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ABSTRACT
Introduction: Antiretroviral treatment of HIV infection reduces, but does not eliminate, viral replication
and down modulates immune activation. The persistence of low level HIV replication in the host,
nevertheless, drives a smouldering degree of immune activation that is observed throughout the
natural history of disease and is the main driving force sustaining morbidity and mortality.
Areas covered: Early start of antiretroviral therapy (ART) and intensive management of behavioural risk
factors are possible but, at best, marginally successful ways to manage immune activation. We review
alternative, possible strategies to reduce immune activation in HIV infection including timing of ART
initiation and ART intensification to reduce HIV residual viremia; switch of ART to newer molecules with
reduced toxicity; use of anti inflammatory/immunomodulatory agents and, finally, interventions aimed
at modifying the composition of the microbiota.
Expert commentary: Current therapeutic strategies to limit immune activation are only marginally
successful. Because HIV eradication is currently impossible, intensive studies are needed to determine if
and how immune activation can be silenced in HIV infection.
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1. Introduction

Antiretroviral therapy (ART) almost inevitably results in the rapid
control of HIV and a partial restoration of immune responses,
leading to the prevention of the various complications that define
AIDS. However, HIV-infected adults experiencing durable treat-
ment-mediated suppression of HIV replication are at risk for devel-
oping a number of non-AIDS conditions, including cardiovascular
disease (CVD), cancer, kidney disease, liver disease, osteopenia/
osteoporosis, and neurocognitive disease (collectively referred to
as ‘serious non-AIDS events’). Although these events have a com-
plex pathogenesis, low-grade chronic immune activation –
together with the direct effect of HIV, the impact of immunodefi-
ciency, and ART toxicity – has convincingly been shown to be the
main driver of non-AIDS pathologies. The complexity of the patho-
genesis of non-AIDS events in HIV-infected individuals who have
apparently achieved suppression of viral replication is exemplified
by the observation that even the phenomenon defined as
‘immune activation’ is characterized by many different aspects.
Thus, activation is only one manifestation of a complex immuno-
logical disorder that includes both immunosuppression and
aspects of excessive inflammatory answers [1,2].

HIV infection leads to activation of both innate and adaptive
immune responses through multiple mechanisms including (1)
plasmacytoid dendritic cell stimulation by HIV-RNA; (2) stimula-
tion of dendritic cells, natural killer (NK) cells, cytotoxic cell func-
tion, as well as antibody production and permanent CD8 T-cell
dysfunction/exhaustion most likely due to the persistence of HIV
antigens; (3) pyroptosis, an inflammatory form of programmed

cell death resulting in the release of cytoplasmic contents and
pro-inflammatory cytokines which is presumably triggered by
abortive HIV infection of CD4+ T cells [3–5]; and (4) HIV persis-
tence, a phenomenonmostly involving CD4+ T lymphocytes that
express the programmed cell death 1 (PDCD1; also known as PD-
1) receptor and are localized in the lymph nodes (notably, these
cells are believed to be the principal source of replication-com-
petent HIV-1 and of infectious virus [6]).

CD4+ T cells in gut-associated lymphoid tissue are known
to be major targets for HIV due to their activated status and
their high expression of C-C chemokine receptor type 5 (CCR5)
[7]. CD4+ T lymphocytes belonging to the Th17 subpopula-
tion, in particular, are preferentially lost in initial HIV infection
[8]. Because these cells secrete interleukin (IL)-17 and IL-22
and promote neutrophil recruitment, which is associated with
resistance against bacterial and fungal infections and with the
preservation of the integrity of the epithelial barrier, such loss
plays a pivotal role in the pathogenesis of the disease. Recent
results have shown that Th22 cells, another CD4+ T-cell subset
that secretes IL-22 independently of interferon (IFN) gamma
and IL-17, are selectively deleted as well in patients with
uncontrolled HIV infection. Importantly, Th22 depletion is
negatively correlated with immune activation and with micro-
bial translocation [9]. At the gut level, HIV infection also leads
to the disruption of intestinal tight junctions and increased
mucosal permeability [10]; the consequent translocation of
bacterial and fungal products elicits further inflammatory
responses. An additional element that may play an important
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role in the HIV-associated subversion of the immune system is
the alteration of the microbiota that is evident even in the
initial phases of infection. Indeed, some studies in humans
have shown that microbial richness is negatively and preco-
ciously altered by HIV infection. A shift from a Bacteroides- to a
Prevotella-dominated scenario, in particular, was described to
characterize HIV-1 infection starting from the initial phases of
the disease [11,12].

