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PLÜCKER FORMS AND THE THETA MAP

By SONIA BRIVIO and ALESSANDRO VERRA

Abstract. Let SUX (r,0) be the moduli space of semistable vector bundles of rank r and trivial deter-
minant over a smooth, irreducible, complex projective curve X . The theta map θr : SUX (r,0)→ P

N

is the rational map defined by the ample generator of PicSUX (r,0). The main result of the paper is
that θr is generically injective if g� r and X is general. This partially answers the following con-
jecture proposed by Beauville: θr is generically injective if X is not hyperelliptic. The proof relies on
the study of the injectivity of the determinant map dE : ∧rH0(E)→H0(detE), for a vector bundle
E on X , and on the reconstruction of the Grassmannian G(r,rm) from a natural multilinear form
associated to it, defined in the paper as the Plücker form. The method applies to other moduli spaces
of vector bundles on a projective variety X .

1. Introduction. In this paper we introduce the elementary notion of
Plücker form of a pair (E,S), where E is a vector bundle of rank r on a smooth,
irreducible, complex projective variety X and S ⊂H0(E) is a subspace of dimen-
sion rm. Then we apply this notion to the study of the moduli space SUX(r,0) of
semistable vector bundles of rank r and trivial determinant on a curve X. Let

θr : SUX(r,0) −→ P
(
H0(L)∗)

be the so called theta map, defined by the ample generator L of PicSUX(r,0),
[DN]. Assume X has genus g, we prove the following main result:

MAIN THEOREM. θr is generically injective if X is general and g� r.

The theorem gives a partial answer to the following conjecture, or optimistic
speculation, proposed by Beauville in [B3] 6.1:

SPECULATION. θr is generically injective if X is not hyperelliptic.

To put in perspective our result we briefly recall some open problems on θr and
some known results, see [B3]. A serious difficulty in the study of θr is represented
by its indeterminacy locus, which is quite unknown. Raynaud bundles and few
more constructions provide examples of points in this locus when r� 0, cf. [CGT,
R]. In particular, there exists an integer r(X)> 0 such that θr is not a morphism as
soon as r > r(X). As a matter of fact related to this situation, some basic questions
are still unsolved. For instance:
• is θr generically finite onto its image for any curve X?
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1248 S. BRIVIO AND A. VERRA

• is θr an embedding if r is very low and X is general?
• compute r(g) := min{r(X), X curve of genus g}.

On the side of known results only the case r = 2 is well understood: θ2 is an
embedding unless X is hyperelliptic of genus g≥ 3, see [B1, BV1, vGI]. Otherwise
θ2 is a finite 2:1 cover of its image, [DR]. For r = 3 it is conjectured that θ3 is a
morphism and this is proved for g ≤ 3, see [B3, 6.2] and [B2]. To complete the
picture of known results we have to mention the case of genus two. In this case θr
is generically finite, see [B2, BV2]. Moreover it is a morphism iff r ≤ 3, [Pa].

To prove our main theorem we apply a more general method, working in prin-
ciple for more moduli spaces of vector bundles over a variety X of arbitrary di-
mension. Let us briefly describe it.

Assume X is embedded in P
n and consider a pair (E,S) such that: (i) E is

a vector bundle of rank r on X, (ii) S is a subspace of dimension rm of H0(E),
(iii) detE∼=OX(1). Under suitable stability conditions there exists a coarse moduli
space S for (E,S), see for instance [L] for an account of this theory. Let pi :Xm→
X be the ith projection and let

eS,E : S⊗OXm −→
⊕

i=1,...,m

pi
∗E

be the natural map induced by evaluating global sections. We will assume that
eE,S is generically an isomorphism for general pairs (E,S). For such a pair the
degeneracy scheme DE,S of eE,S is a divisor in Xm, moreover

DE,S ∈
∣
∣OXm(1, . . . ,1)

∣
∣,

whereOXm(1, . . . ,1) := p∗1OX(1)⊗·· ·⊗p∗mOX(1). In this paper DE,S is defined
as the Plücker form of (E,S). The construction of the Plücker form of (E,S)

defines a rational map

θr,m : S −→ ∣∣OXm(1, . . . ,1)
∣
∣,

sending the moduli point of (E,S) to DE,S . Assume X = G, where G is the
Plücker embedding of the Grassmannian G(r,rm). Then consider the pair (U∗,H),
where U is the universal bundle of G and H = H0(U∗). In this case the Plücker
form of (U∗,H) is the zero locus

DG ∈
∣∣OGm(1, . . . ,1)

∣∣

of a natural multilinear form related to G. More precisely G is embedded in
P(∧rV ), where V =H∗, and DG is the zero locus of the map

dr,m :
(∧r V )m −→∧rmV ∼= C,

induced by the wedge product. In the first part of the paper we prove that G is
uniquely reconstructed from DG as soon as m≥ 3. We prove the following:



PLÜCKER FORMS AND THE THETA MAP 1249

THEOREM. Let m≥ 3 and let x ∈ P(∧rV ), then x ∈ G iff the following con-
ditions hold true:

(1) (x, . . . ,x) ∈ (P(∧rV ))m is a point of multiplicity m−1 for DG,
(2) Singm−1(DG) has tangent space of maximal dimension at (x, . . . ,x).

It follows essentially from this result that the previous map θr,m is generically
injective, provided some suitable conditions are satisfied.

Indeed let (E,S) be a pair as above and let gE,S : X→GE,S be the classifying
map in the Grassmannian GE,S of r dimensional subspaces of S∗. In Section 4 we
use the previous theorem to prove the following:

THEOREM. θr,m is generically injective under the following assumptions:
(1) Aut(X) is trivial and m≥ 3,
(2) gE,S is a morphism birational onto its image,
(3) the determinant map dE,S : ∧rS→H0(OX(1)) is injective.

However the main emphasis of this paper is on the case where X ⊂ P
n is

a general curve of genus g and OX(1) has degree r(m+ g− 1). Assuming this,
we consider the moduli space Sr of pairs (E,H0(E)), where E is a stable vector
bundle of determinant OX(1) and h1(E) = 0. Let t be an r-root of OX(1), then Sr
is birational to SUX(r,0) via the map

α : Sr −→ SUX(r,0),

sending the moduli point of (E,H0(E)) to the moduli point of E(−t). In the sec-
ond half of the paper we prove that

θr,m ◦α−1 = β ◦θr,

where θr is the theta map of SUX(r,0) and β is a rational map. Moreover we prove
that the assumptions of the latter theorem are satisfied if X is general of genus
g� r. Then it follows that θr is generically injective as soon as X is general of
genus g� r.

This completes the description of the proof of the main theorem of this paper.
It seems interesting to use Plücker forms for further applications.

2. Plücker forms. Let V be a complex vector space of positive dimension
rm and let ∧rV be the r-exterior power of V . On ∧rV we consider the multilinear
form

dr,m : (∧rV )m −→∧rmV 
 C,(1)

such that

dr,m(w1, . . . ,wm) := w1∧ ·· ·∧wm.
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Notice that dr,m is symmetric if r is even and skew symmetric if r is odd. We fix m

copies V1, . . . ,Vm of V and the spaces Ps := P(∧rVs), s = 1, . . . ,m, of dimension
N :=

(
rm
r

)−1. Then we consider the Segre embedding

P1×·· ·×Pm ↪→ P
(N+1)m−1

and its projections πs : P1× ·· ·×Pm→ Ps, s = 1, . . . ,m. The form dr,m defines
the following hyperplane section of P1×·· ·×Pm:

Dr,m :=
{(

w1, . . . ,wm
) ∈ P1×·· ·×Pm | dr,m

(
w1, . . . ,wm

)
= 0
}
.(2)

Definition 2.1. Dr,m is the Plücker form of P(∧rV )m.

