine when a complex word really needs a holistic meaning representation of its
own.

A distributional model for morpheme combination

Distributional semantic space

We mentioned in the introductory section on distributional semantics that
DSMs greatly vary in terms of how co-occurrences are defined and which mathe-
matical transformations are applied to the co-occurrence matrix (Turney & Pantel,
2010). We adopt here a set of parameters that led to top performance in previous
empirical tests (e.g., Boleda, Baroni, McNally, & Pham, 2013; Bullinaria & Levy,
2007, 2012). For model implementation we relied on the freely available DISSECT
toolkit (Dinu, Pham, & Baroni, 2013a).

4We owe the example to David Plaut.
5Although representing the whole-word meaning of grocer is out of its scope, a compositional

approach can still capture the general semantic properties associated to the -er affix appearing in
this form. For more on this, see the general discussion in the novel words section.
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We extracted co-occurrence data from the concatenation of the widely
used ukWaC (http://wacky.sslmit.unibo.it/), English Wikipedia (http://en
.wikipedia.org/), and BNC (http://www.natcorp.ox.ac.uk/) corpora (about 2.8
billion tokens in total). The words in these corpora have been automatically mapped
to dictionary forms and annotated with their parts of speech. As a consequence,
in the resulting DSM, (a) separate vector representations are stored for homographs
with different grammatical class (e.g., a vector for the noun run and a vector for
the verb run), and (b) different inflectional forms are represented by the same vector
(e.g., the occurrences of speak, speaks, spoke are all used to construct a single speak
vector). In model building, we considered the top 20,000 most frequent content words
(adjectives, adverbs, nouns, verbs), along with any lexical items used during the affix
function training phase (described in the next subsection).

Word-to-word co-occurrence counts were collected by imposing a 5-word context
window, that is, each target word was considered to co-occur with the two (content)
words preceding and following it. Window-based lexical co-occurrences, as in HAL,
have proven to be optimally-performing in a number of semantic tasks, and are also
attractive for their simplicity in comparison to collocates based on syntax-based links
(e.g., Sahlgren, 2008; Bruni, Boleda, Baroni, & Tran, 2012). Narrow-window collo-
cates (as opposed to the word-document co-occurrences used by LSA) usually entail
very close semantic and syntactic relations, and this approach is hence expected to
capture a more locally-based kind of semantic similarity, such as the one found in close
taxonomic relations (Sahlgren, 2006). This granular property of the narrow-window
approach is all the more attractive for our purpose, since morphological derivation
will typically change meaning in rather subtle ways that might be missed by a coarse
context representation (e.g., -ly simply transforms an adjective into an adverb, -er
adds an agentive role, denoting someone doing the action the verb stem describes).

Weighting schemes are usually applied to raw co-occurrence counts in order
to best capture the information they carry by down-playing the role of chance co-
occurrence. In the present study, we adopted (nonnegative) Pointwise Mutual Infor-
mation (PMI, Church & Hanks, 1990), an information-theoretic measure of associa-
tion widely used in computational linguistics. Given target word t and context word
c, PMI is computed as follows:

PMI(t, c) = log p(t, c)
p(t)p(c)

The measure compares the probability of co-occurrence of two words estimated
directly from the corpus with the probability of those two words co-occurring by
chance, and hence quantifies the extent to which their co-occurrence is not random.
Consider, for example, the word pairs the+dog and dog+barks. Even if the+dog
is likely much more frequent than dog+barks, the PMI of the+dog is much lower,
since the association between the two words is not meaningful: simply, the is so fre-
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quent that it is likely to co-occur with any noun in the corpus. On the other hand,
dog+barks will have a high PMI score, since their co-occurrence is far from being ran-
dom, being based on the semantic and syntactic association between the two words.
The nonnegative version of PMI we apply here (negative values are replaced by ze-
ros) was shown to lead to high-performance models by Bullinaria and Levy (2007).
Landauer and Dumais (1997) have speculatively related such information-based as-
sociation measures to the Rescorla-Wagner formalization of discriminative learning
(Rescorla & Wagner, 1972). Indeed, the higher the PMI, the more informative a con-
text word will be, and informativeness of a cue (in this case, the contextual collocate)
is strongly associated to its discriminative power: the, being associated to a large
number of different words, is not a good discriminative cue for any of them; on the
other hand, where barks occurs, the presence of dog is also expected. Therefore, the
information-weighted encoding of word co-occurrences in DSMs is intuitively similar
to the way organisms create simple associations between phenomena. This similarity
could explain why DSMs perform so well as models for the human semantic system.

Dimensionality-reduction techniques perform a mapping of the data to a lower
dimensional space while trying to preserve certain properties of the original full-space
representations (e.g., variance). This procedure makes the data matrix easier to han-
dle, but its purpose is not purely practical. Landauer and Dumais (1997) consider
the reduced dimensions as an analogue to abstract semantic features emerging from
the co-occurrence of superficial elements. This hypothesis was further developed by
Griffiths, Steyvers, and Tenenbaum (2007) with Topic Models. In their proposal,
dimensionality reduction techniques identify a set of topics emerging from word dis-
tributions; word meanings (or gist) can in turn be modeled as probability distributions
across topics. In place of the better-known Singular Value Decomposition (Landauer
& Dumais, 1997) and Latent Dirichlet Allocation (Griffiths et al., 2007) methods,
in the present study we performed dimensionality reduction by Nonnegative Matrix
Factorization (NMF). This technique leads to a significant improvement in model
performance (Arora, Ge, & Moitra, 2012; Boleda et al., 2013), and the dimensions
it produces have been shown to be comparable to the interpretable topics of Topic
Models (Dinu & Lapata, 2010). On the basis of recent empirical results and without
our own tuning, we set the number of dimensions to 350.

The semantic space resulting from these operations is a set of approximately
20,000 350-dimensional vectors, each representing a word meaning. These define
a multidimensional space in which geometric proximity can be treated as a proxy
for contextual, and hence semantic similarity. In concrete, semantic similarity is
measured as the width of the angle formed by two vectors. More technically, following
standard DSM practice, we quantify the angular distance between vectors by the
cosine of the angle they form (the narrower the angle, the higher the cosine, that is,
the more similar the words being compared are expected to be). Given two vectors ~a

and ~b, their cosine is computed as follows:
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cos(~a,~b) =
∑i=n

i=1 ai × bi√∑i=n
i=1 a2

i ×
√∑i=n

i=1 b2
i

When all vector components are nonnegative, as in our case, the cosine is also
nonnegative, and it ranges from 0 for perpendicular vectors to 1 for parallel vectors.

Inducing functional representations of affixes

Using the distributional semantic space described above as our starting point,
we now proceed to build affix representations. Following the functional approach in
compositional distributional semantics (Baroni & Zamparelli, 2010), affixes can be
seen as functions modifying the semantics of word stems to obtain new meanings.

Specifically, Baroni and Zamparelli, for reasons of elegance, interpretability and
computational tractability, restrict composition functions to the class of linear trans-
formations (but see Appendix B on the nature of this restriction), so that words or
affixes encoding functions can be represented by coefficient matrices, and function
application corresponds to vector by matrix multiplication (Strang, 2003). When an
n-dimensional (row) vector is multiplied by a n × n matrix, the output is another
n-dimensional vector.6

The value in the i-th dimension of the output is a weighted sum of all input
vector dimensions, each multiplied by the corresponding coefficients in the i-th column
of the matrix. Thus, the matrix representing an affix encodes how much each input
vector dimension affects each dimension of the derived output representation.

Our affix-specific coefficient matrices constitute Functional Representations of
Affixes in Compositional Semantic Space (FRACSSs), and suit derivational morphol-
ogy particularly well: not only are they in line with the view of affixes as functional
elements from descriptive and theoretical linguistics, but they are also in accordance
with psycholinguistic results indicating that, at the semantic level, stems are accessed
first and affix meaning enters the picture only subsequently (e.g., Laine, 1999).

Let’s clarify how FRACSSs operate with a toy example. Assume that when
the prefix re- attaches to an activity verb V it has an iterative meaning, more or
less to V again (cf. sing and re-sing). When it attaches to an accomplishment verb
such as open, the meaning is instead restitutive: to re-open (the door) does not imply
that the door was ever opened before, just that it is no longer closed (this account
of the semantics of re- is so enormously simplified as to be flawed; see, e.g., Lieber,
2004, for a more nuanced story). Let’s assume moreover that continuously is a typical
contextual feature of activity verbs, with high scores in their distributional vectors,
and similarly for completely in accomplishment verbs. We take the contextual feature

6For simplicity, we ignore in this exposition the intercept row, that actually makes our matrices
(n + 1)×n-dimensional. Nothing substantial changes, but see the discussion at the end of the novel
words section on how the intercept might be interpreted as capturing the “average” meaning of the
derived forms sharing the same affix.



MODELING MORPHEME MEANINGS WITH DISTRIBUTIONAL SEMANTICS 14

Table 1
Toy FRACSS matrix representing the prefix re-. Each column contains the weights determining the
impact of each input dimension (associated to the corresponding row label) on the value of the output
dimension corresponding to the column label.

d1 d2 completely continuously back again
d1 1 0 0 0 0 0
d2 0 1 0 0 0 0
completely 0 0 1 0 2 0
continuously 0 0 0 1 0 2
back 0 0 0 0 1 0
again 0 0 0 0 0 1

Table 2
Toy distributional vectors before and after multiplication by the re- FRACSS matrix in Table 1 (words
associated to vectors in the row labels, contextual dimensions in the column labels).

d1 d2 completely continuously back again
sing 3 2 0 2 0 0
re-sing 3 2 0 2 0 4
open 1 3 1 0 1 0
re-open 1 3 1 0 3 0

again to be very salient in verbs expressing iterative meanings, and back in restitutive
readings. Finally, let’s assume that verbs live in a very narrow 6-dimensional space,
where dimensions d1 and d2 pertain to characteristics that are not affected by re-
(e.g., how the actions denoted by verbs are performed). Then, the re- FRACSS might
look as in Table 1. Each cell of this matrix states how much the input dimension
corresponding to a row label will affect the output dimension in a column label: for
example, the 0 in the second cell of the first row tells us that the input d1 dimension
has no effect on the output d2 dimension. Importantly, the fifth and sixth columns
of the table contain the weights that the input vector values will be multiplied by to
obtain the output back and again dimension values, respectively. In the case of back,
the output value will be magnified by summing to the input back value twice the input
completely value, and similarly for again with respect to continuously. Table 2 shows
how the FRACSS operates on hypothetical sing and open vectors, illustrating how
the same matrix multiplication operation (equivalently: linear function application)
correctly emphasizes the iterative dimension of the first verb, the restitutive dimension
of the second. Realistic distributional vectors and matrices will contain, of course,
hundreds or thousands of cells (in our semantic space, vectors have 350 dimensions,
FRACSS matrices 350×350 cells), allowing a much richer multivariate representation
of factors such as iterativity, and a much more nuanced treatment of how input and
output dimensions interact in semantic transformations. It is also worth remarking
that FRACSS matrices can also be seen as vectors in a higher dimensional space, and
possess meaningful semantic properties in their own right, e.g., similar affixes should
have similar matrix representations (Baroni & Zamparelli, 2010; Baroni et al., 2014).
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The weights to fill the actual FRACSS cells are estimated from corpus-extracted
examples of input-output pairs of the relevant function application using standard
least-squares methods (Dinu, Pham, & Baroni, 2013b). The intuition is that an affix
is the carrier of a transformation, so we want to learn its representation from pairs
that illustrate the transformation it carries through. To estimate the re- FRACSS,
for example, we might use corpus-extracted distributional vectors of pairs such as 〈do,
re-do〉, 〈think, re-think〉, etc. The re- FRACSS coefficients are set so that, on average,
when the example input vectors are multiplied by them, they produce output vectors
that are geometrically close to their corpus-extracted equivalents (in the running
example, weights are set so that multiplying the do vector by the re- matrix will
produce a vector that is close to the corpus-extracted redo vector, etc.). Once the
FRACSS is estimated, it can of course be applied to arbitrary vectors that were not
part of the training examples to generate new derived forms (for example, the matrix
in Table 1 might have been estimated on examples such as 〈do, re-do〉, 〈think, re-
think〉, but once its weights have been fixed it can be applied to the morphologically
simple vectors of Table 2 – that were not used as training data – to generate the
corresponding prefixed forms).

If vector representations indicate how the usage of a certain word is distributed
over the set of contexts, FRACSSs, because of the way they are estimated, will cap-
ture systematic patterns linking two separate context distributions. For example, for
the agentive -er, FRACSS will represent the association between contextual represen-
tations of certain actions (e.g., deal, run, drink, drive) and contextual representations
of entities able to perform (or usually performing) those actions (e.g., dealer, run-
ner, drinker, driver). In the previous section, we proposed that a simple learning
process resulting in the storage of word-to-word associations is at the base of the
induction of distributional models (Landauer & Dumais, 1997). The same principle
of development of association between phenomena on the basis of statistically reliable
co-occurrence patterns is at the basis of FRACSS learning. However, whereas in the
case of word associations the processed phenomena are words in context, FRACSSs
capture association between the “meanings” (distributions over contexts) encoded in
distributional vectors. In other terms, in the present proposal, affixes are to be con-
sidered as high-order associations between the distributional semantics of different
words (or, better, word sets). These associations are hidden within natural language
usage, but may emerge when the apt statistical learning procedure is applied.

