Bidirectional Symbolic Analysis for Effective
Branch Testing

Mauro Baluda, Giovanni Denaro and Mauro Pezze

Abstract—Structural coverage metrics, and in particular branch coverage, are popular approaches to measure the thoroughness of
test suites. Unfortunately, the presence of elements that are not executable in the program under test and the difficulty of generating
test cases for rare conditions impact on the effectiveness of the coverage obtained with current approaches.

In this paper, we propose a new approach that combines symbolic execution and symbolic reachability analysis to improve the
effectiveness of branch testing. Our approach embraces the ideal definition of branch coverage as the percentage of executable
branches traversed with the test suite, and proposes a new bidirectional symbolic analysis for both testing rare execution conditions
and eliminating infeasible branches from the set of test objectives. The approach is centered on a model of the analyzed execution
space. The model identifies the frontier between symbolic execution and symbolic reachability analysis, to guide the alternation and
the progress of bidirectional analysis towards the coverage targets.

The experimental results presented in the paper indicate that the proposed approach can both find test inputs that exercise rare
execution conditions that are not identified with state-of-the-art approaches and eliminate many infeasible branches from the coverage
measurement. It can thus produce a modified branch coverage metric that indicates the amount of feasible branches covered during
testing, and helps team leaders and developers in estimating the amount of not-yet-covered feasible branches. The approach proposed

in this paper suffers less than the other approaches from particular cases that may trap the analysis in unbounded loops.

Index Terms—Structural testing, Branch coverage, Program analysis, Symbolic execution, Symbolic reachability analysis.

1 INTRODUCTION

Structural testing has been studied since the early sixties
and it is now commonly used in many industrial settings
as a proxy measure of the thoroughness of test suites.
Classical and recent empirical studies argue in favor of a
relation between high coverage scores and high software
quality levels [1], [2]. Unfortunately the existence of such
a relation is not well supported experimentally yet, in
particular when considering branch coverage, because
of the difficulty of consistently achieving high branch
coverage. In their study, Hutchins et al. argue that a
relationship between coverage and effectiveness requires
more than 90% coverage, and they confirm that such
branch coverage levels are very difficult to reach [1].
Inozemtseva and Holmes argue that such correlation
may not exist in general, but confirm the lack of data
about a possible correlation in the presence of high
branch coverage [3].

The problem of low branch coverage may depend on
both the difficulty of covering feasible branches and the
presence of many infeasible ones. In the first case a low

e M. Baluda is with the Secure Software Engineering Group, Fraunhofer
SIT, Darmstadt, Germany.
E-mail: mauro.baluda@sit.fraunhofer.de

e G. Denaro is with the Department of Informatics, Systems and Commu-
nication, Universita di Milano-Bicocca, Milano, Italy.
E-mail: denaro@disco.unimib.it

e M. Pezze is with the Faculty of Informatics, Universita della Svizzera
italiana, Lugano, Switzerland and with the Department of Informatics,
Systems and Communication, Universita di Milano-Bicocca, Milano, Italy.
E-mail: pezze@disco.unimib.it

branch coverage indicates the presence of branches that
shall be exercised during testing, and suggests that the
current test suite shall be augmented with further test
cases, while in the second case a low branch coverage
does not indicate a lack of test cases, but is simply due
to the program structure.

Most classic and recent research on structural test-
ing has focused mainly on increasing coverage, and in
particular branch coverage, neglecting the problem that
some code elements can be infeasible. Recent research
studies have exploited symbolic and concolic execu-
tion [4], search based approaches [5] and random test
case generation [6] to increase branch coverage. These
approaches increase the amount of executed branches,
but may miss some relevant corner cases, and may
still result in low branch coverage due to the presence
of loops and infeasible elements. The branch coverage
obtained with all these techniques tends to grow fast
initially and to stabilize while progressing with the test
case generation. However, when the branch coverage
stops growing, it is difficult to deduce to what extent
the missing coverage depends on feasible, though not-
yet-covered, or infeasible branches.

Many systems present special cases that depend on the
execution of complex paths, loops and conditions, and
that can be exercised only with particular input values.
Such cases are not only difficult to execute, but may
represent sinks that trap the analysis that underlies the
test generation mechanisms, preventing progress. The
heuristics proposed so far succeed in some cases, but
do not deal with all cases [7], [8], [9].

While augmenting the test suite to cover not-yet-
executed branches is extremely useful to thoroughly test
the program, the presence of many infeasible branches
may keep the classic branch coverage score quite low,
and this does not help team leader and developers,
who are seeking for metrics that can indicate if the
program branches have been thoroughly tested or not.
This does not help researchers either, who are seeking
for evidence of the existence of correlation between high
branch coverage and test effectiveness. In the presence of
many infeasible branches, even a test suite that executes
all feasible branches in a program may result in a low
branch coverage. To tackle this problem we need to
increase the amount of executed branches, identify infea-
sible branches, and define a measure that approximates
well the percentage of feasible branches executed with
the test suite, by taking into account executed as well as
infeasible branches.

The problem of infeasible elements is currently ad-
dressed by either accepting incomplete coverage values,
as in most industrial settings, or, more rarely, by manu-
ally inspecting the uncovered elements, especially when
required by mandatory standards, like DO-178C [10]. In-
complete coverage measures may miss important corner
cases that can induce severe problems after testing, while
manually inspecting uncovered elements can be very
expensive, and is thus justified only for safety critical
applications.

The problem of identifying infeasible program ele-
ments has been studied in the more general context of
verifying code assertions [11], [12], [13], [14], [15], [16],
[17]. The infeasibility of a single or a small subset of
branches can be demonstrated by showing the unsatisfia-
bility of assertions suitably added to the target branches.
Such approaches do not scale well in the presence of
large numbers of branches to be verified.

Merging approaches to execute not-yet-covered ele-
ments with approaches to exclude infeasible ones is
far from trivial. Simply combining complementary ap-
proaches leads to slow and inefficient solutions. Perfor-
mance deteriorates both when being trapped in long
sequences of attempts to execute elements that may be
later revealed infeasible, and when failing multiple times
to demonstrate the infeasibility of elements that may
be later revealed executable. A good alternation of the
different approaches depends on the analyzed programs
and cannot be defined a-priory [18].

In this paper we present an original solution that
targets high branch coverage, and produces a branch
metric that better approximates the amount of feasible
branches that are exercised with the test suite. Our so-
lution combines approaches to execute non-yet-covered
elements with approaches to exclude infeasible elements
in a new way, overcoming the limitations that constrain
heuristics solutions. The core new idea of our approach is
to undertake a bidirectional exploration of the execution
space by means of a technique that we call bidirectional
symbolic analysis. Bidirectional symbolic analysis com-

bines forward analysis in the form of symbolic execu-
tion to execute not-yet-covered elements and backward
analysis in the form of symbolic reachability analysis to
identify reachability conditions and reveal unreachable
states.

Bidirectional symbolic analysis coordinates the for-
ward and backward analysis through a model, the
Generalized Control Flow Graph (GCFG), that captures
the state of the analysis at each step, and indicates the
ideal directions of progress for the next steps. The model
avoids indefinite growth by removing information that
is not needed any more through the progress of the
analysis, thus supporting the scalability of the approach.

The GCFG models the exploration space of the pro-
gram under analysis by integrating the program control
flow graph with the state transition systems computed
by both symbolic execution and symbolic reachability
analysis. The model accounts for the reachability of
states and transitions, and allows both forward and
backward analysis to benefit from each other progress.
The model identifies the unexplored reachability con-
ditions that are contiguous to some already explored
symbolic state, forming pairs of contiguous symbolic
states and reachability conditions that we call the fron-
tier of the bidirectional symbolic analysis. The frontier
states represent the best candidates for increasing branch
coverage by i) extending executed states towards reach-
ability conditions of uncovered branches, ii) refining
reachability conditions that cannot be satisfied from the
currently executed states, iii) identifying unsatisfiable
reachability conditions to reveal infeasible branches. The
identification of the frontier states prevents forward and
backward analyses to be trapped in indefinitely long
explorations of states that do not specifically correlate
with coverage increase, as it happens for heuristic based
approaches. The experimental results presented in the
paper indicate that the approach can indeed cover a
high portion of feasible branches and produce a coverage
indicator that well approximates the amount of executed
feasible branches.

We introduced the idea of combining forward and
backward analysis and an initial set of preliminary
results in [19] and [18]. In both previous papers, the
analysis is presented without a formalization of reference
model, and the early version of the technique did not
support pointer aliases and interprocedural analysis, and
thus did allow an experimental evaluation on simple
synthetic programs only.

This paper extends the previous work by defining
the GCFG and formalizing its role in bidirectional sym-
bolic analysis, clarifying the intertwining between for-
ward and backward analysis by means of the formal-
ized model, introducing the interprocedural extension
of the analysis and its implementation, evaluating the
approach with realistic programs that include both data
structures and pointers, providing experimental evi-
dence of the effectiveness of the approach, and com-
paring the approach with state-of-the-art techniques,

namely KLEE [20] and CREST [7]. The extensions of
the preliminary work towards interprocedural analysis
and dynamic data structures allowed us to extend the
experiments that in the previous work were limited
to synthetic programs towards real programs. In this
paper we report the results obtained on programs that
are used as benchmark in the literature, and verify the
applicability of the approach in the presence of interpro-
cedural code and dynamic data structures, highlighting
the different impact both of bidirectional analysis in
identifying rare execution conditions and of considering
infeasible branches when quantifying branch coverage.

The paper is organized as follows. Section 2 presents
a motivating example that illustrates the limits of the
state-of-the-art approaches and that we use as running
example in the paper. Section 3 presents the GCFG
model that we use to guide the progress of bidirectional
symbolic analysis. Section 4 introduces the algorithms
that comprise the bidirectional symbolic analysis. Sec-
tion 5 describes our technique for automatic test case
generation that exploits bidirectional symbolic analysis
to pursue high branch coverage. Section 6 presents the
interprocedural extension of the technique. Section 7
discusses our experiments on the effectiveness of the ap-
proach. Section 8 surveys the related work in the area of
automatic test case generation and reachability analysis.
Section 9 summarizes the results of this research and
outlines future directions.

2 MOTIVATING EXAMPLE

In this section we illustrate the advantages and limits of
symbolic execution, and introduce a running example
that we use in the paper to illustrate the details of
bidirectional symbolic analysis.

Figure 1 presents a simple controller of a set of valves.
The C program checkValves checks the status of a
hydraulic system by counting the number of valves
that are out of order with the loop at the lines 22—
29, and fires an alarm if the number of malfunctioning
valves exceeds a predefined tolerance level (line 32). The
status of each valve is accessed by calling the function
getStatusOfValve at line 23. The function checks that
the parameter i refers to a valid location of an array
of sensor data, and aborts the program if this check
fails (lines 7—12). Otherwise, it returns the status of the
requested valve according to the sensor data (lines 14—
15). The while loops at lines 20 and 34 mock other tasks
that the program may be involved in.

The correctness of the program depends on the exe-
cutions of the program in response to external inputs.
The goal of testing is to exercise a finite sample of
executions to improve the confidence on the correctness
of the program behavior. In particular, branch testing
measures the effectiveness of a test suite in terms of
executed program branches, and identifies branches that
have not been executed yet. Symbolic execution can be
used to improve branch coverage, by identifying the

1 # define VALVE_KO (status)
2 # define TOLERANCE 2
extern int size;
extern int valvesStatus/[];

status==-1

3
4
5
6 int getStatusOfValve (int 1) {
7
8
9

1f (i<0
[

i>=size) {
10 printf ("ERROR");
11 exit (EXIT _FAILURE);
12 }
13
14 int status=valvesStatus([i];
15 return status;
16 }
17
18 int checkValves (int waitl, int wait2) {
19 int count, 1i;
20 while (waitl > 0) waitl——;
21 count=0, 1=0;
22 while (i<size) {
23 int status=getStatusOfValve (i);
24
25 if (VALVE_KO (status)) {
26 count++;
27 }
28 i++;
29 }
30
31 if (count>TOLERANCE)
32 printf ("ALARM");
33
34 while (wait2 > 0) wait2--;
35
36 return count;
37 1}

Fig. 1. The C program checkvalves

execution conditions of branches that have not been
executed yet [21], [22]. Symbolic execution executes the
program with symbolic input values and builds the
condition on the input values for executing a path in
the program.

Figure 2(a) exemplifies symbolic execution on a path of
the program in Figure 1 executed with initial symbolic
values S1 for size, Wl for waitl, W2 for wait2 and
[V1,v2,V3,...] for valvesStatus. The figure indi-
cates the sequence of symbolic states built during sym-
bolic execution, starting from the entry of the program
at line 18 and executing the loop at lines 22—29 three
times before terminating. The nodes are labeled with
the corresponding statement numbers, and represent the
program state after executing the corresponding state-
ment. The letters in the labels of the nodes incrementally
distinguish nodes that correspond to different executions
of the same statements. Nodes labeled with numbers of
blank lines represent implicit statements, like a missing
else statement (for instance line 33), a loop exit (for
instance lines 30 and 35) and a return point (for instance
line 24). The edges are labeled with the branch conditions

that guard the transition between the corresponding
symbolic states.

The symbolic execution first analyzes the statements
18 and 19 and builds the symbolic entry state Sis,,
then executes three times the loop at lines 22—29.
In the first iteration, it builds the symbolic states
Sgoa, Sgla, Szga, Sgga, Sg4a, Sg5a, Capturing the call to
getStatusOfValve (0) with the symbolic states Sas,
and Sa4, that represent the call and return statement,
respectively, and building the state Ss5, reached when
the first valve is out of order. The dotted line between
Sazq and Say, implicitly represents the states that corre-
spond to the execution of the called function. The second
and third iterations build similar sequences of states, but
execute line 28 (states Saog, and Sagp) instead of line 25,
since we assume that the symbolic execution follows the
path along which the other two valves work correctly.
The execution proceeds with the symbolic states S3oq,
S33a, S34a, S35 and Ssg, that lead to the termination
of the program. The states Sao, and Ss4, represent the
iterations of the loops at lines 20 and 34, respectively.

The bottom of the figure reports the complete symbolic
representation of the states Sizq, Soar and Sso.. The
symbolic state S»2, represents the state of the program
when entering the loop at line 22 for the first time: the
variable size holds a value, denoted with the symbol
S1, greater than 0, the parameter waitl holds a value,
denoted with the symbol W1, equal to 1, and the other
program variables are assigned as i= 0 and count= 0.
In state So4p, which represents the symbolic state af-
ter returning from getStatusOfvalve (1) during the
second iteration of the loop, the variable size holds a
value greater than 1, the first value in the input array,
denoted with the symbol V1, is equal to —1, and the
other program variables are assigned as follows: i= 1,
count= 1 and status= V2, where the symbol V2
denotes the second value in the array. S3¢, represents the
symbolic state after the three considered loop iterations.

The symbolic execution illustrated in Figure 2(a)
covers only a subset of the branches of the pro-
gram getStatusValve. Symbolic execution can in-
crease branch coverage by trying to execute branches still
unexplored along the execution trace. Popular symbolic
execution tools, like CREST [7] and KLEE [20], explore
paths that share some prefix with already executed
paths, like the ones corresponding to labels of dangling
edges in the path of Figure 2(a), implementing different
exploration strategies. We analyzed the program with
both CREST and KLEE with random testing, bounded
depth-first concolic execution and a heuristic strategy
that aims to maximize branch coverage [7], and we have
been able to execute all but two branches of the program,
obtaining 83% branch coverage.! While this seems a
good result, a closer look at the data suggests that the
missed branches include critical cases. The uncovered

1. The interested readers can find a detailed discussion of the strate-
gies used in the analysis with CREST and KLEE, and the results of
symbolically executing this program in [18].

branches correspond to the true branches of the if
statements at lines 31 and 7. While the ¢rue branch of
the if statement at line 7 is infeasible, since it repeats
the boundary check performed at line 22, the ¢rue branch
of the if statement at line 31 (hereafter branch 31) repre-
sents a critical path in the program, since it corresponds
to the behavior in the case of an alarm.

Determining the executability of branch 31 with sym-
bolic execution is problematic because the execution
condition of this branch depends on the number of
executions of the loop at the lines 22—29 that rely on the
value of variable count, which is not a direct function
of the input values. Variable count counts how many
times the program finds a valve that is out of order
(line 26) while iterating though the loop at lines 22—29.
The value of variable count is computed as the result
of the assignments at lines 21 and 26 that always yield
concrete values, and thus the evaluation of the condi-
tion count>2 at line 31 always produces deterministic
truth values during symbolic execution. Referring to the
symbolic state S0, of the considered example, variable
count holds 1 and condition count>2 evaluates to
false, thus the symbolic execution cannot determine the
number of iterations of the loop that would lead to the
execution of the critical statement at line 31, but can only
deduce that the if statement at line 31 cannot be ever
taken along the program path that leads to Sso,.

To show the executability of branch 31, symbolic ex-
ecution needs to exhaustively explore the feasible paths
that reach line 31, until eventually finding a path for
which the condition count>2 evaluates to true. The
loops in the program determine an unbounded number
of paths, and thus the result ultimately depends on the
path selection heuristics used in combination with sym-
bolic execution. For example, when symbolically execut-
ing program checkValves with the common depth-
first order strategy, symbolic execution is likely to iterate
infinitely many times through the loops in the pro-
gram, without ever executing any path with more than
TOLERANCE valves in bad status. Other heuristics, for
example the ones that prioritize paths through branches
that are close to the not-yet-executed ones within a
maximum budget of attempts [7], [8], [9], may be more
successful in executing the if statement at line 31 in
program checkValves, especially if TOLERANCE is set
to a low value such as 2, but no heuristics can guarantee
the solution in the general case.