Dr,m is an element of the linear system |OP1×···×Pm(1, . . . ,1)|, where

OP1×···×Pm(1, . . . ,1) = π∗1OP1(1)⊗ ...⊗π∗mOPm(1).

Let e1, . . . ,erm be a basis of V and let I be the set of all naturally ordered sets
I := i1 < · · ·< ir of integers in [1,rm]. We fix in ∧rVs the basis

e
(s)
I := ei1 ∧ ·· ·∧ eir , I = i1 < · · ·< ir ∈ I.

Then any vector of ∧rVs is of the form
∑

p
(s)
I e

(s)
I , where the coefficients p

(s)
I are

the standard Plücker coordinates on Ps. This implies that

dr,m(w1, . . . ,wm) =
∑

I1∪···∪Im={1,...,rm}
p
(1)
I1
· · ·p(m)

Im
e
(1)
I1
∧ ·· ·∧ e(m)

Im

for each (w1, . . . ,wm) ∈ (∧rV )m. Note that, to give a decomposition

I1∪ ·· ·∪ Im = {1, . . . ,rm}
as above, is equivalent to give a permutation σ : {1, . . . ,rm}→ {1, . . . ,rm} which
is strictly increasing on each of the intervals

U1 := [1,r], U2 := [r+1,2r], . . . , Um :=
[
(m−1)r+1,mr

]
.

Let P be the set of these permutations, then we conclude that

dr,m
(
w1, . . . ,wm

)
=
∑

σ∈P
sgn(σ)p(1)σ(U1)

· · ·p(m)
σ(Um)e1∧ ·· ·∧ erm.

Assume that w := (w1, . . . ,wm) ∈ (∧rV )m is a vector defining the point o ∈ P1×
·· ·×Pm, we want to compute the Taylor series of Dr,m at o. Let t := (t1, . . . , tm) ∈
(∧rV )m, then we have the identity

dr,m
(
w1 + εt1, . . . ,wm+ εtm

)
=

∑

k=0,...,m

∂m−kw dr,m(t)ε
k.
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We will say that the function

∂m−kw dr,m : (∧rV )m −→ C,

sending t to the coefficient ∂m−kw dr,m(t) of εk, is the kth polar of dr,m at w, cf.
[D]. Let S := s1 < · · ·< sk be a strictly increasing sequence of k elements of M :=
{1, . . . ,m}. We will put k := |S|. Moreover, for w = (w1, . . . ,wm) ∈ (∧rV )m, we
define wS := ws1 ∧ ·· · ∧wsk . Note that ∂0

w(t) = d(w1, . . . ,wm) for each t. If m−
k ≥ 1 it turns out that

∂m−kw dr,m(t) =
∑

|S|=k
sgn
(
σS
)
wM−S ∧ tS,(3)

where σS :M→M is the permutation (1, . . . ,m)→ (j1, . . . , jm−k,s1, . . . ,sk) such
that S = s1 < · · ·< sk and j1 < · · ·< jm−k.

Definition 2.2. Let W := ∧rV then

q : P(Wm)−→ P1×·· ·×Pm

is the rational map sending the point defined by the vector w = (w1, . . . ,wm) of
Wm to the m-tuple of points defined by the vectors w1, . . . ,wm.

Note that the pull-back of dr,m by q is a homogeneous polynomial

q∗dr,m ∈ SymmW ∗ =H0(OP(W )(m)
)
.

We mention, without its non difficult proof, the following result

PROPOSITION 2.3. ∂m−kw (dr,m) is the kth polar form at w of q∗dr,m.

Let ô ∈ P(Wm) be the point defined by w = (w1, . . . ,wm) and let o = q(ô).
For the tangent spaces to P(Wm) at ô and to P1×·· ·×Pm at o one has
◦ TP(Wm),ô =Wm/〈w〉
◦ TP1×···×Pm,o =W/〈w1〉⊕ · · ·⊕W/〈wm〉.

Moreover the tangent map

dqô : Wm/〈w〉 −→W/〈w1〉⊕ · · ·⊕W/〈wm〉
is exactly the map sending

(t1, . . . , tm)mod〈w〉 −→ (t1 mod〈w1〉, . . . , tmmod〈wm〉).
In particular we have

Kerdqô = {(c1w1, . . . , cmwm), (c1, . . . , cm) ∈ C
m}/〈w〉.

We can now use dqô to study some properties of Sing(Dr,m). We consider the k-
osculating tangent cone Cko ⊂ TP1×···×Pm,o to Dr,m at o.
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LEMMA 2.4. Keeping the above notations one has:
(1) Singk(Dr,m) = {o ∈ Dr,m | ∂m−iw (dr,m) = 0, i≤ k−1}.
(2) Cko = dqô({t ∈Wmmod〈w〉 | ∂m−iw (dr,m)(t) = 0, i≤ k}).

Proof. By the previous description of dqô any one dimensional subspace l of
TP1×···×Pm,o is the isomorphic image by dqô of the tangent space at ô to an affine
line

Lt := {w+ εt | ε ∈ C} ⊂ P(Wm),

for some t = (t1, . . . , tm) ∈Wm. On the other hand the pull-back of the Taylor
series of Dr,m to Lt is

dr,m(w+ εt) =
∑

i=0,...,m

∂m−iw (dr,m)(t)ε
i,

this implies (1) and (2). �

Let o ∈ P1×·· ·×Pm be the point defined by the vector (w1, . . . ,wm) and let
v ∈ TP1×···×Pm,o be a tangent vector to an arc of curve

{w1 + εt1, . . . ,wm+ εtm, ε ∈ C}.

Applying the lemma and the equality (3), it follows:

THEOREM 2.5. (i) o ∈ Singk(Dr,m)⇔ wS = 0, ∀S ∈ I , |S|=m−k+1.
(ii) v is tangent to Singk(Dr,m) at o iff

∑

s∈S
sgn(σs)wS−{s} ∧ ts = 0, ∀S ∈ I, |S|=m−k+1,

where σs is the permutation of S shifting s to the bottom and keeping the natural
order in S− s.

Proof. (i) By Lemma 2.4(1), o ∈ Singk(Dr,m) iff the ith polar ∂iw(dr,m) is
zero for i ≤ k− 1. This is equivalent to wS = 0 for | S |= m− k+ 1. (ii) As
above, consider a tangent vector v at o to the arc of curve {w1 + εt1, . . . ,wm+

εtm, ε ∈C}. By Lemma 2.4(2), v is tangent to Singk(Dr,m) at o iff the coefficient
of ε in (w+ εt)S is zero, ∀|S| = m− k+ 1. This is equivalent to the condition∑

s∈S sgn(σs)wS−{s} ∧ ts = 0, ∀S ∈ I , |S|=m−k+1. �

COROLLARY 2.6. The Plücker form Dr,m has no point of multiplicity ≥m.

Proof. Assume Dr,m has multiplicity ≥m at o. Then wS = 0, ∀S with |S|= 1.
This means w1 = · · ·= wm = 0, which is impossible. �
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We are especially interested to the behavior of Dr,m along its intersection with
the diagonal

Δ⊂ P1×·· ·×Pm ⊂ P
(N+1)m−1.(4)

We recall that Δ spans the projectivized space of the symmetric tensors of
(∧rV )⊗m. Moreover, Δ is the m-Veronese embedding of P(∧rV ). If r is odd dr,m
is skew symmetric and Dr,m contains Δ. If r is even then

Dr,m ·Δ
is an interesting hypersurface of degree m in the projective space Δ.