We trained FRACSSs for 34 affixes using the DISSECT toolkit (Dinu et
al., 2013a). Each affix was associated to a training set composed by at least 50
stem/derived-form pairs, obtained by exploiting the morphological annotation from
the CELEX English Lexical Database (Baayen, Piepenbrock, & Gulikers, 1995). The
pair elements matched the most common part-of-speech signature for the correspond-
ing affix (e.g., -er pairs had verbal stems and nominal derived forms). For each pair,
both elements occurred at least 20 times in our source corpus. The Appendix reports
a list of the affixes together with information on the associated morpho-syntactic
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transformations and number of training data used.
In principle, picking training examples from CELEX could have reduced the

naturalness of the experimental setup, by favouring examples of productive, trans-
parent, and/or synchronic affixation. In practice, this was not the case. The CELEX
morphological segmentation was performed semi-automatically, and it is extremely
liberal in parsing words as morphologically complex. Indeed, most of the words
typically included as opaque items in priming experiments are tagged as morpho-
logically complex in CELEX (e.g., 61% of the opaque words in Rastle et al., 2000,
and 71% of the opaque words in W. D. Marslen-Wilson, Bozic, & Randall, 2008).
As a consequence, words like listless, department, corny, seedy, whisker, audition,
awful, virtual, archer are included in our training set. These forms show that pick-
ing training examples from CELEX does not add much unintended supervision to
the setup. Essentially, it is equivalent to picking training examples by using simple
surface-based distributional heuristics that should not be beyond the reach of human
language learners, and have been shown in many computational simulations to suffice
in providing reasonable parses of complex forms (see Goldsmith, 2010).

Examples of FRACSS-derived representations

Before we delve into the experiments that will bring quantitative support to our
approach, it is interesting to inspect, qualitatively, the semantic representations of
affixed forms composed with FRACSS. The examples discussed here show how such
representations mostly reflect the meanings that we would assign to the corresponding
derived forms, sometimes capturing surprisingly nuanced details. We will see that the
linear matrix-multiplication approach we take, thanks to the flexibility afforded by
representing each separate affix with a different matrix and the interplay of input
vector dimensions and matrix weights, provides enough room to learn representations
that can capture affix polysemy, pick the right sense of the stem, and handle different
sub-classes of stems differently.

We conduct the qualitative analysis by inspecting derived-form vectors con-
structed via multiplication of a stem vector by a FRACSS matrix. For example, the
cellist vector we will discuss results from multiplying the cello vector by the -ist ma-
trix. We then assess what is the meaning that the model has produced by looking at
the nearest neighbors of the composed vector, that is, its closest vectors (cosine-wise)
in our distributional semantic space. In particular, all the neighbors we discuss here
are among the nearest 20 to each composed form of interest, in a space containing
more than 20,000 items.7 The cases discussed here were picked as good representa-
tives of various phenomena, but they are by no means exceptional with respect to the

7The semantic space where we search for neighbors contains only vectors directly extracted from
the corpus, also for derived forms. For example, when we say that flutist is a close neighbor of
(composed) cellist, we mean that the vector we constructed from the corpus contexts of flutist (as
a whole word) is one of the nearest – the nearest one, actually – to the vector we constructed
multiplying the cello vector by the -ist matrix.
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larger set of about 4,000 composed items (taken from the stimuli of the experiments
below) that we scanned when looking for examples.

We start with some cases illustrating how FRACSS representations capture
different senses of the same affix. The -er matrix, for example, produces an agent
(V-er = X who Vs) meaning from carve but an instrument one (V-er = X used
for Ving) when the input is broil. Consequently, among the neighbors of carver we
find a number of other craftsmen performing related activities, e.g., potter, engraver,
goldsmith. On the other hand, the broiler neighbors are tools such as oven, stove, as
well as other words related to the function of broilers: to cook, kebab, done.

While many forms in -ment are ambiguous between a process and a result
interpretation (achievement as the act of achieving vs. what has been achieved), with
some stems one of the two readings is much more likely. The FRACSS for -ment
appears to have captured the difference: For interment, the neighbors strongly cue a
process reading. There are verbs such as inter, cremate and disinter, as well as other
nouns with a dominant event meaning: burial, entombment, disinterment, funeral. . .
On the other hand, for equipment, where the result reading is more prominent, we find
neighbors that are clearly related to equipment as a set of physical tools: maintenance,
servicing, transportable, deploy.

Marchand (1969), in his classic treatment of English morphology, distinguishes
between full of N and causing N senses of -ful, that are indeed reflected in the -ful
FRACSS. The neighbors of careful cue the full of care sense: judicious, attentive,
compassionate. . . Those of dreadful imply instead the correct causing dread sense:
frightful, horrible, unbearable, etc.

While it’s hard, based on nearest neighbor evidence alone, to decide if the re-
FRACSS is capturing the difference between the main iterative and restitutive senses
of the prefix, the difference between the default iterative sense and some more marked
intepretations does emerge. So, for iterative reissue we clearly detect the reference
to a former issuing event in neighbors such as original, expanded and long-awaited.
On the other hand, the neighbors of retouch cue the strong presence of a “correction”
sense: repair, refashion, reconfigure. . . The unusual intensifying sense of the prefix is
also captured, as shown by the neighbors of resound: reverberate, clangorous, echo,
etc.

Other cases highlight how a FRACSS can pick up the right sense of a stem
even when the latter is unusual. For example, the nearest neighbors of the noun type
indicate the prominence of the computational and “typing” senses: keyword, subtype,
parse. . . However, -ify correctly selects the “characteristic example” sense in typify,
cf. neigbours such as embody, characterize, essentially (more distant neighbors such
as codify and subsume suggest that the, now secondary, computational sense has also
been preserved). The architectural and mathematical senses dominate the neigh-
bors of column: arch, pillar, bracket, numeric. . . However, -ist correctly emphasizes
the journalistic sense in columnist, cf. nearest neighbors such as publicist, journalist,
correspondent.
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Beyond columnist, the -ist suffix possesses many nuances that are accurately
captured by its FRACSS. So, a cellist is someone who plays the cello (neighbors:
flutist, virtuoso, quintet. . . ). An entomologist on the other hand is an expert of en-
tomology, which is quite near the disciplines of her/his neighbors: zoologist, biologist,
botanist. . . For propagandist, we get the right connotation of devotion to a political
cause, that the suffix carries when combined with the relevant class of stems (nearest
neighbors: left-wing, agitator, dissident, etc.). As a final example, a rapist belongs to
the felon class of -ist derivatives, with nearest neighbors such as extortionist, bigamist
and arsonist (and, among the neighbors that do not contain -ist, pornographer, crim-
inal, pimp).

The same stem vector might produce quite different derived vectors when mul-
tiplied by different FRACSS. Among the nearest neighbors of industrial, for example,
we find environmental, land-use and agriculture, whereas among those of industrious
we see frugal, studious and hard-working.

In all the examples above, the patterns induced by FRACSS might be very
specific, but they still have some degree of systematicity: For example, the need to
account for the corpus-observed contexts of terms such as essayist, journalist and
novelist during the matrix estimation phase (see section on training FRACSS above)
must have led to the -ist FRACSS matrix encoding the correct generalization for
columnist. These semantic sub-regularities resemble the islands of reliability described
by Pinker and Prince (1988) and Albright and Hayes (2002) for the phonological side
of morphological combination. In their models, very general, “regular” morphological
rules (such as “append -d to form past participle”) are accompanied by rules that
capture more specific, yet still reliable sub-regularities for the very same change (such
as “change root i to u if word ends in -ng” – cf. sting/stung, sing/sung, etc.). Similar
ideas are also being explored in syntax, where certain constructions (e.g., the English
resultative, cf. Goldberg & Jackendoff, 2004) are treated as families of sub-regularities.
Clearly, when moving to the semantic level, the boundaries of these islands/families
are fuzzier and difficult to define, since they are represented as distributions across
different semantic dimensions. Still, FRACSSs seem flexible enough to capture such
subtle semantic regularities across words.

Interestingly, when the dominant meaning of a derived form is heavily lexical-
ized and not part of a (semi-)systematic pattern, FRACSS composition will produce
an alternative, more semantically transparent interpretation of the same form. For
example, among the nearest neighbors of the nervous vector directly extracted from
the corpus, we find anxious, excitability and panicky. On the other hand, the nearest
neighbors of nervous composed by multiplying the nerve vector with the -ous matrix
include bronchial, nasal and intestinal. We find this duplicity a desirable aspect of our
model, since, for humans as well, it is likely that the dominant metaphorical mean-
ing of nervous is also learned holistically and stored with the whole word, whereas
the medical sense can be generated compositionally from the nerve stem (Amenta,
Marelli, & Crepaldi, in press). We will see below how the possibility of generating
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compositional meanings for lexicalized forms might play a role in explaining semantic
transparency effects on priming.

The examples in the present section speak for the flexibility of the functional
approach in capturing a wide range of phenomena, including affix and stem poly-
semy, affix-stem interactions and -to a certain degree- opaque derivations. This large
degree of flexibility is ensured by the affixation procedure being modelled as vector-
by-matrix multiplication: each single dimensions of the derived-form is the result of a
multipliticative combination of a set of affix-specific weights with the whole dimension
distribution of the stem. It is therefore possible that, given different stems, the same
dimension in the corresponding derived forms will be at times emphasized, at times
inhibited (remember that each dimension, in the current approach, encodes a seman-
tic trait). This implies that, for example, the different possible “senses” that an affix
can express in a derived form will be crucially determined by the stem it combines
with (see the toy example in Tables 1 and 2). In other words, semantic distinctions in
the affixation process can depend on (more or less nuanced) distributional patterns
in the stems. This very system can also explain (some) cases traditionally considered
opaque: fruitless and heartless have “opaque” meanings because fruit and heart have
the relevant secondary senses encoded in their distributional representations to begin
with (e.g., “the fruits of their labor”, “that man has a big heart”).

Distributional representations of novel derived words

Our model constructs the semantic representation of a derived word by means
of a compositional process that transforms the meaning of its stem through FRACSS
application. The model can thus build semantic representations for novel words (or
nonce formations), expressing meanings that are not yet lexicalized in the language.
Since the generation of new words must be one of the core reasons why morphological
derivation exists, and the new word creation process must be largely compositional,
nonce formations represent a natural testing benchmark for our model. Previous
psycholinguistic studies of novel complex words have mostly focused on the factors
underlying their acquisition (e.g., Tyler & Nagy, 1989) or quantitative aspects asso-
ciated with morphological productivity (e.g., Hay & Baayen, 2002). We present here
two investigations aimed at modeling the degree of meaningfulness of novel words and
assessing the quality of the vector representations our method generates for them.

Meaningfulness of novel forms

We focus first on a fundamental but essentially unexplored characteristic of
new complex words, namely whether they are meaningful or not. While semantics
is not the only factor constraining word derivation (nonce forms might also be un-
acceptable, for example, due to morphophonological or lexical strata constraints), it
certainly plays an important role by imposing selectional restrictions on the stems an
affix can combine with. For example, since the prefix re- conveys an idea of iteration
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Figure 2 . Visual intuitions for the meaningfulness measures. Top left (density): the vector of
a meaningful derived form such as acneless has closer neighbors than a less sensible form such as
hikeless; top right (stem proximity): the vector of a sensible derived form such as windowless is
closer to the stem than that of a less sensible form such as windowist; bottom (entropy): looking
at distributional vectors as probability distributions (darker shades = higher probabilities), a good
form such as musketless has most of its probability mass concentrated on few dimensions (low
entropy), the probability mass of a less sensible form such as sludgist is uniformly spread across
many dimensions (high entropy).

or going back to a previous stage, to re-die sounds rather strange. Often such restric-
tions do not lead to sharp judgments, but rather to intuitions laying on a scale of
relative acceptability. For example, in the survey we describe below, subjects found
nonce forms such as re-browse and re-append perfectly meaningful, they assigned in-
termediate ratings to forms such as re-provoke or re-wonder, and strongly disliked
re-decease and re-matter. Modeling meaningfulness should thus be a task well-suited
for compositional DSMs, that provide continuous scores predicting degrees of mean-
ingfulness as we will describe next.

Previous studies have shown that the meaningfulness of novel word combina-
tions (phrases) is efficiently captured by quantitative properties of their distributional
representations. We apply the properties that were used by Lazaridou, Vecchi, and
Baroni (2013) to quantify the semantic acceptability of phrases (in turn adapted
from Vecchi et al., 2011) to novel derived forms. Specifically, the measures proposed
by Lazaridou and colleagues were computed here on novel word vectors derived by
FRACSS application to the corresponding stem representations.

Neighborhood density measures how close, on average, a word vector is to the
vectors of its nearest neighbors in distributional semantic space. The rationale for this
measure is that a vector encoding a meaningful new concept should live in a region of
semantic space that is densely populated by the vectors of many related concepts that
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have already been lexicalized, whereas a vector denoting something that makes no
sense should be quite far from the vector of any concept meaningful enough to have
been lexicalized. It’s easy to think of concepts related to the nonce word acneless (a
form deemed meaningful by our participants), such as pimple, teenager, lotion, etc.
On the other hand, it’s hard to assign a precise, fixed sense to hikeless (a form that
received low ratings), and consequently no related concepts spring to mind. This
intuition is illustrated graphically at the top left of Figure 2. Formally, if ni(t) is the
i-th nearest neighbor of a target nonce form t, then density(t) is computed as follows:

density(t) =
∑i=N

i=1 cos(~t, ~ni(t))
N

where N , the number of top nearest neighbors to be considered, is a free pa-
rameter. Following Lazaridou and colleagues, we set it to 10 without tuning (that is,
density is operationalized as the average cosine of the target item with its 10 nearest
neighbors).8

Stem proximity is the cosine of the derived-form vector with the vector of its
stem. This measure captures the intuition that, in productive word formation, if
the derived form has a radically different meaning from that of its stem, something
went wrong, because a nonce derived word should never be semantically opaque. If
I produce the complex word windowless (high ratings), I do it because I expect my
reader/listener to be able to transparently recover its meaning from that of window.
Consider instead windowist (low ratings): here, it is difficult to see in which way the
meaning of window should contribute to the meaning of the derived form. This intu-
ition is illustrated graphically at the top right of Figure 2. Note that stem proximity
has also been employed to estimate the degree of semantic transparency of existing
derived forms, and we will extensively use it for that purpose below. Here, however,
the interpretation changes: whereas an existing derived form that is far from its stem
is likely to have developed a different meaning through its usage, a nonce derived
form cannot have an idiosyncratic meaning. Thus, if it is semantically far from its
stem, this is a likely cue that derivation broke down. Formally, given distributional
representations of a target derived form t and its stem s (such that t = d(s) for some
derivation process d()), stem proximity is simply the cosine:

proximity(t) = cos (~t, ~s)

Finally, the entropy of a vector is lower when it has a skewed distribution with
just few dimensions having large values, higher when the distribution tends to be uni-
form (see, e.g., Cover & Thomas, 2006). Since, as discussed in the section on distri-
butional semantic space construction above, the dimensions of distributional vectors,
alone or in clusters, cue different semantic domains or “topics”, a high-entropy (that

8We considered the top 20,000 most frequent content word lemmas in our corpus as potential
neighbors. Virtually the same results were obtained when the candidate neighbor set was expanded
to include all derived forms used in the experiments.
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is, uniform) vector does not carry any specific meaning. Thus, we expect an inverse
correlation between entropy and meaningfulness. If there is little doubt that the
highly rated nonce word musketless pertains to the domain of military matters, it’s
hard to associate sludgist (low ratings) to any specific semantic domain, as we don’t
know what this word is about. This intuition is illustrated graphically at the bottom
of Figure 2. Independent evidence that entropy should correlate with acceptability
comes from the observation that attested derived words (that are all, presumably,
meaningful to a certain degree) have much lower entropy than derived nonce forms
(that are likely to contain a mixture of sensible and meaningless formations). Specif-
ically, the entropy range in a sample of 900 existing derived words (taken from the
materials of the semantic transparency experiments we will discuss below) is 2.01-4.51
(mean = 3.27; SD = .39), whereas the nonce forms of the present experiment have
an entropy range of 4.77-5.58 (mean = 5.34; SD = .18), with no overlap between the
two sets.