The lack of direct dependency of branch conditions
from input values is quite frequent, since it depends
on common programming practices like summarizing
intermediate computations as concrete values, later used
to drive the execution, and the dependency of the values
of the variables from loops. The problem of determining
the feasibility of some branches with symbolic execution
is complicated by the frequent occurrence of chains of
implicit dependencies between the program branches,
where a branch may depend on the concrete values as-
signed at some previous branch, which in turn depends

S18a

al
/

20: waitl>0 21: waitl<=0

21: waitl<=0 20: waitl>0

22: i<size 30: i>=size
18:Entry 20:waitl>0 21:waitl<=0

25: status==-1 28: status!=-1

S2sa

w

22: i<size 0: i>=size

22:i<size

y i

7 7 7

Call getStatusOfvalve (i

)
/

24:Return getStatus‘OfValve (i)

S22

S23p

-8-80®

23:
S24p

28: status!=-1 25: status==-1

S284

0: i>=size

S22¢ P— .

22: i<size

."

S23e

v
22:
28: status!=-1 25: status==-1
S28p
S$30a o

i

33: count<=TOLERANCE 31: count>TOLERANCE R
24a
t
S§3a 31:count>TOLERANCE 33:count<=TOLERANCE
25: status==-1

34: wait2>0 35: wait2<=0 R reesesesanases .
! line 28 !
S ol

T
34: wait2>0 303 i>=size y |
- 36: Exit 35:wait2<=0 34:wait2>0

A4

35: wait2<=0

S350

31: count>
TOLERANCE

S36a

#) l*,

(

oY)
~

(b) (c)

SYMBOLIC STATE PREDICATES:

So9q: size=S1 A waitl=Wl A wait2=W2 A valvesStatus=[V1,V2, V3, ...] A S1>0 A Wl=1 A i=0 A count=0

So4p: size=S1 A waitl=Wl A wait2=W2 A valvesStatus=[V1,V2, V3, ...] A S1>1 A Wl=l A Vl=-1 A i=1 A count=1 A status=V2
S30q: size=S1 A waitl=Wl A wait2=W2 A valvesStatus=[V1,V2, V3, ...] A S1=3 A Wl=1l A Vl=-1 A V2!=-1 A V3!=-1 A i=3 A
count=1

REACHABILITY STATE PREDICATES:
Rosp: valvesStatus[i+1]=-1 A i>=-1 A i<size-1 A i>=size-2 A count>0 A status=-1

R30q: count>2

Fig. 2. Intermediate results of the analysis of program checkValves in Figure 1: (a) a path of symbolic states built with
symbolic symbolic execution, (b) a set of reachability states built with reachability analysis, (c) a GCFG model built
with bidirectional symbolic analysis.

on concrete values assigned at earlier branches, and
so forth. The presence of mutually dependent branches
interleaved with other branches and loops further exac-
erbates the problem.

The importance of investigating rare execution con-
ditions and infeasible branches as the ones exemplified
above is witness by known severe failures like the Apple’s
goto fail security bug? that could have been easily revealed
by combining the symbolic exploration of the execution
space with the identification of infeasible branches, as
done with the approach described in this paper. The
conditions for executing a program branch can be deter-
mined with symbolic reachability analysis that consists
in considering an abstract program state that models the
execution of the target program branch, and progres-
sively computing the (weakest pre-) conditions that must
hold at the previous statements and eventually at the
program entry, to reach the target branch [23].

Figure 2(b) exemplifies the symbolic reachability anal-
ysis of branch 31 that we discussed as difficult to cover
with symbolic execution. The nodes in the figure indicate
the symbolic reachability states computed during the
analysis, and the edges indicate the relations between
the symbolic reachability states according to the control
structure of the program. We label the symbolic reacha-
bility states with the corresponding statement numbers.
As before, the labels refer to the program state after exe-
cuting the corresponding statement. We label the edges
with the program conditions that guard the transition
between the corresponding symbolic reachability states.

The analysis starts from a symbolic reachability state
that models the execution of the target branch, and
traverses the control flow graph backward towards the
program entry. In the example of Figure 2(b), symbolic
reachability analysis starts from the state R3;, that mod-
els the execution of the true branch at line 31. This state
is associated with the symbolic condition ¢rue to indicate
that symbolic reachability analysis has not yet identified
any condition that must be satisfied to reach the target
branch.

Symbolic reachability analysis proceeds traversing the
program backward from line 31 reaching line 30 (the
exit of the while loop) that corresponds to state Rsoq,
and identifies count>2 as the condition to reach Rsj,.
Progressing backward, the analysis can move back to
line 25 (from the loop body when the condition of the
if statement evaluates to true), line 28 (from the loop
body when the condition of the if statement evaluates
to false) or line 21 (before entering the loop). The figure
shows the reachability states computed for line 25 (R25,)
and 21 (R21,), and indicates that the program branch that
leads from line 28 to line 30 (when the condition of the
if evaluates to false) has not been explored yet.

The symbolic condition of the state Rsi, results in
a contradiction (false) because the condition count>2

2. See for instance http://avandeursen.com/2014/02/22/gotofail-
security /

contrasts with the assignment count=0 at line 21, thus
the symbolic reachability analysis concludes that the
states R30, and R3i1, cannot be reached without iterating
through the loop.

The backward exploration from Rss, towards the pro-
gram entry traverses the states Ros,, Ro23a, R22q, Rosp
and Ry, where the dotted line between Ry, and Ras,
implicitly represents the call to getStatusOfvalve.
The state Ry results in another contradiction, indicating
that a single iteration of the loop does not suffice to
reach our target either. The state Rys, represents the
conditions that the program variables must satisfy to
reach branch 31 after executing line 25 at the second to
last iteration of the loop, and is reported at the bottom
of Figure 2, together with the condition of the symbolic
reachability state R3oq.

To identify the conditions on the input values that
lead to executing the target branch, symbolic reachability
analysis shall proceed until the program entry. In the
presence of loops, like in the example, this may lead the
analysis through infinitely many broken paths, that is,
paths that lead to contradictions before reaching the pro-
gram entry, as the one from R3¢, back to R21,. However,
the symbolic reachability state Rgs, indicates a set of
conditions on the input values that lead to the execution
of the branch 31, thus providing the information that
symbolic execution misses, as discussed above.

The example shows that forward analysis, instantiated
as symbolic execution, can identify the conditions to
reach program branches, but may suffer when dealing
with branches whose executability does not depend
directly from the input values. Backward analysis, in-
stantiated as symbolic reachability analysis, may re-
veal implicit dependencies, thus complementing forward
analysis towards increasing branch coverage.

The main contribution of this paper is a framework
that combines forward and backward analysis to achieve
high branch coverage and that we refer to as bidirec-
tional symbolic analysis. Bidirectional symbolic analysis
alternates symbolic execution and symbolic reachability
analysis to both reach program branches that have not
been executed yet and prune program branches that are
proved infeasible. The core of bidirectional analysis is a
model that integrates the results of symbolic execution
and symbolic reachability analysis, thus improving over
both kinds of analysis when applied independently. In
the next sections, we first introduce the model, and then
define bidirectional symbolic analysis in detail.

3 THE GENERALISED CFG MODEL

In this section we define the GCFG model that is the
core of bidirectional symbolic analysis, and discuss how
the model allows us to identify the reachability frontier,
which is used to guide the analysis.

3.1 The GCFG Model

The GCFG model integrates the states computed with
symbolic execution, the states computed with sym-

bolic reachability analysis and the control flow relations
among them.

The GCFG represents the program branches executed
during symbolic execution, and identifies the target
branches that are program branches that have not been
executed yet and have not been identified as unreachable
yet with symbolic reachability analysis.

Figure 2(c) shows the GCFG obtained by integrating
the symbolic execution states shown in Figure 2(a) and
the symbolic reachability analysis states shown in Fig-
ure 2(b). In the figure we group the states that cor-
respond to the same program statements with boxes
labeled with both the line number of the statements
and the branch condition that guards the execution of
the statements. As discussed in the previous section,
both symbolic execution states (S-states) and symbolic
reachability states (R-states) represent the program states
after executing the corresponding statements. The state-
ments at lines 18 (program entry), 23 (function call site),
24 (function return site) and 36 (program exit) are not
guarded by any specific branch condition, that is, they
are necessarily executed as soon as they get reached; for
these statements we use arbitrary labels that refer to the
semantics of the statements: Entry, Call, Return and
Exit.

The GCFG in Figure 2(c) contains all the S-states of
Figure 2(a) and all the R-states of Figure 2(b), except
for the states Rs1, and Rsyj, that represent unreachable
states. The GCFG nodes are connected with three types
of edges that represent relations between pairs of S-
states, relations between pairs of R-states and relations
between S- and R-states. The edges that connect pairs of
S-states and the edges that connect pairs R-states derive
directly from symbolic computations, the edges that
connect S-states to R-states represent program control
flow relations that have not been analyzed yet. They
are depicted in bold (either solid or dotted lines) in the
figure, and represent the frontier between forward and
backward analysis as discussed in detail below.

The source S-state of a frontier edge is a state that
can be directly extended to satisfy the symbolic repre-
sentation of the target R-state of the edge by means
of symbolic execution, and can thus head to some not
yet executed program branch, such as the branch 31
of program getStatusOfvalve. The target state of a
frontier edge is an R-state that can be analyzed by means
of symbolic reachability analysis to identify new details
that increase the chances to either satisfy uncovered
branches or reveal infeasible branches in the sequel of
the analysis. Thus, the frontier edges identify states that
can can be analyzed to improve branch coverage or
reachability information related to branch coverage. In
Figure 2(c), the frontier edges visualized as solid lines
indicate program branches whose reachability should be
analyzed next, since they connect an already reached
symbolic state with a symbolic reachability state still to
be explored and thus can be efficiently analyzed. Corre-
spondingly, the frontier edges visualized as dotted lines

indicate R-states whose infeasibility should be analyzed
next, since all the corresponding S-states have been
already analyzed with symbolic execution and cannot
be further extended.

In general, a GCFG is a connected graph that models

the state of the symbolic evaluation of a program that we
assume with a single entry point. GCFG nodes represent
either S-states computed with symbolic execution or R-
states that correspond to satisfiable symbolic reachability
conditions. A GCFG satisfies the following properties
that derive from the way GCFGs are constructed during
the analysis: (i) The graph is rooted in a S-state that
represents the program entry point, (ii) the R-states can-
not be mutually satisfied together with some S-state that
correspond to the same program statement, (iii) the R-
states are always reachable from the entry node, (iv) the
R-states either reach another R-state or are terminal
nodes. The terminal R-states, which we refer to as target
nodes, model the program state after not-yet-executed
program branches. In Figure 2(c) the entry node is Sis,,
and the only terminal node is R3,.
The GCFG edges connect: (i) pairs of S-states to rep-
resent forward symbolic execution steps, (ii) pairs of R-
states to represent backward reachability analysis steps,
(iii) pairs (S-state, R-state), the frontier edges, to rep-
resent not-yet-fully-analyzed program control flow rela-
tions that may lead to cover not-yet-executed program
branches.

The GCFG in Figure 2(c) includes 7 frontier edges that
represent the static control flow relations of program
checkValves that cannot be excluded from the GCFG
yet according to the analysis done so far.

The frontier edges from the states Sis, and Sps. to
the state Rys, indicate that the feasibility of the pro-
gram branch from the return of the call of method
getStatusOfvalve () (states Soy and Soy.) to the
true branch of the following if statement (state Rasp)
have not been fully investigated yet. The frontier edges
(S28a, R30a) and (Sasp, Ro2,) indicate that the feasibility
of the program branches that either exit from the loop
at the second iteration (from state Sig, to state Rspq)
or continue with a fourth iteration (from state Sag, to
state Rjz,) requires further investigation. The frontier
edges <SQ4Q,RQ51)>, <SQSG,R22(1> and <5285,R30a> indicate
R-states that require further investigation.

The model does not include a frontier edge from
S214 to Rs3g, because such branch has already been
demonstrated to be non executable, as shown by the
predicate Ry, in Figure 2(b).

We will further discuss the example in the next sec-
tions when incrementally introducing the analysis fea-
tures. Below we formally define the GCFG.

Given a single entry program P, a GCFG is de-
fined starting from the state transition systems 7, =
(Ns, Eg,S?) and T, = (N,, E,, B,) that represent infor-
mation computed with symbolic execution and symbolic
reachability analysis of P, respectively. Ny (N,) and Ej
(E,) are the states and the transitions computed with

symbolic execution (symbolic reachability analysis) of P.
SY € N, is the initial symbolic state corresponding to
the program entry point, and B, C N, are true-valued
symbolic reachability states that model the execution of
the program branches analyzed as reachability targets.

Given a single entry program P, a GCFG is a state
transition system T = (N, E, S, B), where N is a set of
states, E C N x N is a set of transitions, S° € N is a
state that corresponds to the entry point of P, and B C
N are states that model the execution of the unreached
branches of P.

To facilitate the definition of the transition system
T, we introduce the following helper predicates on the
states N5, N,. and N. The predicates identify the relation
between states that refer to the same program blocks
(the boxes in Figure 2(c), sameCfgBlock), the existence of
control dependencies among states due to the program
structure (isCfgEdge), the satisfiability of the symbolic
formulas represented by the states (saf) and the existence
of paths between GCFG nodes (connected_T):

« sameCfgBlock : (N; U N,.) x (Ns U N,) relates the
pairs of states that correspond to the execution of
the same statements in the static control flow of P.

o isCfgEdge : (NsUN,) x (NsUN,) relates the pairs of
states that correspond to the execution of statements
that are connected by an edge in the static control
flow of P.

 sat : N, U N, identifies the states that correspond to
satisfiable symbolic formulas.

o connected_T : N x N identifies the pairs of states
connected with a path in T.

Definition 3.1: Given a single entry program P and
two state transition systems Ty = (Nj, E,,S%) and
T, = (N;, E,,B,) computed with symbolic execution
and symbolic reachability analysis of P, respectively,
the related GCFG is the state transition system T =
(N, E,S° B), such that:

o S0 = SY is a state that denotes the entry point of
P. Tt corresponds to the initial state of the symbolic
execution of P.

o B = B, is a set of states that model the execution of
the not yet covered branches of P that correspond
to the current targets of the symbolic reachability
analysis.

e« N = N,UN, is a set of states that includes both
S-states and R-states, where N, C N, and N, C N,
are the maximal subsets of N, and N,., respectively,
such that the following invariants hold:

Vs € N, : sat(s) (Inv1)

Vr € N, : sat(r) (Inv2)

Vr € N, : =3s € N, : sameCfgBlock(s,7) A (Inv3)
sat(s A)

Vr € N, : connected_T(S%,r) A
3b € B : connected_T(r, b)

(Inv4)

The GCFG includes only states that are computed
during either symbolic execution or reachability
analysis. It includes only satisfiable states (Invl and
Inv2), does not include symbolic reachability con-
ditions whose satisfiability can be already deduced
from symbolic states at the same block of the control
flow graph (Inv3), and does not include symbolic
reachability conditions that either cannot be reached
from the entry of T or cannot reach any not-yet-
proved reachability target in T (Inv4). Inv4 excludes
states that have been proven unreachable from the
entry point and the ones whose target has been
already reached from a different path, since such
states do not carry information still useful for the
analysis.

The definition guarantees that the initial state of
symbolic execution belongs to N, because S0 =
S% € N, and that all the (not yet excluded) targets
of the reachability analysis belong to N, because
B = B, C N,.

e« E=FE;UE,;UE, is a set of transitions, where E; C
E, and E, C E, are the restrictions of E, and FE.
with respect to Ny and N,, respectively, and E; C
E; is the maximal subset of E; = {(s,7) : s € N5 A
r € N, A isCfgEdge(s,r)} such that:

V(s,r) € Ef : (=3r" : sameCfgBlock(r’,s) A (Inv5)
(r',r) € Ey)

For the set of represented symbolic states and sym-
bolic reachability conditions, the GCFG includes all
transitions computed during the respective analysis
and includes the frontier edges Ey. The set Ef
represents the transitions from symbolic states to
symbolic reachability conditions in the GCFG (re-
call that N = N, U N,) that correspond to some
edge of the control flow graph of P and that do
not correspond to any transition already analyzed
during the symbolic reachability analysis (Inv5).
The invariants Inv5 and Inv2 guarantee that the
GCFG does not include control flow transitions that
have been proved to be infeasible with symbolic
reachability analysis.

For the sake of improving the description of the al-
gorithms, in the figures we graphically distinguish the
frontier edges that start for S-states that can be further
investigated with symbolic execution (solid lines) from
frontier edges that cannot be further explored with sym-
bolic execution but lead to R-states that can be further
investigated with symbolic reachability analysis (dotted
lines). However, this distinction is not formalized in the
the GCFG.