Applying Theorem 2.5 to a point o in the diagonal, we have:

COROLLARY 2.7. Let o ∈Δ. Then:
(i) o ∈ Singk(Dr,m)⇔ w∧m−k+1 = 0;
(ii) v ∈ TSingk(Dr,m),o if and only if

∑

j∈S
sgn(σs)w

∧(m−k)∧ tj = 0, ∀S ∈ I, |S|=m−k+1.

Remark 2.8. Let o ∈Δ be as above, it follows from the corollary that:

o ∈Δ∩Singm−1(Dr,m)⇐⇒ w∧w = 0.

It is easy to see that Δ⊂ Singm−1(Dr,m) if r is odd. Let r be even then

G⊂Δ∩Singm−1

(
Dr,m

)
,

where G is the Plücker embedding in Δ= P(∧rV ) of the Grassmannian G(r,V ).
However it is not true that the equality holds in the latter case. In fact the equation
w∧w = 0 defines G if and only if r = 2, see [Ha2].

3. Plücker forms and Grassmannians. In this section we will keep the
notation G for the Plücker embedding of G(r,V ). Our purpose is now to show that
G is uniquely reconstructed from Dr,m and the diagonal Δ. More precisely we will
show the following:

THEOREM 3.1. Let m≥ 3, then

G=
{
o ∈Δ∩Singm−1

(
Dr,m

) | dimTSingm−1(Dr,m),o is maximal
}
.

For the proof we need some preparation. The following result of linear algebra
will be useful: let E be a vector space of dimension d and let w ∈ ∧rE be a non
zero vector. Consider the linear map

μsw : ∧sE −→∧r+sE
sending t to w∧ t. We have:
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PROPOSITION 3.2. Let d−2r ≥ s, then μsw has rank ≥ (d−rs
)

and the equality
holds if and only if the vector w is decomposable.

Proof. We fix, with the previous notations, a basis {e1, . . . ,ed} of E and the
corresponding basis {eI , I = i1 < · · ·< ir} of ∧rE. Let eI0 := e1∧·· ·∧er so that
I0 = 1< 2< · · ·<r. Since w is non zero we can assume that w= eI0 +

∑
I �=I0

aIeI .
Let W−,W+ be the subspaces of E respectively generated by {e1, . . . ,er} and
{er+1, . . . ,ed}. Then we have the direct sum decomposition

∧r+sE =E+⊕E−,

where E+ and E− are defined as follows:

E+ =
{
eI0 ∧u, u ∈ ∧sW+

}
and E− =

⎧
⎨

⎩

∑

i=1,...,r

ei∧ vi, vi ∈ ∧r+s−1E

⎫
⎬

⎭
.

Let p+ : ∧r+sE → E+ be the projection map. Since w = eI0 +
∑

I �=I0
aIeI , the

map

(p+ ◦μsw)|∧sW+ : ∧sW+ −→E+

is just the map u→ eI0 ∧u, in particular it is an isomorphism. This implies that

rankμsw ≥ rank
(
pr ◦μsw

)
= dim∧sW+ =

(
d− s

r

)
.

Letw be decomposable, then there is no restriction to assume w= eIo and it follows
dimImμsw =

(d−r
s

)
. Now let us assume that w is not decomposable. To complete

the proof it suffices to show that, in this case,

dimImμsw >

(
d− s

r

)
.(5)

By the above remarks μsw is injective on ∧sW+. Hence the inequality (5) holds iff

μsw
(∧sW+

) �= Imμsw.(6)

On the other hand p+ ◦μsw : ∧rW+ → E+ is an isomorphism and dim∧sW+ =(
d−r
s

)
. Therefore inequality (6) is satisfied iff there exists a vector τ ∈ ∧r+sE such

that

0 �= τ ∈ Imμsw ∩Kerp+.(7)

So, to complete the proof, it remains to show the following:

CLAIM. Let d−2r≥ s and w be not decomposable. Then there exists a vector
τ as above.
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Proof. By induction on s. If s= 1 we have dimImμ1
w ≥ d− r. It is proved in

[G] Prop. 6.27, that the strict inequality holds iff w is not decomposable. Hence we
have dimImμ1

w > d− r and there exists a non zero τ ∈ Imμ1
w ∩Kerp+.

Now assume that τ ∈ Imμs−1
w is a non zero vector satisfying the induction

hypothesis. Let N = {v ∈ E | τ ∧ v = 0}. Then N is the Kernel of the map μ1
τ :

E→∧r+s−1E and, by the first part of the proof, dimN ≤ r+ s−1. Since we are
assuming s+ r ≤ d− r, it follows that we can find a vector ek ∈ {e1, . . . ,ed} such
that

ek ∧ e1∧ ·· ·∧ er �= 0 and ek �∈N.(8)

Then for such a vector we have

0 �= ek ∧ τ =
∑

bJek ∧ eJ , |J |= r+ s−1, I0 �⊂ {J ∪k}

and, moreover, ek ∧ τ ∈ Imμsw. Hence the claim follows. �

From now on we will assume m≥ 3. Moreover we identify ∧rV to its image
via the diagonal embedding

δ : ∧rV −→ (∧rV )m,

sending w to δ(w) := (w,. . . ,w). Let o∈Δ be the point defined by w= (w,. . . ,w).
From Corollary 2.7(i), we have that

Δ∩Singm−1(Dr,m) = {o ∈Δ | w∧w = 0}.

Moreover let (t1, . . . , tm) ∈ (∧rV )m, and let v be a tangent vector at o to

{(w+ εt1, . . . ,w+ εtm), ε ∈ C} ⊂ P1×·· ·×Pm,

it follows from Corollary 2.7 that v is tangent to Singm−1(Dr,m) at o iff

w∧ tj+ ti∧w = 0, 1≤ i < j ≤m,

in the vector space ∧2rV . Let

ϑ : (∧rV )m −→ (∧rV/〈w〉)m

be the natural quotient map, where (∧rV/〈w〉)m = TP1×···×Pm,o. Consider

To :=
{(

t1, . . . , tm) ∈ (∧rV )m | w∧ tj+ ti∧w = 0, 1≤ i < j ≤m
}

and note that, by the latter remark, one has

ϑ−1(TSingm−1(Dr,m),o

)
= To.
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For any point o ∈Δ∩Singm−1(Dr,m) we define

co = codimension of TSingm−1(Dr,m),o in TP1×···×Pm,o,(9)

Since ϑ is surjective, it is clear that co is the codimension of To in (∧rV )m.

LEMMA 3.3. Let co be as above and let B :=
((m−1)r

r

)
, then

(i) co ≥mB if r is even and m≥ 3,
(ii) co ≥ (m−1)B if r is odd and m≥ 3,
(iii) co =m−1 if m≤ 2.

Moreover the equality holds in (i) and (ii) iff w is a decomposable vector.

Proof. Let w⊥ ⊂ ∧rV be the orthogonal space of w = (w,. . . ,w) with respect
to the bilinear form

∧ : ∧rV ×∧rV −→∧2rV.

Moreover let N ⊂ (∧rV )m be the subspace defined by the equations

(−1)rti+ tj = 0, 1≤ i < j ≤m.

It is easy to check that

To =N +
(
w⊥
)m

.

Let m ≥ 3 then N is the diagonal subspace if r is odd and N = (0) if r is even.
By Proposition 3.2, we have that codimw⊥ ≥ B and moreover the equality holds
iff w is a decomposable vector. This implies (i), (ii) and the latter statement. Let
m≤ 2 then N is either the diagonal subspace or the space of pairs (t,−t), t∈∧rV .
Arguing as above it follows that co = (m− 1)B, i.e. co =m− 1. This completes
the proof. �

Proof of Theorem 3.1. The proof is now immediate: let o∈Δ∩Singm−1(Dr,m).
It is obvious that the codimension co is minimal iff dimTSingm−1(Dr,m),o is maximal.
Assume m≥ 3, by Lemma 3.3 co is minimal iff o ∈G. �

Keeping our usual notations we have

G
m ⊂ P1×·· ·×Pm ⊂ P

(N+1)m−1,

where the latter inclusion is the Segre embedding and G is the previous Plücker
embedding. The restriction of Dr,m to G

m has a geometric interpretation given in
the next lemma.

