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Abstract We show how to handle the information which is acquired in a dynamic

framework when there are multiple items in a survey collected on the same individ-

uals at different time occasions. The response variables are commonly measured on

an ordinal scale and the data may show a non-monotone missing pattern. The un-

derlying phenomenon which is related to the interest of the survey may be modelled

by a latent stochastic process. The latter having dependences according to a Markov

structure is able to capture the heterogeneity of the response behaviour and to ac-

count for the measurement errors that naturally arise in the survey. The maximum

likelihood estimation of the model parameters allows us to handle the missing data

and to take advantage of the information provided by those individuals not show-

ing complete responses. In a similar way, it is possible to consider a counterfactual

framework in which the outcomes of interest are not directly observable even for

the selected treatment. Such a flexible modelling approach is illustrated with two

examples based on real data.

Key words: Expectation-Maximization algorithm, latent variables, mitochondrial

DNA haplogroup, observational studies, recursive algorithm, treatment effect.

1 Introduction

In many context nowadays the data are collected in oder to show the multifacet of a

phenomena of interest. The survey method is still an important tool in data collec-

tion which is employed when the units are individuals and mainly when the interest

lies on understanding the characteristics of some latent features over time such as

the severity of a disease over time. In particular, there are some contexts in which the

Fulvia Pennoni

Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Via Bicocca

degli Arcimboldi 8, Milano e-mail: fulvia.pennoni@unimib.it

1



2 Fulvia Pennoni

use of cohort data is of main importance to capture aspects related to salient time

periods. In the following, we outline briefly that in the above context individuals

share an underline structure that influence the responses and therefore a convenient

way to analyze the data is by considering a multivariate latent Markov (LM) model

with covariates and allowing for the missing data pattern. This short summary out-

lines some considerations on the innovative statistical technique of the LM model

with covariates [5] as a model build for data collected on surveys. In such a context,

the data analysis has to be done according to the available data structure and by

inspecting the data to avoid undesirable features. The proposed model helps to con-

sider the feature above as well as to employ a suitable Expectation-Maximization

(EM) algorithm [3] in order to consider subgroups of individuals sharing common

features of interest. In the following, first we introduce the model set up in a general

form, we skip the estimation details which can be read from the cited references.

Then, we show the model formulation focusing on two examples based on real data

concerning a study on cognitive decline on elders and another study on the effect of

the university degree on graduates.

2 Model specification

We define YYY it (Yi1t , . . . ,YirT ) as the response vector provided by the i-th individual

i = 1, . . . ,n at the t time point t = 1, . . . ,T , j = 1, . . . ,r. Each variable is categorical

with c j categories, when c j is equal to two the response variables are binary. A

vector of the individual characteristics XXX it may be available at each time occasion

t = 1, . . . ,T for each individual i = 1, . . . ,n. We argue that due to the structure of the

survey this is a typical context in which the individuals share a latent process which

is Markovian of first order. Such process is denoted by Uit (U = U1, . . . ,UT ) and it

generates a series of independences among the responses conditional on itself. The

way to model the distribution of such latent process is important in oder to proper

account the pattern of responses. The basic structure of the model is illustrated by

a path diagram, by which it is possible to read the conditional independences (see,

Figure 1).

It can be shown that such class of models well illustrated in [4] get rise to inde-

pendences holding suitable properties for inference as the joint distribution is single-

ton transitive [15]. Therefore, additional elements that are added to the conditioning

set of every existing independence statements does not violate these independences.

According to this property, it is possible to handle the information of the covari-

ates by showing how they can affect the latent stochastic process which is governed

by the initial and the transition probabilities of the Markov chain. Their parame-

terization may be formulated according to a multinomial logit model, or a baseline

category logit model up to the intention of the data analysis.

In the presence of missing data we consider a binary indicator mi jt for i = 1, . . . ,n
and j = 1, . . . ,r and t = 1, . . . ,T to state if yi jt is missing or not. The conditional

independence assumption between the response variables and the missing indica-
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Yi11 · · · Yir1 Yi12 · · · Yir2 · · · Yi1T · · · YirT

Ui1 Ui2 · · · UiT

Fig. 1 Directed acyclic graph encoding the conditional independences of the multivariate latent

Markov model in its basic form.

tors given the underlying latent process is still valid. Then the log-likelihood of

the model may be written by considering the joint probabilities of the responses

which are provided or not by the n individuals of the sample given the observed

covariates. In such a context, the EM algorithm is a good numerical optimization

technique to get the maximum likelihood estimates of the model parameters as it

was proposed in the context of unobserved quantities [7]. Some useful recursions

are employed during the iterative process which involves the maximization of the

complete data log-likelihood see also [1] for more details. As the distribution of the

latent process is not modelled parametrically we refer to the proposed model as a

data driven model. The way the inference is conducted may be casted into the sta-

tistical techniques called empirical Bayes procedures. In fact, the selection of the

subpopulations is driven by the data according to the information criteria like the

Bayesian Information Criterion [13].