3.2 The Frontier

The GCFG represents a snapshot of the progress of
the bidirectional symbolic analysis of a program, and
identifies the frontier that indicates analysis states from
where we can extend the symbolic analysis in either
forward or backward directions, to reach unexecuted
branches or reveal infeasible branches. On one hand, the
R-states summarize path suffixes that can reach not yet
executed branches for some (symbolically represented)
values of the program variables. On the other hand,
the S-states summarize paths that certainly execute for
some (symbolically represented) sets of inputs. There-
fore, the frontier edges, which connect S-states to R-
states, indicate (i) symbolic execution states where the
forward analysis might be directly extended to satisfy
the symbolic representation of a symbolic reachability
state, and thus reach, or get closer to, some not yet
executed branches, and (ii) symbolic reachability states
where the backward reachability analysis can enrich the
reachability information and identify new details that
increase the chances to either satisfy these states or reveal
infeasible branches in the sequel of the analysis.

Without the information provided in the frontier, sym-
bolic execution and reachability analysis may converge
slowly or, in some cases, may even diverge, as discussed
in the previous section.

The frontier edges in the GCFG of Figure 2(c) convey
information that boosts the chances of convergence of the
symbolic analysis. These edges indicate states and paths
that are promising to reach not yet executed branches.
For instance, one of these promising paths is the path
that traverses the frontier edge (S24s, Rosp). Indeed, the
symbolic execution of Sa4, towards line 25 results in
a symbolic state that can satisfy Rgsp. For instance
valvesStatus=[—-1,—1,—1,...] is an assignment of
the symbolic input vector that satisfies the symbolic
representation of both states, and leads to execute the
true branch of the if statement at line 25 and subse-
quently the ¢rue branch of the if statement at line 31,
thus exercising the critical branch that can hardly be
reached with either symbolic execution or reachability
analysis alone, as discussed in Section 2. When the
GCFG contains more than one frontier edge, the edge to
be explored next can be selected according to different
strategies. In the experiments reported in this paper, we
explore the frontier edges in the order in which they are
identified during the analysis.

In the state represented in Figure 2(c), bidirectional
symbolic analysis selects one of the frontier edges, for
instance the edge (Sa2ap, Rosp), and tries to advance the
frontier by symbolically executing the branch identified
by the edge, in this case the true branch of the if
statement at line 25. The branch can be executed and pro-
duces a new symbolic state, which is satisfiable jointly
with the symbolic reachability condition Rs,. This new
evidence opens new execution paths that we can explore
with testing before the next iteration of bidirectional

symbolic analysis. In the example, we can generate a
test case that reaches the symbolic reachability condition
Ros;, and thus leads to the uncovered program branch at
line 31. We then symbolically execute the program along
the path identified by the test case and update the GCFG
by adding the new S-states, eliminating the R-states
superseded by the new S-states, updating the edges, and
recomputing the frontier. In the example, we successfully
reach one of the critical branches (branch 31).

The analysis proceeds with a new iteration, selecting a
new frontier edge, trying to either symbolically execute
the corresponding program branch or refine the reach-
ability information by means of symbolic reachability
analysis. The symbolic execution can lead to yet a new
state, as in the case illustrated above, or result in an
unsatisfiable condition, thus leaving room for trying to
either demonstrate the infeasibility of the frontier edge
or reveal subtle indirect dependencies that may lead to
execute the branch in the sequel of the analysis.

Generalizing from this example, the next section de-
scribes bidirectional analysis, while Section 5 presents
the test generation approach based on bidirectional anal-
ysis.

4 BIDIRECTIONAL SYMBOLIC ANALYSIS

Bidirectional symbolic analysis combines symbolic execu-
tion and symbolic reachability analysis to improve and
refine branch coverage, by both covering not-yet cov-
ered branches and identifying infeasible branches to be
pruned from the coverage domain. The approach con-
sists of incrementally refining the GCFG with increasing
reachability information.

Bidirectional symbolic analysis coordinates symbolic
execution and symbolic reachability analysis steps
through a GCFG model that identifies the target
branches and drives the alternation of the different anal-
ysis steps.

Bidirectional symbolic analysis initializes the GCFG
model referring to an initial set of target branches that
include all the branches of the program. In the exam-
ple of Figure 1 the initial set of target branches in-
cludes all the branches of both functions Checkvalves
and getStatusOfValve. In the figure we label these
branches after the corresponding lines 20, 21, 22, 25, 28,
30, 31, 33, 34 and 35 of function CheckValves and7,8,9
and 13 of function get StatusOfvalve that correspond
to the statements reached after the control decisions.
For instance, line 20 refers to the statement waitl--
that is reached through the true branch wait1>0 of the
while statement, while line 21 refers to count=0,
reached through the false branch of the while.

Bidirectional symbolic analysis initializes the GCFG by
symbolically executing the program from the entry state-
ment following a set of paths that are arbitrarily chosen
among the executable ones, and populates the GCFG
with the set of explored symbolic S-states. The symbolic
execution states are connected with solid edges in the

i=0,

GCFG. For example, the sequence of connected states
S18as 520as S21as 5224, S23as S24as S25a, S226, S236, S24b,
Sogar S22¢s ---, 354, S36q Of Figure 2(c) represents the
result of symbolically executing program CheckValves
from the initial state (line 18) through three iterations of
the while loop at lines 22-29 up to the exit (line 36),
and corresponds to the symbolic execution states of Fig-
ure 2(a). In both Figure 2(a) and Figure 2(c), the dotted
edges <S23a7524a>/ <S23b7524b> and <SQgC,SQ4C> indicate
the call-return of getStatusOfvalve (i), whose ex-
plored states, Sga, S8a, S13a, Si4ar Seb, Sgb, S136, S14b,
Secs Sses S13c and S14¢, are not explicitly reported in the
figures.

Symbolically executing a branch witnesses the feasi-
bility of the branch, and thus the executed branches are
removed from the set of targets. In the example, the ini-
tialization step reduces the set of targets to the branches
corresponding to line 31 in function CheckValves and
lines 7 and 9 in function getStatusOfvValve.

Bidirectional symbolic analysis completes the initial-
ization of the GCFG graph by adding an R-state with
a true predicate for each current target branch. In the
working example, it adds the R-state Rs3;, explicitly
represented in Figure 2(c) and the R-states Ry, and Ry,
that are left implicit in the figure and that we will discuss
later in this section. It connects the new R-states with
the S-states currently in the GCFG according to the
control flow relation in the program. For example, in
the initialization step, it connects the R-state Rs3;, with
the S-state Ssg,. Such edges that connect R-states and
S-states are frontier edges. We recall that the model in
Figure 2(c) does not include the frontier edge (S30q, R314)
because it represents the frontier edges at a later point
of analysis.

While the analysis progresses the frontier edges are
updated according the new information computed with
symbolic execution and symbolic reachability analysis.
Figure 2(c) represents the state of the analysis after
the symbolic reachability analysis steps described in
Figure 2(b), and thus it does not include the frontier
edge (S30q, R314), but represents the frontier edges at
that point of analysis. The frontier edges are represented
with bold lines in the figure.

In the general step, bidirectional symbolic analysis
selects a frontier edge, and uses symbolic execution to
check if the R-state can be reached from the S-state while
satisfying the computed reachability condition. In this
case, the R-state is demonstrated to be reachable and is
turned to a corresponding S-state. If the R-state cannot
be reached from the S-state, the bidirectional analysis
uses symbolic reachability analysis to update the frontier.

Bidirectional symbolic analysis progressively classifies
the program branches as covered or infeasible. A branch
is covered when the symbolic execution explores an S-
state associated with a not-yet executed program branch.
A branch is infeasible when the symbolic reachability
analysis indicates that the branch is reachable only from
false R-states, that is, R-states with a condition that is

10

a logical contradiction.

Bidirectional symbolic analysis iterates through three
main steps: symbolic execution, symbolic reachability
analysis and model coarsening. Symbolic execution iden-
tifies new symbolic states (S-states), trying to supersede
some symbolic reachability states (R-states) of the cur-
rent GCFG. Symbolic reachability analysis refines the R-
states that symbolic execution cannot supersede. Model
coarsening prunes the GCFG by eliminating the R-states
that becomes obsolete throughout the progress of the
analysis, thus supporting the scalability of the approach.

41

A symbolic execution step targets a frontier edge (S;, R;)
as described in Algorithm 1. First, it symbolically ana-
lyzes S; towards R; that represents a possible successor
of S;, since the frontier edge derives from a control flow
edge (Algorithm 1, line 1).

It then evaluates the reachability condition of R; in
conjunction with the new state (line 2) and, if R; and the
new symbolic state are jointly satisfiable, it updates the
GCFG adding the newly computed state (line 3) and new
frontier edges that correspond to the new state if any
(line 4). Next, it computes the set of R-states that share
the same block of R; and are jointly satisfiable with the
new symbolic state (line 5), and invokes the coarsening
step to remove these R-states (including R;) from the
GCFG (line 7). The invocation of SymbolicExecution
refers to the classic symbolic execution approach that
we informally surveyed in Section 2. The invocation of
ComputeFrontierEdges updates the GCFG model as
discussed in Section 3.1. We detail ModelCoarsening
later in this section (Algorithm 3).

The algorithm requires to verify the satisfiability of
the symbolic formulas at lines 2 and 5. As discussed
in the next section, when used in the context of test
generation, it verifies the satisfiability at line 2 by in-
voking a constraint solver, and deduces the satisfiability
of the set of formulas at line 5 with the test case that is
generated as the solution of the query at line 2. If the test
case fails to identify the satisfiability of some R-states,
those states remain in the model and their satisfiability
will be further addressed in the subsequent iterations of
symbolic execution.

For example, if we consider the (Sa4, Rosp) frontier
edge of Figure 2, the symbolic execution step starts with
the symbolic state Sa4 that is reported in the bottom
of the figure, and computes a new symbolic state that
augments the path condition of S,4, with the conditional
status = —1. The new symbolic state is indeed satisfiable
jointly with the condition of state Rosp.

Symbolic Execution

4.2 Symbolic Reachability Analysis

A symbolic reachability analysis step augments the
GCFG with new reachability states, as illustrated in Al-
gorithm 2. Symbolic reachability analysis considers the
target R-state of a frontier edge (5;, R;), and analyzes R;

Algorithm 1 SymbolicExecutionStep

Require:
model, a GCFG
(Si, Rj), a frontier edge of the model
Ensure:
A symbolic execution step on the input frontier edge
Returns the resulting GCFG

1: S’ « SymbolicExecution(S; ~ R;)

2: if sat(S’ A Rj) then

3 model = model U S’ U (S;,S")

4 model = modelU ComputeFrontierEdges(S’, model)

5: reachedRNodes = {R'}| sameC fgBlock(R', R;) A sat(S' A R')
6 for all R’ € reachedRNodes do

7 ModelCoarseningStep(model, R’)

8 end for

9: end if

10: return model

Invariant Inv3

backward along the control flow branch that corresponds
to the frontier edge (Algorithm 2, line 1). It produces a
new R-state by augmenting the predicate of R; with the
information of the control flow branch. If the new sym-
bolic reachability state is a contradiction (line 2), the state
R; and all the corresponding frontier edges are pruned
from the GCFG in the coarsening step (line 3). If the new
symbolic reachability condition intersects some S-states
corresponding to the same program branch (line 6), the
considered frontier edge is indeed reachable. In this case
the approach iterates with a symbolic execution step
to detail the reachability of the frontier edge (line 8).
Otherwise it updates the model to include the new state
(lines 10—14).

The algorithm requires to solve the constraints at
lines 2 and 5. As discussed in the next section, when
used in the context of test generation, this requires only
the call to a constraint solver at line 2, while the call at
line 5 can be avoided, since the test generation algorithm
guarantees that the frontier S-states have been already
evaluated in the former iterations.

Algorithm 2 SymbolicReachability AnalysisStep

Require:
model, a GCFG
(Si, Rj), a frontier edge included in model
Ensure:
Accomplishes a symbolic reachability analysis on the input frontier edge
Returns the resulting GCFG

1: R’ + WeakestPrecondition(R; ~ S;)

2: if —sat(R’) then

3: ModelCoarseningStep (model, R') # Invariant Inv2
4: else

5. reachingSNodes = {S'}| sameC fgBlock(S’, S;) A sat(S' A R")
6: if reachingSNodes # () then

7: S’ < a node from reachingN odes

8: SymbolicExecutionStep (model, (S’, R;))

9: else

10: E; = the set of frontier edges in model

11: Efelete = {(S”, R;)}| sameC fgBlock(S", S;)A(S”, R;) € Ey
12: model <+ model \ E¢¢lte # Invariant Inv5
13: model < model UR' U (R, R)

14: model + modelU ComputeFrontierEdges(R’, model)

15: end if

16: end if

For example, let us consider the frontier edge
(S224, Rasp) in the GCFG in Figure 3. The figure presents
the GCFG of the program checkValves in Figure 1
after some steps of symbolic reachability analysis from

11

Ryg,. The state Ry, belongs to get StatusOfvalves and
is thus not represented explicitly in Figure 2(c). Figure 3
shows the details of the symbolic states corresponding
to the call of getStatusOfValves that are abstracted
away in Figure 2(c), and cuts the GCFG after the return
from getStatusOfvalves.

Ry, represents the execution of the ¢rue branch of the
if statement at line 7 of the program checkvValves
in Figure 1, and corresponds to an error state of the
program. As mentioned in Section 2, this branch is in-
feasible, and the GCFG of Figure 3 shows some progress
of bidirectional symbolic analysis towards the proof of
the infeasibility of this branch. Specifically, the GCFG
of Figure 3 extends the analysis steps represented by
the GCFG of Figure 2(c) with the chain of symbolic
reachability analysis states Rasy, Rep, Rsp and Ry, that
results from the symbolic reachability analysis from the
target Ry, towards the program entry point.

The frontier (Sa2q, Ra3y) represents the next step to-
wards the proof of the infeasibility of the ¢rue branch
of the if statement at line 7. The symbolic reachability
analysis of Rj3, produces the contradictory condition
i > size && i > 0 && i < size that derives from the con-
junction of Ras;, (shown at the bottom of Figure 3) and
the condition of the frontier edge. Thus the frontier edges
(S22q, Ra3p), as well as the frontier edges (Saop, Ra3p) and
(Sa2¢, Rasp) can be removed from the GCFG.

As an example of a refinement of a frontier edge
that leads to new R-states, let us consider the frontier
edge (Sgq, R7q). The symbolic reachability analysis of
R7, propagates the non-contradictory condition ¢ < 0
thus producing a new state Rg. and updating the model
as shown in the zoom in of Figure 4.

The new symbolic reachability state may identify new
frontier edges on the GCFG. In our example, augmenting
the model with the new state Rg. produces new frontier
edges from Si3,, S23p and Sas. to Rg. traversing the call
of function getStatusOfvalve (Figure 4(b)).

The refinement process is conservative as no feasi-
ble path that might lead to not-yet-covered program
branches is ever excluded from the model. Moreover the
monotonic reduction in the number of program paths to
be considered guarantees progress.

4.3 Model Coarsening

The model coarsening step described in Algorithm 3 con-
sists of removing the symbolic reachability states that
correspond to states that become obsolete after either
symbolic execution or symbolic reachability analysis,
or because of model coarsening itself (Algorithm 3,
lines 1—6). Some R-states may become obsolete because
of symbolic execution when a new S-state is satisfiable
in conjunction with an R-state (Algorithm 1, line 2), as
for instance in the case of Sa4, and Rasp in the above ex-
ample of symbolic execution, meaning that that R-state
is indeed reachable. Some other R-states may become
obsolete because of symbolic reachability analysis when

20:wait1>0

21 :Wditl<T

18:Entry
{ Sisa
22:i<size
RZZa l

23 Call getStatus Of alve (i)
{s js d.

|
lnt getStatusOfValve (int)

—L

6: Entry qetStathOfValve (1nt)

| |
@ S6b Sec Reb RGa

7: i<0
v
) gg 5l ke
) ,

9: i>=size 13: i<size
Ve
Roa | S13a || S136 | | Size || Riza
)

14: Exit getStatusOfValve (int)
4 4 "4
@411 @m Shac || Risa
— S

24:Return getStatusOfValve (i)

81>U

REACHABILITY STATE PREDICATES:

Rosp: i>=size A i>=0

Fig. 3. The GCFG obtained from the GCFG of Figure 2(c)
after symbolic reachability analysis from Ry, that repre-
sents a not-yet-covered branch of getStatusOfvalve.

the analysis proves that an R-state is disconnected from
the entry point (Algorithm 2, line 3), as for instance
Ry3, in the example of symbolic reachability analysis,
meaning that the R-state is indeed unreachable. Yet other
R-states become obsolete because of model coarsening
(Algorithm 3, line 7) either when the coarsening step
removes the successor of an R-state, implying that the
reachability of the target of the R-state has been decided
at the current analysis step, or when it removes the
predecessor node of an R-states, implying that the reach-
ability condition is now disconnected from the entry
point.