Let o = (w1, . . . ,wm) ∈ G
m. Then we have ws := v

(s)
1 ∧ ·· · ∧ v

(s)
r , where

v
(s)
1 , . . . ,v

(s)
r ∈ Vs and s = 1, . . . ,m. In particular ws is a decomposable vector, so

it defines a point ls in G. The vector space corresponding to ls is generated by the
basis vs1, . . . ,v

s
r . We will denote its projectivization by Ls.
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LEMMA 3.4. The following conditions are equivalent:
(i) o ∈ Dr,m,
(ii) w1∧ ·· ·∧wm = 0,
(iii) {vji }, 1≤ i≤ r, 1≤ j ≤m, is not a basis of V ,
(iv) there exists a hyperplane in P(V ) containing L1∪ ·· ·∪Lm.

Proof. Immediate. �

LEMMA 3.5. Dr,m cuts on G
m an integral hyperplane section.

Proof. Consider the correspondence

I =
{(

l1, . . . , lm,H
) ∈G

m×P
(
V ∗
) | L1∪ ·· ·∪Lm ⊂H

}
,

and its projections p1 : I → G
m and p2 : I → P(V ∗). Note that the fibre of p2 at

any H is the product of Grassmannians of r−1 spaces in H , which is irreducible.
Hence I is irreducible. On the other hand we have p1(I) = Dr,m∩Gm by Lemma
3.4(iv). Hence the latter intersection is irreducible. Since OGm(1) is not divisible
in Pic(Gm), it follows that Dr,m ·Gm is integral. �

On G we consider the universal bundle Ur. We recall that Ur is uniquely defined
by its Chern classes, unless m = 2. Let l ∈ G and let L ⊂ P(V ) be the space
corresponding to l. Then the fibre of U∗r at l is H0(OL(1)), moreover H0(Ur∗) =
V ∗ = H0(OP(V )(1)). Let πs : Gm → G be the projection onto the sth factor. On
G
m we consider the vector bundle of rank rm

F : =
⊕

s=1,...,m

π∗sU∗r .

For any point o= (l1, . . . , lm) ∈G
m, we have

Fo =
(U∗r

)
l1
⊕·· ·⊕ (U∗r

)
lm

=H0(OL1(1)
)⊕·· ·⊕H0(OLm(1)

)
.

In particular the natural evaluation map

evm : V ∗ ⊗OGm −→F ,(10)

is a morphism of vector bundles of the same rank rm.

Definition 3.6. DG is the degeneracy locus of evm.

THEOREM 3.7. DG = Dr,m ·Gm.

Proof. Let o= (l1, . . . , lm) ∈G
m, then evmo is the natural restriction map

H0(OP(V )(1)
) −→H0(OL1(1)

)⊕ . . .⊕H0(OLm(1)
)
.
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Note that evmo is an isomorphism iff L1∪ ·· ·∪Lm is not in a hyperplane of P(V ).
This implies that DG is a divisor. Moreover DG = Dr,m∩Gm by Lemma 3.4 and
DG ∈ |OGm(1, . . . ,1)|. Hence DG = Dr,m ·Gm. �

4. Plücker forms and moduli of vector bundles. In this section we con-
sider any integral, smooth projective variety X ⊂ P

n of dimension d ≥ 1. We as-
sume that X is linearly normal and not degenerate.

Definition 4.1. (E,S) is a good pair on X if
(i) E is a vector bundle of rank r on X,
(ii) detE ∼=OX(1),
(iii) S ⊂H0(E) is a subspace of dimension rm,
(iv) E is globally generated by S,
(v) the classifying map of (E,S) is a morphism birational onto its image.

Given (E,S) we have the dual space V := S∗ and its Plücker form

Dr,m ⊂ P(∧rV )m.

We want to use it. Let us fix preliminarily some further notations:

Definition 4.2.
(i) GE,S is the Plücker embedding of the Grassmannian G(r,V ),
(ii) UE,S is the universal bundle of GE,S ,
(iii) dE,S : ∧rS→H0(OX(1)) is the standard determinant map,
(iv) λE,S : Pn→ P(∧rV ) is the projectivized dual of dE,S ,
(v) gE,S : X →GE,S is the classifying map defined by S.

We recall that gE,S associates to x∈X the parameter point of the space Imev∗x,
where ev : S⊗OX→E is the evaluation map. It is well known that gE,S is defined
by the subspace ImdE,S of H0(OX(1)), in particular

gE,S = λE,S |X .

Since E is globally generated by S and gE,S is a birational morphism, the next
three lemmas describe standard properties.

LEMMA 4.3. One has E ∼= λ∗E,SU∗E,S and S = λ∗E,SH
0(U∗E,S) for any good

pair (E,S).

We say that the good pairs (E1,S1), (E2,S2) are isomorphic if there exists an
isomorphism u : E1→ E2 such that u∗S1 = S2.

LEMMA 4.4. Let (E1,S1) and (E2,S2) be good pairs. Then the following con-
ditions are equivalent:

(i) dE1,S1 = dE2,S2 ◦ (∧rα) for some isomorphism α : S1→ S2.
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(ii) f ∗E1
∼= E2 and f ∗S1 = S2 for some automorphism f ∈ Aut(X).

Proof. (i)⇒(ii). The projectivized dual of ∧rα induces an isomorphism a :
GE2,S2 → GE1,S1 such that gE1,S1 = a ◦ gE2,S2. On the other hand, gEi,Si : X →
GEi,Si is a morphism birational onto its image for i = 1,2. Hence a lifts to an
automorphism f : X →X with the required properties. (ii)⇒(i). It suffices to put
α= f ∗. �

Let ρi : Xm→X be the projection onto the ith factor of Xm. Then

evE,S : S⊗OXm −→
⊕

i=1,...,m

ρ∗iE := E

is the morphism defined as follows. Let U ⊂Xm be open, we observe that E(U) =

E(U)m. Then we define the map evE,S(U) : S→E(U)m as the natural restriction
map. Since evE,S is a morphism of vector bundles of the same rank, its degeneracy
locus is either Xm or a divisor

DE,S ∈
∣
∣OXm(1, . . . ,1)

∣
∣.

Definition 4.5. We will say that the divisor DE,S is the determinant divisor, or
the Plücker form, of the pair (E,S).

If the previous locus is Xm we will say that (E,S) has no Plücker form.

LEMMA 4.6. Let (E1,S1) and (E2,S2) be isomorphic good pairs. Then
DE2,S2 = DE1,S1 .

Proof. Let u : E1 → E2 be an isomorphism such that u∗S2 = S1. Then, by
taking the pull back of u to evE1,S1 :S1⊗OX→E1, we obtain evE2,S2 . This implies
that DE1,S1 = DE2,S2. �

Remark 4.7. Note that DE,S contains the multidiagonal Δm, i.e. the set of all
the points (x1, . . . ,xm)∈Xm such that xi = xj for some distinct i,j ∈ {1, . . . ,m}.
Moreover, Δm is a divisor in Xm iff dimX = 1. In this case DE,S is reducible:

PROPOSITION 4.8. Assume that X is a curve, then

DE,S = (r+ ε)Δm+D
∗
E,S.

where ε≥ 0 and the support of the divisor D∗E,S is the Zariski closure of the set

{(
x1, . . . ,xm

) ∈Xm−Δm | ∃s ∈ S, s
(
xi
)
= 0, i= 1, . . . ,m

}
.