3 First illustrative example

The first example used to illustrate the modelling strategy is related to a cohort study

developed in the United States concerning the health of 547 veterans assessed by one

up to six of medical visits between 1995 and 2001[2]. Three different types of cog-

nitive tests are considered to asses dementia: the mini mental state that examinees

the global cognitive functions, the verbal fluency test that assesses the language

functions (vocabulary size, naming) and the constructional praxis test concerning

the visual and motor abilities. Missing responses are due to individuals that are not

compliers at each visit and we relay on the assumption of ignorable missing data

mechanism [12]. In Table 1 we report the distribution of the three response vari-



4 Fulvia Pennoni

ables for each visit. As the cognitive impairment is considered up to a certain level

of the score of the test we handle three binary response variables varying over time.

Mental test Occasion of the interview

1st 2nd 3rd 4th 5th 6th

≤ 25 20.2 13.8 9.9 5.6 2.4 0.0

> 25 76.7 57.5 39.6 25.5 9.0 0.4

NA 3.1 28.7 50.5 68.9 88.7 99.6

Verbal test

≤ 15 19.9 13.49 10.5 6.6 2.2 0.3

> 15 73.3 53.9 37.5 23.1 8.8 0.1

high 6.8 32.7 52.0 70.3 89.0 99.6

Constructional test

≤ 3 16.1 9.6 7.2 4.9 2.7 0.0

> 3 81.9 62.7 42.4 26.5 8.4 0.4

NA 2.0 27.7 50.4 68.6 89.0 99.6

Table 1 Percentage distribution of every response variable for the visits from 1995 to 2011.

By considering this observational longitudinal human cohort study we aim at

assessing in which way individual features, diseases and environmental exposure

contributes to the cognitive resilience or decline of the elders. The research has

shown that there are location places where there are no changes in mitochondrial

(mtDNA) [9]. They have been called haplogroups which can also be divided ac-

cording the potential different role they assume inside the mitochondria. They have

also be connected with ethnicity due to the observed variability in different areas

of the populated earth by human and they can be linked with migrations. MtDNA

haplogroups are determined by considering the blood DNA using Taqman assays

(Applied Biosystems, Foster City, CA).

To illustrate part of the available data Table 2 shows the proportion of individuals

in the observed sample related to the covariates haplogroups and smoke. Table 3

illustrates the cluster composition of the haplogroups.

Covariate Category

haplogroup J or T 0.15

H or V 0.52

K or U 0.21

I, W or X 0.12

smoke never 0.30

former 0.03

current 0.67

Table 2 Descriptive statistics for the distributions of the covariates.

The initial and the transition probabilities of the latent process are expresses as
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Clusters of mtDNA haplopgroups

1) J and T Levant, Bedouin, North Eur.

Eastern Eur., Indus Mediterranean

2) H and V Europe, Western Asia, North Africa

3) K and U West Eurasia, India sub-continent, Algeria,

First Extent Middle East

4) I, X and W Northen Eastern Europe, Amerindians,

Southern Siberians, Southern Asians,

Eastern Europeans, Southern East Asia

Table 3 Classification of the observed mtDNA haplopgroups.

πu|xxxzzzwww = p(U1 = u|XXX1 = xxx,ZZZ1 = zzz,WWW 1 = www), u = 1, . . . ,k,

πu|ūxxxzzzwww = p(Ut = u|Ut−1|XXX t = xxx,ZZZt = zzz,WWW t = www), t = 2, . . . ,T, ū,u = 1, . . . ,k,

where XXX t is the vector of the demographic characteristics of the individual which

can be time-varying. In the illustrative example they are age, matrilinear ethnicity,

haplogroup, years of education; ZZZt is the vector of time-varying environmental fac-

tors. In the application the black carbon exposure over time is available daily. The

black carbon concentration (ug/m3) for the Massachusetts area is estimated accord-

ing to a spatiotemporal land use (e.g. traffic density) regression model [8] from 83

monitoring sites. WWW t is the vector of risk factors such as smoke status, hypertension,

BMI (kg/m2), diabetes.