5 BIDIRECTIONAL TEST CASE GENERATION

Bidirectional Test Case Generation (BiTe) exploits bidirec-
tional symbolic analysis to improve and refine branch
coverage, by both covering not-yet-covered branches
and identifying infeasible branches to be pruned from
the coverage domain. As discussed in Section 2, increas-
ing of branch coverage may exercise critical cases that

|

23: Call getStatusOfvalve (i)

!

f f \ 4
S$23a || S236 LSzzc Rosb | Raza

S 6: Entry uetgtatusofvalve(lnt) J

Rﬁc | S6a @ @\ Reb \ Rﬁd
\ 8: >’U /
Loy / / ‘

23: Call getStatusOfValve (i)

i
(0 e o)

S$234

6: Entry getStatusOfValve (int) |

@\ S6b @ Reb | R6a

’jf “\”’“\ \ |

7: i<0

R7a ‘

\

(b) Update of the GCFG after
adding the new state Rg. computed
with symbolic reachability analysis
at the frontier (S¢q, R7a)

(a): Excerpt of the GCFG of Fig-
ure 3

REACHABILITY STATE PREDICATES:
R74: true
Rge: 1<0 — that is, WP(i<0, R74)

Fig. 4. The symbolic reachability analysis step from R.

Algorithm 3 ModelCoarseningStep

Require:
model, a GCFG modified after a forward/backward analysis step
R, a reachability condition included in model
Ensure:
Removes the node R from model
Removes other nodes and edges to restore the compliance with Definition 3.1
Returns the resulting GCFG

1: E, = the set of edges between reachability conditions in model
2: Ej = the set of frontier edges in model

3: edgesFromR = {(R,R")}| (R, R') € E,

4: edgesToR = {(N, R)}| (N, R) € (B, UE/)

5: adjacentToR = {R'}| (R,R') € E,. vV (R',R) € E,.

6: model = ((model \ {R}) \ edgesFromR) \ edgesToR
7: for all R’ € adjacentToR do

8 model = ModelCoarseningStep(model, R’) # Invariant Inv4
9: end for

10: return model

may lead to severe failures, while pruning infeasible
branches improves the effectiveness of the coverage
metrics.

5.1

BiTe starts with a program and a set of test cases, and
initializes the GCFG by means of Dynamic Symbolic
Execution (DSE) and referring to the program control
structure [24], [4].

BiTe relies on DSE to execute the initial set of test
cases with both symbolic and concrete values, and uses
the concrete values to identify feasible paths and drive
the symbolic exploration of the state-space through these
paths, avoiding infeasible ones. The initial GCFG con-
tains symbolic states that are computed with DSE, and
whose satisfiability is guaranteed by construction.

BiTe completes the initial GCFG by adding the R-states
that represent the not-yet-covered program branches.
After coarsening, the initial GCFG contains only those
R-states that are directly connected to some S-state with
a frontier edge. The R-states eliminated with this initial

BiTe Initialization Step

coarsening step depend on the reachability of the R-
states currently in the GCFG, and will be included in
the GCFG in the next analysis steps.

5.2 BiTe Symbolic Execution Step

BiTe relies on DSE to divert the paths of the existing
test cases to execute program paths that have not been
explored yet. Differently from the standard embodiment
of DSE, BiTe targets the paths that can be diverted along
the frontier edges of the GCFG. If BiTe succeeds to
traverse some frontier edges with a new test case, it
extends the existing test suite towards the uncovered
branches represented by the terminal R-states of the
GCFG.

In detail, BiTe instantiates the symbolic execution step
by symbolically executing a test case up to the frontier,
computing the successor symbolic state beyond the fron-
tier, and solving the condition obtained by appending
the path condition to the frontier reachability predicate
with a Satisfiability Modulo Theories (SMT) solver.

The condition produced with this process character-
izes the program inputs whose execution follows the
same path as the original test case up to the frontier,
but then traverses the frontier and satisfies the frontier
R-state.

If the condition is satisfied for a given input, BiTe
executes the program both concretely and symbolically
with the new input. By construction the test execution
traverses the GCFG frontier and identifies new symbolic
states and new frontier edges. BiTe adds the new (satisfi-
able) symbolic states to the GCFG, and uses the concrete
states to evaluate the symbolic reachability conditions at
the branches traversed during the execution. This limits
the calls to the SMT solver in Algorithm 1 to one call
per iteration.

Let us consider the frontier edge (S2ap, Rosp) Of the
GCFG in Figure 5(a) that reports the complete version
of the GCFG whose excerpt is shown in Figure 3. The
figure separates the states of the two functions of the
program, using the graphical notation of dotted edges
to indicate the function calls and indicating with a
positional correspondence the states involved with the
call flows across the two functions. The symbolic states
represented in the GCFG have been produced with DSE
by executing the (initial) test case 77 reported at the
bottom of Figure 5.

When analyzing the frontier (Sasp, Rasy), BiTe first
computes the symbolic state S5, as the successor of
state Soy, towards the true branch of the if state-
ment at line 25, and then computes the path condition
Sasp A Raspy by joining the symbolic formulas of the
two states, both reported at the bottom of Figure 5.
This path condition is satisfiable with an input array
valveStatus = [—1,—1,—1], and thus BiTe identifies the
new test case 15 reported at the bottom of the figure.
Figure 5(b) presents the GCFG updated by BiTe after
executing 75. The new test case T, traverses the same

13

symbolic states as T} up to the frontier state So4p, and
then traverses the frontier edge and explores the states
Sasp, S22d, S23d, Sed, Ssd, S13d, S14d, S24d, S25¢, S306, S31as
S34p, S35, and Ssep, covering the branch 31 with Ss;, and
thus leading the program to execute the alarm at line 32.

BiTe monitors the execution of the new test case,
evaluates the R-states associated with the traversed
branches, and removes (coarsening step) the R-states
that are satisfied by concrete states traversed during the
test case. Figure 5(b) partially overlaps the new S-states
with the correspondingly satisfied R-states. These R-
states (Rasp, R224, R234, Rear R8as R13a, Rida, Rosa, Ra2sa,
R34, and R31,) are marked with a cross, since they are
satisfied in concrete states traversed during the execution
of T5 and are thus removed from the GCFG. The figure
also indicates the new frontier edges after the update of
the GCFG.

Bidirectional symbolic analysis requires evaluating the
satisfiability of symbolic states and comparing states
computed forward and backward. When exploring a
symbolic state space, evaluating satisfiability and com-
paring states rely on SMT solvers, which can be compu-
tationally expensive. Being based on DSE, BiTe improves
the efficiency of evaluating and comparing symbolic
states, by limiting the calls to the solver only to the states
that belong to the frontier, and taking advantage of the
concrete states traversed by the test cases to evaluate the
satisfiability of many symbolic reachability conditions
with concrete evaluation.

5.3 BiTe Symbolic Reachability Analysis Step

BiTe instantiates the symbolic reachability analysis step
by adapting the classic weakest precondition (WP) cal-
culus [23] referring to the WP« predicate transformer
proposed in DASH by Beckman et al. [15] that uses dy-
namic alias information that can be found in the GCFG
frontier to guarantee efficient and conservative program
abstractions in presence of pointers and pointer aliases.
The WP« predicate transformer identifies a branch as
infeasible in the absence of further aliases yet to be
explored, otherwise it leaves the feasibility of the branch
still open. The availability of more precise reachability
analyzers may only improve on the current state of the
prototype.

In the original proposal DASH addresses the problem
of reaching an error state that represents the single
target of the analysis. BiTe improves branch coverage
by targeting all the program branches that have not
been covered yet, thus extending DASH to the analysis
of multiple branches. The GCFG model that BiTe in-
crementally maintains during the analysis supports the
efficient coordination of multiple analyses a la DASH,
mitigating the inefficiency of the independent analysis
of the single targets. The coarsening step controls the
space explosion that may derive from analyzing multiple
targets by removing the states that become obsolete in
the process.

14

int checkValves () int checkValves () int checkValves ()
18:Entry 20:waitl>0 21:waitl<=0 18:Entry 20:waitl>0 21l:waitl<=0
22:i<size 22:i<size

50X @
it | |
23 call getStatusOfValva i)

23 Call getStatusOfValVE(l’
@m@@m

24: Return getStatusOfValve

20:waitl>0 21:waitl<=0

8: Entr;

24: Return getStatusOfValve (1)

@@\Sm S24d "0

)

+
33:count<=TOLERANCE

31:count>TOLERANCE

+
33:count<=TOLERANCE

7
33:count<=TOLERANCE

31:count>TOLERANCE

o

31:count>TOLERANCE

36: Exit 35:wait2<=0 | | 34:wait2>0 36: Exit 35:wait2<=0 | | 34:wait2>0 36: Exit 35:wait2<=0 | | 34:wait2>0
int getStatusOfValve (int) int getStatusOfValve (int) int getStatusOfValve (int)

6: Entry

.@@@@

6: Entry 6: Entry

1 | | | | l
| |
N N G\ \8 DY
@
: i<size ’ 9: i>=size : 1<slze 9: i>=size : 1<51ze
14}: Exit 14: Exit / 14: Exit

(a) (b) (©)

SYMBOLIC STATE PREDICATES:
Sosp: size=S1 A waitl=Wl A wait2=W2 A valvesStatus=[V1,V2, V3, ...] A S1>1 A Wl=1l A V1=-1 A V2=-1 A i=1 A count=1 A
status=V2

REACHABILITY STATE PREDICATES:
Rosp: valvesStatus[i+1]=-1 A i>=-1 A i<size-1 A i>=size-2 A count>0 A status=-1

TEST CASES:
Ti: size=3 A waitl=1 A wait2=1 A valvesStatus=[-1, 0, 0]
Ts: size=3 A waitl=1 A wait2=1 A valvesStatus=[-1,-1,-1]

Fig. 5. Updates of the GCFG model of the program checkVvalves after identifying both a new test case and an
infeasible program branch with BiTe

The BiTe symbolic reachability analysis steps are trig-
gered when the symbolic execution step fails in gener-
ating test cases that traverse the GCFG frontier. In this
way we avoid wasting time in computing the weakest
preconditions of elements that can be reached straight-
forwardly. When the symbolic execution steps fail on a
given frontier, the symbolic reachability analysis steps
progressively augment the reachability information in
the model, up to possibly detecting infeasible branches.
The new R-states drive the next iterations towards the
analysis of program paths that are most likely to either
reach uncovered branches or reveal infeasible branches
in the program.

For instance, in the example of Figure 5(b) the
forward analysis of the frontier from the states
5994, 8208, S29¢, Saoq to the state Rs3p has not identified
any test case that can traverse the frontier. This triggers
the symbolic reachability analysis step that eventually
proves the frontier to be unreachable, as discussed in
Section 4.2.

5.4 BiTe Coarsening Step

Symbolic reachability analysis leads to a monotonic
growth of the model. The problem is further exacer-
bated because of the incremental growth of the GCFG
and of the complex refinement predicates due to the
simultaneous reachability analysis of several program
branches. During the test generation process, branches
are progressively classified as either covered or infeasi-
ble, thus rendering parts of the refined GCFG irrelevant
for the goal of covering the still uncovered branches. The
coarsening step controls the growth of the GCFG thus
supporting scalability.

Coarsening removes nodes that become obsolete after
the symbolic execution and the symbolic reachability
analysis steps, or after the removal of other redundant
nodes. We already exemplified the case of coarsening
after a successful symbolic execution step in Figure 5(b).
Figure 5(c) exemplifies the other cases. The symbolic
reachability step illustrated in the previous subsection
eliminates the frontier edge (Sa2., R23p), and disconnects
the node Ra3;, from the GCFG entry node. This implies
that Ras, is recognized as unreachable and is pruned
from the GCFG. Removing Ra3,, which corresponds to
a call to getStatusOfvValve, disconnects node Rgp,
which corresponds to the function entry point. Con-
sequently the coarsening step recognizes also nodes
Rgy,, Rspy and Rg, as unreachable and removes them
from the GCFG, thus proving that the program branch
represented by the reachability condition Ry, is indeed
infeasible.

6 INTERPROCEDURAL ANALYSIS

The BiTe analysis is interprocedural, and can thus ad-
dress realistic programs. The sample program of Figure 1
includes a procedure call that we have implicitly treated
as a macro expansion in the examples so far, taking

15

advantage of the presence of a single call. Here we
present the interprocedural extension of BiTe that works
with general programs.

Classical interprocedural analysis exploits either the
functional approach, also called compositional, or the call
string approach [25]. The functional approach combines
intraprocedural summaries bottom-up for analyzing
function calls. The call string approach maintains a de-
scription of the call sites traversed along each analyzed
path, and excludes the interprocedural paths that do
not satisfy the correct pairing between call and return
sites [26]. These paths are called non-realizable paths in
the literature on interprocedural analysis. Since bidi-
rectional symbolic analysis requires pairing path pre-
fixes and path suffixes incrementally analyzed during
the forward and the backward analysis, respectively,
we implement path sensitive interprocedural analysis
according to the call string approach.

N
int main (int)

1: ENTER
S7
/ J

3: CALL

int fun (int)

-
10: ENTER
<
S10'®
6: CALL
@%]
14 Y
S6<> 11: .
i
1<5>
J

S0

\

‘ R3<>

/ N N
4: RETURN 7: RETURN
3 {6
()
\ J

9: EXIT) *- S12<6>
So”
1: prog(){ 10: fun () {
2 if(...){ 11:
3: fun () ; 12: }
4:
5: } else {
6: fun () ;
7
8: }
9: }

Fig. 6. An example of interprocedural GCFG model.

Interprocedural GCFGs include interprocedural edges,
and use call strings to store the interprocedural informa-
tion of the symbolic states and the reachability condi-
tions computed along paths that include interprocedural
edges. The interprocedural edges connect the states at
the call sites to the corresponding successor states at the
entry point of the called procedures, and the states at the
procedure exit points to the corresponding states at the
return point of the calls. In the GCFG models of Figure 5

the interprocedural edges are the edges between the
nodes that correspond to the lines 23 and 6 and between
nodes 14 and 24 that correspond to the call to and
return from function getStatusOfValve, respectively.
Recall that in the figure these edge are indicated by the
positional correspondence of the states involved with
the call flows across the two functions. The call strings
link the symbolic states and the reachability conditions
in the GCFG to the call sites traversed and not yet
returned along the reaching paths. In the GCFG models
of Figure 5 we omit the call strings with no loss of
generality, since the GCFG models deal with a single
invocation.

Figure 6 illustrates the use of call strings in BiTe. The
figure represents the GCFG obtained after symbolically
executing the program prog (reported in the figure)
along the branch that calls function fun at line 6, thus
computing the states Si, Sg, S0, Si1, Si2, S7, So. The
states R3 and R4 represent the not yet reached call and
return points related to the function call at line 3. The
states include superscripts that represent the interproce-
dural calls strings. For instance, the call string (6) links
the symbolic states Si9, Si1, Si2 and S7 to the call of
function fun at line 6, indicating that these states have
been explored in the context of that function call. The call
strings of the states Si, S and Sy are empty because no
call site has been traversed yet. The call string (3) links
the reachability condition Ry to the call of function fun
at line 3 that must be necessarily traversed to reach R,.
Rs3 is associated to an empty call string because it can
be reached from the entry point without going through
any function call.

BiTe uses the call strings to exclude the frontier edges
that depend on non-realizable paths. For example, with
reference to the GCFG of Figure 6, the program control
flow graph would suggest a frontier edge between nodes
Si2 and Ry, since the return point at line 4 can follow
the function exit point at line 12. However, this frontier
depends on the non-realizable path that reaches R4
after traversing the call of function fun at line 6, and
returning to line 4 when exiting from the function. The
call strings associated to nodes S@ and Rfl?’) indicate
the infeasibility of this frontier edge, which can thus be
removed from the GCFG.

Generalizing from the example, BiTe computes fron-
tier edges only between S-states and R-states that are
associated with compatible call strings. The call string
of a frontier S-state S is compatible with the call string
of a frontier R-state R if the call string of S includes as a
postfix the call string of R. This draws on the observation
that the call string of the S-states always starts from the
outermost program function, while the call string of the
R-states starts from the program functions that contain
the target branches.

7 EVALUATION

Our research aims to provide a useful measure of branch
coverage by both generating test cases that execute fea-

16

sible branches, and identifying infeasible branches that
can be excluded from the branch count. Executing fea-
sible branches can increase the probability of revealing
program failures, while excluding infeasible branches
can improve the accuracy and stability of the produced
coverage indicators. Both elements are important when
considering the overall quality process where we need
both to increase the likelihood of revealing subtle failures
and to provide consistent data for managing the overall
quality process.

7.1 Research Questions

We designed a set of experiments to address the follow-
ing research questions:

R(Q: What is the coverage that Bile test suites can
achieve?
What is the impact of the new measure of
coverage that excludes infeasible branches from
the coverage domain?
How does BiTe compare with state-of-the-art
symbolic approaches to test case generation?

RQ;

RQs3

The first research question, R(Q):, focuses on the use-
fulness of the coverage measured in terms of amount
of executed feasible branches. BiTe aims to achieve high
coverage by both generating test cases that execute fea-
sible branches and excluding infeasible branches from
the coverage domain. This leads to the second research
question, RQ)s, that focuses on the relative weight of the
two elements of the approach. We measure the impact of
excluding infeasible branches from the coverage domain
by comparing the new and classic branch coverage val-
ues. The third research question, RQ)3, addresses the va-
lidity of BiTe with respect to state-of-the-art techniques.
We experimentally compare the classic branch cover-
age achieved with BiTe against the coverage obtained
with state-of-the-art approaches, namely CREST [7] and
KLEE [20].