Proof. Let x= (x1, . . . ,xm) ∈Δm. Then evE,S has rank ≤ rm− r at x. This
implies that x is a point of multiplicity ≥ r of the determinant divisor DE,S . Hence
Δm is a component of DE,S of multiplicity ≥ r. This implies the statement. �
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Actually, ε = 0 if E is a general semistable vector bundle on the curve X. It
is enough to verify this property in the case E = L⊕r and S =H0(E), where L is
a general line bundle on X of degree m+ g− 1. In this case the Plücker form of
(E,S) is indeed r times the Plücker form of (L,H0(L)).

It is also non difficult to compute that DE,S− rΔm is numerically equivalent
to a∗rΘ, where a : Xm→ Picm(X) is the natural Abel map and Θ⊂ Picm(X) is
a theta divisor. Finally we consider the commutative diagram

Xm
gmE,S−−−−→ G

m
E,S⏐

⏐�
⏐
⏐�

(Pn)m
λmE,S−−−−→ (PN )m

where the vertical arrows are the inclusion maps.

LEMMA 4.9. Let DE,S be the Plücker form of a good pair (E,S), then

DE,S =
(
λmE,S

)∗
Dr,m.

Proof. Lifting by gmE,S the map evm : V ⊗OGE,S
→⊕

i=1,...,mπ∗sU∗E,S , one
obtains the map evE,S : S⊗OXm →⊕

i=1,...,m ρ∗iE. From the commutativity of
the above diagram it follows that DE,S = (λmE,S)

∗
Dr,m = (gmE,S)

∗
DGE,S

. �

To a good pair (E,S) we have associated its Plücker form DE,S. Now we
want to prove that, under suitable assumptions, a good pair (E,S) is uniquely
reconstructed from DE,S . To this purpose we define the following projective variety
in the ambient space P

n of X.

Definition 4.10. ΓE,S is the closure of the set of points x ∈ P
n such that:

(i) DE,S has multiplicity m−1 at the point o= (x, . . . ,x) ∈ (Pn)m,
(ii) the tangent space to Sing(DE,S) at o has maximal dimension.

THEOREM 4.11. Assume that dE,S is injective and m≥ 3. Then:
(i) ΓE,S is a cone in P

n with directrix the Grassmannian GE,S,
(ii) the vertex of the cone ΓE,S is the center of the projection λE,S .

Proof. Since λE,S is the projective dual of dE,S , the tensor product map

d⊗mE,S : (∧rS)⊗m −→H0(OX(1)
)⊗m

is precisely the pull-back map
(
λmE,S

)∗
: H0(O

(P(∧rV )
)m(1, . . . ,1)

) −→H0(O(Pn)m(1, . . . ,1)
)
.

Moreover it is injective. Let F ∈ H0(O(P(∧rV ))m(1, . . . ,1)) be the polynomial
of multidegree (1, . . . ,1) defining Dr,m. Then we can choose coordinates on
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(P(∧rV ))m and (Pn)m so that d⊗mE,S(F ) = F . Assume that λmE,S is a morphism at
the point o ∈ (Pn)m, then it follows that:

(a) λmE,S(o) ∈ Singm−1(Dr,m) iff o ∈ Singm−1(DE,S),
(b) the codimension is equal for the tangent spaces to Singm−1(Dr,m) at

λmE,S(o) and to Singm−1(DE,S) at o.
Assume that o = (x, . . . ,x) is a diagonal point in (Pn)m. Then x ∈ ΓE,S iff o sat-
isfies (i) and (ii) in Definition 4.10. By (a) and (b), conditions (i) and (ii) hold true
for o iff they hold true for λmE,S(o) as a point of Dr,m. Finally, by Theorem 3.1,
λE,S(o) satisfies (i) and (ii) iff x belongs to the Grassmannian GE,S. Hence ΓE,S
is a cone over GE,S with vertex the center of λE,S . �

We are now able to show the main result of the current section.

THEOREM 4.12. Let (E1,S1) and (E2,S2) be good pairs defining the same
Plücker form D⊂ (Pn)m. Assume that m≥ 3 and dEi,Si is injective for any i= 1,2,
then there exists f ∈ Aut(X) such that f ∗E2

∼= E1 and f ∗S2 = S1.

Proof. Let Γ be the closure of the set of diagonal points o= (x, . . . ,x) ∈ D of
multiplicity m−1 and tangent space TSingm−1(D),o

of maximal dimension. By The-
orem 4.11, Γ is a cone in P

n: its directrix is the Grassmannian GEi,Si and its vertex
is the center of the projection λEi,Si , both for i= 1 and i= 2. Since the projection
maps λEi,Si have the same center, there exist an isomorphism σ : GE2,S2 →GE1,S1

such that λE1,S1 = σ ◦ λE2,S2 . Since m ≥ 3, then σ = ∧rα∗ for an isomorphism
α : S1→ S2, see [Ha2, p. 122]. Then, applying Lemma 4.4, it follows f ∗E1

∼= E2

and f ∗S1 = S2 for some f ∈ Aut(X). �

To conclude this section we briefly summarize, in a general statement, how to
deduce from the previous results the generic injectivity of some natural maps, de-
fined on a moduli space of good pairs as above. Therefore we assume that a coarse
moduli space S exists for the family of good pairs (E,S) under consideration. This
is, for instance the case when E is stable with respect to the polarization OX(1)
and S =H0(E). Then there exists a natural map

θr,m : S −→ ∣∣OXm(1, . . . ,1)
∣
∣

sending the moduli point of (E,S) to its determinant divisor DE,S. Let (E1,S1)

and (E2,S2) be good pairs as above defining two general points of S . Assume
that DE1,S1 = DE2,S2 . Then we know from Theorem 4.12 that then (E1,S1) and
(E2,S2) are isomorphic if m≥ 3, Aut(X) = 1 and

dEi,Si : ∧rSi −→H0(OX(1)
)
.

is injective. This implies the next statement:
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THEOREM 4.13. Let m ≥ 3 and Aut(X) = 1. Assume dE,S : ∧rS →
H0(OX(1)) is injective for good pairs (E,S) with moduli in a dense open
subset of S . Then θr,m is generically injective.

5. Plücker forms and the theta map of SUX(r,0). Now we apply the
preceding arguments to study the theta map of the moduli space SUX(r,0) of
semistable vector bundles of rank r and trivial determinant over a curve X of genus
g ≥ 2. By definition the theta map

θr : SUX(r,0) −→ P
(
H0(L)∗)

is just the rational map defined by the ample generator L of SUX(r,0). We prove
our main result:

THEOREM 5.1. Let X be general and g� r, then θr is generically injective.

To prove the theorem we need some preparation. At first we replace the space
SUX(r,0) by a suitable translate of it, namely the moduli space

Sr

of semistable vector bundles E on X having rank r and fixed determinant OX(1)
of degree r(m+ g− 1). We assume that X has general moduli and that OX(1)
is general in Picr(m+g−1)(X), with m ≥ 3 and r ≥ 2. In particular OX(1) is very
ample: we also assume that X is embedded in P

n by OX(1).
We recall that Sr is biregular to SUX(r,0), the biregular map being induced

by tensor product with an rth root of OX(−1).

PROPOSITION 5.2. Let E be a semistable vector bundle on X with general
moduli in Sr. Then:

(i) h0(E) = rm and (E,H0(E)) is a good pair,
(ii) the Plücker form of (E,H0(E)) exists.