HIV infection-associated CD4+ T-cell depletion also triggers
physiologic homeostatic mechanisms, e.g. IL-7 secretion [13]
that result in lymphocyte proliferation. This stimulates the
differentiation and the generation of effector T cells character-
ized by an inflammatory phenotype, thereby contributing to
the persistence of immune activation [14]. Finally, and to add
further complexity to this scenario, it also has to be underlined
that other, non-immunologic or virologic risk factors, including
smoke, alteration of lipid profile, and ART toxicity, play an
important role in the pathogenesis of inflammation and
immune activation in HIV-infected hosts [15,16].

Herein, we will summarize the possible roles of the known
culprits of immune activation in HIV infection, and we will
focus on the state-of-the-art of the possible strategies to
limit this deleterious condition.

2. Strategies to limit immune activation in HIV
patients

2.1. ART initiation

The most important and simplest way to reduce immune
activation is certainly ART. As a matter of fact, ART suppresses
HIV viremia and consequently reduces immune activation.
Nevertheless, even if ART results in control over viral replica-
tion, its effects over immune activation are only partial, as a
low-grade and persistent degree of immune activation (i.e.
increased amounts of circulating activated immune cells and
an upregulated generation of inflammatory cytokines) is pre-
sent throughout the duration of the disease [17]. Notably, ART
itself cannot be deemed free from side effects, especially
when considering older-generation protease inhibitors and
thymidine analog nucleoside reverse-transcriptase inhibitors
(NRTIs), drugs that are associated with lipodystrophy, insulin
resistance, and dyslipidemia [15,16].

Despite these considerations, early ART initiation has
repeatedly and convincingly been shown to result in a signifi-
cant reduction of serious non-AIDS events even in patients
who start ART when their CD4+ T lymphocyte counts are next
to normal. Early ART initiation, i.e. initiation of ART as soon as
possible after the diagnosis of HIV infection, results in smaller
HIV-DNA reservoirs and a lower degree of CD4+ T-cell activa-
tion, a parameter which was shown to be associated with pre-
ART CD4+ T-cell counts rather than with HIV viremia. Because
most HIV-infected patients are first seen in the chronic phase
of infection, early ART initiation is nevertheless often impos-
sible in the real world; the best strategy in this case appears to
be summarized by the ‘test and treat’ approach [18,19].

A very important contribution to the concept that early
initiation of ART is beneficial for patients was given by the
results of the Strategic Timing of Antiretroviral Therapy

(START) protocol. This huge multicentric international trial
enrolled more than 4000 naive patients that were followed
for a mean of 3.0 years and showed that early ART initiation
results in a lower incidence of both AIDS- and non-AIDS-
related events. Thus, the results of START clearly indicated
that precocious initiation of therapy is associated with an
important beneficial effect on disease outcome which is inde-
pendent of age, sex, race, region of the world, CD4+ count,
viral load, or risk factors for serious non-AIDS diseases. It is
nevertheless important to observe that, even in the case of
very early ART initiation, the risk of AIDS is not equal to zero,
strongly indicating that irreversible immune system damages
are present even in the very early stages of HIV infection [18].

A number of data have convincingly shown that higher
levels of immune activation and lymphocytes apoptosis are
present in treatment-naive patients with low CD4+ counts;
these parameters decrease as a result of ART initiation [20–
22]. Notably, a recent study focusing on a small group of HIV
controllers (both elite controller and patients with <1000
copies/milliliter (cp/mL) HIV-RNA for >12 months in the
absence of ART) showed that lower HIV-RNA levels and HIV
antibody titers, as well as a downmodulation of immune
activation, can be achieved even in such hyperselected
patients upon ART initiation [23]. Because the immune system
of these particular individuals has repeatedly been shown to
be only marginally damaged by HIV infection, these results
support the idea that better preserved immune functions
result in a more favorable response to ART.

To summarize, a vast body of literature shows that early
initiation of ART is associated with a beneficial effect on dis-
ease outcome independently of the immuno-virological status
of the patient. Even in this case, though, subtle and diffuse
alterations that affect the immune system and cannot be fully
restored by therapy are observed.