We use a multinomial logit parameterization to account for the above covariates

on the latent model. The following which is related to the initial probabilities

log
πu|xxxzzzwww

π1|xxxzzzwww

= α0uuu + xxx′βββ 1u + zzz′ννν1u +www′τττ1u, u = 2, . . . ,k, (1)

where α0u is the intercept and βββ 1u,ννν1u,τττ1u are parameter vectors to be estimated.

In a similar way as in (1) we parameterize the transition probabilities of the hidden

Markov chain.

Given a sample of n independent individuals, their response vectors are ỹyy1, . . . , ỹyyn

and the corresponding observed vectors of the covariates are denoted by x̃xxi, z̃zzi, w̃wwi.

The LM model log-likelihood assumes the following expression

ℓ(θθθ ) =
n

∑
i=1

log p(ỹyyimmmi|x̃xxiz̃zziw̃wwi),

which involves the joint conditional probability of the observed and missing re-

sponses mmmi of each individual i, i = 1, . . . ,n given the observed covariates.

The LM model with k = 2 latent states has a log-likelihood equal to −1871.358

and a BIC index equal to 4234.464 with 78 parameters. Therefore, we identify two
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main latent subpopulations of individuals having different probabilities of cognitive

impairment [14]. According to the estimated conditional probabilities individuals in

the first latent state have higher probability to have cognitive impairment in each

of the three tests with respect to those in the second latent state. Table 4 shows the

estimated intercept referred to the multinomial logit model for the initial probabil-

ity. It is positive (0.886) showing that there is a general tendency towards a good

cognitive status at the first visit. The log-odds referred to the four haplogroups are

positive except those referred to cluster 3, indicating that those with haplogroup K

and U show a worst cognitive status compared to the others at the initial visit. The

estimated log-odds of the second logit referred to the smoke behaviour is higher for

those who are currently smoking compared to those who never smoke, indicating

that smoker show a lower cognitive status respect to nonsmokers.

Latent state (u)

2

intercept (α̂0u) 0.824

haplogroup (β̂1u) J or T 0.317

H or V 0.220

K or U -0.321

I, W or X 0.670

smoke (τ̂1u) never 0.820

former -0.598

current 0.675

Table 4 Estimates of the logit regression parameters affecting the initial probabilities of the latent

process under the LM model with k = 2 latent states.

We can select some individual of interest to evaluate their probability to belong

to the best or to worst latent state at the first visit and their probability to change the

cognitive health status during time by considering the estimated initial and transi-

tion probabilities. For example, if we consider the elders with haplogroup 4 which

are current smokers and with an high level of education (group A) their initial prob-

abilities are π̂A
1 = 0.145 and π̂A

2 = 0.858 showing that 14% of them is in the status

indicating worse cognitive impairment at the first visit. If we select the correspond-

ing group of those with the same features of group A but with a lowest level of

education their initial probabilities are π̂B
1 = 0.174 and π̂B

2 = 0.826 showing that

17% of them is in the status indicating worse cognitive impairment. The estimated

transition matrices for group A and B are shown in Table 5. From this table we can

π̂A
u|ūxxxzzzwww

ū u = 1 u = 2

1 0.785 0.215

2 0.084 0.916

π̂B
u|ūxxxzzzwww

h̄ u = 1 u = 2

1 0.867 0.133

2 0.092 0.908

Table 5 Estimates of the transition probabilities for two selected groups (A, B) of individuals

under the LM model with k = 2 latent states.
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see that there is high persistence in the same latent state for both groups but the

percentage of those with a tendency to increase their cognitive decline over time

is higher (22% vs 13%) for those belonging to group A which ceteris paribus are

more educated. In a similar way, it is possible to evaluate the parameter estimates

measuring the influence of each covariate on the transition from the first to second

state.

4 Second illustrative example

Another illustrative example is related to three ordinal response variables concern-

ing the job career of a cohort of 1,144 graduates in Lombardy. Their incomes, skills

and the type of contract by which they are hired are recorded for four quarters from

2007, during the first period of the Italian economic crisis on the job market of the

Lombardy region. We show that the model illustrated in Section 2 may be handled

to assess causal statements in a potential outcome framework [11] in oder to estab-

lish the average treatment effect (ATE). The latter concern the effect of the degree

type on the professional growth of the graduates. We consider the influence of the

pre-treatment student background covariates and we implement a new way to handle

the propensity score weights on the likelihood of the causal LM model. We merged

three administrative archives to get the pre-treatment covariates and outcomes on

graduates of four big universities of Lombardy. The treatment programs are the fol-

lowing: technical, architecture, economics and humanities degrees. The relative ef-

fectiveness of each degree is assessed according to the information on the mentioned

features of the acquired jobs which jointly can contribute to make improvement of

the human capital of each individual. The outcomes have the categories whose in-

creasing level denotes a better job position. The pre-treatment measures assess the

demographic characteristics, the high school type and the final score at the high

school.