Proof. (i) It suffices to produce one semistable vector bundle E on X, of de-
gree r(m+g−1) and rank r, such that h0(E) = rm and (E,H0(E)) is a good pair
in the sense of Definition 4.1. Then the statement follows because the conditions
defining a good pair are open. Let L ∈ Picm+g−1(X) be general, then h0(L) =m

and L is globally generated. Since m≥ 3, L defines a morphism birational onto its
image

f : X −→ P(H0(L)∗).

Putting E :=L⊕r we have a globally generated, semistable vector bundle such that
h0(E) = rm. Hence, to prove that (E,H0(E)) is a good pair, it remains to show
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that its classifying map

gE : X −→GE : =G
(
r,H0(E)∗

)

is birational onto its image. We observe that H0(E) = H1⊕ ·· · ⊕Hr, where Hi

is just a copy of H0(L), i = 1, . . . ,r. Let fi : X → P(H∗i ) be the corresponding
copy of f , for any i = 1, . . . ,r. Then gE : X → GE can be described as follows:
let P(E∗x) ⊂ P(H0(E)∗) be the linear embedding induced by the evaluation map,
it turns out that P(E∗x) is the linear span of f1(x), . . . ,fr(x). This implies that
gE = u◦ (f1×·· ·× fr), where

u : P
(
H∗1
)×·· ·×P

(
H∗r
)−→GE

is the rational map sending (y1, . . . ,yr) to the linear span of the points yi ∈P(H∗i )⊂
P(H0(E)∗), i = 1, . . . ,r. Since f is birational onto its image, the same is true
for the map f1× ·· ·× fr. Moreover u is clearly birational onto its image. Hence
gE is birational onto its image. Finally gE is a morphism, since L⊕r is globally
generated. This completes the proof of (i).

(ii) Again it suffices to produce one good pair (E,H0(E)) with the required
property. It is easy to see that this is the case if E = L⊕r as in (i). �

Now we consider the rational map

θr,m : Sr −→
∣∣OX(1, . . . ,1)

∣∣

sending the moduli point [E] ∈ Sr of a general E to the Plücker form

DE ∈
∣
∣OX(1, . . . ,1)

∣
∣

of the pair (E,H0(E)). Let t ∈ Picm+g−1(X) be an r-root ofOX(1), then we have
a map

at : Xm −→ Picg−1(X)

sending (x1, . . . ,xm) to OX(t− x1− ·· · − xm). It is just the natural Abel map
a : Xm→ Picm(X), multiplied by −1 and composed with the tensor product by t.
Fixing a Poincaré bundle P on X×Picg−1(X) we have the sheaf

R1q2∗
(
q∗1E(−t)⊗P),

where q1,q2 are the natural projection maps of X × Picg−1(X). It is well known
the support of this sheaf is either Picg−1(X) or a Cartier divisor ΘE , see [BNR].
Moreover, due to the choice of t, one has

ΘE ∈ |rΘ|,
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where Θ := {N ∈ Picg−1(X) | h0(N) ≥ 1} is the natural theta divisor of
Picg−1(X). In particular, one has h0(E⊗N(−t)) = h1(E⊗N(−t)) so that

SuppΘE =
{
N ∈ Picg−1(X) | h0(E⊗N(−t))≥ 1

}
.

Finally, it is well known that there exists a suitable identification

| rΘ |= P
(
H0(L)∗)

such that θr([E]) = ΘE , [BNR]. Computing Chern classes it follows

a∗tΘE+ rΔm ∈
∣
∣OXm(1, . . . ,1)

∣
∣,

where Δm ⊂Xm is the multidiagonal divisor. On the other hand, rΔm is a com-
ponent of DE by Proposition 4.8. Moreover, it follows from the definition of deter-
minant divisor that DE contains a−1

t (ΘE). Therefore we have

a∗tΘE+ rΔm = DE.(11)

Letα : |rΘ|→ |OXm(1, . . . ,1)| be the linear map sending D∈| rΘ | to a∗tD+rΔm.
We conclude the following from the latter equality:

PROPOSITION 5.3. θr,m factors through the theta map θr, that is θr,m=α◦θr .
Proof of Theorem 5.1. Let θr,m : Sr→ |OXm(1, . . . ,1)| be as above. We have

Aut(X) = 1 and m ≥ 3. We know that (E,H0(E)) is a good pair if [E] ∈ Sr is
general and that θr,m factors through the theta map θr. Theorem 4.13 says that θr,m
is generically injective if (E,H0(E)) is a good pair and the determinant map

dE : ∧rH0(E)−→H0(OX(1)
)

is injective for a general [E]. This is proved in the next section. �

6. The injectivity of the determinant map. Let (X,E) be a pair such that
X is a smooth irreducible curve of genus g and E is a semistable vector bundle of
rank r on X and degree r(g− 1+m), with m ≥ 3. If E is a general semistable
vector bundle on X, it follows that:

(i) (E,H0(E)) is a good pair,
(ii) its Plücker form exists.

(see Definition 4.1 and Proposition 5.2). It is therefore clear that the previous con-
ditions are satisfied on a dense open set U of the moduli space of (X,E).

ASSUMPTION. From now on we will assume that (X,E) defines a point of U ,
so that X is a general curve of genus g and E is semistable and satisfies (i) and
(ii).

In this section we prove the following result:
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THEOREM 6.1. Let X and E be sufficiently general and g� r, then:
(i) the determinant map dE : ∧rH0(E)→H0(detE) is injective,
(ii) the classifying map gE : X →GE is an embedding.

Since m≥ 3, det E :=OX(1) is very ample. So we will assume as usual that
the curve X is embedded in P

n = P(H0(OX(1))∗). Let us also recall that

GE ⊂ P
(rmr )−1

denotes the Plücker embedding of the Grassmannian G(r,H0(E)∗). Let

λE : Pn→ P
(rmr )−1

be the projectivized dual of dE . We have already remarked in Section 4 that gE is
just the restriction λE |X . This immediately implies that:

LEMMA 6.2. dE is injective⇔ λE is surjective⇔ the curve gE(X) spans the

Plücker space P
(rmr )−1.

Since (E,H0(E)) is a good pair, gE : X → gE(X) is a birational morphism.
Let

〈gE(X)〉 ⊂ P
(rmr )−1

be the linear span of gE(X). Then the previous Theorem 6.1 is an immediate con-
sequence of the following one:

THEOREM 6.3. For a general pair (X,E) as above gE is an embedding and

dim〈gE(X)〉 ≥ r(m−1)+ g.

In other words, the statement says that gE is an embedding and that dE has
rank > r(m−1)+ g. This theorem and the previous lemma imply the following:

COROLLARY 6.4. For a general (X,E), dE is injective if g ≥ (rmr
) −

r(m−1)−1.

Hence the proof of Theorem 6.1 also follows.

Proof of Theorem 6.3. To prove the theorem, hence Theorem 6.1, we observe
that the moduli space of all pairs (X,E) is an integral, quasi-projective variety
defined over the moduli space Mg of X. On the other hand, the conditions in
the statement of the theorem are open. Therefore, it suffices to construct one pair
(X,E) such that E is semistable, h0(E) = rm and these conditions are satisfied.
We will construct such a pair by induction on the genus

g ≥ 0

of X. For g = 0 we have X = P
1 and E =OP1(m−1)r.
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LEMMA 6.5. Let X = P
1 and E = OP1(m− 1)r , with m ≥ 2. Then dE is

surjective and gE is an embedding.

Proof. The proof of the surjectivity of dE is standard. It also follows from the
results in [T]. In order to deduce that gE is an embedding recall that gE is defined
by ImdE , hence by the complete linear system |OP1(r(m−1))|. �

Now we assume by induction that the statement is true for g and prove it for
g+1.

Let (X,E) be a general pair such that X has genus g. We recall that then X

is a general curve of genus g and (E,H0(E)) is a good pair admitting a Plücker
form.