2.2. ART intensification

Many studies have shown that persistent HIV replication, even
when ART suppresses HIV viremia below detection limit, is
associated with a residual degree of immune activation. This
is witnessed by the observations that higher amounts of CD4
+- and CD8+-activated T lymphocytes as well as higher plasma
concentration of IL-6, D-dimer, and sCD14 are present even in
those patients whose virological response to therapy can be
classified as being optimal. As indicated above, these observa-
tions are of extreme clinical importance, as they result in an
increased incidence of serious non-AIDS events [24].

One of the simplest and more logical way to curb immune
activation in ART-treated individuals is to intensify therapy in
the attempt to achieve an even more complete suppression of
HIV replication. Different antiviral compounds that have been
used in therapy intensification are mentioned below.

2.2.1. Intensification with raltegravir
The effect of intensification of ongoing ART with raltegravir, a
potent integrase inhibitor, has been tested in a number of clinical
trials. None of these trials, nevertheless, could convincingly show
that this drug resulted in a significant reduction in plasma HIV-
RNA as measured by ultrasensitive methods. Studies dealing
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with inflammation and immune activation markers have shown
conflicting results: although some studies noted a reduction in
D-dimer levels and T-cell activation, as well as an early transient
increase in 2-Long Terminal Repeat (2-LTR) circles (i.e. viral DNA
that does not integrate into the host cell) post-raltegravir inten-
sification, these effects could not be confirmed by other investi-
gators [25–30].

2.2.2. Intensification with maraviroc
Maraviroc is an entry inhibitor that targets CCR5. Maraviroc
intensification studies reached conflicting data as well: some
studies found a reduction of CD4+ and CD8+ T lymphocytes
bearing activation markers, while other studies showed no dif-
ference or even an increase of these cell populations [31–33].
Some interesting results stem from a pilot study showing that
intensification with maraviroc results in the normalization of
mucosal CCR5+CD4+ T cells, an increase of the naive/memory
CD8+ T-cell ratio, and a decline of sCD14 levels and duodenal
HIV DNA levels, with no changes in HIV-RNA in plasma or tissue.
This particular study was conducted in naive patients treated
with a quadruple regimen, containing an NRTI backbone (teno-
fovir disoproxil fumarate/emtricitabine) associated with mara-
viroc and raltegravir [34]. The optimism raised by these data
was nevertheless at least partially dampened by other recent
results indicating no differences in HIV-reservoir size in blood
and sigmoid colon and in immune activation markers when a
standard ART was compared with mega-ART (i.e. standard ART
intensified with raltegravir/maraviroc) in acute infection [35].

To summarize, current data do not support the idea that
therapy intensification of an effective and suppressive antire-
troviral regimen does result in clear immunologic, virologic, or
clinical benefits.

2.3. HIV persistence and the way to eradication

HIV low-level viremia is associated with microbial translocation
and inflammation. The relationship between persistent viremia
and inflammation is particularly intricate as inflammation con-
tributes to HIV-1 persistence by inducing de novo infection in
activated CD4+ T cells and by upregulating the expression of
immune checkpoint blockers and of immune proteins (e.g. PD-
1) that blunt HIV-1-specific immune responses. Persistent viral
replication, in turn, is a major factor in the maintenance of a
pro-inflammatory microenvironment [6,36–53].

Recent results casted a new light on the problem of HIV
persistence. PD-1 expressing CD4+ T cells in the lymph
nodes (LN PD-1+/TFH cells), in particular, were shown to
harbor cell-associated HIV-RNA for up to 12 years after
initiation of ART, possibly because of their location in the
germinal centers, which are a privileged site for virus repli-
cation and infection [43]. These results suggested that ther-
apy based on the use of PD-1-specific antibodies might
facilitate the elimination of these cells, greatly reducing
the pool of latent HIV-1 and, as a consequence, ‘curing’
immune activation [6,44,45]. An additional, extremely impor-
tant factor that obstacles the possibility of achieving viral
eradication is the existence of so-called ‘sanctuaries: ana-
tomic compartments where drug concentrations are lower

than in blood.’ Some examples of such compartments are
the brain, the testes, the lungs, and the lymphoid tissue. In
sanctuaries, HIV can replicate and evolve while being unde-
tectable in the bloodstream for long periods of time [46,47].
At the moment, this problem remains unsolved and in dire
need for targeted research.