Formally, if t1, . . . , tk are the values in the K components of the distributional
vector of a target nonce form t, its entropy H(t) is computed as follows:

H(t) = log K − 1
K

i=K∑
i=1

ti log ti

Note that entropy is defined for vectors encoding probability distributions, that
cannot contain negative values. Our vectors, obtained by Nonnegative Matrix Fac-
torization of the co-occurrence matrix, satisfy this condition.

Materials and methods. We focused on the 4 suffixes and 2 prefixes pre-
sented in Table 3. The affixes were selected among those for which we trained FRAC-
SSs, as described above. These affixes are all reasonably productive according to the
quantitative indices reported by Hay and Baayen (2002), and they are not subject to
strict morphophonological or lexical strata constraints according to Marchand (1969).
We observe in passing that none of the quantitative productivity indices reported in
Hay and Baayen (2002) correlates significantly with the average meaningfulness scores
for our affixes, indicating that semantic acceptability (a property of specific derived
words) cannot be reduced to productivity (a property of word formation processes).

For each of the target affixes, we automatically generated derived forms by
attaching the affix to a stem of the appropriate syntactic category (e.g., -able was only
attached to verbs). Stems had to occur at least 2,500 times in our reference corpora.
Orthographic rules where semiautomatically applied where appropriate (e.g., the final
-e of demote was deleted before appending -er).

We randomly sampled 100 derived forms per affix, manually excluding those
that might sound strange for reasons independent of semantics (e.g., rereprocess be-
cause of the repeated prefix). We checked, moreover, that the candidate nonce forms
never occurred in our very large corpus, also considering spelling (dash/no dash, En-
glish/American, etc.) and inflectional variants. We cannot of course guarantee that
all forms were absolutely novel to all our subjects, but it is highly unlikely that any
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Table 3
Affixes in the novel word meaningfulness data set, with syntactic categories of input stems and
output derived forms (A: adjective, N: noun, V: verb), mean acceptability scores across derived
forms containing the affixes, and examples of forms with high and low meaningfulness scores.

Affix Stem→Derived Mean acceptability (SD) Examples

-able V→A 3.82 (0.51) high: sketchable, harassable
low: dawnable, happenable

-er V→N 3.82 (0.42) high: surpasser, nicknamer
low: relenter, pertainer

-ist N→N 3.18 (0.52) high: hologramist, liaisonist
low: windowist, rasterist

-less N→A 3.64 (0.44) high: acneless, musketless
low: eaterless, rinkless

re- V→V 3.52 (0.45) high: reappend, reinsult
low: relinger, rematter

un- A→A 3.46 (0.46) high: undiligent, unheartfelt
low: unthird, unmessianic

of them would have heard or produced more than a few times a derived form that
never occurs in a corpus of 2.8 billion words.

The resulting set of 600 derived nonce forms was annotated to mark the degree
of meaningfulness of each item by means of a crowdsourcing study. Crowdsourcing
is an online survey method increasingly used in the cognitive sciences to collect large
amounts of data (Schnoebelen & Kuperman, 2010). Here, crowdsourcing was used
to reach a larger and more diverse population than the one usually taking part in
psycholinguistic experiments. Participants were recruited from Amazon Mechanical
Turk through the CrowdFlower platform (http://www.crowdflower.com). Partici-
pants were asked to rate each item on the basis of how easy it was to assign a meaning
to it, using a 5-point scale ranging from “almost impossible” to “extremely easy”. In
the instructions, we specified that there was no right answer, and we stressed that
we were specifically interested in the meaning of the new words; participants were
invited to ignore spelling considerations, and consider alternate spellings if they made
the words appear more natural. Each novel words was evaluated by 10 different par-
ticipants (that had to declare to be native speakers of English). Average ratings were
then computed for each item.9

Ten items were excluded from the analysis due to technical reasons. The third
column of Table 3 reports average meaningfulness ratings across the forms with each
affix and the corresponding standard deviations. We observe relative high ratings
(associated with a general rightward skewness in the distribution), and some limited
variation across affixes. However, we also observe some significant variance around

9The data collected on nonce words can be downloaded from http://clic.cimec.unitn.it/
composes/FRACSS/. We hope these data sets will foster further research on the factors determining
semantic acceptability of derived forms.
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Table 4
Fixed effects in the analysis of novel word meaningfulness.

Predictor Estimate Std. Error t p
Intercept 3.62 0.13 28.43 .0001
Stem frequency 0.05 0.02 2.22 .0801
Stem proximity (linear) 0.78 0.29 2.65 .0388
Stem proximity (quadratic) -3.39 0.89 -3.78 .0002
Vector entropy -0.91 0.13 -3.75 .0008

each affix average, confirming that semantic acceptability cannot be explained away
by properties of the affixes, without considering the specific stems they attach to.

Results. The judgments were analyzed in a mixed-effects model (Baayen,
Davidson, & Bates, 2008) using the measures described above (neighborhood density,
stem proximity and vector entropy) as predictors. In addition, we introduced (log-
transformed) stem frequency as a covariate, in order to account for the influence of
stem familiarity on participants’ intuitions. Affix-associated random intercepts and
random slopes (for all predictors) were also introduced, to partial out affix-specific
effects. We considered moreover quadratic terms, finding that only for stem proximity
this form of non-linear modeling improved the fit. All predictors were mean-centered
in order to ensure more reliable parameter estimation.

Table 4 presents the results for the fixed effects in the regression analysis. The
parameter associated with density was removed because it did not significantly con-
tribute to the model goodness-of-fit. P-values were computed adopting the Satterth-
waite approximation for degrees of freedom (Satterthwaite, 1946) as implemented in
the lmerTest R package (Kuznetsova, Brockhoff, & Christensen, 2013).

The effects of entropy, stem proximity, and stem frequency are represented in
Figure 3. Entropy has a negative effect on meaningfulness: the more entropic the
vector, the less easy it is to understand a novel word. Stem proximity predicts the
highest semantic acceptability at intermediate scores (about .4), and progressively
lower ratings for more extreme proximity values. A trend for the effect of stem
frequency also emerged, but failed to reach significance.

Discussion. As expected, vector entropy has a negative effect on meaningful-
ness judgments. High-entropy (that is, more uniform) vectors fail to identify specific
meanings, making the corresponding novel words harder to interpret than their low-
entropy counterparts.

The non-linear effect of stem proximity is more surprising, but it makes sense
when considering that novel words are meant to carry new meanings: affixation is
thus expected to modify the core meaning of the stem enough for the new word not
to be superfluous. Among the forms with the highest proximity values in our data
we find opticianist and scholarist, both receiving low ratings. Arguably, the problem
with these forms is that the -ist prefix attached to a profession name is redundant:
opticianists and scholarists probably would do exactly what opticians and scholars
do, which our model captures by high stem proximity. At the other extreme of the
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Figure 3 . Partialized effects of vector entropy (a), stem proximity (b), and stem frequency (c) on
meaningfulness judgments of novel words.

proximity scale, we find two more forms in -ist with low subject ratings, namely
sludgist and windowist. The problem here is not redundancy, but that it’s not clear
how sludgists and windowists would “specialize” in sludge and windows, respectively.
The model accounts for this by assigning very low proximity to these forms, as if to
mark the fact that their relation to the stems is obscure. In conclusion, a novel word
should be far enough from its stem to avoid redundancy, but not so distant that the
new meaning is no longer interpretable. This pattern is captured by the non-linear
effect of stem proximity on meaningfulness.

Interestingly, proximity and entropy are not statistically associated, and are
thus probably capturing different aspects of novel word meaning: whereas entropy is
diagnostic of topic-specificity of the novel concept, proximity indicates to what extent
the derived meaning differentiates itself from the original stem.

Regarding the lack of a density effect, we observe first that this measure has a
relatively high correlation with entropy (r = .36). In post-hoc analyses, we regressed
entropy on density and vice versa, entering the residuals of one measure (residualized
entropy or density) together with the other as uncorrelated predictors. While en-
tropy was consistently a significant predictor, density only reached significance when
entropy was residualized. The overall pattern thus suggests that density does not
account for acceptability judgments beyond what is already explained by entropy,
and the latter is a stronger predictor. Note that our current operationalization of
density might fail to capture the intuition we gave for this measure. In particular,
the current implementation only takes into account the distance of the derived form
to its nearest neighbors, but the relation of these neighbors to each other (are they
also close, making the neighborhood truly “dense”?) is not taken into account.

As it is not the focus of the current study, we leave a more in-depth investigation
of the specific measures we picked, and in particular density, to further studies. For
our current purposes, the important result presented in this section is that quantita-
tive properties of our compositionally-derived vectors are able to capture a significant
portion of the variance in semantic intuitions about nonce derived forms, even when
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other factors such as stem frequency and affix type are considered.

Quality of novel form vector representations

In the previous experiment, we have tested to what extent quantitative aspects
of the vector representation of a novel word are able to predict its perceived mean-
ingfulness. As an added benefit, the survey we ran produced a list of novel derived
forms that participants rated as highly meaningful. We can now use this subset to
look into the quality of composed novel word representations more directly.

In particular, following Lazaridou, Marelli, et al. (2013), we assume that the
semantic quality of a distributional vector is reflected in its semantic neighborhood.
A good vector representation of a word should live in a region of the semantic space
populated by the vectors of intuitively related words; for example, a vector can more
convincingly be said to have correctly captured the meaning of car if it places it closer
to automobile than potato. We extend this approach to novel words, asking partic-
ipants for relatedness judgments about the neighbors of the corresponding vector
representations.

Materials and methods. Neighbors were extracted from our reference se-
mantic space (described in the section on model development) on the basis of the
vector representations for novel words obtained using FRACSSs. We focused on 236
novel forms, that received an average meaningfulness rating of at least 4 in the pre-
vious study, and their top 10 nearest neighbors. From this set, we had previously
filtered out words that were overly represented across neighborhoods (i.e., occurring
in the top neighbor lists of more than 10% of the considered forms; Radovanović,
Nanopoulos, & Ivanović, 2010). These shared elements were poorly informative of
the specific novel forms under analysis, since they were primarily connected to affix
meaning, independently of the stem: they were affixed words found in the neighbor-
hoods of many words with the same affix, and some of them were nearly synonymous
to it (e.g., unlike for un- forms, manageable for -able forms).

We randomly selected up to 5 neighbors for each nonce form, resulting in a set of
853 neighbors, each contrasted with the corresponding novel form. Each neighbor was
also assigned two control items, namely the stem of the nonce form and an unrelated
baseline word. Baseline words were randomly chosen from the whole set of words in
the semantic space, pending that they were reasonably different from both the stem
and the nonce form they were assigned to (cosine similarity less than .30). Therefore,
the final item set included 2,559 pairs, organized into three conditions: in the nonce
form condition, nonce-form neighbors were contrasted with the corresponding nonce
forms (blameworthy-apologizable); in the stem condition, nonce-form neighbors were
contrasted with the stem of the corresponding nonce forms (blameworthy-apologize);
in the random condition, nonce-form neighbors were contrasted with unrelated ran-
dom words (blameworthy-blazer). Stimulus examples are given in Table 5.

The resulting set was annotated in a crowdsourcing study to mark the degree
of semantic relatedness for each pair. Participants were recruited from Amazon Me-
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chanical Turk through CrowdFlower and asked to rate each pair using a 7-point scale
ranging from “completely unrelated” (1) to “almost the same meaning” (7). In the
instructions, we warned participants that some of the words could be unknown to
them, but pointed out that those very terms were made up of portions of existing
English words (e.g., quickify=quick+ify), and thus conveyed a meaning that could be
evaluated. Each pair was rated by 10 different participants (requested to be native
speakers of English). Average ratings were then computed for each pair.

Results. The judgments were analyzed in a mixed-effects model using the ex-
perimental condition as predictor. The condition of interest (nonce-form) was mod-
eled as reference level. Random intercepts for both terms of each pair were included in
the model. Average ratings in the nonce form condition (mean = 2.41; SEM = 0.03)
are significantly larger than those in the random (mean = 1.87; SEM = 0.02; t =
−14.44; p = .0001) and stem (mean = 2.19; SEM = 0.02; t = −5.81; p = .0001)
conditions.