By induction gE is an embedding and dim〈gE(X)〉 ≥ r(m− 1)+ g. We need
to prove various lemmas.

LEMMA 6.6. The evaluation map evx,y : H0(E)→ Ex⊕Ey is surjective for
general x,y ∈X.

Proof. If not we would have h0(E(−x− y)) > h0(E)− 2r = r(m− 2), for
any pair (x,y) ∈ X2. This implies that h0(E(−x− y − z1 − ·· · − zm−2)) ≥ 1,
∀(x,y,z1, . . . ,zm−2) ∈Xm and hence that (E,H0(E)) has no Plücker form. But
then, by Proposition 5.2 (ii), (X,E) is not general: a contradiction. �

From now on we put

C := gE(X).

Choosing x,y so that evx,y is surjective, we have a linear embedding

E∗x⊕E∗y ⊂H0(E)∗

induced by the dual map ev∗x,y. This induces an inclusion of Plücker spaces

P
(2r
r )−1 := P

(∧r (E∗x⊕E∗y
))⊂ P

(rmr )−1 := P
(∧rH0(E)∗

)

and of their corresponding Grassmannians

Gx,y :=G
(
r,
(
E∗x⊕E∗y

))⊂GE.

LEMMA 6.7. Assume 〈C〉 is a proper subspace of the Plücker space of GE .
Let x,y be general points of X. Then 〈Gx,y〉 is not in 〈C〉.

Proof. For a general x ∈ X consider the linear map π : H0(E)∗ →
H0(E(−x))∗ dual to the inclusion H0(E(−x)) ⊂H0(E). It induces a surjective
linear projection

∧rπ : P
(∧rH0(E)∗

)−→ P
(∧rH0(E(−x))∗),
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with center the linear span 〈σ〉 of σ := {L ∈GE | dim(L∩E∗x)≥ 1}. In particular
∧rπ restricts to a rational map between Grassmannians

f : GE −→GE(−x),

where GE(−x) :=G(r,H0(E(−x))∗)
G(r,(m−1)r). Let l ∈GE be the param-
eter point of the space L, then f(l) is the parameter point of π(L). Clearly f is
defined at l iff L∩E∗x = 0. Moreover, the closure of the fibre of f at f(l) is the
Grassmannian G(r,L⊕E∗x). In particular, the closure of the fibre at f(y) is Gx,y,
for a general y ∈X. We distinguish two cases:

(1) f(C) spans the Plücker space of GE(−x). Since f = ∧rπ|GE
and ∧rπ is

linear, it follows that
⋃
y∈C〈Gx,y〉 spans the Plücker space of GE . Since 〈C〉 is

proper in it, we conclude that 〈Gx,y〉 is not in 〈C〉 for some y, hence for general
points x,y ∈X.

(2) f(C) does not span the Plücker space of GE(−x). Since the Plücker form of
(E,H0(E)) exists and m≥ 3, we can fix x,y,z1, . . . ,zm−2 ∈X so that h0(E(−x−
y−z)) = 0, where z := z1 + · · ·+zm−2. Then we have H0(E(−x))∩H0(E(−y−
z)) = 0 in H0(E). Putting E∗z := E∗z1

⊕·· ·⊕E∗zi , it follows that

π|(E∗z⊕E∗y) : E∗y⊕E∗z −→H0(E(−x))∗

is an isomorphism, that is, ∧rπ induces the following isomorphism of projective
spaces:

iy,z : P
(∧r(E∗y⊕E∗z

))−→ P
(∧rH0(E(−x))∗).

On the other hand, P(∧r(E∗y ⊕E∗z)) is spanned by the union of its natural linear
subspaces 〈Gy,zi〉= P(∧r(E∗y⊕E∗zi)), i = 1, . . . ,m−2. Since 〈f(C)〉 is a proper
subspace of P(∧rH0(E(−x))∗), it follows that 〈Gy,zi〉 is not in 〈C〉, for some
i= 1, . . . ,m−2. �

Now we assume that 〈C〉 is a proper subspace of the Plücker space of GE

and fix general points x,y ∈ X so that the conditions of the previous lemma are
satisfied. Keeping the previous notations let P ⊂ P

rm−1 be the tautological image
of P(E∗) and let Pz := P(E∗z), z ∈X. We observe that the Grassmannian Gx,y is
ruled by smooth rational normal curves of degree r passing through x and y. More
precisely, let

P
2r−1 := P

(
E∗x⊕E∗y

)

and for t ∈Gx,y let

Pt ⊂ P
2r−1 ⊂ P

rm−1

be the projectivized space corresponding to t. We have:
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LEMMA 6.8. For a general t ∈Gx,y there exists a unique Segre product S :=
P

1×P
r−1 such that Px∪Py ∪Pt ⊂ S ⊂ P

2r−1. Moreover:
(i) the ruling of S is parametrized by a degree r rational normal curve

R⊂Gx,y ⊂GE ⊂ P
(rmr )−1,

(ii) the universal bundle Ur of GE restricts to OP1(−1)⊕r on R,
(iii) the restriction map H0(U∗)→H0(OP1(1))⊕r is surjective.

Proof. Since x,y are general in X, Lemma 6.6 implies that Px∩Py = /0. Since
t is general in Gx,y, we have Pt ∩Px = Pt ∩Py = /0. It is a standard fact that
the union of all lines in P

2r−1 meeting Px, Py and Pt is the Segre embedding
S ⊂ P

2r−1 of the product P1×P
r−1, which is actually the unique Segre variety

containing the above linear spaces, see [Ha2, p. 26, 2.12]. It is also well known
that S is the tautological image of the projective bundle associated to OP1(1)⊕r ,
see [Ha1]. Therefore, the map assigning to each point p ∈ P

1 the fiber of S over
p is the classifying map of OP1(1)⊕r. So it defines an embedding of P1 into the
Grassmannian Gx,y, whose image is a rational normal curve R. This implies (ii)
and (iii). �

Let t ∈Gx,y be a sufficiently general point, where x,y are general in X. Then,
by Lemma 6.7, t is not in the linear space 〈C〉. Since Gx,y is ruled by the family of
curves R, we can also assume that C ∪R is a nodal curve with exactly two nodes
in x and y. So far we have constructed a nodal curve

Γ := C ∪R(12)

such that
(i) Γ has arithmetic genus g+1 and degree r(m+ g),
(ii) dim〈Γ〉 ≥ dim〈C〉+1 = r(m−1)+ g+1.

LEMMA 6.9.
(i) The curve Γ is smoothable in GE ,
(ii) h1(OΓ(1)) = 0 and h0(OΓ(1)) = r(m+ g)− g.

Let Ur be the universal bundle on GE , we have also the vector bundle on Γ:

F := U∗r ⊗OΓ.(13)

LEMMA 6.10.
(i) The restriction map H0(U∗r )→H0(F ) is an isomorphism,
(ii) h1(F ) = 0 and h0(F ) = rm.

LEMMA 6.11. Let x1, . . . ,xm be general points on C . Then h0(F (−x1− ·· ·
− xm)) = 0.
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Proof. Let us recall that C = gE(X) and that E ∼= U∗r ⊗OC . Under the as-
sumptions made at the beginning of this section, X is a general curve of genus g,
(E,H0(E)) is a good pair admitting a Plücker form. This implies that h0(E(−x1−
·· · −xm)) = 0, where x1, . . . ,xm are general points on X. Notice also that F ⊗
OC ∼=E and that, by the previous lemma, the restriction map H0(F )→H0(E) is
an isomorphism.