2.4. Switch of ART regimens

With the development of new and more user-friendly antire-
troviral drugs, ART-associated toxicity has become less fre-
quent, as this problem can be bypassed by skipping those
drugs whose use is more frequently burdened by toxicity.
Thus, the availability of many antiviral compounds allows the
clinician to avoid using older drugs that are known to be
associated with metabolic dysfunction. In particular, old-gen-
eration NRTIs, such as zidovudine and stavudine, as well as
older protease inhibitors, are known to be associated with
lipodystrophy and dyslipidemia, and their use is currently
avoided unless it becomes strictly necessary [48].

As a consequence of such realization, a useful strategy is to
switch from ART to newer molecules: several studies demonstrate
an improvement in lipid profile once patients switch from old
protease inhibitors to darunavir or atazanavir. Therapy simplifica-
tion, e.g. a switch from standard triple therapy to dual-therapy
containing a protease inhibitor such as lopinavir or atazanavir,
associated with lamivudine [49,50] can reduce toxicity problems
aswell. Other useful solutions are theuse of antiretroviral regimens
that include integrase inhibitors or CCR5 antagonists, i.e. com-
pounds that are characterized by more favorable lipid profiles
[51,52].

In this context, it should be noted that tenofovir disoproxil
fumarate-based regimens are also associated with a more favor-
able lipid profile, but the observations that this drug results in an
increased risk of reduced bone mineral density and estimated
Glomerular Filtration Rate requires a careful evaluation of risks
and benefits for each patient [48]. These considerations are extre-
mely important within the immune activation scenario. Thus, the
use of older drugs was often associated with mitochondrial
damage, dyslipidemia, and metabolic disorders, all factors that
play an important role in oxidative stress and inflammation: switch
to newer, ‘cleaner’ drugs is an effective and beneficial way to
reduce immune activation.

2.5. Anti-inflammatory agents

An obvious way to downmodulate inflammation and immune
activation is to use anti-inflammatory agents. Several mole-
cules endowed with different degrees of anti-inflammatory
effects have been studied in the context of HIV infection.

2.5.1. Statins
From a classical point of view, statins have a lipid-lowering
effect which is extremely useful for primary or secondary cardi-
ovascular prevention [53]. However, many studies showed a
pleiotropic effect of these drugs, which deserves a careful
analysis. Statins play an important role against oxidative stress,
endothelial dysfunction, and vascular inflammation: potential
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therapeutic targets when the renin–angiotensin–aldosterone
system is activated by accumulation of conventional cardiovas-
cular risk factors [54].

Even more interesting, statins have an immunomodulatory
effect which is mediated by different mechanisms: (1) inhibi-
tion of IFN-γ co-stimulation-dependent expression of human
leukocyte antigen (HLA) class II antigens on macrophages; (2)
inhibition of the expression of co-stimulatory molecules
(CD40, CD8, and CD86) on antigen-presenting cells; (3) reduc-
tion of Th1 cytokine production; and (4) stimulation of the
secretion of Th2 cytokines [55].

In an interesting recent work, atorvastatin was shown to be
endowed with many anti-inflammatory functions including
the reduction of T-cell immune activation markers (e.g. CD38,
HLA-DR, and Ki67) and of the expression of the HIV-1 co-
receptor CCR5, as well as the decrease of the proliferative
capabilities of CD4+ T cells in vitro. Moreover, atorvastatin
resulted in (1) the expansion of regulatory T cells (Treg); (2)
the expression on CD4+ T lymphocytes of T-cell immunoglo-
bulin and immunoreceptor tyrosine-based inhibition motif
domain – a molecule that stimulates the suppressive activity
of Tregs –; and (3) the upregulation, on these same cells, of the
cyclin-dependent kinase inhibitor p21, a protein that renders
them less susceptible to HIV-1 infection [56].

Clinical trials analyzing the effects of statins on immune
activation in HIV infection showed that these compounds can
reduce serum levels of C-reactive protein (CRP) with or with-
out an effect on other immune activation markers. Some of
these discrepancies could be related to the different statins
used in these studies, as well as to differences among the
analyzed populations of HIV patients [57,58].

The possibility of employing statins as anti-inflammatory
agents in HIV-infected individuals is, thus, a hot research topic.
Two interesting atorvastatin-based, randomized, double-blind,
placebo-controlled trials showed a reduction of activated CD4
+ and CD8+ T lymphocytes in ART-treated individuals [59,60].
Even more recently, the use of atorvastatin and rosuvastatin in
HIV infection was shown to reduce oxidized low-density lipo-
protein (oxLDL) levels, carotid intima media thickness, coron-
ary atherosclerosis, and monocyte activation [61,62].