Discussion. We evaluated the quality of the vector representations of mean-
ingful novel words constructed by FRACSS application. We focused on the semantic-
space neighbors of these vectors, and had them judged by participants in a crowd-
sourcing study. Crucially, similarity ratings between nonce forms and the produced
neighbors were higher than those in two control conditions.10

First, the neighbors of a nonce form were deemed to be closer to the nonce form
itself than to an unrelated control word. This confirms that that the region in semantic
space individuated by the nonce form vector is far from random, being populated by
words that native speakers consider semantically related to the unfamiliar derived
term. Second and more importantly, the neighbors of a nonce form were deemed
to be closer to the nonce form itself than to its stem; this result further supports
the reliability of the obtained vectors as representations for novel derived words,
indicating that the compositional procedure does not produce simple replicas of stem
meanings, but can capture the specific semantic connotations springing from the
derivational process. Table 5 reports some examples of neighbors that were rated
more similar to nonce forms than to their stems. We observe a variety of patterns
that link the novel derivation to its neighbor, forming a tighter semantic connection
than with the stem. The negation effect of -less in pastureless brings this form near
barren. In a case like disagreer/doubter, both derived-form and neighbor are agents
rather than events. For soakable, we get the antonym waterproof, and so on.

General discussion of the novel word experiments

As first benchmark test for the proposed compositional model, we used FRAC-
SSs to generate distributed semantic representations for novel derived words, namely

10The average ratings were somewhat low in absolute terms, but this only reflects the difficulty of
producing judgments about unfamiliar words. Indeed, the values are similar to those obtained by
Lazaridou, Marelli, et al. (2013) for similarity judgments between low-frequency existing words and
their neighbors.
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Table 5
Examples of novel-form neighbors that were rated more similar to the novel forms than to the cor-
responding stems.

neighbor Nonce form Stem Random
redo refinalise finalise sip
curable counteractable counteract wedding
reprehensible insultable insult meat
waterproof soakable soak email
propagandist provocationist provocation joystick
doubter disagreer disagree palsy
accountant leverager leverage ulceration
defenceless garrisonless garrison qualitative
barren pastureless pasture authenticate
greyness sunlightless sunlight incitement
flawed unsuperior superior headstone

stem-affix combinations that are unattested in a very large corpus and are hence
likely to be unfamiliar to most speakers. The representations that we obtained pro-
vide a compact computational model of what happens in the semantic system when a
speaker has to understand the meaning of an unknown complex word. The procedure
can be summarized as follows: the distributional pattern associated to the meaning
of a familiar word (the stem) is modified through the application of a function, in the
form of the affix FRACSS; the FRACSS acts on the basis of systematic statistical
relations that the affix entertains in language usage (as experienced by the speaker
and here captured by corpus counts); because of the nature of FRACSS representa-
tions and function application, each dimension of the resulting distributional pattern
will be influenced by all the dimensions of the original stem vector, with different
FRACSS weights for each affix and unit in the output distribution, thus granting
highly flexible results. Indeed, the newly obtained distributional pattern has a se-
ries of properties that can be meaningfully quantitatively characterized, and can be
compared to those of existing, familiar words to identify its semantic connotation.

In the first experiment, we showed that the perceived meaningfulness of a novel
word is predicted by the properties of FRACSS-generated distributions. More mean-
ingful forms have less entropic representations, that is, the distribution they display
is less uniform, with a few dimensions being particularly active with respect to the
others. Since each dimension in a vector representation can be associated to a se-
mantic domain (Griffiths et al., 2007), a less entropic distribution cues a novel word
with a more specific meaning. More informally, an unknown derived word is con-
sidered more meaningful if it elicits a clear sense in the mind of the speaker, and
entropy computed on the FRACSS-generated vector is a good predictor of this sense
clarity. Perceived meaningfulness was also predicted by the proximity of the newly
obtained representations to the familiar stem, a measure of the extent to which the
distributional semantic representation of the stem is transformed by affixation. If this
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transformation is too extreme, the relation to the stem is lost, and it becomes difficult
to assign a meaning to the new word. On the other hand, low meaningfulness judg-
ments are also obtained in cases in which FRACSS application is nearly transparent,
hardly affecting stem representation. Arguably, in this case, the affixation procedure
is perceived as redundant. Meaningful novel words must be distant enough from their
stems to usefully encode a different meaning, but not so distant that their meanings
can no longer be recovered.

It is worth emphasizing that the training sample on which FRACSSs are based
does not provide direct examples of different degrees of meaningfulness: it includes
familiar and relatively frequent words, all expected to be highly meaningful. Indeed,
meaningfulness becomes a sensible testing ground only after we obtain new word
representations through the compositional procedure. In other words, meaningfulness
is predicted by properties of the newly obtained complex words, that crucially emerge
as a by-product of the combination between a stem vector and an affix matrix (neither
of them intrinsically informative about word meaningfulness).

Through the survey conducted in the first experiment, we obtained a list of
nonce derived forms that were deemed meaningful by participants. In the second
experiment, hence, we could directly evaluate the quality of their FRACSS-based
representations by considering which familiar (existing) words “resonate” with their
distributional patterns, that is, have vectors that are close to the distributional rep-
resentations of the novel forms. If the compositionally obtained novel representations
capture the meanings that speakers assigned to the corresponding novel forms ade-
quately, we expect their neighbors to be words that are semantically related to them
also according to speakers’ judgments. Indeed, participants found automatically ex-
tracted neighbors of novel forms closer in meaning to the novel forms themselves
than to random control words or to the novel word stems. This latter evidence is par-
ticularly important because it indicates that the compositional procedure based on
FRACSS is generating representations that capture the peculiarities of novel derived
forms over and above the meaning of their stems.

To sum up, FRACSSs provide a good model for the semantic processing of novel
morphologically complex words, paving the way to a thorough understanding of the
main determinants of meaning construction in new morpheme combinations.

We conclude this section with preliminary data that show how our system might
produce broadly sensible guesses about the meaning of a novel affixed form even
when the stem of the form itself is novel, simulating the “wug” test (Berko, 1958),
in which children or adults are asked to productively attach affixes to non-lexical
stems. Typically, morphophonological or orthographic properties of the derived form
are investigated (“This is a wug. Now there is another one. There are two of them.
There are two. . .wug[z]”). However, we expect wug words to also come with a certain
degree of semantic expectation. Even if we do not know what zibbing is, we can guess
that a zibber is either a person who zibs or a zibbing tool. Essentially, in this case, a
speaker must resort to the general semantic properties of the affix to deduce part of
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the meaning of the derived form – the part associated to the affix.
As a result of the standard least-squares estimation procedure, a FRACSS ma-

trix contains an intercept vector encoding the averaged contextual distribution (hence,
the distributional meaning) of all derived forms that were used for training. This in-
tercept vector should be a reasonable proxy of “zibber” words, since all we can deduce
about zibbers is that they must do what, on average, -er derivations do. Indeed, we
find that the FRACSS intercepts of productive affixes are associated to semantic
neighbors that contain the relevant affixes. By using such intercepts to represent
zibber words, we naturally capture the fact that, if all we know about the meaning of
a form is that it contains an affix, we can only guess that its meaning will be related
to that of other forms containing the affix. Considering the most productive affixes
in Hay and Baayen (2002) (i.e., those with type frequency above 400), the affix -y
is found in 19 of the top 20 neighbors of the -y intercept; the affix -er is found in
11 of the top 20 neighbors of the -er intercept; the affix -ness is found in 19 of the
top 20 neighbors of the -ness intercept and the affix -ly is found in all of the top 20
neighbors of the -ly intercept. Moreover, even those neighbors that do not directly
contain the affix, typically are associated to it at the meaning level: many neighbors
of the -er intercept, for example, denote professions (compositor, salesman, projec-
tionist), suggesting that the agentive meaning of the suffix dominates its semantic
neighborhood.

This pilot experiment suggests how FRACSSs could capture aspects of the af-
fixes they represent also when applied to semantically void stems. Besides making
predictions about wug derivation, a similar approach might be used for existing words,
such as grocer, that have an active affix attached to a non-lexical stem. Although the
grocer whole-word meaning should be represented holistically, a combinatorial proce-
dure would still be able to capture the affix traits through the FRACSS intercept.

Modeling semantic transparency effects

In the previous section, we have shown how the composition-based approach to
distributional semantics can be profitably used to generate meaning representations
for novel words. The question arises whether the same compositional methods also
have a role to play when familiar derived words are processed. From a theoretical
point of view, if the compositional procedure works for accessing the meaning of
novel forms, it is not clear why it should be blocked when processing other derived
forms. Such conjectured routine application of a combinatorial semantic procedure
presupposes a systematic activation of morphemic units: for composition to operate
at the semantic level, morphemes need to have been previously activated (Rastle
& Davis, 2003, 2008). Moreover, in order for composition to be applied to any
string potentially containing morphemes, morphemic parsing needs to proceed in
a semantically blind manner. Crucially, empirical results consistently show that any
parsable orthographic string is associated to the activation of morphemic information,
irrespective of effective morphological structure (corner vs. darkness, Longtin, Segui,
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& Hallé, 2003), semantic transparency (courteous vs. darkness, Rastle et al., 2004)
and familiarity (quickify vs. darkness, Longtin & Meunier, 2005). We can thus build
on extensive evidence that morphemes are automatically accessed when processing
any word that is potentially complex (Rastle & Davis, 2008).

Assuming that a compositional procedure is always applied when morphological
information is available does not imply that this operation will always be successful
at retrieving the full-fledged semantic denotation of the derived form. Because of the
way they are obtained, FRACSSs reflect statistical systematicities in the relations
between stem and derived word meanings. Our qualitative analysis above showed that
this systematicity encompasses a larger degree of semantic variations than usually
assumed, but the latter are still limited to (semi-)regular, predictable, synchronic
operations. Such procedures, that are effective when building the meaning of novel
derived forms, are bound to miss a certain amount of information when dealing with
some existing words. The lexicon of a language is continuously evolving through
time: complex words becomes progressively more lexicalized, and many of them are
subject to a certain amount of semantic drift. In order to fully explain the semantic
processing of morphologically complex words, the compositional procedure must be
paired with a way to directly access the meaning of the derived form as a whole.
This alternative and complementary whole-word route should capture meaning shifts
caused by diachronic phenomena (as well as morphemic accidents of the corner type).

When dealing with existing words the questions that have to be addressed are
hence rather different from those explored for novel forms. First, we want to eval-
uate to what extent a compositional procedure can explain the semantic variations
present in familiar morphological constructs; or, in other terms, to what extent (semi-
)systematic semantic relations can account for morpho-semantic phenomena. Second,
we aim at assessing the relative efficiency of the two semantic procedures (composi-
tional vs. whole-word) in different tasks and experimental conditions.

A natural domain to test the relative role of the compositional and whole-word
routes to complex word meanings is the empirical study of the degree of semantic
transparency of a derived form with respect to its stem. The semantic transparency
of a complex word indicates how easily the whole-word meaning can be inferred from
the meaning of its parts. For example, the meaning of the transparent derived word
rename is largely predictable from the meaning of its stem (name) and its affix (re-),
whereas the same cannot be said for the opaque remark, whose meaning is not (easily)
understood given the meaning of its parts.

The role of semantic transparency has been a central theme in the literature on
complex word processing, with most research revolving around the hypothesis that
transparent words can be accessed through the representations of their morphemes,
whereas opaque words have to be represented on their own, and thus accessed di-
rectly. This assumption has been largely investigated by means of priming paradigms
(e.g., Feldman & Soltano, 1999), where typically the derived form (e.g., dealer) is
used as the priming stimulus and participants are asked to recognize the following
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stem target (e.g., deal). The priming effect corresponds to the amount of facilitation
in the response latencies as compared to a control unrelated-prime condition (e.g.,
speaker-deal), whereas possible confounds (e.g., orthography, semantics) are excluded
in a series of control conditions. Prime duration (usually measured through the Stim-
ulus Onset Asynchrony, SOA) can be manipulated in order to investigate different
processing levels. The alleged modulation of semantic transparency on morpheme
access is supported by results associated to long-SOA primes: a significant priming
effect is found only for transparent words, whereas with opaque primes it does not
emerge (Rastle et al., 2000; Rueckl & Aicher, 2008; Meunier & Longtin, 2007). Re-
sults are less clear-cut at short SOAs (in particular, in the masked priming condition):
a priming effect is observed for both word types, indicating that, as mentioned above,
at early processing stages morphemes are routinely accessed irrespective of semantic
transparency (Rastle et al., 2004). Still, even at short SOAs some studies report
significant differences in priming effect sizes, with more facilitation for transparent
than opaque words (Diependaele et al., 2005; Feldman et al., 2009; Diependaele et al.,
2009; Järvikivi & Pyykkönen, 2011; Kazanina, 2011; Feldman et al., 2012; Marelli
et al., 2013). Moreover, recent results from both priming (Tsang & Chen, 2014)
and eye-tracking studies (Amenta et al., in press), although confirming that mor-
phological parsing proceeds in a semantically blind manner, also suggest that the
morpheme meanings are accessed straight away after word decomposition. In con-
clusion, empirical evidence shows that semantic transparency plays a role in complex
word recognition, although its effect can be more or less prominent depending on the
processing stage under examination.