Let d := x1 + · · ·+xm and let s ∈H0(F (−d)). Then s is zero on X because
h0(E(−d)) = 0. In particular s is zero on {x,y}= C ∩R. Hence its restriction on
R is a global section s|R of OR(−x− y). But F ⊗OR(−x− y) is OP1(−1)⊕r so
that s|R = 0. Hence s is zero on Γ and h0(F (−d)) = 0. �

We are now able to complete the proof of Theorem 6.3, postponing the proofs
of Lemmas 6.9 and 6.10.

Completion of the proof of Theorem 6.3. We start from a curve Γ = C ∪R as
above. Therefore the component C = gE(X) is the embedding in GE of a curve X
with general moduli and, by the previous lemma, there exists (x1, . . . ,xm) ∈ Cm

such that h0(F (−x1−·· ·−xm)) = 0. Now recall that, by Lemma 6.9, the curve Γ

is smoothable in GE . This means that there exists a flat family

{Xt, t ∈ T}

of curves Xt ⊂ GE such that: (1) T is integral and smooth, (2) for a given o ∈ T

one has Xo = Γ, (3) Xt is smooth for t �= o. Let

Et := U∗r ⊗OXt .

For t general we have h1(Et) = h1(F ) = 0, by semicontinuity, and hence h0(Et) =

rm. For the same reason, the determinant map dt : ∧rH0(Et)→H0(OXt(1)) has
rank bigger or equal to the rank of do :∧rH0(F )→H0(OΓ(1)). This is equivalent
to say that

dim〈Xt〉 ≥ dim〈Γ〉 ≥ r(m−1)+ g+1.

Then, for t general, the pair (Xt,Et) satisfies the statement of Theorem 6.3.
To complete the proof of the theorem, it remains to show that Et is semistable

for a general t. It is well known that Et is semistable if it admits theta divisor, see
[B3]. This is equivalent to say that

Θt := {N ∈ Picm(Xt) | h0(Et⊗N−1)≥ 1} �= Picm(Xt),

therefore Et is semistable if

Dt := {(z1, . . . ,zm) ∈Xm
t | h0(Et(−z1−·· ·− zm))≥ 1} �=Xm

t .



1270 S. BRIVIO AND A. VERRA

To prove that Dt �=Xm
t for a general t, we fix in GE

m×T the family

A :=
{(

z1, . . . ,zm;t
) ∈GE

m×T | z1, . . . ,zm ∈Xt−Sing
(
Xt

)}
,

which is integral and smooth over T . Then we consider its closed subset

D :=
{(

z1, . . . ,zm;t
) ∈A | h0(U∗r ⊗OXt

(− z1−·· ·− zm
))≥ 1

}
.

It suffices to show that D is proper, so that Dt �=Xm
t for a general t. Since Eo=F ,

Lemma 6.11 implies that D∩Xm
o is proper. Indeed there exists a point (x1, . . . ,xm)

∈Cm ⊂Xm
o so that h0(F (−x1−·· ·−xm)) = 0. Hence D is proper. �

Proof of Lemma 6.9. (i) We will put G := GE . We recall that Γ is smoothable
in G if there exists an integral variety X ⊂G×T such that:

(a) the projection p : X → T is flat,
(b) for some o ∈ T the fibre Xo is Γ,
(c) if t ∈ T −{o}, the fibre Xt is smooth of genus g+1.

To prove that Γ is smoothable we use a well known argument, see [S] or [HH].
Consider the natural map φ : TG|Γ→NΓ|G, where NΓ|G is the normal bundle of Γ
in G. The Cokernel of φ is a sheaf T 1

S , supported on S := Sing(Γ). It is known as
the T 1-sheaf of Lichtenbaum-Schlessinger. Finally, φ fits into the following exact
sequence induced by the inclusion Γ⊂G:

0−→ TΓ −→ TG|Γ φ−→NΓ|G −→ T 1
S −→ 0.

Let N′ be the image of φ in NΓ|G. The condition h1(N′) = 0 implies that Γ is
smoothable in G, [S] prop. 1.6. To show that h1(N′) = 0 it is enough to show that
h1(TG|Γ) = 0, this is a standard argument following from the exact sequence

0−→ TΓ −→ TG|Γ −→N′ −→ 0.

To prove that h1(TG|Γ) = 0 we use the Mayer-Vietoris exact sequence

0−→ TG|Γ −→ TG|C⊕TG|R −→ TG|S −→ 0.

The associated long exact yields the restriction map

ρ : H0(TG|C)⊕H0(TG|R)−→H0(TG|S).
At first we show its surjectivity: it suffices to show that

ρ : 0⊕H0(TG|R
)−→H0(TG|S

)

is surjective. Recall that S consists of two points x,y and that T 1
S = OS . Then,

tensoring by TG|R the exact sequence

0−→OR(−x−y)−→OR −→OS −→ 0,
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the surjectivity of ρ follows if h1(TG|R(−x− y)) = 0. To prove this consider the
standard Euler sequence defining the tangent bundle to G:

0−→Ur⊗U∗r −→OG
⊕rm⊗U∗r −→ TG −→ 0.

Then restrict it to R and tensor by OR(−x− y). The term in the middle of such
a sequence is M := O⊕rm

P1 ⊗OP1(−1)⊕r. This just follows because U∗r ⊗OR ∼=
OP1(1)⊕r . Since h1(M) = 0, it follows that h1(TG|R(−x− y)) = 0. Hence ρ is
surjective. The surjectivity of ρ and the vanishing of h1(TG|R) and h1(TG|C) clearly
imply that h1(TG|Γ) = 0. Hence we are left to show that h1(TG|R) = h1(TG|C) = 0.
Since TG|R ∼=O⊕rmP1 ⊗OP1(1)⊕r, the former vanishing is immediate. To prove that
h1(TG|C) = 0 the argument is similar. Restricting the above Euler sequence to C

we obtain the exact sequence

0−→E∗ ⊗E −→E⊕rm −→ TG|C −→ 0,

since U∗r |C 
E. Then h1(E) = 0 implies h1(TG|C) = 0.

(ii) To prove h1(OΓ(1)) = 0 it suffices to consider the long exact sequence
associated to the Mayer-Vietoris exact sequence

0−→OΓ(1)−→OC(1)⊕OR(1)−→Ox,y(1)−→ 0.

For degree reasons we have h1(OC(1))=h1(OR(1)) = 0. Hence it suffices to show
that the restriction H0(OC(1))⊕H0(OR(1))→ Ox,y is surjective. This follows
from the surjectivity of the restriction H0(OR(1))→Ox,y. �

Proof of Lemma 6.10. Tensoring by F the standard Mayer-Vietoris exact se-
quence

0−→OΓ −→OC ⊕OR −→Ox,y −→ 0

we have the exact sequence

0−→ F −→E⊕OP1(1)⊕r −→ F ⊗Ox,y −→ 0.

Passing to the associated long exact sequence we obtain

0−→H0(F )
u−→H0(E)⊕H0(OP1(1)⊕r

) ρ−→H0(F ⊗Ox,y
)−→H1(F ) · · · .

Restricting ρ to H0(E)⊕0 or 0⊕H0(OP1(1)⊕r) we have the following maps

ρC : H0(E)−→Ex⊕Ey,

and

ρR : H0(OP1(1)⊕r
)−→OP1,x(1)

⊕r⊕OP1,y(1)
⊕r.
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These are the usual evaluation maps and we know they are surjective. It follows
from the surjectivity of ρ and the above long exact sequence that h0(F ) = rm =

h0(U∗r ) and h1(F ) = 0. Thus, to complete the proof, it suffices to show that
H0(U∗r ) → H0(F ) is injective. This is clear because the composition of maps
H0(U∗r )→H0(F )→H0(E) is injective. �
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PLÜCKER FORMS AND THE THETA MAP 1273
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