The ability of another statin, rosuvastatin, to improve car-
diovascular and skeletal health in HIV infection by simulta-
neously targeting inflammation and dyslipidemia is currently
being evaluated in the Stopping Atherosclerosis and Treating
Unhealthy bone with RosuvastatiN in HIV trial. Preliminary
data indicate that rosuvastatin can reduce monocyte activa-
tion and the concentration of sCD14, as well as CD142 expres-
sion on monocytes, independently of its lipid-lowering effects
[63]. This activity is also associated with increased bone
mineral density [64]. Importantly, rosuvastatin also reduced
intestinal fatty acid-binding protein, a marker of enterocyte
death and a surrogate marker of gut-barrier integrity, even if
its use did not affect serum levels of lipopolysaccharide (LPS)-
binding protein (LBP), a marker of microbial translocation [65].

2.5.2. Aspirin
Acetylsalicylic acid has a fundamental role in secondary pre-
vention of CVD [66]. The results of a pilot study proved that a
short-course acetylsalicylic acid therapy in a small group of

HIV-positive patient on ART was associated with reductions in
platelet aggregation, CD4+ and CD8+ T-cell activation, and
plasma sCD14 levels [67]. A second interesting study focused
on the possible effects of aspirin on nuclear factor kappa-light-
chain-enhancer of activated B cells, a transcription factor that
plays an important role in inflammation and is constitutively
activated in several types of cancers, including Epstein-Barr
Virus-positive lymphoma. Results indicated that aspirin
reduced nuclear translocation of NFκB and promoted the
lytic cycle. These data suggest that acetylsalicylic acid could
be used, of course in combination with anticancer drugs, in
the treatment of EBV-positive lymphomas [68]. Notably, as
NFκB is constitutively activated in Kaposi’s sarcoma-associated
herpes virus (KSHV) and primary effusion lymphoma, NFκβ
inhibitors could also play a role in the therapy of these con-
ditions [69]. This is confirmed by two small studies showing
that aspirin-mediated NFκβ inhibition provokes the apoptosis
of KSHV-infected cells, possibly resulting in a beneficial clinical
effect [69,70].

2.5.3. Hydroxychloroquine
Chloroquine (CQ) and its analog hydroxychloroquine (HCQ)
have shown both immunomodulatory and anti-HIV properties.

Several mechanisms of action of these antimalarial com-
pounds on the immune system have been proposed: (1) inter-
ference with lysosomal acidification and inhibition of
proteolysis, chemotaxis, phagocytosis, and antigen presenta-
tion [71]; (2) reduction of macrophage-mediated cytokine pro-
duction (in particular IL-1 and IL-6 production) [72]; (3)
inhibition of phospholipase A2 with a consequent antagoniz-
ing effect on prostaglandins [73]; (4) absorption and block of
ultraviole light-induced cutaneous reactions; (5) binding and
stabilization of DNA [74]; (6) inhibition of T- and B-cell recep-
tor-mediated calcium signaling; (7) inhibition of matrix metal-
loproteinases [75]; and (8) inhibition of toll-like receptor
signaling [76].

Mechanisms that have been invoked to explain the anti-
HIV-1 effect of CQ and HCQ include an impairment of gp120
production, the restriction of intracellular iron which is a
necessary cofactor for HIV-1 replication, an effect on Tat-
mediated transactivation of HIV-1 LTR, and, finally, an effect
on HIV-1 integrase [77,78]. Two non-randomized studies ana-
lyzing the possible effects of HCQ on immune activation in
HIV-positive patients showed conflicting results. Thus, the first
study suggested that the use of HCQ is associated with a sharp
reduction in plasma LPS, IL-6, and activated T cells and mono-
cytes, while the second study found no differences in lym-
phoid and myeloid immune activation or inflammatory
biomarkers [79,80]. These two studies nevertheless cannot be
compared as the first one was conducted using a higher dose
of HCQ in virologically non-suppressed individuals, whereas
the second focused on HIV-suppressed patients.