7.2 Protoype Implementation

We ran our experiments with the BiTe Prototype Tool for C
(BiTe.) that implements the BiTe approach. The current
implementation of BiTe. builds on top of CREST® for
dynamic symbolic execution, CIL* for instrumenting and
static analyzing C code, and on the Z3 SMT solver.
BiTe, supports most of the features of the C language in-
cluding procedures, dynamic memory allocation, pointer
arithmetics and reference aliasing. The high performance
SMT solver Z3 provides partial support for nonlinear
constraints. The test case generation procedure can be
optionally seeded with an initial test suite.

The dynamic analysis components of BiTe, uses the
GNU GDB debugger to monitor and access the state
of running programs. The GDB API allows BiTe. to

3. https:/ /github.com/jburnim/crest/
4. https:/ / github.com /kerneis/cil/
5. http:/ /z3.codeplex.com/

extract uniformly both concrete and symbolic data from
a program execution as the symbolic memory is part
of the concrete execution state of the instrumented
program. BiTe. exploits the integration with GDB to
identify the current alias conditions for building alias-
aware refinement predicates. BiTe, computes the alias-
aware refinement predicates in two steps. In the static
initialization step, BiTe. records the sequences of consec-
utive assignments. In the dynamic execution step, BiTe,
computes the alias predicates and finally the alias-aware
refinement predicates.

7.3 Subject Programs

We conducted our experiments on a set of programs
that are widely used as benchmarks in the literature
and that are reported in Table 1. The first four sub-
jects in the table correspond to four device drivers for
the Windows NT kernel: cdaudio, diskperf, floppy
and kbfiltr. These programs have a complex control
flow that is reflected in a large number of paths, and
have been proposed as benchmark in other scientific
experiments on test case generation [27]. The next two
programs implement the state machines that handle
the communication at both the client and the server
side in the the well known Secure Shell (SSH) protocol,
which is ubiquitous on UNIX based systems [28]. The
last program is space, a widely used benchmark that
implements an antenna configuration system developed
by the European Space Agency.

Figure 7 reports the code of function GetKeyword
of program space, which illustrates the characteristics
that complicate symbolic execution. The program space
is an interpreter of a definition language for an array
of antennas that we slightly adapted to obey some
syntactic limitations of our current prototype. Function
GetKeyword is invoked 107 times to parse the antenna
system configuration file, and search for keywords (pa-
rameter kw) that shall appear in a given order in the
configuration file (parameter tp). The loop at lines 12-18
checks for the validity of the input characters, while the
call to function strcmp at line 22 checks whether the
input keyword kw matches the string word identified in
the loop.

To execute the many program branches that depend
on the inputs that match the value of the keyword kw,
the symbolic execution must solve the path condition
that leads to executing the then branch of the if
statement at line 22 after returning from the invocation
of strcmp (kw, word), for each invocation of function
GetKeyword. Since all keywords are predefined strings
and the length of the string word is determined at
line 20 based on the value of variable i that counts
the number of loop iterations, both the lengths of kw
and word are always concrete constant values during
symbolic execution, and thus solving the above path
condition without additional information may require
the exhaustive exploration of the execution space.

17

1 int GetKeyword(char *kw, struct charac** tp)
2 {

3 struct charac «*curr, **curr_ptr;

4 char word[KWDSLEN + 1], ch;

5 int 1 = 0;

6

7 curr_ptr = &curr;

8 *Ccurr_ptr = xtp;

9

10 ch = TapeGet (curr_ptr);

11

12 while (((isalnum(ch)) || (ch == "_")) &&
13 (i < KWDSLEN) && ((xcurr_ptr) != NULL))
14 {

15 word[1i] = ch;

16 i =1+ 1;

17 ch = TapeGet (curr_ptr);

18 }i

19

20 word[i] = "\O0’;

21

22 if (strcmp(kw, word) == 0) {

23 *tp = *curr_ptr;

24 return O;

25 } else

26 return 1;

27 '}

Fig. 7. An excerpt of the program space

Moreover, an interesting execution is characterized by
a proper sequence of characters that result in a combi-
natorial explosion of choices when executing function
GetKeyword with classic symbolic execution. In fact
at each iteration, the symbolic executor shall choose
a set of characters out of all possible characters that
satisfy the loop condition, that should also match the
specified keywords. The variable length of the keywords
introduces yet another combinatorial dimension to the
problem. A classic symbolic executor that processes the
input file forwardly learns the condition that shall be
satisfied only after choosing the set of characters, thus
leading to potential performance problems, as confirmed
with the experiments discussed in this section.

For each of the subject programs, Table 1 reports
the size expressed in lines of code (column loc) as
counted by the GNU utility we, and the number of
branches (column br) as counted by BiTe.. The number
of branches in a programs reflects the complexity of the
control structure. BiTe, counts the branches in a program
statically, right after the CIL pre-compilation that unrolls
decisions with multiple conditions as a cascade of single
condition decisions, and eliminates the dead code that
can be recognized by the compiler constant propagation
analysis.

7.4 Experimental Methodology

To answer the research questions, we executed BiTe, on
the subject programs, and studied the achieved coverage.

18

TABLE 1
Results of BiTe. execution on 6 subject programs.

loc: number of lines of code

Subjects BiTe, br: numbgr of brgr}ches c.omputef,l staticaH‘y'(afte.r
name | loc | br tc | cbr | ibr || covy it, | covy ity unrglh?g decisions V\fllﬂ:l n}ultlple 'c_ond1t101.ns' in
cdaudio | 2,171 | 534 || 259 | 417 | 113 || 78% 20,965 | 99% 76,800 o Suivalent cascade of single condition decisions)
diskperf 1,104 194 59 | 166 14 || 86% 600 | 92% 13,200 e number of gov ered branches
floppy 1,144 234 75 | 206 | 14 882/ 0 317 942/" 14,700 ibr: number of identified infeasible branches
kbfﬂtr. 618 68 32 57 6 84% 129 | 92% 981 covy: branch coverage measured using the GNU gcov
ssh client 760 160 39 | 135 24 || 84% 43,000 | 99% 85,000 utility [as percentage]
ssh server 860 175 40 | 145 1 83% 49400 | 83% 49,400 it,: number of iterations to achieve cbr
space 6,118 | 1,152 || 186 | 397 | 82 || 34% 5610 | 66% 5611 covy: cbr / (br - ibr) [as percentage]

To answer RQ; and RQ2 we compute the amount of
program branches exercised with the test suites gener-
ated with BiTe., and the amount of branches that BiTe,
identifies as infeasible. We measure the coverage of the
BiTe, test cases referring both to the classic branch cover-
age, covp, and a new coverage, covy, that refers to feasible
branches only. The cov, coverage computes the portion
of branches statically identified on the program control
flow graph executed with the test suites generated with
BiTe.. The covy coverage only estimates the portion of
feasible branches executed with the test suites generated
with BiTe,., and is defined as:

CO'Uf — brexec
brtotal - brinf

where brezee, briotar and bri,y indicate the number of
program branches exercised with the BiTe. test suite,
the number of program branches that belong to the
static control flow graph of the program under test and
the number of infeasible branches identified with BiTe,,
respectively.

The covy coverage metric interprets the intuitive and
ideal concept of coverage that measures the amount of
executed feasible branches and thus reaches 100% when
all feasible branches are executed. Classic structural cov-
erage metrics are easy to compute, but loose informative
content when the amount of infeasible elements grows.

The covy, and covy metrics obtained with BiTe, provide
data to answer R(Q);, while their difference quantifies the
contribution of eliminating the infeasible branches, thus
answering RQ)s.

To answer RQ)3 we compare the coverage results of
BiTe. with the ones produced with the state of the art test
case generation tools KLEE and CREST. We instantiated
CREST with three different strategies: plain random
testing (Rand), bounded depth-first concolic execution®
(CREST-dfs) and a heuristic strategy that aims to maxi-
mize branch coverage (CREST-cfg) [7]. KLEE supports
many heuristics to drive the symbolic execution. We
executed KLEE with all the available strategies, and
compared with the best result for each program. We
obtained the best results with the KLEE default strategy

6. We tried several bounds without observing significantly different
results, thus we used the default bound.

ity: number of iterations to achieve both cbr and ibr

for all benchmark programs but ssh server, for which we
achieved the best results with the nurs:md2u strategy, a
heuristic that explores the programs paths in random
order according to a non uniform distribution based on
the minimum distance to an uncovered instruction.

To make the results comparable, we ran all the tools on
the same code, obtained with the CIL code transforma-
tion that decomposes the decision statements that refer
to the logic combination of atomic conditions in decision
statements with a single atomic condition.

We ran the experiments on a laptop equipped with an
Intel Core i7 2.7 GHz processor with 4 GB of memory
and we repeated the executions with time budgets of
both 60 and 180 minutes for each subject program.

We executed all the generated test suites with the GNU
gcov tool to confirm that all the branches marked as
covered are indeed traversed by the corresponding test
cases. We also double-checked that none of the branches
that BiTe. identify as infeasible were covered by other
test generation tools. Moreover we manually confirmed
the infeasibility of a sample of branches.

7.5 Results

Table 1 reports the results achieved when executing BiTe,
on all the subject programs starting from an initially
empty test suite and with a time budget of 180 minutes.
The table reports the number of test cases that BiTe. gen-
erated for each program (column ¢c), the number of cov-
ered branches (column cbr) and the number of branches
that BiTe. identified as infeasible (column ibr). Column
covy, shows the classic branch coverage computed using
the GNU gcov utility. Column covy presents the new
coverage obtained by removing infeasible branches from
the coverage domain. Columns it;, and it; report how
many iterations were required to obtain cov, and covy
respectively.

BiTe. produced test suites of manageable size that
cover most feasible branches (from 66% to 99%). The
table shows clearly that covs is more accurate than covy.
In most cases however, obtaining the most precise value
requires more iterations (column it ¢) than computing the
approximated one (column it;). The improved precision
of coverage comes with a higher computation cost, but

the data about the relation between iterations and cover-
age suggest that completing the test case generation after
investing a limited time budget impacts mostly on the
precision of covy and less on the quality of the generated
test cases.

At the same time, the improved accuracy of the results
can greatly help technical staff in their decisions. Several
standards require accurate metric data, for example, the
DO-178C standard requires infeasible elements to be
identified and removed from the final coverage metrics
for critical software in in-flight systems. Normal produc-
tion practice uses reachability analysis tools to identify
most infeasible elements and alleviate the work of the
specialists. BiTe is in line with this common practice.
We can thus envision a process where BiTe is used with
limited time budget to produce useful test cases, and
additional time budget when accurate coverage data are
required.

Table 2 presents the comparative analysis of BiTe,.
with Rand, CREST-dfs, CREST-cfg and KLEE. The first
seven rows report the results with an analysis budget
of 60 minutes for each program, as commonly used in
literature, and indicate that (i) random testing achieves
consistently low branch coverage for programs with a
non trivial control structure, like the ones considered in
our experiments, (ii) all the considered strategies largely
improve over random testing, (iii) BiTe. (covy), KLEE and
CREST achieve similar branch coverage rates for all pro-
grams but ssh server, (iv) BiTe, (covy) outperforms all
other strategies for ssh server.

The last column of the table reports the branch cov-
erage measured with BiTe. (covy) that corresponds to
evaluate the coverage measured with BiTe by ignoring
the branches proved infeasible with symbolic reachabil-
ity analysis. The results clearly indicate that this novel
measure of coverage better estimates the amount of cov-
ered feasible branches and thus provides more helpful
results for developers and team managers.

We repeated the experiments with an analysis budget
of 180 minutes. We obtain similar coverage values for
all programs except for space. The last row of the table
reports the results for the analysis of space with a time
budget of 180 minutes. These results suggest that the
time budget is not the key factor for the analysis and
that the different approaches can effectively execute most
feasible branches when the program structure is not
too complex and does not include implicit dependen-
cies that are difficult to reveal with classic approaches,
but suffer when dealing with programs with implicit
control dependencies as in space. The results with the
higher time budget for space indicate that only BiTe can
deal with complex control structures. In particular, the
improvement of BiTe. (cov,) from 11% to 34% suggests
that BiTe can indeed improve on current approaches
in the presence of implicit dependencies, and the im-
provement of BiTe. (covs) from 18% to 66% indicates
that properly dealing with infeasible elements may in-
deed produce consistently realistic coverage information.

19

Overall, the data reported in Table 2 indicate that the
coverage obtained with BiTe is in line with the coverage
obtained with the other approaches when the classic
coverage is limited mostly by the presence of infeasible
elements (covy > 92%) and thus there is no much room
for improvement, while BiTe increases significantly the
classic branch coverage in the presence of uncovered but
feasible elements (cov; < 83%).

These results confirm that the BiTe approach pro-
duces consistently better coverage data than state of
the art techniques. The improvement is due both to
the ability of identifying corner cases difficult to reach
with classic heuristics and to the elimination of many
branches identified as infeasible. The results for ssh
server and space confirm that the presence of im-
plicit dependencies between branches can largely hinder
symbolic execution alone. In particular, in space many
branches depend on specific values of the program vari-
ables that are assigned at previous branches and used
at subsequent decision points in different functions of
the program. Such implicit dependencies affect much
less symbolic execution when combined with symbolic
reachability analysis, regardless of the elimination of
infeasible branches from the overall count.

In summary, our results indicate the advantages of
bidirectional analysis and of the new branch coverage
used in BiTe. (covy), and stimulate us to continue with
the development of an optimized version of the proto-
type that may have a non trivial responsibility on the
current performances. The current experiments confirm
the research hypotheses encoded in the research ques-
tions: BiTe achieves a good branch coverage in all the
experiments (between 66% and 98%) (RQ)), BiTe largely
improves the coverage data when dealing with infeasible
elements (increasing the coverage from 34% to 66% in
the best case of space) (RQ2), BiTe achieves a classic
branch coverage in line with state-of-the-art approaches
in some experiments, and outperforms them in other
experiments referring to both classic and new branch
coverage (from 11% to 34% for classic coverage and to
66% for the new coverage, in the best case of space)

(RQs3)-

7.6 Threats to Validity

The main threat to the internal validity of our experiments
derives from possible faults in the prototype BiTe.. We
mitigated this threat by manually confirming the anal-
ysis results on the smaller test subjects and gradually
moving to larger programs of increasing complexity. We
further confirmed the correctness of the coverage results
by cross checking the consistency with the outputs of
other testing tools. Furthermore, we confirmed the cov-
erage results with the GNU gcov tool, double-checked
that no test generation tool executes the branches that
BiTe. identified as infeasible, and manually confirmed
the infeasibility of a sample of those branches.

We experimented with a dedicated machine to avoid

20

TABLE 2
Comparison of branch coverage scores of BiTe. and CREST and KLEE with an analysis budget of 60 minutes, and
comparison of the results with analysis budget of 60 and 180 minutes for program space

Branch coverage (%)
Program Rand | CREST-dfs | CREST-cfg | KLEE | BiTe. (covs) | BiTe. (covy)
cdaudio (60 min) 2% 78% 77% 79% 78% 99%
diskperf (60 min) 3% 75% 85% 76% 86% 92%
floppy (60 min) 2% 86% 86% 87% 88% 94%
kbfiltr (60 min) 38% 84% 84% 85% 84% 92%
ssh client (60 min) 2% 83% 83% 84% 84% 99%
ssh server (60 min) 34% 65% 77% 77% 83% 83%
space (60 min) 2% 11% 2% 9% 11% 18%
[average [12%] 69% | 71% [71% | 73% | 82% |
[space (180 min) i 2% | 12% | 2% | 9% | 34% | 66% |

interferences with the machine workload, and we com-
puted the average coverage of repeated executions to
further reduce the impact. Nevertheless, the background
activity of the system and the random nature of the
considered analysis techniques may have had a small
impact on the results that shall be interpreted within
a small accuracy interval. In particular, a difference of
1% in the coverage data reported in Table 2 shall be
interpreted as a comparable coverage without a strict
inclusion implication.

The external validity of our evaluation relates the ex-
tent to which our results are generalizable. Despite the
high level of precision in both the symbolic execution
and reachability analysis components, BiTe. might not
handle completely some classes of software systems.
The choice of industrially relevant case studies supports
the industrial applicability of the results. We evaluated
BiTe also in the context of a European project on a
case study of four incremental versions of a real-time
software component that controls a robot responsible for
the maintenance of the ITER nuclear fusion plant [29].
Such industrial software systems display characteristics
that are notoriously challenging for automated test data
generation tools, such as the extensive use of nonlinear
and floating point arithmetics. The study indicates that
BiTe can expose subtle (previously unknown) bugs in
this type of software.

Our comparison of BiTe with respect to current sym-
bolic testing techniques may be threatened by the choices
of the competitors. The publicly available versions of
CREST and KLEE may not be sufficiently representative
of all the symbolic techniques proposed in the recent
years. The use of the four NT device drivers in the
experiments reduces the severity of this limitation. These
subjects have been used to evaluate other recent ap-
proaches to automated test generation, and thus the
coverage obtained by BiTe. can be compared to the one
reported in those papers, without requiring to repeat
the experiments. In particular, the analysis of the data
presented by Jaffar et al. [27] confirms that BiTe,. obtains
higher branch coverage on those subjects. This allows us
to assert that the performance of BiTe. in terms of branch
coverage exceeds the current state of the research.