Prima facie, opaque words, being traditionally defined by the property of hav-
ing a meaning that is not predictable from their parts, may be seen as outside the
possibilities of our compositional model. Yet we think that this conclusion is far from
granted, as it depends on a series of assumptions regarding the nature of semantic
transparency that are common in the psycholinguistic literature, but not necessar-
ily warranted. First, semantic transparency is often conveniently operationalized in
terms of meaning similarity between a derived form and its stem. This approach hence
focuses on the meaning of the shared stem across the two forms, overlooking the cru-
cial role played by the affixes. In fact, the latter are often active and meaningful also
in opaque words (Baayen et al., 2011), since they carry the correct morphosyntactic
information and respect the grammatical constraints of the combination (-ous marks
the adjective class in courteous, -ic combines with a noun to generate the adjective
cryptic), and often more (-less marks the absence of something in fruitless). This
important role, totally missed when we focus on the derived-form stem only, is a
crucial aspect of the compositional approach that represents affixes as FRACSSs, i.e.,
the functional elements of morphological composition. Second, in most studies the
opaque test set is populated by highly heterogeneous elements, ranging from pseudo-
derived words such as corner to genuinely derived and not entirely opaque ones such
as fruitful. Certainly, in the former case, the correct meaning cannot be obtained
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through combinatorial processes. However, some semantically-opaque derived words
may still show a certain degree of compositional systematicity (Plaut & Gonnerman,
2000; Royle, Drury, Bourguignon, & Steinhauer, 2012), provided the combinatorial
procedure is flexible enough to account for the fact that the affixation process should
select only some specific features that the stem carries (e.g., the metaphorical meaning
of fruit in fruitful, the crypt quality of being dark and difficult to access in cryptic).
The distributional representations we adopted can arguably encode these separate
facets of meaning as specific dimensions of the stem vector (Griffiths et al., 2007),
and FRACSSs should be flexible enough to highlight different features of the input
vectors when generating the derived form (see the examples discussed above). Third,
semantic transparency should not be confused with the degree of systematicity of
derivation: a privative suffix such as -less will in general alter the meaning of the
stem quite a lot, even in forms where the meaning shift is largely predictable: ar-
guably, such forms are systematic but not fully transparent. We think that much
of the earlier literature has mixed up systematicity with the strength of the effect
that the affix-driven transformation has on the meaning of the stem. The results we
are about to report, where our compositional model makes good predictions about
semantic transparency effects, suggest that semantic transparency can, at least in
part, be dissociated from systematicity.11

In conclusion, opacity is not, a priori, a theoretical limit for morpheme combi-
nation at the meaning level, but it rather represents a good empirical benchmark for
the corresponding model, testing its nuance and flexibility.

Quantifying semantic transparency

Following a long tradition in psycholinguistic research (that mostly exploited
LSA-based measures, e.g., Rastle et al., 2000; Milin et al., 2009; Gagné & Spalding,
2009), we operationalized semantic transparency as the proximity between the vector
associated to a target derived form t and its stem s (such that t = d(s), at least
potentially, for some derivation process d()):

ST = cos (~s,~t)

We use this mathematical formulation to describe semantic transparency as
predicted by either the composition procedure or the traditional direct comparison
between stem and derived form. The only difference lies in how ~t (the representation
of the target derived form) is obtained. Under the composition approach, ~t is obtained
by multiplying the stem vector by the FRACSS, hence without relying on an explicit
representation of the derived form. In the latter whole-word approach, ~t is a vector
directly extracted from the corpus-based co-occurrence profile of the derived form,

11As a consequence of our findings, we might argue that transparency and opacity are somewhat
misleading terms for the phenomenon we are trying to model. Still, we stick to them for termino-
logical coherence with the earlier literature.
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hence ST depends on the similarity between two separate, explicit representations. To
further clarify: the composition approach also yields a single vector representing the
whole-word meaning of the derived form, however the latter is obtained by stem+affix
composition, instead of being induced directly from the corpus contexts in which the
derived word occurs.

Although we eventually compute the same transparency score (that is, the co-
sine between stem and derived-form vectors) under both approaches, the theoretical
implications associated to how ~t is obtained are crucial, and can be connected to the
morpho-semantic routes we proposed for the semantic processing of existing words.
Whole-word-based ST is not truly a morphological measure, as it rather quantifies
the association between two independent meanings. Under this approach, ST indi-
cates how much a derived form is related to its stem in the same way in which the
cosine measure might tell us how much dog is related to cat. Therefore, the whole-
word model explores a semantic system populated by holistic, encapsulated meanings.
On the contrary, composition-based ST quantifies how much the meaning of a stem
word is altered by the affixation process, that is, to what extent a FRACSS changes
the stem meaning, where this change should be, to a certain extent, systematic (as
opposed to unpredictable). This approach is more easily connected to a morpheme-
based semantics, since it does not assume explicit representations for the derived
forms, which are generated on-line by combining the morphemes they are made of.

In the following experiments, the ST measures resulting from the whole-word
and composition-based approaches will be assessed by considering a series of behav-
ioral effects in morphological processing. The phenomena under examination include
explicit judgments of semantic transparency, facilitation in morphological priming,
and morpheme-frequency effects on lexical decision latencies.

Explicit intuitions about affixed words

Human ratings about the semantic properties of words are the traditional bench-
mark for the reliability of distributional semantic measures, and the case of semantic
transparency of complex forms makes no exception (e.g., Kuperman, 2009). The
assumption is that cosine similarity between stem and derived-form vectors should
correlate with explicit intuitions about the degrees of semantic transparency of the
derived form. Certainly, this alleged correlation does not necessarily mean that distri-
butional measures would be effective predictors of language processing (e.g., Baayen,
2013). Still, distributional semantic measures are expected to explain, at least par-
tially, the variability observed in human judgments about the semantic transparency
of derived forms.

Materials and Methods. A set of 900 word pairs, each including a derived
form and its stem, were included in the experiment. Stimuli were chosen by randomly
sampling 50 derived forms from each of the 18 affixes (15 suffixes and 3 prefixes) with
the highest number of training examples (i.e., largest family sizes) from our FRACSS
set (see Table A1).
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Semantic transparency ratings were collected by means of a crowdsourcing
study. Participants were again recruited from Amazon Mechanical Turk through
CrowdFlower. Only (self-declared) native speakers of English were admitted. Par-
ticipants were asked to rate the pairs for how strongly related the meanings of their
component words were on a 7-point scale, ranging from “completely unrelated” (1)
to “almost the same meaning” (7). 7 judgments were collected for each pair. In order
to ensure that participants were committed to the task and exclude non-proficient
English speakers, we used 60 control pairs as verification items, consisting of pairs ei-
ther including highly transparent derived forms (singer-sing) or pseudo-derived words
whose apparent complexity is just orthographic happenstance (corner-corn). Partic-
ipants who gave obviously wrong answers to these control pairs (at the opposite of
the expected end of the transparency scale) were automatically excluded from the
experiment. By-item average scores were used as dependent variable. The resulting
dataset has already been employed in Lazaridou, Marelli, et al. (2013), and can be
downloaded from http://clic.cimec.unitn.it/composes/FRACSS/. Six pairs were
excluded from the analysis for technical reasons.

As described above, semantic transparency was operationalized as the cosine
similarity between stem and derived-form vector. For semantic composition, the
derived-form vector was induced by applying the relevant FRACSS to the stem vector,
whereas for the whole-word approach we extracted the derived-form vector directly
form the corpus. These distributional measures were separately tested as predictors
of participants’ ratings.

Results. Collected judgments had an inter-rater agreement of 60%. The dis-
tribution of the average ratings was negatively skewed (mean rating: 5.52; standard
deviation: 1.26). Figure 4 compares this distribution with those produced by the
models (human ratings were rescaled to the 0−1 range for direct comparability).
Although the model-based scores are clearly more Gaussian-distributed, their rank-
based correlations with participants’ ratings are significant (composition: rho = .32,
p = .0001; whole-word: rho = .36, p = .0001).

In order to rule out the possibility that the performance of a method depends on
particularly effective representations of only few, more regular, affixes, we tested the
ST measures in mixed-effects models including random intercepts and slopes associ-
ated to the affixes (p-values were computed adopting the Satterthwaite approximation
for degrees of freedom). The effects are indeed confirmed for both whole-word ST
(t = 5.75, p = .0001) and composition ST (t = 2.57, p = .0221), with the former
approach clearly outperforming the latter (∆AIC = 81, see Wagenmakers & Farrell,
2004).

Results are consistent in analyses using ranks in place of average judgments
(whole-word: t = 6.97, p = .0001; composition: t = 3.57, p = .0004), indicating
that they are not overly influenced by the skewness of the dependent variable. Still,
to exclude the possibility that good performance is due to transparent words being
overrepresented, we median-split the items on the basis of their transparency ratings.
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Figure 4 . Distribution of Semantic Transparency values in human ratings and in the model-generated
measures.

The effects of the transparency measures hold in both the high-transparency (whole-
word: t = 4.35, p = .0002; composition: t = 2.57, p = .0103) and low-transparency
sets (whole-word: t = 3.41, p = .0027; composition: t = 2.17, p = .0339), confirming
the reliability of the results and good performance of the models.

Discussion. Results indicate that distributionally-based semantic trans-
parency measures significantly predict human intuitions. The semantic composition
approach does not perform as efficiently as the direct measure of semantic relatedness
based on whole-word vectors. Still, the effect of the composition-based transparency
variable is significant throughout a series of control analyses, and in particular when
focusing on low-transparency words. Semantic opacity can hence be reframed, at
least in part, in terms of strong but systematic semantic composition effects on the
meaning of the stem, still amenable to a suitably flexible compositional analysis. An
opaque word is not necessarily a word subject to unpredictable, lexicalized drift; it
can also be a derived form in which the affixation process has a strong effect on the
resulting meaning, taking it farther way from the stem than is the case in transparent
words.

As suggested in the qualitative-analysis section, this more general and nuanced
view of semantic transparency is possible because FRACSSs are flexible enough to
capture sub-regularities in the production of new meanings through derivation, thus
extending the boundaries of systematicity. For example, -ful and -less do not always
modify the primary meanings of the stems they are attached to, but rather they
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apply to a metaphorical or secondary sense when attached to certain words (e.g.,
fruit, heart). Similarly, -y often generates adjectives recalling general, less-defined
connotations of their stems, rather than their proper meanings (as in beefy, foxy).
Specific semantic features or alternative facets of meanings are captured by different
dimensions in the vector representations we developed (as already discussed, vector
dimensions can be assigned an intuitive semantic interpretation, see, e.g., Griffiths et
al., 2007). The functional approach we adopted is able to learn which dimensions are
more likely to generate more opaque meanings when combined with specific affixes: a
word that is particularly characterized by dimensions denoting a metaphorical mean-
ing, for example, may be more likely to generate an opaque form when combined with
-less.

We are not claiming that the whole spectrum of semantic transparency effects
can be explained compositionally. As mentioned, there are phenomena in the lexi-
con that cannot be predicted in compositional terms, such as lexicalization, semantic
drift, and purely etymological relations. To understand the meaning of, e.g., archer,
whole-word access is needed, since in contemporary English arch has lost the relevant
bow sense. This explains why the whole-word approach outperforms composition in
predicting human intuitions: all these non-systematic aspects are part of a speaker’s
lexical knowledge, and obviously impact the way participants perceive complex words
in a task involving explicit judgments. In these particular cases, the compositional
approach may even be misleading, as it might generate transparent meanings for the
opaque forms. Indeed, the semantic neighborhood of the composed vector for archer
includes decorator, craftsman, carver, carpenter, all words reflecting the present mean-
ing of arch as an architectural element.

However, the present results suggest that these latter cases represent only a lim-
ited portion of the vectors generated using FRACSS, and that semantic composition
captures a much wider range of the opacity continuum than previously thought. In-
deed, words like heartless, fruitful, foxy, courteous are usually classified as opaque, but
the compositional procedure can produce a good approximation of their meanings:
we find that the FRACSS-derived vector for fruitless includes in its neighborhood
depressingly, monotonous, dreary; foxy includes sluttish, leggy, dishy; and heartless
includes unfeeling, brutish, callous, pitiless.

As mentioned in the introduction to this experiment, explicit judgments are
not necessarily the best way to assess a model of complex word meaning. In fact,
the rating distribution is very skewed: most words are perceived to be extremely
transparent by participants, that are arguably missing subtle meaning variations be-
tween a derived word and its stem. Vector-based measures, on the contrary, have
more Gaussian-shaped distributions. In other words, it seems that these latter mea-
sures are better suited to capture the continuous nature of semantic transparency (see
Gonnerman, Seidenberg, & Andersen, 2007) than explicit judgments are. It is not
surprising, then, that they were found to be better predictors of processing measures
(e.g., response latencies, fixation times) than human ratings (Baayen, 2013). In the
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next experiments, we will thus turn to predicting response times in lexical decision
tasks.

Priming effects at different SOAs

In the present experiment we consider priming effects in lexical decision, focus-
ing on paradigms in which the derived form is used as prime for the corresponding
stem. The scope of this empirical analysis is twofold. First, priming paradigms are
traditionally used to test the time course of lexical processing: the relation between
priming effects and vector-based measures can thus shed light on which processing
levels are affected by the semantic operations we are modeling. Second, in the previ-
ous section we studied a large random sample of derived forms; priming experiments
offer instead the opportunity to focus on small, well-defined test sets, in which the
difference between transparent and opaque words is extreme by design, thanks to the
selection procedure carried out by expert language researchers.

Materials and Methods. We employed item sets previously used by Rastle
et al. (2000) in a series of priming experiments. In that study, priming effects were
tested in a number of different conditions, including orthographic, purely semantic,
and unrelated pairs. We focused on the morphologically transparent (dealer-deal) and
opaque conditions (cryptic-crypt). The former set included 24 derived-stem pairs, and
the latter set included 21 pairs (we excluded the original pair creature-create, because
-ure is not among our FRACSSs, and apartment-apart, because apart is not in our
semantic space). The two sets were originally validated by human ratings on semantic
transparency and LSA measures.

The item pairs were used in masked priming experiments adopting different
SOAs (43ms vs. 72ms vs. 230ms), where SOAs correspond to the duration of pre-
sentation of the prime stimulus, i.e., the derived word. SOA effects are believed to
be informative of the involved processing stages: since prime processing is limited by
presentation time, the shorter the SOA, the earlier the associated priming effect will
occur (although this assumption is questionable, see Tzur & Frost, 2007; Norris &
Kinoshita, 2008). We used the average reaction times (RTs) of each pair as reported
in the appendix of Rastle et al. (2000).