2.5.4. Agents preventing monocyte activation
HIV-infected monocytes and macrophages present in ana-
tomic reservoirs, including tissues such as the brain and
lung, can escape immune system recognition, thus establish-
ing viral reservoirs [81]. Monocytes play a role in many clinical
manifestations, such as neuro-AIDS. Notably, persistently
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increased numbers and/or percentages of CD16+ monocytes
are more tightly linked to the development of neurological
diseases than the number of HIV-infected cells in the Central
Nervous System or Cerebrospinal Fluid viral load [82].

Monocyte expression of CD11b and CX3CR1 was recently
shown to associate with carotid intima–media thickness in
HIV-infected individuals. Other studies indicate that the mono-
cyte activation phenotype in HIV-infected patients is similar to
that seen in uninfected individuals suffering from CVDs
[83,84]. These results notwithstanding, the proportion of
inflammatory CD16+ monocytes is increased in untreated
HIV infection and predicts progression of coronary artery cal-
cium, independent of traditional risk factors [85]. The use of
specific antiretroviral drugs that efficiently target monocytes
could thus be beneficial as it might prevent some comorbid-
ities. The CCR5 inhibitor maraviroc can avoid infection of
monocyte-derived macrophages ex vivo and, as a conse-
quence, likely reduces the size of the reservoirs established
in these cells in vivo. However, specific studies in HIV-infected
individuals are currently lacking [86].

The integrase inhibitor raltegravir can reach therapeutic
concentrations in the CSF and is equally potent in mono-
cyte/macrophages and in lymphocytes [87]. This drug thus
can target HIV-infected cells, including macrophages, in the
central nervous system. It is, however, highly worrisome that,
whereas multiple mutations are required to confer raltegravir
resistance in T cells, a single mutation can achieve this dele-
terious result in macrophages [88]. A final word of caution
stems from the observation that most of these data derive
from studies conducted in HIV-uninfected individuals.

2.6. Treating microbial translocation

The use of ART does not result in the normalization of micro-
bial translocation markers, including LPS and bacterial 16s
rDNA [89]. Microbial translocation is associated with the sti-
mulation of mucosal innate and adaptive immune cells and
therefore is a major driver of immune activation. LPS can also
induce the expression of CD142 on monocytes [90]. Because
CD142 triggers the coagulation cascade, and its expression on
monocytes is correlated with D-dimer levels, persistent micro-
bial translocation contributes to the coagulopathy and the
increased incidence of CVD which are observed even in ART-
treated HIV-infected individuals [90].

During HIV infection, the balance of commensal bacterial
communities is impaired, resulting in microbial dysbiosis, with
alterations to the phyla Bacteroidetes, Firmicutes, and
Proteobacteria, and the loss of beneficial bacterial genera,
such as Bacteroides, Lactobacillus, and Bifidobacterium.
Furthermore, the levels of several pathogenic Proteobacteria
including those within the Campylobacter, Escherichia,
Acinetobacter, Desulfovibrio, and Pseudomonas genera are
increased during HIV infection [17,18,91–95]. Recent results
showed that dysbiosis also correlates with activity of the
kynurenine pathway of tryptophan catabolism, and trypto-
phan-degrading bacteria play a role in dysfunction of gut
mucosal CD4 Th17/Th22 cells. This is likely a consequence of
the immunosuppressive properties of kynurenine, a trypto-
phan metabolite, through indoleamine-2, 3-dioxygenase

activity. Notably, the plasma kynurenine/tryptophan ratio is
an independent predictor of mortality in HIV-infected patients
initiating ART and may play a key role in HIV pathogenesis
[96–101].

The observation that HIV infection results in a profound
alteration of the microbiota suggests that the restoration of a
physiological microbiota could results in beneficial effects on
immune activation. Different strategies to treat dysbiosis have
been analyzed.

2.6.1. Prebiotics
Prebiotics are compounds whose use can change the growth
and/or activity of certain gut microflora, resulting in health
benefits [102]. Prebiotics can modify host–microbe interac-
tions via the microbiota and its metabolism, host epithelial,
and other cells, as well as by influencing receptor expression
and bacterial adhesion. Prebiotic oligosaccharides can also
inhibit the adherence of specific pathogens to epithelial cells
in vitro [103]. As indicated above, prebiotics are candidate
agents to improve the intestinal homeostasis in HIV-infected
individuals. Prebiotics do not contain bacteria but provide
substrate for the intestinal microbiota [104]. Prebiotics can
also reduce gastrointestinal infections, pathologies that are
more prevalent in HIV-infected individuals [105].
Oligosaccharides are contained into bovine colostrum with
other components, such as growth factors, immunoglobulins,
and antimicrobial peptides, and have shown some activity in
alleviating HIV-associated diarrhea in single-arm studies [106].