8 RELATED WORK

Automated Test Data Generation (ATDG) has been ex-
tensively studied in the past decades. The seminal work
of the seventies has been extended with a rich variety of
techniques and approaches [30], [31], [32]. In this section,
we survey ATDG techniques with particular emphasis
on approaches based on symbolic execution, present
techniques to detect infeasible program elements, and
discuss the contribution of this paper in relation to the
existing work and the main open challenges.

Table 3 classifies the main approaches to ATDG ac-
cording to the most popular taxonomies that identify
three orthogonal dimensions: automation approach, test
objective and analysis approach, independently from
their technical background. In the table, columns map
test objectives and analysis approaches, while rows corre-
spond to the automation approaches. Gray cells pinpoint
the unlikely combinations of path driven techniques and
dynamic analysis, since purely dynamic analysis hardly
suites for deriving inputs that make specific program
paths execute. The remaining empty cells indicate open
areas that could be investigated in the future.

Below we limit our survey to the ATDG approaches
that represent the most relevant path driven (symbolic
execution based testing) and review the research efforts
on reachability analysis, verification and model checking
approaches that relate to the detection of unreachable
elements in BiTe.

8.1

Symbolic Execution (SE) is the most popular path based
testing approach. SE was proposed in the seventies, but
at that time its practical applicability to industrial scale
software systems was limited by severe scalability issues.
The relevant algorithmic improvements to SE proposed
in the last decade, the availability of cheap computing
power and the progresses in decision procedures fos-
tered the recent emergence of many new SE tools [51],
[53], [20], [62], [63].

The effectiveness of SE for generating test cases is
challenged by the path explosion, the constraint solving
and the infeasible path problems. As the number of paths

Symbolic Execution Based Testing

TABLE 3
Classification of the State of the Research according to:
test objective, automation approach and analysis

technique
Test Objective
(Analysis Approach)
Structural Coverage | Error State | Non Functional
Dyn Stat Hyb Dyn Stat Hyb| Dyn Stat Hyb
[33] [37] [38] [42] [46]][49] (50]
Input [34] [39] [43] [47]
Domain || [35] [40] [11] [48]
Driven [36] [41] [44]
[45]
[51] [64] [69] [4] [81] [84]
[52] [65] [70] [24] [82]
[53] [7] [71] [37] [83]
[20] [8] [72]
5 [54] [66] [73]
§ Path [55] [67] [74]
5 Driven [56] [27] [75]
< [57] [68] [76]
£ [58] [77]
e [59] [78]
= [60] [79]
£ [61] [80]
< [62] (15]
[9]
[63]
[85] [96] [103] [103]
[86] [97] [104] [111]
[87] [18] [105] [112]
[88] [98] [106] [113]
[89] [99] [107] [114]
Goal [90] [100] [108] [115]
Driven || [91] [101] [109] [116]
[92] [102] [110]
[93]
[94]
[5]
[95]

grows exponentially with the number of conditions in
the program, enumerating all paths is generally infea-
sible, and SE may diverge trying to explore an infinite
number of paths, resulting in exploring only a subset
of the program execution space. The incompleteness of
constraint solvers reduces the set of successfully analyz-
able programs. Finally, SE may fail to decide that some
path conditions are unsatisfiable, and may thus diverge
in presence of infeasible program paths.

BiTe relies on dynamic symbolic execution (DSE), also
referred to as concolic testing, to mitigate the path feasi-
bility and constraint solving issues by using dynamic in-
formation from concrete executions to guide SE [24], [4],
[64]. DSE first symbolically analyzes the program along
some concrete execution paths, which are feasible by
construction and do not require constraint solver queries
to validate the satisfiability of the corresponding path
conditions, and then systematically explores alternative
program paths by punctually modifying and solving the
computed path conditions. DSE also replaces symbolic
values with concrete ones every time the constraint
solver cannot cope with them, thus further overcoming
the constraint solving issues at the expense of precision.

21

BiTe addresses the path explosion problem by focusing
DSE only on paths that may lead to execute not-yet-
covered branches. Several studies investigate the effec-
tiveness of SE when coupled with heuristic path explo-
ration strategies that prioritize the analysis of promising
program paths to execute not-yet-covered elements [7],
[8], [67]. Papadakis and Malevris propose a path selec-
tion strategy to reduce the impact of infeasible paths
while targeting branch coverage [57]. Li et al. identify
less explored paths measuring the length-n subpath pro-
gram spectra that generalize branch coverage to approxi-
mate full path information by profiling the execution of
loop-free program paths of given length [9].

BiTe is based on bidirectional symbolic analysis, which
is a universal search strategy and avoids ad hoc heuris-
tics that can be defeated by specific program structures.
Compared with heuristic path exploration strategies, the
BiTe bidirectional analysis can identify and exclude from
further exploration both the provably infeasible branches
and the program paths that provably cannot reach un-
covered branches, thus focusing the search strategy on
the paths that can reach uncovered branches and may
deserve deeper exploration. The experiments reported
in this paper provide evidence that BiTe can be more
effective then the heuristics strategies implemented in
CREST and KLEE for generating test suites that achieve
high branch coverage.

Other ATDG approaches prioritize the state space
exploration or use DSE in combination with other tech-
niques with the goal of maximizing program failures.
EXE drives symbolic execution by monitoring the path
constraints that are compatible with values that might
cause a failure [69]. KATCH uses path selection heuris-
tics to drive SE towards executing software patches
by using a combination of static and dynamic tech-
niques [68]. Predictive Testing and ZESTI use DSE to
check runtime error conditions against the path con-
ditions computed along the explored paths [74], [75].
Check 'n’ Crash targets test case generation towards
fault conditions computed with backward symbolic
analysis [76], [79]. The Marple tool uses a backward
path-sensitive symbolic analysis to detect buffer over-
flows [70]. X-force drives symbolic execution towards
memory allocation sites [71]. Majumdar and Sen propose
hybrid concolic testing that alternates random and con-
colic testing [37]: random testing guarantees a uniform
exploration of the program input space, while concolic
testing implements exhaustive local search. Pdsdreanu
et al. and Chipounov et al. tackle the path explosion
problem with techniques that combine exhaustive SE at
the code unit level with the concolic execution of selected
paths at the system level [65], [66].

Other researchers use DSE to deal with dynamically
generated code where static analysis is inapplicable, for
example to generate test cases for database programs
that include dynamically generated SQL queries, or
for PHP programs that execute within dynamic Web
pages [72], [73]. Xu et al. generalize concrete executions

with the symbolic handling of buffer lengths to search
for memory violations [84].

Differently from the approaches surveyed above, BiTe
builds on the strengths of DSE to target branch coverage,
instead of systematically exploring the program paths
within regions of the input space. BiTe does not directly
try to maximize a specific failure detection metric, but
builds on the empirically validated hypothesis that high
branch coverage, albeit hard to obtain, is correlated
with high failure detection rates [1], [2]. By targeting
branch coverage instead of systematically exploring the
program execution space, BiTe avoids traps that hinder
the state-of-the-art approaches and that can prevent high
coverage for specific target programs.

The performance of BiTe could be further improved by
reusing interprocedural computations compositionally,
implementing optimizations at the decision procedure
level, and exploiting parallel computation, as in the
techniques that we survey below.

State matching and compositional interprocedural ap-
proaches can mitigate the path explosion problem in
SE. State matching checks if a state visited during SE is
subsumed by another symbolic state. This information
is useful as it can prevent SE from analyzing the same
states over and over again. However, as the number of
symbolic states may be infinite, state matching becomes
quickly impractical. Anand et al. propose abstract sub-
sumption, a technique that enables state matching by
exploiting specific program abstractions, in particular for
lists and arrays [52]. Jaffar et al. propose to use inter-
polating theorem provers to mitigate the path-explosion
problem, though they notice that the approach might be
not cost-effective for branch coverage [27]. BiTe,. builds
the GCFG program model on demand by using the
WPa predicate transformer that combines the precision
of the classical weakest preconditions and the scalability
of dynamic alias analysis. Abstract subsumption and
interpolants could be integrated in the BiTe. architecture
without major changes to the current implementation.

Another recent approach to improve the scalability
of SE is to reason about program modules separately,
deriving function summaries that can be reused compo-
sitionally [77]. Such approach is borrowed from classical
interprocedural analysis design techniques [25]. The tool
SMASH builds summaries on demand and distinguishes
between may and must summaries that encode respec-
tively over-approximated and under-approximated ab-
stractions [58].

Invoking a decision procedure to solve constraints
generated with SE is usually the most time consuming
step of symbolic test case generation. SE tools normally
use constraint solvers as black box tools, and take advan-
tage of the improvements in the field by simply upgrad-
ing the solvers. Some ATDG approaches investigate the
advantages of querying several solvers in parallel and
make use of the results that are computed faster [117].
Other researchers investigate the effectiveness of caching
and reusing the solutions produced with the constraint

22

solver across the constraints that recur several times
during the analysis [20], [118], [119], [120]. The Do-
mainReduce approach aims to better integrate symbolic
execution and constraint solving, eliminating potentially
irrelevant constraints based on dynamically monitored
program dependencies [121].

As multi-core processors and distributed systems are
getting more and more common, researchers are investi-
gating parallel computation strategies to accelerate sym-
bolic execution, and reduce the performance issues that
derive for the solvers and the path explosion problem.
Staats and Pasdreanu apply a static partitioning technique
to symbolic execution trees inspired by model checking
approaches [56]. Static partitioning computes statically
the preconditions that characterize distinct subtrees of
the SE tree; such subtrees are then analyzed indepen-
dently and in parallel obtaining speedups up to 90x.
Starting from the observation that static balancing cannot
predict precisely the actual workload of the worker
nodes, Bucur et al. proposed Dynamic Distributed Explo-
ration [60]. The design of BiTe suggests a natural paral-
lelization strategy in which at every step all the elements
in the reachability frontier are analyzed independently.

8.2 Reachability Analysis

In this paper, we advocate the need to tackle the problem
of detecting infeasible code elements while generating
test cases. Proving the infeasibility of a code element is
the dual problem of finding a test case that executes it.

Many safety properties of programs can be expressed
as reachability problems, and are addressed with au-
tomatic verification approaches that exploit the weak-
est precondition calculus [23]. Most state of the art
approaches are grounded on both suitable logics that
describe the safety properties and automatic decision
procedures that handle satisfiability claims in (some
decidable fragment of) those logics [122], [123], [124],
[125], [126], [127], [128]. The BiTe symbolic reachability
analysis steps are grounded on the weakest precondition
calculus as well.

In its classic form, weakest precondition calculus re-
quires loop invariants that cannot be automatically syn-
thesized in general, and is challenged by the presence of
aliases [23]. Recent approaches use abstractions to over
approximate sets of program paths [129] and rely on
techniques to automatically infer loop invariants [130].
BiTe uses dynamic alias information to improve the
efficiency of computing the weakest preconditions, and
takes advantage from the DSE steps to reduce the num-
ber of program paths and loops that must be analyzed
with symbolic reachability analysis, and thus can be fully
automated.

Software model checking can be naturally applied to
reachability analysis. Traditional explicit state and sym-
bolic model checking can scale to millions of states, but
for general purpose software, with an unbounded state
space, this is still not enough [131]. CEGAR (counter

example based abstraction refinement) model checking
contrasts the state explosion by refining a finite abstrac-
tion of the program behavior. CEGAR approaches based
on satisfiability checking tools proved to be very effec-
tive and parallelizable for the sake of software model
checking [16], [17]. Beyer et al. identify paths invariants
to refine multiple infeasible paths at a time [132]. The
SYNERGY approach of Gulvani et al. later enhanced by
Beckman et al. within the DASH approach uses symbolic
test case generation to generate counterexamples for the
abstraction refinement steps [13], [15].

BiTe builds upon the DASH approach; differently
from DASH, BiTe defines the GCFG model to efficiently
coordinate multiple analyses a la DASH, thus mitigat-
ing the inefficiency of the independent analysis of the
single targets, introduces the coarsening step to control
the space explosion that may derive from tracking the
preconditions of multiple targets via the WP,, predicate
transformer, and exploits interprocedural call strings to
pair the path prefixes and the path suffixes incremen-
tally analyzed during symbolic execution and symbolic
reachability analysis.

Optimizing compilers detect dead code using data
flow analysis, a static technique that over approximates
the set of possible values for variables at all program
locations [133], [134]. Data flow analysis however is not
path sensitive and can propagate data flow facts across
infeasible paths, producing imprecise results. Symbolic
execution can overcome data flow limitations as it in-
tegrates with constraint solvers to determine the fea-
sibility of program paths. Delahaye et al. propose to
combine the two approaches to generalize individual
unreachability results to sets of program paths [135].
Unsound approaches aim to efficiently detect a large
portion of infeasible code while accepting some false
positives that are feasible paths wrongly classified as
infeasible. Ngo and Tan use pattern matching to detect
infeasible paths based on empirical rules, reporting high
levels of precision and recall [136], [137]. BiTe implicitly
relies on sound static data flow analysis to early detect
and prune dead code.

9 CONCLUSIONS

Structural coverage, and in particular branch coverage,
are popular techniques to measure the thoroughness
of test cases. The difficulty of executing corner cases
that represent rare execution conditions and the approx-
imation that derives from the impossibility of identi-
fying all infeasible elements limit the effectiveness of
current approaches. The approaches proposed so far to
improve structural coverage deal with either the problem
of executing uncovered elements or the problem of
demonstrating the infeasibility of other elements. The
few straightforward combinations of the two classes of
approaches improve coverage, but focus on specific ele-
ments, and may be trapped into infinitely long attempts
to either include or exclude the target elements from
coverage, and thus do not represent acceptable solutions.

23

In this paper we propose a novel solution that relies
on a new metric that defines branch coverage referring
to feasible branches only, thus excluding the branches
that can be proven infeasible from the final metrics. The
approach can indeed identify many feasible elements
and at the same time exclude many infeasible ones,
thus reaching consistently high coverage values that
can greatly help developers and quality experts in their
decisions. The approach is centered on a model, which
identifies what we call a frontier that represents the set
of elements that can be either most likely included in
or excluded from the coverage domain. The frontier is
the pivot for alternating symbolic execution that aims to
execute not-yet-covered elements and symbolic reacha-
bility analysis that aims to identify infeasible elements
to be excluded from the coverage domain. The frontier
avoids both analyses to be trapped by singularities in the
program execution space that may not be easily either
reached or identified as infeasible, and thus overcomes
the problems of current techniques that combine differ-
ent types of analyses.

The results presented in this paper open new research
frontiers. In particular, although the general technique
is not restricted to a specific coverage criterion, so far
we have targeted and experimented with branch cov-
erage. We are currently investigating the extension of
bidirectional symbolic analysis to other kinds of cover-
age. Moreover, the performance of the current prototype
although acceptable may impact on the scalability of the
technique. We are currently studying new techniques
to overcome some technical problems of the current
prototype to improve the performance and thus the
scalability of the approach.

ACKNOWLEDGMENT

This work has been partially supported by the Swiss
SNF project AVATAR (200021_132666) and by the Italian
PRIN project IDEAS (2012E47TM2_006).

REFERENCES

[1] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments
of the effectiveness of dataflow-and controlflow-based test ade-
quacy criteria,” in ICSE '94: Proceedings of the 16th international
conference on Software engineering. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1994, pp. 191-200.

[2] A.S.Namin and J. H. Andrews, “The influence of size and cov-
erage on test suite effectiveness,” in Proceedings of the eighteenth
international symposium on Software testing and analysis (ISSTA '09).
New York, NY, USA: ACM, 2009, pp. 57-68.

[3] L. Inozemtseva and R. Holmes, “Coverage is not strongly
correlated with test suite effectiveness,” in Proceedings of the
International Conference on Software Engineering, 2014.

[4] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing
engine for C,” in Proceedings of the 10th European software engineer-
ing conference held jointly with 13th ACM SIGSOFT international
symposium on Foundations of software engineering (ESEC/FSE-13),
2005, pp. 263-272.

[5] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE
Trans. Softw. Eng., vol. 39, no. 2, pp. 276-291, Feb. 2013. [Online].
Available: http://dx.doi.org/10.1109/TSE.2012.14

6]

(71

(8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed
random testing for java,” in Companion to the 22Nd ACM
SIGPLAN Conference on Object-oriented Programming Systems
and Applications Companion, ser. OOPSLA ‘07. New York,
NY, USA: ACM, 2007, pp. 815-816. [Online]. Available:
http://doi.acm.org/10.1145/1297846.1297902

J. Burnim and K. Sen, “Heuristics for scalable dynamic test
generation,” in Proceedings of the 23rd IEEE/ACM International
Conference on Automated Software Engineering (ASE 2008), 2008,

pp- 443-446.
T. Xie, N. Tillmann, P. de Halleux, and W. Schulte,
“Fitness-guided path exploration in dynamic symbolic

execution,” in Proceedings of the 39th Amnnual IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN 2009), June-July 2009, pp. 359-368. [Online]. Available:
http:/ /www.csc.ncsu.edu/faculty /xie/publications /dsn09-
fitnex.pdf

Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic execution
to less traveled paths,” in Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, ser. OOPSLA "13. New
York, NY, USA: ACM, 2013, pp. 19-32. [Online]. Available:
http:/ /doi.acm.org/10.1145/2509136.2509553

RTCA, Inc., “DO-178C/ED-12C: Software considerations in air-
borne systems and equipment certification,” December 2011.