The steps we consider to estimate the ATE of the multiple treatments are the

following: i) the pre-treatment covariates are selected according to their depen-

dence with the treatment which is assessed by considering an ANOVA model or

a chi-square test for continuous or categorical variables respectively; ii) the balance

among treatments is established by using weights obtained by estimating a multi-

nomial logit model; iii) a suitably parametrized causal LM model is estimated by

maximizing thorough the EM algorithm the weighted log-likelihood; iv) the model

selection is performed by considering the Bayesian posterior probability of a candi-

date model according to the observed data.

To show some results suppose we are interested on the ATE of the scientific de-

gree at the fourth quarter of observation. We define U
(z=s)
i4 as the potential latent

variable of individual i (i = 1, . . . ,n) if he/she had taken the scientific treatment.

Once we have estimated the multinomial logit model for the probability of receiv-

ing the treatment given the pre-treatment covariates we notice that the unweighted

mean of the final high score diploma for those attending a scientific degree is equal
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to 82.183 and the weighted mean is equal to 80.46. The unweighted proportion

of lyceum for those attending the scientific degree is 0.901 and the weighted one

is equal to 0.795. The proposed model framework under the consistency rule and

strong ignorability assumption [10] allow us to estimate the logits of the initial and

transition probabilities of the hidden process and to evaluate the states according to

the estimated conditional probabilities of the responses given the latent variable.

According to the BIC index we select a causal LM with 4 latent states denoting

four main different subpopulations of individuals [6]. Then the conditional proba-

bilities of the responses given the latent state 3 can be written as

φ jy|3 = p(Yi jt = y|U
(z=s)
it = 3),

where j = 1, . . . ,3, y = 0, . . . ,2, i = 1, . . . ,n, t = 1, . . . ,T . If we consider the esti-

mated probabilities referred to the selected causal LM model the values are reported

in Figure 2 for the latent states 3 and 4. From Figure 2 it is clear that for the profes-

sional growth the latent state 4 has to be judged better then latent state 3 as it has the

highest probability of more stable contracts and of relative high earnings in a quar-

ter. If we wish to consider the estimate of the ATE effect of the scientific treatment
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Fig. 2 Estimated conditional probabilities (φ jy|h) when h = 3,4 of the causal LM model with k = 4

latent states referred to: temporary or permanent contract (Figure 1), low-medium or high skill

(Figure 2) and quarterly earnings less or higher than 3750 euro (Figure 3).

on the transition probabilities from latent state 3 to 4, we relay on the following logit

parameterization

log
p(U

(z=s)
it = 4|U

(z=s)
i,t−1 = 3)

p(U
(z=s)
it = 1|U

(z=s)
i,t−1 = 3)

= γ34 + I(z = s)δ4, i = 1, . . . ,n, t = 2, . . . ,T.

where γ34 is the intercept and δ4 is the ATE of the scientific degree with respect to

technical degree (reference treatment) on the transition probabilities from t − 1 to t

(e.g. from quarter one to quarter two) to switch from latent state 3 to latent state 4.

The estimated effect on the causal LM model with k = 4 after weighting and con-
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trolling for unbalance pre-treatment covariates is δ̂4 = −1.507 which is significant

at 1% indicating that the scientific degree does not permit to reach the best latent

state as the technical degree on the whole period of observation. The other results

suggest that we can distinguish among four levels of human capital: a low level, an

intermediate level with high tendency of temporary jobs with high skill level; an in-

termediate level with high tendency towards permanent and less skilled jobs and an

high level with tendency towards permanent, high skill jobs and quite high earnings.

At the beginning of the period of observation, there is a statistical significant differ-

ence of technical and economic degrees in terms of their effect on the professional

growth with respect to architecture and humanities. Later on time, there is a strong

significant difference between a technical degree and all the other types of degree.

It is worth mentioning that, as the model is selected on the basis of the BIC index

and the maximized likelihood of the model is weighted with weights related to the

propensity score, the model estimation procedure resembles the Bayesian estimation

approach in which a prior is considered to locate the mode of the posterior distri-

bution. The proposed causal formulation of the LM model can be applied to other

contexts of interest such as for the secondary observational data analysis of medical

treatments. In this situation, the interest may lies for example on understanding the

effect of different drugs on outcomes by taking into account demographic features

and previous diseases of the patients.
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