Results of a pilot study in ART-naive HIV-infected indivi-
duals showed that dietary supplementation with a prebiotic
oligosaccharide mixture positively modified the composition
of the microbiome, resulting in a reduction of sCD14 and of
activated CD4+ T cells, as well as in improved NK cell activity
[107]. A further study showed how a more prolonged use of
these prebiotics was associated with a significant reduction of
CD4+ T cell decline in HIV-infected ART-naive individuals [108].
An elder randomized controlled trial in which bovine colos-
trum was added to ART nevertheless found no differences in
terms of CD4 T-cell count, microbial translocation markers, and
T-cell activation markers [109]. As often is the case, these two
results cannot be compared: the compounds used were dif-
ferent (colostrum vs. oligosaccharides) as were the groups of
patients analyzed (ART suppressed vs. ART naive).

2.6.2. Probiotics
Probiotics are live microorganisms which, when administered
in adequate amounts, confer a health benefit on the host
[110]. Probiotics can interfere with the function and prolifera-
tion of pathogens in the gastrointestinal tract. Thus, probiotics
can enhance the secretion of pathogen-specific IgA [111],
induce β-defensin secretion [112], secrete bactericidal proteins
[113], and reduce the adhesion and invasion of pathogens
[114]. Antibiotic-like compounds, such as reuterin produced
by Lactobacillus reuteri, exhibit broad-spectrum effects against
Gram-positive and Gram-negative bacteria as well as fungi,
yeast, and protozoa [113]. These characteristics could be ben-
eficial in AIDS patients as L. reuteri was shown to prevent
cryptosporidiosis in a murine AIDS model [115]. Moreover, it
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has been documented in different studies that a regular con-
sumption of probiotics over a prolonged period could result in
an improvement of CD4 T-cell count in HIV-positive patients
[116–118]. Results of a recent clinical trial confirmed that the
use of probiotics is associated with a significant decrease in
activated CD4+ T lymphocytes and a reduction of serum con-
centrations of high-sensitivity CRP, IL-6, and LBP [119]. A more
complex study has been designed with the principal aim to
analyze the effects of probiotics on immune activation, micro-
bial translocation, composition of the microbiome, and safety,
adherence, and tolerability in different HIV-infected patient
groups. Results will likely be of great interest to the HIV
community [120].

2.6.3. Fecal transplantation
A recent study has been conducted in Simian
Immunodeficiency Virus-chronically infected and ART-treated
rhesus macaques to analyze the safety, efficacy, and tolerabil-
ity of fecal microbiota transplantation (FMT). Results showed
that FMT resulted in an increased numbers of Th17 and Th22
cells as well as in a decreased activation of CD4+ T cells.
Interestingly, these changes correlated most strongly across
all sampling time points with a reduced abundance of taxo-
nomic groups in the colon. The bacterial community composi-
tion at 2 weeks post-FMT resembled the pre-FMT community
structure although differences in the abundances of minor
bacterial populations remained [121].

These data suggest that FMT may have beneficial effects
that should be further evaluated in larger studies, and they
provide evidence that changes in the microbiome, particularly
in terms of diversity and changes in minor populations, result
in immune modulation and do not have adverse conse-
quences [121].

2.6.4. Sevelamer
Sevelamer carbonate, a phosphate-lowering drug, decreases
circulating LPS levels in patients with renal insufficiency, pos-
sibly by binding chylomicron–LPS complexes and preventing
their reabsorption. In this population, sevelamer also reduces
levels of sCD14, IL-6, CRP, and total and low-density lipopro-
tein cholesterol [122,123].

A small study on sevelamer in ART-naive HIV-infected peo-
ple did not show decreases in microbial translocation, inflam-
mation, or immune activation; however, its use was found to
be associated with lower serum concentrations of tissue factor
and oxLDL cholesterol, which may have beneficial cardiovas-
cular effects [124]. Similar results were observed in SIV-
infected nonhuman primates, in whom sevelamer reduced
coagulation biomarkers [125].

This particular field of research is novel, promising, and inter-
esting; larger and well-designed clinical studies are nevertheless
needed to clarify if modification of the microbiome could have a
therapeutic role in the treatment of HIV infection (Table 1).