T. Ball, B. Cook, V. Levin, and S. K. Rajamani, “SLAM and static
driver verifier: Technology transfer of formal methods inside
Microsoft,” in Proceedings of the 4th International Conference on
Integrated Formal Methods (IFM 2004). Springer, 2004, pp. 1-20.
L. A. Clarke and D. S. Rosenblum, “A historical perspective on
runtime assertion checking in software development,” SIGSOFT
Softw. Eng. Notes, vol. 31, no. 3, pp. 25-37, May 2006. [Online].
Available: http://doi.acm.org/10.1145/1127878.1127900

B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K.
Rajamani, “Synergy: A new algorithm for property checking,” in
Proceedings of the 14th ACM SIGSOFT symposium on Foundations
of Software Engineering (FSE-14), 2006, pp. 117-127.

D. Beyer, T. Henzinger, R. Jhala, and R. Majumdar, “The software
model checker BLAST,” International Journal on Software Tools for
Technology Transfer (STTT), vol. 9, no. 5-6, pp. 505-525, Oct. 2007.
N. E. Beckman, A. V. Nori, S. K. Rajamani, R. J. Simmons, S. D.
Tetali, and A. V. Thakur, “Proofs from tests,” IEEE Transactions
on Software Engineering, vol. 36, no. 4, pp. 495-508, 2010.

A. R. Bradley, “Sat-based model checking without unrolling,”
in Proceedings of the 12th International Conference on Verification,
Model Checking, and Abstract Interpretation, ser. VMCAI'11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 70-87. [Online].
Available: http://dl.acm.org/citation.cfm?id=1946284.1946291
A. Cimatti and A. Griggio, “Software model checking via IC3,”
in Computer Aided Verification, ser. Lecture Notes in Computer
Science, P. Madhusudan and S. Seshia, Eds. Springer Berlin
Heidelberg, 2012, vol. 7358, pp. 277-293.

M. Baluda, P. Braione, G. Denaro, and M. Pezze, “Enhancing
structural software coverage by incrementally computing branch
executability,” Software Quality Journal, vol. 19, no. 4, pp. 725-751,
2011.

M. Baluda, P. Braione, G. Denaro, and M. Pezze, “Structural
coverage of feasible code,” in Proceedings of the Fifth International
Workshop on Automation of Software Test (AST 2010), 2010.

C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted
and automatic generation of high-coverage tests for complex
systems programs,” in Proceedings of the 8th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 2008),
2008.

J. C. King, “Symbolic execution and program testing,” Commu-
nications of the ACM, vol. 19, no. 7, pp. 385-394, Jul. 1976.

L. A. Clarke, “A system to generate test data and symbolically
execute programs,” IEEE Transactions on Software Engineering,
vol. 2, pp. 215-222, May 1976.

E. W. Dijkstra, A Discipline of Programming. Upper Saddle River,
NJ, USA: Englewood Cliffs: prentice-hall, 1976.

P. Godefroid, N. Klarlund, and K. Sen, “DART: directed auto-
mated random testing,” in Proceedings of the ACM SIGPLAN 2005
Conference on Programming Language Design and Implementation
(PLDI 2005), 2005, pp. 213-223.

A. Pnueli and M. Sharir, “Two approaches to interprocedural

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

24

data flow analysis,” Program flow analysis: theory and applications,
pp. 189-234, 1981.

T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural
dataflow analysis via graph reachability,” in Proceedings of the
22nd ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, ser. POPL '95. New York, NY, USA: ACM, 1995,
pp- 49-61.

J. Jaffar, V. Murali, and J. A. Navas, “Boosting concolic testing
via interpolation,” in Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2013. New
York, NY, USA: ACM, 2013, pp. 48-58. [Online]. Available:
http:/ /dx.doi.org/10.1145/2491411.2491425

D. Beyer and M. E. Keremoglu, “Cpachecker: A tool for
configurable software verification,” in Proceedings of the 23rd In-
ternational Conference on Computer Aided Verification, ser. CAV’'11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 184-190. [Online].
Available: http://dl.acm.org/citation.cfm?id=2032305.2032321

P. Braione, G. Denaro, A. Mattavelli M. Vivanti, and
A. Muhammad, “Software testing with code-based test
generators: Data and lessons learned from a case study
with an industrial software component,” Software Quality
Control, vol. 22, no. 2, pp. 311-333, Jun. 2014. [Online].
Available: http://dx.doi.org/10.1007/s11219-013-9207-1

P. McMinn, “Search-based software test data generation: A
survey: Research articles,” Software Testing, Verification and
Reliability, vol. 14, no. 2, pp. 105-156, Jun. 2004. [Online].
Available: http://dx.doi.org/10.1002/stvr.v14:2

C. S. Pasareanu and W. Visser, “A survey of new trends in sym-
bolic execution for software testing and analysis,” International
Journal on Software Tools for Technology Transfer, vol. 11, no. 4, pp.
339-353, 2009.

G. Fraser, F. Wotawa, and P. E. Ammann, “Testing with model
checkers: a survey,” Software Testing, Verification and Reliability,
vol. 19, no. 3, pp. 215-261, Sep. 2009.

S.-D. Gouraud, A. Denise, M.-C. el, and B. Marre, “A
new way of automating statistical testing methods,” in
Proceedings of the 16th IEEE International Conference on Automated
Software Engineering, ser. ASE ’01. Washington, DC, USA:
IEEE Computer Society, 2001, pp. 5-. [Online]. Available:
http://dlLacm.org/citation.cfm?id=872023.872550

T. Y. Chen, H. Leung, and K. Mak, “Adaptive random testing,” in
Advances in Computer Science - ASIAN 2004. Higher-Level Decision
Making, ser. Lecture Notes in Computer Science, M. Maher, Ed.
Springer Berlin / Heidelberg, 2005, vol. 3321, pp. 3156-3157.

S. H. Wu, S. Jandhyala, Y. K. Malaiya, and A. P. Jayasumana,
“Antirandom testing: A distance-based approach,” VLSI Design,
vol. 2008, no. 2, pp. 2:1-2:9, Jan. 2008. [Online]. Available:
http://dx.doi.org/10.1155/2008 /165709

I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “Artoo: Adaptive
random testing for object-oriented software,” in Proceedings of
the 30th International Conference on Software Engineering, ser. ICSE
‘08. New York, NY, USA: ACM, 2008, pp. 71-80.

R. Majumdar and K. Sen, “Hybrid concolic testing,” in Proceed-
ings of the 29th International Conference on Software Engineering.
IEEE Computer Society, 2007, pp. 416-426.

F. Chan, T. Chen, I. Mak, and Y. Yu, “Proportional
sampling strategy: Guidelines for software testing
practitioners,” Information and Software Technology, vol. 38,
no. 12, pp. 775 - 782, 1996. [Online]. Available:

http:/ /www.sciencedirect.com/science/article/pii/0950584996011032

K. Claessen and J. Hughes, “Quickcheck: A lightweight tool for
random testing of haskell programs,” in Proceedings of the Fifth
ACM SIGPLAN International Conference on Functional Program-
ming, ser. ICFP "00. New York, NY, USA: ACM, 2000, pp. 268—
279.

Y. Wei, H. Roth, C. A. Furia, Y. Pei, A. Horton, M. Steindorfer,
M. Nordio, and B. Meyer, “Stateful testing: Finding more
errors in code and contracts,” in Proceedings of the 2011
26th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’'11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 440-443. [Online]. Available:
http:/ /dx.doi.org/10.1109/ ASE.2011.6100094

R. Nokhbeh Zaeem and S. Khurshid, “Test input generation
using dynamic programming,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, ser. FSE ’12. New York, NY,

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

USA: ACM, 2012, pp. 34:1-34:11. [Online].
http://doi.acm.org/10.1145/2393596.2393635

T. Ball, “Abstraction-guided test generation: A case study,” Mi-
crosoft Research, Tech. Rep. MSR-TR-2003-86, Nov. 2003.

——, “A theory of predicate-complete test coverage and gen-
eration,” in Proceedings of the Third International Symposium on
Formal Methods for Components and Objects (FMCO 2004), ser.
Lecture Notes in Computer Science, vol. 3657. Springer Berlin
/ Heidelberg, Nov. 2004, pp. 1-22.

D. Beyer, A.]. Chlipala, T. A. Henzinger, R. Jhala, and R. Majum-
dar, “Generating tests from counterexamples,” in Proceedings of
the 26th International Conference on Software Engineering (ICSE '04).
IEEE Computer Society, 2004, pp. 326-335.

C. D. Nguyen, A. Marchetto, and P. Tonella, “Combining
model-based and combinatorial testing for effective test case
generation.” in Proceedings of the 2012 International Symposium
on Software Testing and Analysis, ser. ISSTA 2012. New
York, NY, USA: ACM, 2012, pp. 100-110. [Online]. Available:
http://doi.acm.org/10.1145/2338965.2336765

J. Callahan, E Schneider, and S. Easterbrook, “Automated
software testing using model-checking,” in Proceedings
of the 1996 SPIN Workshop (SPIN 1996). Also WVU
Technical Report NASA-IVV-96-022., 1996. [Online]. Available:
citeseer.ist.psu.edu/article/callahan96automated.html

C. S. Pasdreanu, R. Pelanek, and W. Visser, “Concrete model
checking with abstract matching and refinement,” in Proceeding
of the 17th International Conference on Computer Aided Verification
(CAV 2005), ser. LNCS, no. 3576. Springer, 2005, pp. 52-66.

G. Yorsh, T. Ball, and M. Sagiv, “Testing, abstraction, theorem
proving: better together!” in ISSTA '06: Proceedings of the 2006
international symposium on Software testing and analysis. ~New
York, NY, USA: ACM, 2006, pp. 145-156.

M. Grechanik, C. Fu, and Q. Xie, “Automatically finding
performance problems with feedback-directed learning software
testing,” in Proceedings of the 2012 International Conference
on Software Engineering, ser. ICSE 2012. Piscataway, NJ,
USA: IEEE Press, 2012, pp. 156-166. [Online]. Available:
http://dlLacm.org/citation.cfm?id=2337223.2337242

C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code
fragments,” in Proceedings of the 21st USENIX conference on
Security symposium, ser. Security’12. Piscataway, NJ, USA:
USENIX Association, 2012, pp. 38-38. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2362793.2362831

W. Visser, C. S. Pasdreanu, and S. Khurshid, “Test input gen-
eration with Java PathFinder,” in Proceedings of the 2004 ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2004). ACM, 2004, pp. 97-107.

S. Anand, C. S. Pasdreanu, and W. Visser, “Symbolic execution
with abstract subsumption checking,” in Proceedings of the 13th
International Conference on Model Checking Software, ser. SPIN’06.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 163-181.

——, “Jpf-Se: A symbolic execution extension to Java
pathfinder,” in International Conference on Tools and Algorithms
for Construction and Analysis of Systems (TACAS 2007), Braga,
Portugal, March 2007, pp. 134-138.

S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pdsdreanu,
“Differential symbolic execution,” in Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. SIGSOFT ‘08/FSE-16. New York,
NY, USA: ACM, 2008, pp. 226-237. [Online]. Available:
http://doi.acm.org/10.1145/1453101.1453131

K. L. McMillan, “Lazy annotation for program testing and
verification,” in Computer Aided Verification, ser. Lecture Notes
in Computer Science, T. Touili, B. Cook, and P. Jackson, Eds.
Springer Berlin / Heidelberg, 2010, vol. 6174, pp. 104-118.

M. Staats and C. S. Pasdreanu, “Parallel symbolic execution for
structural test generation,” in Proceedings of the 19th International
Symposium on Software Testing and Analysis (ISSTA 2010). ACM,
2010, pp. 183-194.

M. Papadakis and N. Malevris, “A symbolic execution tool based
on the elimination of infeasible paths,” in Software Engineering
Advances (ICSEA), 2010 Fifth International Conference on, 2010, pp.
435-440.

P. Godefroid, A. V. Nori, S. K. Rajamani, and S. D. Tetali, “Com-
positional may-must program analysis: Unleashing the power
of alternation,” in Proceedings of the 37th annual ACM SIGPLAN-

Available:

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

25

SIGACT symposium on Principles of programming languages (POPL
2010). ACM, 2010, pp. 43-56.

G. Li, I. Ghosh, and S. P. Rajan, “Klover: A symbolic execution
and automatic test generation tool for c++ programs,” in CAV,
2011, pp. 609-615.

S. Bucur, V. Ureche, C. Zamfir, and G. Candea, “Parallel sym-
bolic execution for automated real-world software testing,” in
Proceedings of EuroSys 2011. ACM, 2011.

J. Jaffar, V. Murali, J. A. Navas, and A. E. Santosa, “Tracer: A
symbolic execution tool for verification,” in Proceedings of the 24th
international conference on Computer Aided Verification, ser. CAV'12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 758-766.

P. Braione, G. Denaro, and M. Pezze, “Enhancing symbolic
execution with built-in term rewriting and constrained lazy
initialization,” in Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2013. New
York, NY, USA: ACM, 2013, pp. 411-421. [Online]. Available:
http://doi.acm.org/10.1145/2491411.2491433

——, “Symbolic execution of programs with heap inputs,” in
Proceedings of the 2015 Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2015. ACM, 2015.

N. Tillmann and J. de Halleux, “Pex: White box test
generation for .NET,” in Proceedings of the 2nd International
Conference on Tests and Proofs, ser. TAP’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 134-153. [Online]. Available:
http:/ /portal.acm.org/ citation.cfm?id=1792786.1792798

C. S. Pasdreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-
Burlet, M. Lowry, S. Person, and M. Pape, “Combining unit-
level symbolic execution and system-level concrete execution
for testing nasa software,” in Proceedings of the 2008 International
Symposium on Software Testing and Analysis, ser. ISSTA "08. New
York, NY, USA: ACM, 2008, pp. 15-26.

V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform for
in-vivo multi-path analysis of software systems,” in Proceedings
of the 16th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2011).
ACM, 2011, pp. 265-278.

T. Su, G. Pu, B. Fang, J. He, J. Yan, S. Jiang, and]. Zhao,
“Automated coverage-driven test data generation using dynamic
symbolic execution,” in Software Security and Reliability (SERE),
2014 Eighth International Conference on, June 2014, pp. 98-107.
C. C. Paul Dan Marinescu, “Katch: High-coverage testing of soft-
ware patches,” in European Software Engineering Conference / ACM
SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE), 8 2013, pp. 235-245.

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler, “EXE: Automatically generating inputs of death,” in
Proceedings of the 13th ACM Conference on Computer and Commu-
nications Security (CCS '06). New York, NY, USA: ACM, 2006,
pp. 322-335.

W. Le and M. L. Soffa, “Marple: A demand-driven path-
sensitive buffer overflow detector,” in Proceedings of the
16th ACM SIGSOFT International Symposium on Foundations of

Software Engineering, ser. SIGSOFT ‘08/FSE-16. New York,
NY, USA: ACM, 2008, pp. 272-282. [Online]. Available:
http://doi.acm.org/10.1145/1453101.1453137

F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and

Z. Su, “X-force: Force-executing binary programs for security
applications,” in Proceedings of the 23rd USENIX Conference
on Security Symposium, ser. SEC'14. Berkeley, CA, USA:
USENIX Association, 2014, pp. 829-844. [Online]. Available:
http://dlacm.org/citation.cfm?id=2671225.2671278

M. Emmi, R. Majumdar, and K. Sen, “Dynamic test input
generation for database applications,” in Proceedings of the 2007
International Symposium on Software Testing and Analysis, ser.
ISSTA '07. New York, NY, USA: ACM, 2007, pp. 151-162. [On-
line]. Available: http://doi.acm.org/10.1145/1273463.1273484

S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and
M. D. Ernst, “Finding bugs in dynamic web applications,”
in Proceedings of the 2008 International Symposium on
Software Testing and Analysis, ser. ISSTA '08. New York,
NY, USA: ACM, 2008, pp. 261-272. [Online]. Available:
http://doi.acm.org/10.1145/1390630.1390662

P. Joshi, K. Sen, and M. Shlimovich, “Predictive testing:
Amplifying the effectiveness of software testing,” in Proceedings
of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations

[75]

[76]

[77]

[78]

[79]

[80]

(81]

(82]

[83]

[84]

[85]

(86]

(87]

(88]

[89]

[90]

[91]

of Software Engineering, ESEC-FSE '07. New York,
NY, USA: ACM, 2007, . 561-564. [Online]. Available:
http://doi.acm.org/10.1145/1287624.1287710
C. C. Paul Dan Marinescu, “Make test-zesti: A symbolic execu-
tion solution for improving regression testing,” in International
Conference on Software Engineering (ICSE 2012), 6 2012.

C. Csallner and Y. Smaragdakis, “Check’n’crash: combining
static checking and testing,” in Proceedings of the 27th International
Conference on Software Engineering (ICSE 2005), 2005, pp. 422—-431.
P. Godefroid, “Compositional dynamic test generation,” in
Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL '07. New
York, NY, USA: ACM, 2007, pp. 47-54. [Online]. Available:
http://doi.acm.org/10.1145/1190216.1190226

P. Godefroid, M. Y. Levin, and D. Molnar, “Automated whitebox
fuzz testing,” in Proceedings of the 16th Annual Network and
Distributed System Security Symposium (NDSS 2008), 2008, pp.
151-166.