We employed these stimuli, and the associated RTs, as a test set for our vector-
based measures. As in the previous analysis, we used proximity between stem and
derived vectors as a proxy for ST, where the derived vector could be constructed
through the compositional method or directly extracted from the corpus (whole-word
approach). First, we tested whether the measures were able to correctly distinguish
between opaque and transparent items. Second, we assessed the association between
vector-based measures and RTs at different SOAs.

Results. Figure 5 reports the average proximity for opaque and transpar-
ent pairs, as predicted by the composition- and whole-word-based approaches. The
composition-based measure predicts derived forms to be more similar to their stems
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Figure 5 . Similarity between derived words and their stems in the opaque and transparent sets, as
predicted by the composition- and whole-word-based proximity measures.

than the whole-word-based measure does, but both models correctly distinguish trans-
parent and opaque sets: proximity is significantly higher in transparent than in opaque
pairs for both the composition (t(43) = 3.01, p = .0043) and whole-word measures
(t(43) = 9.19, p = .0001).

Figure 6 reports priming effects at different SOAs, when derived forms are used
as primes and the corresponding stems as targets (Rastle et al., 2000). As suggested
by a visual comparison of figures 5 and 6, the proximities produced by the composition
approach pattern very well with results at the shortest SOA, whereas whole-word-
based predictions are more in line with data from longer SOAs. Indeed, when using
the composition-based approach, the vector-based proximity measure is correlated
with RTs at SOA = 43ms (r = −.38, p = .0104), but neither at SOA = 72ms
(r = −.24, p = .1114) nor at SOA = 230ms (r = −.22, p = .1419). The opposite
pattern is found with the whole-word approach: vector similarity is not correlated
with RTs at SOA = 43ms (r = −.27, p = .0735), but it’s correlated with results at
both SOA = 72ms (r = −.53, p = .0001) and SOA = 230ms (r = −.54, p = .0001).
Results are confirmed in a series of mixed-effects analyses12 including affix-associated
random effects.

One reviewer suggested that the latter results might be accounted for in terms of
orthography-semantics dissociation: whereas whole-word ST is a measure of seman-

12Composition ST: SOA = 43ms, t = 2.68, p = .0104; SOA = 72ms, t = 0.88, p = .3801; SOA =
230ms, t = 1.05, p = .3010
Whole-word ST: SOA = 43ms, t = 1.75, p = .0889; SOA = 72ms, t = 4.09, p = .0002; SOA =
230ms, t = 4.27, p = .0002
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Figure 6 . Priming effects of derived forms on recognition of the corresponding stems at different
SOAs. Adapted from the results of Rastle et al. (2000).

tic relatedness, compositional ST would mainly capture the orthographic similarity
between stems and derived words, and it would be this form similarity to explain
short-SOA effects. However, this hypothesis does not hold against empirical evi-
dence. If the compositional approach is actually capturing systematic orthographic
relations, the composed derived representations should mainly encode orthographic
information. It would follow that the neighbors of a composed derived form should
be orthographically similar words, and significantly more so than the neighbors of
the whole-word vector representing the same form. This is not the case. The Lev-
enshtein distance (Yarkoni, Balota, & Yap, 2008) between a derived form and its
top ten nearest neighbors is not significantly different when the derived-form vector
is obtained compositionally (mean = 6.82; SD = 2.73) as opposed to being directly
constructed from co-occurrence counts (mean = 6.64; SD = 3.16). This is confirmed
by a mixed-effects analysis including random intercepts and slopes of target words
(t = 0.93; p = .3571). The reported results cannot thus be explained in orthographic
terms.

Discussion. The present results corroborate those we obtained on trans-
parency ratings, indicating that, even when a dichotomized set of transparent
vs. opaque forms are considered, distributionally-based measures are able to effec-
tively distinguish the groups. This is not surprising for the whole-word approach, as
LSA measures were used, in the very first instance, to construct the two sets (Rastle
et al., 2000). However, results indicate that the same holds for composition-based
similarity estimates, confirming the hypothesis that even opaque words manifest a
certain degree of compositionality that is effectively captured in the proposed model.
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Moreover, the present results indicate that whole-word and compositional ap-
proaches dissociate with respect to their quantitative predictions about the item sets
and that these predictions pattern quite well with results at different SOAs. The
compositional approach predicts opaque and transparent items to be more similar,
in terms of ST, than the whole-word approach does. This prediction is mirrored by
priming effects at very short SOAs, indicating facilitation for both transparent and
opaque words, with a slight advantage for the former (e.g., Diependaele et al., 2005;
Feldman et al., 2009). On the other hand, the large difference found between trans-
parent and opaque items by the whole-word-based measure resembles quite faithfully
the pattern of results at longer SOAs (e.g., Rastle et al., 2000; Rueckl & Aicher,
2008), where the priming effect is found in transparent pairs only. This dissociation
between the distributional measures indicates that the two approaches we described
do not necessarily exclude one other, that is, the compositional approach is not sim-
ply a full-parsing attempt to recreate the corpus-extracted distributional vectors of
derived forms. Rather, from a cognitive point of view, they might constitute mod-
els of different semantic processes. The compositional approach captures an early,
automatic procedure that capitalizes on regularities and sub-regularities in the se-
mantic system to attempt to combine the meanings of the observed morphemes. The
whole-word approach captures instead late procedures based on the semantic simi-
larity between lexical items (including stored representations of derived forms); this
similarity is not only determined by systematic aspects, but also by unpredictable lex-
icalization processes that fall beyond the possibilities of the compositional approach.
The late semantic procedure taps into stored knowledge about word meanings that
cannot arguably be accessed during the early, fast composition procedure.

As previously mentioned, short-SOA morphological priming experiments mainly
indicate a purely form-based decomposition (e.g., Rastle et al., 2004): early in pro-
cessing, words are morphologically parsed solely on the basis of their apparent mor-
phological complexity, irrespective of actual morphological structure. Indeed, prim-
ing is found for pairs like number-numb and dealer-deal, and not for pairs such as
dialog-dial (where -og is not a potential morpheme). The present results do not chal-
lenge the role of purely orthographic segmentation in short-SOA priming effects. To
the contrary, as we discussed in the introduction to the semantic transparency ex-
periments, our proposal presupposes this automatic parsing of superficially complex
strings, so that the compositional procedure can apply to any potentially complex
word (Rastle & Davis, 2003, 2008). However, the present simulations also suggest
that an automatic combinatorial procedure of morpheme meanings would build upon
this orthography-based segmentation (in line with Tsang & Chen, 2014; Amenta et
al., in press). This additional semantic procedure, consequent to a semantically-blind
parsing, would explains the asymmetry that we observe, at short SOAs, between
transparent and opaque forms. The present results confirm that a combinatorial
view is crucial in understanding this early semantic processing. Suppose that, after
semantically-blind parsing of complex words, the resulting morphemes are system-
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atically recombined in an early semantic operation. As suggested by the examples
discussed in the previous section, the combinatorial procedure will be, in some cases,
able to generate the proper “opaque” meaning of some words (e.g., fruitless as “un-
productive”). As this meaning is quite different from that of the stem, the semantic
contribution to priming effects will be absent or weak. On the other hand, it will
produce a transparent version of the meanings of very idiosyncratic combinations
(e.g., archer as“’builder of arches”, corner as “corn grower”), which paradoxically
will trigger semantic priming (over and above the form facilitation). Most opaque
words will fall somewhere between these extremes, resulting, at the aggregated level,
in the pattern represented in Figure 5, that is, a priming effect that is not as strong
as that observed for transparent words (where the compositional procedure always
results in a meaning close to the one of the stem).

This interpretation may help explaining the brittleness of the (small) advantage
for transparent vs. opaque priming at short SOAs (e.g., Diependaele et al., 2005;
Feldman et al., 2009; Kazanina, 2011; Järvikivi & Pyykkönen, 2011). The variabil-
ity in this much discussed effect could depend on the different makeup of the item
lists. The semantic effect would emerge in studies whose opaque items have mean-
ings mostly obtainable compositionally; on the other hand, the semantic effect would
not emerge in cases where most items have highly idiosyncratic meanings, for which
the compositional procedure would only generate transparent alternatives. In the
former scenario, a priming effect at the semantic level will be (somewhat) smaller
for the opaque set, since the corresponding item stems are more heavily modified by
their affixes. In the latter case, the compositional procedure will generate transparent
meanings for both the transparent and the opaque sets, leading to no difference be-
tween the two conditions. More generally, the semantic contribution to the priming
effect will be limited (and thus the ST modulation small) because it builds on the
stronger systematic influence of the orthographic form at short SOAs.

Certainly, the present considerations seem at odds with the traditional take on
masked priming studies, that are usually assumed to reflect pre-semantic process-
ing. However, more recent results are in line with our interpretation: in masked
priming conditions, Tsang and Chen (2014) found that opaque words significanlty
prime targets that are semantically associated to their stems (e.g., butterfly-bread).
The authors further showed (Tsang & Chen, 2013) that semantic properties of mor-
phemes are activated in a masked priming paradigm. Although we must be cautios
in drawing strong methodological conclusions from our simulations (proposing a new
theory of priming is not the purpose of the present paper), we believe that the present
model may help reconciling this apparent inconsistency in masked priming results.
The traditional priming experiments have investigated semantic associative relations
that the present model ascribes to the whole-word route. This latter would be based
on long-term, stored lexical knowledge, hence explaining why the associated priming
effect can only appear in long-SOA conditions, where the association between prime
and target can be explicitly appreciated. On the other hand, the more recent results
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have focused their attention to morpheme meanings. The results they obtained fit
well the predictions of the combinatorial route, that rapidly computes the whole-word
semantics by relying on the representations of morpheme meanings. The combinato-
rial take on semantics would thus be crucial in explaining semantic effects at short
SOAs. Interestingly, this hypothesis is also consistent with results from eye-tracking
literature, indicating that early semantic transparency effects in complex word pro-
cessing are compositionally connoted (Marelli & Luzzatti, 2012; Amenta et al., in
press). Further research on the issue is certainly needed, but we find the converging
evidence between the present approach and the results of these recent studies very
promising.

As a final note, it is worth stressing again that the present proposal implies
an early processing of complex words centered on orthography. As a consequence, it
does not preclude the possibility to isolate this pre-semantic processing stage through
experimental manipulations. For example, Gold and Rastle (2007) found no over-
lap between neural priming effects for semantic pairs and neural priming effects for
opaque morphological pairs, and the areas associated with morphological effects (left
anterior middle occipital girus) were quite unlikely candidates for a semantic proce-
dure. The very short SOA (30ms) used in the study may have helped evidencing
a purely morpho-orthographic procedure. As proposed by Gold and Rastle (2007)
themselves, further studies manipulating SOAs (e.g., incremental masked priming)
would be helpful for a better understanding of the influence of prime duration.

Modulation of frequency effects in lexical decision

Frequency effects have been traditionally seen as diagnostic of the involvement
of the corresponding word (or morpheme) representations in lexical processing. If,
when reading a derived word, participants’ performance is influenced by stem fre-
quency, the corresponding stem representation must contribute in some way to the
processing of the derived word. Although many studies have exploited frequency
effects to investigate derived-word processing (e.g., Taft, 2004; Baayen, Wurm, &
Aycock, 2008; Traficante, Marelli, Luzzatti, & Burani, 2014), surprisingly this has
not been done in conjunction with semantic transparency measures. This tradition is
instead well-established in the compound domain, where many studies investigated
how ST modulates constituent frequency effects (Pollatsek & Hyönä, 2005; Frisson,
Niswander-Klement, & Pollatsek, 2008; Marelli & Luzzatti, 2012). In the present
experiment we take inspiration from this research line to test our model: the impact
of distributionally-defined ST measures will be assessed in a lexical decision task by
evaluating how they modulate stem and whole-word frequency effects.

Materials and Methods. A set of 3,806 affixed words and the corresponding
lexical decision latencies were extracted from the English Lexicon Project database
(ELP; Balota et al., 2007). All selected stimuli contained one of the trained affixes (see
Table A1) and were considered morphologically complex on the basis of the morpho-
logical annotation provided by CELEX (Baayen et al., 1995). Response times (RTs)
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Table 6
Summary of the fixed effects in the analysis of lexical decision latencies, using either composition-
based ST or whole-word-based ST as fixed predictor.
Predictor Composition ST Whole-word ST

Estimate t p Estimate t p
Intercept 6.635 1060.18 .0001 6.636 1048.49 .0001
Stimulus length (RCS 1) 0.015 6.69 .0001 0.015 6.81 .0001
Stimulus length (RCS 2) 0.017 5.73 .0001 0.017 5.67 .0001
Derived-word frequency -0.043 -37.11 .0001 -0.043 -36.52 .0001
Stem frequency -0.011 9.83 .0001 -0.011 -9.68 .0001
ST -0.018 -1.11 .2809 -0.007 -0.59 .5615
Derived-word frequency * ST 0.021 2.84 .0045 0.009 1.79 .0732
Stem frequency * ST -0.014 -2.23 .0261 -0.010 -2.29 .0216

in lexical decision were employed as dependent variable. RTs were logarithmically
transformed in order to obtain a more Gaussian-like distribution.

Word frequency of derived forms and stems were collected from the CELEX
database (Baayen et al., 1995). Again, semantic transparency was modeled as the
proximity (measured by cosine of angle) between the stem vector and either the
composed vector of the derived form (composition approach) or its corpus-extracted
(whole-word) vector. The interactions between these vector-based semantic measures
and the log-transformed frequency variables were tested through mixed-effects anal-
yses, including stimulus length (in letters) as an additional covariate.