3. Conclusions

Immune activation in HIV patients is an extremely complex
issue; this phenomenon is likely responsible for HIV-associated
and HIV-nonassociated complications of infection. Despite the

efforts of the scientific community, the pathogenesis of
immune activation is still not fully understood and, as a con-
sequence, effective therapeutic strategies to prevent it/silence
it are still not available. While some issues have been deeply
studied, other aspects of immune activation require more
analyses because of the lack of adequately powered trials or
due to being conflicting results.

Currently available data focus attention on treatment of
coinfection, such as hepatitis viruses, tuberculosis, as well as
on management of traditional risk factor, including smoking,
diabetes, hypertension, and hyperlipidemia. More studies are
nevertheless required to clarify the potential benefits of other
interventions, including the most promising ones: those tar-
geting microbial translocation and reducing dysbiosis.

Over the years, we have reached two solid conclusions: (1)
early initiation of therapy plays a fundamental role in reducing
immune activation and (2) immune activation in HIV-infected
individuals can be reduced but not abolished. As persistent
low-degree immune activation (1) is present throughout the
whole disease even in individuals in whom HIV replication is
successfully suppressed; (2) is the main culprit of the non-AIDS
events observed in HIV patients; (3) is most likely associated
with low-grade viral replication; and (4) HIV eradication is
currently impossible, major efforts will need to focus on better
understanding the immunopathology of HIV disease with the
final goal of curing it.

4. Expert commentary

HIV infection can be treated but not cured. ART suppresses
viral replication but does not eradicate the virus. Ongoing low-
rate HIV replication is the main culprit of the persistent
immune activation seen even in successfully treated patients,
and, on the other hand, immune activation plays a pivotal role
in the pathogenesis of the non-AIDS events observed in HIV
patients. Therapeutic strategies envisioned to ‘cure’ immune
activation can be divided up into three groups: (1) antiviral-
based (reduction of HIV load by earlier initiation of therapy
and/or therapy intensification); (2) non-antiviral-based (immu-
nomodulants and modifications of the microbiota); and (3)
behavioral (reduction of risk factors, e.g. smoke and lipid
profiles); none of these approaches has nevertheless reached
univocal results. As HIV eradication, the only solution to this
problem, is currently unachievable, intensive and smartly
designed research is urgently needed to determine if and
how immune activation can be silenced in HIV-infected
individuals.

5. Five-year view

We believe that in the next 5 years, results of clinical studies
will definitively demonstrate the clinical, immunological, and
epidemiological advantages of early ART initiation. However,
as the median age of people living with HIV increases, we will
face a larger number of comorbidities and pathologies linked
to aging. We will need to develop algorithms to manage the
traditional risk factors for cardiovascular disease and tumors in
an intensive and tailored way. We will also need to develop
strategies to face new challenges, including those related with
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the higher incidence of neoplasia and of dementia as well as
those stemming from frailty.

In the next 5 years, we will develop more appropriate
diagnostic tools to measure immune activation and inflamma-
tion in ART-treated HIV-infected patients, as new strategies of
nuclear medicine and/or magnetic resonance imaging will be
introduced allowing us to better define the seize and the
activity of viral reservoir. This new knowledge will also allow
us to design clinical trials with the specific aim of hitting and,
possibly, deleting such reservoirs. Finally, hopefully, we might
develop efficacious immunomodulants that could allow us to
specifically target HIV-associated immune alterations.

Key issues

● Thanks to modern antivirals HIV infection can be treated
but cannot be cured. Succesful antiretroviral therapy sup-
presses HIV replication to undetecteble limits, but does not
shut it down completely.

● Sneaky, smouldering viral replication persists and drives the
low grade immune activation that accompaines the disease.
This, in turn, is the major driver of the non-AIDS events
observed in HIV patients.

● HIV eradication would take care of the problem, but is
currently unachievable. Suppression of immune activation
has been attempted through therapy intensification and
interventins with different types of immune modulators
(e.g. cloroquine, prebiotics, etc). None of these approaches
has reached success.

● The fact that immune activation persists undettered in HIV-
infected individuals witnesses the fact that our knowledge
of the immunopathogenesis of this disease is still very
partial and unsatisfactory.

● The old concept that antivirals take care of the virus but do
not cure the patient is alive and well. Smart and intensive
basic research on the immunology of HIV infection is nowa-
days only marginally financed, this is the negative conse-
quence of the idea that the availability of antivirals
coincides with the end of AIDS.
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