C. Csallner, Y. Smaragdakis, and T. Xie, “DSD-crasher: a hybrid
analysis tool for bug finding,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 17, no. 2, pp. 1-37,
Apr. 2008.

B. Elkarablieh, P. Godefroid, and M. Y. Levin, “Precise pointer
reasoning for dynamic test generation,” in ISSTA '09: Proceedings
of the eighteenth international symposium on Software testing and
analysis. New York, NY, USA: ACM, 2009, pp. 129-140.

J. Burnim, N. Jalbert, C. Stergiou, and K. Sen, “Looper:
Lightweight detection of infinite loops at runtime,” in Proceedings
of the 2009 IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 161-169. [Online]. Available:
http:/ /dx.doi.org/10.1109/ ASE.2009.87

J. Burnim, S. Juvekar, and K. Sen, “Wise: Automated
test generation for worst-case complexity,” in Proceedings
of the 31st International Conference on Software Engi-
neering, ser. ICSE ‘09. Washington, DC, USA: IEEE
Computer Society, 2009, . 463-473. [Online]. Available:
http:/ /dx.doi.org/10.1109/ICSE.2009.5070545
P. Zhang, S. Elbaum, and M. B. Dwyer, “Automatic
generation of load tests,” in Proceedings of the 2011 26th
IEEE/ACM International ~Conference on Automated Software
Engineering, ser. ASE ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 43-52. [Online]. Available:
http:/ /dx.doi.org/10.1109/ ASE.2011.6100093

R.-G. Xu, P. Godefroid, and R. Majumdar, “Testing for buffer
overflows with length abstraction,” in Proceedings of the 2008
International Symposium on Software Testing and Analysis, ser.
ISSTA "08. New York, NY, USA: ACM, 2008, pp. 27-38. [Online].
Available: http://doi.acm.org/10.1145/1390630.1390636

B. Korel, “Automated software test data generation,” Software
Engineering, IEEE Transactions on, vol. 16, no. 8, pp. 870-879, 1990.
——, “Dynamic method for software test data generation,”
Software Testing, Verification and Reliability, vol. 2, no. 4, pp. 203-
213, Dec. 1992.

R. Ferguson and B. Korel, “The chaining approach for software
test data generation,” ACM Transactions on Software Engineering
and Methodology, vol. 5, pp. 63-86, Jan. 1996.

C. Michael, G. McGraw, and M. Schatz, “Generating software
test data by evolution,” IEEE Transactions on Software Engineering,
vol. 27, no. 12, pp. 1085-1110, Dec. 2001. [Online]. Available:
http://dx.doi.org/10.1109/32.988709

P. Tonella, “Evolutionary testing of classes,” in Proceedings
of the 2004 ACM SIGSOFT international symposium on
Software testing and analysis, ser. ISSTA '04. New York,
NY, USA: ACM, 2004, pp. 119-128. [Online]. Available:
http://doi.acm.org/10.1145/1007512.1007528

J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary
test environment for automatic structural testing,”
Information and Software Technology, vol. 43,
no. 14, 841 - 854, 2001. [Online]. Available:

ser.

Pp-

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

http:/ /www.sciencedirect.com/science/article/pii/S0950584901001902

P. McMinn, M. Harman, D. Binkley, and P. Tonella,
“The species per path approach to searchbased test data
generation,” in Proceedings of the 2006 International Symposium
on Software Testing and Analysis, ser. ISSTA ’06. New
York, NY, USA: ACM, 2006, pp. 13-24. [Online]. Available:
http://doi.acm.org/10.1145/1146238.1146241

[105]

26

G. Fraser and A. Zeller, “Generating parameterized unit
tests,” in Proceedings of the 2011 International Symposium on
Software Testing and Analysis, ser. ISSTA ’11. New York,
NY, USA: ACM, 2011, . 364-374. [Online]. Awvailable:
http:/ /doi.acm.org/10.1145/2001420.2001464
E. M. Kifetew, A. Panichella, A. De Lucia, R. Oliveto, and
P. Tonella, “Orthogonal exploration of the search space in
evolutionary test case generation,” in Proceedings of the 2013 In-
ternational Symposium on Software Testing and Analysis, ser. ISSTA
2013. New York, NY, USA: ACM, 2013, pp. 257-267. [Online].
Available: http://doi.acm.org/10.1145/2483760.2483789

M. Vivanti, A. Mis, A. Gorla, and G. Fraser, “Search-based data-
flow test generation,” in ISSRE’13: Proceedings of the 24th IEEE
International Symposium on Software Reliability Engineering. 1EEE
Press, Nov. 2013.

G. Denaro, A. Margara, M. Pezze, and M. Vivanti, “Dynamic
data flow testing of object oriented systems,” in Proceedings of
the International Conference on Software Engineering, ser. ICSE 2015,
2015.

K. Lakhotia, M. Harman, and P. McMinn, “Handling
dynamic data structures in search based testing,” in
Proceedings of the 10th Annual Conference on Genetic and
Evolutionary Computation, ser. GECCO ’08. New York,
NY, USA: ACM, 2008, pp. 1759-1766. [Online]. Available:
http://doi.acm.org/10.1145/1389095.1389435

K. Inkumsah and T. Xie, “Improving structural testing of
object-oriented programs via integrating evolutionary testing
and symbolic execution,” in Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’08. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 297-306. [Online]. Available:
http:/ /dx.doi.org/10.1109/ ASE.2008.40
N. Alshahwan and M. Harman, “Automated web application
testing using search based software engineering,” in Proceedings
of the 2011 26th IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 3-12. [Online]. Available:
http:/ /dx.doi.org/10.1109/ ASE.2011.6100082

M. Harman, Y. Jia, and W. B. Langdon, “Strong higher order
mutation-based test data generation,” in Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ser. ESEC/FSE "11. New
York, NY, USA: ACM, 2011, pp. 212-222. [Online]. Available:
http:/ /doi.acm.org/10.1145/2025113.2025144

A. Baars, M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn,
P. Tonella, and T. Vos, “Symbolic search-based testing,” in
Proceedings of the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE '11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 53-62. [Online].
Available: http://dx.doi.org/10.1109/ASE.2011.6100119

J. Malburg and G. Fraser, “Combining search-based and
constraint-based testing,” in Proceedings of the 2011 26th
IEEE/ACM International ~Conference on Automated Software
Engineering, ser. ASE ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 436-439. [Online]. Available:
http://dx.doi.org/10.1109/ ASE.2011.6100092

J. P. Galeotti, G. Fraser, and A. Arcuri, “Improving search-based
test suite generation with dynamic symbolic execution,” in IEEE
International Symposium on Software Reliability Engineering, 2013.
N. Tracey, J. Clark, and K. Mander, “Automated program
flaw finding using simulated annealing,” in Proceedings

of the 1998 ACM SIGSOFT international symposium on
Software testing and analysis, ser. ISSTA ’98. New York,
NY, USA: ACM, 1998, 73-81. [Online]. Available:

pp-

http://doi.acm.org/10.1145/271771.271792
A. Baresel, H. Pohlheim, and S. Sadeghipour, “Structural
and functional sequence test of dynamic and state-based
software with evolutionary algorithms,” in Proceedings of
the 2003 international conference on Genetic and evolutionary
computation: Partll, ser. GECCO’03. Berlin, Heidelberg:
Springer-Verlag, 2003, pp. 2428-2441. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1756582.1756738

J. Wegener and O. Biihler, “Evaluation of different fitness func-
tions for the evolutionary testing of an autonomous parking
system,” in Genetic and Evolutionary Computation — GECCO 2004,
ser. Lecture Notes in Computer Science, K. Deb, Ed. Springer
Berlin Heidelberg, 2004, vol. 3103, pp. 1400-1412.

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

O. Biihler and]J. Wegener, “Evolutionary functional testing,”
Comput. Oper. Res., vol. 35, no. 10, pp. 3144-3160, Oct. 2008.
[Online]. Available: http://dx.doi.org/10.1016/j.cor.2007.01.015
T. E. Colanzi, W. K. G. Assungdo, S. R. Vergilio, and
A. Pozo, “Integration test of classes and aspects with
a multi-evolutionary and coupling-based approach,” in
Proceedings of the Third International Conference on Search
Based Software Engineering, ser. SSBSE’11. Berlin, Heidelberg:

Springer-Verlag, 2011, pp. 188-203. [Online]. Available:
http://dlLacm.org/citation.cfm?id=2042243.2042268

E Gross, G. Fraser, and A. Zeller, “Search-based
system testing: High coverage, no false alarms,” in

Proceedings of the 2012 International Symposium on Software
Testing and Analysis, ser. ISSTA 2012. New York,
NY, USA: ACM, 2012, pp. 67-77. [Online]. Available:
http://doi.acm.org/10.1145/2338965.2336762

G. Fraser and A. Zeller, “Mutation-driven generation of unit
tests and oracles,” IEEE Transactions on Software Engineering,
vol. 38, no. 2, pp. 278292, Mar. 2012. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2011.93

T. E. Vos, F. E Lindlar, B. Wilmes, A. Windisch, A. I
Baars, P. M. Kruse, H. Gross, and]. Wegener, “Evolutionary
functional black-box testing in an industrial setting,” Software
Quality Control, vol. 21, no. 2, pp. 259-288, Jun. 2013. [Online].
Available: http://dx.doi.org/10.1007 /s11219-012-9174-y

H. Kayacik, A. Zincir-Heywood, and M. Heywood, “Evolving
successful stack overflow attacks for vulnerability testing,” in
Computer Security Applications Conference, 21st Annual, 2005, pp.
8 pp.—234.

M. Tlili, H. Sthamer, S. Wappler, and]. Wegener, “Improving
evolutionary real-time testing by seeding structural test data,”
in Evolutionary Computation, 2006. CEC 2006. IEEE Congress on,
2006, pp. 885-891.

K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos,
“Timeaware test suite prioritization,” in Proceedings of the 2006
International Symposium on Software Testing and Analysis, ser.
ISSTA '06. New York, NY, USA: ACM, 2006, pp. 1-12. [Online].
Available: http://doi.acm.org/10.1145/1146238.1146240

M. Di Penta, G. Canfora, G. Esposito, V. Mazza, and
M. Bruno, “Search-based testing of service level agreements,”
in Proceedings of the 9th Amnnual Conference on Genetic and
Evolutionary Computation, ser. GECCO ‘07. New York,
NY, USA: ACM, 2007, pp. 1090-1097. [Online]. Available:
http://doi.acm.org/10.1145/1276958.1277174

R. C. Bryce and C. J. Colbourn, “One-test-at-a-time heuristic
search for interaction test suites,” in Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation, ser. GECCO
’07. New York, NY, USA: ACM, 2007, pp. 1082-1089. [Online].
Available: http://doi.acm.org/10.1145/1276958.1277173

W. Afzal, R. Torkar, and R. Feldt, “A systematic
review of search-based testing for non-functional system
properties,” Journal of Information and Software Technology,
vol. 51, no. 6, pp. 957-976, Jun. 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2008.12.005

H. Palikareva and C. Cadar, “Multi-solver support in symbolic
execution,” in Proceedings of the 25th international conference on
Computer Aided Verification, ser. CAV'13. Berlin, Heidelberg:
Springer-Verlag, 2013, pp. 53-68.

W. Visser, J. Geldenhuys, and M. B. Dwyer, “Green: Reduc-
ing, reusing and recycling constraints in program analysis,”
in Proceedings of the ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE "12. ACM, 2012,
pp- 1-11.

A. Aquino, F. A. Bianchi, C. Meixian, G. Denaro, and M. Pezze,
“Reusing constraint proofs in program analysis,” in Proceedings
of the International Symposium on Software Testing and Analysis, ser.
ISSTA "15. ACM, 2015, pp. 305-315.

X. Jia, C. Ghezzi, and S. Ying, “Enhancing reuse of constraint
solutions to improve symbolic execution,” in Proceedings of the
International Symposium on Software Testing and Analysis, ser.
ISSTA "15. ACM, 2015, pp. 177-187.

1. Erete and A. Orso, “Optimizing constraint solving to better
support symbolic execution,” in Proceedings of the 2011 IEEE
Fourth International Conference on Software Testing, Verification and
Validation Workshops, ser. ICSTW “11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 310-315.

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

27

A. Meller and M. I. Schwartzbach, “The pointer assertion logic
engine,” in Proceedings of the ACM SIGPLAN 2001 Conference on
Programming Language Design and Implementation, ser. PLDI "01.
New York, NY, USA: ACM, 2001, pp. 221-231.

P. Madhusudan and X. Qiu, “Efficient decision procedures for
heaps using strand,” in Proc. of the 18th International Conference
on Static Analysis, ser. SAS’'11. Springer-Verlag, 2011, pp. 43-59.
Z. Rakamarié, R. Bruttomesso, A. J. Hu, and A. Cimatti, “Ver-
ifying heap-manipulating programs in an smt framework,” in
Proc. of the 5th International Conference on Automated Technology
for Verification and Analysis, ser. ATVA’07. Springer-Verlag, 2007,
pp. 237-252.

S. McPeak and G. C. Necula, “Data structure specifications via
local equality axioms,” in Proc. of the 17th International Conference
on Computer Aided Verification, ser. CAV'05. Springer-Verlag,
2005.

A. Bouajjani, C. Dr?goi, C. Enea, and M. Sighireanu, “Accurate
invariant checking for programs manipulating lists and arrays
with infinite data,” in Automated Technology for Verification and
Analysis, ser. LNCS, S. Chakraborty and M. Mukund, Eds.
Springer, 2012, pp. 167-182.

P. Madhusudan, X. Qiu, and A. Stefanescu, “Recursive proofs for
inductive tree data-structures,” in Proceedings of the 39th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. New York, NY, USA: ACM, 2012, pp. 123-136.

C. Enea, V. Saveluc, and M. Sighireanu, “Compositional invari-
ant checking for overlaid and nested linked lists,” in Proceedings
of the European Conference on Programming Languages and Systems,
ser. ESOP’13. Springer-Verlag, 2013, pp. 129-148.

M. Barnett and K. R. M. Leino, “Weakest-precondition
of unstructured programs,” SIGSOFT Softw. Eng. Notes,
vol. 31, no. 1, pp. 82-87, Sep. 2005. [Online]. Available:
http:/ /doi.acm.org/10.1145/1108768.1108813

C. Furia and B. Meyer, “Inferring loop invariants using postcon-
ditions,” in Fields of Logic and Computation, ser. Lecture Notes in
Computer Science, A. Blass, N. Dershowitz, and W. Reisig, Eds.
Springer Berlin Heidelberg, 2010, vol. 6300, pp. 277-300.

J. R. Burch, K. L. McMillan, D. L. Dill, and L. Hwang, “Symbolic
model checking: 10 20 states and beyond,” Logic in Computer
Science, 1990. LICS’90, Proceedings., Fifth Annual IEEE Symposium
on e, pp. 428-439, 1990.

D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko,
“Path invariants,” in Proceedings of the ACM SIGPLAN 2007
Conference on Programming Language Design and Implementation
(PLDI 2007), ser. PLDI ‘07. New York, NY, USA: ACM, 2007,
pp- 300-309.

M. S. Hecht, Flow Analysis of Computer Programs.
NY, USA: Elsevier Science Inc., 1977.

R. Cytron,]J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck, “Efficiently computing static single assignment form
and the control dependence graph,” ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 13, no. 4, pp.
451-490, October 1991.

M. Delahaye, B. Botella, and A. Gotlieb, “Explanation-based
generalization of infeasible path,” in Proceedings of the 2010
Third International Conference on Software Testing, Verification and
Validation, ser. ICST "10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 215-224.

M. N. Ngo and H. B. K. Tan, “Detecting large number of infeasi-
ble paths through recognizing their patterns,” in Proceedings of the
the 6th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software
engineering, ser. ESEC-FSE '07. New York, NY, USA: ACM, 2007,
pp. 215-224.

——, “Heuristics-based infeasible path detection for dynamic
test data generation,” Information and Software Technology, vol. 50,
no. 7-8, pp. 641-655, 2008.

New York,

Mauro Baluda is a Post-Doctoral Research Fel-
low in the Secure Software Engineering group at
the Fraunhofer Institute for Secure Information
Technology. He received his Ph.D. degree at the
Universita della Svizzera Italiana, Lugano, Swiz-
erland. His scientific interests are in software
testing and analysis, software security, software
verification and rigorous software engineering.

Giovanni Denaro is researcher and assistant
professor of software engineering at the Univer-
sity of Milano-Bicocca. He received his Ph.D. de-
gree in computer science from Politecnico di Mi-
lano. His research interests include formal meth-
ods for software verification, software testing
and analysis, distributed and service-oriented
systems and software metrics. He has been co-
investigator in several international research and
development projects in close collaboration with
leading European universities and companies.

Mauro Pezze is a professor of software engi-
neering at the University of Milano-Bicocca and
at the Universita della Svizzera italiana. He is as-
sociate editor of IEEE Transactions on Software
Engineering, and has served as associate editor
of ACM Transactions on Software Engineering,
as general chair or the ACM International Sym-
posium on Software Testing and Analysis in
2013, program chair of the International Confer-
ence on Software Engineering in 2012 and of
the ACM International Symposium on Software
Testing and Analysis in 2006. He is known for his work on software
testing and program analysis and, more recently on self-healing and
self-adaptive software systems.

28