Results. Table 6 reports the results of the analyses employing either
composition- or whole-word-based ST measures. We also included per-affix random
effects on the intercept and the slope of the ST measures, in order to account for
affix-associated variance. P-values were computed adopting the Satterthwaite ap-
proximation for degrees of freedom. All predictors were mean-centered in order to
ensure more reliable parameter estimation. A non-linear length effect improved the
model fit; it was computed using restricted cubic splines with three nodes. The in-
teractions between ST and both stem frequency and derived-word frequency were
significant for the semantic composition model, whereas only the interaction with
stem frequency was evident in the whole-word-based analysis. In the present results,
the composition approach provides a better fit to the data with respect to the whole-
word approach (∆AIC = 8). This difference is not negligible: following the approach
proposed by Wagenmakers and Farrell (2004), ∆AIC = 8 would indicate here that
the composition model is 54.6 times more likely to be a better model (in terms of
Kullback-Leibler distance from the distribution generated by the “true” model) than
the whole-word approach.

The interactions involving stem frequency in the two analyses are represented in
Figure 7. The effects have very similar patterns: the higher the similarity between the
stem and the derived-form vectors (either composed or extracted from the corpus), the
more facilitatory the effect of stem frequency. In other words, having frequent stems
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Figure 7 . Interactions between stem frequency and ST measures in the composition- (left panel)
and whole-word-based (right panel) analyses.

is most helpful when these are similar in meaning to the corresponding derived forms.
The interaction involving derived-form frequency in the composition-based analysis
is represented in Figure 8: the lower the similarity between the stem vector and the
composed vector of the derived form, the more facilitatory the effect of derived-form
frequency is.

The superiority of the compositional approach in the present task is further sup-
ported by a follow-up analysis on the residual RTs of the statistical model employing
whole-word ST. These latter data capture the variance in response times that is not
explained when applying whole-word ST. Indeed, a significant interaction between
compositional ST and derived-form frequency emerges in this control test as well
(t = 2.071, p = .0384), indicating that the compositional approach is able to explain
a portion of variance in RTs that is crucially missed when using whole-word ST.

Discussion. In the present section we have shown that the ST measures ex-
tracted through our model significantly interact with frequency effects in visual word
recognition. Frequency effects arguably reflect the ease of access to the concepts
subtending the corresponding words (Baayen, Feldman, & Schreuder, 2006). Hence,
these interactions are highly informative of the interplay between morpheme meanings
during the processing of morphologically complex words.

On data from a straightforward lexical decision task, the measure from the
composition approach (a) outperforms the corresponding measure from the whole-
word framework in terms of fit and (b) it is able to capture a wider range of phenomena
associated to ST. The better performance of the composition-based measure can be
explained by considering what we have discovered so far about the cognitive processes
underlying it. First, the composition procedure encompasses a wide set of semantic
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Figure 8 . Interaction between derived-form frequency and ST in the composition-based analysis.

regularities and sub-regularities in the derivational process, and it is thus able to
produce words on a wide range of the semantic transparency scale (as emerging from
the analysis of explicit ST judgments as well as the qualitative analysis of FRACSS-
based vectors of derived words). Second, the compositional procedure is fast and
automatic, and builds over very early access to constituent morphemes (as suggested
by the section on morphological priming). These properties are particularly useful in
a lexical decision task, where participants are asked to evaluate as fast as possible the
stimulus lexical status, rather than accessing the whole range of semantic properties
of the target word. The composition process is arguably able to produce a “familiar
enough” meaning to efficiently perform this task, even if it cannot account for a a
series of semantic aspects (resulting from semantic drift, diachronic lexicalization,
etc.) that we established to be outside the scope of composition, and rather captured
by whole-word semantics (and hence whole-word ST). This explanation is in line with
a number of results in the literature indicating the importance of stem meaning when
performing lexical decision of derived words (e.g., family size effects; De Jong et al.,
2000). Also, it fits well with previous results on the pervasiveness of morphological
combination, showing that it occurs even when experimental manipulations make
composition much less efficient (Taft, 2004).

Over and above the good overall performance of the compositional approach,
the associated ST measures resulted in interactions that are also informative of the
dynamics involved in the composition process. First, we found an interaction between
ST and stem frequency. The effect indicates that, as expected, the familiarity with
the concept subtending the stem is more important when the latter is less strongly
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affected by the combination with the affix (i.e., when ST is higher). In other words,
the ease of access to the stem meaning is important when that meaning is not dras-
tically changed by the FRACSS (transparent words), but not very helpful when that
meaning is not maintained through the combination process (opaque words). Second,
we found an interaction between ST and derived-form frequency: the lower the ST,
the stronger the facilitatory effect of frequency. Under the traditional view of ST,
this effect could be easily explained as whole-word access for opaque words. However,
in the compositional approach (the only one that shows this effect) there is no stored
representation of whole-word meaning. Hence, these results suggest an alternative
explanation, following the hypothesis that whole-word frequency effects would reflect
stored combinatorial knowledge about morphemes (i.e., their joint probability), rather
than being evidence for whole-word lexical representations (Baayen, Wurm, & Ay-
cock, 2008). On the basis of the present results, this stored combinatorial knowledge
would be more helpful for opaque words. In these cases, the composition process rad-
ically changes the stem meaning, and will thus be particularly demanding in terms of
cognitive resources; these words will hence benefit more from whole-word frequency
since the possibility to rely on stored information will be much more helpful in cases
where the underlying process is more difficult.

General discussion of the semantic transparency experiments

In this section we have tested measures generated from our model in tasks in-
volving existing derived words. In particular, we focused on semantic transparency,
operationalized as the proximity between the vector associated to the word stem and
the vector associated to the derived form. This latter distributional representation
could be either directly extracted from corpus co-occurrences of the derived form,
treated as a standalone item (whole-word approach), or generated through our data-
induced compositional procedure (composition approach). The two approaches do
not constitute alternative explanations for the same process; rather, they appear to
be models of cognitively different and behaviorally distinguishable procedures. In-
deed, in a series of three benchmark tests we observed a clear dissociation between
composition- and whole-word-based representations. Composition is most predictive
of lexical decision latencies and short-SOA priming effects. It can thus be described
as an early, fast procedure, that builds on automatically accessed morphemes (Rastle
et al., 2004) and generates derived-word meanings on the basis of systematic seman-
tic (sub-)regularities. The whole-word-based measure is a good predictor for explicit
judgments on semantic transparency and long-term priming effects. These results
suggest a procedure that emerges late during word processing, capitalizes on the
similarity between different meanings, captures non-systematic, unpredictable phe-
nomena, and is at least partially based on stored knowledge.

The architecture described is that of a dual procedure system similar to those
often proposed in morphological processing (Chialant & Caramazza, 1995; Schreuder
& Baayen, 1995; Clahsen, 1999). However, these models mostly focused on the lexical



MODELING MORPHEME MEANINGS WITH DISTRIBUTIONAL SEMANTICS 48

processing of complex forms. In the present study, the dual route architecture is ap-
plied to semantic computation. On the one hand, the meaning of a derived form can
be accessed directly as an activation pattern throughout a series of semantic nodes;
this distributed representation would include the full extent of the meaning informa-
tion holistically associated to the word, including non-systematic aspects depending
on lexicalization processes. This procedure would model ST as a by-product of the
similarity between the meaning of the derived form and the co-activated represen-
tation of the stem, in a “network resonance” process similar to the one proposed to
explain family size effects (De Jong et al., 2000). On the other hand, the composition
route would capitalize on a series of semantic nodes activated by the stem, that is in
turn transformed through the FRACSS application. The resulting activation pattern
would approximate the derived word meaning on the basis of statistical regularities
in the affix semantics. In this procedure, ST will capture the amount of meaning
modification that the stem undergoes following affix application, independently of
the degree of predictability of the transformation (up to a limit).

We hypothesize that the two routes apply to any word that is (apparently) com-
plex, irrespective of its actual morphological complexity. In other words, both words
traditionally considered transparent (e.g., builder, happiness) and words traditionally
considered opaque (e.g., fruitless, archer) would undergo the same dual procedure.
Whereas the whole-word route would obviously efficiently retrieve all the semantic
aspects of the derived word, irrespective of its ST, one may reasonably doubt of the
effectiveness of the composition procedure when dealing with opaque words. Sur-
prisingly, we have shown that a composition approach can explain a wider range of
phenomena that one may expect: (many) opaque words present a certain degree of
systematicity, that FRACSSs are able to capture. As a consequence, the meanings
of words like fruitless, foxy, or heartless can be obtained compositionally, making the
corresponding route reliable for most complex words. At the same time, the prox-
imity of the stem to the obtained derived form serves as an effective cue of (certain
aspects of) semantic transparency.

Certainly, in some cases (archer, corner) there is no systematic or synchronic
relation between the derived form and its (pseudo-)morphemes to rely on. These cases
represent an obvious limitation for the compositional route that, we have shown, ends
up generating “transparent” alternatives for the meaning of very opaque words (e.g.,
archer as an artisan who builds arches). Given these limitations, one may wonder why
a suboptimal system should be applied at all, given the reliability of the alternative
whole-word route. Many reasons support the compositional conjecture. First, the
empirical results we reported indicate that, in specific tasks, the composition approach
generates ST scores that are better at predicting human performance than the whole-
word ones. When semantic access is constrained by the experimental setting (short
SOA priming) or not fully required to perform the task (lexical decision), composition
provides a faster alternative to the whole-word route.

Second, from a theoretical point of view, the processes of a biological system
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need not to be optimal, but rather satisficing (Simon, 1956; for a thorough discussion
on the issue, see Bowers & Davis, 2012). The composition procedure seems indeed to
be “good enough”, being effective on the majority of complex words (all the trans-
parent ones and many of the opaque ones). Moreover, the assumption of multiple
procedures for the same purpose is in line with the principle of maximization of op-
portunity (Libben, 1998), that has provided theoretical backing to successful models
of morphological processing (e.g., Kuperman, Schreuder, Bertram, & Baayen, 2009).

Third, there are many cases in which a compositional procedure is required to
obtain the correct meaning. These cases do not only include novel words, but also
opaque words that can have alternative transparent readings: words like chopper and
ruler, despite having dominant opaque meanings, carry also transparent senses that
can be obtained compositionally. Indeed, it is possible to imagine contexts in which
even the most opaque word can be used compositionally: forty indicates a number,
but one could imagine a group of ancient Romans spotting a piece of land and saying
“That area looks quite forty” (i.e., a good place to build their fort)13. Recent results
confirm that context can be used to prime a transparent reading of opaque words
(Amenta et al., in press), and that a compositional procedure is used to retrieve the
alternative meaning.

The proposal of a dual-route system opens new research questions related to
the relative efficiency of the two procedures. These do not only include the variability
in performance across tasks and word types, investigated here by focusing on the ST
scores produced by either procedure. It also gives the chance to investigate the extent
to which the two routes produce consistent results, and how this affects word pro-
cessing. Such consistency can be easily quantified by the cosine similarity between
vectors representing derived forms obtained compositionally and derived-word vec-
tors represented holistically from corpus co-occurrences. This index will measure the
degree of systematicity of a derived-word meaning, that is, it would indicate to what
extent the meaning of the word is computable through semantic (sub-)regularities.
The cognitive process underlying the measure would be a stage at which the seman-
tic information from the composition and the whole-word route are integrated into a
unique representation. A reasonable prediction is that the closer the representations
generated by either route, the easier the integration will be, corresponding to shorter
processing times observed at the behavioral level.

Finally, the experiments reported in this section suggests that semantic trans-
parency is a more nuanced phenomenon than usually assumed. Specifically, it encom-
passes both the traditional dichotomy between forms whose meaning can be predicted
from their stems and idiosyncratic ones, but also the amount of transformation of stem
meaning that is brought about by an ultimately systematic affixation process. This
latter effect only becomes clear thanks to our compositional framework, that allows
us, for the first time, to go beyond intuitive arguments about systematicity, mak-
ing precise predictions about which affix-triggered meaning transformation patterns

13We are grateful to Kathy Rastle for this example
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are statistically robust enough to be captured by a suitably flexible compositional
process.

An important point that will require further investigation is the relative speed
of the processing routes. In fact, why the composition route should be faster than its
counterpart remains an open question. The reasons may rest on the properties of the
routes themselves: the whole-word procedure has to retrieve the semantic representa-
tions of two independent words (stem and derived form), whereas composition relies
on stem meaning only, that is then transformed using one of a limited set of func-
tions. The latter procedure, in our model, can thus be seen as the update of a single
semantic pattern (the stem), rather than the actual combination of two independent
meaning representations. This hypothesis is in line with approaches positing quali-
tative differences between the meanings of stems and affixes (Laine, 1999; Lehtonen
et al., 2014). On the other hand, it seems at odds with the model by Grainger and
Ziegler (2011), in which the coarse-grained (global) route accesses semantics faster
than its fine-grained counterpart. We believe this inconsistency is only apparent.
Grainger and Ziegler model how orthographic information can activate semantics,
whereas the present approach simulates operations within the semantic system itself
(and, in particular, how a ST effect can emerge). Therefore, the two approaches focus
on different processing levels, and address very different theoretical questions. The
present model assumes that the operations postulated by Grainger and Ziegler (2011)
have already taken place.

Indeed, one may also hypothesize that the two semantic routes we described
build on information from different pre-semantic stages. Let’s consider the work by
Crepaldi et al. (2010) as reference. This model assumes an early morpho-orthographic
stage, at which morphemes are accessed in a semantically-blind fashion, followed
by later lexical processing, in which full forms of words (including both stem and
derived form) are activated. This contrast fits well the characterization of the two
routes of the present model. On the one hand, composition would proceed from the
earlier morpho-orthographic stage, exploiting the activated morphemes to generate
a semantic representation. On the other hand, the whole word route would concern
later lexical stages, with ST effects emerging from the degree of relatedness between
independent semantic entries.

In conclusion, most of the literature on morphological processing is focused on
lexical aspects, and how these influence semantic activation, rather than the repre-
sentation of semantics per se. For this reason, future studies will need to delve into
the interplay between the present, semantic-centered, system, and previous model
capturing form-based aspects of word processing.

General discussion

Semantics has been for many decades the skeleton in the closet of scientific ap-
proaches to language analysis (Tomalin, 2006). On the one hand, conveying meaning
is arguably the very reason language exists; on the other, the latent nature of meaning
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in the linguistic signal makes it hard to study objectively. Distributional semantics
offers a way out of the conundrum by suggesting that meaning can be captured with
the same distributional approach that has been a core part of linguistic analysis at
least since structuralism. Not by chance, it was Zellig Harris, a structuralist deeply
concerned with sound methodological procedures, who pioneered distributional se-
mantics already in the fifties (Harris, 1954). If at the time this was just a theoretical
program, in the last few decades distributional semantics has become a very concrete
proposition, offering empirically effective corpus-induced meaning representations for
thousands of words.

The usefulness of distributional semantics has not escaped the attention of the
morphological processing community, where it has become fairly standard to use dis-
tributional semantic models for quantitative estimates of the relation between stems
and derived forms (or compounds and their constituents). But standard distribu-
tional semantic models are models of whole-word meaning. They might be useful to
assess after-the-fact similarity between a derived form and its stem, but they are of
no help in modeling the process of derivation at the semantic level.

In contrast, by building on recent research in compositional distributional se-
mantics, we introduced here a model of morphological derivation that can account
for the dynamic process of meaning construction in word formation. In the FRACSS
model, stems are represented by standard distributional vectors, whereas affixes are
linear functions that act on stem vectors, modifying them to produce vector repre-
sentations of the output forms. A qualitative analysis of the semantic neighbours of
FRACSS-derived forms confirmed that the transformations encoded in the FRACSS
matrices have enough nuance to capture systematic and semi-systematic variations
in affix meanings and how they affect stems. Still, FRACSSs do not have enough ca-
pacity to capture very idiosyncratic meanings, that must thus be stored holistically.
Future research should investigate empirically the predictions we make on the divide
between meaning patterns that are systematic enough to be captured by FRACSSs
(and could, for example, be productively extended) and what must be left unanalyzed.

By deriving meanings through a compositional process, FRACSSs allowed us,
for the first time, to run computational simulations of the all-important phenomenon
of novel word derivation. We just started exploring this new field of investigation with
our attempt to model nonce-form sensicality and similarity judgments, but of course
these explicit judgments and the studied properties are only the tip of the iceberg.

Interesting, however, FRACSSs also led to new insights when we turned our at-
tention to widely studied semantic transparency effects on morphological processing.
Equipped with an explicit model for the semantic side of morphological combination,
we found that there are important aspects of semantic transparency that had until
now been ignored.

In particular, the issue of transparency must be kept clearly distinguished from
that of whole-word storage. The changes in stem meaning that FRACSS representa-
tions bring about are rich and nuanced enough that the approach can produce com-
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positionally derived forms that are opaque (in the sense of being far away from their
stem meaning), without requiring storage of whole-word information (put in other
terms, opaque does not entail unsystematic, if your model of systematicity is flexible
enough). We do not claim that all derived forms can be obtained compositionally:
there are certainly plenty of highly idiomatic complex words whose meanings must
be stored holistically. Indeed, the picture emerging from our semantic transparency
experiments suggests a place for both compositional and whole-word meanings. Still,
the FRACSS model makes concrete predictions about which words must be stored
in full form due to semantic considerations, and it paves the way to a new line of
interesting empirical studies, as well as to more explicit modeling of competition and
integration between composition and a direct meaning-retrieval route.

It is interesting, to conclude, to look at how our approach to morpheme se-
mantics fits within the more general picture of morphology and psycholinguistics.
There is a long line of research in theoretical morphology that treats (more or less
explicitly) affix meanings as feature bundles that affect the meaning of stems (also
represented as feature structures) (see Jackendoff, 2002; Lieber, 2004; Scalise, 1984,
among many others). In this line of research, feature structures are typically man-
ually specified for just a few affixes and (partially) for a few stems, they contain
categorical (unary or binary) features and the combination operations are very sim-
ple. Distributional representations for stems and FRACSSs for affixes can be seen
as an extension of the featural approach, with much larger, automatically-induced
real-valued feature structures (the distributional vectors and matrices) and a general
operation to combine them in composition. Interestingly, if recent trends in morphol-
ogy (e.g., Booij, 2010) tackle the paucity of fully systematic morphological processes
and richness of sub-regularities by emphasizing lexicalized schemas over productive
rule-based composition processes, our approach suggests an alternative model, that
leaves more room to compositional word formation, but assumes richer underlying
representations, and makes the process of composition more flexible and nuanced, so
that it can also capture patterns that would appear, on first sight, to be only partially
predictable.

The FRACSS approach offers a new perspective on the rules vs. analogy and
rules vs. similarity debates, as in the famous English-past-tense controversy (e.g., Mc-
Clelland & Patterson, 2002; Pinker & Ullman, 2002) or in more general discussions
(e.g. Hahn & Chater, 1998). The system we propose is pervasively characterized
by systematic composition function application, which can be seen as a rule-based
process (indeed, according to the criteria of Hahn and Chater, we are proposing a
rule-based system). However, on the one hand, the content of the rules (correspond-
ing to FRACSS morpheme representations) are learned via an analogical process in
which the FRACSS matrix weights are set so as to provide the best approximation
to examples of the composite meanings they should produce. On the other hand, the
rules we learn do not operate in terms in discrete terms, but as continuous transfor-
mations of real-valued vectors. As such, they are rich and nuanced enough to capture
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a good portion of that grey area of half-systematic generalizations that have been tra-
ditionally seen as the domain of analogy. Under our proposal, processes are triggered
in a discrete manner by all-or-nothing formal properties of morphological derivation
(affix x being discretely attached to stem y), but they operate in a (superficially)
fuzzy manner over continuous lexico-semantic representations: we believe that this
distinction between categorical syntactic rules (such as affix concatenation) and less
clear-cut lexico-semantic operations (such as affix-triggered stem meaning alteration)
has a strong intuitive appeal. On the other hand, we have at the time little to say
about processes that appear to be fuzzy on the syntactic side as well, as in the partial
formal compositionality of forms such as grocer (but see the general discussion of
the novel word experiments on how our model could capture the fact that such form
might contain semantic features of the affix).

Our approach is very close to connectionist research not only in its represen-
tation of word meaning as distributed patterns (e.g., Plaut & Gonnerman, 2000),
but also in its emphasis on the need for compositional operations that act over them
(Smolensky, 1990). Our proposal is fully in the spirit of Smolensky’s early approach
to composition in terms of operations on vectors, or more generally tensors (see also
Landauer and Dumais (1997) for an interpretation of DSMs as neural networks). We
bring two main innovations with respect to this line of research. First, unlike most
traditional connectionist networks whose input and training data were de-facto hand-
coded, our corpus-induced distributional representations allow us to run real-life, large
scale simulations of linguistic phenomena, and provide a natural story for learning.
Second, by recognizing the strong asymmetry between argument (free stems) and
functional elements (affixes), we propose a view of composition where input vectors
are transformed into other vectors that belong to the same space of the input vectors.
Under Smolensky’s original tensor product proposal, instead, the output of composi-
tion is a tensor of much higher dimensionality than the input elements, which is both
problematic in computational terms and, more seriously, implausible from a linguistic
point of view (an affixed form, for example, is no longer comparable to its stem).

On a more technical level, FRACSS matrices can be seen as fully-connected
feed-forward one-layer networks without non-linearities. This makes them easy and
efficient to induce from data, and directly interpretable (as illustrated in the toy ex-
ample in the section on training FRACSS). We stress that the simplicity of the model
is offset by the fact that each affix is represented by a separate matrix/network, and
indeed when composition is seen as a function of affix (matrix) and stem (vector)
representations, their relation is not linear, as we will show in Appendix B. More im-
portantly, both the qualitative examples and the experimental evidence we reported
suggest that the relatively simple FRACSS approach can account for an important
portion of the (semi-)systematic semantic patterns encountered in derivational mor-
phology. Further research should ascertain whether extending FRACSS with multiple
layers and non-linearities brings about empirical improvements that justify the trade-
off in added model complexity.
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More generally, the FRACSS approach follows the same path of connectionism
and cognitively-oriented distributional semantic models in reproducing the remark-
able human capacity of extracting systematic knowledge from complex statistical
patterns. These architectures focus on learning associations between levels or lin-
guistic elements, e.g., orthographic features and semantic features (in connectionist
models of morphology: Plaut & Gonnerman, 2000), words and documents (in LSA
and Topic Models: Landauer & Dumais, 1997; Griffiths et al., 2007), or words and
other words (in HAL: Lund & Burgess, 1996). We extend this capacity to second-
order associations, in the sense that FRACSSs capture systematic relations between
two sets of distributional vectors (stems and derived forms), that are in turn encoding
associations between words and their contexts.

With regards to theoretical, “box-and-arrows” models of morphological process-
ing, the FRACSS approach fills a long-standing gap in the definition of morphemes at
the meaning level. The model is in line with all those frameworks that assume, more
or less explicitly, a combinatorial step between morpheme meanings, and in particular
the proposals conceiving qualitatively different representations for stems and affixes
(e.g., the single-route decomposition model by Stockall & Marantz, 2006, based on
rule-governed concatenations of stems and affixes).

From the point of view of distributional semantics, our research program ad-
dresses an important weakness of classic DSMs, namely that they are static, word-
based models of the lexicon, providing meaning representations only for (simple and
derived) words that are sufficiently frequent in the source corpus. FRACSSs enrich
the distributional semantic lexicon with dynamic, word-and-affix processes that allow
us to create representations of new words from existing primitive or derived elements.
Interestingly, the functional approach has been first developed to account for syn-
tactic composition above the word level. By extending it below the word to handle
morphological phenomena, we blur the boundary between morphological and syntac-
tic derivation, proposing a unified account for semantic composition at both levels.
As the morphology-syntax boundary is far from sharp, we see this as a very promising
development.

Note that we have here only experimented with “vanilla” DSM representations.
An interesting direction for future research is to experiment with FRACSSs induced
on different spaces (e.g., spaces more akin to LSA, Topic Models or Neural Language
Models), to see if they capture complementary aspects of semantic derivation.

Many questions are still open, and they will have to be investigated in other
studies. However, we believe that the results we presented here demonstrate that the
functional approach to distributional semantics can lead to important new insights
into the semantic structures and processes of derivational morphology.
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Appendix A
Learned FRACSSs

Table A1
Complete affix set used in our experiments.

Affix Type Stem Derived Form Training
POS POS Examples

-able suffix verb adjective 284
-al suffix noun adjective 341
-ance suffix verb noun 56
-ant suffix verb adjective 105
-ary suffix noun adjective 89
-ate suffix noun verb 118
-en suffix adjective verb 74
-ence suffix adjective noun 177
-ent suffix verb adjective 75
-er suffix verb noun 1074
-ery suffix noun noun 95
-ful suffix noun adjective 148
-ic suffix noun adjective 386
-ify suffix noun verb 50
-ion suffix verb noun 764
-ish suffix noun adjective 127
-ism suffix adjective noun 108
-ist suffix noun noun 341
-ity suffix adjective noun 495
-ize suffix noun verb 210
-less suffix noun adjective 206
-ly suffix adjective adverb 2884
-ment suffix verb noun 241
-ness suffix adjective noun 1270
-or suffix verb noun 164
-ous suffix noun adjective 234
-y suffix noun adjective 596
de- prefix verb verb 74
dis- prefix verb verb 122
en- prefix noun verb 56
in- prefix adjective adjective 238
mis- prefix verb verb 61
re- prefix verb verb 159
un- prefix adjective adjective 329
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Appendix B
On the (non-)linearity of FRACSSs

While in the system we presented each affix corresponds to a linear operation, the
relation between the stem (vector) and affix (matrix) representations involved in a
composition is actually not linear.

In traditional distributed models of composition (e.g., classic work by
Smolensky, 1990, but also more recent work by Mitchell & Lapata, 2010, Guevara,
2010, Zanzotto et al., 2010, Luong et al., 2013), composition is seen as a function
f() operating on the concatenation of two input vectors representing the morphemes
to be composed. Many of these models are based on matrix multiplication, where
the concatenated input vectors are multiplied by the single matrix representing the
composition function. This is of course a linear operation (each dimension of the
output vector is a weighted sum of the input dimensions).

In the FRACSS approach, we associate instead different composition functions
to certain classes of linguistic expressions (i.e., affixes). In particular, we assign
a matrix to each affix, and perform composition by multiplying it by the vector
representing the stem. We thus have a separate composition function faffix() for each
affix. This function applies to stem vectors, not to concatenations of affix and stem
vectors. In this perspective, the approach is linear. However, it has much more power
than the linear approaches briefly outlined above, because each affix is represented
by a matrix instead of a vector. This implies, first of all, that (if stem vectors
are d-dimensional) we have d × d weights to represent the affix meaning, instead
of d.14 Second, because the affix corresponds directly to the matrix, the output
dimensions are no longer weighted sums of input vectors, but sums of dimension-
wise products of affix and matrix dimensions (which should capture their interaction
beyond additive effects: for example, 0 in an affix cell can cancel out the corresponding
stem component).

We can thus re-interpret our model from a different perspective. Suppose that,
as in the traditional approaches, we look at composition as a single function f() that
applies to the concatenation of distributed representations of the affix and the stem.
The affix matrix can of course be unfolded into a (d× d)-dimensional vector, and so
the concatenation will be a vector with (d× d) + d dimensions.

Given the vector v resulting from the concatenation of the affix and the stem,
when the composition function f() is applied to v, the k-th dimension ok (for k ranging
between 1 and d) of o, the output vector, is given by:

ok =
i=d∑
i=1

v((k−1)×d)+i × v(d×d)+i

This is no longer a linear function. For example, given a constant a:
14We ignore the intercept dimensions here for simplicity, and since they do not affect our main

point.
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af(v) 6= f(a× v)

Compared to a composition model assuming a single or a limited set of linear
functions operating on concatenated stem and affix representations (such as those
proposed by Guevara, 2010, and Zanzotto et al., 2010), the functional approach we
adopted possesses a lot more flexibility thanks to the choice to encode each affix as
a separate function, and to the interactions captured by the multiplicative relation
between stem and affix dimensions.


